Introduction	General Framework	Toy models
0000000	0000	00

Discrete Markov model

Data Analysis 0000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusion 00

The Micro-Price

Sasha Stoikov

Cornell University

Jim Gatheral @ NYU

General Framework

Toy models

Discrete Markov mode 0000000 Data Analysis 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion 00

High frequency traders (HFT)

- HFTs are good:
 - Optimal order splitting
 - Pairs trading / statistical arbitrage
 - Market making / liquidity provision
 - Latency arbitrage
 - Sentiment analysis of news
- HFTs are evil:
 - The flash crash
 - Front running
 - Market manipulation and spoofing

General Framework 0000 Toy models

Discrete Markov model

Data Analysis 0000000 Conclusion 00

æ

HFTs care about the imbalance

Figure: Buy and sell volume conditional on (pre-trade) Imbalance

Introduction	General Framework	Toy models	Discrete Markov model	Data Analysis	Conclusion
000000		00	0000000	0000000	00
The mid	l-price				

- The mid-price $M = \frac{P^b + P^a}{2}$
- P^b is the best bid price
- P^a is the best ask price
- Not a martingale (Bid-ask bounce)
- Low frequency signal
- Doesn't use volume at the best bid and ask prices.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 0000000	General Framework	Toy models 00	Discrete Markov model	Data Analysis 0000000	Conclusion 00

The weighted mid-price

- The weighted mid-price $M^w = IP^a + (1 I)P^b$
- The imbalance $I = \frac{Q^b}{Q^b + Q^a}$
- Q^b is the bid size and Q^a is the ask size.
- Gatheral and Oomen (2009)
- Not a martingale
- Noisy
- Counter-intuitive examples

Introduction	General Framework	Toy models	Discrete Markov model	Data Analysis
0000000	0000	00	000000	0000000

The weighted mid-price example

- Assume $P^b = 32.17 , $Q^b = 9$, $P^a = 31.18 , $Q^a = 1$
- Assume the second best ask is \$31.19 and the second best ask size is 27
- $M^w = $32.179 = 0.1 \cdot 32.17 + 0.9 \cdot 32.18$
- Order of size 1 at $P^a =$ \$31.18 cancels
- New $M^w = $32.1725 = 0.25 \cdot 32.17 + 0.75 \cdot 32.19$
- The 'fair' price just moved down after an ask order canceled?

General Framework 0000 Toy models

Discrete Markov model

Data Analysis Doooooo

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion 00

Features of the Micro-Price

- $P_t^{micro} = F(M_t, I_t, S_t)$
- Markov
- Martingale
- Computationally fast
- Better short term price predictions

Introduction	General Framework	Toy models	Discrete Markov model	Data Analysis	Conclusion
000000		00	0000000	0000000	00
Outline					

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- General definition
- Toy models
 - 1 micro-price = mid price
 - **2** micro-price = weighted mid price
- A discrete Markov model
- Data analysis
- Conclusion

Introduction	General Framework	Toy models	Discrete Markov model	Data Analysis	Conclusion
0000000	●000	00		0000000	00
Micro-p	orice definitic	on			

Define

$$P_t^{micro} = \lim_{i \to \infty} P_t^i$$

where the approximating sequence of martingale prices is given by

$$P_t^i = \mathbb{E}\left[M_{\tau_i}|\mathcal{F}_t\right]$$

• \mathcal{F}_t is the information contained in the order book at time t.

• $\tau_1, ..., \tau_n$ are (random) times when the mid-price M_t changes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	General Framework	Toy models	Discrete Markov model	Data Analysis	Conclusion
0000000	0●00	00		0000000	00
^					

Assumption

Assumptions

The information in the order book is given by the 3 dimensional Markov process $\mathcal{F}_t = (M_t, I_t, S_t)$ where $M_t = \frac{1}{2}(P_t^b + P_t^a)$ is the mid-price $S_t = \frac{1}{2}(P_t^a - P_t^b)$ is the bid-ask spread $I_t = \frac{Q_t^b}{Q_t^b + Q_t^a}$ is the imbalance at the top of the order book.

Assumption

The dynamics of (M_t, I_t, S_t) is independent of the level M_t , i.e.

$$\mathbb{E}\left[M_{\tau_1}-M_t|M_t,I_t,S_t\right] \triangleq g^1(I_t,S_t)$$

Introduction 0000000	General Framework 00●0	Toy models	Discrete Markov model	Data Analysis 0000000	Conclusion 00
Main re	esult				

Theorem

Given Assumptions 1 and Assumption 2, the i-th approximation to the micro-price can be written as

$$P_t^i = M_t + \sum_{k=1}^i g^k(I_t, S_t)$$

where

$$g^1(I_t, S_t) = \mathbb{E}\left[M_{\tau_1} - M_t | I_t, S_t\right]$$

and

$$g^{i+1}(I_t,S_t) = \mathbb{E}\left[g^i(I_{ au_1},S_{ au_1})|I_t,S_t
ight], orall j \geq 0$$

can be computed recursively.

Introduction	General Framework	Toy models	Discrete Markov model	Data Analysis	Conclusion
0000000	000●	00		0000000	00
3 exam	ples				

- 1 Mid-price independent of imbalance
- 2 Brownian imbalance
- 3 Discrete-time, finite state space

Interesting questions:

- Does the micro-price converge?
- What does it converge to?
- Is the micro-price between the bid and the ask?
- Is it sensible for large tick and small tick stocks?

Introduction 0000000	General Framework	Toy models ●○	Discrete Markov model	Data Analysis 0000000	Conclusion 00
First ex	ample				

lf

- $M_s M_t$ is independent of I_t for all s > t
- M_t is a continuous time random walk. The jumps are binomial and symmetric, i.e. $M_{\tau_{i+1}} - M_{\tau_i}$ takes values in (-1, 1), have up and down probabilities of 0.5.
- The spread $S_t = 1$

then

$$P_t^{micro} = M_t$$

Introduction	General Framework	Toy models	Discrete Markov model	Data Analysis	Conclusion
0000000	0000	○●		0000000	00
Second	example				

lf

- The process I_t is a Brownian motion on the interval [0, 1].
- Let $\tau_{down} = \inf\{s > t : I_s = 0\}$ and $\tau_{up} = \inf\{s > t : I_s = 1\}$ and $\tau_1 = \min(\tau_{up}, \tau_{down})$
- When *I_t* is absorbed to 1, the mid-price jumps up with probability 0.5 or bounces back with probability 0.5.
- When *I_t* is absorbed to 0, the mid-price jumps down with probability 0.5 or bounces back with probability 0.5.
- The spread $S_t = 1$

then

$$P_t^{micro} = M_t + I_t - \frac{1}{2}$$

Introduction	General Framework	Toy models	Discrete Markov model	Data Analysis	Conclusion
0000000		00	●000000	0000000	00
Assump	otions				

- The time step is now discrete with $t \in \mathbb{Z}^+$,
- The imbalance I_t takes discrete values $1 \le i_l \le n$,
- The spread S_t takes discrete values $1 \le i_S \le m$
- The mid-price changes $M_{t+1} M_t$ takes integer values in $K = \{k \mid 0 < |k| \le 2m\}.$
- Define the state $X_t = (I_t, S_t)$ with discrete values $1 \le i \le nm$

Introduction	General Framework	Toy models	Discrete Markov model	Data Analysis	Conclusion
0000000	0000	00	○●○○○○○	0000000	00
Comput	$ing g^1$				

The first step approximation to the micro-price

$$g^{1}(i) = \mathbb{E} \left[M_{\tau_{1}} - M_{t} | X_{t} = i \right]$$

=
$$\sum_{k \in K} k \cdot \mathbb{P}(M_{\tau_{1}} - M_{t} = k | X_{t} = i)$$

=
$$\sum_{k \in K} \sum_{s} k \cdot \mathbb{P}(M_{\tau_{1}} - M_{t} = k \wedge \tau_{1} - t = s | X_{t} = i)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

General Framework

Toy models

Discrete Markov model

Data Analysis 0000000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

The transition probability matrix T_1

Then we define an *absorbing* Markov chain completely identified by the transition probability matrix T^1 in canonical form:

$$T^1 = \left(\begin{array}{cc} Q & R^1 \\ 0 & \mathbb{I} \end{array}\right)$$

- Q is nm × nm matrix
- R¹ is nm × 4m matrix
- \mathbb{I} is the $4m \times 4m$ matrix

Introduction 0000000	General Framework	Toy models 00	Discrete Markov model	Data Analysis 0000000	Conclusion 00
Comput	ting g^1				

Absorbing states

$$R_{ik}^{1} := \mathbb{P}(M_{t+1} - M_{t} = k | X_{t} = i)$$

Transient states

$$Q_{ij} := \mathbb{P}(M_{t+1} - M_t = 0 \land X_{t+1} = j | X_t = i)$$

Note that R^1 is an $nm \times 4m$ matrix and Q is an $nm \times nm$ matrix.

$$g^{1}(i) = \left(\sum_{s} Q^{s-1} R^{1}\right) \underline{k} = \left(1-Q\right)^{-1} R^{1} \underline{k}$$

where $\underline{k} = \begin{bmatrix} -2m, -2m+1, \dots, -1, 1, \dots 2m-1, 2m \end{bmatrix}^{T}$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Introduction	General Framework	Toy models	Discrete Markov model	Data Analysis	Conclusion
0000000		00	0000€00	0000000	00
Compu	ting g^{i+1}				

Define a new matrix of absorbing states

$$R_{ik}^2 := \mathbb{P}(M_{t+1} - M_t \neq 0 \land I_{t+1} = k | I_t = i)$$

Once again applying standard techniques for discrete time Markov processes with absorbing states

$$g^{i+1}(i) = \left(\sum_{s} Q^{s-1} R^2\right) g^i = \left(1 - Q\right)^{-1} R^2 g^i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

General Framework

Toy models

Discrete Markov model

Data Analysis 0000000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

Checking that the micro-price converges

Define
$$B := (1 - Q)^{-1} R^2$$
.

Theorem

If B has strictly positive entries and $\lim_{k\to\infty} B^k = W$ where W is the unique stationary distribution and $Wg^1 = 0$, then the limit

$$\lim_{i\to\infty}p_t^i=p_t^{micro}$$

converges.

General Framework

Toy models

Discrete Markov model

Data Analysis 0000000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

A spectral decomposition for the micro-price

Perron-Frobenius decomposition

$$p_t^{micro} = \lim_{i \to \infty} p_t^i = M_t + \sum_{i=2}^{nm} \exp(\lambda_i) B_i g^1$$

where λ_i are the eigenvalues of *B* and *B_i* are matrices formed from normalized left and right eigenvectors of *B*.

Introduction 0000000	General Framework	Toy models 00	Discrete Markov model	Data Analysis ●000000	Conclusion 00
The da	ta				

Bid and ask quotes for Bank of America (BAC) and Chevron (CVX), for the month of March 2011.

Figure: Spread histograms for BAC and CVX. BAC is a typical large tick stock and CVX is a typical small tick stock.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

General Framework

Toy models

Discrete Markov model

Data Analysis 000000

Conclusion 00

The in-sample estimation

- Estimate transition probabilities Q, R^1 and R^2
- Compute $g^1 = (1-Q)^{-1}R^1\underline{k}$. This function is symmetrized to ensure that $g^1(i_l, i_s) = 1 g^1(n i_l, i_s)$.
- Compute $B = (1 Q)^{-1}R^2$. This function is symmetrized to ensure that $B_{(i_l,i_s),(j_l,j_s)} = B_{(n-i_l,i_s),(n-j_l,j_s)}$. Note that the symmetrizing procedure ensures that $Bg^1 = 0$ and that the micro-price converges as guaranteed by Theorem 2.
- Perform a spectral decomposition of B in terms of eigenvalues λ_i and matrices B_i
- Compute the micro-price adjustment:

$$G^* = p^{micro} - M = \sum_{i=2}^{nm} \exp(\lambda_i) B_i g^1$$

Introduction 0000000	General Framework	Toy models	Discrete Markov model 0000000	Data Analysis 00●0000	Conclusion 00	

Figure: $G^* = p_t^{micro} - M_t$ as a function of I and S

General Framework 0000 Toy models

Discrete Markov mode

Data Analysis 0000000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion 00

Out of sample validation part 1

- Compute averages of $M_{t+60} M_t$ grouped by I_t and S_t for 3 out of sample days
- Compare to G^{*} obtained from the first day or March.

General Framework

Toy models

Discrete Markov mode 0000000 Data Analysis 0000●00 Conclusion 00

Out of sample results part 1

Figure: G^* vs 1 min price predictions on three consecutive days

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

General Framework

Toy models

Discrete Markov mode 0000000 Data Analysis 0000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion 00

Out of sample validation part 2

- Compute averages of $M_{t+60} M_t$, $M_{t+300} M_t$ and $M_{t+600} M_t$ grouped by I_t and S_t for the entire month of March.
- Compare to G^* obtained from the first day or March.

General Framework

Toy models

Discrete Markov mode

Data Analysis 0000000 Conclusion 00

Out of sample results part 2

Figure: G^* vs 1min, 5min and 10min price predictions for March 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Introduction	General Framework	Toy models	Discrete Markov model	Data Analysis	Conclusion
0000000	0000	00	0000000	0000000	●○
Summar	у				

- Have defined the micro-price as the expected mid-price in the distant future
- When fitting a Markov model, we have conditions that ensures this micro-price converges
- **3** Micro-price is a good predictor of future mid prices
- **4** Micro-price can fit very different microstructures
- 6 Micro-price needs less data to converge than averaging mid price changes over fixed horizons

- 6 Micro-price is horizon independent
- 7 Micro-price seems to live between the bid and the ask

Introduction	General Framework	Toy models	Discrete Markov model	Data Analysis	Conclusion
0000000	0000	00		0000000	○●
Future	work				

- 1 Including other factors than imbalance and spread
- 2 Continuous models for the micro-price
- 3 Connections to quantities such as volatility, volume and tick size

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- **4** High frequency volatility and correlation estimation
- **5** Applications to HFT strategies

Download the paper HERE