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Today’s Lecture

Part I Monte Carlo Simulation

Part II Introduction to Parallel Computing
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Uniform Random Number Generation

I Basic building block of simulation:
stream of independent rv U1, U2, . . . ∼ U(0, 1)

I “True” random number generators:
I based on physical phenomena
I Example http://www.random.org/; R-package random: “The

randomness comes from atmospheric noise”
I Disadvantages of physical systems:

I cumbersome to install and run
I costly
I slow
I cannot reproduce the exact same sequence twice [verification,

debugging, comparing algorithms with the same stream]

I Pseudo Random Number Generators: Deterministic algorithms
I Example: linear congruential generators:

un =
sn
M
, sn+1 = (asn + c)modM
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General framework for Uniform RNG

(L’Ecuyer, 1994)

s s1
T

u1

G

s2
T

u2

G

s3
T

u3

G

. . .T

I s initial state (’seed’)
I S finite set of states
I T : S → S is the transition function
I U finite set of output symbols

(often {0, . . . ,m − 1} or a finite subset of [0, 1])
I G : S → U output function
I si := T (Si−1) and ui := G (si ).
I output: u1, u2, . . .
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Some Notes for Uniform RNG

I S finite =⇒ ui is periodic

I In practice: seed s often chosen by clock time as default.

I Good practice to be able to reproduce simulations:

Save the seed!

I Default random number generator in R :
Matsumoto, M. and Nishimura, T. (1998) Mersenne Twister: A
623-dimensionally equidistributed uniform pseudo-random
number generator, ACM Transactions on Modeling and
Computer Simulation, 8, 3-30.
The ’state’ is a 624-dimensional set of 32-bit integers plus a
current position in that set.
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Quality of Random Number Generators

I “Random numbers should not be generated with a method
chosen at random” (Knuth, 1981, p.5)
Some old implementations were unreliable!

I Desirable properties of random number generators:
I Statistical uniformity and unpredictability
I Period Length
I Efficiency
I Theoretical Support
I Repeatability, portability, jumping ahead, ease of implementation

(more on this see e.g. Gentle (2003), L’Ecuyer (2004), L’Ecuyer
(2006), Knuth (1998))

I Usually you will do well with generators in modern software (e.g.
the default generators in R).
Don’t try to implement your own generator!
(unless you have very good reasons)
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Nonuniform Random Number Generation

I How to generate nonuniform random variables?

I Basic idea:

Apply transformations to a stream of iid U[0,1] random variables
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Inversion Method

I Let F be a cdf.

I Quantile function (essentially the inverse of the cdf):

F−1(u) = inf{x : F (x) ≥ u}

I If U is uniform on [0,1] then F−1(U) ∼ F . Indeed, assuming F is
strictly increasing,

P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x)

I Only works if F−1 (or a good approximation of it) is available.
Numerical approximation if only F is available: Solve F(x)=U for
x using your favourite numerical root-finder.
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Acceptance-Rejection Method

0 5 10 15 20

0.
00
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20

0.
30

x

f(x)
Cg(x)

I target density f
I Proposal density g (easy to generate from) such that for some

C <∞:
f (x) ≤ Cg(x)∀x

I Algorithm:
1. Generate X from g .

2. With probability f (X )
Cg(X ) return X - otherwise goto 1.

I 1
C = probability of acceptance - want it to be as close to 1 as
possible.
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Further Algorithms

Examples:

I Ratio-of-Uniforms

I Use of the characteristic function

I MCMC

For many of those techniques and techniques to simulate specific
distributions see e.g. Gentle (2003).
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Evaluation of an Integral

I Want to evaluate

I :=

∫
[0,1]d

g(x)dx

I Importance for statistics: computation of expected values
(posterior means), probabilities (p-values), variances, normalising
constants, .... For example, let X be a r.v. with pdf f . Then

E(X ) =

∫
xf (x)dx and P(x ∈ A) =

∫
I(x ∈ A)f (x)dx

I Often, d is large. In a random sample, often d =sample size.
I How to solve it?

I Symbolical (programs such as Maple, Mathematica may help)
I Numerical Integration
I Quasi Monte Carlo
I Monte Carlo Integration
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Numerical Integration/Quadrature

I Main idea: approximate the function locally with simple
function/polynomials

I Advantage: good convergence rate

I Not useful for high dimensions - curse of dimensionality
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Midpoint Formula

I Basic: ∫ 1

0
f (x)dx ≈ f

(
1

2

)
(1− 0)

I Composite: apply the rule in n subintervals (similar to Riemann
Sums) R-Demo

0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Error: O( 1
n2 ) if f is twice continuously differentiable.
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Trapezoidal Formula

I Basic: ∫ 1

0
f (x)dx ≈ 1

2
(f (0) + f (1))

I Composite:

0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Error: O( 1
n2 ).
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Simpson’s rule

I Approximate the integrand by a quadratic function∫ 1

0
f (x)dx ≈ 1

6
[f (0) + 4f (

1

2
) + f (1)]

I Composite Simpson:

0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Error: O( 1
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Advanced Numerical Integration Methods

I Newton Cotes formulas (assume existence of higher derivatives)

I Adaptive methods (more points in areas where function changes
quickly)

I Unbounded integration interval: transformations
(use substitution to transform unbounded interval to bounded
interval)

R-Demo
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Curse of dimensionality - Numerical Integration in Higher
Dimensions

I :=

∫
[0,1]d

g(x)dx

I Naive approach:
I write as iterated integral

I :=

∫ 1

0

. . .

∫ 1

0

g(x)dxn . . . dx1

I use 1D scheme for each integral with, say g points .
I n = gd function evaluations needed

for d = 100 (a moderate sample size) and g = 10 (which is not a
lot):
n > estimated number of atoms in the universe!

I Suppose we use the trapezoidal rule, then the error = O( 1
n2/d )

I More advanced schemes are not doing much better!
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Monte Carlo Integration

∫
[0,1]d

g(x)dx ≈ 1

n

n∑
i=1

g(Xi ),

where X1,X2, · · · ∼ U([0, 1]d) iid.

I SLLN:
1

n

n∑
i=1

g(Xi )→
∫

[0,1]d
g(x)dx (n→∞)

I CLT: error is bounded by OP( 1√
n

).

independent of d

I Can easily compute asymptotic confidence intervals.

I Note: Trapezoidal rule has faster convergence for d ≤ 3.
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Quasi-Monte-Carlo

I Similar to MC, but instead of random Xi : Use deterministic xi

that fill [0, 1]d evenly.
so-called “low-discrepancy sequences”.

R-package randtoolbox
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Comparison between Quasi-Monte-Carlo and Monte Carlo
- 2D

1000 Points in [0, 1]2 generated by a quasi-RNG and a Pseudo-RNG
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Random Number Generation Computation of Integrals Variance Reduction Techniques

Comparison between Quasi-Monte-Carlo and Monte Carlo

∫
[0,1]4

(x1 + x2)(x2 + x3)2(x3 + x4)3dx

Using Monte-Carlo and Quasi-MC
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Random Number Generation Computation of Integrals Variance Reduction Techniques

Bounds on the Quasi-MC error

I Koksma-Hlawka inequality (Niederreiter, 1992, Theorem 2.11)

‖1

n

∑
g(xi )−

∫
[0,1]d

g(x)dx‖ ≤ Vd(g)D∗n ,

where
Vd(g) is the so-called Hardy and Krause variation of g

and
Dn is the discrepancy of the points x1, . . . , xn in [0, 1]d

given by

D∗n = sup
A∈A
|#{xi ∈ A : i = 1, . . . , n} − λ(A)|

where
I λ is Lebesgue measure
I A is the set of all subrectangles of [0, 1]d of the

form
∏d

i=1[0, ai ]
d

I Many sequences have been suggested, e.g. the Halton sequence
(other sequences: Faure, Sobol, ...) with:

D∗n = O(
log(n)d−1

n
)

→ better convergence rate than MC integration!
However, it does depend on d

I Conjecture: for all sets of points Dn

D∗n ≥ O(
log(n)d−1

n
)

(Niederreiter, 1992, p.32)
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Random Number Generation Computation of Integrals Variance Reduction Techniques

Comparison

R-Demo

The consensus in the literature seems to be:

I use numerical integration for small d

I Quasi-MC useful for medium d

I use Monte Carlo integration for large d
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Random Number Generation Computation of Integrals Variance Reduction Techniques

Outline
Random Number Generation

Computation of Integrals

Variance Reduction Techniques
Importance Sampling
Control Variates
Further Variance Reduction Techniques
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Random Number Generation Computation of Integrals Variance Reduction Techniques

Importance Sampling

I Main idea: Change the density we are sampling from.
I Interested in E(φ(X )) =

∫
φ(x)f (x)dx

I For any density g ,

E(φ(X )) =

∫
φ(x)

f (x)

g(x)
g(x)dx

I Thus an unbiased estimator of E(φ(X )) is

Î =
1

n

n∑
i=1

φ(Xi )
f (Xi )

g(Xi )
,

where X1, . . . ,Xn ∼ g iid.
I How to choose g?

I Suppose g ∝ φf then Var(Î ) = 0.
However, the corresponding normalizing constant is E(φ(X )), the
quantity we want to estimate!

I A lot of theoretical work is based on large deviation theory.
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Importance sampling - Comments

I Importance sampling can greatly reduce the variance for
estimating the probability of rare events, i.e. φ(x) = I(x ∈ A)
and E(φ(X )) = P(X ∈ A) small.

I It is not just useful for variance reduction - it can also be very
useful to generate random variables.

I Be careful with support/tails!
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Random Number Generation Computation of Integrals Variance Reduction Techniques

Control Variates

I Interested in I = E X
I Suppose we can also observe Y and know E Y .
I Consider T = X + a(Y − E(Y ))
I Then E T = I and

Var T = Var X + 2a Cov(X ,Y ) + a2 Var Y

Minimized for a = −Cov(X ,Y )
Var Y .

I usually, a not known → estimate
I For Monte Carlo sampling:

I generate iid sample (X1,Y1), . . . , (Xn,Yn)
I estimate Cov(X ,Y ), Var Y based on this sample → â
I Î = 1

n

∑n
i=1[Xi + â(Yi − E(Y ))]

I Î can be computed via standard regression analysis.
Hence the term“regression-adjusted control variates”.

I Can be easily generalised to several control variates.
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Random Number Generation Computation of Integrals Variance Reduction Techniques

Further Techniques

I If density symmetric around point: Antithetic Sampling
Use X and −X if symmetric around 0.

I Conditional Monte Carlo
Evaluate parts explicitly

I Common Random Numbers
For comparing two procedures - use the same sequence of
random numbers.

I Stratification
I Divide sample space Ω into strata Ω1, . . . ,Ωs

I In each strata, generate Ri replicates conditional on Ωi and
obtain an estimates Îi

I Combine using the law of total probability:

Î = p1 Î1 + · · ·+ ps Îs

I Need to know pi = P(Ωi ) for all i
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Part II

Parallel Computing

Introduction

Parallel RNG

Practical use of parallel computing (R)
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Speedup
Communication between Processes

Parallel RNG

Practical use of parallel computing (R)
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Moore’s Law

(Source: Wikipedia, Creative Commons Attribution ShareAlike 3.0 License)
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Growth of Data Storage
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I Not only the computer speed but also the data size is increasing
exponentially!

I The increase in the available storage is at least as fast as the
increase in computing power.
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Introduction

I Recently: Less increase in CPU clock speed

I → multi core CPUs are available (eight cores readily available -
80 cores in labs)

I → software needs to be adapted to exploit this

I Traditional computing:
Problem is broken into small steps that are executed sequentially

I Parallel computing:
Steps are being executed in parallel
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von Neumann Architecture

I CPU executes a stored program that specifies a sequence of read
and write operations on the memory.

I Memory is used to store both program and data instructions

I Program instructions are coded data which tell the computer to
do something

I Data is simply information to be used by the program

I A central processing unit (CPU) gets instructions and/or data
from memory, decodes the instructions and then sequentially
performs them.
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Introduction Parallel RNG Practical use of parallel computing (R)

Different Architectures

I Multicore computing

I Symmetric multiprocessing
I Distributed Computing

I Cluster computing
I Massive Parallel processor
I Grid Computing

List of top 500 supercomputers at http://www.top500.org/
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Introduction Parallel RNG Practical use of parallel computing (R)

Flynn’s taxonomy
Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple Data SIMD MIMD
Examples:

I SIMD: GPUs
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Memory Architectures of Parallel Computers

I Traditional System
CPU

Memory

I Shared Memory System Memory

CPU CPU CPU

I Distributed Memory System

CPU

Memory

CPU

Memory

CPU

Memory

I Distributed Shared Memory System

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU
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Embarrassingly Parallel Computations

Task can be divided into parts that can be executed separatedly.
Examples:

I Monte Carlo Integration

I Bootstrap

I Cross-Validation

Note: MCMC methods do not fall (easily) into this category.
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Speedup

Ideally: computational time reduced linearly in the number of CPUs

I Suppose only a fraction p of the
total tasks can be parallelized.

I Supposing we have n parallel
CPUs, the speedup is

1

(1− p) + p/n
(Amdahl’s Law)

→ no infinite speedup possible.

Example

p = 90%, maximum speed up
by a factor of 10.
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Communication between processes

I Forking

I Threading

I OpenMP (good for multicore machines)
shared memory multiprocessing

I PVM (Parallel Virtual Machine)

I MPI (Message Passing Interface; de facto standard for large
scale parallel computations)

I For “Big Data”: Hadoop and related approaches.

How to divide tasks? e.g. Master/Slave concept
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Outline
Introduction

Parallel RNG
Intro
General Approach
Implementations in R

Practical use of parallel computing (R)
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Parallel Random Number Generation

Problems with RNG on parallel computers

I Cannot use identical streams

I Sharing a single stream: a lot of overhead.

I Starting from different seeds: danger of overlapping streams
(in particular if seeding is not sophisticated or simulation is large)

I Need independent streams on each processor...
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Parallel Random Number Generation - sketch of general
approach
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Packages in R for Parallen random Number Generation

rsprng Interface to the scalable parallel random number
generators library (SPRNG)
http://sprng.cs.fsu.edu/

rlecuyer Essentially starts with one random stream and
partitions it into long substreams by jumping ahead.
L’Ecuyer et al. (2002)
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Outline
Introduction

Parallel RNG

Practical use of parallel computing (R)
Things to do before considering parallelisation.
Packages
Some other Packages
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Profile

I Determine what part of the programme uses most time with a
profiler

I Improve the important parts (usually the innermost loop)

I R has a built-in profiler (see Rprof, Rprof.summary, package
profr)
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Use Vectorization instead of Loops

> a <- rnorm(1e7);

> system.time({x <- 0; for (i in 1:length(a)) x <- x+a[i]})[3]

elapsed
8.5

> system.time(sum(a))[3]

elapsed
0.02
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Just in time compilation - the compiler package I

I compiler package: can pre-compile R code into “Byte Code”

I R core - the base and recommended packages are now
byte-compiled by default.

> library(compiler)
> f <- function(i){j <- 0;for (i in 1:10000) j <- j+i;j}
> system.time(replicate(1000,f()))

user system elapsed
4.98 0.00 4.98

> fc <- cmpfun(f)
> system.time(replicate(1000,fc()))

user system elapsed
0.44 0.00 0.43
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Just in time compilation - the compiler package II
This is an extreme example; the speedup will usually be not as big.
Can enable this functionality automatically via

require(compiler)
enableJIT(3)

I Other JIT implementation: RA; Not just a package - central
parts are reimplemented.
(http://www.milbo.users.sonic.net/ra/); need to install
Ra instead of R (Ra has not been updated for some time).

I Bill Venables (on R help archive):
“if you really want to write R code as you might C code, then jit
can help make it practical in terms of time. On the other hand, if
you want to write R code using as much of the inbuilt operators
as you have, then you can possibly still do things better.”
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Use Compiled Code

I R is an interpreted language.

I Can include C, C++ and Fortran code.

I Can dramaticallly speed up computationally intensive parts
(a factor of 100 is possible)

I No speedup if the computationally part is a vector/matrix
operation.

I Downside: decreased portability, longer programming time

I Helpful libraries: Rcpp
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R-package: parallel
I Part of R core since R version 2.14.

I Mostly for “embarassingly parallel” computations

I Extends the “apply”-style function to a cluster of machines

> detectCores()
[1] 4
> cl <- makeCluster(4)
> f <- function(i) mean(replicate(10000,mean(rnorm(10000,mean=i))))
> parSapply(cl,1:4,FUN=f)
[1] 1.000165 2.000036 3.000067 3.999995
> system.time(parSapply(cl,1:4,FUN=f))

user system elapsed
0.00 0.00 16.24

> system.time(sapply(1:4,FUN=f))
user system elapsed
44.32 0.01 44.63

> stopCluster(cl)
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Random number generator

parallel RNG is being set up automatically

> cl<-makeCluster(2)
> parLapply(cl,1:2,function(i) rnorm(3))
[[1]]
[1] -0.1490175 1.4870953 -0.4753602

[[2]]
[1] -1.139051 0.202475 1.184057

> stopCluster(cl)
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Rmpi
For more complicated parallel algorithms that are not embarassingly
parallel.
Tutorial under http://math.acadiau.ca/ACMMaC/Rmpi/
Hello world from this tutorial

# Load the R MPI package if it is not already loaded.
if (!is.loaded("mpi_initialize")) {
library("Rmpi") }

# Spawn as many slaves as possible
mpi.spawn.Rslaves()

# In case R exits unexpectedly, have it automatically clean up
# resources taken up by Rmpi (slaves, memory, etc...)
.Last <- function(){
if (is.loaded("mpi_initialize")){
if (mpi.comm.size(1) > 0){
print("Please use mpi.close.Rslaves() to close slaves.")
mpi.close.Rslaves()
}
print("Please use mpi.quit() to quit R")
.Call("mpi_finalize") } }

# Tell all slaves to return a message identifying themselves
mpi.remote.exec(paste("I am",mpi.comm.rank(),"of",mpi.comm.size()))
# Tell all slaves to close down, and exit the program
mpi.close.Rslaves()
mpi.quit()

(not able to install under win from CRAN - install from
http://www.stats.uwo.ca/faculty/yu/Rmpi/)
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Some other Packages

multicore Use of parallel computing on a single machine via fork
(Unix, MacOS) - very fast and easy to use.

GridR http:
//cran.r-project.org/web/packages/GridR/
Wegener et al. (2009, Future Generation Computer
Systems)

rparallel http://www.rparallel.org/
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GPUs

I graphical processing units - in graphics cards

I very good at parallel processing

I need to taylor to specific GPU.

I Packages in R:

gputools several basic routines.
cudaBayesreg Bayesian multilevel modeling for fMRI.
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Further Reading

I A tutorial on Parallel Computing:
https://computing.llnl.gov/tutorials/parallel_comp/

I High Performance Computing task view on CRAN
http://cran.r-project.org/web/views/
HighPerformanceComputing.html

I A talk on high performance comuting with R: http://dirk.
eddelbuettel.com/papers/useR2010hpcTutorial.pdf
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Topics in the coming lectures:

I Optimisation

I MCMC methods

I Bootstrap

I Particle Filtering
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