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5

Notations and standard definitions

The notations below will be used throughout the notes. We also wish to emphasize some common

notational mistakes.

N strictly positive integer numbers {1, 2, . . .}

R∗ non-zero real numbers: R \ {0}

R+ non-negative real numbers: [0,+∞)

R∗
+ strictly positive real numbers: (0,+∞)

Mn,d(R) space of n× d matrices with entries valued in R

Sn(R) space of symmetric n× n matrices with real entries

N cumulative distribution function of the standard Gaussian distribution

X = (Xt)t≥0 ̸= Xt a process evolving in time, as opposed to Xt, which represents the (random)

value of the process X at time t

11{x∈A} indicator function equal to 1 if x ∈ A and zero otherwise

x ∧ y min(x, y)

x ∨ y max(x, y)

a.s. almost surely

(x− y)+ max(0, x− y)

δx(·) Dirac measure at x

Cc(R) space of real continuous functions with compact support



Chapter 1

Option pricing: from

super-replication to FTAP

1.1 Zoology of stochastic analysis

In these notes, we shall follow a utilitarian approach, and only introduce the tools we need when

we need them. Some of them, being core to everything else, shall be introduced right away. The

triple (Ω,F ,P) will denote the ambient (given) probability space, where Ω is the sample space of

possible outcomes, F the set of events, and P a probability, namely a map from F to [0, 1]. In

this introductory part, we shall let T denote a (time) index set, which can be either countable

(T = {t1, t2, . . .}) or uncountable (T = R+). We recall that a σ-field on Ω is a non-empty collection

of subsets of Ω, closed under countable unions and intersections, and closed under complementation.

A filtration (Ft)t∈T is defined as a non-decreasing (in the sense of inclusion) family of σ-fields in F ;

we shall say that a process X = (Xt)t∈T is adapted to the filtration if Xt ∈ Ft for each t ∈ T .

The following definition is standard in the stochastic analysis / mathematical finance literature,

and will always be taken for granted in these lecture notes.

Definition 1.1.1. A filtered probability space (Ω,F , (Ft)t≥0,P) satisfies the usual hypotheses if

• F0 contains all the P-null sets of F ;

• the filtration is right-continuous: for any t ∈ T , Ft =
∩
s>t

Fu.

1.1.1 Stopping times

We introduce here stopping times, which are measurable random variables, and which will be

defining ingredients of local martingales, as we shall see later.

6



1.1. Zoology of stochastic analysis 7

Definition 1.1.2. A random variable τ taking values in T ∪ {sup T } is called a stopping time

(resp. optional time) if the event {τ ≤ t} (resp. {τ < t}) belongs to Ft for all t ∈ T .

Consider for instance T = [0,∞), a continuous, adapted, real-valued process X (a standard

Brownian motion for example) and fix a point x ∈ R. Then the first hitting time of the level x,

τ := inf{t ≥ 0 : Xt = x}, is a stopping time. However, the last hitting time of the level x,

τ := sup{t ≥ 0 : Xt = x}, is not a stopping time. Intuitively, the information available at time t is

not sufficient to determine whether the process will reach the level x at some point in the future.

The following properties of optional and stopping times are left as an exercise:

Proposition 1.1.3. The following assertions hold:

(i) Let τ be a random variable in T ∪ {sup T }; it is a stopping time if and only if {τ > t} ∈ Ft

for all t ∈ T ;

(ii) every stopping time is optional;

(iii) an optional time is a stopping time if the filtration is right-continuous;

(iv) if τ is an optional time and t0 a strictly positive constant, then τ + t0 is a stopping time;

(v) if τ1 and τ2 are stopping times, then so are τ1 ∧ τ2, τ1 ∨ τ2 and τ1 + τ2;

Proof. Statement (i) follows directly since {τ > t} = {τ ≤ t}c. Regarding (ii), let τ be a stopping

time, and assume that T = N. Then the event {τ < t} is equal to {τ ≤ t − 1} ∈ Ft−1 ⊂ Ft.

Consider now the general case T = [0,∞) and fix some t ∈ T . Let (tn)n∈N be a strictly increasing

sequence in T converging to t as n increases, so that

{τ < t} =
∪
n≥1

{τ ≤ tn} ∈ Ft.

Indeed, for each n ∈ N, the event {τ ≤ tn} belongs to Ftn , which is itself a subset of Ft. Consider

now (iii): assume that the filtration is right-continuous and τ a random time. For any t ∈ T ,

consider a strictly decreasing sequence (tn)n∈N converging to t; for any m > 0, we can write

{τ ≤ t} =
∩

n≥m

{τ < tn};

now, for any n ≥ m, {τ < tn} ∈ Ftn ⊂ Ftm . Therefore {τ ≤ tn} ∈ Ft+ = Ft. We leave (iv)

and (v) as exercises.

For every (Ft)t∈T -stopping time τ , we can associate the σ-field

Fτ := {B ∈ F : B ∩ {τ ≤ t} ∈ Ft, t ∈ T } .
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1.1.2 Non-negative local martingales

We now consider the filtered probability space (Ω,F , (Ft)t∈T ,P), for some index set T . All the

processes in this section shall be consider as taking values in Rd, for some d ∈ N.

Definition 1.1.4. An Rd-valued, adapted process S on (Ω,F , (Ft)t∈T ,P) is called a martingale

(respectively supermartingale, submartingale) if, for all t ∈ T , E(|St|) is finite (or S ∈ L1(P)) and

E(St|Fu) = Su (resp. E(St|Fu) ≤ Su, E(St|Fu) ≥ Su) for all u ∈ [0, t] ∩ T .

Example 1.1.5. Let W = (Wt)t≥0 be a standard Brownian motion, (FW
t )t≥0 its natural filtration,

i.e. Ft := {σ(Ws) : s ≥ t}, and T = [0,∞).

• W is an (Ft)-martingale;

• the processes (W 3
t − 3tWt)t≥0 and (W 4

t − 6tW 2
t + 3t2)t≥0 are true (Ft)-martingales.

• the solution to the stochastic differential equation dSt = σStdWt, starting at S0 > 0, cor-

responds to the Black-Scholes model (see Section 2.1.1), which is the canonical model in

mathematical finance. Then, for any 0 ≤ u ≤ t, St = Su exp
(
− 1

2σ
2(t− u) + σ(Wt −Wu)

)
,

and the process S is clearly a true martingale.

Unless otherwise specified, all processes here will be adapted to the filtration (Ft)t∈T . The

following lemma shows how (sub/super) martingale properties are preserved under transformations:

Lemma 1.1.6. Let S be an F-martingale and f : Rd → R a convex function such that f(S) is

integrable (i.e.
∫
Rd |f(s)|P(S ∈ ds) <∞), then f(S) is a submartingale.

Useful examples in mathematical finance of such convex functions are f(x) ≡ x2, f(x) ≡ x+.

Proof. The proof follows directly from Jensen’s inequality: for any t ∈ T and u ≤ t,

f(Su) = f(E(St|Fu)) ≤ E(f(St)|Fu), almost surely.

Remark 1.1.7. One could naturally wonder whether the converse holds, namely whether any

submartingale can be generated from a true martingale via a convex function. This is not true in

general, but some results hold in particular cases: evey non-negative submartingale is the absolute

value of some martingale [72], see also [8] and [124].

Definition 1.1.8. A process S on (Ω,F , (Ft)t∈T ,P) is a local martingale if there exists a sequence

of (Ft)t∈T -stopping times (τn)n≥0 satisfying limn↑∞ τn = sup T almost surely, and such that the

stopped process (Sτn
t )t∈T := (St∧τn)t∈T is a true martingale with respect to the filtration (Ft)t∈T ,

for any n ≥ 0. Such a sequence of stopping times is called a localising sequence for the process S.
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The following space of processes is of primary importance in stochastic analysis, and we will

make use of it repeatedly. Of particular interest will be the cases n = 1 and n = 2.

Definition 1.1.9. For any n ∈ N, the space Ln
loc(Ω, (Ft)t≥0,P) denotes the space of progressively

measurable (with respect to (Ft)t∈T ) processes φ such that

P
(∫ t

0

|φu|ndu <∞
)

= 1, for all t ∈ T ,

while Ln(Ω, (Ft)t≥0,P) denotes the space of progressively measurable processes φ such that

E
(∫ ∞

0

|φu|ndu <∞
)
<∞.

The following proposition allows us to construct large classes of (local) martingales:

Proposition 1.1.10. For a given Brownian motion W , define pathwise the process (Xt)t≥0 by

Xt :=

∫ t

0

usdWs, for all t ≥ 0.

• If u ∈ L2(Ω, (Ft)t≥0,P), then X is a continuous square integrable martingale;

• if u ∈ L2
loc(Ω, (Ft)t≥0,P), then X is a continuous local martingale.

The theory of local martingales is very profound, and we refer the avid reader to the excellent

monograph [95]. True martingales are of course local martingales (take τn = sup T for all n ∈ N),

but the converse is not true in general. For instance (as first indicated in [93]), if W is a three-

dimensional Brownian motion not starting at the origin, then the inverse Bessel process defined

by (∥Wt∥−1)t≥0 is a strict local martingale (e.g. a local martingale, but not a true martingale).

However, the following always holds:

Lemma 1.1.11. Every bounded local martingale (from below) is a true martingale.

Proof. Let X be a bounded local martingale, and (τn)n∈N a localising sequence of stopping times

for X. Pointwise in ω ∈ Ω, it is clear that the sequence (Xτn
t (ω))n∈N converges to Xt(ω) for any

t ∈ T . By dominated convergence, we obtain

E(Xt|Fs) = E
(

lim
n↑∞

Xτn
t |Fu

)
= lim

n↑∞
E (Xτn

t |Fu) = lim
n↑∞

Xτn
u = Xu,

for any 0 ≤ u ≤ t, and the lemma follows.

We shall see some implications on option prices of the difference between strict local martingales

and true martingales in Chapter 2.

Proposition 1.1.12. A non-negative local martingale S is a super-martingale and E(St|Fu) is

finite for all 0 ≤ u ∈ [0, t] ∩ T .
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Proof. For any localising sequence (τn)n≥0 for S, the proposition follows from Fatou’s lemma

(Appendix A.1.3):

Eu(St) = Eu(lim inf
n↑∞

Sτn
t ) ≤ lim inf

n↑∞
Eu(Sτn

t ) = lim inf
n↑∞

Su = Su.

In particular, the proposition implies that any non-negative local martingale is a supermartin-

gale. This will be the exact framework of Chapter 2. A blind application of the reverse Fatou

lemma would yield

E(St|Fu) = E

(
lim sup
n↑∞

Sτn
t

∣∣∣∣∣Fu

)
≥ lim sup

n↑∞
E (Sτn

t |Fu) = lim inf
n↑∞

Su = Su,

which, in combination with Proposition 1.1.12, would imply that a local martingale is always a

martingale. There is obviously a contradiction here, which comes from the fact the the reverse

Fatou lemma does not apply, since the sequence of functions fn(s) ≡ s is not bounded above by

an integrable function.

Remark 1.1.13. This property in particular implies (see [86, Chapter III, Lemma 3.6]) that, for

any continuous non-negative martingale S, if there exists t∗ > 0 such that P(St∗ = 0) > 0, if

St∗ = 0, then St = 0 almost surely for all t ≥ t∗. This seemingly trivial property is fundamental

when considering discretisation schemes for stochastic differential equations. As a motivating

example, consider the CEV (Constant Elasticity of Volatility) process, defined as the unique strong

solution, starting at S0 = 1, to dSt = σS1+β
t dWt, where W is a standard Brownian motion, σ > 0

and β ∈ R. We refer the reader to [30, Chapter 6.4] for full details. The process (St)t≥0 is a local

martingale, and is a true martingale if and only if β ≤ 0. Note that when β = 0, this is nothing

else than the Black-Scholes stochastic differential equation, and St is strictly positive almost surely

for all t ≥ 0. Computations involving Bessel processes show that, for any t ≥ 0, P(St = 0) > 0

if and only if β ∈ [−1/2, 0). Consider now a simple Euler scheme for the CEV dynamics, along a

given partition 0 = t0 < t1 < · · · < tn = T , as St0 = 1 and, for any i = 0, . . . , n− 1,

Sti+1 = Sti + σS1+β
ti ñ

√
ti+1 − ti,

where ñ is a Gaussian random variable with mean zero and unit variance. Suppose that along

some simulated path, there exists i = 0, . . . , n− 1 such that Sti > 0 and Sti+1 < 0. Then, in order

for the simulated path to be a true approximation of the original one (the solution of the SDE),

the only possibility is to set Sti+1 to zero and leave it there until time T . Note that, economically

speaking, this absorption property also makes sense, as required by no-arbitrage arguments.

1.1.3 Brackets, uniform integrability and time changes

Uniform integrability is a key property in probability theory, and controls how much the tail of

the distribution of random variables accounts for the expectation.
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Definition 1.1.14. A family X of random variables is said to be uniformly integrable if

lim
K↑∞

(
sup
X∈X

E
(
|X|11|X|≥K

))
= 0.

The following result, the proof of which is omitted, provides an easy-to-check characterisation:

Proposition 1.1.15. The family X is uniformly integrable if and only if there exists a Borel

function ϕ : R+ → R+ satisfying lim
x↑∞

x−1ϕ(x) = ∞ for which sup
X∈X

E (ϕ(X)) is finite.

Theorem 1.1.16. Let M be continuous local martingale starting from zero. Then there exists a

unique continuous increasing process ⟨M⟩, called the quadratic variation process, null at zero such

that M2−⟨M⟩ is a continuous local martingale. If M and N are two continuous local martingales

starting from the origin, then there exists a unique unique continuous process ⟨M,N⟩, null at zero,

called the bracket process, such that MN − ⟨M,N⟩ is a (continuous) local martingale.

Remark 1.1.17. The bracket process satisfies the polsarisation identity

⟨M,N⟩t =
1

2
(⟨M +N⟩t − ⟨M⟩t − ⟨N⟩t) .

Example 1.1.18.

• For a standard Brownian motion W , ⟨W ⟩t = t for all t ≥ 0;

• ⟨
∫ ·
0
φ(s)dWs⟩t =

∫ t

0
φ(s)2ds for φ ∈ L2

loc(Ω, (Ft)t≥0,P).

Remark 1.1.19. Other versions exist, with stronger assumptions, and hence more precise results.

In particular, if M is a continuous square-integrable martingale starting from zero, then there

exists a unique continuous increasing process ⟨M⟩ null at zero such that M2 − ⟨M⟩ is a uniformly

integrable martingale. See for example [134, Theorem 30.1, Chapter IV, Section 5].

Remark 1.1.20. A related process, the square bracket process [M ], exists in the literature, and

is defined as [M ]t := X2
t − X2

0 − 2
∫ t

0
Xs−dXs; its construction follows from the Doob-Meyer

decomposition (see Theorem 1.5.6 below). In the case where the process M is continuous, the two

brackets ⟨·⟩ and [·] however coincide.

The last technical tool we shall need in order to move on is the technique of time change. We

state the following fundamental result without proof:

Theorem 1.1.21 (Dubins-Schwarz). Every continuous local martingale (Mt)t≥0 can be written as

a time-changed Brownian motion (W⟨M⟩t)t≥0.

In particular, for any Brownian motion W and any independent, non-negative, càdlàg pro-

cess (σt)t≥0, the continuous local martingale M· :=
∫ ·
0
σsdWs can be written as

Mt = W∫ t
0
σ2
sdWs

, for all t ≥ 0.
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This theorem, and the refined version by Monroe [118], have been used extensively in mathematical

finance. One motivation, as detailed in [5], is that trading time and real time are not synchronised,

namely that more trading activities take place during the day, and none during the night.

1.1.4 A brief introduction to Itô processes and stochastic calculus

In Chapter 3.1 below, we shall discuss in detail existence, uniqueness and properties of stochastic

differential equations. The objective of this section here is to quickly go through the main ingre-

dients of Itô’s theory, as we shall need it in the next pages. Again, (Ω,F , (Ft)t≥0,P) is a given

filtered probability space, supporting an Rd-valued Brownian motion W .

Definition 1.1.22. An Rn-valued Itô process (Xt)t≥0 is a stochastic process of the form

Xt = X0 +

∫ t

0

µsds+

∫ t

0

σs · dWs, t ∈ [0, T ], (1.1.1)

where X0 is an F0-measurable random variable, µ ∈ L1
loc(Rn → Rn) and σ ∈ L2

loc(Rn → Mn,d(R)).

The differential notation dXt = µtdt+σt ·dWt, with X0 ∈ Rn is a useful shortcut, even though

the noise term dWt should be handled with care.

Corollary 1.1.23. The quadratic variation of an Itô process of the form (1.1.1) is given by

⟨Xi, Xj⟩t =

∫ t

0

(σs · σ⊤
s )ijds =:

∫ t

0

Cij
s ds.

For any t ∈ [0, T ], the matrix Ct ∈ Mn(R) represents the covariance matrix of the n-dimensional

random variable Xt.

Theorem 1.1.24 (Itô’s formula). Let X be an Rn-valued Itô process of the form (1.1.1) and let

f ∈ C1,2(R+ × Rn → R). Then the following formula holds almost surely for every t ≥ 0:

f(t,Xt) = f0 +

∫ t

0

∂sfsds+

∫ t

0

⟨dXs,∇fs⟩ +
1

2

∫ t

0

(dXs)
⊤ · ∆fs · dXs

= f(X0) +

∫ t

0

{
∂sfs + ⟨µs,∇fs⟩ +

1

2
Tr
(
σ⊤
s · ∆fs · σs

)}
ds+

∫ t

0

⟨σs · dWs,∇fs⟩,

where we used the short-hand notation fs ≡ f(s,Xs).

Here, the gradient operator ∇ only acts on the space variable, and is a vector in Rn: ∇f(·, x) =

(∂xif(·, x))i=1,...,n, and the angle bracket ⟨·, ·⟩ is simply the Euclidean product in Rn.

Remark 1.1.25. In coordinates, we can re-write Itô’s formula as

f(t,Xt) = f0 +

∫ t

0

∂sfsds+

∫ t

0


n∑

i=1

µi
s∂xifs +

1

2

n∑
i,j=1

Cij
s ∂xixjfs

ds+
n∑

i=1

d∑
j=1

σij
s ∂xifsdW

j
s .
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Remark 1.1.26. In the case X = W and f ∈ C2(Rd), Itô’s formula reads, in differential form:

df(Wt) = ⟨dWt,∇f(Wt)⟩ +
1

2
∆f(Wt)dt.

The following corollary is left as a straightforward exercise.

Corollary 1.1.27. For two Rn-valued Itô processes X and Y , the following product rule holds:

Xt · Yt = X0Y0 +

∫ t

0

Xs · dYs +

∫ t

0

Ys · dXs +

∫ t

0

dXs · dYs.

Note that rearranging the terms in the corollary yields∫ t

0

Xs · dYs = (Xt · Yt −X0Y0) −
∫ t

0

Ys · dXs −
∫ t

0

dXs · dYs,

which can be seen as a (stochastic) integration by parts formula.

Example 1.1.28. Prove the following representations:

(i) Show that the process Y defined by Yt := t2W 3
t satisfies

Yt =

∫ t

0

(
2Ys
s

+ 3t4/3Y 1/3
s

)
ds+ 3

∫ t

0

(sYs)
2/3dWs.

(ii) For any α, σ ∈ R, show that Xt := e−αt
(
X0 + σ

∫ t

0
eαsdWs

)
satisfies

Xt = X0 − α

∫ t

0

Xsds+ σWt.

(iii) Consider the couple (X,Y )t := (cos(Wt), sin(Wt)). Show that it satisfies

Xt = 1 − 1

2

∫ t

0

Xsds−
∫ t

0

YsdWs,

Yt = −1

2

∫ t

0

Ysds+

∫ t

0

XsdWs.

1.2 Fundamental probabilistic results for finance

We introduce in this section two key results from stochastic analysis that are used extensively in

mathematical finance, and in the rest of these notes: the martingale representation theorem and

Girsanov’s theorem.

1.2.1 Martingale representation theorem and hedging

Let (Ω,F , (Ft)t≥0,P) be a probability space where the filtration (Ft)t≥0 is the standard filtration

generated by a Brownian motion W , i.e. for any t ≥ 0, Ft = σ (Ws, 0 ≤ s ≤ t). Unless otherwise

stated, T > 0 will be a fixed (finite) time horizon. We shall need the following space of admissible

integrands (in order for the Itô integral to make sense):
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Definition 1.2.1. We let V denote the space of functions f from [0,∞)×Ω → R that satisfy the

following conditions:

• the map (t, ω) → f(t, ω) is B×F -measurable, with B being the Borel sigma-algebra on [0,∞);

• for any t ≥ 0, the function f(t, ·) is Ft-adapted;

• E
(∫ T

0
f(t, ω)2dt

)
is finite.

Theorem 1.2.2 (Martingale Representation Theorem). Let (Mt)t≥0 be a (Ft)-adapted squared

integrable martingale with respect to P. Then there exists a unique process (φt)t≥0 ∈ V such that

Mt = E(M0) +

∫ t

0

φsdWs almost surely for any t ≥ 0. (1.2.1)

Remark 1.2.3.

• We have stated here the theorem in dimension one. A similar result holds in any (finite)

dimension, and we leave this extension to the keen reader.

• The theorem has a converse result, namely that the Itô integral (
∫ t

0
φsdWs)t≥0 is a (Ft)-

martingale whenever φ is adapted and square integrable.

• The financial consequence of this result is that the only source of uncertainty comes from the

Brownian motion, which can be removed by hedging.

• The theorem only asserts existence of a process φ. Explicit representations thereof can be

determined using Malliavin calculus, but this falls outside the scope of these lectures.

The proof follows from the following lemmas. Recall that a subset D of F is dense if for every

X in F , then D ∩B ̸= ∅ for every neighbourhood B of X.

Lemma 1.2.4. Theorem 1.2.2 holds if the representation (1.2.1) holds for any random variable

in some dense subset of L2(Ω,FT ,P).

For some integer n, and some sequence 0 ≤ t1 ≤ · · · ≤ tn ≤ T , we consider the subset DT of

L2(Ω,FT ,P) consisting of all the random variables of the form h(Wt1 , . . . ,Wtn), where h is some

bounded continuous function from Rn to R.

Lemma 1.2.5. The space DT is dense in L2(Ω,FT ,P).

Lemma 1.2.6. Let X and Y be two random variables on (Ω,F , (Ft)t≥0,P) taking values in Rn

and Rm. Let G be a sub-σ-field of F such that Y is G-measurable and X independent of G. Then,

for any measurable function f : Rn+m → R such that E|f(X,Y )| is finite, the equality

E [f(X,Y )|G] = b(Y ),

holds, where b(y) :=
∫
Rn f(x, y)P(X ∈ dx).



1.2. Fundamental probabilistic results for finance 15

Proof of Lemma 1.2.4. LetX be a random variable in L2(Ω,FT ,P), and consider a sequence (Xn)n≥1

in a dense subset D ⊂ L2(Ω,FT ,P), converging to X in L2. By assumption, there exists a sequence

of adapted and square integrable functions (gn) such that,

Xn = E(Xn) +

∫ T

0

gn(s)dWs, for any n ≥ 1.

Itô’s isometry applied to the centered random variables X̃n := Xn − E(Xn) yields

E
(
X̃n − X̃m

)2
= E

∫ T

0

[gn(s) − gm(s)]
2

ds.

Being convergent, (X̃n)n≥1 is a Cauchy sequence, and hence the sequence (gn)n≥1 is convergent

in L2(ω × [0, T ], dP × dt), which is a complete space by the Riesz-Fischer theorem. Therefore,

there exists a limiting function g such that the expectation E
∫ T

0
(gn(s) − g(s))

2
tends to zero as n

becomes large, and the representation (1.2.1) holds with this very function g.

Proof of Lemma 1.2.5. Consider a sequence (ti)i≥1, which forms a dense subset of the closed

interval [0, T ] and define the increasing sequence (Fi)i≥1 as the sigma-algebras generated by

{Wtj (·)}1≤j≤i, for each i ≥ 1. The martingale convergence theorem (Theorem A.4.2) implies

that, for any φ ∈ L2(FT ,P), the pointwise limit φ = E(φ|FT ) = limi↑∞ E(φ|Fi) holds P-

almost everywhere and in L2(FT ,P). Doob-Dynkyn Lemma (Lemma A.4.1) then yields E(φ|Fi) =

φi(Wt1 , . . . ,Wti) for some Borel measurable function φi : Ri → R, which can be approximated

in L2(FT ,P) by smooth and bounded functions hi(Wt1 , . . . ,Wti), and the lemma follows.

Proof of Lemma 1.2.6. The statement of the lemma is clearly equivalent to showing that the equal-

ity E [f(X,Y )Z] = E[Zb(Y )] holds for any G-measurable random variable Z. Let then µXY Z de-

note the law of the triplet (X,Y, Z) (taking values in Rn+m+1). By independence, we clearly have

µXY Z(dx, dy, dz) = µX(dx)µY Z(dy,dz), so that

E [f(X,Y )Z] =

∫
Rn+m+1

zf(x, y)µXY Z(dx,dy, dz) =

∫
Rm+1

z

(∫
Rn

f(x, y)µX(dx)

)
µY Z(dy, dz)

=

∫
Rn+1

zb(y)µY Z(dy,dz) = E[Zb(Y )].

We now move on to the proof of the Martingale Representation theorem for Brownian motion:

Proof of Theorem 1.2.2. It is clear from the lemmas above that it is sufficient to show that the

random variable h(Wt1 , . . . ,Wtn) has the representation property (1.2.1) for any n ≥ 1 and h :

Rn → R continuous and bounded. We prove the case n = 2, but the proof extends easily to the

general case. Let n(·;m, σ2) denote the density of a Gaussian random variable with mean m and

variance σ2:

n(z;m, σ2) :=
1

σ
√

2π
exp

{
− (z −m)2

2σ2

}
, for all z ∈ R,
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and introduce the function v : R+ × Rn × Rm as

v(t, x, y) =

∫
R
h(x, z)n(z; y, t2 − t)dz, for all t ∈ [0, t2).

One can immediately check that it satisfies the partial differential equation

∂v

∂t
(t, x, y) +

1

2

∂2v

∂y2
(t, x, y) = 0,

for all t ∈ [0, t2), x, y ∈ R, with boundary condition v(t2, x, y) = h(x, y). Itô’s formula then yields

h(Wt1 ,Wt2) = v(t2,Wt1 ,Wt2) = v(t1,Wt1 ,Wt1) +

∫ t2

t1

∂v

∂y
(s,Wt1 ,Ws) dWs

= E [h(Wt1 ,Wt2)|Ft1 ] +

∫ t2

t1

∂v

∂y
(s,Wt1 ,Ws) dWs,

by Lemma 1.2.6, since E [h(Wt1 ,Wt2)|Ft1 ] =
∫
R h(Wt1 , z)P(Wt2 ∈ dz). Consider now the func-

tion v : [0, t1] × R → R defined by

v(t, x) =


v(t1, x, x), if t = t1,∫
R
v(t1, z, z)n(z;x, t1 − t)dz, if t ∈ (0, t1),

Note in particular that the equality ∂tv(t, x) + 1
2∂xxv(t, x) = 0 holds for all t ∈ [0, t1) and x ∈ R.

Itô’s formula then yields

v(t1,Wt1) = v(t1,Wt1 ,Wt1) = v(0, 0) +

∫ t1

0

∂v

∂y
(s,Ws)dWs,

and hence

h(Wt1 ,Wt2) = v(t1,Wt1 ,Wt1) +

∫ t2

t1

∂v

∂y
(s,Wt1 ,Ws) dWs

= v(t1,Wt1) +

∫ t2

t1

∂v

∂y
(s,Wt1 ,Ws) dWs

= v(0, 0) +

∫ t1

0

∂v

∂y
(s,Ws)dWs +

∫ t2

t1

∂v

∂y
(s,Wt1 ,Ws) dWs

= v(0, 0) +

∫ t2

0

ψ(s)dWs,

with the obvious definition

ψ(s) :=

 ∂yv(s,Ws), if s < t1,

∂yv(s,Wt1 ,Ws), if t1 ≤ s < t2.

The theorem then follows since v(0, 0) = E [h(Wt1 ,Wt2 ].

Example 1.2.7. Fix some time horizon T > 0 and consider the (Ft)-martingale M defined

pathwise by Mt := E
(
eWT |Ft

)
. Now,

Mt = E
(
eWT−WteWt |Ft

)
= eWtE

(
eWT−Wt

)
= exp

(
Wt +

1

2
(T − t)

)
=: f(t,Wt).



1.2. Fundamental probabilistic results for finance 17

On the other hand, Itô’s lemma yields

f(t,Wt) = f(0,W0) +

∫ t

0

∂wf(u,Wu)dWu +

∫ t

0

∂uf(u,Wu)du+
1

2

∫ t

0

∂wwf(u,Wu)d⟨W,W ⟩u

= f(0,W0) +

∫ t

0

MudWu − 1

2

∫ t

0

Mudu+
1

2

∫ t

0

Mudu = M0 +

∫ t

0

MudWu,

which corresponds to the representation (1.2.1). Note that the filtration generated by M is the

same as that from the Brownian motion W .

1.2.2 Change of measure and Girsanov Theorem

The second fundamental theorem in mathematical finance is the Girsanov1 Theorem, which allows

to change probability measures, and often allows for neat simplifications.

Change of measure

We first introduce the concept of change of measure, which shall be used later in a dynamic version

to state Girsanov Theorem.

Theorem 1.2.8. Let (Ω,F ,P) be a probability space and Z a non-negative (P-almost surely)

random variable satisfying E(Z) = 1. Define the probability measure P̃ by

P̃(A) :=

∫
A

Z(ω)dP(ω), for any A ∈ F .

Then the following hold:

• P̃ is a probability measure;

• if X is a non-negative random variable then Ẽ(X) = E(XZ);

• if Z > 0 P-almost surely, then E(Y ) = Ẽ(Y/Z) for any non-negative random variable Y .

Proof. We only prove the first statement in the theorem, the other two being straightforward. In

order to prove that P̃ is a probability measure, we need to show that P̃(Ω) = 1 and that it is

countably additive. By definition, P̃(Ω) =
∫
Ω
Z(ω)dP(ω) = E(Z) = 1. Now, let (Ak)k≥1 be a

sequence of disjoint sets, and set, for any n ≥ 0,

Bn :=

n∪
k=1

Ak.

1Igor Vladimirovich Girsanov (1934-1967) was a Russian mathematician, who first worked in the group led

by Eugene B. Dynkyn at Moscow State University, and later became an advocate of quantitative methods in

mathematical economics, and of applications of optimal control to chemistry. He died of a hiking accident at the

age of 33.
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Since (Bn) is an increasing sequence, then 11B1
≤ 11B2

≤ . . ., B∞ = ∪k≥1Ak, and the monotone

convergence theorem implies

P̃(B∞) =

∫
Ω

11B∞(ω)Z(ω)dP(ω) = lim
n↑∞

∫
Ω

11Bn
(ω)Z(ω)dP(ω)

= lim
n↑∞

∫
Ω

n∑
k=1

11Ak
(ω)Z(ω)dP(ω) = lim

n↑∞

n∑
k=1

∫
Ω

11Ak
(ω)Z(ω)dP(ω)

= lim
n↑∞

n∑
k=1

P̃(Ak) =

∞∑
k=1

P̃(Ak),

which proves the statement.

Exercise 1.2.9. Let X be a centred Gaussian random variable with unit variance under the

probability P, and, for θ > 0, define Y := X + θ. Using the variable

Z := exp

{
−θX − θ2

2

}
,

and introducing the probability Q defined via its Radon-Nikodym derivative dQ
dP := Z, show that Y

is a centred Gaussian random variable with unit variance under Q.

Solution. Define the random variable Z := exp
{
−θX − 1

2θ
2
}
, and a new probability measure P̃

as in Theorem 1.2.8, which is well defined since Z is strictly positive almost surely with unit

expectation. For any y ∈ R, we can now write (considering the set A = {ω ∈ Ω : Y (ω) ≤ y} ∈ F)

P(Y ≤ y) =

∫
{ω∈Ω:Y (ω)≤y}

Z(ω)dP(ω) =

∫
Ω

11{Y (ω)≤y}(ω)Z(ω)dP(ω)

=

∫
Ω

11{X(ω)≤y−θ}(ω) exp

{
−θX(ω) − θ2

2

}
dP(ω)

=

∫
R

11{x≤y−θ}
1√
2π

exp

{
−θx− θ2

2

}
exp

(
−x

2

2

)
dx

=

∫ y−θ

−∞

1√
2π

exp

{
−θx− θ2

2

}
exp

(
−x

2

2

)
dx =

∫ y−θ

−∞

1√
2π

exp

(
−x

2

2

)
dx.

Girsanov Theorem

We present the general multi-dimensional version of Girsanov theorem below, but will restrict the

proof–mainly for notational convenience–to the one-dimensional case.

Theorem 1.2.10 (Girsanov Theorem). Consider an n-dimensional Brownian motion W defined

on some filtered probability space (Ω,F , (Ft)t≥0,P). Fix a time horizon T > 0, introduce the

n-dimensional adapted process Θ := (Θ1, . . . ,Θn), and define

Zt := exp

{
−
∫ t

0

Θu · dWu − 1

2

∫ t

0

∥Θu∥2 du

}
and W̃t := Wt +

∫ t

0

Θudu.

If E
(∫ T

0
∥Θu∥2 Z2

udu
)
is finite, then E(ZT ) = Z0 = 1 and W̃ is a P̃-Brownian motion, where

P̃(A) :=

∫
A

ZT (ω)dP(ω), for any A ∈ F .
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The other way of writing the new measure, which we shall always do here, is

dP̃
dP

∣∣∣∣∣
FT

:= ZT .

Remark 1.2.11. Novikov’s condition [121] ensures that a given process is a martingale: let X is a

real-valued adapted process on some filtered probability space supporting a Brownian motion W ;

if E exp
(

1
2

∫ t

0
|Xs|2ds

)
is finite, then the Doléans-Dade exponential

E
(∫ ·

0

XsdWs

)
:= exp

(∫ ·

0

XsdWs −
1

2

∫ ·

0

X2
sds

)
is a true martingale. Other conditions exist in the literature, in particular Kazamaki’s condition,

but Novikov’s criterion is the most widely used. Recent (technical) developments can be found in

the works of Mijatović and Urusov [117] and of Ruf [138].

Before proving the theorem, we need a few tools.

Theorem 1.2.12 (Lévy’s characterisation of Brownian motion). Let (Mt)t≥0 be a continuous

(Ft)t≥0-martingale such that M0 = 0 and ⟨M⟩t = t for all t ≥ 0, then M is a Brownian motion.

Now, on the probability space (Ω,F ,P), if Z is a non-negative random variable with expectation

equal to one, then one can define a new probability measure P̃ via

P̃(A) :=

∫
A

Z(ω)dP(ω), for all A ∈ F . (1.2.2)

Adding a filtration (Ft)t≥0 on [0, T ], we can define a process (Zt)t≥0 as Zt := E(Z|Ft) for all

t ∈ [0, T ]. This process is called the Radon-Nikodým derivatives process and it clearly a P-

martingale. The following lemma then holds (see for instance [144, Lemma 5.2.2]):

Lemma 1.2.13. For any 0 ≤ u ≤ t ≤ T , and any Ft-measurable random variable Y ,

ZuẼ (Y |Fu) = E (Y Zt|Fu) .

Proof of Theorem 1.2.10. We only prove Girsanov theorem in dimension one, the general case

being analogous, albeit with more involved notations. From Lévy characterisation theorem (Theo-

rem 1.2.12), since the process W̃ starts at zero and has quadratic variation equal to t, all is left to

prove is that it is a martingale under P̃. It is easy to see, using Itô’s lemma, that dZt = −ΘtZtdWt,

so that

Zt = Z0 −
∫ t

0

ΘuZudWu,

and Z is a martingale with E(ZT ) = E(Z0) = 1. Now, the Itô product rule (Corollary 1.1.27) and

simple manipulations yield

d
(
W̃tZt

)
=
(

1 − ΘtW̃t

)
ZtdWt,

so that W̃Z is also a martingale under P, which implies that

Ẽ
(
W̃ |Fu

)
= Z−1

u E
(
W̃tZt|Fu

)
= Z−1

u W̃uZu = W̃u,

by Lemma 1.2.13, and the theorem follows.
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1.3 The super-replication paradigm and FTAP

The route we choose to follow in this first approach to mathematical finance may sound unortho-

dox at first sight, starting with a more abstract framework about sub/super-replication, before

venturing back into the realm of more ‘classical’ mathematical finance and option pricing. We

believe, however, that this logic, borrowed from [77], follows the practical intuition more closely.

Our aim is to answer the following question: what is the correct price the buyer or seller of an

option should pay?

We fix a priori a filtered probability space (Ω,F , (Ft)t≥0,P), where P is the historical probability

measure. A market model is then defined as a pair process (Bt, St)t≥0 taking values in (0,∞) ×

(0,∞)n, for some n ∈ N. The first component denotes the money-market account and satisfies the

stochastic differential equation

dBt = rtBtdt, B0 = 1, (1.3.1)

where (rt)t≥0 ≥ 0 denotes the instantaneous risk-free rate process. Note that this ordinary differ-

ential equation can be solved in closed form as Bt = exp(
∫ t

0
rsds). The remaining n-asset vector

S = (S1, . . . , Sn) is the unique strong solution to the stochastic differential equation

dSt = b(t,St)dt+ σ(t, St) · dWt, S0 ∈ (0,∞)n,

with W a d-dimensional standard Brownian motion, and where the drift b : R+×(0,∞)n → (0,∞)n

and the diffusion σ : R+× (0,∞)n → Mn,d(R∗
+) are assumed to be bounded and globally Lipschitz

continuous (this in particular guarantees existence and uniqueness of the solution, as we shall show

in Chapter 3). Consider now a portfolio (Πt)t≥0 consisting of (invested) cash and the n assets:

Πt = π0
tBt + πt · St,

where π = (π1, . . . , π
n) represents the vector of quantities of each asset in the portfolio, which can

be readjusted as time passes.

Definition 1.3.1. The portfolio Π is self-financing if, for any t ≥ 0, dΠt = π0
t dBt + πt · dSt; the

variation of the portfolio only comes from the evolution of (B,S), and not from exogenous transfer

(in or out) of money.

Assuming that the portfolio Π is self-financing and denoting by Ds,t := BsB
−1
t the discount

factor between time s and time t (in particular, D0,t = B−1
t satisfies dD0,t = −rtD0,tdt), we have

dΠ̃t := d(D0,tΠt) = d
(
π0
tD0,tBt + πt ·D0,tSt

)
= π0

t d (D0,tBt) + d (πt ·D0,tSt) = πt · dS̃t,

where the ˜ notation denotes discounting (Π̃t := D0,tΠt), and hence, for any t ≥ 0,

Π̃t = Π̃0 +

∫ t

0

πu · dS̃u. (1.3.2)
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Consider an asset S with no drift (b(·) ≡ 0), and volatility coefficient σt, adapted to the filtration

of the Brownian motion W. We can rewrite the previous equation as

Π̃t = Π̃0 +

∫ t

0

(D0,uπu · σu) · dWu,

which is strongly reminiscent of the Martingale Representation Theorem 1.2.2 with φt = D0,tπt ·σt.

Remark 1.3.2. Let Z denote the stochastic process defined pathwise as Zt := π0
tBt, for all t ≥ 0.

Then, for any t ≥ 0,

Πt = π0
tBt + πt · St = Zt + πt · St = Π0 +

∫ t

0

dΠu = Π0 +

∫ t

0

π0
udBu +

∫ t

0

πu · dSu

= Π0 +

∫ t

0

ruZudu+

∫ t

0

πu · dSu,

so that dZt = dSt +rtZtdt, with St :=
∫ t

0
πu ·dSu−πt ·St, which we can solve (Example 1.1.28(ii))

as D0,tZt = π0
0 +

∫ t

0
D0,udSu, or equivalently, using integration by parts (Corollary 1.1.27),

D0,tZt = π0
t = π0

0 +

∫ t

0

D0,udSu = π0
0 +D0,tSt −D0,0S0 −

∫ t

0

SudD0,u,

= Π0 +D0,tSt +

∫ t

0

ruD0,uSudu. (1.3.3)

This implies that the weight π0 is an Itô process that can be chosen such that Π is self-financing.

Definition 1.3.3. A portfolio (π0
t , π

1
t , . . . , π

n
t )t∈[0,T ] is said to be admissible over the horizon [0, T ]

if, for any t ∈ [0, T ], Πt is bounded from below P-almost surely, e.g. there exists M ∈ R such that

P
(

inf
0≤t≤T

Πt ≥M

)
= 1. (1.3.4)

We shall denote by A the space of admissible portfolios.

Definition 1.3.4. A self-financing admissible portfolio is called an arbitrage if

Π0 = 0 and ΠT ≥ 0, P-almost surely, and P(ΠT > 0) > 0.

In plain words, an arbitrage occurs if it is possible to obtain a strictly positive gain out of a

strategy with zero initial cost. Intuitively, absence of arbitrage in a market is related to the notion

of equilibrium, and mathematically, this is stated in terms of conditions on admissible portfolios.

One could wonder about the necessity of Condition (1.3.4) in Definition 1.3.3. This condition

imposes a limit accepted by creditors. As the following example shows, one cannot do without it:

Example 1.3.5. Within a fixed time horizon [0, T ], consider a market without interest rate (Bt = 1

for all t ∈ [0, T ]) and consisting of one asset S satisfying dSt = dWt, with S0 = 0. Define now the

process Y as Yt :=
∫ t

0
(T − s)−1/2dWs. By time-change techniques (Theorem 1.1.21), there exists

a Brownian motion Ŵ such that Yt = Ŵ⟨Y ⟩t , where

⟨Y ⟩t =

∫ t

0

ds

(T − s)
= − log(T − t), for all t ∈ [0, T ).
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Fix a constant M > 0, and define the stopping times τM := inf{t ≥ 0 : Ŵt = M} and τYM :=

inf{t ≥ 0 : Yt = M}. As τM is finite almost surely (Lemma 1.5.9 below) and equal to − log(T−τYM ),

so that τYM < T almost surely. We now introduce the weight process

π1
t :=

 (T − t)−1/2, if t ∈ [0, τYM ),

0, if t ∈ [τYM , T ],

and let π0 be given by (1.3.3) such that the corresponding portfolio Π has zero value at inception:

π0
t = St =

∫ t

0

π1
udSu − π1

tSt, for t ∈ [0, T ].

Indeed, Π0 = π0
0 + π1

0S0 = 0 if and only it π0
0 = −π1

0 . The value of the portfolio therefore reads

Πt =

∫ t

0

π1
udSu =

∫ t∧τY
M

0

dWu√
T − u

,

and in particular, at maturity T , the portfolio is worth

ΠT =

∫ τY
M

0

dWu√
T − u

= ŴτY
M

= M almost surely.

This implies that, starting from zero initial value, the porfolio thus constructed can reach any

strictly positive value almost surely, leading to an arbitrage. Note, however, that, for any t ∈ [0, T ],

Πt is not bounded below almost surely, thus violating Condition (1.3.4).

The following lemma, despite its simplicity, is a core result for option pricing.

Lemma 1.3.6. Assume that there exists a probability measure Q equivalent to P under which the

discounted asset prices S̃ are Q-local martingales. Then the market does not admit arbitrage.

For two probability measures P and Q on (Ω,F), P is said to be absolutely continuous with

respect to Q, which is denoted by P ≪ Q, if for any A ∈ F such that Q(A) = 0, then P(A) = 0. In

particular, if P ≪ Q, then there exists a random variable Z ∈ L1(dP) such that dQ/dP = Z and

EP(Z) = 1. The two probability measures are said to be equivalent, and we write P ∼ Q, if P ≪ Q

and Q ≪ P. In that case, they have the same null sets and dP/dQ = (dQ/dP)−1. This analysis is

reminiscent of Girsanov’s theorem (Theorem 1.2.10).

Proof of Lemma 1.3.6. Assume there exists an arbitrageable strategy (π0, . . . , πn). By construc-

tion, the corresponding discounted portfolio is worth (see (1.3.2)), at time t, Π̃t = Π̃0 +
∫ t

0
πu ·dS̃u,

and hence is a Q-local martingale. Being bounded below (by zero), it is a Q-supermartingale (by

Proposition 1.1.12), so that EQ(Π̃T ) ≤ Π0 = 0. However, since Π̃T ≥ 0 P-almost surely, then it

is also non-negative Q-almost surely. Since its expectation is null, then Π̃T = 0 Q-almost surely,

hence P-almost surely, which yields a contradiction.

Definition 1.3.7. Any measure Q equivalent to P on (Ω,F) such that S̃ is a Q-local martingale

is called an Equivalent Local Martingale Measure (ELMM), or a risk-neutral measure.
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Remark 1.3.8. In the classical Black-Scholes framework, see also below in Section 1.2, there exists

a unique probability measure under which the discounted stock price (n = 1) is a true martingale.

However, there may be markets, as will be the case for stochastic volatility models for instance,

where an infinity number of such probability measures exist.

The last result we wish to state in this framework is a necessary and sufficient condition ensuring

that a market has no arbitrage. It also makes (absence of) arbitrage easier to check than the general

conditions above.

Theorem 1.3.9.

(i) Assume that there exists a process (ut)t∈[0,T ] ∈ V (Definition 1.2.1) such that

σ(t, St)ut = b(t,St) − rtSt almost surely for all t ∈ [0, T ], (1.3.5)

and such that E
(

exp
{

1
2

∫ T

0
u2tdt

})
is finite. Then the market does not admit any arbitrage.

(ii) If the market has no arbitrage, there exists an (Ft)-adapted process (ut) such that (1.3.5) holds.

Proof. We only prove the sufficient condition (i) and assume for simplicity that rt = 0 almost

surely for all t ≥ 0. The probability measure Q on FT , defined via the Radon-Nikodym derivative

dQ
dP

∣∣∣∣
FT

= exp

{
−
∫ T

0

utdWt −
1

2

∫ T

0

u2tdt

}
,

is equivalent to P and Girsanov’s theorem (Theorem 1.2.10) ensures that the process W̃ defined as

W̃t :=

∫ t

0

usds+ Wt,

is a Q-Brownian motion, and furthermore dSt = σ(t, St) ·dW̃t. Therefore S is a local Q-martingale

and the theorem follows from Lemma 1.3.6.

Example 1.3.10.

• Consider the market given by Bt = 1 almost surely for all t ≥ 0, and

dSt =

 2

−1

 dt+

1 0

1 1

 dWt.

Show that the market does not admit arbitrage.

• Consider now the given by Bt = 1 almost surely for all t ≥ 0, and

dSt =

 2

−1

 dt+

 1 1

−1 −1

 dWt.

Show that the market admits an arbitrage and explain what happens if one considers the

strategy πt ≡ (1, 1).
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The above framework guarantees that market participants will be able to buy or sell derivatives

at a ‘fair’ price. That said, it is not clear what this price should be and, intuitively, there is no

reason why a buyer should be willing to pay the same price as a seller2. Assume that, at time t,

the buyer buys at price p, a European option with maturity T and payoff PT (which may depend

on all the assets), and hedges it until maturity. At maturity, using (1.3.2), the discounted value of

its portfolio is worth

Π̃T = D0,T

(
−D−1

t,T p
)

+

∫ T

t

πu · dS̃u +D0,TPT = −D0,tp +

∫ T

t

πu · dS̃u +D0,TPT . (1.3.6)

This yields the following natural definitions of the buyers and the seller’s price:

Definition 1.3.11. At time t, the buyer’s (Bt) and the seller’s (St) prices are defined by

Bt(PT ) := sup

{
p ∈ Ft : ∃π ∈ A : Π̃T = −D0,tp +

∫ T

t

πu · dS̃u +D0,TPT ≥ 0,P-a.s

}
,

St(PT ) := inf

{
p ∈ Ft : ∃π ∈ A : Π̃T = D0,tp +

∫ T

t

πu · dS̃u −D0,TPT ≥ 0,P-a.s

}
,

namely the buyer’s price (resp. seller’s price) is the largest (resp. smallest) initial amount to pay

in order to obtain a non-negative value of the portfolio at maturity.

The following theorem is a key result to determine bounds for these prices.

Theorem 1.3.12. If there exists a local martingale measure Q equivalent to P, then

Bt(PT ) ≤ EQ (Dt,TPT |Ft) ≤ St(PT ).

Proof. Using the definition of the buyer’s price (Definition 1.5.1), there exists an admissible port-

folio π such that

−D0,tp +

∫ T

t

πu · dS̃u +D0,TPT ≥ 0, P-a.s.

By construction, the integral is a local martingale, which is bounded below (since the portfolio is

admissible), and therefore is a supermartingale, starting from zero at time zero, and hence, taking

Q-expectations conditional on Ft, we obtain

D0,tp ≤ EQ(D0,TPT |Ft),

or p ≤ EQ(Dt,TPT |Ft). Taking the supremum over all p ∈ Ft yields one inequality in the theorem;

the proof for the seller’s price is analogous.

This result provides arbitrage-free bounds for the price of any European option. However,

from a practical point of view, it might seem limited in the sense that (i) the equivalent local

2these are not mere theoretical considerations, and can be clearly observed through limit order books and bid-ask

spreads.
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martingale measure Q may not be unique, and (ii) the range of admissible prices might be very

wide. Uniqueness (or absence thereof) of Q is related to the notion of complete market, in which

these bounds collapse to a single arbitrage-free price.

Definition 1.3.13. A payoff PT is said to be attainable if there exists a self-financing admissible

portfolio π ∈ A and a real number p such that

(a) p +
∫ T

0
πtdS̃t −D0,TPT = 0, P-almost surely;

(b) the process
(∫ t

0
πtdS̃t

)
t≥0

is a true Q-martingale with Q ∼ P.

Note as a comparison to (a), that Equation (1.3.6) represents the value of the discounted

portfolios, from the seller’s point of view.

Definition 1.3.14. A market is said to be complete if every payoff is attainable.

Theorem 1.3.15. In a complete market, the double equality Bt(PT ) = EQ (Dt,TPT |Ft) = St(PT )

holds for any equivalent local martingale measure Q.

Proof. Since the market is complete, there exist p̃ ∈ R and an admissible portfolio π such that

D0,TPT = p̃ +

∫ T

0

πu · dS̃u, P-almost surely,

and therefore

D0,TPT = D0,tZt +

∫ T

t

πu · dS̃u, Q-almost surely,

where Zt := D−1
0,t

(
p̃ +

∫ t

0
πudS̃u

)
is an Ft-measurable random variable for any t ∈ [0, T ]. The

integral is a Q-martingale, so that, taking Q-expectations (conditional on Ft) on both sides yields

Zt = EQ(Dt,TPT |Ft), and, identifying Zt = p̃, St(PT ) ≤ EQ(Dt,TPT |Ft) and the theorem follows

from the arbitrage-free bounds in Theorem 1.3.12. The same arguments apply to the buyer’s price,

and the theorem follows.

The following theorem, the proof of which unfortunately3 falls outside the scope of these notes,

provides a new characterisation of the buyer’s and the seller’s prices in terms of the equivalent

local martingale measures:

Theorem 1.3.16. Let Me
P denotes the set of P-equivalent local martingale measures. Then

Bt(PT ) = inf
Q∈Me

P

EQ (Dt,TPT |Ft) and St(PT ) = sup
Q∈Me

P

EQ (Dt,TPT |Ft) ,

The proof of the following corollary, however, is within reach and is left as a tedious exercise:

3The expression ‘unfortunately’ here refers to the fact that its proof is a beautiful, yet tedious, exercise in convex

duality. The hard-working interested reader can consult [132] for full details.
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Corollary 1.3.17. A market is complete if and only if there exists a unique equivalent local

martingale measure.

Similarly to Theorem 1.3.9, we provide–without proof–an easy to check criterion for market

completeness.

Theorem 1.3.18. The market is complete if and only if σ admits a left inverse almost surely.

Note in particular that if σ(·) is invertible (almost surely), then clearly the process u in Theo-

rem 1.3.9 is well defined, and hence the market is free of arbitrage. The converse does not hold in

general, though.

Example 1.3.19.

• Show that the market characterised by Bt ≡ 1 and dSt =


1

2

3

dt +


1 0

0 1

1 1

 d(W
(1)
t ,W

(2)
t )

is complete.

• The market given by Bt ≡ 1 and dSt = dW
(1)
t + dW

(2)
t is incomplete.

In layman terms, the completeness of the market is due to the fact that the number of Brownian

motions driving the system, quantifying the randomness, is equal to the number of assets. The

Black-Scholes model is the obvious example of a complete model, as is Dupire’s local volatility

model, which we will study in Section 4.1. Stochastic volatility models, on the other hand, are

classical examples of incomplete market models (Section 4.2), since the system is driven by two

Brownian motions, but only one asset (the stock price) is tradable.

In a complete market, Corollary 1.3.17 ensures the existence of a unique equivalent local martin-

gale measure Q such that the unique arbitrage-free price reads Bt(PT ) = St(PT ) = EQ (Dt,TPT |Ft)

(see Theorem 1.3.16). As an example, in the Black-Scholes model, there is one source of random-

ness only (one Brownian motion), driving a single asset. The market is then complete. We shall

see later some examples of incomplete markets, in particular stochastic volatility models, where

the number of Brownian motions driving the system is larger than the number of traded assets.

1.3.1 Overture on optimal transport problems and model-free hedging

1.4 Application to the Black-Scholes model

We now assume that a probability P is given, under which the stock price process is the (unique

strong) solution to the following stochastic differential equation:

dSt = St(µdt+ σdWt), S0 > 0, (1.4.1)
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where σ is a strictly positive real number, and W a Brownian motion on (Ω,F , (Ft)t≥0,P). We are

interested in evaluating, at inception, a derivative on S, with payoff HT at maturity T > 0. The

(random) payoff HT is assumed to be FT -measurable and square integrable. Let now Υ denote

the following set of strategies:

Υ :=

{
(πt)t∈[0,T ] adapted :

∫ T

0

π2
t dt <∞ almost surely

}
, (1.4.2)

and, for each π ∈ Υ, let Π denote the solution to the SDE dΠt = πtdSt + D0,t (Πt − πtSt) dBt,

starting at Π0 = x0. Note that Υ is nothing else than the almost sure version of V from Defini-

tion 1.2.1. In the context of Section 1.3, the process Π corresponds to the portfolio associated to

the strategies π and π0
t = D0,t(Xt − πtSt), which is clearly self-financing. The discounted process

Π̃ := (D0,tΠt)t≥0 satisfies the SDE

dΠ̃t = πtD0,tSt ((µ− r)dt+ σdWt) =: σπtS̃tdW̃t,

where S̃ is the discounted stock price process and W̃ a P̃-Brownian motion. The probability P̃

here is defined via the Girsanov transformation

dP̃
dP

∣∣∣∣∣
FT

= exp

(
−1

2
γ2T + γWT

)
,

and W̃t := Wt − γt for t ∈ [0, T ], with γ := (r − µ)/σ. Under P̃, the stock price process S

satisfies dSt = St(rdt+σdW̃t), and hence P̃ is a risk-neutral probability measure. The Martingale

Representation Theorem implies that there exists an adapted square integrable process ϕ̃ such that

D0,THT = EP̃ (D0,THT ) +

∫ T

0

ϕ̃tdW̃t.

Letting πt = ϕ̃t/(σD0,tSt) and π0
t as above, and x0 = EP̃(D0,THT ), the trading strategy (π, π0, x0)

generates a portfolio Π such that ΠT = HT almost surely, i.e. a replicating portfolio for the

contingent claim HT , and therefore the option value at inception is equal to x0.

Theorem 1.4.1. If there exists a strictly positive constant Aπ such that Πt ≥ −Aπ almost surely

for all t ∈ [0, T ], then the set Υ does not contain any arbitrage opportunity.

Proof. Suppose there exists π ∈ Υ and that x0 = 0. The discounted process Π̃ is a P̃-local

martingale bounded below, and therefore the process Π̃ +Aπ is a supermartingale, and so is Π̃; in

particular, for any t ≥ 0,

EP̃
(

Π̃t

)
≤ EP̃

(
Π̃0

)
= 0.

If Πt ≥ 0 P-almost surely for any t ≥ 0 and P(Πt > 0) > 0 then EP̃(Π̃t) > 0 since P and P̃ are

equivalent, which yields a contradiction.

We can now derive the celebrated Black-Scholes formula:
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Theorem 1.4.2. Under the risk-neutral probability P̃, the European Call price with strike K and

maturity T , with payoff HT := (ST −K)+ is worth, at any time t ∈ [0, T ],

CBS(S0,K, t, T, σ) := EP̃ [Dt,T (ST −K)+|Ft] = StN (d+) −KDt,TN (d−) ,

where d± :=
1

σ
√
T − t

log

(
St

Dt,TK

)
± 1

2
σ
√
T − t.

Corollary 1.4.3. For a European Put price, we have the following:

PBS(S0,K, t, T, σ) := EP̃ [Dt,T (K − ST )+|Ft] = KDt,TN (−d−) − StN (−d+) ,

Proof. Under P̃, the stock price satisfies dSt = St(rdt+ σdWt); hence Itô’s formula yields

ST = St exp

{(
r − 1

2
σ2

)
(T − t) + σ(WT −Wt)

}
, for any 0 ≤ t ≤ T,

and the theorem follows by direct integration of the Gaussian random variable (WT −Wt). The

proof for the Put price is analogous.

We now introduce some notations to simplify computations. Rewrite Theorem 1.4.2 as

CBS(S0,K, t, T, σ) = E [Dt,T (ST −K)+|Ft] = StBS

(
log

(
KDt,T

St

)
, σ2(T − t)

)
,

for any t ∈ [0, T ], where the function BS : R× R+ → R is defined as

BS(k, v) :=

 N (d+(k, v)) − ekN (d−(k, v)), if v > 0,(
1 − ek

)
+
, if v = 0,

(1.4.3)

with d+(k, v) := −k/
√
v ±

√
v/2, where N denotes the cumulative distribution function of the

Gaussian distribution. The Black-Scholes model has independent and stationary increments, so

that the price of the Call option only depends on time through the remaining time to maturity

T − t; note that it also only depends on the volatility through the total variance: v := σ2(T − t).

Therefore, from now on, we shall prefer the notation CBS(k, T − t, σ), or even CBS(k, v), to the

over-parameterised CBS(St,K, t, T, σ), where k := St/(Dt,TK) is the log-forward moneyness.

Robustness of the Black-Scholes strategy

The way we proved the Black-Scholes formula in Theorem 1.4.2, via the martingale representation

theorem, does not follow the original proof of the authors [20]. They assumed that there exists a

smooth function C : R2
+ → R describing the value of the option, and such that C(t, s) converges

to the option payoff h(·) as t approaches the maturity T . This function satisfies the Black-Scholes

partial differential equation (
∂t + rS∂S +

σ2

2
S2∂SS − r

)
C(t, S) = 0, (1.4.4)
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for all t ∈ [0, T ) and S ≥ 0, with boundary condition C(T, S) = h(S). In the Black-Scholes

framework, assuming that we believe that σ is the true volatility, then we hedge ourselves by

buying/selling an amount ∂SC(t, S) of the stock price. This is called delta hedging. Suppose now

that the true dynamics of the underlying stock price are in fact given by

dSt = St (αtdt+ βtdWt) ,

where α and β are two adapted processes. As seen in the previous section, we can construct a

self-financing replicating portfolio Π satisfying

dΠt = ∂SC(t, St)dSt + (Πt − ∂SC(t, St)St) rdt.

Now, using Itô’s formula, the Call price function satisfies

dC(t, St) = ∂SC(t, St)dSt +

(
∂t +

β2
t S

2
t

2
∂SS

)
C(t, St)dt.

The hedging error E := Π − C then satisfies

dEt = rΠt −
(
∂t +

β2
t S

2
t

2
∂SS + rSt∂S

)
C(t, St)dt

= rΠt −
(

(σ2 − β2
t )S2

t

2
∂SS − r

)
C(t, St)dt,

= rEt −
1

2
(σ2 − β2

t )S2
t ∂SSC(t, St)dt,

where, in the second line, we used the fact that the Call price satisfies the Black-Scholes PDE (1.4.4).

An application of Itô’s formula yields, at maturity,

ET =
1

2

∫ T

0

er(T−s)S2
t Γ2

t

(
σ2 − β2

t

)
dt.

This formula is fundamental for hedging, and indicates that the error in the hedging strategy is due

to (i) the under/overestimation of the actual volatility (the sign of σ̂2 − ξ2t ), and (ii) the amount

of (positive) convexity Γt of the option price with respect to the underlying. Taking derivatives of

the Call option price with respect to the parameters yields the so-called ‘Greeks’, which, as seen

above, are fundamental tools for hedging purposes:

∂kBS(k, v) = −ekN (d−(k, v)),

∂kkBS(k, v) = −ek
[
N (d−(k, v)) − n(d−(k, v))√

v

]
= ∂kBS(k, v) +

ekn(d−(k, v))√
v

,

∂vBS(k, v) =
n(d+(k, v))

2
√
v

,

∂vvBS(k, v) =
n(d+(k, v))

16v5/2
(
4k2 − v2 − 4v

)
,

∂kvBS(k, v) = −n(d+(k, v))∂vd−(k, v) = −n(d+(k, v))

4

2k − v

v3/2
,

(1.4.5)

where n ≡ N ′ denotes the Gaussian density. The proof of the equalities (1.4.5) is left as an exercise.
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1.5 Beyond Vanilla options: a probabilistic approach

1.5.1 American options: stopping the Brownian motion

We follow here the notations and framework of Section 1.3. We consider an American option with

exercise price Pt at time t, written on the underlying stock price S. For such an option, the buyer

(seller) can exercise the option at any time during the life of the contract, not only at maturity, as

is the case for European options. Mathematically, we can then define, in a very intuitive way, and

similarly to Definition 1.5.1, the buyer’s and seller’s price:

Definition 1.5.1. At time t, the buyer’s and the seller’s prices (Bt and St) are defined by

Bt(P ) := sup
{
p ∈ Ft : ∃(π, τ) ∈ A× Tt,T : Π̃τ = −D0,tp +

∫ τ

t

πu · dS̃u +D0,τPτ ≥ 0,P-a.s
}
,

St(P ) := inf
{
p ∈ Ft : ∃π ∈ A : ∀t ∈ [t, T ], Π̃τ = D0,tp +

∫ t

t

πu · dS̃u −D0,tPt ≥ 0,P-a.s
}
,

= inf
{
p ∈ Ft : ∃π ∈ A : ∀τ ∈ Tt,T , Π̃τ = D0,tp +

∫ τ

t

πu · dS̃u −D0,τPτ ≥ 0,P-a.s
}
.

Namely the buyer’s price is the largest initial amount to pay in order to obtain a non-negative

value of the portfolio at some point between time t and the maturity of the contract. The seller,

however, does not decide when the option is exercised, and hence has to hedge himself at any time

between inception t and maturity T . Here P denotes the payoff, which can be gained at any time

between t and T , so that it does not have any T -dependence, and Tt,T represent the set of stopping

times with values in the closed interval [t, T ]. The following theorem is similar to the European case

and characterises the price of the American option: Before stating the main valuation theorem, let

us introduce several tools.

Definition 1.5.2. The process S defined pathwise by

St := D0,tess supτ∈Tt,T
EQ [Dt,τPτ |Ft]

is called the Snell envelope (corresponding to the American option with payoff P ) under Q.

In general, the Snell4 envelope of a stochastic process is the smallest supermartingale dominat-

ing it. In discrete time, an explicit construction (by recursion) is available, see for example [59,

Chapter 6].

Lemma 1.5.3. S is a Q-supermartingale.

Theorem 1.5.4. Assume that there exists an equivalent local martingale measure Q. Then

Bt(P ) ≤ ess supτ∈Tt,T
EQ (Dt,τPτ |Ft) ≤ St(P );

if furthermore the market is complete, then all the inequalities become equalities, and the value of

the American option at time t ∈ [0, T ] is given by D−1
0,tSt.

4James Laurie Snell (1925-2011), American mathematician, published this result in 1952, see [146].
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Part of the proof of the theorem is analogous to the European case studied above. However,

the seller’s price needs some more work, and requires the so-called Doob-Meyer decomposition.

The following theorem is a cornerstone in stochastic analysis, and was proved, albeit in a slightly

less general version, by Meyer [115, 116]. Its proof is clearly outside the scope of these lectures,

but, in order to satiate the reader’s appetite for curiosity, we shall include a statement and a proof

of the discrete-time version, originally proposed by Doob.

Theorem 1.5.5 (Doob Decomposition). Let (Ω, (Fn)n∈N,P) be some discrete probability space,

and (Zn)n∈N a discrete-time (Fn)-adapted process starting at zero such that E(Zn) is finite for all

n ∈ N. Then there exist a P-martingale (Mn)n∈N and a previsible process (An)n∈N (An ∈ Fn−1

for all n ≥ 1) such that the decomposition Zn = Z0 + Mn + An holds uniquely for all n ∈ N. In

particular, Z is a submartingale if and only if A is increasing almost surely.

Proof. Assume that the Doob decomposition holds, then for any n ≥ 1,

E(Zn − Zn−1|Fn−1) = E(Mn −Mn−1|Fn−1) + E(An −An−1|Fn−1) = An −An−1,

therefore An =
∑n

i=1 E(Zi−Zi−1|Fi−1) almost surely. We can use this definition for the process A,

and the theorem follows. The submartingale consequence is clear from this very definition.

Theorem 1.5.6 (Doob-Meyer Decomposition). For any càdlàg supermartingale Z, there exist a

local martingale M and a predictable increasing process A starting from zero such that the decom-

position Z = Z0 +M −A holds uniquely. In particular, if limt↑∞ E(Zt) > −∞, then A∞ has finite

expectation.

Remark 1.5.7. A continuous-time stochastic process X is said to be predictable if it is measurable

with respect to the σ-algebra generated by all left-continuous adapted processes. In particular,

every continuous-time left-continuous adapted process is predictable.

Proof of Theorem 1.5.4. Fix some Ft-measurable random variable p and assume the existence of

a stopping time τ ∈ Tt,T and of an admissible portfolio π ∈ A such that, P-almost surely,

−D0,tp +

∫ τ

t

πu · dSu +D0,τPτ ≥ 0.

The integral term is clearly a Q-supermartingale, and hence EQ
[∫ τ

t
πu · dS̃u|Ft

]
≤ 0, so that

p ≤ EQ [Dt,τPτ |Ft]. Taking the supremum over all τ ∈ Tt,T and using the fact that this is valid

for any p ∈ Ft concludes the first assertion of the theorem.

If the market is complete, then for any stopping time τ ∈ Tt,T , the payoff ΨT := D−1
τ,TPτ

is attainable, i.e. there exists a real number p̃ and an admissible portfolio π ∈ A such that

(
∫ t

0
πu · dS̃u)t∈[0,T ] is a Q-martingale with

− p̃ +

∫ T

0

πu · dS̃u +D0,T ΨT = 0 = −p̃ +

∫ t

0

πu · dS̃u +

∫ T

t

πu · dS̃u +D0,τPτ . (1.5.1)
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Taking Q-expectations conditional on Ft then yields p̃ −
∫ t

0
πu · dS̃u = EQ [D0,τPτ |Ft]. From the

definition of the buyer’s price and the right-hand side of (1.5.1), letting q := p̃−
∫ t

0
πu · dSu, and

identifying q = D0,tp, we see that Bt(P ) ≥ p = D−1
0,t q = EQ [Dt,τPτ |Ft], and therefore, from the

first part of the theorem, the equality holds. Similar arguments follow for the seller’s price.

The last part of the proof, for the seller’s price, is slightly more technical, as one still needs

to show that, letting p := ess supτ∈Tt,T
EQ [Dt,τPτ |Ft], there exists a super-replicating admissible

portfolio π such that

D0,tp +

∫ t

t

πu · dS̃u ≥ D0,tPt, for all t ∈ [t, T ].

Using Lemma 1.5.3, the process S defined pathwise by St := D−1
0,t ess supτ∈Tt,T

EQ [Dt,τPτ |Ft] is a

Q-supermartingale, so that Doob-Meyer’s Decomposition (Theorem 1.5.6) yields the existence of a

Q-local martingale M with Mt = D0,tp and a non-decreasing process A starting at zero such that

S = M −A. Furthermore, the Martingale Representation Theorem 1.2.2 implies that there exists

an F-adapted process ζ such that

Mt = D0,tp +

∫ t

t

ζudW (1)
u .

The market being complete, we can rewrite this as

Mt = D0,tp +

∫ t

t

πudS̃u = St +At ≥ St ≥ D0,tPt,

and the theorem follows.

A special case: American Call option in the Black-Scholes framework

We now specialise the above results to the Black-Scholes framework, and deduce some interesting

properties of American options, in particular of an American Call option, for which the exercise

price is equal to Pt = (St−K)+, for some strike K > 0. In the Black-Scholes model, the stock price

process is the unique strong solution to the stochastic differential equation dSt = (r − q)Stdt +

σStdWt, starting at S0 > 0, where r and q are respectively the interest rate and (continuous)

dividend yield. The process W is a standard Brownian motion defined on (Ω,F , (Ft)t≥0,P),

where P is a given risk-neutral measure. Let Ca(k, T, σ) and Pa(k, T, σ) denote the American Call

and Put option prices. From Theorem 1.5.4, we can write

Ca(k, T, σ) = sup
τ∈TT

CBS(k, τ, σ),

Pa(k, T, σ) = sup
τ∈TT

PBS(k, τ, σ).

Proposition 1.5.8. The American Put-Call symmetry Ca(S0,K, T, r, q) = Pa(K,S0, T, q, r) holds.

Proof. The proof follows from a simple application of Girsanov’s theorem applied to the new

probability measure Q defined via

dQ
dP

∣∣∣∣
Ft

:= exp

(
−1

2
σ2t+ σWt

)
.
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Under this new probability measure, Girsanov’s theorem implied that the process B defined by

Bt := Wt − σt is a standard Q-Brownian motion. Therefore,

sup
τ∈TT

EP [e−rτ (Sτ −K)+
]

= sup
τ∈TT

EP

[
e−rτ

(
S0e(r−q)τ exp

{
−1

2
σ2τ + σWτ

}
−K

)
+

]

= sup
τ∈TT

EQ

[
dP
dQ

∣∣∣∣
FT

e−rτ

(
S0e(r−q)τ exp

{
−1

2
σ2τ + σWτ

}
−K

)
+

]

= sup
τ∈TT

EQ

[
e−qτ

(
S0 −K exp

{
(q − r)τ +

1

2
σ2τ − σWt

})
+

]

= sup
τ∈TT

EQ

[
e−qτ

(
S0 −K exp

{
(q − r)τ − 1

2
σ2τ − σBt

})
+

]

= sup
τ∈TT

EQ

[
e−qτ

(
S0 −K exp

{
(q − r)τ − 1

2
σ2τ + σBt

})
+

]

where in the last line, we used the symmetry (in distribution) of the Brownian motion.

1.5.2 Barrier options

A barrier option is a European option which depends on the path of the underlying stock price

between inception and the maturity T of the contract. For a given underlying stock price S, we

shall denote by S and S respectively the running infimum and running supremum of the process:

St := inf
u∈[0,t]

Su and St := sup
u∈[0,t]

Su. (1.5.2)

A knock-out barrier Call option has the following payoff at maturity:

(ST −K)+11{ST≥K}11{ST≤K},

i.e. it has the same payoff as a standard European option as long as the stock price has remained

within the interval (K,K) during the life of the contract. Different barrier options exist in practice,

namely knock-in options, where the payoff is only exercised if the stock price has hit a barrier,

and so on. We shall not list all the possible combinations here, but refer the reader to the many

books and papers on this. It is clear, however, that the structure of the solution will be similar in

all cases. For general processes, closed-form expressions are not available, and one has to resort to

numerical methods. We shall get back to this point later in Chapter 3. In the Black-Scholes case,

however, one is able to compute such closed-form representations.

Let us therefore assume that the stock price process is the unique strong solution to the stochas-

tic differential equation dSt = St (rdt+ σdWt), starting at S0 = S0 > 0, and consider the case of

an up-and-out Call option with payoff

ΠT := (ST −K)+ 11{ST≤B},
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for some knock-out level B. Obviously if K ≥ B, the option is worthless, so we shall assume

otherwise from now on. Itô’s formula applied to the Black-Scholes SDE yields

St = S0 exp

{(
r − 1

2
σ2

)
t+ σWt

}
= S0 exp (σWα

t ) ,

where Wα
t := αt + Wt defines a Brownian motion with drift, with α := r

σ − σ
2 . In particular, for

any t ≥ 0, St = S0 exp
(
σW

α

t

)
. Therefore the payoff of the knock-out Call option reads

ΠT = (ST −K)+ 11{Wα
T≤b} =

(
S0eσW

α
T −K

)
11{Wα

T≤b,Wα
T ≥k}, (1.5.3)

with b := log(B/S0)/σ and k := log(K/S0)/σ. It therefore suffices to compute the joint density

of a (drifted) Brownian motion and its running supremum. We start with the zero-drift case, and,

for any w ∈ R, denote τw the first hitting time of the Brownian motion at level w:

τw := inf{t ≥ 0 : Wt = w} =


inf{t ≥ 0 : Wt ≤ w}, if w > 0,

inf{t ≥ 0 : Wt ≥ w}, if w < 0,

0, if w = 0.

(1.5.4)

The second equalities follow immediately from the continuity of the paths of the Brownian motion.

Lemma 1.5.9. For any w ∈ R, τw is finite almost surely.

Proof. Assume that w > 0. By continuity arguments, if the Brownian motion W hits some level

w̃ ≥ w almost surely, then it will also hit w almost surely. Since lim supt↑∞Wt = ∞, the result

follows. The other cases are analogous.

We can now state the following reflection property for the standard Brownian motion:

Proposition 1.5.10. For every a > 0, y ≥ 0, P(W t ≥ a,Wt ≤ a− y) = P(Wt ≥ a+ y).

Proof. By the total law of probability, we can write

P(Wt ≥ a+ y) = P(Wt ≥ a+ y,W t ≥ a) + P(Wt > a+ y,W t < a)

= P(Wt ≥ a+ y,W t ≥ a)

= P(Wτa+(t−τa) − a ≥ y,W t ≥ a)

= P(Wτa+(t−τa) − a ≥ y|W t ≥ a)P(W t ≥ a)

= P(Wτa+(t−τa) − a ≤ −y|W t ≥ a)P(W t ≥ a)

= P(Wt ≤ a− y,W t ≥ a),

where we used the symmetry of the Brownian motion ‘restarted’ at level a at time τa.

Setting m = a and w = a− y, we can rewrite the reflection property as

P(Wt ≤ w, τm ≤ t) = P(Wt ≤ w,W t ≥ m) = P(Wt ≥ 2m− w). (1.5.5)

In passing, one can derive the distribution of the first hitting time:
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Exercise 1.5.11. For any m ̸= 0,

P(τm ≤ t) =

√
2

π

∫ ∞

|m|/
√
t

exp

(
−z

2

2

)
dz.

Lemma 1.5.12. For any t ≥ 0, the joint density of Wt and W t is equal to

f(w,m) := ∂w,mP
(
Wt ≤ w,W t ≤ m

)
=

2(2m− w)

t
√

2πt
exp

{
(2m− w)2

2t

}
, for 0 ≤ m,w ∈ (−∞,m).

Proof. From the reflection property (1.5.5), we can write∫ ∞

m

∫ w

−∞
f(x, y)dxdy = P(Wt ≤ w,W t ≥ m) = P(Wt ≥ 2m− w) =

1√
2πt

∫ ∞

2m−w

exp

(
−z

2

2t

)
dz.

Differentiating on both sides with respect to m and w, the claim follows from the computation

−f(w,m) = −2(2m− w)

t
√

2πt
exp

{
− (2m− w)2

2t

}
.

The idea now is to use Girsanov theorem to compute the transition density of the Brownian

motion with drift Wα from that of the one without drift.

Theorem 1.5.13. For any α ∈ R and t ≥ 0, the joint density of Wα
t and W

α

t reads

∂w,mP
(
Wα

t ≤ w,W
α

t ≤ m
)

=
2(2m− w)

t
√

2πt
exp

{
αw − α2t

2
− (2m− w)2

2t

}
, for 0 ≤ m,w ∈ (−∞,m).

Proof. The process Zα defined pathwise by

Zα
t := exp

(
−αWt −

1

2
α2t

)
= exp

(
−αWα

t +
1

2
α2t

)

is a P-martingale, and therefore we can define a new probability measure Pα via
dPα

dP
= Zα

T on FT

such that Wα is a standard Pα-Brownian motion. Therefore

P
(
Wα

t ≤ w,W
α

t ≤ m
)

= E
(

11{Wα
t ≤w,W

α
t ≤m}

)
= EPα

(
1

Zα
T

11{Wα
t ≤w,W

α
t ≤m}

)
= EPα

[
exp

(
αWα

t − 1

2
α2t

)
11{Wα

t ≤w,W
α
t ≤m}

]
=

∫ m

−∞

∫ w

−∞
exp

(
αx− 1

2
α2t

)
f(x, y)dxdy

where f(·, ·) again is the joint density of a standard Brownian motion and its running supremum.

The theorem then follows from Lemma 1.5.12.

From no-arbitrage arguments, using the payoff (1.5.3) and Theorem 1.5.13, we deduce, after

simple, yet long and tedious, computations, the price at inception of the Knock-out Call option:
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Proposition 1.5.14. At inception of the contract, the Knock-out Call option is worth

Π0 = e−rTE(ΠT )

= S0

{
N
(
δ+

(
S0

K

))
−N

(
δ+

(
S0

B

))}
− e−rTK

{
N
(
δ−

(
S0

K

))
−N

(
δ−

(
S0

B

))}
−B

(
S0

B

)−2r/σ2 {
N
(
δ+

(
B2

S0K

))
−N

(
δ+

(
B

S0

))}
+ e−rTK

(
S0

B

)1−2r/σ2 {
N
(
δ−

(
B2

KS0

))
−N

(
δ−

(
B

S0

))}
,

where δ±(x) := 1
σ
√
T

{
log(x) +

(
r ± 1

2σ
2
)
T
}
.

1.5.3 Forward-start options

We consider here a new type of European option, namely forward-start calls and puts. Let (St)t≥0

be the stock price process starting at some strictly positive value S0. By no-arbitrage arguments,

the forward-start Call option Cf and Put option P f with strike K ≥ 0, forward-start date T ≥ 0

and maturity T + τ ≥ T are worth at inception

Cf (K,T, τ) := e−r(T+τ)E0

[(
ST+τ

ST
−K

)
+

]
and P f (K,T, τ) := e−r(T+τ)E0

[(
K − ST+τ

ST

)
+

]
.

Clearly, it reduces to a standard European Call option whenever T = 0. In the Black-Scholes

model, under the risk-neutral probability measure P, the stock price process is the unique strong

solution to the SDE dSt/St = rdt+ σdWt, so that

BSf (K,T, τ, σ) := e−r(T+τ)E0

[(
ST+τ

ST
−K

)
+

]

= e−r(T+τ)E0

[(
e(r−σ2/2)τ+σWτ −K

)
+

]
= e−rT BS(S0 = 1,K, τ, σ),

where we use the fact that the Brownian increments are stationary. In fact, this result holds for any

model with stationary increments, in particular any exponential Lévy process. We can therefore

define the forward implied volatility similarly to the standard implied volatility:

Definition 1.5.15. For any T > 0, τ,K ≥ 0, the forward implied volatility σT,τ (K) is the unique

non-negative solution to the equation Cf (K,T, τ) = BSf (K,T, τ, σT,τ (K)).

1.5.4 Variance and volatility swaps

Variance swaps are swaps written on the realised variance over a given period of time, i.e. have a

terminal payoff of the form N
(
σ2
R −K

)
, where N is the notional (in some given currency), K is

the strike of the contract (expressed in units of variance) and σ2
R represents the realised variance

of S over the life of the contract. Being a swap, the strike is chosen such that the contract has no
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value at inception, i.e. K = E0

(
σ2
Realised

)
. The realised variance is calculated as follows:

σ2
R := A

n∑
i=1

1

n
log

(
Sti

Sti−1

)2

,

where A is an annualisation factor (usually 252 working days), t0 < t1 < . . . < tn are sampling

dates, specified in the contract, and (St)t≥0 denotes the stock price process under consideration.

In practice however, pricing of variance swaps, namely computing the expectation of the realised

variance, is performed by approximating the discrete sampling above by its continuous version.

More precisely take a partition 0 = t0 < t1 < . . . < tn = T , then the following limit holds in

probability:

lim
n↑+∞

n∑
i=1

log

(
Sti

Sti−1

)2

= ⟨log(S), log(S)⟩T (1.5.6)

Computing the quadratic variation on the right is an easier exercise (from a stochastic calculus point

of view) and generally yields to simple closed-form expressions. Note however that the convergence

in (1.5.6) is in probability and hence does not guarantee convergence of the expectations. We refer

the interested reader to [91] for more details on this issue.

Assume now that the stock price satisfies dSt/St = rdt + σtdWt, with S0 > 0, where (σt)t≥0

is adapted to the Brownian filtration. Applying Itô’s formula to the smooth function (on R∗
+)

s 7→ log(s), we obtain d log(St) =
(
r − 1

2σ
2
t

)
dt+ σtdWt, so that

1

T

∫ T

0

σ2
t dt =

2

T

∫ T

0

(
dSt

St
− d log(St)

)
=

2

T

∫ T

0

dSt

St
− 2

T
log

(
ST

S0

)
. (1.5.7)

Note that the first term on the right-hand side corresponds to a rebalanced hedge of the stock while

the second term represents a so-called log-contract. Apply now the replication formula (C.0.1) to

the function f ≡ log with F = S∗:

log

(
ST

S∗

)
=
ST − S∗

S∗ −
∫ S∗

0

(K − S)+
K2

dK −
∫ ∞

S∗

(S −K)+
K2

dK.

Taking expectations on both sides yields

E log

(
ST

S∗

)
=
S0erT

S∗ − 1 − erT
∫ S∗

0

P (K,T )

K2
dK − erT

∫ ∞

S∗

C(K,T )

K2
dK, (1.5.8)

where C(K,T ) and P (K,T ) are European Call and Put options written on S with strike K and

maturity T . Therefore, combining (1.5.8) and (1.5.7), we obtain

E

(
1

T

∫ T

0

σ2
t dt

)
=

2

T

[
rT −

(
S0erT

S∗ − 1

)
− log

(
S∗

S0

)
+ erT

∫ S∗

0

P (K,T )

K2
dK + erT

∫ ∞

S∗

C(K,T )

K2
dK

]
Take for example S∗ = S0erT , namely the forward price, then the fair strike of the variance swap

reads

E

(
1

T

∫ T

0

σ2
t dt

)
=

2erT

T

∫ S∗

0

P (K,T )

K2
dK +

2erT

T

∫ ∞

S∗

C(K,T )

K2
dK. (1.5.9)

Therefore the fair strike of a (continuously monitored) variance swap can be computed all the

European Call and Put options for all possible strikes for a fixed maturity.
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Remark 1.5.16. Note that we have assumed here that the stock price is a strictly positive

martingale. If, at time T , ST has a strictly positive mass at the origin, then by Lemma 2.1.8, we

have limK↓0
P (K,T )

K = P(ST = 0), so that the first integral in (1.5.9) is infinite, and so is the fair

value of the variance swap.

Let us now try to understand the precise meaning of of the weighting factor 1/K2. Consider

the portfolio Π :=
∫∞
0
ρ(K)O(K)dK, where O(K) represents either a Call or a Put option, and

where ρ is a weighting scheme to be determined. In the Black-Scholes model, consider the total

variance ν := σ2T , and the derivative of the Call (or the Put) with respect to ν reads

∂νO(K) =
S0

2
√
ν
n(d+(K/S0)).

Therefore

∂νΠ =

∫ ∞

0

ρ(K)
S0

2
√
ν
n(d+(K/S0))dK =

∫ ∞

0

ρ(xS0)
S2
0

2
√
ν
n(d+(x))dx,

where we used the change of variable x = K/S0. Furthermore

∂S0 (∂νΠ) =
1

2
√
ν

∫ ∞

0

[2ρ(xS0) + xS0ρ
′(xS0)]S0n(d+(x))dx.

The Vega ∂νΠ of the portfolio is then insensitive to the movement of the stock price if and only if

2ρ(xS0) + xS0ρ
′(xS0) = 0. Solving the ordinary differential equation yields ρ(K) = 1/K2.



Chapter 2

Martingale theory and implied

volatility

2.1 Existence of implied volatility

In this section, we shall endeavour to answer the following question: given a probability space

(Ω,F , (Ft)t≥0,P) and a non-negative local martingale (St)t≥0, how does one define the implied

volatility? The blunt answer is ‘the volatility parameter to plug into the Black-Scholes formula in

order to recover a given or observed European Call (or Put) option price’ (adapted from [126]).

Let us try, though, to propose a more rigorous definition, and study the properties of this object.

In order to do so, we first start by recalling the basics of the Black-Scholes model, which shall also

serve to fix the notations.

2.1.1 Preliminaries: general properties of Call option prices

Before moving on to the implied volatility, let us first consider some general properties of Call

option prices in a local martingale model.

Proposition 2.1.1. Let S be a non-negative local martingale and let 0 ≤ t ≤ T . Define the map

Ct : R+ → R by Ct(K) := Et(ST −K)+. Then the following properties hold:

(i) Ct is convex and non-increasing on R+;

(ii) limK↑∞ Ct(K) = 0 and limK↓0 Ct(K) = Ct(0);

(iii) for any K ≥ 0, (Ct(0) −K)+ ≤ Ct(K) ≤ Ct(0);

(iv) on R+, ∂
+
KCt exists, is right-continuous, non-decreasing and satisfies −1 ≤ ∂+KCt(·) ≤ 0;

(v) for any K > 0, we have −1 ≤ [Ct(K) − Ct(0)]/K ≤ ∂+KCt(K).

39
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Proof. Statement (i) follows by linearity of the expectation operator and the convexity of the

map K 7→ (x − K)+. The large-and small-K limits in (ii) follow from Lebesgue’s Dominated

Convergence Theorem and Proposition 1.1.12:

lim
K↑∞

Et(ST −K)+ = Et

[
lim
K↑∞

(ST −K)+

]
= 0,

lim
K↓0

Et(ST −K)+ = Et

[
lim
K↓0

(ST −K)+

]
= Et(ST ).

The inequalities in (iii) are consequences of the following: for any x,K ≥ 0, we have (x−K)+ ≤

x+ = x, and hence Et(ST − K)+ ≤ Et(ST ) ≤ St by Proposition 1.1.12; the lower bound in (iii)

follows from Jensen’s inequality for convex functions. Regarding (iv), we know from (iii) that the

map Ct is right-continuous at the origin, and hence statement (iv) follows from simple analytic

properties of extensions (from R∗
+ to R+) of convex functions.

The following lemma provides a link between true martingales and bounds for European Call

option prices.

Lemma 2.1.2. If S is a non-negative F-adapted process on (Ω,F , (Ft)t≥0,P), then the following

statements are equivalent:

(i) S is a true martingale;

(ii) S is integrable and the inequality (Su −K)+ ≤ Eu(St −K)+ ≤ Su holds almost surely for all

0 ≤ u ≤ t and K ≥ 0;

(iii) S is a non-negative local martingale with the same inequalities as in (ii).

Proof. This lemma can be proved in the following way: assume that S is a true martingale (i),

then it is integrable and for any 0 ≤ u ≤ t and K ≥ 0, since the map K 7→ Eu(St −K)+ is convex

and strictly decreasing, Jensen’s inequality implies (Su −K)+ = (Eu(St)−K)+ ≤ Eu(St −K)+ ≤

Eu(St)+ = Su. Clearly also S is a non-negative local martingale and so (iii) holds. Now assume (ii).

The lemma then follows by a direct application of dominated convergence:

Su = lim
K↓0

(Su −K)+ ≤ lim
K↓0

Eu(St −K)+ ≤ Eu lim
K↓0

(St −K)+ = Eu(St)+ ≤ Su.

2.1.2 Characterisation of European option price functions

Under absence of arbitrage and assuming that the underlying stock price process does not pay any

dividends, recall the (European) Put-Call parity:

Ct(T,K) − Pt(T,K) = St −KB(t, T ), (2.1.1)
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where B(t, T ) represents the price at time t of a zero-coupon bond paying one unit at time T .

From this equality, the following bounds for the Call and the Put are immediate

(St −K)+ ≤ (St −KB(t, T ))+ ≤ Ct(T,K) ≤ St,

(KB(t, T ) − St)+ ≤ Pt(T,K) ≤ KB(t, T ).

Furthermore, a simple Call-spread arbitrage argument (buy a Call with strike K1 and sell a Call

with strike K2) shows that for any t ≤ T , the Call price is a decreasing function of the strike.

Calls and Puts are convex function of the strike. This property follows directly from the so-called

butterfly strategy: buy a Call with strike K1, buy one with strike K2 and sell two Calls with strike

(K1 + K2)/2, where K1 < K2. The calendar spread strategy (for a given strike, buy a Call with

maturity T2 and sell one with maturity T1 < T2) implies that Calls are increasing functions of the

(remaining) maturity. This is not necessarily true, however, for European Put options. In the case

of dividends , the Put-Call parity (2.1.1) does not hold any more since one does not need to invest

the amount St−KB(t, T ) at time t in order to obtain the difference between the Call and the Put

at maturity. Suppose for instance that the stock price pays fixed dividends D1, . . . , Dn during the

period [t, T ], then the Put-Call parity becomes

Ct(K,T ) − Pt(K,T ) = St −
n∑

i=1

DiB(t, ti) −KB(t, T ).

In the case of a continuous dividend yield, say q > 0 (i.e. the stock price pays continuously qStdt),

the the Put-Call parity becomes

Ct(K,T ) − Pt(K,T ) = Ste
−q(T−t) −KB(t, T ).

Suppose now that one observes some function C. It is natural to wonder (i) if it an actual Call

price function, and (ii) if there exists some (martingale) process generating these prices. In light

of Proposition 2.1.1, we obtain the following theorem, in the case of true martingales:

Theorem 2.1.3. For s > 0, assume that there exists a map C : R∗
+ × R+ → R such that

1. C(·, T ) is convex and non-increasing;

2. C(K, ·) is non-decreasing;

3. limK↑∞ C(K, ·) = 0;

4. (s−K)+ ≤ C(K,T ) ≤ s;

5. C(K, 0) = (s−K)+;

then C can be continuously extended to R+ × R+ with limK↓0 C(K,T ) = s. Furthermore, there

exists a non-negative Markov martingale (St)t≥0 such that C(K,T ) = E [(ST −K)+|S0 = s].
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Proof. The proof of the extension of the function C is fairly straightforward. Proving that there ex-

ists a Markov martingale satisfying the required properties is a more tricky exercise. In Lemma 2.1.6

below, we first prove that for each T > 0, the map C(·, T ) characterises a probability measure µT

on R+. We are thus left to prove, with the help of Theorem 2.1.5 that the family M := (µT )T≥0

is in balayage order. Fix two maturities 0 ≤ T1 < T2 <∞; by monotonicity, we can write∫
R

(z −K)+µT1(dz) = C(K,T1) ≤ C(K,T2) =

∫
R

(z −K)+µT2(dz),

for all strikes K ≥ 0, and the theorem follows from Theorem 2.1.5, noting that a submartingale

with constant finite expectation is a true martingale.

Theorem 2.1.5 below is the key tool in order to prove Theorem 2.1.3, but requires first the

notion of balayage order for a family of probability measures.

Definition 2.1.4. Two measures µ, ν on (R,B(R)) are said to be in balayage order (or in convex

order), and we write µ ≼ ν, if
∫
R f(x)µ(dx) ≤

∫
R f(x)ν(dx), for all real convex functions f on R.

Theorem 2.1.5 (Kellerer [97]). Let M = (µt)t≥0 be a family of probability measures on (R,B(R))

with finite expectation for each t ≥ 0. If M is in balayage order, then there exists a Markov

submartingale with marginals µt at time t, for all t ≥ 0.

For notational simplicity, we shall from now on assume that there is no interest rate, so that

the risk-free bond is constant and equal to one.

Lemma 2.1.6. For any T ≥ 0, there exists a unique measure µ on R+ such that C(K,T ) =∫
(x−K)+µ(dx). In particular

∫
xµ(dx) = s.

Proof. Since the function C(·, T ) is convex and decreasing, there exists a right-continuous decreas-

ing function1 f : R+ → R+ such that C(K,T ) = C(0, T ) −
∫K

0
f(x)dx = s −

∫K

0
f(x)dx, and

therefore −f(K) = ∂+KC(K,T ). By linearity of the expectation operator, taking the limit as K

tends to infinity yields
∫∞
0
f(x)dx = s, so that necessarily limx↑∞ f(x) = 0. We can thus define a

measure µ on R+ through the identity µ(x,∞) := f(x), for any x ≥ 0. Applying Fubini’s theorem

then yields∫ ∞

0

f(x)dx =

∫ ∞

0

∫ ∞

x

µ(dz)dx =

∫ ∞

0

(∫ z

0

dx

)
µ(dz) =

∫
(0,∞)

zµ(dz) = s,

and

C(K,T ) = s−
∫ K

0

∫ ∞

x

µ(dz)dx = s−
∫ ∞

0

(∫ K

0

11{z>x}dx

)
µ(dz)

=

∫ ∞

0

(∫ z

0

−
∫ K

0

11{z>x}

)
dxµ(dz) =

∫ ∞

0

(z −K)+µ(dz).

1this is a standard result in convex analysis, originally proved by Stolz [148]. Please consult [120] for elementary

properties of (real) convex functions
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Remark 2.1.7. Define the family of functions C̃t(K,T ) := St − E[ST ∧ K|Ft]. For any K,T ,

the process (C̃t(K,T ))t≥0 is a non-negative local martingale. It is not however necessarily a true

martingale. Indeed,

E[C̃T (K,T )|Ft] = E[(ST −K)+|Ft] = E[ST − ST ∧K|Ft] ≤ St − E[ST ∧K|Ft] = C̃t(K,T ),

and the equality holds if and only if S is a true martingale. In that case, we also have C̃t(K,T ) =

Et(ST −K)+. More details on related issues will be provided later.

Let us now come back to option prices, fix a maturity T , a true martingale S, and recall that

C(K,T ) and P (K,T ) denote respectively Call and Put prices with strike K and maturity T , at

time zero. It is clear that there is a deep link between Call and Put prices and the distribution of

the stock price at time T . The following lemma provides more precise details:

Lemma 2.1.8. For every K > 0, one has

∂+KP (K,T ) = P(ST ≤ K), ∂−KP (K,T ) = P(ST < K),

∂+KC(K,T ) = −P(ST > K), ∂−KC(K,T ) = −P(ST ≥ K).

In particular,

lim
K↓0

P (K,T )

K
= P(ST = 0).

Proof. The first part of the lemma is immediate and is left as an exercise; the second line follows

from the first by Call-Put parity. Using the equality P (K,T ) =
∫K

0
∂+KP (L, T )dL (by convex-

ity of the Put option price) and limK↓0 ∂
+
KP (K,T ) = P(ST = 0), the limit then follows from

lim
K↓0

K−1
∫K

0
∂+KP (L, T )dL = P(ST = 0).

Remark 2.1.9. The last equality in the proposition above in particular implies that, at least in

theory, the observed small-strike European Put option prices provide information on whether the

underlying stock price can default or not.

Option prices in strict local martingale models

Let us consider the double inequality in Theorem 2.1.3(iv), and let S be a non-negative strict

local martingale (i.e. a non-negative supermartingale which is not a martingale). In particular,

we know that E(ST |F0) < S0, so that the European Call price, defined as the map C(K,T ) 7→

E((ST − K)+|F0) is not in the no-arbitrage bounds [(S0 − K)+, S0] at the point K = 0. One

therefore needs to modify the definition of the European Call option price to account for this loss

of martingality. This loss has been dubbed ‘bubble’ in the mathematical finance literature, and we

shall appeal to the excellent review by Alex Cox and David Hobson [36] on the topic:
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Definition 2.1.10. The price process has a bubble if it is a strict local martingale under the

risk-neutral measure.

Examples of bubbles in history are legion: the Dutch tulip mania in the seventeenth century,

the South Sea Bubble around 1720, the Roaring Twenties, the Internet (Dot-Com) bubble, or more

recently the financial crash involving Lehman Brothers (see [112] for more details). In Economics

terms, a bubble occurs when the traded value of an asset deviates from its intrinsic value. Math-

ematically, one can create bubbles simply out of stochastic models. Let T > 0, and consider the

stochastic differential equation

dSt =
St√
T − t

dWt, S0 = s > 0,

where W is a standard Brownian motion. One can show that St = s exp
(
BAt

− 1
2At

)
, where B is

another standard Brownian motion and At ≡ − log (1 − t/T ). The process S is a true martingale

over the interval [0, T ), but clearly ST = 0 almost surely. This example shows a simple case of a

strict local martingale, where of course the inequalities in Theorem 2.1.3(iv) break down.

We shall consider the following running example, for which closed-form computations are pos-

sible: let S be the unique strong solution to dSt = S2
t dWt, S0 = s > 0. Lewis [105] (among

others) showed that the process is a strict local martingale. It actually represents the reciprocal

of the radial part of a three-dimensional Brownian motion, and is furthermore bounded in L2. In

particular, the following formulae hold:

P(St ∈ dz) =
s

z3
dz√
2πt

{
exp

(
− (1/z − 1/s)2

2t

)
− exp

(
− (1/z + 1/s)2

2t

)}
,

E(St|S0 = s) = s

(
1 − 2N

(
− 1

s
√
t

))
,

and the martingale defect is precisely quantified from the second equation. Let us now try to pro-

vide a valid definition of a European option in this strict local martingale framework. Consider as

before a given probability space (Ω,F , (Ft)t≥0,P) and a complete market with a traded continuous

asset price process S. We are interested in evaluating the price, today, of a European option with

payoff, at some future time T > 0, H(ST ).

Definition 2.1.11. An admissible wealth process is a self-financing process (Zt)t≥0 of the form

Zt = Z0+
∫ t

0
θudSu, where θ is predictable2, S-integrable, such that lim

n↑∞
nP
(

inf
t∈[0,T ]

Zt < −n
)

= 0.

We can now introduce the following definition:

Definition 2.1.12. The fair price of a financial instrument is the smallest initial capital required

to finance an admissible super-replicating wealth process.

2Recall that θ is said to be predictable if it is measurable with respect to the σ-algebra generated by all left-

continuous adapted processes.
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Armed with this definition, Cox and Hobson [36] proved the following representation:

Theorem 2.1.13. The fair price at inception of a European option with payoff H(ST ) at time T

is equal to E(H(ST )|F0).

When H(x) ≡ (x−K)+ (resp. H(x) ≡ (K − x)+), the corresponding value of the Call option

(resp. Put option) shall be denoted by C(K,T ) (resp. P (K,T )). With this result, and keeping in

mind the Put-Call parity relation in true martingale models, let us consider the following result:

Theorem 2.1.14. The local martingale S has a bubble if and only if any of the following holds:

(i) S is a strict supermartingale;

(ii) E(St|F0) < S0;

(iii) C(K,T ) − P (K,T ) < S0 −K, for some K;

(iv) lim sup
n↑∞

nP

(
sup

t∈[0,T ]

St > n

)
> 0.

Note that Condition (iii) in particular implies that Put-Call parity breaks down for some strike,

while Condition (iv) means that the stock price is unbounded above almost surely.

Proof. Note that the following decomposition always holds:

(ST −K)+ − (K − ST )+ = ST −K.

This decomposition, together with Lebesgue Dominated convergence and basic properties of super-

martingales yield (i)-(ii)-(iii). Statement (iv) is more technical to prove and we refer the interested

reader to [7].

Exercise 2.1.15. Consider the first example above.

In the CEV example above, dSt = S2
t dWt, S0 > 0, the European Call option price has the

closed-form representation:

E(ST −K)+ =S0

(
N (κ− δ) −N (−δ) + N (δ) −N (κ+ δ)

)
(2.1.2)

−K

(
N (κ+ δ) −N (δ − κ) +

n(κ+ δ) − n(κ− δ)

δ

)
,

where δ := 1/(S0

√
T ) and κ := 1/(K

√
T ).

Exercise 2.1.16. From (2.1.2), compute the limit of the Call option price as the initial stock price

tends to infinity, and comment.
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2.1.3 Implied volatility

We consider now a market model where the stock price S is a non-negative process on some proba-

bility space adapted to a given filtration (Ft)t≥0. We further assume the existence of an equivalent

local martingale measure P under which S is a non-negative local martingale (namely a super-

martingale). In this market, we assume the existence of a family of European Call option prices

(Ct(K,T ))t,K,T . We begin with a rigorous definition of the implied volatility, via the following

proposition:

Proposition 2.1.17. Let s ≥ 0 and C be a map from (0,∞) × [0,∞) to R such that for any

K > 0 and T ≥ 0, the inequalities (s −K)+ ≤ C(K,T ) ≤ s hold. Then the equation C(K,T ) =

CBS(K,T, σ) has a unique non-negative solution, which is called the implied volatility.

Proof. In the Black-Scholes model starting at S0 = s, for any K > 0 and T ≥ 0, the map

σ 7→ CBS(K,T, σ) is strictly increasing, tends to (s − K)+ as σ tends to zero and to s when σ

tends to infinity.

Remark 2.1.18. From Proposition 2.1.1 and Theorem 2.1.3, as well as Theorem 2.1.14, the

bounds in the proposition above, assumed to hold for all K ≥ 0, are equivalent to saying that the

stock price process is a true martingale. By Put-Call parity, the proposition could be stated using

Put options, replacing the double inequality there by (K − s)+ ≤ P (K,T ) ≤ K, for all K,T ≥ 0.

Example 2.1.19. See the IPython notebook for an example based on (a particular case of) the

CEV model, using Formula (2.1.2).

Notation 2.1.20. Let Σt(k, T ) denote the implied volatility at log-moneyness k := log(KB(t, T )/St)

and maturity T , computing at time t ∈ [0, T ]. We shall from now onwards denote the total implied

variance Vt(k, T ) ≡ Σt(k, T )2(T − t). We may write V (k, T ) in place of V0(k, T ) whenever t = 0.

Let us first look at some basic properties of the implied volatility.

Proposition 2.1.21. The distribution of ST is fully characterised by the function k 7→ V (k, T ).

Proof. By definition of the implied volatility, knowledge of the function V is equivalent to knowledge

of the Call price function C. But Fubini’s theorem implies ∂+k C(k, T ) = −ekP(ST > ek), from

which the proposition follows.

Proposition 2.1.22. Let T ≥ 0 and [k−, k+] be the smallest interval containing the essential

support of log(ST ), with possibly k± = ±∞. Then V (k, T ) > 0 if and only if k ∈ (k−, k+).

Proof. Note first that since S is a P-martingale, E(ST ) = S0 = 1, and necessarily k− ≤ 0 ≤ k+.

Let us now prove the identity BS(−k, V (k, T )) = E(1 − ST e−k)+. The Put-Call parity reads

BS(−k, v) = 1 − e−k + e−kBS(k, v), which implies

BS(−k, V (k, T )) = 1 − e−k + e−kE(ST − ek)+ = E(1 − ST e−k)+. (2.1.3)
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Consider the case where k ≥ 0. This identity yields that V (k, T ) = 0 if and only if E(ST − ek)+ =

(1− ek)+, which is clearly equal to zero, so that we have V (k, T ) = 0 if and only if ST ≤ ek almost

surely, e.g. k ≥ k+. Similarly, assume that k ≤ 0. Identity (2.1.3) also implies that V (k, T ) = 0

if and only if E(1 − ST e−k)+ = (1 − e−k)+, from which we obtain k ≤ k−, and the proposition

follows.

From Lemma 2.1.2 and Proposition 2.1.17 above, it is then clear that the implied volatility is

uniquely well-defined for any given true martingale. We now investigate the case of strict (non-

negative) local martingale, i.e. local martingale which are not true martingales. As mentioned

before, in the case of strict local martingales, the Put price is well defined (since it is bounded

above as a function of the stock price), but the Call price is not. Should one define the latter via

Put-Call parity, the implied volatility is clearly well defined for all strikes, since the computed Call

price then lies within the no-arbitrage bounds from Proposition 2.1.17. Suppose now that the Call

price is defined via expectation of the final payoff, then the following holds:

Lemma 2.1.23. Assume that S is a strict (non-negative) local martingale. If T > 0, then there

exists some strike K∗ ∈ [S0−E0(ST ), S0] such that the implied volatility is ill-defined for all strikes

in the interval [0,K∗).

Proof. The strict local martingale property implies that for any t, τ > 0, Et(St+τ ) < St. Since the

map K 7→ Ct(K) := Et(ST −K)+ is decreasing, continuous, non-negative on the whole positive real

line, and Ct(K) ≤ Et(ST ) < St, there exists K∗ ∈ [St − Et(ST ), St] such that Ct(K
∗) = St −K∗.

Therefore, for any K̂ ≥ K∗, we have (St− K̂)+ ≤ Ct(K̂) ≤ St, which follows from the fact that Ct

is non-negative with −1 ≤ ∂+KCt(K) ≤ 0.

Remark 2.1.24. For strict local martingales, the implied volatility is well defined for all K ≥ St.

In Theorem 2.1.3, we exhibited necessary properties for a given two-dimensional map to define

a genuine Call price function, arising as the conditional expectation of the payoff of a European

Call option written on a true martingale. We now translate these conditions into conditions on a

given map to define a proper implied volatility surface.

Theorem 2.1.25. If the two-dimensional map w : R× R+ → R+ satisfies

(i) w(·, T ) is of class C2;

(ii) w(k, T ) > 0 for all (k, T ) ∈ R× R+;

(iii) w(k, ·) is non-decreasing;

(iv) for all (k, T ) ∈ R× R+,

g(k, T ) :=

((
1 − k∂kw

2w

)2

− (∂kw)2

4

(
1

4
+

1

w

)
+
∂kkw

2

)∣∣∣∣∣
(k,T )

≥ 0; (2.1.4)
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(v) w(k, 0) = 0 for all k ∈ R;

(vi) limk↑∞ d+(k,w(k, T )) = −∞;

then the corresponding Call price surface defined by (k, T ) 7→ CBS(k, T, w(k, T )) satisfies the as-

sumptions of Theorem 2.1.3.

Remark 2.1.26. Let pT denote the probability density function of the log stock price at time T

(the maturity). Then, by twice differentiating the Call price function, we obtain

pT (k) = ek
∂2C(K,T )

∂K2

∣∣∣∣
K=S0ek

= ek
∂2CBS(K,

√
w(log(K), T ))

∂K2

∣∣∣∣∣
K=S0ek

=
g(k, T )√
2πw(k, T )

exp

(
−d−(k,w(k, T ))2

2

)
= g(k, T )n (d−(k,w(k, T ))) .

Proof. In view of Theorem 2.1.3, it is clear that is it enough to check that items (i)-(v) are satisfied

for the Call option surface R × R+ ∋ (k, T ) 7→ CBS(k,w(k, T )). Since the option price is convex

and of class C2, we can write ∂KKC(K,T ) ≥ 0 for all (K,T ) ∈ R+ × R+. Let us write w′ and w′′

for the first and second derivatives of w with respect to k. Using the fact that ∂Kk = 1/K, we

obtain ∂KC = ∂Kk ·DkBS = 1
K [∂k + w′∂w] BS and

∂KKC = − 1

K2
[∂k + w′∂w] BS

+
1

K

{ 1

K
(∂kk + w′∂kw) +

1

K

[
w′′∂w + w′ (∂kw + w′∂ww)

]}
BS

=
1

K2

{
− ∂k − w′∂w + ∂kk + w′∂kw + w′′∂w + w′ (∂kw + w′∂ww)

}
BS

=
1

K2

{
∂kk − ∂k + (w′′ − w′) ∂w + 2w′∂kw + (w′)2∂ww

}
BS

=
1

K2

{
ekn(d−(k,w))√

w
+ (w′′ − w′)

n(d+(k,w))

2
√
w

− (w′)
n(d+(k,w))

2

2k − w

w3/2

+(w′)2
n(d+(k,w))

16w5/2

(
4k2 − w2 − 4w

)}
=
n(d+(k,w))

K2
√
w

{
1 +

w′′

2
− w′

2
− (w′)

2k − w

2w
+ (w′)2

4k2 − w2 − 4w

16w2

}
,

using the Black-Scholes Greeks in (1.4.5), as well as the simple identities n′(z) = −zn(z) and

n(d+(k,w)) = ekn(d−(k,w)). The term outside the bracket is clearly strictly positive for all

(K,T ) ∈ R+ × R+, so that the convexity condition on the Call price reads off from the bracket

being non-negative, which is precisely item (iv) in the theorem.

Remark 2.1.27. There are some interesting symmetries appearing with the functions d− and d+.

Recall that d±(k,w) ≡ −k/
√
w ±

√
w/2. Then for any real positive function w, we have

lim
k↑∞

d−(k,w(k)) = −∞ and lim
k↓−∞

d+(k,w(k)) = +∞.

Indeed, the arithmetic mean-geometric inequality reads −d−(k,w(k)) = k√
w(k)

+

√
w(k)

2 ≥
√

2k,

when k > 0, which implies the first limit, and the second one follows using d+(k,w(k)) = −k√
w(k)

+

1
2

√
w(k) ≥

√
−2k, when k < 0.
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Arbitrage with American options

We assume here that the stock price does not give dividends. In the case of American options, the

holder of the option has the right to exercise it at any time before the maturity T , so that clearly

the price of an American option is always at least worth its European counterpart, the difference

between the two being called the ‘early exercise premium’. In the case of a Call, it can be shown

(exercise) that both prices are equal, since it is never optimal to exercise before maturity. This is

no longer true in the case of the Put, for which the bound

PA(K,T ) − PE(K,T ) ≤ K (1 −B(0, T )) ,

holds, under the assumption of deterministic interest rates, where PA denotes the American Put

price value at time zero. It is standard that Put-Call parity is violated in the American case.

However, it is easy to show (exercise) that

• for any fixed maturity, the American Put is an increasing and convex function of the strike;

• for any fixed strike, the American Put is a non-decreasing function of the maturity.

2.1.4 A new look at variance swaps

In Section 1.5.4, we showed that variance swaps could be replicated exactly using European Call

and Put options. We show here how to recast this result in terms of the implied volatility.

Proposition 2.1.28. For a given maturity T > 0, let w denote the implied total variance. Then

the fair strike of the variance swap reads

E

(
1

T

∫ T

0

σ2
t dt

)
=

1

T

∫ +∞

−∞
n(z)σ̃2(z)dz,

where σ̃(z) :=
√
w
(
d−1
− (z)

)
.

Proof. Let FT := S0erT denote the forward price, and recall the price of the Call option:

C = e−rTFT {N (d+(x)) − exN (d−(x)} ,

where x := log(K/FT ) is the log forward moneyness, d±(x) := −x/
√
w ±

√
w/2, and where w

stands for the total variance. Differentiating the Call price function with respect to the strike K,

we obtain

erT∂KC =
erT

K
∂xC = e−x

{
n(d+(x))d′+(x) − exN (d−(x)) − exn(d−(x))d′−(x)

}
=
(

e−x
[
d′−(x) + ∂x

√
w(x)

]
n(d+(x)) − n(d−(x))d′−(x)

)
−N (d−(x))

= n(d−(x))∂x
√
w(x) −N (d−(x)) = n(d−(x))σ′(x) −N (d−(x)),
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where we use the fact that d′+(x) = d′−(x) + ∂x
√
w(x) and e−xn(d+(x)) = n(d−(x)). We also use

the simplified notations d′±(x) := ∂xd±(x) and σ′(x) := ∂x
√
w(x). Likewise,

erT∂KP = n(d−(x))σ′(x) + N (−d−(x)).

Let us define

I = erT
∫ FT

0

P (K,T )

K2
dK + erT

∫ ∞

FT

C(K,T )

K2
dK,

i.e. a rescaled version of the fair price of (1.5.9). An integration by parts yields

I = erT

(∫ FT

0

∂KP (K,T )

K
dK +

∫ ∞

FT

∂KC(K,T )

K
dK − P (K)

K

∣∣∣∣FT

0

− C(K)

K

∣∣∣∣+∞

FT

)
.

By Put-Call parity, we have C(FT , T ) = P (FT , T ). Furthermore since the stock price is strictly

positive, we have limK↓0 P (K,T )/K = 0, and hence the boundary terms above vanish. Using the

derivatives of the Calls and Puts derived above and changing the variable from K to x, we obtain

I =

∫ 0

−∞
[n(d−(x))σ′(x) + N (−d−(x))] dx+

∫ ∞

0

[n(d−(x))σ′(x) −N (d−(x))] dx

=

∫ +∞

0

n(d−(x))σ′(x)dx+

∫ 0

−∞
N (−d−(x))dx+

∫ 0

−∞
n(d−(x))σ′(x) −

∫ +∞

0

N (d−(x))dx

=

∫ +∞

−∞
n(d−(x))σ′(x)dx+

{∫ +∞

−∞
xd′−(x)n(−d−(x))dx+ xN (−d−(x))

∣∣∣0
−∞

− xN (d−(x))
∣∣∣+∞

0

}
From Roger Lee’s moment formula, it is then sufficient that there exists ε > 0 such that E(S1+ε

T )

and E(S−ε
T ) are both finite in order for the two boundary terms above to vanish. If we now integrate

by parts the first integral we obtain

I =

∫ +∞

−∞
d′−(x)d−(x)n(d−(x))σ(x)dx− σ(x)n(d−(x))|R +

∫ +∞

−∞
xd′−(x)n(−d−(x))dx

=

∫ +∞

−∞
d′−(x)d−(x)n(d−(x))σ(x)dx+

∫ +∞

−∞
xd′−(x)n(d−(x))dx

=

∫ +∞

−∞
d′−(x)n(d−(x)) [d−(x)σ(x) + x] dx

= −
∫ +∞

−∞
d′−(x)n(d−(x))

σ2(x)

2
dx

since the boundary terms vanish, where we used the fact that the function n is symmetric, and the

last line follows from the definition of d−. With the change of variables z := d−(x), the integral

becomes

I =
1

2

∫ +∞

−∞
n(z)σ̃2(z)dz,

with σ̃(z) :=
√
w
(
d−1
− (z)

)
.

2.2 No-arbitrage properties of the implied volatility surface

In this section, we shall endeavour to determine the properties of the implied volatility surface in a

model-independent martingale framework. In Theorem 2.1.25 above, we found sufficient conditions
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on a given volatility surface that allowed for the generated option prices to be valid (in the sense

of Theorem 2.1.3) We first start with the definition of static arbitrage for a given volatility surface

in the following way, which is consistent with the framework of Theorem 2.1.3.

Definition 2.2.1. A volatility surface is free of static arbitrage if and only if the following condi-

tions hold: (i) it is free of calendar spread arbitrage; (ii) each time slice is free of buttery arbitrage.

In particular, absence of buttery arbitrage ensures the existence of a (non-negative) probabil-

ity density, and absence of calendar spread arbitrage implies monotonicity of option prices with

respect to the maturity. In light of Theorem 2.1.25, butterfly arbitrage is guaranteed as soon as

Conditions (iv)-(v) are satisfied, whereas calendar spread corresponds to Condition (iii).

2.2.1 Slope of the implied volatility

We shall again fix some t ≥ 0, and recall that [k−, k+] denotes the smallest interval containing the

essential support of log(St), possibly with k± = ±∞. The following proposition derives lower and

upper bounds for the derivative of the total implied variance.

Proposition 2.2.2. The right-derivative ∂+k V (k, t) (resp. left derivative ∂−k V (k, t)) exists for all

k ̸= k− (resp. for all k ̸= k+) and

∂−k V (k, t) ≤ ∂+k V (k, t) ≤ 4V (k, t)

V (k, t) + 2k
≤ 4, for all k ≥ 0,

−4 ≤ − 4V (k, t)

V (k, t) − 2k
≤ ∂−k V (k, t) ≤ ∂+k V (k, t), for all k ≤ 0.

Proof. The proposition is obvious whenever k is not in the essential support of log(ST ). From the

implicit equation defining the implied variance C(k, t) = BS(k, V (k, t)), we obtain by differentiation

∂+k C(k, t) = ∂+k V (k, t)∂V BS(k, V (k, t)) + ∂+k BS(k, V (k, t)), and hence

∂+k V (k, t) =
∂+k C(k, t) − ∂kBS(k, V (k, t))

∂V BS(k, V (k, t))
= 2
√
V (k, t)

N (d−(k, V (k, t))) − P(St > ek)

n(d−(k, V (k, t)))

≥ 2
√
V (k, t)

N (d−(k, V (k, t))) − P(St ≥ ek)

n(d−(k, V (k, t)))

= ∂−k V (k, t),

where we used the Black-Scholes Greeks (1.4.5) as well as Proposition 2.1.8. Using the standard

bounds on the Gaussian Mills ratio N (−x)/n(−x) < x−1, for x > 0, we obtain

∂+k V (k, t) < −
2
√
V (k, t)

d−(k, V (k, t))
=

4V (k, t)

V (k, t) + 2k
=

4

1 + 2k/V (k, t)
≤ 4,

for any k ∈ [0, k+). Differentiating the identity BS(−k, V (k, t)) = E(1 − Ste
−k)+ (proved in

Proposition 2.1.22) yields −∂−k BS(−k, V (k, t)) + ∂−k V (k, t)∂V BS(−k, V (k, t)) = e−kE(ST 11St<ek),
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which also reads

∂−k V (k, t) =
e−kE(St11St<ek) + ∂−k BS(−k, V (k, t))

∂V BS(−k, V (k, t))

= 2
√
V (k, t)

E(St11St<ek) −N (−d+(k, V (k, t)))

n(−d+(k, V (k, t)))

> −
2
√
V (k, t)

d+(k, V (k, t))
= − 4V (k, t)

V (k, t) − 2k
≥ −4,

whenever k ∈ (k−, 0].

Remark 2.2.3. Recall the standard arithmetic / geometric mean inequality x + y ≥ 2
√
xy, for

any two non-negative real numbers. This in particular implies

∂+k V (k, t) <
4V (k, t)

V (k, t) + 2k
≤
√

2V (k, t)

k
, for k ≥ 0,

∂−k V (k, t) > − 4V (k, t)

V (k, t) − 2k
≥

√
2V (k, t)

|k|
, for k ≤ 0,

and hence, by integration, we finally obtain
√
V (k, t) ≤

√
V (0, t)+

√
2k when k ≥ 0 and

√
V (k, t) ≤√

V (0, t) +
√
−2k when k ≤ 0.

2.2.2 Time asymptotics

Consider a stock price process (St)t≥0, assumed to be a non-negative martingale on some probabil-

ity space (Ω,F , (Ft)t≥0,P). The core of this section is the following result (recall Notations 2.1.20

for V (·) and Σ(·)):

Theorem 2.2.4. For any M > 0, the following holds:

lim
t↑∞

sup
k∈[−M,M ]

∣∣∣∣∣Σ(k, t) −
(
−8

t
logE(1 ∧ St)

)1/2
∣∣∣∣∣ = 0.

Before proving the theorem, we need a few preliminary elementary results.

Lemma 2.2.5. Let S be a true martingale starting at S0 = 1 on a given filtered probability space.

Then the following are equivalent as t tends to infinity:

• St converges to zero in distribution;

• St converges to zero almost surely;

• E(St − ek)+ converges to 1 from below for all k ∈ R;

• for any k ∈ R, V (k, t) tends to infinity as t tends to infinity.

Recall the following fundamental theorem:
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Theorem 2.2.6 (Martingale Convergence Theorem). If X is a non-negative supermartingale on

(Ω,F , (Ft)t≥0,P), then the limit X∞ := limt↑∞Xt exists P-almost everywhere and X∞ ∈ L1(P).

Proof. The martingale convergence theorem yields the existence of a random variable S∞ ∈ L1(P)

to which St converges almost surely, so that the first two items are clearly equivalent. The re-

mainder of the lemma follows directly from the identity E(St ∧ ek) = 1 − E(St − ek)+ and the

Black-Scholes formula.

The following corollary is an immediate consequence of the Lemma 2.2.5, and will be used in

the proof of Theorem 2.2.4.

Corollary 2.2.7. If P
(

lim
t↑∞

St > 0

)
> 0 then lim

t↑∞
Σ(k, t) = 0 for all k ∈ R.

Proof of Theorem 2.2.4. Clearly on the set {P(limt↑∞ St = 0) < 1}, the lemma holds since in that

case limt↑∞ Σ(k, t) = 0 by Corollary 2.2.7 and limt↑∞ E(1∧St) > 0. Assume now that St converges

to zero almost surely as t tends to infinity, so that, for any fixed k, V (k, t) diverges to infinity

as t becomes large by Lemma 2.2.5. Let us define the function ψ(x) ≡ 1 − x(1 − N (x))/n(x),

where we recall that n(·) and N (·) denote respectively the Gaussian pdf and cdf. The bounds

0 ≤ ψ(x) ≤ (1 + x2)−1 can be proved by a simple integration by parts, and therefore, for any

v > 2k, we can write

E(ek ∧ St) = 1 − E(St − ek)+ = 1 −N (d+) + ekN (d−) = 1 −N (d+) + ek [1 −N (−d−)]

= 1 −N (d+) +
n(d+)

n(d−)
[1 −N (−d−)]

= n(d+)

{
1 − ψ(d+)

d+
+

1 − ψ(−d−)

−d−

}
= n(d+)

{
v3/2

v2/4 − k2
− ψ(d+)

d+
− ψ(−d−)

−d−

}
.

Fix now some M > 0, then inf |k|≤M V (k, t) tends to infinity as t tends to infinity. Indeed, from

Lemma 2.2.5, V converges pointwise to infinity, so that there exists t∗ > 0 for which both P(St∗ <

e−M ) and P(St∗ > e−M ) are strictly positive (since the martingale cannot be bounded). Therefore,

for any t > t∗, the function V (·, t)−1 is positive, continuous on [−M,M ] and converges pointwise

monotonically to zero, so that Dini’s theorem proves the claim3. Now, fix some M > 0; for t large

enough, V (k, t) is greater than 2M , and hence, for any k ∈ [−M,M ],

ψ(d+)

d+
≤ 2d−3

+ ≤ cv−3/2 and
ψ(−d−)

−d−
≤ cv−3/2,

where c is a strictly positive constant that can change from line to line. Indeed, it is easy to see

that ψ(x) ≤ 2/x2 for any x ̸= 0, and, on [2M,∞), the map v 7→ v3/2d+(v)−3 is strictly decreasing

3Recall that Dini’s theorem states that a monotone sequence of functions converging on a compact space also

converges uniformly.
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and continuous from (2M)3/2d+(2M)−3 down to 8, in particular is bounded above by some strictly

positive constant. Therefore

−8 logE(1 ∧ St) =
(v − 2k)2

v
+ 4 log(v) + δ(v) + c = v + η(v),

where δ a function decreasing to zero at infinity, and |η(v)| ≤ A+B log(v) for t large enough, for

some real (positive) A and B. This therefore proves

lim
t↑∞

sup
k∈[−M,M ]

∣∣∣∣∣Σ(k, t) −
(
−8

t
logE(St ∧ ek)

)1/2
∣∣∣∣∣ = 0.

Applying the double inequality 1 ∧ (a/b) ≤ x∧a
x∧b ≤ 1 ∨ (a/b) to x = St, a = 1 and b = ek

concludes the proof of the theorem.

Remark 2.2.8. Consider the Black-Scholes model:

St = S0 exp

(
−1

2
σ2t+ σWt

)
= S0 exp

{(
−1

2
σ2 + σ

Wt

t

)
t

}
,

which clearly converges to zero as t tends to zero as soon as σ > 0. The stock price process is a

non-negative supermartingale, hence as an almost sure limit S∞ = 0 as t tends to infinity. This

provides a simple example to Corollary 2.2.7. Consider now the case where, for each t > 0, S

is Black-Scholes (with σ = 1) with probability 1/2 and is equal to 1 with probability 1/2. Then

clearly (St)t>0 converges to 1/2 almost surely as t tends to infinity, and the implied volatility

converges to zero. We refer the interested reader to the paper by David Hobson [83] for examples

of stochastic volatility models in which S∞ might or might not tend to zero.

We finish this section with the following result, due to Chris Rogers and Mike Tehranchi [133]:

Theorem 2.2.9. If Sτ is strictly positive almost surely for all τ ≥ 0, then for any k1, k2 ∈ R and

any 0 ≤ s ≤ t,

lim sup
τ↑∞

(Σt(k1, τ) − Σs(k2, τ)) = 0.

Proof. Without loss of generality, let s = 0. Define the process (Mt(τ))t≥0 by Mt(τ) := Et(1∧Sτ ),

so that clearly (Mt(τ)/M0(τ))t≥0 is a martingale. Applying Lemma 2.2.10 to Mt(τ), we obtain

lim sup
τ↑∞

{
−8

τ
log(Mt(τ)) +

8

τ
log(M0(τ))

}
≥ 0,

and therefore, Theorem 2.2.4 implies that lim supτ↑∞ {Σt(k1, τ − t) − Σt(k2, τ − t)} ≥ 0 for any

k1, k2 ∈ R. Since the map τ 7→ V·(·, τ) is increasing under absence of arbitrage, then

Σt(k1, τ) ≥
√
τ − t

τ
Σt(k1, τ),

and the theorem follows.

Lemma 2.2.10 (see [84]). If (Xn)n≥0 is a family of non-negative random variables with finite

mean, then lim infn↑∞X
1/n
n ≤ lim infn↑∞ E(Xn)1/n.
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2.2.3 Wing properties

Let us first start with some crude asymptotic behaviour for the implied volatility when the strike

becomes very large or very small: We first start with the following simple model-independent

result, which gives us the leading behaviour of the total implied variance for large (log) strikes:

Proposition 2.2.11. For any t > 0, the following equalities hold:

lim
k↑∞

(√
V (k, t) −

√
2k
)

= −∞, (2.2.1)

lim
k↓−∞

(√
V (k, t) −

√
−2k

)
= N−1 (P[(St = 0)]) . (2.2.2)

Note that in the case where the stock price process is a strictly positive martingale, then

P(St = 0) = 0 and the right-hand side of (2.2.2) is equal to −∞.

Proof. Let us first prove (2.2.1). For k > 0, the arithmetic-geometric inequality reads k/
√
v +

√
v/2 ≥

√
2k, whenever v > 0. Therefore

ekN (d−(k, V (k, t))) = ekN

(
− k√

V (k, t)
−
√
V (k, t)

2

)
≤ ekN

(
−
√

2k
)
,

which converges to zero (see also a similar computation in the proof of Lemma 2.2.13 using

L’Hopital’s rule). Since the Call price tends to zero as k tends to infinity, we therefore deduce that

N (d+(k, V (k, t))) converges to zero as well, so that d+(k, V (k, t)) = −k/
√
V (k, t) + 1

2

√
V (k, t)

converges to −∞, and (2.2.1) follows.

We now prove (2.2.2), and recall that lim
K↓0

P (K,t)
K = P(St = 0). Let us prove the following claim:

lim
k↓−∞

d−(k, V (k, t)) = +∞, if P(St = 0) = 0;

lim
k↓−∞

d−(k, V (k, t)) = −N−1[P(St = 0)], if P(St = 0) > 0.
(2.2.3)

Recall the identity BS(−k, V (k, t)) = E(1 − Ste
−k)+. Since E(1 − Ste

−k)+ = P(St = 0) +

E
[
(1 − Ste

−k)+11{St>0}
]
, then BS(−k, V (k, t)) tends to P(St = 0) as k tends to −∞ by domi-

nated convergence. Therefore, for every k < 0,

N (d+(−k, V (k, t))) = BS(−k, V (k, t)) + e−kN (d−(−k, V (k, t)))

≤ BS(−k, V (k, t)) + e−kN (−
√

2|k|), (2.2.4)

and the right-hand side converges to P(St = 0) as k tends to −∞. The second line above follows

from the arithmetic-geometric inequality d−(−k, V (k, t)) = − |k|√
V (k,t)

−
√

V (k,t)

2 ≤ −
√

2|k| (see

also Remark 2.2.3) and the fact that ez
2/2N (−z) tends to zero for large z. The claim (2.2.3) then

follows from the identity d+(−k, V (k, t)) = −d−(k, V (k, t)).

Let now p := N−1(P(St = 0)), and assume first that p = −∞. The estimate (2.2.4) implies

that for every M > 0 we have d+(−k, V (k, t)) = k√
V (k,t)

+ 1
2

√
V (k, t) < −M for k small enough,



2.2. No-arbitrage properties of the implied volatility surface 56

or yet
√
V (k, t) < −M +

√
M2 + 2|k|. Therefore,

lim sup
k↓−∞

(√
V (k, t) −

√
2|k|

)
< −M + lim sup

k↓−∞
(
√
M2 + 2|k| −

√
2|k|) = −M

for every M > 0, which proves (2.2.2).

Now assume p > −∞. Then for fixed ε > 0, we have p − ε < d+(−k, V (k, t)) < p + ε for k

small enough. It follows that:

p − ε+
√

2|k| <
√
V (k, t) = d+(−k, V (k, t)) − d−(−k, V (k, t)) < p + ε+

√
(p + ε)2 + 2|k|.

The lower bound again follows from the arithmetic-geometric inequality for d−, and the upper

bound from the identity d−(−k, v)2 = d+(−k, v)2 + 2|k|. Hence limk↓−∞(
√
V (k, t) −

√
2|k|) = p,

and (2.2.2) is proved.

Roger Lee’s moment formula

Roger Lee’s moment formula establishes a precise link between the tails (small and large strike)

of the implied volatility smile and the tail behaviour of the stock price process. The underlying

process (St)t≥0 is assumed to be a true non-negative martingale with respect to a given filtered

probability space. Let V (·, t) denote the total implied variance of the underlying stock price at

maturity t, and define the function Vβ(k) ≡ β|k|.

Theorem 2.2.12 (Lee’s Moment Formula [102]). Fix some time t ≥ 0. Let p∗ := sup{p ≥ 0 :

E(S1+p
t ) <∞} and βR := lim supk↑∞ (V (k, t)/k) Then

p∗ =
1

2βR
+
βR
8

− 1

2
or βR = 2 − 4

(√
p∗(1 + p∗) − p∗

)
,

and βR ∈ [0, 2]. Similarly, for low strikes, let q∗ := sup{q ≥ 0 : E(S−q
t ) < ∞} and βL :=

lim supk↓−∞ (V (k, t)/|k|) Then

q∗ =
1

2βL
+
βL
8

− 1

2
or βL = 2 − 4

(√
q∗(1 + q∗) − q∗

)
,

and βL ∈ [0, 2].

The proof of this theorem requires a few tools.

Lemma 2.2.13. There exists k∗ > 0 such that V (k, t) < V2(k) for all k > k∗.

Proof. We consider the case k > 0. Since the Black-Scholes Call price is an increasing function of

the volatility, the lemma follows directly from the inequality BS(k, V (k, t)) < BS(k, V2(k)) for k

large enough. Note that, since the stock price is in L1, dominated convergence yields

lim
k↑∞

BS(k, V (k, t)) = lim
k↑∞

E
(
St − ek

)
+

= E
[

lim
k↑∞

(
St − ek

)
+

]
= 0.
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Now,

lim
k↑∞

BS(k, V2(k)) = lim
k↑∞

[
N

(
− k√

V2(k)
+

√
V2(k)

2

)
− ekN

(
− k√

V2(k)
−
√
V2(k)

2

)]

= lim
k↑∞

[
N (0) − ekN (−

√
2k)
]

=
1

2
− lim

k↑∞
ekN (−

√
2k).

As k tends to infinity, the second term is ambiguous, but L’Hôpital’s rule yields

∂k(N (−
√

2k))

∂k(e−k)
=
n(−

√
2k)ek√
2k

,

which clearly converges to zero as k tends to infinity and hence BS(k, V2(k)) tends to 1/2. Since

the Call price associated with the implied variance V (·, t) tends to zero as k tends to infinity (see

Theorem 2.1.3(iii)), the lemma follows. Note in particular that the function V2 is not a valid

implied volatility surface.

For each p > 0, the following moment inequality holds for all k ∈ R:

C(k, t) ≤ E(Sp+1
t )

p+ 1

(
p

p+ 1

)p

e−pk. (2.2.5)

Indeed, the inequality S− ek ≤ Sp+1

p+1

(
p

p+1

)p
e−pk is a simple analysis exercise, and letting S = St,

the claim follows by taking expectation on both sides. As a corollary of the moment inequality, if

E(Sp+1
t ) is finite for some p > 0 (recall that, S being a martingale, it is clearly finite for p = 0),

then C(k, t) = O(e−pk) as k tends to infinity. The last technical result we shall need is the following

lemma, describing the large-strike behaviour of Call prices:

Lemma 2.2.14. Define the functions f−, f+ by f±(z) := z−1 +z/4±1. For any α > 0, β ∈ (0, 2],

lim
k↑∞

e−αk

BS(k, Vβ(k))
=

 0, if α > f−(β)/2,

+∞, if α ≤ f−(β)/2.

Proof. The asymptotic N (−z) ∼ e−z2/2/(z
√

2π) holds for the Gaussian cumulative distribution

function as z tends to infinity, so that, for any β ∈ (0, 2], as k tends to infinity,

BS(k, Vβ(k)) = N
(
−
√
f−(β)k

)
− ekN

(
−
√
f+(β)k

)
∼ 1√

2π

(
exp

(
1
2kf−(β)

)√
f−(β)k

−
ek exp

(
1
2kf−(β)

)√
f−(β)k

)

=
exp

(
1
2kf−(β)

)
√

2π

(
1√

f−(β)k
− 1√

f+(β)k

)
= γ

exp
(
1
2kf−(β)

)
√
k

,

for some γ > 0, where we used the identity f+(β) = f−(β) + 2, and therefore

lim
k↑∞

BS(k, Vβ(k)) = lim
k↑∞

k−1/2 exp

(
1

2
kf−(β)

)
.

The lemma then follows immediately.
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We can now move on to the proof of Theorem 2.2.12.

Proof of Theorem 2.2.12. We start with the right wing of the smile. Since V (k, t) ∈ (0, 2k) (for

large k, by Lemma 2.2.13), clearly βR ∈ [0, 2] and we only need to show that p∗ = f−(βR)/2.

We first prove that p∗ ≤ f−(βR)/2. The function f− is strictly decreasing from (0, 2) to (0,∞),

and therefore it suffices to show that for any β ∈ (0, 2) such that f−(β)/2 < p∗, we have βR ≤ β.

Choose p ∈ (f−(β)/2, p∗); then the corollary of (2.2.5) yields

BS(k, V (k, t))

BS(k, Vβ(k))
=

O(e−pk)

BS(k, Vβ(k))
,

which clearly tends to zero as k tends to infinity by Lemma 2.2.14. Therefore, there exists k∗ > 0

such that for all k > k∗, BS(k, V (k, t)) ≤ BS(k, Vβ(k)), and hence V (k, t) ≤ Vβ(k), so that β is an

eventual upper bound and thus βR ≤ β.

We now prove that p∗ ≥ f−(βR)/2; it is clear that it is enough to show that E(S1+p
t ) is finite

for all p ∈ (0, f−(β)/2). Choose now β such that γ := f−(β)/2 ∈ (p, f−(βR)/2), so that, for k

sufficiently large,
BS(k, V (k, t))

e−γk
≤ BS(k, Vβ(k))

e−γk
,

which tends to zero as k tends to infinity, and hence C(k, t) ≤ e−γk for k large enough. Then, for

any K∗ > 0,

E
(
S1+p
t

)
= p(p+ 1)

∫ ∞

0

Kp−1C(K)dK ≤ p(p+ 1)

[∫ K∗

0

Kp−1C(K)dK +

∫ ∞

K∗
Kp−1−γdK

]
.

Now, it is easy to show that the two integrals on the right-hand side are finite:∫ K∗

0

Kp−1C(K)dK ≤
∫ K∗

0

Kp−1dK =
(K∗)

p

p
and

∫ ∞

K∗
Kp−1−γdK =

(K∗)
p−γ

γ − p
,

which proves the statement.

The left wing of the smile can be proved by symmetry. Note first that, if P(St = 0) > 0, then

obviously q∗ = 0 and hence βL = 2. Suppose now that P(St = 0) = 0. Then, since S is a true

martingale, we can define a new probability measure Q via dQ/dP = St so that

EP (ek − St

)
+

= EQ
[
S−1
t

(
ek − St

)
+

]
= ekEQ (Ut − e−k

)
+
,

where Ut := S−1
t . Therefore, the change of measure expresses the k > 0 Put price into a −k Call

price. Lee’s left wing formula therefore follows immediately.

Examples

Note that of course, p∗ and q∗ in general depend on the time t. The first example to look at is the

Black-Scholes model, where the stock price follows—under the risk-neutral measure— dSt/St =

rdt+ σdWt, with S0 > 0. We can then compute, for any t ≥ 0,

E(Su
t ) = S0E exp

(
u

(
r − σ2

2

)
t+ uσWt

)
= S0 exp

(
urt+

σ2t

2
u(u− 1)

)
,
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which is well defined for any u ∈ R. Therefore p∗ = ∞ and q∗ = ∞, and we deduce that

βL = βR = 0, which is not surprising since the implied volatility in the Black-Scholes model is flat

(i.e. does not depend on the strike).

Let us now have a look at some more advanced model, namely exponential Lévy processes. In

the Kou model, the log-stock price process X := log(S) satisfies the following dynamics:

Xt = γt+ σWt +

Nt∑
n=1

Yn,

where γ ∈ R, σ > 0, W is a standard Brownian motion, N is a Poisson process with intensity

λ > 0 and the (Yn)n forms a family of independent random variables with common distribution

µ(dx) = pλ+e−λ+x11{x>0}dx+ (1 − p)λ−e−λ−|x|11{x<0}dx,

so that is S experiences both positive and negative jumps. Here we assume that λ+ and λ− are

both strictly positive and p ∈ [0, 1]. The constant γ is chosen so that the stock price process

remains a true martingale. For any fixed t ≥ 0, we can then compute

E
(
euXt

)
= exp

(
uγt+

σ2u2

2
t+ λt

{
E
(
euY1

)
− 1
})

, with E
(
euY1

)
= p

λ+
λ+ − u

+ (1− p)
λ−

λ− + u
,

the latter expression being well defined only for u ∈ (−λ−, λ+). Therefore q∗ = λ− and p∗ = λ+−1.

Note that since exponential Lévy processes have the property that there exists some function ϕ

such that E
(
euXt

)
= eϕ(u)t, the upper and lower moments p∗ and q∗ will never depend on t.

Example 2.2.15. See the IPython notebook for an example.

2.2.4 The SVI parameterisation

As mentioned previously, the implied volatility is defined as the unique non-negative solution of

some highly non-linear equation. It is therefore not available in closed form in most models used

in practice. In Sections 2.2.1, 2.2.2 and 2.2.3, we provided some general results on its behaviour,

either in a fully model-free framework, or for some large classes of models. We consider here

an alternative, not based on some stochastic dynamics, but on a given parameterisation. For a

fixed maturity slice T > 0, consider the following parameterisation of the (square of) the implied

volatility:

σ2
SVI(k) = a+ b

{
(k −m) + ρ

√
(k −m)2 + ξ2

}
, for all k ∈ R, (2.2.6)

with ρ ∈ [−1, 1], a, b, ξ ≥ 0, m ∈ R.

Example 2.2.16. See the IPython notebook for an example.

Exercise 2.2.17. Using the results from this chapter, find necessary conditions on the parameters

a, b, ρ,m, ξ ensuring absence of arbitrage.
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Remark 2.2.18. As can be seen from the exercise, it is not at all easy—and virtually impossible—

to find necessary and sufficient conditions on the SVI parameters ensuring that the resulting

volatility surface is free of arbitrage. In [70], Gatheral and Jacquier determined sufficient and

almost necessary conditions on an extended family of SVI-type surfaces (depending on both strike

and maturity) preventing arbitrage.



Chapter 3

From SDEs to PDEs

3.1 Stochastic differential equations: existence and unique-

ness

In this chapter, we shall investigate the existence and uniqueness of real-valued stochastic differen-

tial equations (SDEs). For a fixed time horizon T > 0, we define the functions b : [0, T ]×Rn → Rn

and σ : [0, T ]×Rn → Mn,m(R) as the drift and diffusion coefficients (where m and n are two strictly

positive integers). Unless otherwise stated, (Ω,F , (Ft),P) will denote a given filtered probability

space, with the usual hypotheses, supporting a m-dimensional standard Brownian motion W . We

will consider in this chapter the following equation, for any t ∈ [0, T ]:

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs) · dWs, (3.1.1)

or, written in a differential form:

dXt = b(t,Xt)dt+ σ(t,Xt) · dWt, X0 ∈ Rn. (3.1.2)

Note that a solution to (3.1.1) or (3.1.2) depends on the smoothness of the coefficients and is

relative to a given Brownian motion on (Ω,F , (Ft)t∈[0,T ],P).

Definition 3.1.1.

• A solution to (3.1.1) is an (Ft)-adapted process such that b is locally integrable and σ is

locally square integrable;

• the SDE (3.1.2) admits a weak solution if the latter depends on the probability space (Ω,F , (Ft)t≥0,P)

and on the Brownian motion W ;

• a strong solution to (3.1.2) does not depend on the choice of the driving Brownian motion.

61
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In the weak sense, the Brownian motion and the probability space are part of the problem,

whereas they are fixed and given in the strong framework. A strong solution is always a weak

solution, but the converse does not hold in general. An example of this is the ‘Tanaka equation’

dXt = sgn(Xt)dWt, starting at X0 = 0. For a given Rn-valued process X and any 0 ≤ t0 ≤ t1, we

shall denote by p(t0, t1, ·, ·) its transition density, namely the unique non-negative function such

that, for any continuous function h, the following holds:

E [h(Xt1)|Xt0 = x] =

∫
Rn

h(y)p(t0, t1;x, y)dy, for all y ∈ Rn.

Remark 3.1.2. We have assumed above that the starting point X0 = x0 of the SDE was fixed.

This can be extended to the case where X0 is an F0-measurable random variable. This is important,

for instance, when considering forward-start options in stochastic volatility models.

Our definition of a diffusion follows Itô’s construction, i.e. as a (continuous) map of Brownian

paths: (Xt) = f(t,Xt,Wt). Following Rogers and Williams [134], though, the introduction of a

Brownian motion is not necessary, and the following alternative definition is possible:

Definition 3.1.3. An Rn-valued diffusion with drift b and covariance a := σTσ is a continuous

semimartingale X = (X1, . . . , Xn) (on some probability space satisfying the usual assumptions),

such that M i
t := Xi

t − Xi
0 −

∫ t

0
bi(Xs)ds is a continuous local martingale satisfying [M i,M j ]t =∫ t

0
aij(Xs)ds.

Of course, in the case where (Mt)t≥0 is a standard Brownian motion, this definition matches

up with Definition 3.1.1. Let us state and prove the main result of this section, before looking at

examples, counterexamples and curiosities.

Theorem 3.1.4. Assume that the drift and diffusion coefficients are measurable and satisfy

|b(t, x)| + |σ(t, x)| ≤ C0(1 + |x|), (3.1.3)

|b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ C1|x− y|, (3.1.4)

for some constants C0, C1 > 0 and all x ∈ Rn, t ∈ [0, T ]. If X0 is independent of the σ-algebra

σ(Ws, s ≥ 0) and E(|X0|2) is finite, then the stochastic differential equation (3.1.2) admits a unique

continuous solution on [0, T ], adapted to the filtration (FX0
t )t∈[0,T ] generated by X0 and (Wt), such

that the expectation E
(∫ T

0
|Xs|2ds

)
is finite.

Remark 3.1.5. The linear growth and Lipschitz assumptions on the drift and diffusions are

natural. Consider indeed the ordinary differential equation dXt = X2
t dt, starting at X0 = 1. The

unique solution is Xt = (1 − t)−1 for all t ∈ [0, 1), but is not defined after the point t = 1. Note

here that b(x) ≡ x2 violates the linear growth condition.



3.1. Stochastic differential equations: existence and uniqueness 63

Exercise 3.1.6 (Absence of uniqueness). Consider the one-dimensional stochastic differential

equation dXt = 3X
1/3
t dt + 3X

2/3
t dWt, starting from X0 = 0. Show that both W 3 and the null

process are solutions. Compare this observation with the hypotheses of Theorem 3.1.4.

Exercise 3.1.7. Consider the one-dimensional stochastic differential equation dXt = b(t,Xt)dt+

σ(XtdWt), starting at X0 = x ∈ R.

1. If b(t, x) ≡ µ ∈ R and σ(x) ≡ σ > 0, then Xt = x+ µt+ σWt;

2. If b(t, x) ≡ µx and σ(x) ≡ σx, then Xt = x exp
{(
µ− 1

2σ
2
)
t+ σWt

}
;

3. If b(t, x) ≡ −λx and σ(x) ≡ σ > 0, then Xt = xe−λt + σ
∫ t

0
exp {−λ(t− s)}dWs.

Compute the transition density P(Xt ∈ dy|X0 = x) of each of the above processes.

Remark 3.1.8. In Example 3.1.7 above, the first one corresponds to the standard arithmetic

Brownian motion with drift (Bachelier model), the second one to the geometric Brownian motion

(Black-Scholes model). the last one is called the Ornstein-Uhlenbeck model1. The model describes

the velocity of a Brownian particle in a medium with friction. This is also the standard model for

the dynamics of a spring.

Before proving Theorem 3.1.4, let us recall the following simple but useful lemma:

Lemma 3.1.9 (Gronwall2). Let β : [0,∞) → R be a continuous, integrable, non-negative function,

and u, α : [0,∞) → R continuous functions such that u(t) ≤ α(t) +
∫ t

0
β(s)u(s)ds. Then

u(t) ≤ α(t) +

∫ t

0

u(s)β(s) exp

{∫ t

s

β(u)du

}
ds.

In particular, if α is non-decreasing, then

u(t) ≤ α(t) exp

(∫ t

0

β(s)ds

)
.

Proof. We only provide some hints. Consider the simple case where the functions α and β are

constant. Define the functions v and w by v(t) ≡ v(0) +
∫ t

0
u(s)ds, and w(t) ≡ v(t) exp(−βt); it is

easy to show the inequality v(t) ≤ α
β

(
eβt − 1

)
, from which the lemma follows.

Proof of Theorem 3.1.4. Let us first prove uniqueness. To do so, consider two solutions of (3.1.1)

1Leonard Ornstein (1880-1941) and George Eugene Uhlenbeck (1900-1988) were Dutch physicists. They did not

define the process via the stochastic differential equation though, since that very concept did not exist at the time.
2Thomas Hakon Grönwall (1877-1932) was a Swedish mathematician
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(or (3.1.2)), (Yt)t≥0 and (Zt)t≥0, starting from Y0 and Z0. We can compute, for any t ≥ 0,

E
(
|Yt − Zt|2

)
= E

{∣∣∣∣Y0 − Z0 +

∫ t

0

[b(s, Ys) − b(s, Zs)] ds+

∫ t

0

[σ(s, Ys) − σ(s, Zs)] · dWs

∣∣∣∣2
}

≤ 3E
(
|Y0 − Z0|2

)
+ 3E

[(∫ t

0

[b(s, Ys) − b(s, Zs)] ds

)2
]

+ 3E

[(∫ t

0

[σ(s, Ys) − σ(s, Zs)] · dWs

)2
]

≤ 3E
(
|Y0 − Z0|2

)
+ 3tE

(∫ t

0

[b(s, Ys) − b(s, Zs)]
2

ds

)
+ 3E

(∫ t

0

[σ(s, Ys) − σ(s, Zs)]
2 · ds

)
≤ 3E

(
|Y0 − Z0|2

)
+ 3(1 + t)C1E

(∫ t

0

(Ys − Zs)
2

ds

)
,

where the second line follows from Cauchy-Schwartz, the third line from Itô’s isometry and Cauchy-

Schwartz, and the last one from the Lipschitz assumption (3.1.4). The function u : t 7→ E|Yt−Zt|2

therefore satisfies the inequality u(t) ≤ α + β
∫ t

0
u(s)ds, where f ≡ 0, α := 3E

(
|Y0 − Z0|2

)
and

β := 3(1 + T )C1. Gronwall’s Lemma 3.1.9 therefore yields the inequality

E
(
|Yt − Zt|2

)
≤ 3E

(
|Y0 − Z0|2

)
exp {3C1(1 + T )t} .

When Y0 = Z0 almost surely, then E
(
|Yt − Zt|2

)
= 0 for all t ∈ [0, T ], and hence Yt = Zt

almost surely for all t ∈ [0, T ]. Pathwise uniqueness then follows from the continuity of the map

t 7→ |Yt − Zt|.

To prove existence of the solution, we follow similar steps to the proof for standard ordinary

differential equations, using Picard’s iteration scheme: defining Y
(0)
t := X0 almost surely, and then

Y
(n+1)
t := X0 +

∫ t

0

b(s, Y (n)
s )ds+

∫ t

0

σ(s, Y (n)
s ) · dWs, (3.1.5)

almost surely for n ≥ 0, t ∈ [0, T ], we can write, by a computation similar to the one above,

E
(∣∣∣Y (n+1)

t − Y
(n)
t

∣∣∣2) ≤ 3(1 + T )D2

∫ t

0

E
(∣∣∣Y (n+1)

s − Y (n)
s

∣∣∣2) ds

whenever n ≥ 1, and E
(
|Y (1)

t − Y
(0)
t |2

)
≤ 2C2t2

(
1 + E(|X0|2)

)
≤ Ct. Induction therefore yields,

for any n ≥ 0.

E
(
|Y (n+1)

t − Y
(n)
t |2

)
≤ Cn+1tn+1

(n+ 1)!
. (3.1.6)

Now, we can write

sup
t∈[0,T ]

∣∣∣Y (n+1)
t − Y

(n)
t

∣∣∣ ≤ ∫ T

0

∣∣∣b(s, Y (n)
s ) − b(s, Y (n−1)

s )
∣∣∣ ds+ sup

t∈[0,T ]

∣∣∣∣∫ t

0

[
σ(s, Y (n)

s ) − σ(s, Y (n−1)
s )

]
dWs

∣∣∣∣ .
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Doob’s Martingale Inequality3 together with Markov’s inequality therefore imply

P

(
sup

t∈[0,T ]

∣∣∣Y (n+1)
t − Y

(n)
t

∣∣∣ > 2−n

)

≤ P

{∫ T

0

∣∣∣b(s, Y (n)
s ) − b(s, Y (n−1)

s )
∣∣∣ds}2

> 2−2n−2


+ P

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

[
σ(s, Y (n)

s ) − σ(s, Y (n−1)
s )

]
dWs

∣∣∣∣ > 2−2n−1

)

≤ 22(n+1)T

∫ T

0

E
(∣∣∣b(s, Y (n)

s ) − b(s, Y (n−1)
s )

∣∣∣2)ds+ 22(n+1)

∫ T

0

E
(∣∣∣σ(s, Y (n)

s ) − σ(s, Y (n−1)
s )

∣∣∣2) ds

≤ 22(n+1)C(1 + T )

∫ T

0

cntn

n!
dt ≤ (4cT )n+1

(n+ 1)!

if c ≥ C2(1 + T ). Borel-Cantelli lemma therefore implies that

P

(
sup

t∈[0,T ]

∣∣∣Y (n+1)
t − Y

(n)
t

∣∣∣ > 2−n for infinitely many n

)
= 0,

which implies that the sequence (Y n
t (ω))n≥0 is a uniformly Cauchy sequence, and therefore is

uniformly convergent to, say Ỹ , for almost all ω ∈ Ω. The limit therefore exists and is continuous

and adapted to (FX0
t )t∈[0,T ]. If λ is the Lebesgue measure on [0, T ], for any m,n ≥ 0, we can then

write∥∥∥Y (m)
t − Y

(n)
t

∥∥∥
L2(λ×P)

=

∥∥∥∥∥
m−1∑
k=n

(
Y

(k+1)
t − Y

(k)
t

)∥∥∥∥∥
L2(λ×P)

≤
m−1∑
k=n

∥∥∥(Y (k+1)
t − Y

(k)
t

)∥∥∥
L2(λ×P)

=
m−1∑
k=n

[
E

(∫ T

0

∣∣∣Y (k+1)
s − Y (k)

s

∣∣∣2 ds

)]1/2

≤
m−1∑
k=n

[(∫ T

0

Ck+1sk+1

(k + 1)!
ds

)]1/2
=

m−1∑
k=n

(
Ck+1T k+2

(k + 2)!

)1/2

,

which clearly tends to zero as m and n tend to infinity, so that (Y (n))n≥0 is a Cauchy sequence

in L2(λ × P), and therefore a convergent sequence, the limit of which (in L2(λ × P)) is adapted

to FX0 , and we denote it Y . Being convergent in L2 implies almost everywhere (ω-pointwise)

convergence along a subsequence, and hence Ỹ = Y . Let us now prove that Y satisfies (3.1.2).

In (3.1.5), Hölder’s inequality implies that
∫ t

0
b(s, Y

(n)
s )ds converges to

∫ t

0
b(s, Ys)ds in L2(P) as n

tends to infinity, and Itô’s isometry yields the convergence of
∫ t

0
σ(s, Y

(n)
s )·dWs to

∫ t

0
σ(s, Ys)·dWs,

also in L2(P), which concludes the proof.

Exercise 3.1.10. Consider the stochastic differential equation dXt = κXt(θ − log(Xt))dt +

σXtdWt, starting at X0 > 0, where W is a standard Brownian motion.

3The following result is due to J.L. Doob [45]: if M is a martingale with continuous paths, then,

P

(
sup

t∈[0,T ]
|Mt| ≥ λ

)
≤ λ−pE (|MT |p) , for all p ≥ 1, T ≥ 0, λ > 0.
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1. Show that the SDE admits a unique strong solution.

2. Prove that the solution reads

Xt = exp

{
e−κt log(x) +

(
θ − σ2

2κ

)(
1 − eκt

)
+ σe−κt

∫ t

0

eκsdWs

}
.

3. Compute the expectation E(Xt).

Exercise 3.1.11 (Removing stochasticity – importance of the assumptions).

1. Assume that the diffusion coefficient σ is null everywhere, and consider the ordinary differ-

ential equation dXt = |Xt|αdt, starting from X0 = 0.

• If α ≥ 1, the equation has a unique solution. What is it?

• However, when α ∈ (0, 1), check that the family (X
(s)
t )t∈[0,T ] defined by

X
(s)
t :=


0, if t ∈ [0, s],(
t− s

1 − α

)1/(1−α)

, if t ∈ [s, T ],

satisfies the equation. What do you conclude?

2. Consider the equation Xt = x +
∫ t

0
X2

sds for some x ̸= 0. Show that Xt := x/(1 − xt) is a

solution (actually the only one). What happens at t approaches x−1?

3.1.1 Properties of solutions of SDEs

We state the following result about estimates of moments of solutions to stochastic differential

equations without proof, but refer the interested reader to [99, Theorem 4.5.4]. These types of

results are fundamental in the construction of accurate simulation schemes (Euler or else) for SDEs.

3.1.2 Moment estimates

Proposition 3.1.12. Consider the stochastic differential equation (3.1.2), and the assumptions of

Theorem 3.1.4. Assume further that E(|X0|2p) is finite for some p ≥ 1. Then there exists a strictly

positive constant C, depending on p, T,K such that, for any 0 ≤ t0 ≤ t1 ≤ T ,

E
(

sup
t0≤t≤t1

|Xt|2p
)

≤ C
(
1 + E

(
|Xt0 |2p

))
eC(t1−t0), (3.1.7)

E
(

sup
t0≤t≤t1

|Xt −Xt0 |2p
)

≤ C
(
1 + E

(
|Xt0 |2p

))
(t1 − t0)2p. (3.1.8)
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3.1.3 Itô diffusions and the Markov property

Definition 3.1.13. An Itô diffusion is a stochastic process X·(ω) satisfying

dXt = b(t,Xt)dt+ σ(t,Xt) · dWt, X0 = x ∈ Rn, (3.1.9)

where the drift b : Rn → Rn and diffusion σ : Rn → Rm coefficients are Lipschitz continuous, i.e.

there exists C > 0 such that

|b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ C|x− y|, for any x, y ∈ Rn, t ≥ 0,

and W is an Rm-valued standard Brownian motion. The diffusion is time-homogeneous if the

coefficients b and σ do not depend on time.

Remark 3.1.14. An Itô diffusion is in general not a martingale. However, as soon as the drift b(·) is

null everywhere (almost surely), it is a local martingale. Indeed, suppose that b(·) is not everywhere

null, and that X is a local martingale. Then, clearly, the process∫ t

0

b(u,Xu)du = Xt −X0 −
∫ t

0

σ(u,Xu) · dWu

is also a local martingale. Being a Lebesgue integral, however, it has bounded variation on any

compact, which contradicts its local martingale behaviour.

Denote by (Xs,x
t )t≥s, the solution to (3.1.9) starting at Xs = x at some time s ≥ 0. The time

homogeneity property precisely means that, for any t ≥ 0, the processes (Xt,x
t+h) and (X0,x

h )h≥0

have the same law. The following theorem, the proof of which we shall skip, is fundamental:

Theorem 3.1.15 (Markov property for Itô diffusions). Let X be a time-homogeneous diffusion

and f : Rn → R a Borel bounded function. Then, for any s, t ≥ 0,

E (f(Xt+s)|Ft) = E (f(Xt+s)|Xt) almost surely.

Remark 3.1.16. Computing both sides for every bounded Borel function f is in general not very

tractable. One can however use Dynkyn’s lemma, which implies that it is enough to check the

equality E(Xt+s ∈ A|Ft) = E(Xt+s ∈ A|Xt), for all s, t ≥ 0 for every Borel set A.

Example 3.1.17. The Brownian motion has the Markov property.

The following tool is a key concept in the study of Itô diffusions, and will allow us to bridge the

gap between stochastic differential equations and partial differential equations. In particular, as we

shall see, it provides an alternative—and efficient—path to (numerically) compute expectations.

Definition 3.1.18. Let (Xt)t≥0 be an Itô diffusion on Rn. The infinitesimal generator A of X is

the linear operator defined as

(Af)(t, x) := lim
t↓0

E(f(Xt)|X0 = x) − f(x)

t
.

We shall further denote DA the space of functions such that the limit exists for all x ∈ Rn.
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The following theorem characterises completely the infinitesimal generator of an Itô diffusion,

and its proof is left as an exercise using Itô’s formula.

Theorem 3.1.19. Let X be an Itô diffusion as in Definition 3.1.13. Then C2
c (Rn) ⊂ DA and4

Af = ⟨b,∇f⟩ +
1

2
⟨σ, σ⊤∆f⟩, for any f ∈ C2

c (Rn).

Pointwise in Rn, this can also be written, for any f ∈ C2
c (Rn), x ∈ Rn, t ≥ 0, as

Af(t, x) =
n∑

i=1

b(t, xi)∂xif(t, x) +
1

2

n∑
i,j=1

(σ(t, x)σ(t, x)⊤)i,j∂xi,xjf(t, x).

Proof. Let us consider, for notational simplicity, the case where the function f does not depend

on time. For f ∈ C2
c (Rn), Itô’s formula yields

df(Xt) = ⟨dXt,∇f(Xt)⟩ +
1

2
(dXt)

⊤ · ∆f(Xt) · dXt

= ⟨b(Xt),∇f(Xt)⟩ dt+ ⟨σ(Xt)dWt,∇f(Xt)⟩ dt+
1

2
(dXt)

⊤ · ∆f(Xt) · dXt

=
n∑

i=1

∂xi
f(Xt)dX

(i)
t dt+

1

2

n∑
i,j=1

∂xi,xj
f(Xt)dX

(i)
s dX

(j)
t

=
n∑

i=1

∂xif(Xt)bi(Xt)dt+
1

2

n∑
i,j=1

∂xi,xjf(Xt)(σ(Xt)dWt)i(σ(Xt)dWt)j +
n∑

i=1

∂xif(Xt)(σ(Xt)dWt)i

=
n∑

i=1

∂xif(Xt)bi(Xt)dt+
1

2

n∑
i,j=1

(σ(Xt)σ(Xt)
⊤)i,j∂xi,xjf(Xt)dt+

n∑
i,k=1

∂xif(Xt)σik(Xt)dW
(k)
t

Integrating both sides between 0 and t, and taking expectations yield

Ex[f(Xt)] − f(x) = Ex

∫ t

0

 n∑
i=1

∂xif(Xs)bi(Xs) +
1

2

n∑
i,j=1

(σ(Xs)σ(Xs)
⊤)i,j∂xi,xjf(Xs)

 ds,

and the lemma follows.

Exercise 3.1.20. Write the infinitesimal generator of the following Itô diffusions:

1. Black-Scholes model: dXt = rXtdt+ σXtdWt;

2. the n-dimensional Brownian motion (it is half of the Laplace operator on Rn);

3. Ornstein-Uhlenbeck: dXt = κXtdt+ σdWt;

4. d(X1
t , X

2
t )⊤ = (1, X2

t )⊤dt+ (0, eX
1
t )⊤dWt, where W is a one-dimensional Brownian motion;

If τ is a stopping time with finite expectation, adapted to the filtration of the Brownian motion,

then, by a localisation argument, the computation in the proof of Theorem 3.1.19 holds, and

Dynkyn’s formula [48] reads:

4Here, ⟨·, ·⟩ denotes the standard Euclidean inner product in Rn, so that for any vector a,b ∈ Rn, we have

⟨a,b⟩ = b⊤a =
∑n

i=1 aibi.
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Theorem 3.1.21. Let f ∈ C2
0(Rn) and X an Rn-valued Itô diffusion. For any stopping time τ

such that E(τ |X0) is finite,

Ex[f(τ,Xτ )] = f(x) + Ex

(∫ τ

0

Af(s,Xs)ds

)
.

3.1.4 More results in the one-dimensional case

Existence and strong uniqueness of stochastic differential equations usually hold (see Theorem 3.1.4)

under Lipschitz continuity of the coefficients. In the one-dimensional case, these assumptions can

be relaxed. One underlying motivation is the study of the following two processes:

dXt = κ(θ −Xt)dt+ ξ
√
XtdWt, CIR Process, (3.1.10)

dXt = µXtdt+ ξXα
t dWt, CEV Process. (3.1.11)

The first one was originally proposed by Cox-Ingersoll-Ross model [37] describing the evolution

of the short rate, and has been later implemented–and widely used since–for stochastic volatility

modelling by Heston [81]. The second model is the Constant Elasticity of Variance, proposed by

Cox [35], has been used for equity and commodities modelling, and is able to capture the leverage

effect between the stock price and its instantaneous volatility. Existence of these processes rely on

the notion of weak solutions, and we shall not delve into this here. The main uniqueness results,

however, is the following:

Theorem 3.1.22 (Yamada-Watanabe [155]). Let the two functions b, σ : R+ × R → R satisfy

|b(t, x) − b(t, y)| ≤ K|x− y| and |σ(t, x) − σ(t, y)| ≤ h(|x− y|),

for all t ≥ 0, x, y ∈ R, where K is a strictly positive constant and h : R+ → R+ a strictly increasing

function satisfying

h(0) = 0 and

∫
(0,ε)

du

h(u)2
= ∞,

for any ε > 0. Then the one-dimensional real stochastic differential equation Xt = X0+
∫ t

0
b(s,Xs)ds+∫ t

0
σ(s,Xs)dWs admits a strong unique solution.

Example 3.1.23. Any function of the form h(u) ≡ uα with α ≥ 1/2 satisfies the conditions. In

particular, taking h(u) ≡
√
u ensures that the CIR process in (3.1.10) admits a unique strong

solution.

Example 3.1.24. In Exercise 3.1.11, we saw that the deterministic ODE Ẋt = |Xt|α admitted an

infinite number of solutions when α ∈ (0, 1). In light of Theorem 3.1.22, however, the addition of

a Brownian noise regularises the equation and ensures uniqueness of the solution, at least in the

case α ∈ [1/2, 1).
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The drift and diffusion coefficients of a (one-dimensional) stochastic differential equation have a

physical meaning. However, it is not a priori obvious how to estimate the behaviour of the solution

depending on them. The following result is a first step in this direction, and in particular allows

to compare the solutions to two different SDEs.

Theorem 3.1.25. Let µ1, µ2 : R+×R → R be Lipschitz continuous functions, and σ : R+×R → R

satisfy the assumptions of Theorem 3.1.22. Let X and Y be the (adapted) solutions to

Xt = X0 +

∫ t

0

µ1(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs,

Yt = Y0 +

∫ t

0

µ2(s, Ys)ds+

∫ t

0

σ(s, Ys)dWs.

If µ1(·) ≤ µ2(·) and X0 ≤ Y0 almost surely, then X ≤ Y almost surely.

3.2 The PDE counterpart

3.2.1 From Kolmogorov to Feynman-Kać; from SDEs to PDEs

In this section, the process (Xt)t≥0 shall denote an Itô diffusion, in the sense of Definition 3.1.13,

whose infinitesimal generator is given by Theorem 3.1.19, with domain DA.

Theorem 3.2.1 (Kolmogorov’s backward equation). Let f belong to C2
0(Rn). For any t > 0, the

function u(t, x) := E(f(Xt)|X0 = x) (x ∈ Rn) belongs to DA, and satisfies the equation

∂tu(t, x) = (Au)(t, x), for any (t, x) ∈ (0,∞) × Rn,

with boundary condition u(0, x) ≡ f(x). Conversely, any C1,2(R+ × Rn) solution of the equation

(together with the boundary condition) is equal to u.

Remark 3.2.2. A fundamental corollary is that, under the assumptions of the theorem, the

process (f(t,Xt))t≥0 is a local martingale if and only if the function f satisfies the backward

Kolmogorov equation. The proof of this fact simply follows by applying Itô’s Lemma to the

function f .

Proof. Note that, since f ∈ C2
0(Rn), the function u(·, x) is differentiable for any x by Dynkyn’s

formula (Theorem 3.1.21). Let ψ be the function defined as ψ(x) ≡ u(t, x) (for some fixed t > 0).
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Since the map t 7→ u(t, ·) is differentiable, we can write, for any t > 0 and x ∈ Rn,

(Au)(t, x) = (Aψ)(x) := lim
s↓0

Ex[ψ(Xs)] − ψ(x)

s
= lim

s↓0

Ex[u(t,Xs)] − u(t, x)

s

= lim
s↓0

Ex
[
EXs [f(Xt)]

]
− Ex [f(Xt)]

s
, by the law of iterated expectations

= lim
s↓0

Ex
[
EXs [f(Xt)] − f(Xt)

]
s

= lim
s↓0

Ex [Ex [f(Xt+s)|Fs] − f(Xt)]

s

= lim
s↓0

Ex [f(Xt+s) − f(Xt)]

s
= lim

s↓0

u(t+ s, x) − u(t, x)

s
= ∂tu(t, x).

In order to prove uniqueness, assume that there exists a function v satisfying Ãv := (−∂t+A)v ≡ 0,

together with the appropriate boundary conditions. For any fixed (s, x) ∈ R+ × Rn, define then

the extended process X̃ pathwise by X̃t := (s − t,X0,x
t ) Since its generator is Ã, we can apply

Dynkyn’s formula (Theorem 3.1.21):

E
(
v(X̃t∧τ )|X̃s = x

)
= v(s, x) + E

(∫ t∧τ

0

(Ãv)(X̃r)dr|X̃s = x

)
= v(s, x),

since Ãv ≡ 0, and where τ represents the first exit time (and hence is a stopping time) from a

large ball. Letting the radius of the ball tend to infinity, we obtain v(s, x) = E
(
v(X̃t)|X̃s = x

)
,

and hence

v(s, x) = E
(
v(X̃s)|X̃s = x

)
= E

(
v(0, X0,x

s )
)

= E
(
f(X0,x

s )
)

= E (f(Xs)|X0 = x) .

Remark 3.2.3. By reversing time, setting τ := T−t, for some time horizon T , and v(τ, ·) ≡ u(t, ·),

then v(τ, x) = E(f(XT−τ )|X0 = x), and the Kolmogorov backward equation can be rewritten as

(∂τ + A) v(τ, x) = 0, for all (τ, x) ∈ [0, T ) × Rn,

with boundary condition v(T, x) ≡ f(x), since the operator A does not act on the time variable.

Remark 3.2.4. The Kolmogorov backward equation in Theorem 3.2.1 can be slightly generalised

as follows: if f belongs to C2
0(Rn) and r : Rn → Rn is a continuous function bounded below, then

the function

v(t, x) := Ex

[
exp

(
−
∫ t

0

r(Xs)ds

)
f(Xt)

]
satisfies the equation

∂tv(t, x) = (Av)(t, x) − r(x)v(t, x), for all (t, x) ∈ (0,∞)× ∈ Rn,

with boundary condition v(0, x) = f(x), for all x ∈ Rn. And the converse holds as well.
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Exercise 3.2.5. Consider the one-dimensional drifted Brownian motion dXt = µdt + σdWt,

starting at X0 = x, with µ ∈ R and σ > 0. Denote its transition density from time zero to time t

by p(t;x, ·). From Exercise 3.1.7, we know that

p(t;x, y) =
1

σ
√

2πt
exp

(
− [y − (x+ µt)]2

2σ2t

)
, for any (t, x, y) ∈ (0,∞) × R× R.

Prove by differentiation that it satisfies the ordinary differential equation

∂tp(t;x, y) =

(
µ∂x +

1

2
σ2∂xxp

)
, for any (t, x, y) ∈ (0,∞) × R× R,

with boundary condition p(0; ·, y) = δy(·). Note that the space derivatives are taken with respect

to x (the backward variable), and not with respect to y.

The backward equation above admits a dual version, called the Kolmogorov forward equation.

Recall that, if A is some (differential) operator, then its adjoint A∗ is the unique operator satisfying

⟨Af, g⟩ = ⟨f,A∗g⟩, for all f ∈ C2
0 , g ∈ C2.

In particular, if A is of the same form (say in one dimension) as in Theorem 3.1.19, then straight-

forward computations yield

(A∗f)(y) = −
n∑

i=1

∂yi(bif)(y) +
1

2

n∑
i,j=1

∂yi,yj

(
(σσ⊤)i,jf

)
(y). for any f ∈ C2(Rn), y ∈ Rn.

Theorem 3.2.6 (Kolmogorov’s forward equation). Let X be an Rn-valued Itô process with in-

finitesimal generator A. If, for any t ≥ 0, the transition measure of Xt admits a density pt, i.e.

Ex[f(Xt)] =
∫
Rn f(y)pt(x, y)dy, for any f ∈ C2

0 , such that y 7→ pt(x, y) is smooth. Then it satisfies

the Kolmogorov forward equation

∂tpt(x, y) = A∗pt(x, y), for all t > 0, x, y ∈ Rn,

with boundary condition p0(x, y) ≡ δx(y), where A∗ denotes the adjoint of A.

3.2.2 Parabolic PDEs: existence, uniqueness and properties

See Guyon-Labordère: Lions’ argument about parabolic PDEs

3.2.3 The PDE approach to path-dependent options

Asian options: chasing the average

Feynman-Kać’s Theorem is clearly suitable to deriving a partial differential equation for the value

function corresponding to a European option, with underlying following an Itô diffusion. Suppose

that one wishes to evaluate the price of an Asian option, with payoff, at maturity

ΠT :=

(
1

T

∫ T

0

Stdt−K

)
+

.
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There is no closed-form expression in general for the price of this option, and it is not clear how

Feynman-Kać applies here. Consider the Black-Scholes model dSt = St (rdt+ σdWt). Under

the risk-neutral measure, the price of the Asian option, at inception, is worth E
(
e−rT ΠT

)
. Let

now (Yt)t≥0 denote the integrated stock price process Yt :=
∫ t

0
Sudu, which clearly satisfies the

stochastic differential equation

dYt = Stdt, Y0 = 0.

Now, the pair (St, Yt)t≥0 is a two-dimensional Markov process satisfying Itô SDEs, so that Feynman-

Kać (with a bit of additional work) implies the following result:

Theorem 3.2.7. The function

u(t, x, y) := E

[
e−r(T−t)

(
YT
T

−K

)
+

|Ft

]
.

satisfies the partial differential equation(
∂t + rx∂x + x∂y +

1

2
σ2x2∂xx

)
u(t, x, y) = ru(t, x, y), for all t ∈ [0, T ), x ≥ 0, y ∈ R,

with boundary conditions

u(t, 0, y) = e−r(T−t)
( y
T

−K
)
+
, t ∈ [0, T ), y ∈ R,

lim
y↓−∞

u(t, x, y) = 0, t ∈ [0, T ), x ≥ 0,

u(T, x, y) =
( y
T

−K
)
+
, x ≥ 0, y ∈ R.

3.3 Overture to non-linear PDEs and control theory

Let T > 0 be a fixed time horizon, and consider here the stochastic differential equation

dXα
t = b(Xα

t , αt)dt+ σ(Xα
t , αt)dWt, Xα

0 = x ∈ Rn, (3.3.1)

where (αt)t≥0 is an (Ft)-adapted control process valued in some domain A ⊂ Rm, and W a d-

dimensional standard Brownian motion. We shall assume that the coefficients b : Rn × A → Rn

and σ : Rn ×A→ Mn,d(R) are uniformly Lipschitz, i.e. there exists a constant C > 0 such that

|b(x, a) − b(y, a)| + |σ(x, a) − σ(y, a)| ≤ C|x− y|, for all x, y ∈ Rn.a ∈ A.

We now define the set A of control processes as

A :=

{
α : (Ft) − adapted, such that E

[∫ T

0

(
|b(0, αt)|2 + |σ(0, αt)|2

)
dt

]
<∞

}
.

Restricting the controls in A ensures, together with the uniform Lipschitz assumption, that the

controlled SDE (3.3.1) admits a unique strong solution. Let us now consider two functions f :
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[0, T ]×Rn ×A→ R and g : Rn → R such that either g is bounded below or there exists C > 0 for

which |g(x) ≤ C(1 + |x|2) for all x ∈ Rn; We finally introduce our gain/cost function

J(t, x, α) := E

[∫ T

t

f(s,Xt,s
s , αs)ds+ g(Xt,x

T )

]
.

Our objective is finally to determine the associated value function

u(t, x) := sup
α∈A(t,x)

J(t, x, α), for any t ∈ [0, T ], x ∈ Rn, (3.3.2)

where A(t, x) denotes the set of admissible controls:

A(t, x) :=

{
α ∈ A : E

∫ T

t

|f(s,Xt,x
s , αs)|ds <∞

}
.

3.3.1 Bellman’s principle and dynamic programming

Let Tt,T denote the set of stopping times valued in the closed interval [t, T ]. The following result,

known as dynamic programming principle, is key tool in (stochastic) control theory.

Theorem 3.3.1. For any (t, x) ∈ [0, T ] × Rn, the value function (3.3.2) satisfies

u(t, x) = sup
α∈A(t,x)

sup
τ∈Tt,T

E
[∫ τ

t

f(s,Xt,x
s , αs)ds+ u(τ,Xt,x

τ )

]
= sup

α∈A(t,x)

inf
τ∈Tt,T

E
[∫ τ

t

f(s,Xt,x
s , αs)ds+ u(τ,Xt,x

τ )

]
.

Proof. The proof consists of squeezing the value function between the sup sup and the sup inf

terms. We first start with the upper bound. Fix an admissible control α ∈ A(t, x). The Markovian

stucture of the stochastic differential equation (3.3.1) implies that, for any stopping time τ ∈ Tt,T ,

the equality Xt,x
s = X

τ,Xt,x
τ

s holds almost surely for all s ≥ τ . Applying the tower property for

expectations, conditioning on Fτ , we obtain

J(t, x, α) = E

{
E

(∫ T

t

f(s,Xt,x
s , αs)ds+ g(Xt,x

T )

∣∣∣∣∣Fτ

)}

= E

{∫ τ

t

f
(
s,Xt,s

s , αs

)
ds+ E

(∫ T

τ

f(s,X
τ,Xt,x

τ
s , αs)ds+ g

(
X

τ,Xt,x
τ

T

)∣∣∣∣∣Fτ

)}

= E
{∫ τ

t

f
(
s,Xt,s

s , αs

)
ds+ J(τ,Xt,x

τ , α)

}
.

By definition of the value function as a supremum over the control, u(·, ·) ≥ J(·, ·, α), and, since τ

is chosen arbitrarily in Tt,T , we can write

J(t, x, α) ≤ inf
τ∈Tt,T

E
[∫ τ

t

f(s,Xt,x
s , αs)ds+ u(τ,Xt,x

τ )

]
≤ sup

α∈A(t,x)

inf
τ∈Tt,T

E
[∫ τ

t

f(s,Xt,x
s , αs)ds+ u(τ,Xt,x

τ )

]
,
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and the upper bound in the second line of the theorem follows. We now prove the lower bound:

fix some control α ∈ A(t, x) and a stopping time τ ∈ Tt,T . The definition of the value function

implies that for any ε > 0 and any ω ∈ Ω, there exists a control α(ε, ω) ∈ A(τ(ω), Xt,x
τ(ω)(ω)):

u(τ,Xt,x
τ(ω)(ω)) − ε ≤ J

(
τ(ω), Xt,x

τ(ω)(ω), αε,ω
)
.

It can be shown that the process α̃(ω), defined as

α̃s(ω) := αs(ω)11{s∈[0,τ(ω)]} + αε,ω
s (ω)11{s∈[τ(ω),T ]}

is progressively measurable5 and belongs to A(t, x). Therefore

u(t, x) ≥ J(t, x, α̃) = E
[∫ τ

t

f(s,Xt,x
s , αs)ds+ J(τ,Xt,x

τ , αε)

]
≥ E

[∫ τ

t

f(s,Xt,x
s , αs)ds+ u(τ,Xt,x

τ )

]
− ε.

Since the control and the stopping time are arbitrary, the upper lower bound follows by taking the

supremum on the left-hand side, which concludes the proof.

3.3.2 Hamilton-Jacobi-Bellman equation

The Hamilton-Jacobi-Bellman equation allows us to write the value function (3.3.2) as the solution

of a non-linear partial differential equation. This can be thought of as a non-linear version of the

Feynman-Kać formula. Before stating the main result, let us introduce the so-called Hamiltonian

of the problem, namely the operator H : [0, T ) × Rn × Rn × Sn(R) defined as

H(t, x, p, z) := sup
a∈A

{
b(x, a) · p +

1

2
Tr(σ(x, a) · σ(x, a)⊤ · z) + f(t, x, a)

}
.

Theorem 3.3.2. The value function (3.3.2) satisfies the PDE

− ∂tu(t, x) −H(t, x,∇u(t, x),∆u(t, x)) = 0, for all (t, x) ∈ [0, T ) × Rn, (3.3.3)

with boundary condition u(T, ·) = g(·), where the derivatives ∇ and ∆ are taken with respect to x.

Proof. Fix a constant control α ∈ A and let τ = t+ ε. Since the value function is a supremum of

expectations over all controls and stopping times, it is in particular greater than the expectations

at τ and α:

u(t, x) ≥ E
[∫ t+ε

t

f(s,Xt,x
s , α)ds+ u(t+ ε,Xt,x

t+ε)

]
. (3.3.4)

If u ∈ C1,2([0, T ) × Rn), Itô’s formula yields

u(t+ ε,Xt,x
t+ε) = u(t, x) +

∫ t+ε

t

(∂tu+ Lαu) (s,Xt,x
s )ds+ Z,

5The term ‘progressively measurable’ and ‘adapted’ are not equivalent in general; however, when the process

has at least left-or right-continuous paths, they denote the same property, see [128, Proposition 4.8] for the related

technical details.
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where Z is some local martingale (non-deterministic) term with zero expectation, and Lα is the

infinitesimal generator of (3.3.1) with constant control α:

Lαu = b(x, a) · ∇u+
1

2
Tr(σ(x, a) · σ(x, a)⊤ · ∆u).

Inserting this into (3.3.4), dividing by ε, taking the limit as ε tends to zero and using the mean-value

theorem implies that ∂tu(t, x) + Lαu(t, x) + f(t, x, α) ≤ 0, and therefore

− ∂tu(t, x) − sup
α∈A

{Lαu(t, x) + f(t, x, α)} ≥ 0. (3.3.5)

Assume now that α is an optimal control, i.e. one for which the supremum, in the definition of the

value function, is attained. Note first that the dynamic programming principle in Theorem 3.3.1

is equivalent to

u(t, x) = sup
α∈A(t,x)

E
[∫ τ

t

f(s,Xt,x
s , αs)ds+ u(τ,Xt,x

τ )

]
.

Using this formulation with the optimal control and the corresponding solution to (3.3.1), we can

use similar arguments as above to show that

−∂tu(t, x) − Lαtu(t, x) + f(t, x, α) = 0,

and therefore, together with (3.3.5), we obtain that the inequality (3.3.5) is in fact an equality for

all (t, x) ∈ [0, T ) × Rn whenever the supremum is finite, and the theorem follows.

We end this theoretical part with the so-called Verification theorem. Theorem 3.3.2 proved

that the value function (3.3.2), defined as the maximal cost, solves a non-linear partial differential

equation. We now show, albeit without proof, that, under some smoothness assumptions, the

solution to the HJB PDE is in fact equal to the value function.

Theorem 3.3.3 (Verification Theorem). Let w ∈ C1,2([0, T ) × Rn) ∩ C0([0, T ] × Rn) be such that

there exists a constant C > 0 for which |w(t, x)| ≤ C(1 + |x|2) for all (t, x) ∈ [0, T ] × Rn.

• if −∂tw(t, x) − H(t, x,∇w,∆w) ≥ 0 for all (t, x) ∈ [0, T ) × Rn with boundary condition

w(T, ·) ≥ g(·), then w ≥ u on [0, T ] × Rn.

• if w(T, ·) = g(·) and if there exists an A-valued measurable function α such that

−∂tw(t, x) −H(t, x,∇w,∆w) = −∂tw(t, x) − Lα(t,x)w(t, x) − f(t, x, α(t, x)),

then the SDE (3.3.1) controlled by α admits a unique solution X̄t,x starting at Xt = x, and

(α(s, X̄t,x
s )s∈[t,T ] ∈ A(t, x). In that case, w is equal to the value function (3.3.2) and α is an

optimal control.
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3.3.3 Financial examples

American options

As seen in Section 1.5.1, and in particular Theorem 1.5.4, once an equivalent local martin-

gale Q has been chosen, the price at time t of an American option expiring at T is given by

supτ∈Tt,T
E(f(Sτ )|St = x), for some payoff function f .

The uncertain volatility model

In this model, which we will study later in more details, the underlying stock price follows Black-

Scholes dynamics, apart from the fact that the volatility parameter σ is a process adapted to the

ambient Brownian filtration, and allowed to moved between two bounds σ and σ. Therefore the

value of the option reads

sup {E(g(ST ))|Ft : (σt)t≥0F − adapted, and σ ∈ [σ, σ]} .

Models with transaction costs

3.4 A rough introduction to PIDEs

All the models considered so far had continuous paths. However, many phenomena observed on

financial markets, such as dividends, policy announcements, unexpected profit or loss, political

events, induce a sudden discontinuity–upward or downward jump–in the dynamics of financial

assets.

3.4.1 Preamble on semimartingales

Let D denote the space of right-continuous with left limit (càdlàg) processes. Similarly to stochastic

integration with continuous integrators, we would like to make sense of an expression of the form∫
utdSt, when S ∈ D, for some (simple) predictable process u. This is however not trivial, and the

right class of processes to consider is the class of semimartingales.

Definition 3.4.1. A process X ∈ D is called a semimartingale if there exist (Mt)t≥0 and (Zt)t≥0,

both starting from zero, such that the decomposition Xt = X0 +Mt + Zt holds almost surely for

all t ≥ 0, where M is a local martingale and Z has bounded variation.

Example 3.4.2.

• A Brownian motion is a semimartingale;

• every square integrable martingale in D is a semimartingale;

• every Lévy process is a semimartingale;
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• every process of bounded variation is a semimartingale.

In the course of these notes, we shall not use this level of generality, and will restrict ourselves

to a very tractable subset of semimartingales, namely (exponential) Lévy processes.

3.4.2 Introduction to Lévy processes

Lévy processes are a wide class of semimartingales with very tractable properties. They have been

used extensively in the mathematical finance literature, and we shall introduce them here together

with some of their properties. Again, the filtered probability space (Ω,F , (Ft)t≥0,P) is assumed

to be granted a priori.

Definition 3.4.3. An Rn-valued Lévy process X is an adapted process on (Ω,F , (Ft)t≥0,P) with

X0 = 0 almost surely satisfying the following properties:

(i) independent increments: for any 0 ≤ s < t, Xt −Xs is independent of Fs;

(ii) stationary increments: for any 0 ≤ s < t, the random variables Xt−s and (Xt −Xs) have the

same distributions;

(iii) X is stochastically continuous, namely for all ε > 0 and t ≥ 0, limh↓0 P (|Xt+h −Xt| ≥ ε) = 0.

The following theorem provides a useful and tractable representation for its characteristic func-

tion, and in particular highlights the singular time dependence of the distribution of the process.

Theorem 3.4.4. If X is a Lévy process in Rn, there exists a unique function ϕX ∈ C(Rn → C),

called the Lévy exponent, with ϕX(0) = 0 such that

E
(

ei⟨ξ,Xt⟩
)

= exp (tϕX(ξ)) , for all t ≥ 0, ξ ∈ Rn

Example 3.4.5 (Brownian motion). The simplest example of a Lévy process is the (one-dimensional)

Brownian motion with drift: Wµ
t = µt + σWt. Clearly, for any t ≥ 0, Xt is a Gaussian random

variable with mean X0 + µt and variance σ2t; therefore

E
(

eiξW
µ
t

)
= exp (iξµt)E

(
eiξσWt

)
= exp

(
iµξt− σ2ξ2t

2

)
.

Example 3.4.6 (Poisson process). A Poisson process (Nt)t≥0 is a counting process, in the sense

that at time t ≥ 0, Nt represents the number of events that have happened up to time t. Such

a process has independent increments and is such that for each t ≥ 0, the random variable Nt is

Poisson distributed with parameter λt for λ > 0 (the intensity), i.e.

P (Nt = n) =
(λt)n

n!
e−λt, for any n = 0, 1, . . .

Its characteristic function can be computed as(
eiξNt

)
=
∑
n≥0

(λt)n

n!
e−λteiξn = exp

(
λt
(
eiξ − 1

))
, for any ξ ∈ R.
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Note that the paths of a Poisson process are non-decreasing and discontinuous.

Example 3.4.7 (Compound Poisson processes). A compound Poisson process (Jt)t≥0 is defined

as Jt :=
∑Nt

n=1 Zn, where N is a Poisson process with parameter λt and (Zk)k≥0 a family of

independent and identically distributed random variables with common law F . Therefore, for any

ξ ∈ R,

E
(
eiξJt

)
= E

(
exp

(
iξ

Nt∑
n=1

Zn

))
= E

(
E
(

eiξ
∑m

n=1 Zn

)∣∣∣Nt = m
)

=
∑
m≥0

E
(

eiξ
∑m

n=1 Zn

) (λt)m

m!
e−λt =

∑
m≥0

(∫
R

eiξzF (dz)

)m
(λt)m

m!
e−λt

= exp

(
λt

∫
R

(
eiξz − 1

)
F (dz)

)
.

From now on, for simplicity and in order to avoid technical difficulties, we shall restrict ourselves

to Compound Poisson processes (CPP), namely to processes with the following representation:

Jt :=

Nt∑
n=1

Zn, (3.4.1)

where N is a Poisson process with intensity λ and the (Zk)k≥0 are iid random variables with

common distribution η. We shall denote by (τJn )n≥1 denote the sequence of jump times. The

jump measure J of J , defined as

J(I ×A) :=
∑
n≥1

δI(τJn )δA(Zn), for any (I ×A) ∈ B ([0,∞) × Rn) ,

counts the expected number of jumps of amplitude A occurring in the time period I.

Lemma 3.4.8. For any t > 0, E (J([0, t] ×A)) = tλη(A), for any A ⊂ Rn. In particular,

E (J([0, t] ×A)) = tE (J([0, 1] ×A)).

Proof. For I = [0, t], the jump measure simplifies to J([0, t] ×A) :=
∑Nt

n=1 δA(Zn), so that

E [J([0, t] ×A)] = E

[
Nt∑
n=1

δA(Zn)

]
= E

[
E

(
Nt∑
n=1

δA(Zn)

∣∣∣∣∣Nt

)]

=
∑
n≥1

E

(
n∑

k=1

δA(Zk)11{Nt=n}

)
=
∑
n≥1

P(Nt = n)
n∑

k=1

P(Zk ∈ A)

=
∑
n≥1

(λt)n

n!
e−λtnη(A) = λtη(A).

Definition 3.4.9. The map ν : A 7→ E (J([0, 1] ×A)) is a finite measure on B(Rn) with ν(Rn) = λ,

and is called the Lévy measure of the process J .
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With this definition of the Lévy measure, Lemma 3.4.8 can be rewritten as ν(A) = λη(A) for

any A ⊂ Rn, and the characteristic function of a Compound Poisson process can be rewritten as

E
(

ei⟨ξ,Jt⟩
)

= exp

{
t

∫
Rn

(
ei⟨ξ,x⟩ − 1

)
ν(dx)

}
, for any ξ ∈ Rn.

The following theorem proves a pathwise decomposition of a compound Poisson process, and will

be a crucial element in deriving a partial differential equation for pricing purposes.

Theorem 3.4.10 (Lévy-Itô decomposition for CPP). Let J be a Rn-valued CPP of the form (3.4.1)

with jump measure J and Lévy measure ν. Then, for any function f : [0,∞) × Rn,∑
0<s≤t,∆Xs ̸=0

f(s,∆Xs) =

∫ t

0

∫
Rn

f(s, x)J(dx,ds).

Let J̃(dt,dx) := J(dt,dx) − dtν(dx) denote the compensated jump measure. If furthermore the

function f is integrable with respect to the product measure ds⊗ ν, then the process M defined as

Mt :=

∫ t

0

∫
Rn

f(s, x)J̃(dx,ds)

is a martingale with zero expectation.

Corollary 3.4.11. The following expressions hold for the process J and its quadratic varia-

tion ⟨J ⟩:

Jt =

∫ t

0

∫
Rn

xJ(dx,ds),

⟨J ⟩t =

∫ t

0

∫
Rn

|x|2J(dx,ds) =

Nt∑
n=1

|Zn|2.
(3.4.2)

Proof. The corollary follows from Theorem 3.4.10 applied to f(x) ≡ x and f(x) ≡ |x|2.

Example 3.4.12.

• Merton model [114]: η = N (m, δ2), so that

ν(dx) =
λ

δ
√

2π
exp

(
− (x−m)2

2δ2

)
dx;

here the jumps are symmetric around a constant m.

• Kou model [101]: η(dx) =
(
pλ+e−λ+x11{x>0} + (1 − p)λ−e−λ−x11{x<0}

)
dx, with λ+ > 1 and

λ− > 0; here the jumps are not symmetric.

Quadratic variation

In order to write down an Itô formula for Jump diffusion processes, we first need to extend the

notion of quadratic variation to this class of discontinuous processes.
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Definition 3.4.13. The quadratic variation process of a semimartingale (Xt)t≥0 is defined as

⟨X⟩t := X2
t − 2

∫ t

0

Xu−dXu, for all t ≥ 0.

Example 3.4.14.

• The quadratic variation of a Brownian motion W is ⟨W ⟩t = t;

• For a Poisson process N , the quadratic variation is ⟨N⟩t = Nt (see Exercise sheet);

• For a Compound Poisson process J , we have ⟨J ⟩t = σ2t+

∫ t

0

∫
R
x2J(ds, dx).

Itô formula for jump diffusions

We finish this section with an Itô formula for a one-dimensional jump diffusion model, namely the

unique solution (under growth and smoothness conditions on the coefficients) to the equation

Xt = X0 +

∫ t

0

µs(Xs−)ds+

∫ t

0

σs(Xs−)dWs + Jt, (3.4.3)

where J represents the discontinuous part of the process, which we assume to be a compound

Poisson process as in (3.4.1). In differential form, we can rewrite (3.4.3) as

dXt = µt(Xt−)dt+ σt(Xt−)dWt + dJt, X0 ∈ R. (3.4.4)

We shall denote by ⟨X⟩c the quadratic variation of the continuous part of X (i.e. drift and

Brownian motion). Let Ac := µ∂x + 1
2σ

2∂xx denote the infinitesimal generator of the continuous

part of the jump diffusion X.

Theorem 3.4.15 (Itô formula for jump diffusions). Let X be the unique strong solution to (3.4.3),

and let f ∈ C1,2((0,∞),Rn). Then the infinitesimal generator of X reads

Af(t, x) = Acf(t, x) +

∫
R

[
f(t, x+ y) − f(t, x) − y∂xf(t, x)

]
ν(dy), (3.4.5)

and the following Itô formula holds

f(t,Xt) = f(0, X0) + σ(t,Xt−)∂xf(t,Xt−)dWt +

∫ t

0

(∂s + A) f(s,Xs−)ds

+

∫ t

0

∫
R

[
f(s,Xs− + y) − f(s,Xs−) − y∂xf(s,Xs−)

]
J̃(ds, dy)

= f(0, X0) + σ(t,Xt−)∂xf(t,Xt−)dWt +

∫ t

0

(∂s + Ac) f(s,Xs−)ds

+

∫ t

0

∫
R

[
f(s,Xs− + y) − f(s,Xs−) − y∂xf(s,Xs−)

]
J(ds, dy).
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3.4.3 PIDES for compound Poisson processes

We terminate this section with an option pricing formulation in the context of Lévy processes.

This can be seen as an analogue (and is actually an extension) of the Feynman-Kać formula in

Theorem 3.2.1. for Itô diffusions.

Definition 3.4.16. Let A be the infinitesimal generator in (3.4.5) and φ a bounded continuous

function. A bounded function u ∈ C1,2([0, T ) × R) ∩ C([0, T ] × R) is called a classical solution to

the Cauchy problem for (A + ∂t) with initial datum φ if (A + ∂t)u(t, x) = u(t, x), for all (t, x) ∈ [0, T ) × R,

u(T, x) = φ(x), for all x ∈ R.
(3.4.6)

Theorem 3.4.17 (Feynman-Kać for jumps). If a classical solution u exists for (3.4.6) such that

u, ∂xu ∈ L∞((0, T ) × R), then u(t, x) = Eφ(Xt,x
T ), for all (t, x) ∈ [0, T ) × R.



Chapter 4

Volatility modelling

We previously introduced the notion of implied volatility, and saw how it is characterised through

absence of arbitrage and the Black-Scholes formula. This was done in a completely model-

independent framework, Black-Scholes only being used as a quoting mechanism. By definition,

the implied volatility in the Black-Scholes model is a strictly positive constant parameter, which

does not depend on the strike or the maturity of the option. Therefore, the implied volatility is

also constant. This is clearly unrealistic, and we shall now introduce several classes of models that

exhibit non-constant implied volatility surfaces.

4.1 Local volatility

A local volatility model for the stock price process (St)t≥0 is defined as follows:

dSt/St = µtdt+ σ(t, St)dWt, S0 > 0. (4.1.1)

Again here W is a standard Brownian motion adapted to the given filtration, and r represents

the risk-free interest rate assumed to be constant. Note now that the diffusion component σ(·)

depends on both time and space, and that the market is complete, since there is a unique source of

randomness. The drift µt is again assumed to be adapted. The same argument as in the standard

Black-Scholes model applies, and the value (at time zero) of a European option with payoff h(ST )

at some future time T > 0 satisfies the PDE

∂tC + rtS∂S +
1

2
σ2(t, S)S2∂SSC − rtC = 0,

for all t ∈ [0, T ], S ≥ 0, with boundary condition C(S, T ) = h(S). Recall that by Girsanov

theorem, we can define a new probability measure Q by the Radon-Nikodym derivative

dQ
dP

∣∣∣∣
Ft

:= exp

(
−
∫ t

0

µs − rs
σs

dWs −
∫ t

0

(µs − rs)
2

2σ2
s

ds

)
,

83
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under which the stock price satisfies

dSt

St
= rtdt+ σ(t, St)dW

Q
t , S0 > 0. (4.1.2)

The probability Q is well defined if and only if the Radon-Nikodym derivative is a uniformly

integrable martingale. Using Novikov’s criterion, let γt := (µt − rt)/σt; then

dQ
dP

∣∣∣∣
Ft

:= exp

(
−
∫ t

0

γsdWs −
1

2

∫ t

0

γ2sds

)
defines a true martingale if

E

[
exp

(
1

2

∫ T

0

γ2sds

)]
<∞.

By absence of arbitrage, the option price therefore reads

C(S, t) = EQ
(

e−
∫ T
t

rsdsh(ST )|St = s
)
.

From a practical point of view, assume that one consider the model (4.1.1) under some historical

probability P, and calibrate µ and σ to some historical data. Then, by construction of the Radon-

Nikodym derivative, the new (risk-neutral) probability measure Q is fully characterised, so that

nothing is left to determine. In particular this makes it impossible to calibrate it to currently

quoted option prices. The standard way to deal with this is to consider directly the model under

the (unique) risk-neutral measure Q, satisfying the SDE (4.1.2).

4.1.1 Bruno Dupire’s framework

Consider a stock price process S satisfying (under the risk-neutral measure) the stochastic differ-

ential equation
dSt

St
= rdt+ σ(St, t)dWt, S0 > 0, (4.1.3)

where W is a standard Brownian motion, r ≥ 0 the instantaneous risk-free interest rate, and

σ : R+×R+ → R+ the state-dependent diffusion coefficient. The question raised by Bruno Dupire

(1994)1 was whether given a smooth surface (K,T ) 7→ C(K,T ) of European Call prices, there

exists such a function σ able to match these prices exactly. The answer turns out to be positive,

as outlined below.

Definition 4.1.1. A function σ : R+ × R+ → R such that the prices of Call / Put options for

all strikes and maturities generated by model (4.1.3) correspond exactly to a given Vanilla price

surface is called the local volatility.

Example 4.1.2. If the given option price surface (in strike and maturity) is flat, then the local

volatility is simply equal to a constant, and (4.1.3) is nothing else than the standard Black-Scholes

model.
1simultaneously, Derman and Kani came up with a similar concept, but in discrete time.
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Theorem 4.1.3. Assume that E(
∫ t

0
|Suσ(u, Su)|2du) is finite for all t ≥ 0, that St admits a

continuous density pt on (0,∞), and that the mapping σ is continuous on (0,∞) × (0,∞). Then

the Call price function C(K,T ) := e−rTE(ST −K)+ satisfies the so-called Dupire Equation:

∂TC(K,T ) =
σ2(K,T )

2
K2∂KKC(K,T ) − rK∂KC(K,T ),

for all (K,T ) ∈ (0,∞) × (0,∞), with boundary condition C(K, 0) = (S0 −K)+.

Remark 4.1.4. For a given smooth surface (K,T ) 7→ C(K,T ), Dupire’s equation implies that

there exists a unique continuous function σloc defined by

σ2
loc(K,T ) :=

∂TC(K,T ) + rK∂KC(K,T )
1
2K

2∂KKC(K,T )
, (4.1.4)

for all (K,T ) ∈ (0,∞) × (0,∞), such that the solution to the stochastic differential equation

dSt/St = rdt + σ(t, St)dWt exactly generates the European Call option prices C(·, T ) for every

maturity T > 0.

Remark 4.1.5. The condition σ(0, S0) > 0 is a sufficient condition ensuring that the random

variable St admits a density which is continuous with respect to the Lebesgue measure.

Remark 4.1.6. From Remark 2.1.26, the local volatility involves the density of the stock price.

Given a model, it is not, however, guaranteed that such a density exists. Consider the example

in [65], of the asymmetric Variance Gamma, in which the log stock price XT , at time T , admits

the following characteristic function:

E
(
eiuXT

)
=

(
1 − iθνu+

σ2νu2

2

)−T/ν

, for all u ∈ R,

for some parameters ν, σ, θ > 0. As u tends to infinity, a simple series expansion yields

E
(
eiuXT

)
=

(
σ2ν

2

)−T/ν

u−2T/ν + O
(
u−1−2T/ν

)
.

Therefore, when 2T/ν > 1, the characteristic function is integrable and hence XT admits a con-

tinuous density. When 2T/ν < 1, however, the density–given explicitly in [26, Page 82]–has a

singularity at the origin, and therefore the Call price is not twice continuously differentiable.

Note that Dupire’s framework applies to continuous Itô processes of the form (4.1.3). However,

a lot of research has been devoted to processes with jumps, and it therefore makes sense to try

and extend this definition to the discontinuous case. This is not that simple, though, and we refer

the interested reader to [25, 65, 74].

Proof. Note first that the function K 7→ e−rT (S − K)+ is not twice differentiable, so that Itô’s

formula does not apply. We use here a smoothing argument to prove the Dupire equation. Let

f : R ∋ x 7→ x+, and for any ε > 0, define the C2(R) function fε : R → R by

fε(x) :=
(x+ ε/2)2

2ε
11{|x|≤ε/2} + x11{x>ε/2}.
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Note that fε(x) = f(x) as soon as |x| ≥ ε/2, that fε converges pointwise to f as ε tends to zero

and that

f ′ε(x) =
x+ ε/2

ε
11{|x|≤ε/2} + 11{x>ε/2} and f ′′ε (x) =

1

ε
11{|x|≤ε/2}.

For τ > 0, applying Itô’s formula to the function (t, St) 7→ e−rtfε(St −K) between T and T + τ

yields:

e−r(T+τ)fε(ST+τ −K) − e−rT fε(ST −K) = −r
∫ T+τ

T

e−rtfε(St −K)dt

+

∫ T+τ

T

e−rt

(
f ′ε(St −K)dSt +

1

2
σ2(St, t)S

2
t f

′′
ε (St −K)dt

)
.

Taking expectation (conditional on F0) on both sides yields

e−r(T+τ)Efε(ST+τ −K) − e−rTEfε(ST −K) = −r
∫ T+τ

T

e−rt (Efε(St −K) − Ef ′ε(St −K)) dt

+
1

2

∫ T+τ

T

e−rtE
(
σ2(St, t)S

2
t f

′′
ε (St −K)

)
dt,

where we used the fact that E (f ′ε(St −K)σ(t, St)StdWt) = 0. Note now that the last integral on

the right-hand side of the above equality can be rewritten as

1

2

∫ T+τ

T

E
(
σ2(t, St)S

2
t f

′′
ε (St −K)

)
e−rtdt =

1

2ε

∫ T+τ

T

e−rt

(∫ ε/2

−ε/2

σ2(t,K + s)(K + s)2pt(K + s)ds

)
dt.

Take now the limit as ε tends to zero from above in the equality, and we obtain

C(K,T + τ) − C(K,T ) = lim
ε↓0

(
e−r(T+τ)Efε(ST+τ −K) − e−rTEfε(ST −K)

)
= −r

∫ T+τ

T

(
C(K, t) + e−rtE(St11St≥K)

)
dt+

1

2

∫ T+τ

T

e−rtσ2(K, t)K2pt(K)dt.

We have here used the fact that, for a function g, with left derivative F ′
−(0) and right deriva-

tive F ′
+(0) at the origin, the following equality holds:

lim
ε↓0

F (ε/2) − F (−ε/2)

ε
=
F ′
+(0) + F ′

−(0)

2
.

Therefore

C(K,T + τ) − C(K,T ) =
1

2

∫ T+τ

T

e−rtσ2(t,K)K2pt(K)dt− r

∫ T+τ

T

e−rtE
(
(St −K)+ + St11{St≥K}

)
dt

=
1

2

∫ T+τ

T

e−rtσ2(K, t)K2pt(K)dt+

∫ T+τ

T

e−rtKP ((St ≥ K) dt.

Since e−rtP(St ≥ K) = −∂KC(K, t) and e−rtpt(K) = ∂KKC(K, t), the theorem follows.

Note that Dupire’s original proof is different and relies on the fact that the density satisfies the

forward Kolmogorov (or Fokker-Planck) equation. We outline his proof below.

C(K,T ) = e−rTE [(ST −K)+] = e−rT

∫ +∞

K

(s−K)pT (s)ds

= e−rT

∫ +∞

K

(
pT (s)

∫ s

K

dy

)
ds = e−rT

∫ +∞

K

(∫ +∞

y

pT (s)ds

)
dy,
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where we used Fubini’s theorem to interchange the two integrals. Therefore

∂KC(K,T ) = −e−rT

∫ +∞

K

pT (s)ds = −e−rT

∫ +∞

0

11{s>K}pT (s)ds.

and ∂KKC(K,T ) = e−rT pT (K). From this equality, we immediately deduce

∂T pT (K) = ∂T
(
erT∂KKC(K,T )

)
= rerT∂KKC(K,T ) + erT∂KKTC(K,T ). (4.1.5)

Since pT satisfies the forward Kolmogorov equation

∂T pT − 1

2
∂KK

(
K2σ2pT

)
+ ∂K (rKpT ) = 0,

where all the functions are evaluated at the point (K,T ), Equation (4.1.5) then becomes

1

2
∂KK

(
K2σ2∂KKC

)
− ∂K (rK∂KKC) = r∂KKC + ∂TKKC.

Rearranging this equation yields

∂TKKC =
1

2
∂KK

(
K2σ2∂KKC

)
− 2r∂KKC − rK∂KKKC

= ∂KK

(
σ2K2

2
∂KKC − rK∂KC

)
.

Integrating both sides twice with respect to the strike K yields

∂TC + rK∂KC =
σ2K2

2
∂KKC + αTK + βT ,

and the boundary conditions imposed by no-arbitrage conclude the proof.

4.1.2 Local volatility via local times

The proof of Theorem 4.1.3 above followed the original Dupire approach. We now present a

different proof, using the theory of local times. Before doing so, though, we shall need a few results

on local times for continuous semimartingales. Let us first prove the occupation time formula,

which provides good intuition about the meaning of local times.

Proposition 4.1.7. Let W be a standard Brownian motion on the real line. For any x ∈ R,

there exists an increasing family of local times (Lx
t )t≥0 such that, for every bounded measurable

function f , we have ∫ t

0

f(Ws)ds =

∫
R
Lx
t f(x)dx, for any t ≥ 0. (4.1.6)

Remark 4.1.8. This proposition implies the following:

(i) let A be a Borel subset of the real line, and let f ≡ 11A. Then the occupation time for the

Brownian motion reads ∫ t

0

11{Ws∈A}ds =

∫
R

11A(x)Lx
t dx =

∫
A

Lx
t dx;
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(ii) From (4.1.6), we can write

Lx
t = lim

ε↓0

1

2ε

∫ t

0

11[x−ε,x+ε](Ws)ds.

Proof. Let f be a continuous function with compact support on R, and denote

F (x) :=

∫ x

−∞
dz

∫ z

−∞
f(y)dy =

∫
R

(x− y)+f(y)dy.

Clearly F belongs to C2(R) with F ′(x) =
∫
R f(y)11{x>y}dy and F ′′(x) = f(x), and hence combining

Itô’s formula and the stochastic version of Fubini yields

F (Wt) =

∫
R

(Wt−y)+f(y)dy =

∫
R

(W0−y)+f(y)dy+

∫
R

(∫ t

0

11{Ws>y}dWs

)
f(y)dy+

1

2

∫ t

0

f(Ws)ds,

which we can rearrange as

1

2

∫ t

0

f(Ws)ds =

∫
R

dyf(y)

(
(Wt − y)+ − (W0 − y)+ −

∫ t

0

11{Ws>y}dWs

)
.

Setting
1

2
Ly
t := (Wt − y)+ − (W0 − y)+ −

∫ t

0

11{Ws>y}dWs

proves (4.1.6). From this formula, one can then easily deduce the expression in Remark 4.1.8(ii),

which in particular shows that the family (Lx
t )t≥0 is increasing, and the proposition follows.

This definition of local times immediately yields Tanaka’s formula for the Brownian motion:

Proposition 4.1.9 (Tanaka formula). Let W be a standard Brownian motion and Lx
t be its local

time between 0 and t at the level x. Then,

(Wt − x)+ = (W0 − x)+ +

∫ t

0

11{Ws>x}dWs +
1

2
Lx
t ,

(Wt − x)− = (W0 − x)− −
∫ t

0

11{Ws≤x}dWs +
1

2
Lx
t ,

|Wt − x| = |W0 − x| +

∫ t

0

sgn(Ws − x)dWs + Lx
t ,

with sgn(x) = 1 if x > 0 and −1 if x ≤ 0.

We can actually extend the definition and properties of local times to general semimartingales.

In the following, we let X denote a one-dimensional continuous semimartingale.

Proposition 4.1.10. For any x ∈ R, there exists an increasing family of local times (Lx
t )t≥0 such

that, for every bounded measurable function f , we have∫ t

0

f(Xs)d⟨X,X⟩s =

∫
R
Lx
t f(x)dx, for any t ≥ 0. (4.1.7)
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As in the Brownian case, this proposition implies

Lx
t = lim

ε↓0

1

2ε

∫ t

0

11[x−ε,x+ε](Xs)d⟨X,X⟩s.

This definition of local times immediately yields the Tanaka-Meyer formulae for continuous semi-

martingales:

Proposition 4.1.11 (Tanaka formula). Let X be a one-dimensional continuous semimartingale,

and Lx
t its local time between 0 and t at the level x. Then,

(Xt − x)+ = (X0 − x)+ +

∫ t

0

11{Xs>x}dXs +
1

2
Lx
t ,

(Xt − x)− = (X0 − x)− −
∫ t

0

11{Xs≤x}dXs +
1

2
Lx
t ,

|Xt − x| = |X0 − x| +

∫ t

0

sgn(Xs − x)dXs + Lx
t ,

with sgn(x) = 1 if x > 0 and −1 if x ≤ 0.

We are now able to give a rigorous proof of Theorem 4.1.3 using the machinery of local times.

Proof of Theorem 4.1.3. Tanaka-Meyer’s formula applied to the semimartingale S reads

(ST −K)+ = (S0 −K)+ +

∫ T

0

11{Su>K}dSu +
1

2

∫ T

0

dLK
u (S),

and integration by parts yields

e−rT (ST −K)+ = (S0−K)+−r
∫ T

0

e−ru(Su−K)+du+

∫ T

0

e−ru11{Su>K}dSu+
1

2

∫ T

0

e−rudLK
u (S).

(4.1.8)

By definition of local times,

E

(
1

2

∫ T

0

e−rudLK
u (S)

)
=

∫ T

0

e−rupu(K)K2σ2(K,u)du,

so that taking expectations (at time zero) on both sides of (4.1.8), we obtain

C(K,T ) = (S0 −K)+ − r

∫ T

0

e−ruE
(
(Su −K)11{Su≥K}

)
du+ r

∫ T

0

e−ruE
(
Su11{Su>K}

)
du

+
1

2
E

(∫ T

0

e−rudLK
u (S)

)

= (S0 −K)+ + rK

∫ T

0

e−ruP(Su > K)du+
1

2

∫ T

0

e−rupu(K)K2σ2(K,u)du.

Differentiating with respect to the maturity T implies

∂TC(K,T ) = rKe−rTP(ST > K) +
1

2
e−rT pT (K)K2σ2(K,T ),

and the theorem follows.
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4.1.3 Implied volatility in local volatility models

We study here how the local volatility (defined in (4.1.4)) can be expressed in terms of the implied

volatility. As before, we let w(k, T ) := σ2(k, T )T denote the total implied variance at time T ,

where k represents the log-moneyness. The following theorem shows a one-to-one mapping between

the Dupire local volatility and the implied volatility.

Theorem 4.1.12. If the map (k, T ) 7→ w(k, T ) belongs to C2,1(R,R∗
+), then

σ2
loc(k, T ) =

∂Tw(k, T )

g(k, T )
, (4.1.9)

where the function g was defined in (2.1.4).

Proof. For ease of notation, we shall consider that interest rates are null, i.e. r = 0. For a

given (observed or computed) Call price C, by definition of the implied volatility σ, the equality

C(K,T ) = BS(K,T, σ(K,T )) holds for all (K,T ) ∈ R∗
+ × R∗

+. Changing the variables, we use

the notations C̃(k,w) ≡ C(K,T ) and the slight abuse BS(k,w) ≡ BS(K,T, σ). In these new

coordinates, the Dupire equation reads

∂T C̃(k, T ) =
σ2
loc(k, T )

2

(
∂kkC̃(k, T ) − ∂kC̃(k, T )

)
,

for all (k, T ) ∈ R × R∗
+ with boundary condition C(k, T ) at maturity. The following identities

between the Black-Scholes Greeks are straightforward to check using (1.4.5):
∂wwBS =

(
−1

8
− 1

2w
+
k2

w2

)
∂wBS,

∂kwBS =

(
1

2
− k

w

)
∂wBS,

(∂kk − ∂k) BS = 2∂wBS,

(4.1.10)

where of course BS and all its derivatives are evaluated at the point (k,w). Using the total rule of

differentiation, we further have
∂kC̃ = ∂kBS + ∂kw · ∂kBS,

∂kkC̃ = ∂kkBS + 2∂kw · ∂kwBS + (∂kw)
2
∂wwBS + ∂kkw · ∂wBS,

∂T C̃ = ∂T BS + ∂Tw · ∂wBS = ∂Tw · ∂wBS.

(4.1.11)

Therefore, we can rewrite the Dupire equation as

∂wBS · ∂tw =
σ2
loc(k, T )

2

[
∂kkBS + 2∂kw · ∂kwBS + (∂kw)2∂wwBS + ∂kkw · ∂wBS − ∂kBS − ∂kw · ∂kBS

]
=
σ2
loc(k, T )

2

[
2 − ∂kw + 2

(
1

2
− k

w

)
∂kw +

(
−1

8
− 1

2w
+
k2

w2

)
(∂kw)

2
+ ∂kkw

]
∂wBS

=
σ2
loc(k, T )

2

[
1 − k

w
∂kw +

1

4

(
−1

4
− 1

w
+
k2

w2

)
(∂kw)

2
+

1

2
∂kkw

]
∂wBS,

and the theorem follows.
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The following remarks are in order here:

• Whenever the total variance is null, we know that we are outside the support of the stock

price, so that the definition of the local volatility should obviously be taken as null as well.

• The conditions in Theorem 2.1.25 make even more sense now, as they ensure that the local

volatility is well defined and strictly positive.

• For any time t, the implied volatility, as seen previously, provides information about the

marginal law of the process at time t, but does not provide any information about transition

probabilities between two different times. Therefore given an arbitrage-free implied volatility

surface (or equivalently collection of all European Call and Put option prices), it is not

clear how one can price more exotic options, such as path-dependent ones. Using (4.1.9),

one can compute the equivalent local volatility, and run Monte Carlo simulations. Though

very promising in theory, the local volatility map is in general difficult very sensitive to

interpolation and extrapolation of the implied volatility.

Let us draw some immediate consequences of the relation (4.1.9). Suppose for instance that the

total implied variance w does not depend on the strike. Then g ≡ 1 and the local variance reads

σ2
loc(k, T ) = ∂Tw(k, T ), so that w(k, T ) =

∫ T

0
σ2
loc(k, s)ds. From a financial perspective, this

equality means that, in the absence of skew (∂kw ≡ 0), the total implied variance is the average of

local variances. We can actually prove that for short maturity, the implied volatility is a harmonic

average of the local volatility:

Proposition 4.1.13. As the maturity T tends to zero, the implied volatility is the harmonic

average of the local volatility:

w(k, T ) ≈ k2T

(∫ k

0

dy

σloc(y, T )

)−2

.

Proof. Let Σ(·) denote the implied volatility, so that w(k, T ) ≡ Σ(k)2T . Therefore ∂Tw ≡ Σ2 +

2TΣ∂T Σ, and (4.1.9) reads

σ2
loc(k, T ) =

Σ(k)2 + 2TΣ(k)∂T Σ(k)(
1 − k∂kw

2w

)2 − (∂kw)2

4

(
1
4 + 1

w

)
+ ∂kkw

2

≈ Σ(k)2(
1 − k∂kw

2w

)2 , as T tends to zero

=

(
Σ(k)

1 − k∂kΣ2

2Σ2

)2

,

which is now a simple ordinary differential equation; solving it yields the required result.

We terminate this theoretical introduction to local volatility by the following result, due to

István Gyöngy, which provides the theoretical background of the existence of such a framework.
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Theorem 4.1.14. Let X be an Itô process on the real line satisfying the SDE dXt = αtdt+βtdWt,

where W is a standard one-dimensional Brownian motion, and α and β two adapted processes.

Then there exists a Markov process Y satisfying dYt = a(t, Yt)dt+ b(t, Yt)dWt, such that X and Y

have the same marginals. Furthermore, Y can be constructed as follows:

a(t, y) = E(αt|Xt = y) and b2(t, y) = E(βt|Xt = y),

for all t ≥ 0 and all y in the support of Xt.

If X is a given model, say a stochastic volatility model, then Y can be seen as the corresponding

local volatility model, which will generate the exact same European (Call and Put) option prices

for all strikes and maturities. That said, the two expectations describing a(·) and b(·) are in general

difficult to compute.

4.1.4 A special example: the CEV model

The Constant Elasticity of Volatility (CEV) model, first proposed by J. Cox [35], is a local volatility

model, in the sense that the stock price process is the unique solution

dSt = σS1+β
t dWt, S0 > s0. (4.1.12)

The process (St)t≥0 is a true martingale if and only if β ≤ 0, see [92, Chapter 6.4] and Theo-

rem 4.1.18 below. When β = 0, the SDE (4.1.12) reduces to the Black-Scholes SDE, and the stock

price remains strictly positive almost surely for all t ≥ 0. Let τ := inf{t ≥ 0 : St = 0} be the first

time the process S hits the origin, and define a new process X by Xt := S−2β
t /(σ2β2) (pathwise) up

to τ . Itô formula yields dXt = δdt+2
√
XtdWt, with X0 = x0 = s−2β

0 /(σ2β2) > 0 and δ = 2+1/β.

The process X is a Bessel process with δ degrees of freedom (and index ν := δ/2 − 1 = 1/(2β)),

and the Feller classification yields the following:

• If β = 0, S is a geometric Brownian motion started at some strictly positive value, and hence

is always strictly positive almost surely..

• if δ ≤ 0, i.e. β ∈ [−1/2, 0), the origin is an attainable and absorbing boundary. For every

t > 0, the distribution µt of Xt on [0,∞) has a positive mass at zero and admits a density

on the positive real line:

µt(dy) = P(Xt = 0)δ0(dy) + ft(X0, y)dy,

with

ft(x0, y) =
1

2t

(
y

x0

)ν/2

exp

(
−x0 + y

2t

)
I−ν

(√
x0y

t

)
, for all y > 0, (4.1.13)
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where I−ν is the modified Bessel function of the first kind. Note that
∫∞
0
ft(X0, y)dy =

Γ
(
−ν, X0

2t

)
< 1, where Γ is the normalised lower incomplete Gamma function Γ(v, z) :=

Γ(v)−1
∫ z

0
uv−1e−udu, therefore

P(Xt = 0) = 1 − Γ
(
−ν, x0

2t

)
> 0. (4.1.14)

• If δ > 2 (β > 0), the origin is not attainable and P(Xt = 0) = 0 for all t, and

ft(x0, y) =
1

2t

(
y

x0

)ν/2

exp

(
−x0 + y

2t

)
Iν

(√
x0y

t

)
, for all y > 0, (4.1.15)

which integrates to one.

• If δ ∈ (0, 2) (β < −1/2), the origin is attainable, and can be specified as either absorbing

or reflecting. In order to preserve the martingale property of the process, however, only

absorption is possible (see [86, Chapter III, Lemma 3.6] for technical details about this). In

that case, the density is given by (4.1.13), is norm defective (does not integrate to one) and

mass at the origin is present and equal to (4.1.14). If reflection is specified, the process S is

not a martingale any longer, its density is given by (4.1.15) and the mass at the zero is null.

We can recast these results in terms of the original process S. Let us define the functions φ

and ψ by (note the sign differences)

φ(y) := − 1

σ2βt
S
1/2
0 y−2β−3/2 exp

(
−S

−2β
0 + y−2β

2σ2β2t

)
I−ν

(
S−β
0 y−β

σ2β2t

)
,

ψ(y) :=
1

σ2βt
S
1/2
0 y−2β−3/2 exp

(
−S

−2β
0 + y−2β

2σ2β2t

)
Iν

(
S−β
0 y−β

σ2β2t

)
.

In the CEV model, the density has the following expression ([30, Section 6.4.1] and [22]):

P(St ∈ dy) =



φ(y)dy, if β ∈ [−1/2, 0) or β < − 1
2 with aborption,

dy

yσ
√

2πt
exp

−1

2

[
log
(

y
s0

)
+ 1

2σ
2t
]2

σ2t

 , if β = 0,

ψ(y)dy, if β > 0 or β < −1
2 with reflection,

and, in the case β ∈ [−1/2, 0) or β < −1
2 with aborption specification,

P(ST = 0) = 1 − Γ

(
− 1

2β
,
s−2β
0

2σ2β2T

)
.

It can be proved that, as z tends to zero, we have Iα(z) ∼ Γ(α + 1)−1(z/2)α for positive α; since

−ν = 1/(2|β|), the density behaves like const×y2|β|−1 as y tends to zero. Therefore the density of

the stock price explodes at the origin when β ∈ (−1/2, 0), and tends to a constant when β = −1/2,

in contrast to the previous examples (where the density vanishes at the origin).
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Remark 4.1.15. The modified Bessel functions of the first kind are the two solutions Iν and Kν

of the Bessel equation with parameter ν:

z2f ′′(z) + zf ′(z) − (z2 + ν2)f(z) = 0.

They can be written explicitly as

Iν(z) =
(z

2

)ν ∑
n≥0

z2n

22nn!Γ(ν + n+ 1)
and Kν(z) =

π

2

I−ν(z) − Iν(z)

sin(πν)
,

where we recall the definition of the Gamma function Γ(z) :=
∫∞
0
xa−1e−xdx, for any z ≥ 0.

Remark 4.1.16. European Put option prices maturing at time T ≥ 0 and with strike K ≥ 0 are

worth at inception

P (K,T ) = E[(K − ST )+] = KP(ST = 0) +

∫
(0,+∞)

(K − s)+fST
(s)ds.

Using perturbation expansions, Hagan et al. proved in [78] that the corresponding implied

volatility reads as follows:

σ(K,T ) =
2βσ

(s0 +K)−β

{
1 − (3 + β)β

6

(
s0 −K

s0 +K

)2

+
22ββ2σ2T

24(s0 +K)−2β
+ O(T 2)

}
. (4.1.16)

Exercise 4.1.17. Plot the approximation (4.1.16) for the implied volatility, as well as the corre-

sponding density, and discuss any arbitrage that may occur.

Theorem 4.1.18. If β ∈ (−1, 0], the process S is a square integrable martingale.

Proof. We only need to show here that E
(∫ T

0
S
2(1+β)
t dt

)
is finite for all T > 0. By a localisation

argument, let us define the hitting time at level n: τn := inf{t ≥ 0 : St ≥ n}. Clearly, (St∧τn)t≥0

is a square-integrable martingale for each n ≥ 0, and Itô’s lemma implies

E(S2
T∧τn) = s20+σ2E

(∫ T∧τn

0

S
2(1+β)
t dt

)
≤ σ2E

(∫ T∧τn

0

(
1 + S2

t

)
dt

)
≤ σ2E

(∫ T

0

(
1 + S2

t∧τn

)
dt

)
.

Recall now Gronwall’s lemma: if a function u satisfies u(t) ≤ α(t) +
∫ t

0
β(s)u(s)ds and α is

increasing, then u(t) ≤ α(t) exp
(∫ t

0
β(s)ds

)
. Therefore, with α(t) ≡ σ2t and β(t) ≡ σ2,

σ2E

(∫ T∧τn

0

S
2(1+β)
t dt

)
= E(S2

T∧τn) − s20 ≤ σ2T eσ
2T − s20,

and the result follows by the monotone convergence theorem.

4.2 Stochastic volatility models

It is by now clear that the assumption of constant volatility in the Black-Scholes model is not

suitable to account for the observed implied volatility. One is therefore led to consider a more
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refined approach. We shall consider here a given filtered probability space (Ω,F , (Ft)t≥0,P), and

we start with a time-dependent, though deterministic, volatility:

dSt/St = rdt+ σtdWt, S0 > 0, (4.2.1)

where again r is the risk-free interest rate and W a (Ft)t≥0-adapted standard standard Brownian

motion. By Itô’s formula and integration, we immediately obtain

log(St) = log(S0) + rt− 1

2

∫ t

0

σ2
sds+

∫ t

0

σsdWs,

for any t ≥ 0. Denoting σ2
[0,t] := t−1

∫ t

0
σ2
sds, we observe that log(St/S0) is a Gaussian random

variable with mean
(
r − 1

2σ
2
[0,t]

)
t and variance σ2

[0,t]t. Therefore the price of a European Call

option with maturity T > 0 and log-strike x in (4.2.1) is equal to CBS
t (x, σ[0,t]). For any given

maturity, this clearly yields a flat implied volatility smile, again unable to cope with the skew

observed on the market.

4.2.1 Pricing PDE and market price of volatility risk

Consider a general stochastic volatility model (S, V ) satisfying the following system of stochastic

differential equations:

dSt/St = µtdt+
√
VtdWt, S0 > 0,

dVt = α(St, Vt, t)dt+ β(St, Vt, t)
√
VtdZt, V0 > 0,

d⟨W,Z⟩t = ρdt,

(4.2.2)

where the correlation parameter ρ lies in (−1, 1), W and Z are two Brownian motions, and the

coefficients α and β are such that a unique strong solution exists. In the Black-Scholes model, there

is only one source of randomness, so that one is able to replicate a given option with a dynamic

rebalancing of stocks. Here, we have two sources of randomness, so that the same argument clearly

does not apply. Consider therefore a portfolio Π := C − ∆S − γΨ, consisting of a given option C,

some amount ∆ of the stock price and some quantity γ of another product Ψ which depends on

the variance V . Itô formula therefore implies

dΠt = (LC − γLΨ) dt+ (∂sC − γ∂sΨ − ∆) dSt + (∂vC − γ∂vΨ) dVt, (4.2.3)

where we define the differential operator

L := ∂t +
1

2
VtS

2
t ∂ss + ρβ(St, Vt, t)VtSt∂sv +

1

2
Vtβ

2(St, Vt, t)∂vv.

The only sources of randomness appear in the dSt and the dVt terms in (4.2.3). The portfolio Π

is therefore instantaneously risk-free if and only if (∂sC − γ∂sΨ − ∆) = (∂vC − γ∂vΨ) = 0, e.g.

∆ = ∂sC − γ∂sΨ and γ =
∂vC

∂vΨ
. (4.2.4)
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Under these two conditions, the risk-freeness of the portfolio is then equivalent to

dΠt = rΠtdt = r (C − ∆St − γΨ) dt = (LC − γLΨ) dt,

where the last equality follows from (4.2.3). We can rewrite this as

(L − r + rS∂s)C

∂vC
=

(L − r + rS∂s)Ψ

∂vΨ
. (4.2.5)

The only way the equality (4.2.5) can hold is that both sides are equal to some function −Φ

which depends on S, V and t. Without loss of generality, assume that this function has the form

Φ(s, v, t) := α(s, v, t)−ϕ(s, v, t)β(s, v, t)
√
v. The quantity ϕ is called the market price of volatility

risk. To understand why, consider a delta-hedged portfolio Π̃ := C − ∆S, where ∆ := ∂sC. Itô’s

lemma yields dΠ̃t = LCdt+(∂sC − ∆) dSt +∂vCdVt, and the portfolio is instantaneously risk free

if and only if

0 = dΠ̃t − rΠ̃tdt = LCdt+ (∂sC − ∆) dSt + ∂vCdVt − r (C − S∂sC) dt

= (−Φ(St, Vt, t)∂vC + rC − rSt∂sC) dt+ ∂vCdVt − r (C − S∂sC) dt

= −Φ(St, Vt, t)∂vCdt+ ∂vCdVt

= −
[
α(s, v, t) − ϕ(s, v, t)β(s, v, t)

√
v
]
∂vC + ∂vCdVt

= β(St, Vt, t)
√
Vt∂vC (ϕ(St, Vt, t)dt+ dZt) ,

where, in the fourth line, we used the representation of Φ, and, in the third line, the stochastic

differential equation (4.2.2). Therefore, ϕ represents the extra return per unit of volatility risk

dZt. Had we started with a drift equal to α̃ ≡ α− βϕ
√
Vt in (4.2.2), we would have obtained the

same result but without any price of volatility risk, which explains why this new drift is called the

risk-neutral drift.

4.2.2 Arbitrage and Equivalent Local Martingale Measures

Before looking at the properties of stochastic volatility models, their pricing equations, and the

implied volatility smile they generate, let us step back temporarily and wonder about arbitrage.

We saw, in the Black-Scholes model, with the help of the Girsanov transform, how to switch from

the historical measure to the risk-neutral one, essentially by changing the drift of the stock price

process. In the case of stochastic volatility models, there are two sources of randomness—the

two driving Brownian motions—and, unless these are fully (un)correlated, this implies market

incompleteness, and the equivalent local martingale measure, if it exists, may not be unique any

longer. Consider the stochastic differential equations (4.2.2). We are looking for two ‘market prices

of risk’ processes, γ1(·) and γ2(·) such that the new probability measure Q can be written as

Lt :=
dQ
dP

∣∣∣∣
Ft

= exp

{
−
∫ t

0

γ1(s)dZs −
∫ t

0

γ2(s)dZ⊥
s − 1

2

∫ t

0

(
γ1(s)2 + γ2(s)2

)
ds

}
(4.2.6)



4.2. Stochastic volatility models 97

and where Z⊥ is a Brownian motion independent of Z so that the Brownian motion W can

be written as W = ρZ + ρZ⊥, with ρ :=
√

1 − ρ2. As proved by Freddy Delbaen and Walter

Schachermayer (see their recent monograph [41] for a gentle introduction as well as a collection of

the original papers), existence of a local martingale measure is equivalent to ‘No Free Lunch with

vanishing risk’. We discuss below, through two examples, whether arbitrage, in this sense, can be

taken for granted or not.

Stein-Stein model

The Stein-Stein model corresponds to the following stochastic differential equation for the stock

price process:
dSt

St
= µtdt+ σtdWt, S0 > 0,

dσt = κ(θ − σt)dt+ ξdZt, σ0 > 0,

where κ, θ, ξ > 0, and where the two Brownian motions are uncorrelated. Using Girsanov trans-

form, let us define a new probability measure Q and a new Brownian motion W ∗ := W+
∫ ·
0
γ2(s)ds

(in the context of (4.2.6), this precisely corresponds to the ρ = 0 case). The SDE for the stock

price then reads

dSt

St
= µtdt+ σt

(
dWt − γ2(t)dt

)
=
(
µt − γ2(t)σt

)
dt+ σtdWt.

In order to satisfy absence of arbitrage, let rt denote the instantaneous risk-free rate, then one

needs to set µt − γ1(t)σt = rt, e.g.

γ1(t) =
µt − rt
σt

.

However, for any t ≥ 0, the support of the random variable σt is the whole real line, and hence γ1(t)

may be undefined, meaning that no Equivalent Local Martingale Measure exists in general, leading

to immediate arbitrage.

Heston model

Let us now consider the Heston model, given by the following set of stochastic differential equations:

dSt

St
= µtdt+

√
VtdWt, S0 > 0,

dVt = κ (θ − Vt) dt+ ξ
√
VtdZt, V0 = v0 > 0,

d⟨W,Z⟩t = ρdt,

where κ, θ, ξ > 0, ρ ∈ (−1, 1). Let us now introduce two new Brownian motions Z∗ := Z +∫ ·
0
γ1(s)ds and Z⊥∗

:= Z⊥ +
∫ ·
0
γ2(s)ds, and set W ∗ := ρZ∗ + ρZ⊥∗

, so that the SDE for the stock

price becomes

dSt

St
= µtdt+

√
Vt
(
ρdZt + ρdZ⊥

t

)
=
(
µt − (ργ1(t) + ργ2(t))

√
Vt

)
dt+

√
VtdW

∗
t .
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In order to ensure that the discounted stock price process is a local martingale, we therefore need

to set µt − rt = (ργ1(t) + ργ2(t))
√
Vt. Note that the Feller condition (see below in Section 4.2.3)

ensures that the process V remains strictly positive almost surely. Heston, in his seminal paper [81],

proposes the restrication γ1(t) = λ
√
Vt, for some λ > 0. Under Q, the stochastic differential

equation satisfied by the variance process then reads

dVt = κ (θ − Vt) dt+ ξ
√
Vt (dZ∗

t − γ1(t)dt) ,

= (κθ − (κ+ λξ)Vt) dt+ ξ
√
VtdZ

∗
t ,

= κ̃
(
θ̃ − Vt

)
dt+ ξ

√
VtdZ

∗
t , (4.2.7)

where we set κ̃ := κ+ λξ and θ̃ := κθ/κ̃. Regarding the second market price of risk, we obtain

γ2(t) =
1

ρ

(
µt − rt√

Vt
− ρλ

√
Vt

)
.

In order for the Equivalent Local martingale Measure (ELMM) to exist, we need the process L

defined in (4.2.6) to be a true martingale, e.g. E(Lt) = 1 for all t ≥ 0. Note that we can decompose

it as L = L1L2, where, for any t ≥ 0,

L1
t := exp

{
−
∫ t

0

γ1(s)dZs −
1

2

∫ t

0

γ21(s)ds

}
,

L2
t := exp

{
−
∫ t

0

γ2(s)dZ⊥
s − 1

2

∫ t

0

γ22(s)ds

}
.

Since the variance process and the Brownian motion Z⊥ are independent, then clearly E(L2
t ) = 1

and E(Lt) = E(L1
t ) for all t ≥ 0. The proof of the existence of the ELMM rests on the following

results, which we shall prove later, albeit under a slightly different form:

Lemma 4.2.1. For any α ≥ 0, β ≥ −κ/(2ξ2), E
(

exp
{
−αVt − β

∫ t

0
Vsds

})
is finite for all t ≥ 0.

As a corollary, taking α = 0, any β ∈ [−κ/(2ξ2), 0], the lemma, combined with Novikov’s

condition implies that for any |λ| ≤ κ/ξ, E(L1
t ) = 1, and an ELMM exists.

Proposition 4.2.2. For any λ > 0, t ≥ 0, E(L1
t ) = 1.

Proof. Rearranging the stochastic differential equation satisfied by the variance process, we can

write, for any t ≥ 0,

λ

∫ t

0

√
VsdZs =

λ

ξ

(
Vt − V0 + κθ

∫ t

0

ds− κ

∫ t

0

Vsds

)
,

so that

E(L1
t ) = exp

{
λ

ξ
(V0 + κθt)

}
E
(

exp

{
−λVt

ξ
−
(
λκ

ξ
+
λ2

2

)∫ t

0

Vsds

})
,

and the result follows from Lemma 4.2.1 with α = λ/ξ and β = λκ
ξ + λ2

2 .
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Note that we have only determined here whether there exist (at least) an Equivalent Local

Martingale Measure. The underlying stock price is a non-negative martingale, and hence a super-

martingale, but is not necessarily a true martingale under this ELMM.

Proposition 4.2.3. Assume that an equivalent local martingale measure Q exists. Then the

discounted stock price is a Q-martingale if κ+ λξ ≥ ρξ.

Proof. Let Q be such an equivalent local martingale measure, and recall that, under Q, the variance

process satisfies the stochastic differential equation (4.2.7). It is clear that it is enough to prove

that EQ(e−rtSt) = 1 for all t ≥ 0. The SDE for the stock price process can be rewritten as

St = S0 exp

{
rt− 1

2

∫ t

0

Vsds+ ρ

∫ t

0

√
VsdZ

∗
s + ρ

∫ t

0

√
VsdZ

⊥∗

s

}
.

Conditioning on the filtration generated by the Brownian motion Z⊥, we obtain

E(St) = S0ert exp

{
−ρ

2

2

∫ t

0

Vsds+ ρ

∫ t

0

√
VsdZ

∗
s

}
,

and the proposition follows directly from the analysis above.

4.2.3 The Heston model

We now introduce the Heston stochastic volatility model, which is among the most widely used

models in mathematical finance. We shall explain later some of the reasons for this success, but

let us first describe some properties. The SDE satisfied by the log stock process X := log(S) reads

dXt = −1

2
Vtdt+

√
VtdWt, X0 = x0 ∈ R,

dVt = κ (θ − Vt) dt+ ξ
√
VtdZt, V0 = v0 > 0,

d⟨W,Z⟩t = ρdt,

(4.2.8)

where κ, θ, ξ > 0, ρ ∈ [−1, 1]. For ease of notation, we shall write X ∼ H(κ, θ, ρ, ξ, v0). We have

assumed here that interest rates are null, and fixed a priori a given equivalent local martingale mea-

sure under which the (discounted) stock price is a true martingale. The Feller SDE for the variance

process has a unique strong solution by the Yamada-Watanabe conditions (see [95, Proposition

2.13, page 291] or Theorem 3.1.22 in Chapter 3). The X process is a stochastic integral of the V

process and is therefore well-defined. The Feller condition 2κθ > ξ2 ensures that the origin is an

unattainable boundary for the variance process. If this condition is violated, then the origin is an

attainable, regular and reflecting boundary (see [96, Chapter 15] for the classification of boundary

points of one-dimensional diffusions). For any 0 ≤ s ≤ t, we can compute the conditional (at

time s) expectation and variance of the variance process at time t:

Es(Vt) = Vs + Es

(∫ t

s

dVu

)
= Vs + Es

(∫ t

s

[
κ(θ − Vu)du+ ξ

√
VudZu

])
= Vs + κθ(t− s) − κEs

(∫ t

s

Vudu

)
.
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Differentiating this equation in time, we obtain

dEs(Vt)

dt
= κθ − κEs(Vt),

which is a simple ordinary differential equation with boundary condition Es(Vs) = Vs, so that

Es(Vt) = θ + (Vs − θ)e−κ(t−s).

In particular, note that limt↑∞ Es(Vt) = θ, so that θ represents the long-term mean of the variance.

Regarding the conditional variance, we first apply Itô’s formula to obtain

dV 2
t = 2VtdVt + d⟨V, V ⟩t = κ

(
θ̃ − Vt

)
Vtdt+ ξV

3/2
t dZt,

where we set θ̃ := 2θ + ξ2/κ. Taking conditional expectation, we obtain

Es(V
2
t ) = V 2

s + Es

(∫ t

s

dV 2
u

)
= V 2

s + Es

(∫ t

s

[
κ
(
θ̃ − Vu

)
Vudu+ ξV 3/2

u dZu

])
= V 2

s + κθ̃Es

(∫ t

s

Vudu

)
− κEs

(∫ t

s

V 2
u du

)
.

Differentiating in time, we obtain

dEs(V
2
t )

dt
= κθ̃Es(Vu) − κEs(V

2
u ),

which is again a simple ordinary differential equation whose explicit solution reads

Vs(Vt) =
ξ2Vs
κ

(
e−κ(t−s) − e−2κ(t−s)

)
+
θξ2

2κ

(
1 − e−κ(t−s)

)2
.

In the Heston model, the stock price is a Doléans-Dade exponential S· = S0E(V ◦W )·, where

E(V ◦ W )t := exp

(∫ t

0

√
VsdWs −

1

2

∫ t

0

Vsds

)
.

Before using the model for modelling purposes, we first need to check whether S is a true martingale.

It is a positive local martingale, hence a supermartingale, so we only need to show that E(St) = 1

for all t ≥ 0. The Novikov condition ensures that this is the case (see [95, Section 3.5.D]):

Proposition 4.2.4. LetM be a (Ft)-continuous local martingale and Zt := exp
(
Mt − 1

2 ⟨M,M⟩t
)
,

for all t ≥ 0. If E
(
exp

(
1
2 ⟨M,M⟩t

))
is finite, then E(Zt) = 1 for all t ≥ 0.

In the Heston case, we therefore simply need to show that E
(

exp( 1
2

∫ t

0
Vsds)

)
is finite for all

t ≥ 0; in fact, the following theorem immediately follows from Proposition 4.2.3 setting λ = 0.

Theorem 4.2.5. In the Heston model, the stock price is a true martingale.

The theorem follows from the following representation of the characteristic function of the

process: for any t ≥ 0, define the characteristic function of Xt by ϕt(u) := E
(
eiuXt

)
, u ∈ R. Then

the following holds:
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Proposition 4.2.6. For any real number u, ϕt(u) = exp
(
iux0 + C(u, t) +D(u, t)v0

)
, where

C(u, t) :=
κθ

ξ2

(
(χiu + γiu) t− 2 log

(
ζiueγiut − 1

ζiu − 1

))
,

D(u, t) :=
χiu + γiu

ξ2

(
eγiut − 1

ζiueγiut − 1

)
,

γu :=
√
χ2
u − ξ2u(u− 1), ζu :=

χu + γu
χu − γu

, χu := κ− ρξu.

Remark 4.2.7. This representation of the characteristic function is special since its logarithm

is a linear function of the state variable x0 and v0. This turns out to be more than a simple

mathematical curiosity, and falls into the realm of so-called affine models, as introduced by Duffie,

Filipovic and Schachermayer [47]. This constitutes a large class of (multi-dimensional) Markov

models (with or without jumps), for which the characteristic function can be computed via a

system of (generalised) Riccati equations. Martin Keller-Ressel [98] studied the behaviour of a

subclass of these, namely the affine stochastic volatility models, which are essentially the Heston

model with additional state-dependent and state-independent jumps, both in the stock price and

in the variance dynamics.

Proof. For any ξ ∈ R, 0 ≤ t < T , x ∈ R, v > 0, define the function ψ(t, x, v) ≡ E
(
eiuXT |Xt = x, Vt = v

)
.

Then Feynman-Kać lemma yields(
v

2
∂xx + ρξv∂xv +

ξ2v

2
∂vv −

v

2
∂x + κ(θ − v)∂v + ∂t

)
ψ = 0, (4.2.9)

with boundary conditions ψ(T, x, v) = eiux. Let us consider a solution of the form ψ(t, x, v) ≡

Φ(τ, v)eiux, with τ := T − t. Equation (4.2.9) then becomes(
ξ2v

2
∂vv + (iuρξv + κ(θ − v)) ∂v −

v

2

(
u2 + iu

)
− ∂τ

)
Φ = 0,

with boundary condition Φ(0, v) = 1. Assuming that there exist two functions C and D such that

Φ(τ, v) ≡ exp (C(τ) + vD(τ)), we obtain the following system of Riccati [129]2 equations: Ḋ(τ) =
ξ2

2
D(τ)2 + (iuρξ − κ)D(τ) − u2 + iu

2
,

Ċ(τ) = κθD(τ),

with boundary conditions C(0) = D(0) = 0. It turns out that this system admits a closed-form

solution, which proves the proposition.

A special case: the Heston-Nandi model

On Equity markets, the observed implied volatility smile is essentially decreasing, with very little

uplift on the large-strike side. Heston and Nandi [82] therefore suggested to consider a (discrete

2The original paper by Jacopo Riccati (1724), in latin, and its English translation are available at

http://www.17centurymaths.com/contents/euler/rictr.pdf

http://www.17centurymaths.com/contents/euler/rictr.pdf
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time version of) the anticorrelated version of the Heston model, i.e. considering ρ = −1. In this

case, it is easy to show that the stock price is bounded above almost surely:

Proposition 4.2.8. For any t ≥ 0, Xt ≤ x0 + 1
ξ (V0 + κθt) almost surely.

Remark 4.2.9. As a corollary, the implied volatility is null above the upper bound (see Proposi-

tion 2.1.22 in Chapter 2).

Proof. Since the correlation parameter is equal to −1, we can rewrite the Heston stochastic differ-

ential equations (4.2.8) as

dXt = −1

2
Vtdt+

√
VtdWt, X0 = x0 ∈ R,

dVt = κ (θ − Vt) dt− ξ
√
VtdWt, V0 = v0 > 0,

so that, for any t ≥ 0,

Xt = x0 −
1

2

∫ t

0

Vsds+
1

ξ

∫ t

0

(κ(θ − Vs)ds− dVs) = x0 +
V0 + κθt

ξ
−
∫ t

0

(
1

2
+
κ

ξ

)
Vsds−

Vt
ξ
.

Since Vt is non-negative almost surely, the proposition follows.

Multivariate Heston model

A straightforward extension of the Heston model consists of adding several layers of volatility

processes, as follows: let n ∈ N, and consider the unique strong solution to the following SDE:

dXt = −1

2

n∑
i=1

V
(i)
t dt+

n∑
i=1

√
V

(i)
t dW

(i)
t , X0 = x0 ∈ R,

dV
(i)
t = κi

(
θi − V

(i)
t

)
dt− ξi

√
V

(i)
t dZ

(i)
t , i = 1, . . . , n V

(i)
0 = v

(i)
0 > 0,

d
⟨
W (i), Z(j)

⟩
t

= ρi11{i=j}dt, i, j = 1, . . . , n,

d
⟨
W (i),W (j)

⟩
t

= d
⟨
Z(i), Z(j)

⟩
t

= 0, i, j = 1, . . . , n,

(4.2.10)

where κ = (κ1, . . . , κn) ∈ (0,∞)n, ρ ∈ (−1, 1)n, θ ∈ (0,∞)n, ξ ∈ (0,∞)n, v0 ∈ (0,∞)n. Because

of the special structure of the correlation matrix of the Brownian motions, it can be shown that the

characteristic function E(eiuXt) can be represented as the product of standard Heston models:

E
(
eiuXt

)
=

n∏
i=1

E
(

eiuX
(i)
t

)
,

for any t ≥ 0, u ∈ R, where X(i) ∼ H(κi, θi, ρi, ξi, v
(i)
0 ), with initial condition X

(i)
0 = x0.

Uncorrelated displaced Heston model

The uncorrelated displaced Heston stochastic volatility model is a slight modification of the un-

correlated Heston model, where the stock price process satisfies the following SDE:

dSt = (βSt + (1 − β)S0)
√
VtdWt, S0 > 0,

dVt = κ (θ − Vt) dt+ ξ
√
VtdZt, V0 > 0,
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where the two Brownian motions W and Z are uncorrelated, and where β ∈ [0, 1] represents the

displacement parameter. Pricing under this model is equivalent to pricing under a rescaled Heston

model. Indeed, let S̃t := βSt + (1 − β)S0 for all t ≥ 0; then log(S̃) ∼ H(κ, β2θ, ρ, βξ, β2v0).

Therefore, the price of a European Call on S with strike ex reads

E (St − ex)+ =
1

β
E
(
S̃t − (1 − β)S0 − βex

)
+

=
1

β
E
(
S̃t − ex̃

)
+
,

where x̃ := log ((β − 1)S0 − βex).

4.2.4 Other popular stochastic volatility models

The 3/2 model

Consider the following stochastic volatility model for the logarithmic stock price process (Xt)t≥0,

dXt = −1

2
Vtdt+

√
VtdWt, X0 = x0 > 0,

dVt = κVt (θ − Vt) dt+ ξV
3/2
t dZt, V0 = v0 > 0,

d ⟨W,Z⟩t = ρdt,

(4.2.11)

with κ > 0, θ > 0, ξ > 0, |ρ| < 1. Let us first assume that the variance process (Vt)t≥0 never hits

the origin almost surely, and define its inverse Zt := V −1
t for all t ≥ 0. By Itô’s lemma, we obtain

dZt =
(
κ+ ξ2 − κθZt

)
dt− ξZ1/2

t dWt, with Z0 = v−1
0 . Define now κ̃ := κθ and θ̃ :=

κ+ ξ2

κθ
. Then

the process (Zt)t≥0 is equal in law to the Feller diffusion defining the variance in the Heston model.

The Feller condition, κ+ 1
2ξ

2 ≥ 0, is always satisfied when κ > 0. Define now the functions

µu := 1 +
2γ̃u
ξ2

, βt :=
v0
κθ

(
eκθt − 1

)
,

αu :=
γ̃u − χ̃u

ξ2
, χ̃u := χ(u) +

1

2
ξ2, γ̃u :=

(
χ̃2
u − ξ2u (u− 1)

)1/2
,

(4.2.12)

with χ defined in Proposition 4.2.6. Recall the Kummer—confluent hypergeometric—function:

M (α, µ, z) :=
∑
n≥0

(α)n
(µ)n

zn

n!
,

where the Pochhammer symbol is defined by (α)0 = 1 and (α)n := α (α+ 1) · · · (α+ n− 1), n ≥ 1.

Remark 4.2.10. If ℜ(µ) > 0 and ℜ(α) > 0 then M admits the following representation:

M(α, µ, iz) = E
(
eizY

)
=

Γ(µ)

Γ(α)Γ(µ− α)

∫ 1

0

eizxxα−1(1 − x)µ−α−1dx,

where Y is a Beta-distributed random variable with parameters α and µ− α.

The following lemma can be found in [27].

Lemma 4.2.11. For any t ≥ 0,

E
(
euXt

)
= eux0

Γ (µu − αu)

Γ (µu)

(
2

βtξ2

)αu

M

(
αu, µu,

−2

βtξ2

)
,

for all u ∈ R such that the right-hand side is a well-defined real number.
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The Schöbel-Zhu model

Introduced in [142], the Schöbel-Zhu stochastic volatility model is an extension to non zero spot-

volatility correlation of the Stein & Stein [147] model in which the logarithmic spot price process

(Xt)t≥0 satisfies the following system of SDEs

dXt = −1

2
σ2
t dt+ σtdWt, X0 = x0 ∈ R,

dσt = κ (θ − σt) dt+ ξdZt, σ0 > 0,

d ⟨W,Z⟩t = ρdt,

(4.2.13)

where κ, θ and ξ are strictly positive real numbers, ρ ∈ [−1, 1] and W,Z are two correlated standard

Brownian motions. The volatility process (σt)t≥0 is Gaussian and hence the SDE is well defined.

The process (Xt)t≥0 is simply the integrated volatility process and hence is well defined as well.

The cumulant generating function ΛSZ(·, t) of the process (Xt)t≥0 reads (see [94])

ΛSZ(u, t) = ΛĤ(u, t) +A(u, t) +B(u, t)σ0, (4.2.14)

where Ĥ (κ, θ, ρ, ξ, v0) := H
(

2κ, ξ2

2κ , ρ, 2ξ, v0

)
. Furthermore

B(u, t) :=
κθ

ξ2
χu − γu
γu

(1 − exp (−γut))2

1 − ζu exp (−2γut)
,

A(u, t) :=
κ2θ2

2γ3uξ
2

(χu − γu)

χu (γut− 2) + γu (γut− 1) + 2e−γut
2χu +

γ2
u−2χ2

u

χu+γu
e−γut

1 − ζue−2γut


where the functions χ, γ, ζ are the same as in the Heston model (Proposition 4.2.6). It is clear from

the form of the Laplace transform that this model is not affine in the same sense as the Heston

model, but is affine on the extended state space
(
Xt, σ

2
t , σt

)
t≥0

.

The ExpOU model

In the ExpOU model the variance is driven by the exponential of an Ornstein-Uhlenbeck process. It

was first introduced by Scott [143] without correlation between the stock price and its instantaneous

variance. The generalised version of it—with correlation—satisfies the following system of SDEs:

dXt = −1

2
eYtdt+

√
eYtdWt, X0 = 0,

dYt = κ(θ − Yt)dt+ ωξdZt, Y0 = θ,

d ⟨W,Z⟩t = ρdt,

(4.2.15)

with κ > 0, θ ∈ R, and ω > 0. However, the characteristic function is not available in closed form,

and hence the only pricing methods are numerical simulation (Monte Carlo) and finite differences.
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Linear approximation of the ExpOU model

In [21], the authors give a closed-form expression for the characteristic function, under the risk-

neutral measure, of a linear approximation of the ExpOU process (4.2.15):

dXt = −1

2
(2Lt − 1 + Mt) dt+ LtdWt, X0 = 0,

dLt = κ (γ − Lt) dt+ ξdZt, L0 = l0,

d⟨W,Z⟩t = ρdt,

(4.2.16)

where Mt is a deterministic factor ensuring that the stock price process is a true martingale and

the other parameters are as in (4.2.15). The characteristic function is given in [21, Equation 2.8].

4.2.5 Fractional stochastic volatility models

One of the key assumptions among all the stochastic (volatility) models we have seen above is that

the drivers are standard Brownian motions. As irregular as the paths might look like, Brownian

motion is a Markov process, and hence has no memory. It has long been observed, by the economet-

rics community, that the instantaneous volatility exhibits long memory, which is not compatible

with the Brownian framework (see for example the discrete-time literature on ARCH, GARCH,

FIGARCH,....). We shall briefly show here how to relax the Brownian assumption in order to allow

for more general drivers.

Fractional Brownian motion

Definition 4.2.12. A fractional Brownian motion (WH
t )t≥0 with Hurst exponent H ∈ (0, 1) is a

Gaussian process with covariance function

RH(s, t) := E(WH
t W

H
s ) =

1

2

(
s2H + t2H − |t− s|2H

)
.

This process was introduced by Kolmogorov [100] and originally studied by Mandelbrot and

Van Ness [113]. The Hurst exponent got its name from the climatologist Hurst [85], who used it

the yearly water run-offs of the Nile river. It possesses the following interesting properties:

• there exists a version of the fractional Brownian motion with continuous trajectories.

• The paths of the fBm are Hölder continuous of order H − ε, for any ε > 0.

• Self-similarity: For any α > 0, t ≥ 0, the random variables α−HWH
αt and WH

t have the same

distributions.

• Stationary increments: for any 0 ≤ s ≤ t, the increment WH
t −WH

s is Gaussian with mean

zero and variance |t− s|2H .



4.2. Stochastic volatility models 106

• When H = 1/2, the covariance function reads RH(s, t) ≡ min(s, t), so that WH is a standard

Brownian motion. However, whenever H ̸= 1/2, the increments are not independent.

• The sequence {WH
n −WH

n−1, n ≥ 1} is a Gaussian stationary sequence with variance equal

to one and covariance

ρH(n) := E
[
WH

1

(
WH

n −WH
n−1

)]
= E

(
WH

1 W
H
n

)
− E

(
WH

1 W
H
n−1

)
= RH(1, n) −RH(1, n− 1)

=
1

2

(
n2H − |n− 1|2H − (n− 1)2H + |n− 2|2H

)
= H(2H − 1)n2H−2 + O

(
n2H−3

)
, as n tends to infinity,

which converges to zero. In particular, if H > 1/2, the series
∑

n≥1 ρH(n) diverges to

infinity, and the sequence {WH
n −WH

n−1, n ≥ 1} is said to have long-range dependence. On

the contrary, when H < 1/2, the series converges absolutely, and the sequence has short-range

dependence.

• The fractional Brownian motion is the only self-similar Gaussian process with stationary

increments.

Rough volatility

In [31], Comte and Renault proposed the following fractional stochastic volatility model:

dXt = −1

2
e2σtdt+ eσtdBt, X0 = 0,

dσt = κ(θ − σt)dt+ ξdWH
t , σ0 > 0,

(4.2.17)

where B is a standard Brownian motion and WH a fractional Brownian motion with Hurst expo-

nent H. The two Brownian motions can exhibit a correlation structure. Instead of following this

path, one could start with the simple Black-Scholes model, where the driving Brownian motion is

replaced by a fractional one. However, as proved by Rogers [131], the process WH (and hence the

solution to the fractional SDE dSt = StdW
H
t ) is not a semimartingale whenever H ̸= 1/2. As dis-

cussed in Chapter 1, the whole pricing framework, developed by Delbaen and Schachermayer [41]

is based on the semimartingale assumption. In fact, when the latter fails, no-arbitrage theory

essentially breaks down, thus giving no hope for a fractional version of Black-Scholes. Here, in the

fractional stochastic volatility model, the stock price remains a semimartingale, and no-arbitrage

theory carries over. Left aside for a decade, these models have recently been dug out from their

temporary graves, and Gatheral, Jaisson and Rosenbaum [71] have calibrated the model to the

S&P 500, showing that the Hurst parameter should be close to 0.11. This indicates extremely rough

paths for the volatility process, much more irregular than those of standard stochastic volatility

models, and short memory. The main drawback, at least for now, of these rough models, is the

actual pricing side, for which numerical methods are currently not efficient enough.
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4.2.6 The Uncertain Volatility Model

We have so far assumed that the instantaneous volatility of the stock price process was either

stochastic or depended directly on the asset price. In 1995, Avellaneda, Levy and Paras [6] and

Lyons [111] suggested a different route, later refined by Denis and Martini [44]. Consider the

diffusion, on a given probability space (Ω,F , (Ft)t≥0,P),

dSt = σtStdWt, S0 = 1, (4.2.18)

where W is a standard F-adapted Brownian motion. The stochastic process (σt)t≥0 is assumed

to be progressively measurable and valued in some interval A = [σ, σ] ⊂ [0,∞]. Let now T ≥ 0 be

a fixed time horizon, φ : R+ → R+ a payoff with at most linear growth, and define the following

value function:

V (t, s) := sup
σ∈A

E [φ(ST )|St = s] , for all t ∈ [0, T ], s ≥ 0. (4.2.19)

From the point of view of an option seller, V (·) corresponds to a worst-case scenario, and clearly

super-replicates the European option with payoff φ. Since S is a non-negative supermartingale, the

value function V inherits the growth property of φ and is locally bounded. This super-replicating

problem can be seen as a stochastic control problem, where the Hamiltonian reads

H(s,M) := sup
α∈[α,α]

{
1

2
α2s2M

}
, for all (s,M) ∈ (0,∞) × R.

We follow here the excellent book on stochastic control with financial applications by Pham [123],

and in particular Section 4.6 therein. Consider first the case where the upper bound σ is finite.

In that case, the Hamiltonian is finite everywhere, and clearly H(s,M) = 1
2 σ̂(M)s2M , where

σ̂(M) := σ11{M≥0} + σ11{M<0}, and the following holds.

Theorem 4.2.13. If σ is finite, then the value function V is continuous on [0, T )× (0,∞) and is

the unique viscosity solution with linear growth of the Black-Scholes-Barenblatt equation

∂tV (s, t) +
1

2
σ̂2 (∂ssV (s, t)) s2∂ssV (s, t) = 0, on (t, s) ∈ [0, T ) × (0,∞), (4.2.20)

with boundary condition V (s, T ) = φ(s) for all s > 0.

Remark 4.2.14. When σ is strictly positive, existence and uniqueness of a smooth solution

to (4.2.20) is guaranteed under the Cauchy boundary condition (see for instance [39] or [58] for

general results on viscosity solutions of partial differential equations).

Let us now consider the case where σ is infinite, so that the instantaneous volatility is unbounded

above. In that case, the Hamiltonian of the control problem reads

H(s,M) =

 1
2σ

2s2M, if M ≤ 0,

+∞, if M > 0.
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The value function defined in (4.2.19) is then the viscosity solution to the following variational

inequality:

max

{
∂tV +

1

2
σ2s2∂ssV, ∂ssV

}
0, for (t, s) ∈ [0, T ) × (0,∞),

together with the boundary condition V (T−, s) ≡ φ̃(s) on (0,∞), where φ̃ is the smallest function

dominating φ and satisfying ∂ssφ̃(s) ≥ 0 on (0,∞) in the viscosity sense.

Theorem 4.2.15. If σ = ∞, then the value function satisfies

V (t, s) = E
[
φ̃
(
S̃T

)
|S̃t = s

]
,

for all (t, s) ∈ [0, T ] × (0,∞), where S̃ is the unique strong solution to the stochastic differential

equation dS̃t = σS̃tdWt, starting at S̃0 > 0.

4.2.7 The ‘new’ generation

Local-stochastic volatility models

Variance curve models

In a series of papers, Lorenzo Bergomi proposed the following model for the dynamics of the log

stock price process:

dXε
t = −1

2
ξt(t) +

√
ξt(t)dZt, Xε

0 = 0,

dξt(u) = ελ(t, u, ξt) · dWt,
(4.2.21)

where we normalised the initial value of the stock price and assumed no interest rate or dividend;

W a d-dimensional Brownian motion, and (Zt)t≥0 is a standard Brownian motion, which may be

correlated with the components of W . The forward variance curve ξ·(·) is defined as

ξt(u) := E [ξu(u)|Ft] .

As ε becomes small, Bergomi and Guyon showed that the price of a European option on exp(Xε)

had the following expansion:

P =

{
1 +

ε

2
Cx,ξ∂xx (∂x − 1) + ε2

[
1

8
Cξξ (∂x − 1)

2
+

1

8

(
Cxξ

)2
∂4x (∂x − 1)

2
+

1

2
Cµ∂3x (∂x − 1)

]}
BS.

The covariance functions are given by

Cxξ :=

∫ T

0

dt

∫ T

t

E (dXtdξt(u))

dt
du,

Cξξ :=

∫ T

0

dt

∫ T

t

ds

∫ T

t

E (dξt(s)dξt(u))

dt
du,

Cµ :=

∫ T

0

dt

∫ T

t

E (dXtdξt(u))

dt

∂Cxξ
t

∂ξt(u)
du.
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Application to the Heston model

Introducing jumps

4.3 Hedging: which volatility to choose?

We have so far studied different notions of volatility. We would now like to revisit the standard

Black-Scholes Delta hedging theory in light of the following question: suppose an investor buys

an option Vi (with maturity T > 0) today and delta-hedges it with some stock. The Delta

hedge quantity is computed via the Delta of the option, using the Black-Scholes formula, with

some volatility parameter. However which volatility parameter should one choose for the hedge?

Clearly, the option is bought at the implied volatility Σ. We assume that the stock price process

(St)t≥0 is the unique strong solution to the following stochastic differential equation:

dSt/St = µdt+ σdWt, S0 > 0,

where σ represents the actual realised volatility, and µ the actual realised drift. Let us first assume

that the hedge is performed using the realised volatility σ. At inception of the contract, the investor

buys the option, sells a quantity ∆R of the stock, having a cash position worth −Vi + ∆RS, where

we denote by ∆R (resp. ∆i) the Black-Scholes Delta computed with the realised volatility σ (resp.

with the implied volatility Σ). Over a short period of time, the dynamics of the P&L reads

dP&L = dVi − ∆RdS − r (Vi − ∆RS) dt, (4.3.1)

where r represents the risk-free interest rate over the period. Note that, had the investor bought the

option at the volatility price σ, then dP&L would be null, namely dVR−∆RdS−r (VR − ∆RS) dt.

Plugging this expression in the P&L equation, we obtain

dP&L = dVi − dVR − r(Vi − VR)dt = ertd
[
e−rt(Vi − VR)

]
,

so that the present value of the P&L reads

PV (P&L) =

∫ T

0

e−rtdP&L = VR − Vi. (4.3.2)

This in particular implies that the final P&L is known and deterministic as soon as we know the

realised volatility σ.

Let us now consider a more dynamic version of this result. Itô’s lemma reads

dP&L =

(
θidt+ ∆idSt +

1

2
σ2ΓiS

2
t dt

)
− ∆RdSt − r(Vi − ∆RSt)dt

=

(
θi +

1

2
σ2Γ2

iS
2
t

)
dt+ (∆i − ∆R)dSt − r(Vi − ∆RSt)dt

=
1

2
Γ2
iS

2
t

(
σ2 − Σ2

)
dt+ (∆i − ∆R) [(µ− r)Stdt+ σStdWt] ,
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where θi and Γi respectively represent the Theta and the Gamma of the option computed in the

Black-Scholes model with the implied volatility Σ. The third line follows from the Black-Scholes

equation θi = −1
2Σ2S2

t Γi + rVi − rSt∆i. Note that, even though (Equation (4.3.2)) the final P&L

is deterministic, its differential increments are random.

Let us now assume, in this dynamic framework, that the hedging is performed using the implied

volatility Σ rather than the realised volatility σ. The dynamic equation (4.3.1) then reads dP&L =

dVi − ∆idS − r (Vi − ∆iS) dt. Applying Itô’s formula again, we obtain

dP&L =

(
θidt+ ∆idSt +

1

2
σ2ΓiS

2
t dt

)
− ∆idSt − r(Vi − ∆iSt)dt

=
1

2
ΓiS

2
t

(
σ2 − Σ2

)
dt,

where we, again, used the Black-Scholes partial differential equation satisfied by Vi. Therefore the

present value of the P&L is worth

PV (P&L) =
1

2

∫ T

0

e−rtΓiS
2
t

(
σ2 − Σ2

)
dt.

4.3.1 Application to volatility arbitrage

See for example the report and slides of the Mid-term project ‘Volatility Arbitrage in Delta Hedging’

(available on the course webpage).

4.4 Put-Call symmetry

We are interested here in the symmetry arising between European Put options and European Call

options. Note that this is different from the standard Put-Call parity. We will in particular see

how this symmetry property informs us about the properties of the implied volatility smile.

4.4.1 Black-Scholes

Consider the Black-Scholes model dSt/St = rdt+σdWt with S0 > 0. Since the discounted process

(e−rtSt)t≥0 is a true martingale, then we can define—via the Radon-Nikodym derivative—a new

probability measure P∗ by

dP∗

dP

∣∣∣∣
Ft

:=
St

S0ert
= exp

(
−σ

2

2
t+ σWt

)
.

Using the Girsanov change of measure and the fact that W ∗
t := Wt − σt is a standard Brownian

motion under P∗, we obtain that e2rt
S2
0

St
= S0e−σW∗

t +(r− 1
2σ

2)t has the same law under P∗ as St
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under P. Therefore

BS(K,T, σ) := e−rTE(ST −K)+ = e−rT K

S0erT
E

[
ST

S0erT

(
(S0erT )2

K
− (S0erT )2

ST

)
+

]

= e−rT K

S0erT
E∗
(

(S0erT )2

K
− S0e(r−

1
2σ

2)T+σW∗
T

)
+

=
K

S0erT
PBS

(
(S0erT )2

K
,T, σ

)
.

Using the change of coordinates x := log(K/S0) − rT , the above expression reduces to

C̃BS(x, T, σ) = exP̃BS(−x, T, σ). (4.4.1)

4.4.2 Stochastic volatility models

We now look at the implications of the above symmetry in the framework of stochastic volatility

models. Let us therefore assume that the discounted stock price (e−rtSt)t≥0 is a true martingale

under a given risk-neutral measure P. This process is no longer restricted to the Black-Scholes

framework and follows the dynamics

dSt/St = rdt+ ξtdWt, S0 > 0,

dξt = b(t,Xt)dt+ a(t,Xt)dBt, ξ0 > 0,

d ⟨W,B⟩t = ρdt,

(4.4.2)

where W and B are two correlated Brownian motions (ρ ∈ (−1, 1)), and the coefficients b and a

are such that a unique strong solution exists. A similar analysis holds, but the process (S∗
t )t≥0

defined pathwise by S∗
t := e2rtS2

0/St, which is a true martingale under P∗ does not necessarily have

the same law as S under P. Still, the equality C̃(x, T ) = exP̃ ∗(−x, T ) holds. Since the implied

volatility σT (x) satisfies the equation C̃(x, T ) = C̃BS(x, T, σT (x)), using (4.4.1), we also obtain the

equality

P̃ ∗
(
S2
0e2rT

K
,T

)
= P̃BS

(
S2
0e2rT

K
,T, σT (K)

)
.

The Put-Call parity therefore implies

C̃∗
(
S2
0e2rT

K
,T

)
= C̃BS

(
S2
0e2rT

K
,T, σT (K)

)
,

and hence σT (K) is also the implied volatility corresponding to a (European) Call option with

strike
S2
0e

2rT

K in the transformed model under P∗: σ̃(x, T ) = σ̃∗(−x, T ).

This analysis, developed in [127], is particularly revealing when one consider the case of an

uncorrelated stochastic volatility model, where ρ = 0. Indeed, in that case, the law of the stochastic

volatility process ξ remains unchanged under P∗, so that the law of S∗ under P∗ is the same as

that of S under P. In particular this implies that σ̃(x, T ) = σ̃(−x, T ) for any x ∈ R and T ≥ 0,

i.e. the smile is symmetric.



4.5. Link with the Skorokhod embedding problem 112

4.5 Link with the Skorokhod embedding problem

Consider the diffusion process dSt = σtStdWt, starting at S0 > 0, on some given probability

space (Ω,F , (Ft)t≥0,P), where (σt)t≥0 is F-adapted. Denote by Vt := ⟨S⟩t the quadratic variation

process of S and let Mt := St − S0. We assume that σ is such that S is a true P-martingale, so

that the Dambis-Dubins-Schwartz theorem implies that the process (Bt)t≥0 defined pathwise by

Bt := Minf{u:⟨M⟩u≥t}

is a Brownian motion such that Mt = B⟨B⟩t = B⟨S⟩t and hence St = S0 +B⟨M⟩t .

Consider now an option written on both the stock price and the realised variance, with pay-

off Φ(ST , VT ) at some maturity T > 0. Given that no assumption has been made no the pro-

cess (σt)t≥0, it is in general not possible to determine an exact price; however, bounds can be

determined as follows.

sup
σ

EΦ(ST , VT ) = sup
σ

EΦ
(
⟨S⟩T , S0 +B⟨M⟩t

)
= sup

τ,FB−stopping time

EΦ (τ, S0 +Bτ ) .

A similar statement obviously holds for the infimum. However, these bounds are usually too large

to be useful (in the case of the variance swap, for instance, they yield the interval (0,∞)). In order

to refine this approach, one can add market constraints, namely that, at maturity T , the law of

the underlying ST −S0 is known, say µT . Note that this law is fully determined by the knowledge

of all European Call and Put options maturing at T . The new problem then reads

sup
τ,FB−stopping time

EΦ(τ, S0 +Bτ ),

subject to Bτ ∼ µτ .

(4.5.1)

This is reminiscent of the original Skorokhod Embedding Problem:

Given a measure µ such that
∫
xµ(dx) = 0 and

∫
x2µ(dx) <∞, find a stopping time τ

with E(τ)∞, such that Bτ ∼ µ, where B is a standard Brownian motion.

This was first proposed by Skorokhod in 1964 (see [145] for an English translation), and many

solutions, with different properties, have been proposed since. We refer the reader to the excellent

survey paper [122] for details about these solutions. One of the simplest solutions is that of

Hall [79]: let U and V denote two random variables with joint law ρ given by

ρ(du,dv) ≡ |u| + v

α
µ(du)µ(dv)11{u<0}11{v≥0},

where α :=
∫∞
0
xµ(dx) is well defined by assumption. We now show that the stopping time

τ := inf{t ≥ 0 : Bt /∈ (U, V )} satisfies the Skorokhod embedding problem. For u < 0, we have

P(Bτ ∈ du) =

∫
[0,∞)

P(U ∈ du, V ∈ dv)P(Bτ ∈ du|U ∈ du, V ∈ dv) =

∫
[0,∞)

ρ(du,dv)
v

|u| + v
= µ(du).
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Furthermore,

E(τ) = E[E(τ(U, V )] =

∫ 0

−∞

∫ ∞

0

ρ(du, dv)

(
u2v

|u| + v
+

v2u

|u| + v

)
=

∫
R
u2µ(du),

which is finite by assumption; we have used here the martingale stopping theorem applied to the

martingale process (B2
t − t)t≥0. Note that this solution satisfies indeed Skorokhod embedding

problem, but may not solve our optimisation problem (4.5.1).

Rost [137] proposed a different solution, with nicer optimality properties.



Appendix A

Miscellaneous tools

A.1 Essentials of probability theory

We provide here a brief overview of standard results in probability theory and convergence of

random variables needed in these lecture notes. The reader is invited to consult [153] for instance

for a more thorough treatment of the subject.

A.1.1 PDF, CDF and characteristic functions

In the following, (Ω,F ,P) shall denote a probability space and X a random variable defined on it.

We define the cumulative distribution function F : R → [0, 1] of S by

F (x) := P (X ≤ x) , for all x ∈ R.

The function F is increasing and right-continuous and satisfies the identities lim
x→−∞

F (x) = 0 and

lim
x→∞

F (x) = 1. If the function F is absolutely continuous, then the random variable X has a

probability density function f : R → R+ defined by f(x) = F ′(x), for all real number x. Note that

this in particular implies the equality F (x) =
∫ x

−∞ f(u)du. Recall that a function F : D ⊂ R → R

is said to be absolutely continuous if for any ε > 0, there exists δ > 0 such that the implication∑
n

|bn − an| < δ =⇒
∑
n

|F (bn) − F (an)| < δ

holds for any sequence of pairwise disjoint intervals (an, bn) ⊂ D. Define now the characteristic

function ϕ : R → C of the random variable X by

ϕ(u) := E
(
eiuX

)
.

Note that it is well defined for all real number u and that we always have |ϕ(u)| ≤ 1. Extending

it to the complex plane (u ∈ C) is more subtle and shall be dealt with in Chapter ??, along with

some properties of characteristic functions.
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A.1.2 Gaussian distribution

A random variable X is said to have a Gaussian distribution (or Normal distribution) with mean

µ ∈ R and variance σ2 > 0, and we write X ∼ N
(
µ, σ2

)
if and only if its density reads

f(x) =
1

σ
√

2π
exp

(
−1

2
(x− µ)

2

)
, for all x ∈ R.

For such a random variable, the following identities are obvious:

E
(
eiuX

)
= exp

(
iµu− 1

2
u2σ2

)
, and E

(
euX

)
= exp

(
µu+

1

2
u2σ2

)
,

for all u ∈ R. The first quantity is the characteristic function whereas the second one is the Laplace

transform or the random variable. If X ∈ N
(
µ, σ2

)
, then the random variable Y := exp(X) is

said to be lognormal and

E(Y ) = exp

(
µ+

1

2
σ2

)
and E

(
Y 2
)

= exp
(
2µ+ 2σ2

)
.

A.1.3 Miscellaneous tools

Lemma A.1.1 (Fatou’s lemma in analysis). Let (fn)n∈N be a sequence of non-negative mea-

surable functions on a given measure space (S,Σ, µ), and define the pointwise limit f(x) :=

lim infn↑∞ fn(x) for all x ∈ S. Then f is also measurable and∫
S

f(x)µ(dx) ≤ lim inf
n↑∞

∫
S

fn(x)µ(dx).

Lemma A.1.2 (Fatou’s lemma in probability). For a given family of non-negative random vari-

ables (Xn)n∈N defined on a probability space (Ω,F , (Ft)t≥0,P), the following inequality holds, for

any sub σ-algebra G ⊂ F :

E
(

lim inf
n↑∞

Xn

∣∣∣∣G) ≤ lim inf
n↑∞

E (Xn|G) .

Lemma A.1.3 (Reverse Fatou’s lemma). Let (fn)n∈N be a sequence of non-negative measurable

functions on a given measure space (S,Σ, µ). If there exists an integrable function g such that

|fn(x)| ≤ g(x) for all n ∈ N and all x ∈ S, then

lim sup
n↑∞

∫
S

fn(x)µ(dx) ≤
∫
S

lim sup
n↑∞

fn(x)µ(dx).

Lemma A.1.4 (Dominated convergence). Let (fn)n∈N and (gn)n∈N be two sequences of measurable

functions on a given measure space (S,Σ, µ), such that |fn| ≤ gn. Assume that there exist two

measurable functions f and g such that, for all x ∈ S,

lim
n↑∞

fn(x) = f(x), lim
n↑∞

gn(x) = g(x), lim
n↑∞

∫
S

gn(x)µ(dx) =

∫
S

g(x)µ(dx),

then lim
n↑∞

∫
S

fn(x)µ(dx) =

∫
S

f(x)µ(dx).
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A.2 Convergence of random variables

We recall here the different types of convergence for family of random variables (Xn)n≥1 defined

on a probability space (Ω,F ,P). We shall denote Fn : R → [0, 1] the corresponding cumulative

distribution functions and fn : R → R+ their densities whenever they exist. We start with a

definition of convergence for functions, which we shall use repeatedly.

Definition A.2.1. Let (hn)n≥1 be a family of functions from R to R. We say that the family

converges pointwise to a function h : R → R if and only if the equality lim
n↑∞

hn(x) = h(x) holds for

all real number x.

Convergence in distribution

This is the weakest form of convergence, and is the one appearing in the central limit theorem.

Definition A.2.2. The family (Xn)n≥1 converges in distribution—or weakly or in law—to a

random variableX if and only if the family (Fn)n≥1 converges pointwise to a function F : R → [0, 1],

i.e. the equality

lim
n↑∞

Fn(x) = F (x),

holds for all real number x where F is continuous. Furthermore, the function F is the CDF of the

random variable X.

Example A.2.3. Consider the family (Xn)n≥1 such that each Xn is uniformly distributed on the

interval
[
0, n−1

]
. We then have Fn(x) = nx11{x∈[0,1/n]} + 11{x≥1/n}. It is clear that the family of

random variable converges weakly to the degenerate random variable X = 0. However, for any

n ≥ 1, we have Fn(0) = 0 and F (0) = 1. The function F is not continuous at 1, but the definition

still holds.

Example A.2.4. Weak convergence does not imply convergence of the densities, even when they

exist. Consider the family such that fn(x) =
(

1 − cos (2πnx)
)

11{x∈(0,1)}.

Even though convergence in law is a weak form of convergence, it has a number of fundamental

consequences for applications. We list them here without proof and refer the interested reader

to [19] for details

Corollary A.2.5. Assume that the family (Xn)n≥1 converges weakly to the random variable X.

Then the following statements hold

• limn↑∞ E (h(Xn)) = E (h(X)) for all bounded and continuous function h.

• limn↑∞ E (h(Xn)) = E (h(X)) for all Lipschitz function h.

• limn↑∞ P (Xn ∈ A) = P (X ∈ A) for all continuity sets A of X.
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• (Continous mapping theorem). The sequence (h(Xn))n≥1 converges in law to h(X) for every

continuous function h.

The following theorem shall be of fundamental importance in many applications, and we there-

fore state it separately.

Theorem A.2.6 (Lévy’s continuity theorem). The family (Xn)n≥1 converges weakly to the random

variable X if and only if the sequence of characteristic functions ϕn converges pointwise to the

characteristic function ϕ of X and ϕ is is continuous at the origin.

Convergence in probability

Definition A.2.7. The family (Xn)n≥1 converges in probability to the random variable X if, for

all ε > 0, we have

lim
n↑∞

P (|Xn −X| ≥ ε) = 0.

Remark A.2.8. The continuous mapping theorem still holds under this form of convergence.

Almost sure convergence

This form of convergence is the strongest form of convergence and can be seen as an analogue for

random variables of the pointwise convergence for functions.

Definition A.2.9. The family (Xn)n≥1 converges almost surely to the random variable X if

P
(

lim
n↑∞

Xn = X

)
= 1.

Convergence in mean

Definition A.2.10. Let r ∈ N∗. The family (Xn)n≥1 converges in the Lr norm to the random

variable X if the r-th absolute moments of Xn and X exist for all n ≥ 1 and if

lim
n↑∞

E (|Xn −X|r) = 0.

Properties

• Almost sure convergence implies convergence in probability.

• Convergence in probability implies weak convergence.

• Convergence in the Lr norm implies convergence in probability.

• For any r ≥ s ≥ 1, convergence in the Lr norm implies convergence in the Ls norm.
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A.2.1 Central limit theorem and Berry-Esséen inequality

Let (Xi)i=1...,n form a sequence of independent and identically distributed random variables with

finite mean µ and finite variance σ2 > 0, and define the sequences of random variables (Xn)n≥1

and (Zn)n≥1 by

Xn :=
n∑

i=1

Xi and Zn :=
Xn − nµ

σ
√
n

, for each n ≥ 1. (A.2.1)

Recall now the central limit theorem:

Theorem A.2.11 (Central limit theorem). The family (Zn)n≥1 converges in distribution to a

Gaussian distribution with zero mean and unit variance. In particular for any a < b, we have

lim
n↑∞

P (Zn ∈ [a, b]) = N (b) −N (a).

The central limit theorem provides information about the limiting behaviour of the probabilities,

but does not tell anything aboug the rate of convergence or the error made when approximating

the Gaussian distribution by the distribution of Zn for n ≥ 1 fixed. The following theorem, proved

by Berry [17] and Esséen [52] gives such estimates

Theorem A.2.12. Assume that E
(
|X|3

)
<∞. Then there exists a strictly positive universal (i.e.

independent of n) constant C such that

sup
x

|P (Zn ≤ x) −N (x)| ≤ Cρ√
n
,

where ρ := E

(
|X1 − µ|3

σ3

)
.

A.3 Uniformly integrable random variables

Definition A.3.1. The family of random variables (Xn)n∈N is said to be uniformly integrable if

lim
K↑∞

sup
n

E (|Xn|||Xn| > K) = 0.

The motivation underlying this notion can be seen through the following example: consider

a random walk (Sn)n≥0 with S0 = 1, Sn+1 = Sn + ξn, where (ξn)n is a family of independent

Bernoulli trials taking values in {−1, 1} with equal probability. Define now the stopping time

τ := inf{n : Sn = 0} and the family (Xn)n by Xn := Sτ∧n. Then (Xn)n≥0 is a non-negative

martingale which converges almost surely to a finite limit X∞; in particular, P(X∞ = 0) = 1.

However, E(Xn) = E(X0) = 1 for all n ≥ 0, so that the family (Xn)n≥0 cannot converge in L1.

Uniform integrability turns out to be the precise notion needed to ensure such convergence, as

outlined in the following theorem.

Theorem A.3.2. If the family (Xn)n≥0 converges in probability to the random variable X∞, then

the following are equivalent:
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(i) the family (Xn)n is uniformly integrable;

(ii) (Xn)n converges to X∞ in L1;

(iii) limn↑∞ E|Xn| = E|X∞| <∞.

A.4 Other stochastic analysis results

Lemma A.4.1 (Doob-Dynkyn Lemma). For any two random variables X,Y : Ω → Rn, Y is

σ(X)-measurable if and only if there exists a Borel measurable function f : Rn → Rn such that

y = f(X).

Theorem A.4.2 ((Version of the) Martingale Convergence Theorem). If X ∈ L1(P) and (Gn)n≥1

an increasing family of σ-algebra in F , then

lim
n↑∞

E (X|Gn) = E

X|
∨
n≥1

Gn

 , P-almost everywhere and in L1(P).
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Kolmogorov equations

Consider a one-dimensional diffusion (Xt)t≥0 defined on a given probability space (Ω, (Ft)t≥0,P),

and satisfying the stochastic differential equation dXt = b(t,Xt)dt+σ(t,Xt)dWt, where X0 = x ∈

R and W is a standard (Ft)t≥0-adapted Brownian motion. The coefficients b and σ are such that a

unique strong solution exists. For any 0 ≤ s ≤ t and any (x, y) ∈ R2, we let its probability density

function p(s, x; t, y) be defined as

Ps,x(Xt ∈ dy) = p(s, x; t, y)dy.

Then p satisfies the backward Kolmogorov equation ∂sp+ 1
2σ

2(s, x)∂xxp+ b(s, x)∂xp = 0,

lim
s↑t

p(s, x; t, y)dy = δx(dy).
(B.0.1)

and the forward Kolmogorov equation ∂tp− 1
2∂yy

(
σ2(t, y)p

)
+ ∂y (b(t, y)p) = 0,

lim
s↑t

p(s, x; t, y)dy = δx(dy).
(B.0.2)
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Spanning European payoffs

Consider a C2 function f : R → R and some constant F ≥ 0. By the fundamental theorem of

calculus, we have

f(S) = f(F ) + 11{S>F}

∫ S

F

f ′(u)du − 11{S<F}

∫ F

S

f ′(u)du

= f(F ) + 11{S>F}

∫ S

F

[
f ′(F ) +

∫ u

F

f ′′(v)dv

]
du− 11{S<F}

∫ F

S

[
f ′(F ) −

∫ F

u

f ′′(v)dv

]
du

= f(F ) + f ′(F )(S − F ) + 11{S>F}

∫ S

F

∫ S

v

f ′′(v)dudv + 11{S<F}

∫ F

S

∫ v

S

f ′′(v)dvdu

= f(F ) + f ′(F )(S − F ) + 11{S>F}

∫ S

F

f ′′(v)(S − v)dv + 11{S<F}

∫ F

S

f ′′(v)(v − S)dv

= f(F ) + f ′(F )(S − F ) + 11{S>F}

∫ ∞

F

f ′′(v)(S − v)+dv + 11{S<F}

∫ F

0

f ′′(v)(v − S)+dv

(C.0.1)

The following two cases are of particular financial importance:

• if F = 0, then the expression above reduces to

f(S) = f(0) + Sf ′(0) +

∫ ∞

F

f ′′(v)(S − v)+dv,

which means that the option with payoff f(S) can be replicated by f(0) invested in bonds,

f ′(0) shares and an infinite strip of call options, each with strike v and in quantity f ′′(v);

• if F = S0, then the formula above reads

f(S) = [f(S0) − S0f
′(S0)]+Sf ′(S0)+11{S>S0}

∫ ∞

S0

f ′′(v)(S−v)+dv + 11{S<S0}

∫ S0

0

f ′′(v)(v−S)+dvdu,

so that the option with payoff f(S) can be replicated with bonds, stocks and European Calls

and Puts.
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ity smile: survey and new results. International Journal of Theoretical and Applied Finance,

6(1), 2013.

[3] L. Andersen and V. Piterbarg. Moment explosions in stochastic volatility models. Finance

and Stochastics, 11(1): 29-50, 2007.

[4] J. Andreasen and B. Huge. Volatility interpolation. Risk, 86-89, March 2011.
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Processes. Preprint available at www.optioncity.net/pubs/ExpLevy.pdf, 2001.

[107] S. Li. A new formula for computing implied volatility. Applied Mathematics and Computation,

170(1): 611-625, 2005.



Bibliography 129

[108] M. Li. Approximate inversion of the Black-Scholes formula using rational functions. Applied

Mathematics and Computation, 185(2): 743-759, 2008.

[109] M. Li. An adaptive successive over-relaxation method for computing the Black-Scholes im-

plied volatility. Quantitative Finance, 11(8): 1245-1269, 2011.

[110] V. Lucic. Forward-start options in stochastic volatility models. Wilmott Magazine, Sept.

2003.

[111] T. Lyons. Uncertain volatility and the risk-free synthesis of derivatives. Applied Mathematical

Finance, 2: 117-133, 1995.

[112] B.G. Malkiel. A random walk down Wall Street. Norton, New York, 2003.

[113] B. Mandelbrot and J.W. Van Ness. Fractional Brownian motions, fractional noises and ap-

plications. SIAM Review, 10: 422-437, 1968.

[114] R.C. Merton. Option pricing when underlying stock returns are discontinuous. Journal of

Financial Economics, 3: 125-144, 1976.

[115] P.A. Meyer. A decomposition theorem for supermartingales. Illinois Journal of Mathematics,

6: 193-205, 1962.

[116] P.A. Meyer. Decomposition of supermartingales: the uniqueness theorem. Illinois Journal of

Mathematics, 7: 1-17, 1963.
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