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Chapter 1

Introduction

The proportional hazards model is the most frequently used regression model

from survival analysis. However, since its introduction by Cox (1972), many

other regression models have been proposed. How can one check whether a

given regression model is suitable for a particular application? Several model

checks have been suggested to answer this question. However, they are mostly

ad hoc suggestions that are constructed for a certain model and it is usually not

clear against which alternatives they are particularly powerful.

The aim of this thesis is to develop model checks for a wide class of regression

models from survival analysis. These model checks can be adjusted to increase

the power against certain alternatives.

In survival analysis, a group of individuals experiencing events over time is

observed. The aim of regression models is to relate these events to certain covari-

ates. A classical application is concerned with patients that undergo a certain

type of surgery. Hereby, an event is the death of a patient. One is interested in

knowing how covariates like the age of a patient or a certain medication influence

the length of survival. However, it is often the case that some patients are still

alive when the study ends and a statistical analysis is made. For these patients,

it is only known that they survived up to a certain time. This circumstance,

called censoring, is typical for survival analysis.

Survival analysis has its origins in biostatistics, but models from survival

analysis have also been successfully used in different areas, e.g. reliability the-

ory and financial mathematics. In reliability theory, the individuals may be

machines or motors and the events may be failures or the individuals may be

pieces of software and the events the submissions of bug reports. In financial

mathematics, companies may be observed and the events are bankruptcies or

insurance holders may be observed and the events are cancellations of contracts.

In the above medical example, each individual experiences at most one event.

The modern formulation of survival analysis allows for more than one event per



2 CHAPTER 1. INTRODUCTION

individual, which is the reason that a modern term for survival analysis is event

history analysis. For the ith individual, a stochastic process Ni(t) counts the

number of events up to time t. Regression models are designed to estimate

if and how certain covariates affect the occurrence of events described by the

counting process Ni. Models are usually defined by the so-called intensity which

we introduce in the following. The Doob-Meyer decomposition guarantees that

under integrability conditions, there are predictable, increasing processes Λi such

that

Ni(t) − Λi(t)

is a local martingale. If the paths of the compensator Λi are absolutely con-

tinuous with respect to Lebesgue measure then a predictable process λi such

that

Λi(t) =

∫ t

0
λi(s) ds

is called the intensity of Ni.

1.1 Some Models from Survival Analysis

Several suggestions have been made how to model the intensity λi for the ith

individual. The most prominent model is the proportional hazards model intro-

duced by Cox (1972), which specifies that the intensity has the following form:

λi(t) = λ0(t) exp(Zi(t)β)Ri(t), (1.1)

where the observable covariates Zi are kβ-dimensional row vectors of predictable

stochastic processes, the deterministic function λ0 and the vector β ∈ R
kβ are

unknown, and the so-called at-risk indicators Ri are observable stochastic pro-

cesses which indicate whether an individual is at risk or not by taking the values

0 or 1. Vectors are column vectors unless indicated otherwise. In the classical

setup with at most one event per individual, Ri(t) is 0 iff the event or the cen-

soring has occurred prior to t. The Cox model is a semiparametric model, i.e. it

contains an unknown finite-dimensional parameter and an unknown function.

Aalen (1980) introduced the following additive model:

λi(t) = Yi(t)α(t), (1.2)

where the observable covariates Yi are row vectors of predictable stochastic pro-

cesses and α is an unknown deterministic vector-valued function. Note that the

at-risk indicator is included in Yi. The Aalen model is a nonparametric model,

i.e. it only contains unknown functions.
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Parametric models have been put forward as well. For example, in Andersen

et al. (1993, Example VII.6.1), the following multiplicative model is considered:

λi(t) = a(t,γ)r(Zi(t)β)Ri(t),

where the observable covariates Zi are row vectors of predictable stochastic

processes, r and a are some known functions, γ and β are finite-dimensional pa-

rameters, and Ri are the at-risk indicators. Basically, this model is a parametric

version of a generalized Cox model.

Various generalizations of these models have been proposed, e.g. a semipara-

metric restriction of the Aalen model (McKeague and Sasieni, 1994):

λi(t) = Y c
i (t)αc + Y v

i (t)αv(t), (1.3)

a general additive-multiplicative hazard model (Lin and Ying, 1995):

λi(t) = [g(Y v
i (t)β) + λ0(t)h(Y

c
i (t)αc)]Ri(t),

a sum of a Cox and an Aalen model (Martinussen and Scheike, 2002):

λi(t) = [Y v
i (t)αv(t) + λ0(t) exp(Y c

i (t)αc)]Ri(t),

and a product of a Cox and an Aalen model (Scheike and Zhang, 2002):

λi(t) = Y v
i (t)αv(t) exp(Y c

i (t)αc),

where the observable covariates Y c
i and Y v

i are row vectors of predictable stochas-

tic processes, g and h are known functions, αc and β are unknown vectors, λ0

is an unknown function, αv is an unknown vector-valued function, and Ri is the

at-risk indicator.

The Cox model has been extended to time-dependent coefficients as well

(Murphy and Sen, 1991; Martinussen et al., 2002):

λi(t) = λ0(t) exp(Zi(t)β(t))Ri(t),

where λ0, Zi, and Ri are as in the classical Cox model (1.1) and the unknown

deterministic function β is allowed to depend on time.

Different techniques are used to estimate the parameters of the above mod-

els. Generally, finite-dimensional parameters can be estimated consistently at a

rate of
√
n, where n is the number of individuals. Rather than estimating the

unknown functions in the models directly, integrals over the functions are esti-

mated. For example in the Cox model,
∫ t
0 λ0(s) ds is estimated. Usually, these

estimators are
√
n-consistent as well. Estimators for the functions themselves are

derived by smoothing the estimators of the integrated functions. The smoothed

estimators usually converge at a rate of less than
√
n.

Details about these models and about some of the various other models

that have been suggested, can be found for example in Andersen et al. (1993),

Hougaard (2000), and Therneau and Grambsch (2000).
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1.2 The Test Statistic

In applications, one faces the question if a particular model has a good fit or

if maybe another model should be used. It is natural to employ goodness-of-fit

tests for this purpose. However, for some of the above models no goodness-of-

fit tests have been introduced so far. The tests that have been introduced are

specific tests for one model. This is mainly due to the fact that the asymptotic

distribution of the test statistic depends on which particular estimator is used

for parameters of the null hypothesis.

We present goodness-of-fit tests that can be used for any of the above models.

The main idea is to ensure that the asymptotic distribution of our test statistic

does not depend on which estimators are used for parameters from the null

hypothesis. For our test to work, we only need to know that the estimators

converge at certain rates.

All models specified in Section 1.1 can be written in the following form:

λi(t) = f(X i(t),α
v(t),αc), (1.4)

where f is a known function, Xi are observable stochastic processes, αv is an

unknown vector-valued function and αc is a finite-dimensional parameter. This

is the class of models we shall be dealing with. It contains the most important

models from survival analysis. However, it does not cover all models from survival

analysis; e.g. frailty models, which include unobserved random effects, are not

covered. The problem with frailty models is that with respect to the filtration

generated by the observable processes, the interaction between covariates and

parameters in the intensity may be more complicated than (1.4).

The basic idea for our test is as follows. By definition,

Mi(t) = Ni(t) −
∫ t

0
λi(s) ds

are mean zero local martingales, meaning heuristically that they should ’fluctu-

ate’ around 0. Replacing λi by the estimated intensity λ̂i(·) = f(Xi(·), α̂v(·), α̂c),

where α̂v and α̂c are some estimators of αv and αc, we get the so-called mar-

tingale residuals

M̂i(t) = Ni(t) −
∫ t

0
f(X i(s), α̂v(s), α̂c) ds.

If (1.4) holds true, f is continuous, and α̂v and α̂c are close toαv andαc, then M̂i

should still ’fluctuate’ around 0, but M̂i need not be mean zero local martingales.

The test statistic we use is basically a weighted average of the martingale residu-

als M̂i. More precisely, we use the stochastic process n−1/2
∑n

i=1

∫ t
0 ci(s) dM̂i(s),
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where the weights ci are some predictable stochastic processes. In other words,

we use the test statistic T (α̂v, α̂c, t), where

T (αv,αc, t) = n−
1
2

n∑

i=1

∫ t

0
ci(s) [ dNi(s) − f(X i(s),α

v(s),αc) ds] .

If the null hypothesis holds true, i.e. we have λi(·) = f(Xi(·),αv
0(·),αc

0) for some

αv
0, α

c
0, then

T (αv
0,α

c
0, t) = n−

1
2

n∑

i=1

∫ t

0
ci(s) dMi(s)

is a mean zero local martingale and, under regularity conditions, it converges

weakly to a mean zero Gaussian process with independent increments as the

number of individuals n tends to infinity. This can be shown by a central limit

theorem for martingales.

The difference T (α̂v, α̂c, t)−T (αv
0,α

c
0, t) usually does not vanish as n→ ∞.

Indeed, by a Taylor expansion

T (α̂v, α̂c, t) − T (αv
0,α

c
0, t) =

=

∫ t

0

(
1

n

n∑

i=1

ci(s)
∂

∂αv
f(Xi(s),α

v,αc
0)
∣∣∣
αv=αv

0(s)

)
n

1
2 (α̂v(s) −αv

0(s)) ds

+

(∫ t

0

1

n

n∑

i=1

ci(s)
∂

∂αc
f(X i(s),α

v
0(s),α

c)
∣∣∣
αc=αc

0

ds

)
n

1
2 (α̂c −αc

0)

+R,

(1.5)

where R is the remainder term which will vanish asymptotically under some

regularity conditions. The other terms on the right hand side typically do not

vanish. To derive the asymptotic distribution of T (α̂v, α̂c, t), one would have

to use Slutsky-type arguments and consider the joint asymptotic distribution

of T (αv
0,α

c
0, t), n

1/2(α̂v(·) − αv
0(·)), and n1/2(α̂c − αc

0), which depends on the

particular estimators used and may not be known.

The key idea of our approach is to simplify the above by imposing orthogonal-

ity conditions on the weights c to guarantee that T (α̂v, α̂c, t) and T (αv
0,α

c
0, t) are

asymptotically equivalent. This ensures that T (α̂v, α̂c, t) converges to a mean

zero Gaussian process with independent increments.

To get the first term in (1.5) to vanish, we require for all s, αv(s), and αc

that
n∑

i=1

ci(s)
∂

∂αv
f(X i(s),α

v,αc)
∣∣∣
αv=αv(s)

= 0. (1.6)

To get the second term in (1.5) to vanish for each t, we require for all s, αv(s),
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and αc that
n∑

i=1

ci(s)
∂

∂αc
f(X i(s),α

v(s),αc) = 0. (1.7)

If our test does not use the whole path of the stochastic process T (α̂v, α̂c, ·) we

can relax (1.7). For example, if our test is only based on T (α̂v, α̂c, τ), for some

τ > 0, then condition (1.7) can be relaxed and replaced by

∫ τ

0

1

n

n∑

i=1

ci(s)
∂

∂αc
f(X i(s),α

v(s),αc) ds = 0, (1.8)

for all αv and αc.

Of course, the requirements on the weights complicate things a bit, since

weights ci that satisfy these conditions may have to depend on αv and αc. Plug-

ging in estimators destroys the predictability of ci, but fortunately the asymptotic

results do not change.

Many other goodness-of-fit tests have used weighted sums of the difference

between the counting process Ni and its estimated compensator Λ̂i as basis.

Besides working with a more general model, what sets our approach apart from

classical approaches is the following: Most goodness-of-fit tests implicitly restrict

or transform the weights to get rid only of some of the terms on the right hand

side of (1.5). For example in tests for the Cox model (1.1), usually the weights

are transformed to get rid of the first term in (1.5) but not the second term. As

a consequence, the asymptotic distributions of these tests are more complicated

and the tests are only applicable for one particular model when used with specific

estimators. In contrast, our test can be used with any kind of estimator that is

consistent at a certain rate.

If f is affine-linear in some of the parameters, then, under some further

conditions, (1.6)-(1.8) do not depend on the particular value of these parameters.

Hence, we may choose weights that do not depend on them. In this case, we will

see that we do not need to estimate them at all, since they are not required to

compute the test statistic or the estimator of its variance.

1.3 Directing the Test

A problem with many goodness-of-fit tests for nonparametric or semiparametric

models is that they may exhibit a low power against many alternatives and often

it is not clear against which alternatives the tests are particularly sensitive. We

aim to improve this in the following way:
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Suppose we want to check a certain model. We use this model as null hy-

pothesis of our test. The alternative hypothesis is given by all intensities not

contained in the null hypothesis. We assume that we have a second model, called

’competing model’, which is given by another set of intensities. For example, the

competing model can be one of the models mentioned in Section 1.1. Often, we

use a Cox model (1.1) as competing model. The competing model and the null

hypothesis need not be separated - they may share certain intensities. In the

terms of Vuong (1989), this means that they may be overlapping or nested. For

example, the null hypothesis and the competing model can be of the same type,

e.g. both can be Cox models, but with different covariates.

We choose the weights ci to make the test powerful if the competing model

holds true and the null hypothesis fails. Since the competing model is not the

alternative hypothesis, a rejection of the null hypothesis is no conclusive evidence

in favor of the competing model.

In order to direct the test, we need to use parameters of the competing model

and the weight process c will depend on those parameters. All parameters besides

α = (αv,αc) on which c depends will be denoted by β. In addition to containing

parameters from competing models, some components of β will also be used to

satisfy the orthogonality condition (1.8). The combined parameter (α,β) will

be denoted by θ. Therefore, we often write T (θ̂, t) for the test statistic, where

θ̂ is an estimator for θ.

A simple approach to satisfy (1.6) and one of (1.7) or (1.8) is to define c by

an (unweighted) orthogonal projection of an arbitrary process d. Setting d to

an estimate of the difference between the intensity under the competing model

and the intensity under the null hypothesis already leads to a good power.

Since the asymptotic distribution is relatively simple, we can improve the

power. In fact, we will show how to choose optimal weights against fixed al-

ternatives with respect to the approximate Bahadur efficiency and against local

alternatives with respect to the Pitman efficiency. This leads to weighted or-

thogonal projections.

Under certain conditions, the variance of our test statistic T (θ̂, t) may con-

verge to 0. In that case, the usual standardized versions of T (θ̂, t) may not

converge in distribution and if they converge, it is not clear what the limiting

distribution is. In particular, the variance may converge to 0 if the null hypoth-

esis and the competing model are overlapping. We propose several approaches

how to deal with this problem. Among them is a test for an equivalent condition

for the convergence of the variance to 0. We will only discuss this test for the

special case of the Cox model (1.1) as null hypothesis.
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1.4 Outline

The thesis is structured as follows.

In Chapter 2, we review some models from survival analysis and discuss

properties of their estimators. After that, we present some previous approaches

to test goodness-of-fit. Most of these tests use the Cox model as null hypothesis.

In Chapter 3, we consider a relatively simple model in order to demonstrate

some important ideas without being distracted by too many technical details.

Indeed, we present tests for Aalen’s additive risk model (1.2). We will show that

in this case our approach leads to consistent tests.

Chapter 4 contains some preparations for the general results. In Section 4.1,

we discuss convergence rates of estimators if the model for which they are de-

signed may not be true. In Section 4.2, we present a smoothing method which we

need as a preparation for checking more general models in the following chapters.

In Chapter 5, we consider the case of the time-dependent orthogonalization

of the weights ci by conditions (1.6) and (1.7). In this case, our test does not

use the information that αc does not depend on time. Therefore we work with

the simplified model:

λi(t) = f(X i(t),α
v(t)),

for which, of course, only condition (1.6) is needed.

Chapter 6 is devoted to the study of the test statistic T (α̂v, α̂c, τ) under

the conditions (1.6) and (1.8). Now it is important to distinguish between αv

and αc and hence, the full model (1.4) is used. The proofs of this chapter are

considerably simplified by using the results of Chapter 5.

As already mentioned, the variance of the test statistic may converge to 0

as n → ∞. In Chapter 7, we suggest several approaches how to deal with this

problem. Among them is a suggestion for a sequential test for which we show

the asymptotics.

In Chapter 8, several special cases for our general model are considered and

results of simulation studies for most of these special cases are presented. The

special cases considered are the Aalen model (1.2), the semiparametric restriction

of the Aalen model (1.3), a generalized version of the Cox model (1.1) and

parametric models.

In Chapter 9, we apply our tests to three datasets. Two datasets are from

biostatistics: the PBC dataset (Fleming and Harrington, 1991), and the Stan-

ford heart transplant data (Miller and Halpern, 1982). Another dataset is from

software reliability (Gandy and Jensen, 2004).

Chapter 10 contains several remarks about aspects of our test: tests against

several competing models, possible extensions to other models, relation to esti-

mation in semiparametric models, and a case in which the power of our test is
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the same as if the null hypothesis was a simple hypothesis. Chapter 11 contains

some concluding remarks.

In Appendix A, some technical results from the theory of stochastic pro-

cesses are collected. Some facts about orthogonal projections can be found in

Appendix B. After that there is a list of symbols and abbreviations, a list of

conditions, the bibliography and a summary in German.

The basic ideas of the least squares projection used in Chapter 3 have already

been published in Gandy and Jensen (2005c). The ideas of Chapter 5 for the

special case of Cox models as well as the sequential procedure described in Sec-

tions 7.1-7.4 are submitted for publication (Gandy and Jensen, 2005b). The least

squares projections used in Chapter 6 in the special case of the semiparametric

restriction of the Aalen model (1.3) which are explicitly given in Subsection 8.2.1

are accepted for publication (Gandy and Jensen, 2005a). The present thesis gen-

eralizes and unifies these papers. The example of the software reliability data

used in Section 9.1 has been published in Gandy and Jensen (2004).
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Chapter 2

A Review of Models and

Checks from Survival Analysis

In the last decades, the field of survival analysis has become very broad. Despite

the large number of publications in this subject, the key reference still is the book

by Andersen et al. (1993). Other books specialize on a certain topic, e.g. Fleming

and Harrington (1991) on the Cox model, Therneau and Grambsch (2000) on

extensions of the Cox model, Bagdonavicius and Nikulin (1998) on accelerated

testing, and Hougaard (2000) on multivariate survival analysis. By now, many

applied books on survival analysis are available, e.g. Cox and Oakes (1984),

Parmar and Machin (1995), Hosmer and Lemeshow (1999), Kleinbaum (1996),

Miller (1998), Elandt-Johnson and Johnson (1999), Smith (2002), Lee and Wang

(2003), Klein and Moeschberger (2003) and Tableman and Kim (2004), some of

which are new editions or reprints of older books.

In this chapter, we introduce the counting process approach to survival anal-

ysis which has its origins in the work by Odd Aalen, see e.g. Aalen (1977, 1978,

1980). Using the counting process setup, we introduce some regression models.

Furthermore, we review some model checks from the literature.

In Section 2.1, we consider the classical example in survival analysis, a clinical

trial. We show how the counting process comes into play. In Section 2.2, the

basic counting process setup is given, which will also be used in later chapters.

Section 2.3 introduces some further notation, which will be used throughout

the thesis. Section 2.4 contains some models from survival analysis and some

standard estimators in these models. We provide considerably more detail than

in Section 1.1. In Section 2.5, we review model checks in survival analysis. The

models for which the most checks have been proposed is the Cox model.
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2.1 A Classical Example:

Survival Analysis in a Clinical Trial

Consider the following example: In a clinical trial, patients are observed and

one is interested in the length of survival after a certain surgery. Patients enter

the study when the surgery is performed. In Figure 2.1, a timeline for a typical

clinical study can be seen. Individuals enter the study over time. Some of them

experience the event one is interested in. This can be relapse or it can be death.

Some individuals do not experience the event: This can be because the study

ends or because they moved and were lost to follow up. However, it may also be

that they died of other causes. For those individuals it is only known that they

were observed for some time without experiencing the event. The phenomenon

that some individuals are no longer observed after a certain point in time is

called right censoring.

In
d
iv

id
u
al

s

Begin of Study End of Study
Time

Event

Censoring

Figure 2.1: Timeline of a clinical trial.

For analyzing this type of data, usually a different time-scale is chosen. One

considers the time since individuals entered the study. This is illustrated in

Figure 2.2.

So, usually one assumes that for each individual i, there are two random

times: Ti, the time of the event and Ci, the time of censoring, i.e. the time

after which no more events are observed. One observes only the minimum Xi

of Ci and Ti, i.e. Xi = Ci ∧ Ti, and whether an event occurs via the indicator

variable δi = I{Ti = Xi}. The connection to counting processes is as follows: Let

Ni(t) = δiI{Xi ≤ t}. If the ith individual does not experience the event then



2.2. GENERAL SETUP 13

In
d
iv

id
u
al

s

Time since an

individual entered

the study

Event

Censoring

Figure 2.2: Usual timeline for models in survival analysis.

Ni(t) = 0 for all t. Otherwise, Ni has precisely one jump from 0 to 1 at time Ti,

see Figure 2.3. Hence, Ni is a counting process, albeit a very simple one. The

advantage of considering counting processes is that one can define models by the

intensity λi of the counting process Ni and then use martingale theory for the

difference between the counting process and the cumulated intensity
∫ t
0 λi(s) ds.

0

1

Ni(t)

t

0

1

Ni(t)

t

Ti

Figure 2.3: Counting processes for classical survival analysis with at most one

event per individual. Left: no event, Right: event at time Ti.

2.2 General Setup

It is not necessary to restrict oneself to counting processes having at most one

jump. We consider the following setup:

Suppose that we observe events during the finite time interval [0, τ ], where

0 < τ < ∞. We assume that we have an underlying probability space (Ω,F ,P)
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on which all stochastic processes are defined. Furthermore, let (Ft), t ∈ [0, τ ],

be a filtration to which properties such as adapted or predictable pertain. E[·]
denotes expectation with respect to P.

We observe an n-variate counting process N = (N1, . . . , Nn)⊤, whose ele-

ments have no common jumps, meaning that N(0) = 0, the paths of the Ni are

piecewise constant with jumps that are upward of size one and ∆Ni(t)∆Nj(t) = 0

for all i 6= j and all t ∈ [0, τ ]. We assume that N is adapted and admits an

intensity λ = (λ1, . . . , λn)⊤, i.e. λ is a locally bounded predictable process and

M(t) = (M1(t), . . . ,Mn(t))⊤ := N(t)−
∫ t
0 λ(s) ds is a vector of local martingales.

The integrated intensity is denoted by Λ(t) = (Λ1(t), . . . ,Λn(t))⊤ :=
∫ t
0 λ(s) ds.

An example for a sample path of Ni, Λi, and Mi can be seen in Figure 2.4.

0

1

2

3

4

τ

Ni(t)

Λi(t)

t

Mi(t)

t0

1

2

-1

-2

τ

Figure 2.4: Example of sample paths for Ni, Λi, and Mi (assuming constant

intensity λi(t)).

2.3 Notation

We will mostly be concerned with the limiting behavior of the test statistic T

mentioned in the introduction, as the dimension of the counting process becomes

large, i.e. n tends to infinity. Since this is basically the only limiting behavior we

consider, we suppress indicating this when we mention limits, i.e. limits in this

thesis will always be as n → ∞. Stochastic convergence is denoted by
P→ and

convergence in distribution is denoted by
d→. We use the convention 0/0 = 0.

The minimum of a and b is denoted by a ∧ b.
We always write matrices and vectors in bold face (A,x) and if we refer to

elements of a matrix or a vector we denote the elements by Aij or xi. Further-

more, Ai denotes the i-th row of A, i.e. if A has k columns, Ai = (Ai1, . . . , Aik).
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The transpose of A is denoted by A⊤. Usually, matrices are denoted by up-

per case letters and vectors by lower case letters, but this is no general rule.

Vectors are column vectors unless indicated otherwise. 0 (resp. 1) denotes the

vector, row vector, or matrix whose components are all 0 (resp. 1). The iden-

tity matrix is denoted by I. The dimensions of 0, 1, and I will be clear from

the context. As a shorthand, for vectors x, y ∈ R
n, we use the elementwise

product xy := (xiyi)i=1,...,n, the elementwise division x/y := (xi/yi)i=1,...,n,

and for a function f : R → R, we let f(x) := (f(xi))i=1,...,n. In particular,

xk := (xk
i )i=1,...,n, for integers k. If a matrix A ∈ R

k×k is not invertible then

A−1 is defined to be the k × k matrix with all elements equal to 0.

For vectors, ‖ · ‖ denotes the Euclidean norm. For matrices A, the matrix

norm induced by the Euclidean norm is denoted by ‖A‖, i.e. ‖A‖ = sup ‖Ax‖,
where the sup is over all vectors x such that ‖x‖ = 1. For sequences (Xn), n ∈ N,

of random variables we say Xn = OP(1) if for each ǫ > 0 there exists K > 0 such

that supn∈N P(|Xn| > K) < ǫ. If (an), n ∈ N, is another sequence of real valued

random variables, we write Xn = OP(an) if Xn/an = OP(1). If (Xn), n ∈ N, is

a sequence of random vectors or random matrices, OP(·) is defined in the same

way with | · | replaced by ‖ · ‖. For sequences (Xn), n ∈ N, and (an), n ∈ N, of

random variables, we say Xn = oP(an) if Xn/an
P→ 0.

For a Borel-measurable set A ⊂ R
p, the set of all bounded, measurable

mappings from [0, τ ] into A is denoted by bm(A).

We also introduce some non-standard notation which will ease the presenta-

tion considerably. For matrices A ∈ R
n×a, B ∈ R

n×b and vectors x ∈ R
n with

a, b, n ∈ N we define

A =
1

n
A⊤1, AB =

1

n
A⊤B, AxB =

1

n
A⊤diag(x)B,

where 1 = (1, . . . , 1)⊤ ∈ R
n and diag(x) denotes the diagonal matrix with the

elements of x on its diagonal. More generally, suppose we have k ∈ N matrices

A(1) ∈ R
n×a1 , . . . ,A(k) ∈ R

n×ak . Then we define for all bj ∈ {1, . . . , aj}, j =

1, . . . , k,

A(1) · · ·A(k)
b1...bk

:=
1

n

n∑

i=1

k∏

j=1

A
(j)
ibj

=
1

n

n∑

i=1

A
(1)
ib1

· · ·A(k)
ibk
.

We call A(1) · · ·A(k) product mean. Of course, we interpret n-variate vectors

as n × 1-dimensional matrices. The matrices and vectors used in the product

mean are allowed to be random and may also depend on further parameters

which will be indicated in parentheses, e.g. if A and B depend on t ∈ [0, τ ] then

AB(t) = 1
nA(t)⊤B(t).
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If A(1), . . . ,A(k) depend on θ ∈ Θ where Θ is some measurable space we say

that

A(1) · · ·A(k) converges uip (uniformly in probability) on Θ

if there exists a deterministic, measurable, bounded function
−−−−−−−−⇀
A(1) · · ·A(k) : Θ →

R
a1×···×ak such that for all bj ∈ {1, . . . , aj}, j = 1, . . . , k,

sup
θ∈Θ

∣∣∣A(1) · · ·A(k)
b1...bk

(θ) −−−−−−−−−⇀
A(1) · · ·A(k)

b1...bk
(θ)
∣∣∣ P→ 0.

This includes the assumption that the left hand side is a real valued random

variable. The limit of A(1) · · ·A(k) will always be denoted by
−−−−−−−−⇀
A(1) · · ·A(k).

2.4 Models and their Properties

The purpose of this section is to introduce some models from survival analysis

and some commonly used estimators. For our purposes, it is of interest that

these estimators are usually
√
n-consistent.

2.4.1 Cox-Type Models

Cox’s proportional hazards model (Cox, 1972; Andersen and Gill, 1982) is the

most widely used model in survival analysis and event history analysis. It speci-

fies that the intensity λ = (λ1, . . . , λn)⊤ of a counting processN = (N1, . . . , Nn)⊤

can be written as

λi(t) = λ0(t) exp(Zi(t)β)Ri(t), (2.1)

where the observable row vector of covariates Zi is a kβ-dimensional predictable

stochastic process, Ri ∈ {0, 1} is the at-risk indicator, β ∈ R
kβ is an unknown re-

gression parameter and the deterministic, nonnegative baseline λ0 is unspecified.

An extension to (2.1) is discussed by Prentice and Self (1983), where

λi(t) = λ0(t)r(Zi(t)β)Ri(t) (2.2)

for a known function r : R → [0,∞).

The parameter β is usually estimated by a maximum partial likelihood ap-

proach (Cox, 1972; Andersen and Gill, 1982), i.e. β̂ is the maximizer of C(β)

where

C(β) :=
n∑

i=1

∫ τ

0
log(ρi(β, s)) dNi(s) −

∫ τ

0
log(nρ(β, s))n dN(s), (2.3)

and ρi(β, t) = Ri(t)r(Zi(t)β). The standard Breslow estimator Λ̂0(t) of Λ0(t) =∫ t
0 λ0(s) ds is given by

Λ̂0(t) =

∫ t

0

dN(s)

ρ(β̂, s))
. (2.4)
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Under regularity conditions, it is known that
√
n(β̂ − β0) converges to a

normal distribution, and that the Breslow estimator Λ̂0(t) is
√
n-consistent, see

e.g. Andersen and Gill (1982); Prentice and Self (1983). Alternative approaches

to estimation of parameters in the Cox model can be found in Sasieni (1993).

The approach used to derive the asymptotics for the Cox model does not

depend much on the particular form of ρi. If ρi is twice differentiable with respect

to β then the proofs of Andersen and Gill (1982) or Prentice and Self (1983) can

be modified to show convergence of
√
n(β̂ − β) and of

√
n(Λ̂0(t) − Λ0(t)). This

basically holds true whenever we speak of Cox models. Therefore, we usually

speak of Cox-type models and mean models with intensity of type

λi(t) = λ0(t)ρi(β, t), (2.5)

where ρi is an observable nonnegative stochastic process indexed by β ∈ Xβ ⊂
R

kβ and t ∈ [0, τ ], which is twice differentiable with respect to β.

2.4.2 Aalen’s Additive Model

Aalen (1980) introduced a nonparametric model, in which the covariates and the

counting process are linked together by the assumption that the intensity can be

written as

λi(t) = Yi(t)α(t), (2.6)

where Yi are row vectors of predictable stochastic processes containing the ob-

servable covariates and α is an unknown deterministic vector-valued function.

In matrix-notation, we can rewrite (2.6) as follows:

λ(t) = Y (t)α(t)

where Y (t) = (Y1(t)
⊤, . . . ,Y n(t)⊤)⊤.

The standard estimator for A(t) =
∫ t
0 α(s) ds is the least squares estimator

Â(t) defined by

Â(t) =

∫ t

0
Y −(s) dN(s),

where Y −(s) is a generalized inverse of Y (s). If Y (s) has full column rank then

Y −(s) = (Y (s)⊤Y (s))−1Y (s)⊤. In Aalen (1980), it is shown that
√
n(Â(t) −

A(t)) converges to a mean zero Gaussian martingale.

To obtain an estimator α̂ of α itself, one can use kernel smoothers as follows:

α̂(t) =
1

b

∫ τ

0
K

(
t− s

b

)
dÂ(s),

where b > 0 is the so-called bandwidth and the kernel K : R → R satisfies∫
R
K(s) ds = 1. An example for K is the Epanechnikov kernel K(t) = 3

4(1 − t2)
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for |t| ≤ 1 and K(t) = 0 for |t| > 1. In Section 4.2, we modify this kernel

smoothing approach slightly to get rates of convergence of the derivative of α̂

and to take care of boundary effects.

In Huffer and McKeague (1991) and in McKeague (1988), weighted least

squares estimators for A are discussed. These weighted estimators can lead to

a greater efficiency of the estimator. However, the estimation of the weights

make the resulting estimator more complicated. The weighted estimator is
√
n-

consistent as well. Further discussion of Aalen’s model can be found in Aalen

(1989, 1993) and in Andersen et al. (1993).

2.4.3 A Semiparametric Additive Risk Model

The following restriction of the Aalen model has been suggested by McKeague

and Sasieni (1994):

λi(t) = Y c
i (t)αc + Y v

i (t)αv(t), (2.7)

where the observable covariates Y c
i and Y v

i are row vectors of predictable stochas-

tic processes, αc is an unknown vector, and αv is an unknown vector-valued

function.

To motivate the model, McKeague and Sasieni (1994) point out that in the

Aalen model only a limited number of covariates can be handled with small or

medium size samples. To get around this problem one can use (2.7) and assume

that some covariates have time-independent influence.

Simple estimators of the parameters αc and Av(t) =
∫ t
0 α

v(s) ds are the least

squares estimators α̂c and Âv(t) suggested by McKeague and Sasieni (1994),

which are defined as follows:

α̂c =

(∫ τ

0
Y c(QY

v

Y c)(s) ds

)−1 1

n

∫ τ

0
Y c(s)⊤QY

v

(s) dN(s),

Âv(t) =

∫ t

0
Y v−(s)

(
dN(s) − Y c(s)α̂c ds

)
,

where Y c(t) = (Y c
1 (t)⊤, . . . ,Y c

n (t)⊤)⊤, Y v(t) = (Y v
1 (t)⊤, . . . ,Y v

n (t)⊤)⊤, Y v−(t) is

a generalized inverse of Y v(t) and QY
v

(t) is the orthogonal projection matrix

onto the space orthogonal to the columns of Y v(t). McKeague and Sasieni (1994)

also discuss weighted versions of these estimators. For weighted and unweighted

estimators, McKeague and Sasieni (1994) show that
√
n(α̂c − αc) converges to

a mean zero normal vector and
√
n(Âv(t) − Av(t)) converges to a mean zero

Gaussian process, where αc and Av(t) are the ’true’ values from the model.

A simplified version of (2.7) with Y v
i (t) = Ri(t), where Ri(t) is the at-risk

indicator, has been considered by Lin and Ying (1994).
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2.4.4 Parametric Models

There exists a huge amount of literature on parametric models for survival anal-

ysis, see e.g. the bibliographic remarks in Andersen et al. (1993, Chapter VI.4).

In Andersen et al. (1993, Chapter VI), the following general model is considered:

λi(t) = ηi(t,θ), (2.8)

where the observable parameter-dependent stochastic process ηi is predictable

and θ is an unknown, finite-dimensional vector.

Usually, the parameter θ is estimated by a maximum partial likelihood ap-

proach. The log partial likelihood used for this is given e.g. in Andersen et al.

(1993, p. 402) as

C(θ) =

∫ τ

0

n∑

i=1

log(ηi(t,θ)) dNi(t) −
∫ τ

0

n∑

i=1

ηi(t,θ) dt. (2.9)

Under regularity conditions, the maximizer θ̂ of C has the usual properties of

maximum likelihood estimators. In Andersen et al. (1993, Chapter VI.1.2), con-

ditions for
√
n(θ̂ − θ0) to be asymptotically normal are given, where θ0 is the

’true’ parameter. For our purposes, it is mainly interesting to note that θ̂ is√
n-consistent. An extension of the maximum partial likelihood approach is to

consider M-estimators, see Andersen et al. (1993, Chapter VI.2).

An example for (2.8) is the parametric Cox model:

λi(t) = a(t,γ) exp(Ziβ)Ri(t), (2.10)

where a is some known function, Zi are row vectors of covariates, Ri is the at-risk

indicator and γ, β are unknown finite-dimensional parameters. The parametric

Cox model has been treated in Hjort (1992).

2.4.5 Further Models

Recall the following models already mentioned in the introduction: the general

additive-multiplicative hazard model (Lin and Ying, 1995):

λi(t) = (g(Y v
i (t)β) + λ0(t)h(Y

c
i (t)αc))Ri(t),

a sum of a Cox and an Aalen model (Martinussen and Scheike, 2002):

λi(t) = [Y v
i (t)αv(t) + λ0(t) exp(Y c

i (t)αc)]Ri(t), (2.11)

and a product of a Cox and an Aalen model (Scheike and Zhang, 2002):

λi(t) = Y v
i (t)αv(t) exp(Y c

i (t)αc), (2.12)
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where the observable covariates Y c
i and Y v

i are row vectors of predictable stochas-

tic processes, g and h are known functions, αc and β are unknown vectors, λ0

is an unknown function, αv is an unknown vector-valued function, and Ri is

the at-risk indicator. In the respective papers that introduce these models,
√
n-

consistent estimators of the parameters are given. Martinussen and Scheike

(2002) also discuss an extended version of (2.11), in which some of the compo-

nents of αc are allowed to depend on time. For further information on (2.12),

see Scheike and Zhang (2003).

As mentioned in the introduction, the Cox model has also been generalized

to include time-dependent regression parameters β(t):

λi(t) = λ0(t) exp(Zi(t)β(t))Ri(t), (2.13)

where λ0, Zi, and Ri are as in the classical Cox model (1.1) and β is allowed

to depend on time. The model has been considered by Zucker and Karr (1990),

Murphy and Sen (1991), Grambsch and Therneau (1994), Pons (2000), Marti-

nussen et al. (2002), Cai and Sun (2003), Winnett and Sasieni (2003). In Scheike

and Martinussen (2004), the model (2.13) is restricted by requiring that some

components of β(t) are constant over time. In the aforementioned papers, sev-

eral
√
n-consistent estimators of the parameters are given. In Martinussen et al.

(2002), the following extension of the Cox model is discussed:

λi(t) = exp (Y v
i (t)αv(t) + Y c

i (t)αc)Ri(t), (2.14)

where Y v
i , Y c

i , αv, αc, and Ri are as before.

All models introduced so far fit our framework, i.e. they can be written as

λi(t) = f(X i(t),α
v(t),αc),

where f is a known function, Xi are observable stochastic processes, αv is an

unknown vector-valued function, and αc is a finite-dimensional parameter. How-

ever, there are several other classes of models, which do not fit our framework

(1.4). The following models are some examples:

Frailty models have been introduced since the beginning of the 90s. In these

models, some covariates are not observable. Instead, a fixed parametric class of

distributions is assumed for them. Some frailty models can be found in Nielsen

et al. (1992), Murphy (1995), and Kosorok et al. (2004). As mentioned in the

introduction, in frailty models, the interaction between covariates and parame-

ters in the intensity with respect to the filtration generated by the observable

processes, may be more complicated.

In Dabrowska (1997), the following model is considered:

λi(t) = α(t,Xi(t)) exp(Zi(t)β)Ri(t),
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where α(·, ·) is an unknown deterministic function and β is an unknown vector of

regression coefficients. The covariates are the one-dimensional stochastic process

Xi and the row vector of stochastic processes Zi. As always, Ri is the at-risk

indicator.

2.5 Various Approaches to Goodness-of-Fit:

A Review

We survey several approaches for model checks, mainly considering those that

lead to formal tests. However, since the number of model checks in survival

analysis is very large, a complete list is beyond the scope of this thesis.

2.5.1 Checks for the Cox Model

The Cox model is by far the most studied model in survival analysis and thus

it is not surprising that most suggestions for model checks in survival analysis

are checks for the Cox model. Already in the monograph by Andersen et al.

(1993), 23 pages are devoted to checks of the Cox model and considerably more

checks have been proposed since. We only sketch some important approaches.

For further approaches and worked examples we refer to Fleming and Harrington

(1991) and Andersen et al. (1993). Several graphical model checks can be found

in Therneau and Grambsch (2000).

First, we describe several approaches that use the so-called martingale resid-

uals as a starting point. By definition, if the Cox model (2.1) holds true then

Mi(t) = Ni(t) −
∫ t

0
λ0(s) exp(Zi(s)β)Ri(s) ds

are mean zero local martingales and thus should ’fluctuate’ around 0. These

martingales can be estimated by the martingale residuals

M̂i(t) = Ni(t) −
∫ t

0
ρi(β̂, s) dΛ̂0(s) = Ni(t) −

∫ t

0

ρi(β̂, s)

ρ(β̂, s)
dN(s),

where ρi(β, s) = Ri(s) exp(Zi(s)β), β̂ is the maximum partial likelihood esti-

mator, and Λ̂0 is the Breslow estimator. Note that this definition of martingale

residuals is slightly different from the martingale residuals mentioned in the in-

troduction. Martingale residuals have been used as a starting point for model

checks by several authors:

• Schoenfeld (1980) proposed a goodness-of-fit test based on partitioning the

product space of time and covariates into a finite number of cells C1, . . . , Ck,
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and comparing the observed and expected number of events in these cells.

This amounts to constructing an asymptotically χ2-distributed test statis-

tic based on the variables

Dj :=

n∑

i=1

∫ τ

0
I{(t,Zi(t))

⊤∈ Cj}dM̂i(t), j = 1, . . . , k.

• Barlow and Prentice (1988) suggested the following weighted martingale

residuals:

êi(fi) :=

∫ τ

0
fi(s) dM̂i(s)

for some weight functions fi. They show that several other previously pro-

posed residuals can be written in this form. They suggest to plot êi(fi)

against covariates or against the rank of either failure or censoring time.

Instead of considering êi(fi) directly, they also suggest using êi(fi) stan-

dardized by a heuristic estimator of the variance.

The resulting plots are hard to interpret, since the distribution of êi(fi) or

its standardized version is not known. Typically, the distribution of êi(fi)

is not close to a normal distribution.

• In Arjas (1988), the individuals are grouped into k different strata de-

fined by a partition (I1, . . . , Ik) of {1, . . . , n}. The processes M̂ Ij
(t) :=∑

i∈Ij
M̂i(t), j = 1, . . . , k, are considered. A graphical procedure is sug-

gested in which, instead of plotting M̂ Ij
directly, for each strata, one plots

the estimated cumulative hazard against the number of observed failures.

If the Cox model holds true, one can expect straight lines with unit slope.

Asymptotic results concerning M̂ Ij
are derived in Marzec and Marzec

(1993). Indeed, it is shown that M̂ Ij
converges to a Gaussian process.

• In Therneau et al. (1990), some more discussion on plots based on the

martingale residuals is given. Furthermore, the so-called score processes

are introduced, which are defined as
∑n

i=1 Lij(t), where

Lij(t) =

∫ t

0

(
Zij(s) −

∑n
ν=1 ρν(β̂, s)Zνj(s)∑n

ν=1 ρν(β̂, s)

)
dM̂i(s),

where Zij is the jth covariate of the ith individual. Therneau et al. (1990)

state that supt

∑n
i=1 Lij(t) “should be quite sensitive to alternatives for

which covariates have a monotonically increasing or decreasing effect over

time, . . . ” They show that a standardized version of
∑n

i=1 Lij(t) con-

verges to a Brownian bridge. They suggest plots of standardized versions

of
∑n

i=1 Lij(t), but do not define a test. For a simple proportional hazards
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model with just one covariate, these residuals have already been considered

by Wei (1984). A more recent paper which also considers the score process

is Kvaløy and Neef (2004).

• In Lin et al. (1993) the multidimensional stochastic processes

Wz(t, z) =
n∑

i=1

f(Zi)I{Zi ≤ z}M̂i(t)

and

Wr(t, r) =
n∑

i=1

f(Zi)I{Ziβ̂ ≤ r}M̂i(t)

are considered, where f is some known, real-valued function and the co-

variates Zi are assumed to be constant over time. The distributions of

Wz(t, z) and Wr(t, r) can be approximated by zero mean Gaussian pro-

cesses. Starting from the above, Lin et al. (1993) suggest several tests. In

particular, they suggest an omnibus test based on supt,z |Wz(t, z)|, using

the constant weights f(z) = 1 for all z.

In Spiekerman and Lin (1996), the approach is extended to a setup in which

individuals are in n clusters and may be correlated within each cluster,

where n is assumed large compared to the number of individuals in each

cluster.

• Grønnesby and Borgan (1996) assume time-independent covariates and

partition the n individuals according to the risk score Ziβ̂ into groups

A1, . . . , Ag for some fixed g. They consider the vector of processes H =

(H1, . . . , Hg)
⊤, where

Hj(t) =
n∑

i=1

I{i ∈ Aj}M̂i(t) =
n∑

i=1

∫ t

0
I{i ∈ Aj}dM̂i(t).

They sketch a proof for the asymptotic distribution of H as n→ ∞. They

suggest to use plots of H and a formal test based on the asymptotically

χ2
g−1 distributed random variable

(H1(τ), . . . , Hg−1(τ))(Σ̂(τ))−1(H1(τ), . . . , Hg−1(τ))
⊤,

where Σ̂(τ) is an estimator of the covariance of (H1(τ), . . . , Hg−1(τ)).

Grønnesby and Borgan (1996) suggest to choose groups of roughly equal

size. They also propose some other ad hoc choices for the groups. Some

further discussion on this test and on how to choose the groups can be

found in May and Hosmer (1998, 2004).
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• Marzec and Marzec (1997a) discuss optimal weighting of martingale resid-

uals in the Cox model. In fact, Marzec and Marzec (1997a) use weights

in three different places and optimize over the weights in one place. More

precisely, they base their considerations on

k∑

j=1

∫ t

0
Lj(β̂, s)

n∑

i=1

φij(s)w(Zi(s), s)

(
dNi(s) − ρi(β̂, s)

dN(s)

wρ(β̂, s)

)
,

where Lj , φij , and w(Zi(s), s) are weights and the estimator β̂ in Marzec

and Marzec (1997a) is a weighted maximum partial likelihood estimator

with weights w(Zi(s), s).

They optimize over the weights L1(β, ·), . . . , Lk(β, ·), where k is a fixed in-

teger. Note that this amounts to choosing optimal time-dependent weights,

but not optimal weights for each individual. The optimal choice of the

weights φij and w is not discussed in Marzec and Marzec (1997a), they

only make some ad hoc suggestions. In this thesis, we will optimize weights

depending on time AND on individual.

• Verweij et al. (1998) suggest to embed the Cox model into a larger model

in which there is an additional random effect, i.e. an unobserved covariate.

They assume the correlation matrix of the random effect as given and use

the null hypothesis that there is no constant effect. They suggest a test

statistic based on weighted sums of squared martingale residuals.

Besides the approach based on martingale residuals, there are several other

approaches for checking the fit of the Cox model. We list some of them:

• In the paper introducing the Cox model (Cox, 1972), it is suggested to

include an additional time-dependent covariate and test whether this co-

variate has an effect.

• In Andersen (1982), several graphical methods are summarized. Some

formal tests for checking the fit are suggested. However, the tests require

partitioning of the time axis into several intervals. Furthermore, the formal

tests are not for the Cox model itself but for a parametric model with

constant hazard in certain intervals.

• In Moreau et al. (1985), the Cox model is embedded into a larger model,

where the parameters are allowed to be step-functions with jumps at pre-

specified time points. The test is then based on a score test with the null

hypothesis that the parameters are constant over time.
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• Therneau et al. (1990) also introduce the so-called deviance residuals,

which are the difference between the log partial likelihood of a saturated

Cox model and the Cox model that is to be checked. In the saturated

model, each individual has its own parameter vector, i.e. the parameter

vector is nkβ-dimensional.

• Lin and Wei (1991) propose a test based on the difference of two different

estimators for the inverse of the covariance matrix of the maximum partial

likelihood estimators. They show that this difference is asymptotically

normally distributed with mean zero. They present extensive simulation

studies to compare the test with other goodness-of-fit tests.

• McKeague and Utikal (1991) base a test on the difference between the

cumulated hazard rate of a very general model and the cumulated hazard

rate of the Cox model. In fact, the general model only assumes that the

intensity is a function of time and the covariates. They only consider a

one-dimensional covariate that is constant over time. The hazard rate

is cumulated with respect to time AND with respect to the covariate to

give a multidimensional process. This process is shown to converge to a

Gaussian process. Besides using plots to look for model discrepancies, they

also partition the product space of time and covariates and construct an

asymptotically χ2-distributed test statistic. As an extension, they consider

using the difference between the cumulated hazard rate in a general relative

risk model and the cumulated hazard rate in the Cox model. The general

relative risk model is given by λi(t) = λ0(t)r(Zi)Ri(t), where Zi is the

one-dimensional covariate, λ0(t) is an unknown baseline, r is an unknown

function, and Ri is the at-risk indicator.

In McKeague and Sun (1996), a transformation of the test statistic of

McKeague and Utikal (1991) is used to simplify the asymptotic distribu-

tion. In fact, after the transformation, the limiting process is a Brownian

sheet, i.e. a two-dimensional Gaussian process W with covariance given by

Cov(W (t, z),W (t′, z′)) = (t ∧ t′)(z ∧ z′), where t, t′ index time and z, z′

index the value of the covariates.

• Grambsch and Therneau (1994) suggest to check the Cox model by em-

bedding it into a larger model, where the effect of one covariate may vary

over time. Using heuristic arguments, they propose a plotting technique

to determine whether - as the Cox model assumes - the effect is indeed

constant over time.

• Burke and Yuen (1995) base a test of fit on the Breslow estimator (2.4)
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using only covariates up to a certain value z, i.e. on

Λ̂0(t, z) :=

∫ t

0

∑n
i=1 I{Zi ≤ z}dNi(s)∑n
j=1 I{Zj ≤ z}ρj(β̂, s)

.

If the Cox model (2.1) is true then, asymptotically, Λ̂0(t, z) should not

depend on z. They suggest to use
√
n
(
Λ̂0(t, z) − Λ̂0(t)

)
as basis for tests,

where Λ̂0(t) is the usual Breslow estimator. They show asymptotic results

and suggest a bootstrap method.

• Fine (2002) considers comparing two nonnested Cox models based on the

partial likelihood ratio. Fine (2002) does not assume that one of the two

models is correct. It is shown that the maximum partial likelihood estima-

tors converge to some least false values even if the model is misspecified.

The null hypothesis is that the expected log partial likelihood (with the

least false parameters) of the two models is the same. Fine (2002) gives

an interpretation of this null hypothesis in terms of the Kullback-Leibler

distance.

Fine (2002) shows that the test statistic has a different limiting behavior

depending on whether the least false intensities of the two models are the

same or not. In fact, if they are then the asymptotic distribution of the

partial likelihood ratio, suitably normed, is converging in distribution to

a weighted sum of χ2 random variables. Otherwise, the partial likelihood

ratio, suitably normed, converges in distribution to a normal distribution.

A sequential procedure is suggested to distinguish between the two cases.

• León and Tsai (2004) suggest tests based on what they call censoring

consistent residuals. They start with the simple right-censoring model

in which one observes Xi = Ti ∧ Ci and δi = I{Ti = Xi}. They sug-

gest to use a transformation φ such that E[φ(Xi, δi)|Zi] = E[Ti|Zi], where

Zi are time-independent covariates. Their starting point is the differ-

ence R̂i = φ̃(Xi, δi) − m̂(Zi), where φ̃ is the transformation they use and

m̂(Zi) is the estimate of E[Ti|Zi] under the Cox model (2.1). They call

R̂i censoring consistent residuals. They propose the overall test statistic

D̃ = sup
z∈R

kβ

∣∣∣
∑n

i=1 I{Zi ≤ z}R̂i

∣∣∣ and the following statistic for “testing

the functional form of covariate Zk”: D̃k = supz∈R

∣∣∣
∑n

i=1 I{Zik ≤ z}R̂i

∣∣∣ .
To approximate the asymptotic distribution of D̃ and D̃k they suggest a

bootstrap method.

• Other approaches can be found in Nagelkerke et al. (1984), Lin (1991),

Marzec and Marzec (1998) and Parzen and Lipsitz (1999).
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In Ng’andu (1997) and in Song and Lee (2000), several of the above tests for

the proportional hazards assumption of the Cox model are compared by means

of simulation studies. Not surprisingly, the simulations do not yield an overall

best test.

2.5.2 Checks for Additive Models

For the additive model (2.6), Aalen (1993) suggested several techniques for model

checking based on martingale residuals, among them grouping residuals based

on values of the covariates.

Besides checking the Cox model, McKeague and Utikal (1991) also consider

using the Aalen model (2.6) as null hypothesis. Simulation studies in McKeague

and Utikal (1991) indicate that even for large sample sizes their test exceeds the

asymptotic level severely. For example, in their simulation with nominal level

0.05 and n = 300 individuals the observed rejection rate was 0.212. This only

converges slowly to the asymptotic level, as can be seen by the rejection rate of

0.106 for n = 1200 individuals and of 0.066 for n = 3600 individuals.

For a subclass of models of the semiparametric additive model (2.7) consid-

ered by Lin and Ying (1994), some goodness-of-fit approaches have been sug-

gested by Song et al. (1996), Yuen and Burke (1997), and Kim et al. (1998).

The model is given as follows:

λi(t) = (λ0(t) +Ziβ)Ri(t), (2.15)

where Zi are row vectors of covariates, λ0 is an unknown baseline, β is an

unknown finite-dimensional parameter, and Ri is the at-risk indicator. The idea

in Song et al. (1996) is similar to the one in Lin et al. (1993) for the Cox model,

i.e. they suggest to use partial sums of martingale residuals with respect to time

and covariate values. Yuen and Burke (1997) transfer the idea of Burke and

Yuen (1995) to (2.15). Indeed they use the difference between two estimators

of
∫ t
0 λ0(s) ds as starting point, one estimator uses all individuals, the other

only those individuals whose covariates are less than a given value. After that

they define Kolmogorov-Smirnov type test statistics and Cramér-von Mises type

test statistics and suggest to use a bootstrap approximation of the distribution

of the test statistics. Kim et al. (1998) define a function similar to the partial

likelihood score function for the Cox model introduced by Therneau et al. (1990)

and suggest to use the sup over the absolute value of this score function as test

statistic. They prove the asymptotics and the validity of a certain simulation

procedure.

Grønnesby and Borgan (1996) also discuss a check for the Aalen model as

well as for (2.15). Similar to their approach for the Cox model, they suggest

using sums of martingale residuals grouped by the risk score.
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To check the semiparametric restriction of the Aalen model given by (2.7),

Scheike (2002) proposes to use tests to check whether in the models the parame-

ters αc are actually constant over time. To this end, he makes several suggestions

based on functionals of the difference Âc
j(t)− α̂c

jt, where Âc
j(t) is an estimator of∫ t

0 α
c
j(s) ds that does not assume αc

j to be constant over time. One test statis-

tic is supt∈[0,τ ] |Âc
j(t) − α̂c

jt|. Similar suggestions can be found in Grund and

Polzehl (2001), where only a bootstrap scheme is suggested to approximate the

distribution of the test statistic.

2.5.3 Checks for Parametric Models

Section 6 of Hjort (1990) discusses a goodness-of-fit test for the parametric Cox

model (2.10). The test statistic is

Hn(t) :=
√
n

∫ t

0
Kn(s) d

(
Â(s) −A(s, θ̂)

)
,

where Â(t) =
∫ t
0

(
1
n

∑n
i=1 exp(Ziβ̂)Ri(s)

)−1
dN(s) is a nonparametric estimator

for A(t,θ) :=
∫ t
0 a(s,θ) ds, the weights Kn(s) are predictable stochastic processes

that converge to a deterministic process, and β̂, θ̂ are the maximum partial like-

lihood estimators for β, θ from the parametric Cox model. Note that Â(t) is

almost identical to the Breslow estimator (2.4) - the only difference is that Â(t)

uses the maximum partial likelihood estimator from the parametric Cox model

(2.10) and not the maximum partial likelihood estimator from the semiparamet-

ric Cox model (2.1). Hjort (1990) shows convergence of Hn(t) to a mean zero

Gaussian process. Based on this, a plotting procedure of a normalized version

of Hn(t) as well as χ2-tests based on a partitioning of the time-axis are sug-

gested. Three different choices of weights are given and some discussion on the

consistency of the tests is included. Hjort (1990) relaxes the assumption of pre-

dictability of the weights Kn as follows: Kn may depend on a finite-dimensional

parameter, say γ, for which a consistent estimator is plugged in. For fixed γ, the

weights Kn(γ, t) have to be predictable. The asymptotic distribution of Hn(t)

is not a Gaussian martingale - the covariance structure is more complicated.

In Andersen et al. (1993), it is noted that the approach of Khmaladze (1981)

could be used to transform Hn(·) to a stochastic process H̃n(·) such that the

asymptotic distribution is a mean zero Gaussian martingale.

Lin and Spiekerman (1996) discuss several model checks for parametric re-

gression models with censored data. For the parametric Cox model (2.10), using

a similar approach to the one in Hjort (1990), they present Kolmogorov-Smirnov-

type tests. Furthermore, they also describe a test for the following accelerated
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failure time model

λi(t) = η(t exp(−Ziβ),θ) exp(Ziβ)Ri(t),

where η is a known function, β, θ are finite-dimensional parameters, Zi are row

vectors of covariates , and Ri are the at-risk indicators. The idea is to consider

√
n

(∫ t

0
η(s, θ̂) ds− Ê(t, β̂)

)
,

where θ̂, β̂ are estimators for θ,β and Ê(t,β) is an estimator for
∫ t
0 ρ(s) ds in

the semiparametric model

λi(t) = ρ(t exp(−Ziβ)) exp(Ziβ)Ri(t),

where ρ is an unknown function. Furthermore, for a general model of type

λi(t) = ηi(θ, t)Ri(t),

Lin and Spiekerman (1996) describe a similar approach as the one in Lin et al.

(1993) based on the martingale residuals

M̂i(t) = Ni(t) −
∫ t

0
ηi(θ̂, s)Ri(s) ds.

Using cumulative sums of M̂i(t) with respect to failure time or/and covariates,

they construct omnibus tests.

In Stute et al. (2000), the following model is considered:

Y = mθ(X) + ǫ, θ ∈ Θ,

where Θ ⊂ R
d is finite-dimensional, θ is unknown, m is a known function, Y is

a lifetime, X are finite-dimensional covariates and ǫ is an error term satisfying

E[ǫ|X] = 0. Furthermore, it is assumed that Y is censored by an independent

censoring variable C and that Z = Y ∧ C and δ = I{Y ≤ Z}. The observation

consists of n i.i.d. replicates of (Z,X, δ) denoted by (Zi,Xi, δi), i = 1, . . . , n.

Let Z1:n ≤ · · · ≤ Zn:n be the order statistic of Z1, . . . , Zn, and let δ[i:n] and

X [i:n] be the concomitants associated with Zi:n. Stute et al. (2000) base their

considerations on the “empirical process marked by the weighted residuals,”

which they define as follows:

R1
n(x) =

√
n

n∑

i=1

Wni

[
Zi:n −mbθ

(X [i:n])
]
I{X [i:n] ≤ x},
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where θ̂ is the weighted least squares estimator for θ defined as minimizer of

n∑

i=1

Wni

[
Zi:n −mθ(X [i:n])

]2

and where Wni are the so-called Kaplan Meier weights given by

Wni =
δ[i:n]

n− i+ 1

i−1∏

j=1

[
n− j

n− j + 1

]δ[j:n]

.

Stute et al. (2000) show that R1
n converges to a d-variate centered Gaussian pro-

cess R1
∞. Furthermore, they suggest a bootstrap approximation of the limiting

process and show that this approximation converges to R1
∞. The actual test

statistics used in Stute et al. (2000) are supx |R1(x)| and
∫

(R1
n(x))2F1n(dx),

where F1n is the empirical distribution function of X1, . . . ,Xn.

Some other ideas for checks of parametric regression models can be found in

Andersen et al. (1993).

2.5.4 Checks for Further Models

The approach by Arjas (1988) based on sums of martingale residuals in one strata

has been extended to other models as well. Indeed, Marzec and Marzec (1997b)

extend the approach to the Cox model with time-dependent coefficients (2.13)

and Kraus (2004) extends the approach to the model (2.12), whose intensity is

a product of an Aalen and a Cox model.

Scheike and Zhang (2003) suggest a method of checking the model (2.12),

whose intensity is the product of a Cox and an Aalen type intensity. Indeed,

they suggest to use a certain score process derived from the score function of the

time-constant parameters to check the “goodness of fit of the covariates included

in the multiplicative part”.

In a general Cox model, where some coefficients are time-varying and others

are constant over time, Scheike and Martinussen (2004) propose tests whether

the coefficients assumed to be constant over time are indeed constant over time.

In Martinussen et al. (2002), a similar idea has been proposed for the semipara-

metric extension of the Cox model given in (2.14).



Chapter 3

Checking Aalen’s Additive

Risk Model

In this chapter, we consider model checks for Aalen’s additive risk model (2.6).

Recall that in this model the intensity is given by

λi(t) = Yi(t)α(t) for some α ∈ bm(Rkα ), (3.1)

where Yi are kα-variate row vectors of predictable, locally bounded processes

and where the unknown regression parameter α is a deterministic element of

bm(Rkα ), the set of all bounded, measurable mappings from [0, τ ] into R
kα .

We want to test whether (3.1) holds true. Writing the hypothesis in terms of

the intensity is a convenient shorthand for the following precise formulation of

the null hypothesis:

H0: There exists α ∈ bm(Rkα ) such that for i = 1, . . . , n, the stochastic process

Ni(t) −
∫ t
0 Yi(s)α(s) ds is a local martingale with mean zero.

When we talk about hypotheses in the upcoming chapters, we will only write

down the intensity.

3.1 Setup

We use the setup of Section 2.2. In this chapter, we make the simplifying as-

sumption that the covariates Yi, i = 1, . . . , n, are bounded, adapted, càglàd

stochastic processes. Hereby, càglàd means that the paths of the processes are

left-continuous and have right-hand limits. The term càglàd is an abbreviation

for the French term ’continue à gauche, avec des l imites à droite’.

For our test, we need weights given by a predictable process c = (c1, . . . , cn)⊤

that satisfies certain orthogonality conditions motivated in the introduction.



32 CHAPTER 3. CHECKING AALEN’S ADDITIVE RISK MODEL

Since the Aalen model only has time-dependent parameters, the condition for c

is (1.6), which reduces to

n∑

i=1

ci(t)Yi(t) = c(t)⊤Y (t) = 0, ∀ t ∈ [0, τ ]. (3.2)

Using this, we can simplify our test statistic:

T (α, t) = n−
1
2

n∑

i=1

∫ t

0
ci(s) (dNi(s) − Yi(s)α(s) ds) = n−

1
2

n∑

i=1

∫ t

0
ci(s) dNi(s).

Thus T (α, t) does not depend on α and hence, we do not need an estimator for

α to evaluate T (α, t). Therefore we only write T (t).

3.2 Orthogonal Projections

We will ensure (3.2) by using orthogonal projections. Orthogonal projections

will be used frequently, therefore we introduce them in some generality.

Let (A,A, µ) be a measure space. L2(A,A, µ) = L2(µ) is defined as the

vector space of measurable functions f : A→ R that satisfy

‖f‖µ :=

(∫

A
|f(x)|2 dµ(x)

) 1
2

<∞.

We use the usual identification of functions being equal µ-almost everywhere.

Equipped with the scalar product

<f, g>µ=

∫

A
f(x)g(x) dµ(x),

L2(µ) is a Hilbert space. IfX is a subset of L2(µ) thenQX
µ denotes the orthogonal

projection operator onto X⊥, i.e. QX
µ is a linear, continuous operator such that

the image of L2(µ) under QX
µ is X⊥, and for a, b ∈ L2(µ):

QX
µ (QX

µ a) = QX
µ a and <QX

µ a, b>µ=<a,QX
µ b>µ .

If X is a closed subspace of L2(µ) then QX
µ a = a−PX

µ a, where PX
µ denotes the

orthogonal projection operator onto X. For a ∈ L2(µ) the following elementary

properties hold:

<QX
µ a, a>µ=

∥∥QX
µ a
∥∥2

µ
,

∥∥QX
µ a
∥∥

µ
≤ ‖a‖µ ,

QX
µ a = a if a ∈ X⊥,

QX
µ a = 0 if a ∈ X.

(3.3)
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If X is spanned by finitely many vectors x1, . . . , xk, that are not linearly depen-

dent, then by Lemma B.1, for a ∈ L2(µ),

QX
µ a = a− (xi)

⊤
i=1,...,k (<xi, xj>µ)−1

i,j=1,...,k (<xi, a>µ)i=1,...,k. (3.4)

The ordinary scalar product and the orthogonal projection in R
n fits into this

framework as follows: Let Pn be the counting measure on {1, . . . , n}, i.e. Pn(i) = 1

for i ∈ {1, . . . , n}. Then we identify R
n with L2(Pn). Indeed, any vector x ∈ R

n

corresponds to a function x̃ ∈ L2(Pn) by setting x̃(i) = xi, i = 1, . . . , n. Using

this identification, we clearly have x⊤y =<x,y>Pn
for x,y ∈ R

n. Furthermore,

if X is spanned by the columns of a matrix Y ∈ R
n×k and Y⊤Y is invertible

then (3.4) is the following:

QX
Pn
a = a− Y (Y⊤Y )−1Y⊤a.

We often use QY
Pn

:= QX
Pn

. Moreover, we identify functions x : [0, τ ] → R
n with

elements f of L2(Pn⊗ ) by f(i, t) = xi(t), where is Lebesgue measure on [0, τ ].

Hereby, the underlying space is {1, . . . , n} × [0, τ ] equipped with the σ-algebra

P{1, . . . , n} ⊗ B[0, τ ], where P denotes the power set and B denotes the Borel-

σ-algebra. If appropriate, we shall write x ∈ L2(Pn⊗ ) and use the notation of

this section. For example, for functions x,y ∈ L2(Pn⊗ ):

<x,y>Pn⊗ =

∫ τ

0
x(s)⊤y(s) ds.

For more flexibility, we use the following standard notation: If w : A →
[0,∞) is measurable, then w · µ denotes the measure defined by (w · µ)(B) =∫
B w(x) dµ(x). We use w ·µ instead of µ in the notation of this section and then

w can be interpreted as weights. For example, for a nonnegative vector w ∈ R
n

and a matrix Y ∈ R
k we have

QYw·Pn
a = a− Y (Y⊤diag (w)Y )−1Y⊤diag (w)a

if Y⊤diag (w)Y is invertible. Moreover, for nonnegative w : [0, τ ] → R
n, we

shall also use the notation L2(w · (Pn⊗ )).

3.3 Least Squares Weights

Starting from arbitrary weights d(t) = (d1(t), . . . , dn(t))⊤, one can ensure the

orthogonality conditions (3.2) by using

c(t) = Q
Y (t)
Pn

d(t).

To emphasize which weights d we are using, we shall write T (d, ·). For the

asymptotic results we assume the following condition:
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(A1) (properties of E[Y1(t)
⊤Y1(t)])

E[Y1(t)
⊤Y1(t)] is continuous in t and invertible for all t ∈ [0, τ ].

If the Aalen model holds true then we have the following convergence result in

the space D[0, τ ] of càdlàg functions on [0, τ ] (i.e. right continuous real valued

functions with left-hand limits) equipped with the Skorohod topology (Billings-

ley, 1999).

Theorem 3.1. Suppose that (Yi, di), i = 1, . . . , n, are i.i.d. and Yi and di are

càglàd, bounded, adapted stochastic processes. If (A1) and the Aalen model (2.6)

hold true then in D[0, τ ],

T (d, t) = n−
1
2

∫ t

0
(Q
Y (s)
Pn

d(s))⊤dN(s)
d→ m(t),

where m is a mean zero Gaussian process with covariance Cov(m(s),m(t)) =

σ2(d, s ∧ t), where

σ2(d, t) =

∫ t

0
E

[(
Q
Y1(s)
P d1(s)

)2
λ1(s)

]
ds.

Furthermore

σ̂2(d, t) =
1

n

∫ t

0
(Q
Y (s)
Pn

d(s))⊤diag(dN(s))(Q
Y (s)
Pn

d(s))
P→ σ2(d, t)

uniformly in t ∈ [0, τ ].

Most proofs of this chapter are collected in Section 3.7.

Under the fixed alternative λi(t) = hi(t), for some hi(t), the following asymptotic

result holds true:

Theorem 3.2. Suppose that (hi,Yi, di) are i.i.d. and Yi, hi, and di are càglàd,

bounded, adapted stochastic processes. If (A1) is satisfied and λi(t) = hi(t) then

n−
1
2T (d, t)

P→ H(t) :=

∫ t

0
<Q

Y1(s)
P d1(s), h1(s)>P ds

and

σ̂2(d, t)
P→
∫ t

0

∥∥∥QY1(s)
P d1(s)

∥∥∥
2

h1(s)·P
ds.

Note that if d = h then by properties of projections,

H(t) :=

∫ t

0

∥∥∥QY1(s)
P h1(s)

∥∥∥
2

P
ds ≥ 0.

With this choice, one-sided tests rejecting for large values seem reasonable.
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Furthermore, the following are equivalent:

(i) H(t) = 0 ∀ t ∈ [0, τ ]

(ii) h1(t) ∈ spanP(Y11(t), . . . , Y1kα (t)) for almost all t ∈ [0, τ ].

(iii) h1 is in Aalen’s model (2.6).

In (ii), spanP denotes the span in the space L2(P) of square integrable random

variables. Hence, using d = h we can construct consistent tests.

3.4 Construction of Tests

Under the conditions of Theorem 3.1, dropping the dependence on d,

T (·) d→ m(·),

where m is a mean zero Gaussian process with Cov(m(s),m(t)) = σ2(s∧ t) given

in Theorem 3.1. Furthermore, we have a uniformly consistent estimator σ̂2(·) of

σ2(·). There are several ways how to construct one or two-sided tests from this

starting point. All of them require

σ2(τ) > 0.

The easiest approach is to consider

V (1) :=
T (τ)√
σ̂2(τ)

,

which follows asymptotically a normal distribution. Another approach is to

consider

V (2) := sup
t∈[0,τ ]

∣∣∣∣∣

√
σ̂2(τ)

σ̂2(τ) + σ̂2(t)
T (t)

∣∣∣∣∣
d→ sup

t∈[0, 1
2
]

|W 0(t)|,

where W 0(t) is a Brownian bridge. This transformation can for example be

found in Hall and Wellner (1980). A third approach is to start from

V (3) := sup
t∈[0,τ ]

∣∣∣∣∣
T (t)√
σ̂2(τ)

∣∣∣∣∣
d→ sup

t∈[0,1]
|W (t)|,

where W (t) is a Brownian motion. The convergence is based on the fact that

m(·) d
= W (σ2(·)), where m and S are as in Theorem 3.1.

An explicit formula for the asymptotic distribution of V (2) can be found in

Hall and Wellner (1980). Formulas for the asymptotic distribution of V (3) can

be derived from Borodin and Salminen (2002). For the test statistics V (2) and

V (3) we always reject at the upper tail. For the test statistic V (1) we will indicate

whether we use a two-sided test or a one-sided test (rejecting at the upper tail).
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3.5 Choosing the Weights

3.5.1 General Comments

A main restriction on the weights d is that d needs to be predictable. An easy

example for predictable weights, is to use a transformations of the covariates

as weights, say a weight can be the indicator that a certain covariate exceeds a

given threshold.

In the coming chapters, we will often relax considerably the condition that

the weights need to be predictable. We will show that one can plug in estimators

of finite-dimensional parameters or even an estimator, possibly not predictable,

of a nonparametric baseline. However, one main condition remains: To use the

asymptotics of Theorem 3.1, we need that the asymptotic variance σ2(d, τ) is

positive. For this to hold true, we need that d1(t) is not in the model space, i.e.

that it cannot be written as Y11(t)α1(t) + · · · + Y1kα (t)αkα (t).

If the weights d depend on a parameter β for which we have an estimator

β̂ that converges stochastically to some β0 then we shall show later that under

some regularity conditions T (d(β̂), ·) and T (d(β0), ·) as well as σ2(d(β̂), t) and

σ2(d(β0), t) are asymptotically equivalent. Hence, we need that under the null

hypothesis d1(β0, ·) is not in the model space.

3.5.2 Nested Models

Suppose we want to be powerful against a model in which the Aalen model (2.6)

is nested. Say,

λi(t) = Yi(t)α(t) + Zi(t)β, (3.5)

where Zi is some other covariate which is assumed to be a predictable process.

One could try to use an estimate d(β̂) of the intensity of the larger model (3.5).

As already noted, under some conditions, T (d(β̂), ·) and T (d(β0), ·) as well as

σ2(d(β̂), ·) and σ2(d(β0), ·) are asymptotically equivalent if (3.5) holds with β =

β0. However, if the smaller model is true, i.e. β0 = 0 then d(β0) is in the model

space and hence σ2(d(β0), τ) = 0.

To avoid this problem, we suggest to use di(t) = Zi(t) instead. Indeed,

if the additional covariate Z = (Z1, . . . , Zn)⊤ is not in the model space then

σ2(Z, τ) > 0.

For the remainder of this chapter and the next chapters, we will mostly ignore

the problem of how to ensure σ2(d, τ) > 0, i.e. that the asymptotic variance of our

test does not converge to zero. We will come back to this question in Chapter 7.
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3.5.3 Using the Cox Model as Competing Model

In this section, we consider directing our test against a competing Cox model

given by

λi(t) = λ0(t) exp(Zi(t)β)Ri(t), (3.6)

where λ0 is an unknown baseline, β is a finite-dimensional regression parameter,

Ri is the at-risk indicator, i.e. a stochastic process taking only the values 0

and 1, and Zi is a kβ-variate row vector of observable processes containing

the covariates. The vector Zi may contain some of the components of Yi or

transformations of them, but this need not be the case. Using

di(t) = exp(Zi(t)β)Ri(t)

leads to consistent tests. Indeed, if (3.6) holds true then by Theorem 3.2,

n−
1
2T (d, t)

P→
∫ t

0
λ0(s)

∥∥∥QY1(s)
P exp(Z1(s)β)

∥∥∥
2

P
ds.

As β is not known, we shall plug in an estimator β̂. Note that we do not

need to estimate λ0. We shall use the maximum partial likelihood estimator

β̂ given in Subsection 2.4.1. For asymptotic results, we need to know the rate

of convergence of β̂. If the Cox model (3.6) holds true then this is covered by

the classical results, see also Subsection 2.4.1. However, we also need the rates

if the Aalen model (2.6) holds true. Lin and Wei (1989), Hjort (1992), Sasieni

(1993), and Fine (2002) have shown that even if (3.6) does not hold then β̂ still

converges to some ’least false’ value at a rate of
√
n. They showed this only for

the case where each individual has at most one event. In Subsection 4.1.2, we

generalize this to multiple events per individual. So the following condition is

usually satisfied:

(A2) (convergence of β̂) There exists β0 such that β̂ − β0 = OP(n−1/2).

If the Cox model (3.6) holds true then β = β0 is the ’true’ value. We shall prove

that estimating the parameter β does not change the asymptotics. For the fol-

lowing, let d(β, t) = exp(Zi(t)β)Ri(t). The first theorem covers the asymptotics

under the Aalen model.

Theorem 3.3. Suppose (Ri,Yi,Zi) are i.i.d. and Ri, Yi, Zi are càglàd, bounded,

adapted stochastic processes. If (A1), (A2) are satisfied and the Aalen model

(2.6) holds true then in D[0, τ ],

T (d(β̂, ·), t) d→ m(t),
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where m is a mean zero Gaussian process with covariance Cov(m(s),m(t)) =

σ2(s ∧ t), where

σ2(t) =

∫ t

0
E

[(
Q
Y1(s)
P d1(β0, s)

)2
λ1(s)

]
ds.

Furthermore, uniformly in t ∈ [0, τ ],

σ̂2(d(β̂, ·), t) P→ σ2(t).

The next theorem is concerned with the asymptotics if the Cox model holds.

Theorem 3.4. Suppose (Ri,Yi,Zi) are i.i.d. and Ri, Yi, Zi are càglàd, bounded,

adapted stochastic processes. If (A1), (A2) hold true and if

λi(t) = λ0(t) exp(Zi(t)β0)Ri(t) = λ0(t)di(β0, t)

then uniformly in t ∈ [0, τ ],

n−
1
2T (d(β̂, ·), t) P→

∫ t

0

∥∥∥QY1(s)
P d1(β0, s)

∥∥∥
2

P
λ0(s) ds

and

σ̂2(d(β̂, ·), t) P→
∫ t

0

∥∥∥QY1(s)
P d1(β0, s)

∥∥∥
2

d1(β0,s)·P
λ0(s) ds.

With the above choice of d, one-sided tests that reject for large values of

T (d(β̂, ·), τ)
/√

σ̂2(d(β̂, ·), τ) seem reasonable.

3.6 Optimal Weights

In this section, we derive optimal weights against fixed and local alternatives.

Against fixed alternatives, the weights are optimal in the sense of approximate

Bahadur efficiency, and against local alternatives, they are optimal in the sense

of Pitman efficiency. However, the optimal weights will depend on some un-

known quantities. Plugging in estimators for them gives weights for which the

asymptotic behavior of T is not covered by the results for the least squares es-

timators in Section 3.3. We will not prove the necessary extensions here since

in Chapter 5, we prove more general results that cover these estimated optimal

weights.

3.6.1 Fixed Alternatives

We want to choose optimal weights against a fixed alternative given by λi(t) =

hi(t), i = 1, . . . , n, where hi is assumed to be known. As optimality criterion,



3.6. OPTIMAL WEIGHTS 39

we use the concept of approximate Bahadur efficiency, see Bahadur (1960) and

Nikitin (1995, p. 10f). We shall motivate the approximate Bahadur efficiency

briefly for our special case. We want to consider tests based on

V (d) := V (1)(d) = T (d, τ)
/√

σ̂2(d, τ)

that reject for large values of V (d). If the null hypothesis holds true then under

the conditions of Theorem 3.1,

V (d)
d→ N(0, 1).

If λi(t) = hi(t) then under the conditions of Theorem 3.2,

n−
1
2V (d)

P→ b(d) :=

∫ τ
0 <Q

Y1(s)
P d1(s), h1(s)>P ds

(∫ τ
0

∥∥∥QY1(s)
P d1(s)

∥∥∥
2

h1(s)·P
ds

) 1
2

.

The approximated p-value is in our case given by

L(d) = 1 − Φ(V (d)),

where Φ denotes the cumulative standard normal distribution function. L(d) is

the (approximate) probability that the test statistic exceeds the observed value

V (d). One rejects the null hypothesis if L(d) is less than the asymptotic level α

of the test.

Assume we are given two different choices of weights d(1) and d(2). Then,

using the words of Bahadur (1960), it would be fair to say that the test based on

V (d(1)) is less successful than the test based on V (d(2)) if, under the alternative,

L(d(1)) > L(d(2)). By Bahadur (1960),

− 1

n
log (L(d)) =

1

2
b(d)2 + oP(1).

The quantity b(d)2 is called approximate Bahadur slope. Hence, for the two

choices of weights d(1) and d(2),

log(L(d(1)))

log(L(d(2)))

P→
(
b(d(1))

b(d(2))

)2

.

As log(L(d)) < 0, one can conclude that if b(d(1)) < b(d(2)) then the test based

on V (d(1)) is less successful than the test based on V (d(2)). Hence, it seems

reasonable to use weights that maximize b(d). This is precisely what we are

going to do. So the optimization problem we consider is maximizing b(d). We

can give the following upper bound for b(d) (recall that we use the convention

0/0 = 0):
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Lemma 3.1. Suppose that the conditions of Theorem 3.2 are satisfied, that

hi(t) = 0 implies Yi(t) = 0, and that there exists K > 0 such that hi(t) > 0

implies hi(t) > K. Let

d∗i (t) :=




Q

Bi(t)
hi(t)·P

1, hi(t) > 0

0, hi(t) = 0

where Bi(t) =
{

Yij(t)
hi(t)

: j = 1, . . . , kα

}
. Then

b(d) ≤ b(d∗).

Proof. The conditions on hi ensure that
Yij(t)
hi(t)

∈ L2(hi(t) · P) for j = 1, . . . , kα.

The key idea is to rewrite b(d) by using the scalar products < ·, · >h1(t)·P

and applying the Cauchy-Schwarz inequality. Let d̃(t) := Q
Y1(t)
P d1(t). As

< ·, Y1j(t)>P=< ·, Y1j(t)/h1(t)>h1(t)·P we have d̃(t) = Q
B1(t)
h1(t)·Pd̃(t). Using some

of the properties of projection matrices, for s ∈ [0, τ ],

<d̃(s), h1(s)>P= <d̃(s), 1>h1(s)·P=<Q
B1(s)
h1(s)·Pd̃(s), 1>h1(s)·P

= <d̃(s),Q
B1(s)
h1(s)·P1>h1(s)·P .

Thus, by using twice the Cauchy-Schwarz inequality,
∫ τ

0
<d̃(s), h1(s)>P ds ≤

∫ τ

0

∥∥∥d̃(s)
∥∥∥

h1(s)·P

∥∥∥QB1(s)
h1(s)·P1

∥∥∥
h1(s)·P

ds

≤
(∫ τ

0

∥∥∥d̃(s)
∥∥∥

2

h1(s)·P
ds

) 1
2
(∫ τ

0

∥∥∥QB1(s)
h1(s)·P1

∥∥∥
2

h1(s)·P
ds

) 1
2

.

Therefore, b(d) ≤
(∫ τ

0 ‖d∗(s)‖2
h1(s)·P ds

)1/2
. By the definition of B1(s),

<d∗1(s), Y1j(s)>P=<Q
B1(s)
h1(s)·P1,

Y1j(s)

h1(s)
>h1(s)·P= 0, for j = 1, . . . , kα,

and hence, Q
Y1(s)
P d∗1(s) = d∗1(s). Thus,

b(d∗) =

∫ τ

0
<d∗(s), 1>h1(s)·P ds

(∫ τ

0
‖d∗(s)‖2

h1(s)·P ds

)− 1
2

Hence, by properties of projections (3.3), b(d∗) =
(∫ τ

0 ‖d∗(s)‖2
h1(s)·P ds

)1/2
.

Hence, using the weights d∗ is optimal - if we can show the asymptotics for

d∗. If the matrix

A(s) =

(
<
Y1j(s)

h1(s)
,
Y1ν(s)

h1(s)
>h1(s)·P

)

j,ν=1,...,kα
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is invertible for all s ∈ [0, τ ], ‖A−1(·)‖ is bounded, and h1 is bounded away from

zero on the event {h1(s) > 0} then

d∗1(s) =

(
1 − Y1(s)

1

h1(s)
(A(s))−1 E(Y1(s))

⊤

)
I{h1(s) > 0}.

Unfortunately, usually A(s) and E(Y1(s)) are not known, so one needs to plug

in estimators, e.g. the consistent estimators Y h−1Y (s) and Y (s). Doing so, we

get the weights

d̂∗(s) = diag(R(s))Q
B(s)
h(s)·Pn

1,

where B(s) = {y(s)/h(s) : y(s) column of Y (s)} and Ri(s) = I{hi(s) > 0}.
Plugging this into our test statistic one sees that Q

Y (s)
Pn

d̂∗(s) = d̂∗(s). Hence,

T (d̂∗, t) = n−
1
2

∫ t

0
d̂∗(s)⊤dN(s),

meaning that d̂∗(s) need not be projected any more.

Note that we cannot use Theorem 3.1 and Theorem 3.2, since the components

of d̂∗(s) are not i.i.d. So we need to relax this assumption. One possibility

would be to extend Theorem 3.1 and Theorem 3.2 to cover weighted projections.

Instead, we refer to Chapter 5, where we will prove the needed results in a more

general setting.

Furthermore, in applications, one could be interested in not just a fixed al-

ternative, but another model as alternative. For this we could plug in estimators

into h to get an estimator ĥ. In general, ĥ will not be predictable, and hence,

similar to the situation described in Subsection 3.5.3, we need to relax the as-

sumption of predictability of the weights as well. The asymptotic results in

Chapter 5 cover this for many competing models.

3.6.2 Local Alternatives

The idea of local alternatives is that their distance to the null hypothesis goes

to zero at a rate which ensures that distinguishing between the null and the

alternative does not become trivial. We shall consider the following set of local

alternatives to the Aalen model (2.6):

λi(t) = Yi(t)α(t) + n−
1
2 gi(t), (3.7)

where Yi is as in (2.6) and gi are some predictable processes. We want to

derive optimal choices against this local alternative using the so-called Pitman-

efficiency. For this, we first need to derive the asymptotic distribution of T (d, ·)
under (3.7).
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Theorem 3.5. Suppose that (gi,Yi, di) are i.i.d. and gi, Yi, di, are càglàd,

adapted, bounded stochastic processes. If (A1) and the local alternative (3.7)

hold true then in D[0, τ ],

T (d, ·) = n−
1
2

∫ ·

0
(Q
Y (t)
Pn

d(t))⊤dN(t)
d→ m(·),

where m is a Gaussian process with mean

E[m(t)] = µ(d, t) :=

∫ t

0
E[(Q

Y1(s)
P d1(s))g1(s)] ds

and covariance Cov(m(s),m(t)) = σ2(d, s ∧ t), where

σ2(d, t) =

∫ t

0
E

[(
Q
Y1(s)
P d1(s)

)2
Y1(s)α(s)

]
ds.

Furthermore,

σ̂2(d, t) =
1

n

∫ t

0
(Q
Y (s)
Pn

d(s))⊤diag(dN(s))(Q
Y (s)
Pn

d(s))
P→ σ2(d, t)

uniformly in t ∈ [0, τ ].

The previous theorem can be used to derive optimal tests under local alterna-

tives of type (3.7) within the class of one-sided tests based on T (d, τ)
/√

σ̂2(d, τ).

If σ2(d, τ) 6= 0 then, by a Slutsky argument, the previous theorem implies

T (d, τ)
/√

σ̂2(d, τ)
P→ N(ζ(d), 1), where ζ(d) = µ(d, τ)

/√
σ2(d, τ). Thus the

power against (3.7) converges to 1 − Φ(Φ−1(1 − α) − ζ(d)), where α is the

asymptotic level of the test and Φ is the cumulative distribution function of

the standard normal distribution. Therefore, an asymptotically most powerful

sequence of tests is achieved when ζ(d) is maximized. This can be done similarly

to the previous section, as the following lemma shows.

Lemma 3.2. Suppose that the conditions of Theorem 3.5 hold true and that with

ηi(t) := Yi(t)α(t), there exists K > 0 such that ηi(t) > 0 implies ηi(t) > K and

ηi(t) = 0 implies (gi(t) = 0 and Yi(t) = 0). Let

d∗i (t) :=




Q

Bi(t)
ηi(t)·P

gi(t)
ηi(t)

, ηi(t) > 0

0, ηi(t) = 0

where Bi(t) =
{

Yij(t)
ηi(t)

, j = 1, . . . , kα

}
. Then

ζ(d∗) ≥ ζ(d).
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Proof. Again, the idea is to rewrite ζ(d) by using the scalar products < ·, ·>η1(t)·P

and applying the Cauchy-Schwarz inequality. Let d̃(t) := Q
Y1(t)
P d1(t). Using

some of the properties of projection matrices given in (3.3),

µ(d, τ) =

∫ τ

0
<d̃(s), g1(s)>P ds =

∫ τ

0
<d̃(s),

g1(s)

η1(s)
>η1(s)·P ds

=

∫ τ

0
<Q

B1(s)
η1(s)·Pd̃(s),

g1(s)

η1(s)
>η1(s)·P ds

=

∫ τ

0
<d̃(s),Q

B1(s)
η1(s)·P

g1(s)

η1(s)
>η1(s)·P ds.

Hence, using twice the Cauchy-Schwarz inequality,

µ(d, τ) ≤
∫ τ

0

∥∥∥d̃(s)
∥∥∥

η1(s)·P

∥∥∥∥Q
B1(s)
η1(s)·P

g1(s)

η1(s)

∥∥∥∥
η1(s)·P

ds

≤
(∫ τ

0

∥∥∥d̃(s)
∥∥∥

2

η1(s)·P
ds

) 1
2

(∫ τ

0

∥∥∥∥Q
B1(s)
η1(s)·P

g1(s)

η1(s)

∥∥∥∥
2

η1(s)·P

ds

) 1
2

=
√
σ2(d, τ)

(∫ τ

0
‖d∗1(s)‖2

η1(s)·P ds

) 1
2

.

Thus, ζ(d) ≤
(∫ τ

0 ‖d∗1(s)‖2
η1(s)·P ds

) 1
2
. By the definition of B1(s),

<d∗1(s), Y1j(s)>P=<Q
B1(s)
η1(s)·P1,

Y1j(s)

η1(s)
>η1(s)·P= 0, for j = 1, . . . , kα,

and hence, Q
Y1(s)
P d∗1(s) = d∗1(s). Thus, by properties of projections (3.3),

µ(d∗, τ) =

∫ τ

0
<d∗1(s), 1>h1(s)·P ds =

∫ τ

0
‖d∗1(s)‖2

h1(s)·P ds.

Therefore, ζ(d∗) =
(∫ τ

0 ‖d∗1(s)‖2
η1(s)·P ds

)1/2
.

3.7 Proofs

Before we prove the results, we need some preparations.

3.7.1 Convergence of Inverted Matrices

This section shows how the uniform stochastic convergence of time-dependent

random matrices can be carried over to their inverses. We use this to get uniform

stochastic convergence of (Y Y (t))−1 from that of Y Y (t). A lemma similar to

Lemma 3.3 was already stated in McKeague (1988). Lemma 3.3 and Lemma 3.4

are slight extensions of a similar lemma in Gandy (2002). Lemma 3.5 is directly

from Gandy (2002).
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Lemma 3.3. Suppose X is some compact subset of a Euclidean space and

A(n)(x), x ∈ X, n ∈ N, are k × k matrices of random processes. If there ex-

ists a continuous function a : X → R
k×k such that a(x) is invertible for all

x ∈ X and supx∈X ‖A(n)(x) − a(x)‖ P→ 0 then

i) P(A(n)(x) is invertible ∀x ∈ X) → 1,

ii) ∃K > 0 s.t. P(‖
(
A(n)(x)

)−1
‖ < K ∀x ∈ X) → 1, and

iii) supx∈X ‖
(
A(n)(x)

)−1
− a−1(x)‖ = OP(supx∈X ‖A(n)(x) − a(x)‖).

We prepare the proof of Lemma 3.3 by giving two lemmas.

Lemma 3.4. Let X be a compact topological space and k ∈ N. If a : X → R
k×k

is a continuous mapping such that a(x) is invertible for all x ∈ X then there

exists an ǫ > 0 such that for all B : X → R
k×k, supx∈X ‖a(x) −B(x)‖ < ǫ

implies B(x) invertible ∀x ∈ X.

Proof. Since a(X) is compact, the set of invertible matrices GL ⊂ R
k×k is

open, and a(X) ⊂ GL we can find x1, . . . , xν ∈ X and δ1, . . . , δν > 0 such

that a(X) ⊂ ⋃ν
i=1 U(a(xi), δi) and U(a(xi), 2δi) ⊂ GL, where U(C, ξ) := {D ∈

R
k×k : ‖C −D‖ < ξ}. It can be verified that ǫ := min{δ1, . . . , δν} satisfies the

claim.

Lemma 3.5. Let k ∈ N. If C,D ∈ R
k×k are invertible and ‖D−1‖‖D −C‖ < 1

then

‖C−1 −D−1‖ ≤ ‖D−1‖2‖C −D‖
1 − ‖D−1‖‖C −D‖ . (3.8)

Proof. Let I denote the identity matrix in R
k×k.

‖C−1 −D−1‖ = ‖C−1(D −C)D−1‖ ≤ ‖C−1‖‖C −D‖‖D−1‖
= ‖C−1DD−1‖‖C −D‖‖D−1‖ ≤ ‖C−1D‖‖D−1‖2‖C −D‖

By the assumption, ‖D−1(D −C)‖ ≤ ‖D−1‖‖D −C‖ < 1. Hence,

‖C−1D‖ = ‖(D−1C)−1‖ = ‖(I − (D−1(D −C))−1‖ = ‖
∞∑

n=0

(D−1(D −C))n‖

≤
∞∑

n=0

‖D−1(D −C)‖n =
(
1 − ‖D−1(D −C)‖

)−1

≤
(
1 − ‖D−1‖‖C −D‖

)−1
.
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Proof of Lemma 3.3. Choose ǫ > 0 as in Lemma 3.4. Then

P(∃x ∈ X s.t. A(n)(x) is singular) ≤ P(sup
x∈X

‖a(x) −A(n)(x)‖ ≥ ǫ) → 0.

Since a, taking inverses, and ‖·‖ are continuous mappings, the compactness

of X implies that {‖a−1(x)‖ : x ∈ X} is compact. Hence, there exists a constant

L > 0 such that supx∈X ‖a−1(x)‖ ≤ L. On the event

Dn := {‖a−1(x)‖‖a(x) −A(n)(x)‖ < 1/2,A(n)(x) invertible ∀x ∈ X},

we can use Lemma 3.5 to see that ∀x ∈ X,

‖a−1(x) −
(
A(n)(x)

)−1
‖ ≤ 2L2‖a(x) −A(n)(x)‖.

Since

Dn ⊃ {‖a(x) −A(n)(x)‖ < (2L)−1 ,A(n)(x) invertible ∀x ∈ X},

we have P(Dn) → 1. Hence,

sup
x∈X

‖
(
A(n)(x)

)−1
− a−1(x)‖ = OP(sup

x∈X
‖A(n)(x) − a(x)‖).

Let K := L + 1. Since ‖
(
A(n)(x)

)−1
‖ ≤ L + ‖

(
A(n)(x)

)−1
− a−1(x)‖, we

get iii).

3.7.2 Properties of Projected Vectors of Stochastic Processes

Lemma 3.6. Suppose (Yi1, . . . , Yikα , ai, bi, ci), i ∈ N, are i.i.d. vectors with el-

ements that are bounded processes with càglàd paths. If (A1) holds true then

uniformly in t ∈ [0, τ ],

a(QY
Pn
b)(t)

P→ E[a1(t)Q
Y1(t)
P b1(t)]

and

(QY
Pn
a)c(QY

Pn
b)(t)

P→E
[(
Q
Y1(t)
P a1(t)

)
c1(t)

(
Q
Y1(t)
P b1(t)

)]

=<Q
Y1(t)
P a1(t),Q

Y1(t)
P b1(t)>c1(t)·P .

Proof. By a strong law of large numbers (Theorem A.4),

1

n
Y (t)⊤Y (t) = Y Y (t)

P→ E[Y1(t)
⊤Y1(t)]

uniformly in t. Hence, by Lemma 3.3 and the assumptions,

(Y Y (t))−1 P→ (E[Y1(t)
⊤Y1(t)])

−1
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and the event An := {Y Y (t) invertible for all t ∈ [0, τ ]} satisfies P(An) → 1.

On An, we have

a(QY
Pn
b)(t) = ab(t) − aY (t)(Y Y (t))−1Y b(t).

Dropping the dependence on t, we use the strong law of large numbers again to

get that uniformly on [0, τ ],

a(QY
Pn
b)

P→E[a1b1] − E[a1Y1](E[Y1Y
⊤
1 ])−1 E[Y1b1]

⊤

= E
[
a1

(
b1 − Y1((<Y1j , Y1l>P)j,l=1,...,kα )−1(<Y1j , b1>P)j=1,...,kα

)]

= E[a1(Q
Y1
P b1)].

Similarly, on An we have for x := (QY
Pn
a)c(QY

Pn
b)(t) that

x =
1

n
(a− Y (Y⊤Y )−1Y⊤a)⊤diag(c)(b− Y (Y⊤Y )−1Y⊤b)

=acb− aY (Y Y )−1Y cb− acY (Y Y )−1Y b

+ aY (Y Y )−1Y cY (Y Y )−1Y b.

Using the law of large numbers again, we get

x
P→E[a1c1b1] − E[a1Y1]

(
E[Y⊤

1 Y1]
)−1

E[Y1c1b1]
⊤

− E[a1c1Y1]
(
E[Y⊤

1 Y1]
)−1

E[Y1b1]
⊤

+ E[a1Y1]
(
E[Y⊤

1 Y1]
)−1 (

E[Y⊤
1 c1Y1]

)(
E[Y⊤

1 Y1]
)−1

E[Y1b1]
⊤

= E

[(
a1 − Y1

(
E[Y⊤

1 Y1]
)−1

E[Y1a1]
⊤

)
c1

(
b1 − Y1

(
E[Y⊤

1 Y1]
)−1

E[Y1b1]
⊤

)]

= E
[(
QY1

P a1

)
c1

(
QY1

P b1

)]
.

The following lemma is formulated in a slightly more general way than nec-

essary for this chapter; the weights w are only needed for the following chapters.

Lemma 3.7. Suppose all elements of the n × ν-dimensional matrix Y and the

n-variate vectors w and e are predictable, locally bounded processes and suppose

that w ≥ 0 and for each i = 1, . . . , n, wi(t)
−1 is locally bounded.

Then Q
Y (t)
w(t)·Pn

e(t) is an n-variate vector of locally bounded predictable pro-

cesses, where we set (Q
Y (t)
w(t)·Pn

e(t))i = 0 if wi(t) = 0.
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Proof. Recall that a stochastic process is predictable if it is measurable with

respect to the so-called predictable σ-algebra when considered as a mapping

from Ω × [0, τ ] to R. One can choose a bijective mapping f : {1, . . . , 2ν} →
P({1, . . . , ν}), where P stands for power set, such that i ≤ j implies #f(i) ≥
#f(j), where # stands for the cardinality of the set. Then Q

Y (t)
w(t)·Pn

e(t) =

e(t) − PY (t)
w(t)·Pn

e(t), where

P
Y (t)
w(t)·Pn

e(t) =
2ν∑

j=1

[

∏

i<j

I{det(Zi(t)
⊤Zi(t)) = 0}


 I{det(Zj(t)

⊤Zj(t)) 6= 0}

×Zj(t)
(
ZjwZj(t)

)−1
Zjwe(t)

]
,

(3.9)

where, deviating from our usual notation, Zi(t) is the matrix consisting of

the columns of Y (t) indexed by f(i). Since the determinant can be writ-

ten as polynomial, det(Zi(t)
⊤Zi(t)) is predictable for all i = 1, . . . , 2ν . Since

g : R → R, g(x) = I{x 6= 0} is measurable, the indicators in (3.9) are predictable

processes. Setting the inverse in (3.9) to the matrix containing only zeros if

Zi(t)
⊤Zi(t) is not invertible one can see that the remaining terms of (3.9) are

predictable as well. Hence, Q
Y (t)
w(t)·Pn

e(t) is predictable as a product/sum of pre-

dictable processes.

Next, we show that the projection is locally bounded. If wj(t) = 0 then

(Q
Y (t)
w(t)·Pn

e(t))j = 0. Otherwise, using the fact that projections have an operator

norm of 1,

|(QY (t)
w(t)·Pn

e(t))j | ≤ wj(t)
− 1

2

∥∥∥QY (t)
w(t)·Pn

e(t)
∥∥∥
w(t)·Pn

≤ wj(t)
− 1

2 ‖e(t)‖w(t)·Pn

≤ wj(t)
− 1

2
√
n max

i=1,...,n
|ei(t)|

√
wi(t).

Hence, since w−1
i (·), ei(·), wi(·), i = 1, . . . , n, are locally bounded, (Q

Y (t)
w(t)·Pn

e(t))j

is locally bounded.

3.7.3 Proofs of the Asymptotic Results

Proof of Theorem 3.1. Since, c(s)⊤λ(s) = (Q
Y (s)
Pn

d(s))⊤Y (s)α(s) = 0,

T (t) = n−
1
2

∫ t

0
(Q
Y (s)
Pn

d(s))⊤(dN(s) − λ(s) ds) . (3.10)

By Lemma 3.7, Q
Y (s)
Pn

d(s) is predictable and locally bounded. Hence, T (t) is

a mean zero locally square integrable martingale. We want to apply a central
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limit theorem for T for which we need convergence of the predictable variation

process:

〈T 〉 (t) =
1

n

∫ t

0
(Q
Y (s)
Pn

d(s))⊤diag(λ(s))(Q
Y (s)
Pn

d(s)) ds.

By Lemma 3.6, 〈T 〉 (t)
P→ σ2(t). To apply the central limit theorem we also need

some condition on the jumps of T (t). We show

n−
1
2 sup

i=1...n
t∈[0,τ ]

∣∣∣
(
Q
Y (t)
Pn

d(t)
)

i

∣∣∣ P→ 0. (3.11)

Indeed, on An,

n−
1
2

∣∣∣
(
Q
Y (t)
Pn

d(t)
)

i

∣∣∣ =n− 1
2

∣∣di(t) − Yi(t)(Y Y (t))−1Y d(t)
∣∣

≤n− 1
2 |di(t)| + n−

1
2 ‖Yi(t)‖

∥∥∥
(
Y Y (t)

)−1
∥∥∥
∥∥Y d(t)

∥∥ .

Y d(t) converges uniformly to E[Y1(t)
⊤d1(t)] which is bounded. Lemma 3.3 im-

plies that
(
Y Y (t)

)−1
is stochastically bounded uniformly in t. Hence, as Yi and

di are bounded, (3.11) holds.

Rebolledo’s central limit (Theorem A.3) finishes the proof.

Proof of Theorem 3.2.

n−
1
2T (t) = n−

1
2a(t) +

1

n

∫ t

0
(Q
Y (s)
Pn

d(s))⊤h(s) ds, (3.12)

where a(t) = n−
1
2

∫ t
0 (Q

Y (s)
Pn

d(s))⊤(dN(s) − λ(s) ds). Since a(t) is identical to

the right hand side in (3.10), we can repeat the steps of the proof of Theorem 3.1

to see that a converges in distribution and that σ̂2(d, t) converges in probability.

Hence, n−1/2a(t) vanishes uniformly in t. By Lemma 3.6,

∫ t

0
(QY

Pn
d)h(s) ds

P→ H(t).

Proof of Theorem 3.3. By Theorem 3.1,

T (d(β0, ·), t)
d→ m(t) and σ̂2(d(β0, ·), t)

P→ σ2(t).

We will show that uniformly in t ∈ [0, τ ],

T (d(β̂, ·), t) − T (d(β0, ·), t)
P→ 0 and σ̂2(d(β̂, ·), t) − σ̂2(d(β0, ·), t)

P→ 0.
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Let ∇j = ∂
∂βj

and ∇ = (∇1, . . . ,∇kβ ). Note that ∇di(β, t) = Zi(t)di(β, t) and

∇⊤∇di(β, t) = Zi(t)
⊤Zi(t)di(β, t). By Taylor’s theorem,

T (d(β̂, ·), t) − T (d(β0, ·), t) =

=n
1
2 (β̂ − β0)

⊤1

n

∫ t

0

(
Q
Y (s)
Pn

(∇d)(β0, s)
)⊤

dM(s)+

+
1

2
n

1
2 (β̂ − β0)

⊤

(
1

n

∫ t

0
n−

1
2xµν(s)

⊤dM(s)

)

µ,ν=1,...,kβ

n
1
2 (β̂ − β0),

(3.13)

where

xµν(s) := (xiµν(s))i=1,...,n := Q
Y (s)
Pn

(∇µ∇νd)(β̃, s),

for some β̃ between β̂ and β0. To justify the interchange of differentiation and

integration, first note that the part of the integral with respect to N poses no

problem, since this part is just a finite sum. For the other part of the integral,

one can use e.g. Bauer (1992, p. 102), since the derivative is bounded uniformly in

β in a neighborhood of β0. We show that the right hand side of (3.13) vanishes.

We start with the first term.
〈

1

n

∫ ·

0

(
Q
Y (s)
Pn

(∇d)(β0, s)
)⊤

dM(s)

〉
(t) =

= n−2

∫ t

0

(
Q
Y (s)
Pn

(∇d)(β0, s)
)⊤

diag(λ(s))
(
Q
Y (s)
Pn

(∇d)(β0, s)
)

ds

=
1

n

∫ t

0
(QY

Pn
(∇d))λ(QY

Pn
(∇d))(β0, s) ds

which converges uniformly to 0 by Lemma 3.6. Hence, by Lenglart’s inequality,

1

n

∫ t

0

(
Q
Y (s)
Pn

(∇d)(β0, s)
)⊤

dM(s)
P→ 0

uniformly in t ∈ [0, τ ].

Next, we show that the second term on the right hand side of (3.13) vanishes.

Let C ⊂ R
kβ be a compact set containing β0 in its interior. Consider the event

An :=
{
Y Y (t) invertible ∀t ∈ [0, τ ], β̂ ∈ C

}
.

By (A1), Lemma 3.3, and (A2), we have P(An) → 1. On An,

xiµν(s) = Ziµ(s)Ziν(s)di(β̃, s) + Yi(s)(Y Y (s))−1Y (∇µ∇νd)(β̃, s) (3.14)

We show that the right hand side of (3.14) is stochastically bounded, uniformly

in s and i. Since C is compact, di(β̃, s) ≤ sups∈[0,τ ]
β∈C

|di(β, s)| is bounded. By

Lemma 3.3, ‖(Y Y (s))−1‖ is stochastically bounded, uniformly in s. By a strong
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law of large numbers (Theorem A.5), Y (∇µ∇νd)(β, s) converges uniformly on

C × [0, τ ] in probability to the finite limit E[Y1(s)
⊤Z1µ(s)Z1ν(s)d1(β, s)]. Hence,

‖Y (∇µ∇νd)(β̃, s)‖ ≤ sup
t∈[0,τ ]
β∈C

‖Y (∇µ∇νd)(β, t)‖,

which is stochastically bounded. Since all other terms on the right hand side

of (3.14) are uniformly bounded, xiµν(s) = OP(1) uniformly in i and s. By

Lemma A.3 and (A2), this implies that the second term on the right hand side

of (3.13) vanishes.

Next, we show σ̂2(d(β̂, ·), t) − σ̂2(d(β0, ·), t)
P→ 0. By a Taylor expansion,

σ̂2(d(β̂, ·), t) − σ̂2(d(β0, ·), t) = 2A(t)n
1
2 (β̂ − β0), (3.15)

where

A(t) =
1

n

n∑

i=1

∫ t

0
n−

1
2 (Q

Y (t)
Pn

(∇d)(β̃, t))i(Q
Y (t)
Pn

d(β̃, t))i dNi(t),

for some β̃ between β̂ and β. Similarly to the considerations for the second term

of (3.13), one can show that

(Q
Y (t)
Pn

(∇d)(β̃, t))i(Q
Y (t)
Pn

d(β̃, t))i

is stochastically bounded, uniformly in i, t. Hence, we may use Lemma A.3 and

(A2) to see that (3.15) vanishes uniformly in t ∈ [0, τ ].

Proof of Theorem 3.4. We will show that uniformly in t ∈ [0, τ ],

n−
1
2T (d(β̂, ·), t) − n−

1
2T (d(β0, ·), t)

P→ 0

and

σ̂2(d(β̂, ·), t) − σ̂2(d(β0, ·), t)
P→ 0.

For this we use a Taylor expansion and argue similarly to the previous proof.

Indeed,

n−
1
2T (d(β̂, ·), t) − n−

1
2T (d(β0, ·), t) =

=
1

n

n∑

i=1

∫ t

0
n−

1
2 (Q

Y (t)
Pn

(∇d)(β̃, t))i dNi(s)n
1
2 (β̂ − β0) (3.16)

Similar to the proof of Theorem 3.3, one shows that (Q
Y (t)
Pn

(∇d)(β̃, t))i is stochas-

tically bounded. After that one can use Lemma A.3 to show that the right hand

side of (3.16) vanishes.

σ̂2(d(β̂, ·), t)−σ̂2(d(β0, ·), t)
P→ 0 can be shown as in the proof of Theorem 3.3.
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Proof of Theorem 3.5. We can rewrite the test statistic as follows:

T (t) = U(t) +

∫ t

0
(QY

Pn
d)g(s) ds, (3.17)

where

U(t) = n−
1
2

∫ t

0
(Q
Y (s)
Pn

d(s))⊤(dN(s) − λ(s) ds) .

By Lemma 3.7, Q
Y (s)
Pn

d(s) is predictable and locally bounded. Hence, U(t) is

a mean zero locally square integrable martingale. For applying a central limit

theorem for U we need convergence of the predictable variation process:

〈U〉 (t) =
1

n

∫ t

0
(Q
Y (s)
Pn

d(s))⊤diag(λ(s))(Q
Y (s)
Pn

d(s)) ds

=

∫ t

0
(QY

Pn
d)(Y α)(QY

Pn
d)(s) ds+ n−

1
2

∫ t

0
(QY

Pn
d)g(QY

Pn
d)(s) ds.

By Lemma 3.6, 〈U〉 (t)
P→ σ2(t). Since the jumps of T (t) are bounded (see (3.11)

in the proof of Theorem 3.1) we can use Rebolledo’s central limit (Theorem A.3)

to see that U converges in distribution to a mean zero martingale V with covari-

ance Cov(V (s), V (t)) = σ2(s ∧ t). By Lemma 3.6, the second term on the right

hand side of (3.17) converges to µ(t) uniformly on [0, τ ]. Hence, T
d→ m.
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Chapter 4

Misspecified Models and

Smoothing of Estimated

Functions

Whenever a statistical model is proposed in the literature, usually estimators of

the parameters are given and their (asymptotic) properties are studied. Most

asymptotic results are based on the assumption, that the model is true. For

our discussion, we need to know the asymptotic behavior of the estimators if

the model is misspecified. For example in Subsection 3.5.3, we have seen that

we need to know the rate of convergence of the maximum partial likelihood

estimator of a Cox model if an Aalen model holds true. The goal of Section 4.1

is to show for the Aalen model (2.6) and the Cox model (2.1) that, even if the

model is not true, the estimated parameters converge to some limit at the same

rate as if the model was true, i.e. they are
√
n-consistent.

Many models contain parameters that are functions over time, for example

the baseline λ0(t) in the Cox model. As already mentioned, estimators usually

estimate the integrated functions, for example in the Cox model, the standard

Breslow estimator Λ̂0(t) estimates Λ0(t) :=
∫ t
0 λ0(s) ds. For the following de-

velopment, we need estimates of the functions themselves and we need their

asymptotic convergence rates. We also need rates of convergence of the total

variation of the difference between the estimated function and its limit. In Sec-

tion 4.2, we describe a modified kernel smoothing approach that starts from the

estimates of the integrated functions and yields rates of convergence of the esti-

mated function and its derivative. For example, starting from a
√
n-consistent

estimator for the integrated function, one can get an estimator of the function

itself which converges at a rate of n1/3.
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4.1 Convergence Rates of Estimators

under Misspecified Models

In this section, we only show that the standard estimators in the Aalen model

and in the Cox model are
√
n-consistent even if the model does not hold true.

For other models, it is reasonable to expect that under certain regularity con-

ditions, estimated parameters or functions converge at a rate of
√
n as well. For

example, in Hjort (1992), the maximum likelihood estimator of the parametric

Cox model (2.10) is studied and it is shown that it is
√
n-consistent for a ’least

false’ value.

4.1.1 Misspecified Aalen Model

Recall that the least squares estimator for
∫ t
0 α(s) ds in the Aalen model 2.6 is

given by

Â(t) =

∫ t

0
Y −(s) dN(s),

where Y −(s) is a generalized inverse of Y (s). We show that Â(t) converges

uniformly in probability to

A0(t) =

∫ t

0
(E[Y1(s)

⊤Y1(s)])
−1 E[Y1(s)λ1(s)]

⊤ds,

even if the Aalen model (2.6) does not hold. Of course, if the Aalen model (2.6)

holds true then A0(t) =
∫ t
0 α(s) ds.

Lemma 4.1. Suppose that (Yi, λi) are i.i.d. and that Yi, λi are càglàd, bounded,

adapted stochastic processes. If (A1) holds true then

sup
t∈[0,τ ]

‖Â(t) −A0(t)‖ = OP(n−
1
2 ).

Proof. Let K := inf{det(
−−⇀
Y Y (t)), t ∈ [0, τ ]}. Define the event

Bn = {det(Y Y (t)) > K/2 for all t ∈ [0, τ ]}

and the predictable process J(t) = I{det(Y Y (t)) > K/2}. Consider the decom-

position

‖Â(t) −A0(t)‖ ≤ ‖Â(t) − Ã(t)‖ + ‖Ã(t) −A∗(t)‖ + ‖A∗(t) −A0(t)‖,

where

Ã(t) =
1

n

∫ t

0
J(s)(Y Y (s))−1Y (s)⊤dN(s)
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and

A∗(t) =

∫ t

0
J(s)(Y Y (s))−1Y λ(s) ds.

By the strong law of large numbers (Theorem A.4) and Lemma 3.3, P(Bn) → 1.

Hence, n1/2 supt∈[0,τ ] ‖Â(t) − Ã(t)‖ ≤ I(Bc
n)

P→ 0, where I(Bc
n) is the indicator

of the complement of Bn. Since

n
1
2 (Ã(t) −A∗(t)) = n−

1
2

∫ t

0
J(s)(Y Y (s))−1Y (s)⊤dM(s)

is a martingale, whose predictable quadratic variation converges and whose

jumps are bounded, we can use Rebolledo’s theorem (Theorem A.3) to show

that

sup
t∈[0,τ ]

‖Ã(t) −A∗(t)‖ = OP(n−
1
2 ).

By the assumptions, we may consider the components of Y⊤
i Yi and Yiλi as

elements of L2( ). Using a central limit theorem for random elements in Hilbert

spaces (Theorem A.6), we get that the components of n−1/2
∑n

i=1(Yi(·)⊤Yi(·) −
E[Y1(·)⊤Y1(·)]) and n−1/2

∑n
i=1(Yi(·)λi(·) − E[Y1(·)λ1(·)]) converge weakly to

mean zero Gaussian random elements in L2( ). Since the norm in L2( ) is

continuous, we may conclude

(∫ τ

0

∥∥∥Y Y (s) − E[Y1(s)
⊤Y1(s)]

∥∥∥
2

ds

) 1
2

= OP(n−
1
2 )

and (∫ τ

0

∥∥∥Y λ(s) − E[Y1(s)
⊤λ1(s)]

∥∥∥
2

ds

) 1
2

= OP(n−
1
2 ).

Using Lemma 3.3 and Lemma 3.5, we get

(∫ τ

0

∥∥∥
(
Y Y (s)

)−1 −B(s)−1
∥∥∥

2
ds

) 1
2

= OP(n−
1
2 ),

where B(s) := E[Y1(s)
⊤Y1(s)]. Using triangular inequalities,

sup
t∈[0,τ ]

‖A∗(t) −A0(t)‖ ≤
∫ τ

0

∥∥∥Y Y (s)−1Y λ(s) −B(s)−1 E[Y1(s)
⊤λ1(s)]

∥∥∥ ds

≤
∫ τ

0

∥∥∥Y Y (s)−1
(
Y λ(s) − E[Y1(s)

⊤λ1(s)]
)∥∥∥ds+

+

∫ τ

0

∥∥∥
(
Y Y (s)−1 −B(s)−1

)
E[Y1(s)

⊤λ1(s)]
∥∥∥ds.



56 CHAPTER 4. MISSPECIFIED MODELS AND SMOOTHING

Thus, by the Cauchy-Schwarz inequality,

sup
t∈[0,τ ]

‖A∗(t) −A0(t)‖ ≤

≤
(∫ τ

0

∥∥Y Y (s)−1
∥∥2

ds

∫ τ

0

∥∥∥Y λ(s) − E[Y1(s)
⊤λ1(s)]

∥∥∥
2

ds

) 1
2

+

(∫ τ

0

∥∥Y Y (s)−1 −B(s)−1
∥∥2

ds

∫ τ

0

∥∥∥E[Y1(s)
⊤λ1(s)]

∥∥∥
2

ds

) 1
2

.

Hence, supt∈[0,τ ] ‖A∗(t) −A0(t)‖ = OP(n−1/2).

4.1.2 Misspecified Cox Model

If Cox’s model (2.1) holds true, asymptotic normality of n1/2(β̂ − β0) is shown

in Andersen and Gill (1982, p. 1105), where β̂ is the partial maximum likelihood

estimator and β0 is the ’true’ parameter. Of course, this implies β̂ − β0 =

OP(n−1/2). For our purposes we need to know the asymptotic behavior of β̂ if

the Cox model does not hold true. For the Cox model, some results are available

on the behavior of estimators under misspecified models. Asymptotic normality

of n1/2(β̂ − β0) for some β0 under misspecified models has been considered

previously by Lin and Wei (1989), Hjort (1992), Sasieni (1993), and Fine (2002)

under an i.i.d. setup allowing only one event per individual. We relax these

requirements but confine ourselves to showing β̂ − β0 = OP(n−1/2) if the Cox

model is misspecified. In fact, β0 is defined as follows:

β0 := argmaxβ∈Xβ
a(β, τ),

where Xβ is the parameter space for the Cox model,

a(β, t) :=

∫ t

0

(
β⊤

−⇀
Zλ(s) − log(−⇀ρ (β, s))

−⇀
λ (s)

)
ds,

and

ρi(β, s) = exp(Zi(s)β)Ri(s).

In the above, we have used the notation introduced in Section 2.3. For simplicity,

we only consider the classical Cox model with the link function exp. One can

generalize the results to other link functions i.e. the model given in (2.2), or even

to Cox-type models (2.5) with intensity λi(t) = λ0(t)ρi(β, t).

The main idea for the proof of β̂ − β0 = OP(n−1/2) under an arbitrary

intensity is similar to the proof under the Cox model (2.1) given in Andersen

and Gill (1982). First, uniform stochastic convergence of X(β, t) := 1
nC(β, t) +

(log n)N(t) to a(β, t) is shown, where

C(β, t) :=

n∑

i=1

∫ t

0
log(ρi(β, s)) dNi(s) −

∫ t

0
log(nρ(β, s))n dN(s).
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C(β, τ) is the log partial likelihood function given in (2.3). In Lemma 4.3, it

will be shown that C(β, t) is concave in β. Hence, X(β, τ) is concave in β, and

thus convex analysis can be used to transfer the convergence of X(β, τ) to its

maximizer β̂. A suitable Taylor expansion of X(β, τ) around β0 allows to show

β̂−β0 = OP(n−1/2). The following lemma is formulated in a more general setup

than the i.i.d. setup, similar in spirit to the setup of Andersen and Gill (1982).

Lemma 4.2. Suppose that

i) for each β ∈ Xβ, ρ(β, ·) converges uip on [0, τ ] and the mapping −⇀ρ (β, ·)
is bounded away from 0,

ii) λ, λZ and ZZλ converge uip on [0, τ ],

iii) β0 exists and is unique.

Then β̂
P→ β0.

If furthermore there exists an open set C ⊂ Xβ with β0 ∈ C such that

iv) ρ, Zρ, ZρZ converge uip on C × [0, τ ],

v)
∫ τ
0

(−⇀ρ (β, s)−2−⇀Zρ⊗2(β, s) −−⇀ρ (β, s)−1−−−⇀ZρZ(β, s)
)−⇀
λ (s) ds is invertible for

β = β0 and continuous at β = β0,

vi)
∫ τ
0 |ρ(β0, s)−−⇀ρ (β0, s)|ds = OP(n−

1
2 ),
∫ τ
0 ‖Zλ(s)−−⇀

Zλ(s)‖ds = OP(n−
1
2 ),∫ τ

0 ‖Zρ(β0, s)−
−⇀
Zρ(β0, s)‖ds = OP(n−

1
2 ),
∫ τ
0 |λ(s)−−⇀

λ (s)|ds = OP(n−
1
2 ),

then β̂ − β0 = OP(n−1/2).

Above, we used the notation a⊗2 = a⊤a for column vectors a. We prepare

the proof by the following lemma, the result of which has been used previously

in the literature, see e.g. Andersen and Gill (1982), but no explicit proof was

given.

Lemma 4.3. C(β, t) is concave in β ∈ Xβ for each t ∈ [0, τ ].

Proof. ∂
∂βρ(β, t) = ρZ(β, t) and

(
∂

∂β

)2
ρ(β, t) = ZρZ(β, t). Hence,

∂

∂β
C(β, t) =

∫ t

0
Z(s)⊤dN(s) −

∫ t

0
(ρ(β, s))−1ρZ(β, s)n dN(s)

and
(

∂
∂β

)2
C(β, t) = −

∫ t
0 A(β, s)ndN(s), where

A(β, s) = (ρ(β, s))−1
ZρZ(β, s) − (ρ(β, s))−2

ρZ(β, s)Zρ(β, s)

= (ρ(β, s))−2 (
ZρZ(β, s)ρ(β, s) − ρZ(β, s)Zρ(β, s)

)
.
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Dropping the dependence on β and s,

A = (nρ)−2




n∑

i,j=1

ρiρjZj
⊤Zj −

n∑

i,j=1

ρiρjZi
⊤Zj




= (nρ)−2
n−1∑

i=1

n∑

j=i+1

ρiρj

(
Zj

⊤Zj +Zi
⊤Zi −Zi

⊤Zj −Zj
⊤Zi

)

= (nρ)−2
n−1∑

i=1

n∑

j=i+1

ρiρj(Zi −Zj)
⊤(Zi −Zj) .

As ρi(β, s) ≥ 0 for all i = 1, . . . , n, the above implies that A(β, s) is positive

semidefinite. Hence,
(

∂
∂β

)2
C(β, t) is negative semidefinite.

Proof of Lemma 4.2. Let β ∈ Xβ and X(β, t) := 1
nC(β, t) + (logn)N(t). By

Lemma 4.3, X(β, t) is concave in β ∈ Xβ for each t ∈ [0, τ ]. Furthermore,

X(β, t) =
1

n

∫ t

0

(
β⊤Z(s)⊤− log(ρ(β, s))1⊤

)
dN(s)

=
1

n

∫ t

0

(
β⊤Z(s)⊤− I{ρ(β, s) > 0} log(ρ(β, s))1⊤

)
dN(s)

and hence for each β ∈ Xβ, X(β, t) − A(β, t) is a local square integrable mar-

tingale, where

A(β, t) :=
1

n

∫ t

0

(
β⊤Z(s)⊤− I{ρ(β, s) > 0} log(ρ(β, s))1⊤

)
λ(s) ds.

For β ∈ Xβ,

n 〈X(β, ·) −A(β, ·)〉 (t) =

=
1

n

∫ t

0

(
β⊤Z(s)⊤− I{ρ(β, s) > 0} log(ρ(β, s))1⊤

)
diag(λ(s))

(Z(s)β − I{ρ(β, s) > 0} log(ρ(β, s))1) ds

=

∫ t

0

(
β⊤ZλZ(s)β − 2 log(ρ(β, s))I{ρ(β, s) > 0}λZ(s)β

+ I{ρ(β, s) > 0} log2(ρ(β, s))λ(s)
)

ds.

The convergence of ZλZ is implied by that of ZZλ. Since −⇀ρ is bounded

away from 0, the convergence of ρ implies the convergence of I{ρ(β, s) > 0} and

log(ρ(β, s)). Hence, n 〈X(β, ·) −A(β, ·)〉 (t) converges in probability, to
∫ t

0

(
β⊤

−−−⇀
ZλZ(s)β − 2 log(−⇀ρ (β, s))

−⇀
λZ(s)β + log2(−⇀ρ (β, s))

−⇀
λ (s)

)
ds,
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uniformly in t ∈ [0, τ ]. By the above and Lenglart’s inequality (Lemma A.2)

supt∈[0,τ ] |X(β, t) −A(β, t)| P→ 0 for all β ∈ Xβ. Furthermore, since

A(β, t) =

∫ t

0

(
β⊤Zλ(s) − I{ρ(β, s) > 0} log(ρ(β, s))λ(s)

)
ds,

we can use assumptions i) and ii) to get supt∈[0,τ ] |A(β, t)− a(β, t)| P→ 0. Hence,

supt∈[0,τ ] |X(β, t) − a(β, t)| P→ 0. By Andersen and Gill (1982, Cor.II.2) this

implies β̂ − β0
P→ 0.

To show β̂ − β0 = OP(n−1/2) we proceed as follows. Let

U(β, t) :=
∂

∂β
X(β, t) =

1

n

∫ t

0
Z(s)⊤dN(s) −

∫ t

0
ρ(β, s)−1Zρ(β, s) dN(s),

J(β, t) :=

(
∂

∂β

)2

X(β, t)

=

∫ t

0

(
ρ(β, s)−2Zρ(β, s)⊗2 − ρ(β, s)−1ZρZ(β, s)

)
dN(s).

A Taylor expansion of U around β0 yields

U(β, t) − U(β0, t) = J(β̃, t)(β − β0)

for some β̃ between β and β0. By definition of β̂, we have U(β̂, τ) = 0 and

hence

−n 1
2U(β0, τ) = J(β̃, τ)n

1
2 (β̂ − β0).

We will show U(β0, τ) = OP(n−1/2) and J(β̃, τ)
P→ −⇀
J (β0, τ) where

−⇀
J (β, t) :=

∫ t

0

(−⇀ρ (β, s)−2−⇀Zρ(β, s)⊗2 −−⇀ρ (β, s)−1−−−⇀ZρZ(β, s)
)−⇀
λ (s) ds.

Since we assumed
−⇀
J (β0, τ) to be invertible we will get β̂ − β0 = OP(n−1/2).

The convergence of J(β̂, t) is immediate from β̂
P→ β0, Lemma A.5, and the

assumptions. The boundedness of U(β̂, τ) needs some more work. Let

V (t) :=

∫ t

0

(
Zλ(s) − ρ(β0, s)

−1Zρ(β0, s)λ(s)
)

ds

and

−⇀
V (t) :=

∫ t

0

(−⇀
Zλ(s) −−⇀ρ (β0, s)

−1−⇀Zρ(β0, s)
−⇀
λ (s)

)
ds.

By definition of β0 we have
−⇀
V (τ) = 0. Hence,

n
1
2U(β0, τ) = n

1
2 (U(β0, τ) − V (τ)) + n

1
2 (V (τ) −−⇀

V (τ)). (4.1)



60 CHAPTER 4. MISSPECIFIED MODELS AND SMOOTHING

We show that both terms on the right hand side are stochastically bounded.

Since
〈
n

1
2 (U(β0, ·) − V (·))

〉
(τ) =

∫ τ

0

(
ZλZ(s) − ρ(β0, s)

−2Zρ(β0, s)
⊗2λ(s)

)
ds

converges in probability,
〈
n1/2 (U(β0, ·) − V (·))

〉
(τ) is stochastically bounded.

Hence, using Lenglart’s inequality, we can conclude that n1/2 (U(β0, t) − V (t))

is stochastically bounded uniformly in t ∈ [0, τ ]. The second term on the right

hand side of (4.1) can be dealt with as follows. Since

V (τ) −−⇀
V (τ) =

∫ τ

0

(
Zλ(s) −−⇀

Zλ(s)
)

ds

+

∫ τ

0

(
ρ(β0, s)

−1 −−⇀ρ (β0, s)
−1
)
Zρ(β0, s)λ(s) ds

+

∫ τ

0

−⇀ρ (β0, s)
−1
(
Zρ(β0, s) −

−⇀
Zρ(β0, s)

)
λ(s) ds

+

∫ τ

0

−⇀ρ (β0, s)
−1−⇀Zρ(β0, s)

(
λ(s) −−⇀

λ (s)
)

ds,

we have
∥∥∥V (τ) −−⇀

V (τ)
∥∥∥ ≤

∫ τ

0

∥∥∥Zλ(s) −−⇀
Zλ(s)

∥∥∥ ds

+

∫ τ

0

∣∣ρ(β0, s)
−1 −−⇀ρ (β0, s)

−1
∣∣ ds sup

s∈[0,τ ]

∥∥Zρ(β0, s)
∥∥λ(s)

+

∫ τ

0

∥∥∥Zρ(β0, s) −
−⇀
Zρ(β0, s)

∥∥∥ ds sup
s∈[0,τ ]

−⇀ρ (β0, s)
−1λ(s)

+

∫ τ

0

∣∣∣λ(s) −−⇀
λ (s)

∣∣∣ ds sup
s∈[0,τ ]

−⇀ρ (β0, s)
−1
∥∥∥−⇀Zρ(β0, s)

∥∥∥ .

Hence, by the assumptions and Lemma 3.5, V (τ) −−⇀
V (τ) = OP(n−1/2).

Next, we want to show supt∈[0,τ ] |Λ̂0(t)−Λ0(t)| = OP(n−1/2) if the Cox model

does not necessarily hold true, where Λ0(t) =
∫ t
0
−⇀ρ (β0, s)

−1−⇀
λ (s) ds and Λ̂0(t)

is the Breslow estimator. The Breslow estimator under misspecified models has

been considered previously by Lin and Wei (1989), Sasieni (1993), and Fine

(2002) under an i.i.d. setup allowing only one event per individual. The next

lemma relaxes these assumptions for the Breslow estimator.

Lemma 4.4. Suppose there exists an open neighborhood C ⊂ Xβ of β0 such that

the following conditions are satisfied:

(i) β̂ − β0 = OP(n−1/2),

(ii) ρ and ρZ converge uip on C × [0, τ ],



4.1. CONVERGENCE RATES UNDER MISSPECIFIED MODELS 61

(iii) −⇀ρ (β0, ·) is bounded away from 0 uniformly on [0, τ ],

(iv) λ converges uip on [0, τ ],

(v)
∫ τ
0 ρ

−2λ(β0, s) ds converges in probability,

(vi)
∫ τ
0 |λ(s) −−⇀

λ (s)|ds = OP(n−1/2), and

(vii)
∫ τ
0 |ρ(β0, s) −−⇀ρ (β0, s)|ds = OP(n−1/2).

Then supt∈[0,τ ] |Λ̂0(t) − Λ0(t)| = OP(n−1/2).

Proof. Consider the decomposition

Λ̂0(t) − Λ0(t) =

∫ t

0

(
ρ(β̂, s)

−1 − ρ(β0, s)
−1
) (

dN(s) − λ(s) ds
)

+

∫ t

0
ρ(β0, s)

−1 (dN(s) − λ(s) ds
)

+

∫ t

0

(
ρ(β̂, s)

−1
λ(s) −−⇀ρ (β0, s)

−1−⇀
λ (s)

)
ds.

Denote the terms on the right hand side by A(t), B(t), and C(t). By a Taylor

expansion,

A(t) =

∫ t

0
−ρ(β̃, s)−2ρZ(β̃, s) dM(s)(β̂ − β0)

for some β̃ between β̂ and β0. Hence,

sup
t∈[0,τ ]

|A(t)| ≤ ‖β̂ − β0‖ sup
t∈[0,τ ],β∈C

|ρ(β, t)|−2 sup
t∈[0,τ ],β∈C

|∇ρ(β, t)|
∫ τ

0
|dM(s)|.

Since
∫ τ
0 |dM(s)| = N(τ) +

∫ τ
0 λ(s) ds =

(
N(τ) −

∫ τ
0 λ(s) ds

)
+ 2

∫ τ
0 λ(s) ds

P→
2
∫ τ
0

−⇀
λ (s) ds by Lenglart’s inequality, we have supt∈[0,τ ] |A(t)| = OP(n−1/2). As

B(t) is a local martingale, Lenglart’s inequality (Lemma A.2) and (v) imply

supt∈[0,τ ] |B(t)| = OP(n−1/2). It remains to consider C(t). By triangular in-

equalities,

|C(t)| ≤
∫ τ

0

∣∣∣ρ(β̂, s)
−1
λ(s) −−⇀ρ (β0, s)

−1−⇀λ (s)
∣∣∣ ds

≤
∫ τ

0

∣∣∣ρ(β̂, s)
−1 − ρ(β0, s)

−1
∣∣∣λ(s) ds

+

∫ τ

0

∣∣∣ρ(β0, s)
−1 −−⇀ρ (β0, s)

−1
∣∣∣λ(s) ds

+

∫ τ

0

−⇀ρ (β0, s)
−1
∣∣∣λ(s) −−⇀

λ (s)
∣∣∣ ds.
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If β̂ ∈ C then by Taylor’s theorem, Lemma 3.5 and the assumptions,

sup
t∈[0,τ ]

|C(t)| ≤‖β̂ − β0‖ sup
i=1...n

t∈[0,τ ],β∈C

|Zρ(β, t)|
ρ(β, t)2

λ(t)

+

∫ τ

0

∣∣∣ρ(β0, s)
−1 −−⇀ρ (β0, s)

−1
∣∣∣ ds sup

s∈[0,τ ]
λ(s)

+

∫ τ

0

∣∣∣λ(s) −−⇀
λ (s)

∣∣∣ ds sup
s∈[0,τ ]

−⇀ρ (β0, s)
−1

=OP(n−
1
2 ).

4.2 Smoothing of Nonparametric Estimators

In Chapters 5 and 6, we need to plug in estimators of functions into our test

statistic. In this context, we are often in a situation, where we want to show

that the difference
∫ t

0
α̂n(s) dXn(s) −

∫ t

0
α(s) dXn(s) =

∫ t

0
(α̂n(s) − α(s)) dXn(s),

converges to zero, where α̂n(s) are estimators for α(s) and Xn is some stochastic

process of finite variation whose total variation may go to infinity as n → ∞.

If α̂n is predictable and Xn is a local martingale, we can use martingale theory,

e.g. Lenglart’s inequality. Otherwise, the following lemma can be used:

Lemma 4.5. If Xn(t) is a sequence of càdlàg stochastic processes of finite vari-

ation and an(t) are càglàd stochastic processes then

sup
t∈[0,τ ]

∣∣∣∣
∫ t

0
an(s) dXn(s)

∣∣∣∣ = OP

((
sup

t∈[0,τ ]
|an(t)| +

∫ τ

0
|dan(s)|

)
sup

t∈[0,τ ]
|Xn(t)|

)
,

where
∫ τ
0 |dan(s)| denotes the total variation of an.

Proof. One merely has to apply partial integration (see e.g. Fleming and Har-

rington (1991, Theorem A.1.2)) as follows:
∣∣∣∣
∫ t

0
an(s) dXn(s)

∣∣∣∣ ≤
∣∣∣∣
∫ t

0
Xn(s) dan(s)

∣∣∣∣+ |Xn(t)an(t)| + |Xn(0)an(0)|

≤ sup
s∈[0,τ ]

|Xn(s)|
∫ t

0
|dan(s)| + |Xn(t)an(t)| + |Xn(0)an(0)|

≤ sup
s∈[0,τ ]

|Xn(s)|
(

2 sup
s∈[0,τ ]

|an(s)| +
∫ τ

0
|dan(s)|

)
.
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In nonparametric or semiparametric models from survival analysis, usually

one first estimates A(t) :=
∫ t
0 α(s) ds with an estimator Â(t) and derives asymp-

totic properties of Â(t) − A(t). Usually Â is a càdlàg step function. In this

section, we shall restrict ourselves to this case.

If an estimator of α itself is needed then the standard approach is to smooth

Â(t) by means of kernel smoothers to get an estimator α̂(t) of α(t). In order

to apply the previous lemma, we need to ensure that α̂(t) − α(t) vanishes uni-

formly and that
∫ τ
0 |d(α̂(t) − α(t))| vanishes. The classical kernel smoothing

approach is to use the estimator α̃(t) =
∫ τ
0 b

−1K
(

t−s
b

)
dÂ(s) with a kernel func-

tion K and a bandwidth b. If K is differentiable, then the derivative of α̃(t) is∫ τ
0 b

−2K ′
(

t−s
b

)
dÂ(s) which, together with a partial integration, can be used to

bound the total variation of α̃(t)−α(t). Since we are working on a finite interval

and need uniform properties of α̂(t) − α(t), we need to take care of boundary

effects. Using a boundary correction by boundary kernels complicates things,

since the kernels one uses close to the boundary depend on t as well.

In this section, we modify the kernel smoothing approach such that for the

resulting estimator α̂(t) of α(t) we know properties of α̂(t) − α(t) as well as of

α̂′(t) − α′(t), where ′ denotes differentiation with respect to t. We include a

boundary correction based on boundary kernels. The main idea is to estimate

the derivative α′(t) using kernel smoothers with boundary correction and define

α̂(t) as integral. The estimate of the derivative α′(t) we use is

(̂α′)(t) =

∫ τ

0
hn(s, t) dÂ(s),

where, for s, t ∈ [0, τ ],

hn(s, t) :=





1
b2n
K ′

1

(
t−s
bn

)
, t ∈ [bn, τ − bn]

1
b2n
K ′

t/bn

(
t−s
bn

)
, t < bn

− 1
b2n
K ′

(τ−t)/bn

(
− t−s

bn

)
, t > τ − bn

(4.2)

and K ′
q (x) : R → R, q ∈ [0, 1], is of bounded variation uniformly in q, K ′

q (x) =

0 for x /∈ [−1, q],
∫ q

−1
K ′

q (x) dx = 0,

∫ q

−1
K ′

q (x)xdx = −1, sup
q∈[0,1]

∫ q

−1
|K ′

q (x) |x2 dx <∞, (4.3)

and the bandwidth bn > 0 are random variables such that bn
P→ 0. We as-

sume τ ≥ 2bn. Now the idea is to use an estimator of α(t) defined by α̂(0) +∫ t
0 (̂α′)(s) ds, where α̂(0) is some estimator for α(0). This ensures (̂α′)(t) = α̂′(t).

More precisely, the smoothed estimator for α(t) we will consider is

α̂(t) :=

∫ τ

0
Hn(s, t) dÂ(s), (4.4)
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where

Hn(s, t) :=

∫ t

0
hn(s, u) du+Hn(s, 0),

with Hn(s, 0) chosen such that
∫ τ

0
Hn(s, 0) ds = 1,

∫ τ

0
|Hn(s, 0)|ds <∞,

b2n

∫ τ

0
|Hn(ds, 0)| = OP(1), and Hn(s, 0) = 0 for s ≥ 2bn.

(4.5)

Example 4.1. Next, we give one explicit Hn(s, t) using the above construction.

Starting with the assumption that K ′
q (x) := a1(q)x + a0(q) the condition (4.3)

implies that a1(q) = −12(q+1)−3 and a0(q) = 6(q− 1)(q+1)−3. An illustration

can be seen in Figure 4.1. This leaves us with the choice of Hn(s, 0). We require

Hn(s, bn) = 3
4bn

(
1 −

(
bn−s
bn

)2
)

, since we want that outside of the boundary

regions our smoothing approach reduces to a usual kernel smoother with the

Epanechnikov kernel. It follows that for s, t ∈ [0, τ ],

Hn(s, t) =





−3
4

(2 bn−s)2

bn
3 , t ≤ bn, t+ bn ≤ s ≤ 2bn

− 3
4bn

3

(
s2 +

4bn(−t2−2tbn+bn
2)

(t+bn)2
s+ 4bn

2(t2−bn
2)

(t+bn)2

)
, t ≤ bn, t+ bn ≥ s

3
4bn

(
1 −

(
t−s
bn

)2
)
, bn ≤ t ≤ τ − bn, |t− s| ≤ bn

Hn(τ − s, τ − t), t ≥ τ − bn

0, otherwise

(4.6)

For a sketch of Hn, see Figure 4.2. One can check that indeed
∫ τ
0 Hn(s, 0) ds = 1,∫ τ

0 |Hn(s, 0)|ds = 16
√

2 − 21, and
∫ τ
0 |Hn(ds, 0)| = 9/(2bn).

Lemma 4.6. Suppose that α : [0, τ ] → R is twice continuously differentiable,

that α̂ is given by (4.4), and that conditions (4.3) and (4.5) hold true. If

sup
t∈[0,τ ]

|Â(t) −A(t)| = OP(n−
1
2 )

then

sup
t∈[0,τ ]

|α̂′(t) − α′(t)| = OP(n−
1
2 b−2

n + bn).

For an optimal rate we would need that n−1/2b−2
n and bn are of the same

order. Assuming bn = n−α, this leads to the equation −1/2+2α = −α and thus

α = 1/6. With this choice, supt∈[0,τ ] |α̂′(t) − α′(t)| = OP(n−1/6).

Before we begin with the proof of Lemma 4.6 we state a lemma concerning

hn given in (4.2).
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1−1

x

1.5

−1.5

6

−6

K ′
1(x)

K ′
0.5(x)

K ′
0(x)

Figure 4.1: Sketch of Kq from Example 4.1.

bn τ − bn τ

s

1.5

−1.5

Hn(s, 0)

Hn(s, bn/2)

Hn(s, bn)

Hn(s, 3bn)

Hn(s, τ)

Figure 4.2: Sketch of Hn from Example 4.1 using τ = 3 and bn = 0.5.
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Lemma 4.7. hn : [0, τ ]2 → R satisfies
∫ τ
0 hn(s, t) ds = 0,

∫ τ
0 hn(s, t)sds = 1,

and
∫ τ
0 |hn(s, t)|(s− t)2 ds = OP(bn) uniformly in t ∈ [0, τ ].

Proof. For t ∈ [bn, τ − bn],
∫ τ

0
hn(s, t) ds =

∫ τ

0

1

b2n
K ′

1

(
t− s

bn

)
ds = − 1

bn

∫ (t−τ)/bn

t/bn

K ′
1 (u) du

=
1

bn

∫ 1

−1
K ′

1 (u) du = 0,

∫ τ

0
hn(s, t)sds = −

∫ τ

0
hn(s, t)(t− s) ds = −

∫ τ

0
K ′

1

(
t− s

bn

)
t− s

bn

ds

bn

=

∫ (t−τ)/bn

t/bn

K ′
1 (u)u du = −

∫ 1

−1
K ′

1 (u)u du = 1,

∫ τ

0
|hn(s, t)|(t− s)2 ds = bn

∫ τ

0

∣∣∣∣K ′
1

(
t− s

bn

)∣∣∣∣
(
t− s

bn

)2 ds

bn

= −bn
∫ (t−τ)/bn

t/bn

∣∣K ′
1 (u)

∣∣u2 du = bn

∫ 1

−1

∣∣K ′
1 (u)

∣∣u2 du = OP(bn).

For t < bn,
∫ τ

0
hn(s, t) ds =

∫ τ

0

1

b2n
K ′

t/bn

(
t− s

bn

)
ds = − 1

bn

∫ (t−τ)/bn

t/bn

K ′
t/bn

(u) du

=
1

bn

∫ t/bn

−1
K ′

t/bn
(u) du = 0,

∫ τ

0
hn(s, t)sds = −

∫ τ

0
hn(s, t)(t− s) ds = −

∫ τ

0
K ′

t/bn

(
t− s

bn

)
t− s

bn

ds

bn

=

∫ (t−τ)/bn

t/bn

K ′
t/bn

(u)u du = −
∫ t/bn

−1
K ′

t/bn
(u)u du = 1,

∫ τ

0
|hn(s, t)|(t− s)2 ds = bn

∫ τ

0

∣∣∣∣K ′
t/bn

(
t− s

bn

)∣∣∣∣
(
t− s

bn

)2 ds

bn

= −bn
∫ (t−τ)/bn

t/bn

∣∣∣K ′
t/bn

(u)
∣∣∣u2 du = bn

∫ t/bn

−1

∣∣∣K ′
t/bn

(u)
∣∣∣u2 du = OP(bn).

For t > τ − bn,

∫ τ

0
hn(s, t) ds = −

∫ τ

0

1

b2n
K ′

(τ−t)/bn

(
− t− s

bn

)
ds

= − 1

bn

∫ (t−τ)/bn

t/bn

K ′
(t−τ)/bn

(u) du = − 1

bn

∫ (t−τ)/bn

−1
K ′

t/bn
(u) du = 0,
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∫ τ

0
hn(s, t)sds =

∫ τ

0
hn(s, t)(s− t) ds = −

∫ τ

0
K ′

(τ−t)/bn

(
s− t

bn

)
s− t

bn

ds

bn

= −
∫ (τ−t)/bn

−t/bn

K ′
(τ−t)/bn

(u)u du = −
∫ (τ−t)/bn

−1
K ′

(τ−t)/bn
(u)u du = 1,

∫ τ

0
|hn(s, t)|(t− s)2 ds = bn

∫ τ

0

∣∣∣∣K ′
(τ−t)/bn

(
s− t

bn

)∣∣∣∣
(
s− t

bn

)2 ds

bn

= −bn
∫ (t−τ)/bn

t/bn

∣∣∣K ′
(τ−t)/bn

(u)
∣∣∣u2 du

= bn

∫ t/bn

−1

∣∣∣K ′
(τ−t)/bn

(u)
∣∣∣u2 du = OP(bn).

Proof of Lemma 4.6. Since the integral is a finite sum, α̂′(t) =
∫ τ
0 hn(s, t) dÂ(s).

Let α∗(t) :=
∫ τ
0 hn(s, t)α(s) ds. By Taylor’s theorem,

α∗(t) =

∫ τ

0
hn(s, t) dsα(t) +

∫ τ

0
hn(s, t)(s− t) dsα′(t)

+

∫ τ

0
hn(s, t)(s− t)2

1

2
α′′(s̃(s)) ds

=0 + α′(t) +

∫ τ

0
hn(s, t)(s− t)2

1

2
α′′(s̃(s)) ds

for s̃(s) ∈ [0, τ ]. Hence,

|α∗(t) − α′(t)| ≤1

2
sup

s∈[0,τ ]
|α′′(s)|

∫ τ

0
|hn(s, t)|(s− t)2 ds = OP(bn)

uniformly in t ∈ [0, τ ]. Using partial integration,

|α̂′(t) − α∗(t)| =

∣∣∣∣
∫ τ

0
hn(s, t) d

(
Â(s) −A(s)

)∣∣∣∣

=

∣∣∣∣
(
Â(τ) −A(τ)

)
hn(τ, t) +

∫ τ

0

(
Â(s) −A(s)

)
hn(ds, t)

∣∣∣∣

≤ sup
s∈[0,τ ]

∣∣∣Â(s) −A(s)
∣∣∣
(
|hn(τ, t)| +

∫ τ

0
|hn(ds, t)|

)

Since |hn(τ, t)| = OP(b−2
n ) and

∫ τ
0 |hn(ds, t)| = b−2

n

∫ q
−1 |Kq( dx)| = OP(b−2

n ),

sup
t∈[0,τ ]

|α̂′(t) − α′(t)| ≤ sup
t∈[0,τ ]

|α̂′(t) − α∗(t)| + sup
t∈[0,τ ]

|α∗(t) − α′(t)|

=OP(bn + n−
1
2 b−2

n ).
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We also need to know at what rate sups∈[0,τ ] |α̂(s) − α(s)| converges to 0.

The next theorem gives such a result. Note that Hn given by (4.6) satisfies the

assumptions.

Theorem 4.1. Suppose
∫ τ
0 Hn(s, 0)sds = 0 and uniformly in t, Hn(0, t) =

OP(b−1
n ),

∫ τ
0 |Hn(s, t)| (s − t)2 ds = OP(b2n),

∫ τ
0 |Hn(ds, t)| = OP(b−1

n ). If α is

twice differentiable then

sup
s∈[0,τ ]

|α̂(s) − α(s)| = OP( sup
t∈[0,τ ]

|Â(t) −A(t)|b−1
n + b2n).

For the proof, we need the following elementary lemma.

Lemma 4.8. For all t ∈ [0, τ ],
∫ τ
0 Hn(s, t) ds = 1 and

∫ τ
0 Hn(s, t)(s − t) ds =∫ τ

0 Hn(s, 0)sds.

Proof.

∫ τ

0
Hn(s, t) ds =

∫ τ

0

∫ t

0
hn(s, u) du ds+

∫ τ

0
Hn(s, 0) ds = 0 + 1 = 1

∫ τ

0
Hn(s, t)(s− t) ds =

∫ τ

0

∫ t

0
hn(s, u) du(s− t) ds+

∫ τ

0
Hn(s, 0)(s− t) ds

=

∫ t

0

(∫ τ

0
hn(s, u)sds− t

∫ τ

0
hn(s, u) ds

)
du

+

∫ τ

0
Hn(s, 0)sds− t

∫ τ

0
Hn(s, 0) ds

=

∫ t

0
(1 − 0) du+

∫ τ

0
Hn(s, 0)sds− t =

∫ τ

0
Hn(s, 0)sds

Proof of Theorem 4.1. Let α∗(t) =
∫ τ
0 Hn(s, t)α(s) ds. By Lemma 4.8, Taylor’s

theorem, and the assumptions,

|α∗(t)−α(t)| =

∣∣∣∣
∫ τ

0
Hn(s, t)(α(s) − α(t)) ds

∣∣∣∣

≤
∣∣∣∣
∫ τ

0
Hn(s, t)(s− t) dsα′(t)

∣∣∣∣+
1

2
sup

s∈[0,τ ]
|α′′(s)|

∫ τ

0

∣∣Hn(s, t)(s− t)2
∣∣ ds

=0 +
1

2
sup

s∈[0,τ ]
|α′′(s)|

∫ τ

0
|Hn(s, t)| (s− t)2 ds

=OP(b2n).
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Using partial integration,

|α̂(t) − α∗(t)| =

∣∣∣∣
∫ τ

0
Hn(s, t) d

(
Â(s) −A(s)

)∣∣∣∣

≤
∣∣∣∣
∫ τ

0

(
Â(s) −A(s)

)
Hn(ds, t)

∣∣∣∣+
∣∣∣Â(τ) −A(τ)

∣∣∣ |Hn(τ, t)|

+
∣∣∣
(
Â(0) −A(0)

)
Hn(0, t)

∣∣∣

≤ sup
s∈[0,τ ]

∣∣∣Â(s) −A(s)
∣∣∣ 2
(
|Hn(0, t)| +

∫ τ

0
|Hn(ds, t)|

)

=OP( sup
s∈[0,τ ]

|Â(s) −A(s)|b−1
n )

The choice of the bandwidth parameter bn is critical. Assume that

sup
t∈[0,τ ]

|Â(t) −A(t)| = OP(n−1/2).

For an optimal rate we need that n−1/2b−1
n is of the same order as b2n. Assuming

bn = n−α, this leads to the equation −1/2 + α = −2α and thus α = 1/6. With

this choice, supt∈[0,τ ] |α̂(t) − α(t)| = OP(n−1/3). Note that the optimal rate

coincides with the optimal rate for the derivatives.

Simulation studies show that if we use the smoothing procedure in our tests

of the following chapters and the bandwidth is too small then the tests can be

very liberal. The following ad hoc choice for bn worked reasonably well in a

situation, where we smoothed the Breslow estimator Λ̂0(t) in the Cox model:

bn :=

{
inf A if A 6= ∅
τ/2 otherwise

, (4.7)

where

A :=



b̃ ∈ [0,

τ

2
] :

n∑

i=1

(Ni(t+ 2b̃) −Ni(t)) ≥
(

n∑

i=1

Ni(τ)

)5/6

∀t ∈ [0, τ − 2b̃]



 .

The Hn given by (4.6) requires bn ≥ τ/2. Besides this, our choice of bn ensures

that for each t ∈ [0, τ ], the estimator α̂(t) is based on at least (
∑n

i=1Ni(τ))
5/6

events. One can show that under mild conditions the above bn actually satisfies

bn
P→ 0 and b4nn

P→ ∞.
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Chapter 5

Checking a Nonparametric

Model

In Chapter 3, we introduced checks for the Aalen model in which the unknown

parameters act linearly on the intensity. We want to extend these checks to

models in which parameters may act nonlinearly on the intensity. Basically,

we want to consider the model (1.4) mentioned in the introduction with only

time-dependent parameters, i.e. we want to consider

λi(t) = f(X i(t),α(t)) for some α ∈ bm(Xα), (5.1)

where Xα ⊂ R
kα is a convex set, f is a known continuous function, and the

observable covariates are given by a vector Xi of locally bounded predictable

stochastic processes. By Lemma A.6 and Lemma A.7, fi(α(·), ·) is a locally

bounded predictable stochastic process for all α ∈ bm(Xα). Hence, the following

model is more general than (5.1):

λi(t) = fi(α(t), t) for some α ∈ bm(Xα), (5.2)

where Xα ⊂ R
kα is a convex set, and for each α ∈ bm(Xα), the observ-

able stochastic processes fi(α(·), ·) are predictable and locally bounded. In this

chapter, we shall be working with the more general model (5.2).

Recall that we want to construct tests that are sensitive against certain com-

peting models. We do so by adjusting a weight process which will be called

c. The value of the weight process c at time t may depend on α(t) as well as

on β(t), where β ∈ bm(Xβ), for some convex set Xβ ⊂ R
kβ , is some other

parameter. Usually, β will be a parameter from a competing model. For ease

of notation, we consider the combined parameter θ(t) = (α(t)⊤,β(t)⊤)⊤. Thus

θ ∈ bm(X θ), where X θ := Xα × Xβ ⊂ R
kθ and kθ := kα + kβ. Elements of

Xα (resp. Xβ, X θ) are usually denoted by xα (resp. xβ, xθ).
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Estimators for α (resp. β) are denoted by α̂ (resp. β̂) and we let

θ̂(t) = (α̂(t)⊤, β̂(t)⊤)⊤.

Often, we need derivatives with respect to the parameters. Suppose g : X θ → R

is some function. For xθ = (xθ1 , . . . , x
θ
kθ

)⊤ ∈ X θ, the operator ∇j for j ∈
{1, . . . , kθ} is defined by ∇j g(x

θ) = ∂
∂xθj

g(xθ1 , . . . , x
θ
kθ

). Furthermore, we de-

fine the row vector of operators ∇θ := (∇1, . . . ,∇kθ ), ∇α := (∇1, . . . ,∇kα ),

and ∇β := (∇kα+1, . . . ,∇kθ ). For Hessian matrices, we also use the matrix of

operators ∇⊤
θ∇θ.

The basis for our tests will be the stochastic process T (c, θ̂, ·), where for

θ = (α⊤,β⊤)⊤∈ bm(X θ),

T (c,θ, t) = n−
1
2

∫ t

0
c(θ(s), s)⊤(dN(s) − f(α(s), s) ds)

and where c(θ(·), ·) is an n-variate vector of predictable, locally bounded stochas-

tic processes for each θ ∈ bm(X θ). We will use T (c,θ, t) throughout this chapter.

Note that in contrast to Chapter 3,

n−
1
2

∫ t

0
c(θ(s), s)⊤f(α(s), s) ds

need not be zero.

We assume that the estimator θ̂ converges to some θ0 =
(
α0

⊤,β0
⊤
)
⊤ ∈

bm(X θ). More precisely, we require

(N1) (rate of convergence of θ̂) For some 0 < ν ≤ 1/2,

sup
t∈[0,τ ]

‖θ̂(t) − θ0(t)‖ = OP(n−1/4−ν/2).

Implicitly, condition (N1) includes the assumption that the left hand side is

measurable. Similar assumptions are understood to be included in all conditions

that are concerned with sup and total variation. An example for a sufficient

condition that supt∈[0,τ ] ‖θ̂(t) − θ0(t)‖ is measurable is that θ̂(·) − θ0(·) is a

càglàd or càdlàg function.

Condition (N1) is weaker than the requirement that θ̂ converges at the para-

metric rate n1/2 in which case we could use ν = 1/2. For example, if we use the

procedure of Section 4.2, we can only guarantee a rate of n1/3. In this case, we

may choose ν = 1/6.

We need another condition on the convergence of θ̂. In particular, when

using θ̂ in integrands of integrals with respect to processes that converge to a

Gaussian process, the following regularity condition is useful:
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(N1’) (total variation of θ̂ − θ0 vanishes)

The total variation of the components of θ̂ − θ0 converges stochastically

to 0, i.e. for j = 1, . . . , kθ,

∫ τ

0
|d(θ̂j(s) − θ0,j(s))| P→ 0,

where θ0,j denotes the jth component of θ0.

Using the smoothing procedure of Section 4.2, (N1’) can be ascertained.

If λi(t) = fi(α0(t), t), then, under some regularity conditions, T (c,θ0, ·)
is a mean zero local martingale and, by a martingale central limit theorem, it

converges to a mean zero Gaussian martingale. As mentioned in the introduction,

to get |T (c, θ̂, t) − T (c,θ0, t)| P→ 0, uniformly in t ∈ [0, τ ], we use a Taylor

expansion. Most terms vanish under mild regularity conditions. However, the

following term does not vanish:

n−
1
2

∫ t

0
c(θ0(s), s)

⊤(∇αf)(α0(s), s)(α̂(s) −α0(s)) ds. (5.3)

To let (5.3) vanish, we will place the following restrictions on c:

(N2) (orthogonality condition) For P ⊗ -almost all (ω, s) ∈ Ω × [0, τ ],

n∑

i=1

ci(ω,θ0(s), s)∇αfi(ω,α0(s), s) = 0.

Since θ0 is unknown, we cannot check (N2). Therefore, in applications, we

impose the following stronger condition.

(N2’) (strengthened orthogonality condition)

For P ⊗ -almost all (ω, s) ∈ Ω × [0, τ ],

n∑

i=1

ci(ω,x
θ, s)∇αfi(ω,x

α, s) = 0, for all xθ =

(
xα

xβ

)
∈ X θ.

It suffices to require some conditions on a compact, convex set C ⊂ X θ×[0, τ ]

that contains θ0 in its interior in the following sense:

There exists ǫ>0 such that {(xθ, t) ∈ X θ × [0, τ ] : ‖xθ− θ0(t)‖ < ǫ} ⊂ C. (5.4)

For an illustration, see Figure 5.1. Without loss of generality, we will assume

that C is the same for all conditions in which it appears. Define the section Ct

of C at t ∈ [0, τ ] by Ct := {xθ ∈ X θ : (xθ, t) ∈ C}. Often, we have to deal with
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t

0 s τ

ǫ
{

Cs × {s}

C

θ0(t)

Figure 5.1: Sketch of (5.4)

functions f : C → R. We say that f is equicontinuous at θ0 if for each ǫ > 0,

there exists δ > 0 such that for all (xθ, t) ∈ C,

‖xθ − θ0(t)‖ < ǫ implies |f(xθ, t) − f(θ0(t), t)| ≤ δ.

We impose the following conditions on the weight process c:

(N3) (differentiability of c)

There are events An with P(An) → 1, such that on An, for all i =

1, . . . , n, t ∈ [0, τ ], the mapping ci(·, t) : Ct → R is twice differentiable.

Outside of An, we set ∇θci(xθ, t) = 0 and ∇⊤
θ∇θci(xθ, t) = 0.

(N4) (predictability of c and ∇θc)
For all θ ∈ bm(X θ), such that {(θ(t), t) : t ∈ [0, τ ]} ⊂ C, the pro-

cess c(θ(·), ·) is locally bounded and predictable. For i = 1, . . . , n, l =

1, . . . , kθ, there exists a locally bounded and predictable process gil(·)
such that on the event An given in (N3), gil(·) = ∇lci(θ0(·), ·).

(N5) (growth conditions) With ν from (N1) and An from (N3),

n−1/8−ν/4 sup
i=1...n
(xθ,t)∈C

|ci(xθ, t)|I(An)
P→ 0,

n−1/8−ν/4 sup
i=1...n
(xθ,t)∈C

‖∇θci(xθ, t)‖ P→ 0,
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n−ν sup
i=1...n
(xθ,t)∈C

‖∇⊤
θ∇θci(xθ, t)‖

P→ 0.

Note that if ν = 1/6 then all the required rates in (N5) are the same.

5.1 Asymptotics under the Null Hypothesis

In this section, we consider the asymptotic behavior of T under the null hypothe-

sis, meaning that (5.2) holds true with parameter α = α0 ∈ bm(Xα). To derive

the asymptotic distribution of T we need the following conditions.

(N6) (differentiability of f)

For all t ∈ [0, τ ], i = 1, . . . , n, the function fi(·, t) : Ct → R is twice con-

tinuously differentiable.

For all (α,β) ∈ bm(X θ), such that {(α(t),β(t), t) : t ∈ [0, τ ]} ⊂ C,
the stochastic processes (∇αfi)(α(·), ·) and (∇⊤

α∇αfi)(α(·), ·) are progres-

sively measurable. The following stochastic processes are locally bounded:

sup |fi(x
α, t)|, sup ‖(∇αfi)(x

α, t)‖, and sup ‖(∇⊤
α∇αfi)(x

α, t)‖, where for

each t the sup is over (xα,xβ) ∈ Ct.

(N7) (asymptotic stability)

Let c̃ = cI(An), where the event An is from (N3).

f(α0(·), ·) and c̃f c̃(θ0(·), ·) converge uip on [0, τ ].

(∇i c)f(∇j c)(θ0(·), ·) converges uip on [0, τ ] for i, j = 1, . . . , kθ.

n−ν(∇i c)(∇j f)(·, ·), n−ν(∇i∇j c)f(·, ·), and n−ν c̃(∇i∇j f)(·, ·) converge to

zero in probability uniformly on C for i, j = 1, . . . , kθ.

Theorem 5.1. Suppose conditions (N1), (N1’), (N2)-(N7) hold true and that

λi(·) = fi(α0(·), ·), i = 1, . . . , n.

Then in D[0, τ ],

T (c, θ̂, ·) d→ X(·),

where X is a mean zero Gaussian process with covariance Cov(X(s), X(t)) =

σ2(s ∧ t), where

σ2(t) =

∫ t

0

−−⇀
cfc(θ0(s), s) ds.

Furthermore, uniformly in t ∈ [0, τ ],

σ̂2(c, t) :=
1

n

∫ t

0
c(θ̂(s), s)⊤diag(dN(s))c(θ̂(s), s)

P→ σ2(t).
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Proof. We start by showing

Y (n)(·) := n−
1
2

∫ ·

0
c(θ0(s), s)

⊤dM(s)
d→ X(·),

where, as defined in Section 2.2, M(t) = N(t)−
∫ t
0 λ(s) ds. By (N4), the process

c(θ0(·), ·) is predictable and locally bounded, and hence, Y (n) is a locally square

integrable martingale whose predictable covariation process

〈
Y (n)

〉
(t) =

∫ t

0
cfc(θ0(s), s) ds

converges to σ2(t) by (N7). Since the jumps of Y (n) are asymptotically negligible

by (N5), Rebolledo’s central limit theorem (Theorem A.3) shows that Y (n) d→ X

and
1

n

∫ t

0
c(θ0(s), s)

⊤diag(dN(s))c(θ0(s), s)
P→ σ2(t)

uniformly in t ∈ [0, τ ]. Next, we show that uniformly in t ∈ [0, τ ],

T (c, θ̂, t) − Y (n)(t)
P→ 0.

For a ∈ [0, 1], let U(a, t) := T (c, aθ̂+(1−a)θ0, t), and hence, U(1, t) = T (c, θ̂, t)

and U(0, t) = Y (n)(t). Let

Bn :=An ∩ {θ̂(t) ∈ Ct ∀ t ∈ [0, τ ]}
∩ { sup

i=1...n
(xθ,t)∈C

max{|ci(xθ, t)|, ‖∇θci(xθ, t)‖, ‖∇⊤
θ∇θci(xθ, t)‖} <∞}, (5.5)

where An is as given in (N3). By (5.4) and (N1),

P((θ̂(t), t) ∈ C ∀ t ∈ [0, τ ]) ≥ P( sup
t∈[0,τ ]

‖θ̂(t) − θ0(t)‖ < ǫ) → 1.

Hence, (N3) and (N5) imply P(Bn) → 1. On Bn, a Taylor expansion of U(a, t)

around a = 0 for a = 1 yields

T (c, θ̂, t)−Y (n)(t) =

=

∫ t

0
(θ̂(s) − θ0(s))

⊤n−
1
2

n∑

i=1

∇θci(θ0(s), s)
⊤dMi(s)

+ n−
1
2

∫ t

0

[
n∑

i=1

ci(θ0(s), s)∇αfi(α0(s), s)

]
(α̂(s) −α0(s)) ds

+
1

2

(
∂

∂a

)2

U(ã, t),

(5.6)
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for some ã ∈ [0, 1] which may depend on t. To justify the interchange of differen-

tiation and integration, one can argue as follows: First note that we work with

one fixed ω ∈ Bn. Since integration with respect to Ni(s) leads to a finite sum,

it suffices to show

∂

∂a

∫ t

0
ci(u(a, s), s)fi(v(a, s), s) ds =

∫ t

0

∂

∂a

(
ci(u(a, s), s)fi(v(a, s), s)

)
ds, (5.7)

where u(a, s) = aθ̂(s) + (1 − a)θ0(s) and v(a, s) = aα̂(s) + (1 − a)α0(s). The

integrand on the right hand is equal to

(∇θci)(u(a, s), s)fi(v(a, s), s)(θ̂(s) − θ0(s))

+ ci(u(a, s), s)(∇αfi)(v(a, s), s)(α̂(s) −α0(s)).

For a fixed realization, f and its derivatives of first order are uniformly bounded

by (N6). Since ω ∈ Bn, the weights c and its derivatives of first order as well

as the estimated parameters θ̂ are uniformly bounded. Hence, the integrand

on the right hand side of (5.7) is uniformly bounded and thus we may use the

differentiation lemma, see e.g. Bauer (1992, p. 102), to do the interchange of

differentiation and integration needed to get (5.6). From now on, the order of

differentiation and integration will be switched without further comment, as it

can be justified similarly.

Next, we show that the terms on the right hand side of (5.6) vanish asymp-

totically. By (N4), on Bn,

n−
1
2

∫ t

0

n∑

i=1

∇θci(θ0(s), s)
⊤dMi(s) =

(
n−

1
2

∫ t

0

n∑

i=1

gil(s) dMi(s)

)

l=1,...,kθ

, (5.8)

which is a locally square integrable martingale, whose predictable variation con-

verges by (N7). Indeed,

〈(
n−

1
2

∫ ·

0

n∑

i=1

gil(s) dMi(s)

)

l=1,...,kθ

〉
(t) =

∫ t

0
gfg(α0(s), s) ds.

On An, the right hand side is equal to
∫ t
0 (∇θc)f(∇θc)(θ0(s), s) ds which con-

verges uniformly. Hence, by Lenglart’s inequality (Lemma A.2), (5.8) is stochas-

tically bounded, uniformly in t. By (N1) and (N1’), we may use Lemma 4.5 to

get that the first term on the right hand side of (5.6) converges to zero uniformly

in t ∈ [0, τ ]. The second term on the right hand side of (5.6) is identically 0 by

(N2). We may write
(

∂
∂a

)2
U(ã, t) as

(
∂

∂a

)2

U(ã, t) =A(t) −B(t) + 2C(t) +D(t), (5.9)
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where

A(t)=n−
1
2

n∑

i=1

∫ t

0
(θ̂(s) − θ0(s))

⊤(∇⊤
θ∇θci)(θ̃(s), s)(θ̂(s) − θ0(s)) dNi(s),

B(t)=n−
1
2

n∑

i=1

∫ t

0
(θ̂(s) − θ0(s))

⊤(∇⊤
θ∇θci)(θ̃(s), s)(θ̂(s) − θ0(s))fi(α̃(s), s) ds,

C(t)=n−
1
2

n∑

i=1

∫ t

0
(θ̂(s) − θ0(s))

⊤
(
∇θci(θ̃(s), s)

)⊤
(∇αfi)(α̃(s), s)(α̂(s) −α0(s)) ds,

D(t)=n−
1
2

n∑

i=1

∫ t

0
ci(θ̃(s), s)(α̂(s) −α0(s))

⊤
(
∇⊤
α∇αfi

)
(α̃(s), s)(α̂(s) −α0(s)) ds,

and θ̃(t) := ãθ̂(t) + (1 − ã)θ0(t). We shall show that A(t), B(t), C(t), and D(t)

converge to 0 uniformly in t ∈ [0, τ ]. We start with A(t). Lenglart’s inequality

and (N7) imply N(τ)
P→
∫ τ
0

−⇀
f (α0(s), s) ds. Hence, by (N1) and (N5),

|A(t)| ≤n− 1
2

n∑

i=1

∫ τ

0

∥∥∥(∇⊤
θ∇θci)(θ̃(s), s)

∥∥∥ dNi(s)(OP(n−
1
4
− ν

2 ))2

≤n 1
2 sup

i=1...n
(xθ,s)∈C

‖(∇⊤
θ∇θci)(xθ, s)‖N(τ)OP(n−

1
2
−ν)

=n−ν sup
i=1...n
(xθ,s)∈C

‖(∇⊤
θ∇θci)(xθ, s)‖N(τ)OP(1)

P→ 0

uniformly in t ∈ [0, τ ]. Since

|B(t)| ≤OP(n−
1
2
−ν)n−

1
2 τ sup

i=1...n
(xα,xβ,s)∈C

∥∥∥∥∥
n∑

i=1

(
∇⊤
θ∇θci

)
(xα,xβ, s)fi(x

α, s)

∥∥∥∥∥

=OP(n−ν)τ sup
i=1...n

(xα,xβ,s)∈C

∥∥∥∥∥
1

n

n∑

i=1

(
∇⊤
θ∇θci

)
(xα,xβ, s)fi(x

α, s)

∥∥∥∥∥ ,

(N7) implies that B(t) converges to 0 uniformly in t ∈ [0, τ ]. The arguments for

showing that C(t) and D(t) vanish asymptotically are similar.

It remains to show the convergence of σ̂2(c, t). On Bn defined in (5.5), a

Taylor expansion of σ̂2(c, t) yields

σ̂2(c, t) − 1

n

n∑

i=1

∫ t

0
ci(θ0(s), s)

2 dNi(s) =

=
1

n

n∑

i=1

2

∫ t

0
ci(θ̃(s), s)(∇θci)(θ̃(s), s)(θ̂(s) − θ0(s)) dNi(s)
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for some θ̃ between θ̂ and θ0. By (N1), (N5), and (N7),

∣∣∣∣∣
1

n

n∑

i=1

2

∫ t

0
ci(θ̃(s), s)(∇θci)(θ̃(s), s)(θ̂(s) − θ0(s)) dNi(s)

∣∣∣∣∣

≤ OP(n−
1
4
− ν

2 )


 sup

i=1...n
(xθ,s)∈C

|ci(xθ, s)|





 sup

i=1...n
(xθ,s)∈C

‖∇θci(xθ, s)‖


N(τ)

≤ OP(1)


n−

1
8
− ν

4 sup
i=1...n
(xθ,s)∈C

|ci(xθ, s)|





n−

1
8
− ν

4 sup
i=1...n
(xθ,s)∈C

‖∇θci(xθ, s)‖


N(τ)

P→ 0.

Remark 5.1. Recall that in the Aalen model the intensity has the following form:

λi(t) = fi(α(t), t) =

kα∑

j=1

Yij(t)αj(t).

Then ∇j fi(x
α, t) = Yij(t) and hence, if (N2) holds true,

T (c,θ, t) = n−
1
2

n∑

i=1

∫ t

0
ci(θ(s), s) dNi(s).

Furthermore, (N2) does not depend on α and thus we may choose weights that

do not depend on α, making the estimation of α no longer necessary.

This holds more generally for one or more parameters that act affine linearly

on the intensity. Consider the model

λi(t) = fi(α(t), t) = ηi(α(2)(t), t)α1(t) + χi(α(3)(t), t),

where α(t) = (α1(t),α(2)(t)
⊤,α(3)(t)

⊤)⊤. Then ∇1fi(x
α, t) = ηi(x

α
(2)(t), t), where

xα = (xα1 ,x
α
(2)

⊤,xα(3)
⊤)⊤ and the orthogonality conditions (N2) and (N2’) do not

depend on xα1 . Furthermore, if (N2’) is satisfied then

T (c,α,β, t) = n−
1
2

n∑

i=1

∫ t

0
ci(α(s),β(s), s)

(
dNi(s) − χi(α(3)(s), s) ds

)
.

Thus if one chooses weights that do not depend on α1, no estimate of α1 is

needed.
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Remark 5.2. In our applications, θ̂(t) is usually not a predictable process. But if

it is predictable, then we may drop the condition (N1’) in Theorem 5.1. Indeed,

we only need (N1’) to show that the first term on the right hand side of (5.6)

vanishes asymptotically. If θ̂ is predictable then we can argue as follows:

〈∫ ·

0
(θ̂(s) − θ0(s))

⊤n−
1
2

n∑

i=1

∇θci(θ0(s), s)
⊤dMi(s)

〉
(t) =

=

∫ t

0
(θ̂(s) − θ0(s))

⊤(∇θc)f(∇θc)(θ0(s), s)(θ̂(s) − θ0(s)) ds

which converges uniformly to 0. Hence, by Lenglart’s inequality (Lemma A.2),

∫ ·

0
(θ̂(s) − θ0(s))

⊤n−
1
2

n∑

i=1

∇θci(θ0(s), s)
⊤dMi(s)

converges to 0 uniformly in probability.

5.2 Asymptotics under Fixed Alternatives

In this section, we consider the behavior of the test statistic if the null hypothesis

(5.2) does not hold true. We consider the fixed alternative λi = hi, where hi

is some predictable locally bounded process. For a result about the asymptotic

behavior of T we need the following conditions.

(F1) (stability condition under fixed alternatives I)

h and chc(θ0(·), ·) converge uip on [0, τ ].

(F2) (stability condition under fixed alternatives II)

ch and cf converge uip on C. The mappings
−⇀
ch : C → R and

−⇀
cf : C → R

are equicontinuous at θ0.

Theorem 5.2. Suppose conditions (N1), (N1’), (N3)-(N5), (F1), and (F2) hold

true. If

λi(t) = hi(t), i = 1, . . . , n,

then uniformly in t ∈ [0, τ ],

n−
1
2T (c, θ̂, t)

P→
∫ t

0

(−⇀
ch(θ0(s), s) −−⇀

cf(θ0(s), s)
)

ds

and

σ̂2(c, t)
P→
∫ t

0

−−⇀
chc(θ0(s), s) ds.
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Proof. Adding and subtracting
∫ t
0 ch(θ̂(s), s) ds we get the decomposition

n−
1
2T (c, θ̂, t) =

∫ t

0

(
ch(θ̂(s), s) − cf(θ̂(s), s)

)
ds

+
1

n

∫ t

0
c(θ̂(s), s)⊤(dN(s) − h(s) ds) .

(5.10)

By (F2), we can use Lemma A.5 to show that the first term on the right hand

side converges uniformly to

∫ t

0

(−⇀
ch(θ0(s), s) −−⇀

cf(θ0(s), s)
)

ds.

Let Bn := An ∩ {θ̂(t) ∈ Ct ∀ t ∈ [0, τ ]}, where An is from (N3). On Bn, by a

Taylor expansion, the second term on the right hand side of (5.10) is equal to

1

n

∫ t

0
c(θ0(s), s)

⊤dM(s) +
1

n

∫ t

0
(θ̂(s) − θ0(s))

⊤(∇θc)(θ̃(s), s)⊤dM(s), (5.11)

where θ̃ is between θ̂ and θ0. The first term vanishes asymptotically by Lenglart’s

inequality. The absolute value of the second term can be bounded by

an


an sup

i=1...n
(xθ,s)∈C

‖∇θci(xθ, s)‖



(
a−2

n sup
s∈[0,τ ]

‖θ̂(s) − θ0(s)‖
)(
N(τ) +

∫ τ

0
h(s) ds

)
,

where an := n−
1
8
− ν

4 . Since by (F1) and Lenglart’s inequality,

N(τ) +

∫ τ

0
h(s) ds

P→ 2

∫ τ

0

−⇀
h (s) ds,

conditions (N5) and (N1) imply that the second term of (5.11) converges uni-

formly to 0.

As in the proof of Theorem 5.1, a consequence of Rebolledo’s theorem (Theo-

rem A.3), for which we need (N5) and (F2), applied to n−1/2
∫ t
0 c(θ0(s), s)

⊤dM(s)

is that uniformly in t ∈ [0, τ ],

1

n

∫ t

0
c(θ0(s), s)

⊤diag(dN(s))c(θ0(s), s)
P→
∫ t

0

−−⇀
chc(θ0(s), s) ds.

Similar to the arguments used in the proof of Theorem 5.1 it can be shown that

σ̂2(c, t) − 1

n

∫ t

0
c(θ0(s), s)

⊤diag(dN(s))c(θ0(s), s)
P→ 0,

uniformly in t ∈ [0, τ ]. Hence, σ̂2(c, t)
P→
∫ t
0

−−⇀
chc(θ0(s), s) ds uniformly in t ∈

[0, τ ].
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5.3 Asymptotics under Local Alternatives

Consider the following sequence of local alternatives to the null hypothesis (5.2):

λi(t) = fi(α0(t), t) + n−
1
2 gi(t), (5.12)

where gi are locally bounded, predictable stochastic processes. We derive the

asymptotic distribution of T if (5.12) holds true. For this, the following condi-

tions are needed:

(L1) (stability conditions under local alternatives I)

cg converges uip on C. −⇀cg : C → R is equicontinuous at θ0.

(L2) (stability conditions under local alternatives II)

cgc(θ0(·), ·) converges uip on [0, τ ].

Theorem 5.3. Suppose conditions (N1), (N1’), (N2)-(N7), (L1), and (L2) hold

true. If

λi(·) = fi(α0(·), ·) + n−
1
2 gi(·), i = 1, . . . n,

then in D[0, τ ],

T (c, θ̂, ·) d→ X(·),

where X is a Gaussian process with mean E[X(t)] = µ(t) :=
∫ t
0
−⇀cg(θ0(s), s) ds

and covariance Cov(X(s), X(t)) = σ2(s ∧ t), where

σ2(t) =

∫ t

0

−−⇀
cfc(θ0(s), s) ds.

Furthermore, σ̂2(c, t) = 1
n

∫ t
0 c(θ̂(s), s)

⊤diag(dN(s))c(θ̂(s), s)
P→ σ2(t) uniformly

in t ∈ [0, τ ].

Proof. As in Theorem 5.1, we consider

Y (n)(t) := n−
1
2

∫ t

0
c(θ0(s), s)

⊤dM(s).

By (N7) and (L2),

〈
Y (n)

〉
(t) =

∫ t

0
cfc(θ0(s), s) ds+

∫ t

0
n−

1
2 cgc(θ0(s), s) ds

P→ σ2(t).

Hence, we can use Rebolledo’s theorem (Theorem A.3) to show that Y (n) con-

verges in distribution to a mean zero Gaussian process Z with Cov(Z(s), Z(t)) =



5.4. LEAST SQUARES WEIGHTS 83

σ2(s ∧ t). We may use the same Taylor expansion as in Theorem 5.1 to show

that Y (n) and

T (c, θ̂, t) −
∫ t

0
cg(θ̂(s), s) ds =

= n−
1
2

∫ τ

0
c(θ̂(s), s)⊤

(
dN(s) − f(α0(s), s) ds− n−

1
2g(s) ds

)

are asymptotically equivalent. By (L1), we can use Lemma A.5 to show that

∫ t

0
cg(θ̂(s), s) ds

P→ µ(t)

uniformly in t ∈ [0, τ ]. Hence, by a Slutsky argument, T (c, θ̂, ·) d→ X(·).

5.4 Least Squares Weights

In this section, we shall be concerned with a simple method to guarantee the

orthogonality condition (N2). Actually, we ensure the stronger condition (N2’).

The idea is the same as in Chapter 3: take some n-variate vector of stochastic

processes d(xθ, t) depending on xθ ∈ X θ, t ∈ [0, τ ], and define c(xθ, t) as the

projection in R
n of d(xθ, t) onto the space orthogonal to the columns of

B(xθ, t) := (∇αf)(xα, t),

where xθ = (xα⊤,xβ⊤)⊤. Then (N2’) is satisfied. In other words, if d(xθ, ·) is any

n-dimensional vector of stochastic processes then

c(xθ, ·) = Q
B(xθ,·)
Pn

d(xθ, ·) (5.13)

satisfies (N2’) because of properties of projections, see (3.3).

It remains to consider the other conditions needed for the asymptotic results

under the null hypothesis (Theorem 5.1), under fixed alternatives (Theorem 5.2),

and under local alternatives (Theorem 5.3). In the remainder of this section, we

give a relatively simple i.i.d. setup, where the other conditions hold true.

(LS1) (several conditions for unweighted projections) There exists a compact,

convex set K ⊂ X θ such that {θ0(t) : t ∈ [0, τ ]} is in its interior and

such that the following holds true:

For all t ∈ [0, τ ], i = 1, . . . , n, the mapping di(·, t) : K → R is twice

differentiable and the mapping fi(·, t) : K → R is three times differen-

tiable. Furthermore, di, ∇j di, ∇j ∇νdi, fi, ∇j fi, ∇j ∇νfi, and ∇j ∇ν∇µfi,
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i = 1, . . . , n, j, ν, µ = 1, . . . , kθ, are càglàd, adapted, locally bounded

stochastic processes with values in the space C(K) of continuous map-

pings from K into R equipped with the supremum norm.

Remark 5.3. Suppose that Xi, i = 1, . . . , n, are ν-variate vectors of càglàd,

adapted, locally bounded stochastic processes, f : R
ν × K → R is a function

that is three times continuously differentiable with respect to its last compo-

nents, and d : R
ν ×K → R is twice continuously differentiable with respect to

its last components. Let fi(x
θ, t) := f(X i(t),x

θ) and di(x
θ, t) := d(Xi(t),x

θ).

Then (LS1) is satisfied by Lemma A.6 and Lemma A.7.

(LS2) (properties of
−−⇀
BB)

−−⇀
BB(xα, t) is invertible for all xα ∈ K, t ∈ [0, τ ], and

continuous in (xα, t) ∈ K × [0, τ ].

The following ensures that with c given in (5.13), we can use the theorems

of the previous section.

Theorem 5.4. Suppose conditions (N1), (LS1), and (LS2) are satisfied,

c(xθ, s) = Q
B(xθ,s)
Pn

d(xθ, s),

where s ∈ [0, τ ] and xθ ∈ X θ. Furthermore, suppose that (di, fi) are i.i.d. and

suppose that the following random elements have an l-th moment that is uni-

formly bounded in (xα,xβ, t) on K × [0, τ ], where l = max(ν−1, (1/8 + ν/4)−1):

d1(x
α,xβ, t),∇θd1(x

α,xβ, t),∇⊤
θ∇θd1(x

α,xβ, t),

f1(x
α, t),∇j f1(x

α, t),∇j ∇νf1(x
α, t),∇j ∇ν∇µf1(x

α, t), j, ν, µ = 1, . . . , kα.

Then the following conditions hold true: (N2’) and (N3)-(N7).

Furthermore, we have the following:

(i) (fixed alternatives)

If in addition to the above, (di, fi, hi) are i.i.d., hi are càglàd, locally bounded,

adapted stochastic processes with uniformly bounded third moment and the

mappings

E[(Q
B1(·)
P d1(·))h1(·)] : K × [0, τ ] →R

and

E[(Q
B1(·)
P d1(·))f1(·)] : K × [0, τ ] →R
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are equicontinuous at θ0 then (F1) and (F2) hold true. In particular, if, in

addition, (N1’) holds true and λi(t) = hi(t) then uniformly in t ∈ [0, τ ],

n−
1
2T (c, θ̂, t)

P→
∫ t

0
E
[{
Q
B1(α0(s),s)
P d1(θ0(s), s)

}
{h1(s) − f1(α0(s), s)}

]
ds

and

σ̂2(c, t)
P→
∫ t

0
E

[(
Q
B1(α0(s),s)
P d1(θ0(s), s)

)2
h1(s)

]
ds.

(ii) (local alternatives)

If in addition to the above the following holds: (di, fi, gi) are i.i.d., gi are

càglàd, locally bounded, adapted stochastic processes with uniformly bounded

third moment and the mapping

E[(Q
B1(·)
P d1(·))g1(·)] : K × [0, τ ] → R

is equicontinuous at θ0 then (L1) and (L2) hold true.

Note that since 0 < ν ≤ 1/2, we have l ≥ 4. We will not give a proof of

Theorem 5.4, since it is a corollary of Theorem 5.6 which concerns weighted

projections.

A reasonable choice against a fixed alternative given by λ(t) = h(t) is

d(xα, t) = h(t) − f(xα, t). This guarantees that under the fixed alternative, the

limit of n−1/2T (c, θ̂, ·) is nonnegative, leading to a consistent test. Usually, h

has some free parameters. Suppose that the alternative intensity can be written

as follows:

λi(t) = hi(β(t), t) for some β ∈ bm(Xβ),

where h(β(·), ·) is some observable, predictable stochastic process for all β ∈
bm(Xβ). Under the assumptions of Theorem 5.4, if we use weights c given by

c(xα,xβ, t) = Q
B(xα,t)
Pn

(
h(xβ, t) − f(xα, t)

)
(5.14)

and if the alternatives holds true, i.e. λi(t) = hi(β0(t), t) then

n−
1
2T (c, θ̂, t)

P→
∫ t

0
E

[{
Q
B1(α0(s),s)
P (h1(β0(s), s) − f1(α0(s), s))

}2
]

ds =: H(t).

Whenever H(t) = 0 for all t ∈ [0, τ ], we cannot detect this particular alternative

with the weights given by (5.14).
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Hence, as B = ∇θf , the following are equivalent if c is given by (5.14):

(i) H(t) = 0 for all t ∈ [0, τ ].

(ii) For some γ : [0, τ ] → R
kα , for almost all t ∈ [0, τ ],

h1(β0(t), t) = f1(α0(t), t) + ∇αf1(α0(t), t)γ(t).

This characterizes the alternatives that cannot be detected for one particular

value ofα0. Figure 5.2 gives a sketch. Heuristically, we cannot detect alternatives

that are elements of the ’tangent’ to the model space at f(α0(·), ·).
Space of all intensities

f1(α0(·), ·)

alternatives that cannot be detected:

{f1(α0(·), ·) + ∇αf1(α0(·), ·)γ(·) : γ : [0, τ ] → R
kα}

null hypothesis: {f1(α(·), ·) : α ∈ bm(Xα)}

Figure 5.2: Sketch of alternatives that cannot be detected for one fixed α0 by

using (5.14).

The following heuristic argument suggests that if α̂ is a reasonable estimator

and the alternative intensity h is the ’true’ intensity, then h is never in this

tangent. In other words, any alternative intensity h can be detected.

The ’true’ intensity λ of N and the particular estimator α̂ we use determine

α0. So if h is the ’true’ intensity then h determines α0. So, to see if our test

with the weights c given in (5.14) is consistent against a particular alternative

given by h, we need to start with h, determine the appropriate α0 and then

check if h is an element of the ’tangent’ to the model at α = α0.

If the alternative intensity h is ’true’, i.e. λ = h, then one expects f1(α0(·), ·)
to be as close to h1 as possible. If the space of intensities under the null hy-

pothesis is ’smooth’ then one expects that h1(·) − f1(α0(·), ·) is ’orthogonal’ to

∇αf1(α0(·), ·) - implying that h1 is not one of the alternatives that cannot be

detected. In Section 10.1, we consider a purely parametric setup in which the

above reasoning could be made rigorous.
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5.5 Optimal Tests

5.5.1 Fixed Alternatives

We want to consider optimal tests against a fixed alternative given by λi(t) =

hi(t) based on the test statistic

V (c) := T (c, α̂, τ)
/√

σ̂2(c, τ),

where σ̂2(c, τ) is as in Theorem 5.1. As in Subsection 3.6.1, the optimality

criterion we use is the approximate Bahadur efficiency. If the null hypothesis

(5.2) holds true then

V (c)
P→ N(0, 1)

if σ2(τ) 6= 0, where σ2(τ) is as in Theorem 5.1. If the fixed alternative λi(t) =

hi(t) holds true then by Theorem 5.2,

V (c)
P→
∫ τ

0

(−⇀
ch(α0(s), s) −−⇀

cf(α0(s), s)
)

ds

(∫ τ

0

−−⇀
chc(α0(s), s) ds

)− 1
2

=: b(c).

In our case, the approximate Bahadur slope is given by b(c)2. In order to maxi-

mize b(c)2, it suffices to maximize

Z(c) :=

∫ τ

0

(
ch(α0(s), s) − cf(α0(s), s)

)
ds

(∫ τ

0
chc(α0(s), s) ds

)− 1
2

,

since Z(c)
P→ b(c), Z(c) = −Z(−c), and c will be admissible iff −c is admissi-

ble. Instead of optimizing c in the class of weights satisfying all conditions for

Theorem 5.1 and Theorem 5.2, we optimize only under the side condition (N2).

It will turn out that the optimal weights use weighted orthogonal projections. In

Section 5.6, we will give regularity conditions under which those weights satisfy

the other conditions needed for the asymptotics of our test statistic.

Thus the optimization problem we are interested in solving is

{
Z(c) → max
∑n

i=1 ci(t)(∇αfi)(α0(t), t) = 0, for -almost all t ∈ [0, τ ],
(5.15)

where for simplicity we write c(t) instead of c(α0(t), t). Note that (5.15) is an

optimization problem for one fixed ω ∈ Ω. The key idea to solve this optimization

problem is to use weighted projections. Recall the notation of Section 3.2.

Proposition 5.1. Suppose that for all i = 1, . . . , n, t ∈ [0, τ ],

hi(t) = 0 implies (fi(α0(t), t) = 0 and ∇αfi(α0(t), t) = 0).
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If h(·)−f(α0(·),·)
h(·) and

∇j f(α0(·),·)
h(·) , j = 1, . . . , kα, are elements of L2(h · (Pn⊗ ))

then for all c ∈ L2(h · (Pn⊗ )) that are admissible for (5.15), the following

holds true:

Z(c∗) ≥ Z(c),

where the admissible c∗ ∈ L2(h · (Pn⊗ )) is given by

c∗(t) = Q
B(α0(t),t)
h(t)·Pn

h(t) − f(α0(t), t)

h(t)

and B(xα, t) =
(
∇1f(xα,t)
h(t) , . . . ,

∇kαf(xα,t)
h(t)

)
.

Proof. First note that c∗ ∈ L2(h · (Pn⊗ )) because

‖c∗‖2
h·(Pn⊗ ) =

∫ τ

0

∥∥∥∥Q
B(α0(s),s)
h(s)·Pn

h(s) − f(α0(s), s)

h(s)

∥∥∥∥
2

h(s)·Pn

ds

≤
∫ τ

0

∥∥∥∥
h(s) − f(α0(s), s)

h(s)

∥∥∥∥
2

h(s)·Pn

ds

=

∥∥∥∥
h(·) − f(α0(·), ·)

h(·)

∥∥∥∥
2

h·(Pn⊗ )

<∞.

The side condition can be rewritten as

<c(t),
∇j f(α0(t), t)

h(t)
>h(t)·Pn

= 0, ∀ j = 1, . . . , kα, and almost all t ∈ [0, τ ].

Hence, c∗ satisfies the side condition. Using properties of orthogonal projections

(3.3), we get for all c that are admissible for (5.15), that for almost all s,

n
(
ch(s) − cf(α0(s), s)

)
=<c(s),

h(s) − f(α0(s), s)

h(s)
>h(s)·Pn

=<Q
B(α0(s),s)
h(s)·Pn

c(s),
h(s) − f(α0(s), s)

h(s)
>h(s)·Pn

=<c(s), c∗(s)>h(s)·Pn
.

Hence, by the the Cauchy-Schwarz inequality,

n

∫ τ

0

(
ch(s) − cf(α0(s), s)

)
ds ≤

∫ τ

0
‖c(s)‖h(s)·Pn

‖c∗(s)‖h(s)·Pn
ds

≤
(∫ τ

0
‖c(s)‖2

h(s)·Pn
ds

)1
2
(∫ τ

0
‖c∗(s)‖2

h(s)·Pn
ds

)1
2

=

(
n

∫ τ

0
chc(s) ds

) 1
2

‖c∗‖h·(Pn⊗ ) ,
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with equality if c = c∗. By the assumptions,
∫ τ
0 chc(s) ds = 0 implies∫ τ

0

(
ch(s) − cf(s)

)
ds = 0. Thus, since we use the convention 0/0 = 0,

Z(c) ≤ n−
1
2 ‖c∗‖h·(Pn⊗ ) ,

with equality if c = c∗.

5.5.2 Local Alternatives

Optimal weights against local alternatives of type (5.12) in the sense of Pitman

efficiency can be derived similarly. In fact, Theorem 5.3 can be used to derive

optimal tests against local alternatives of type (5.12) within the class of one-sided

tests based on

V (c) := T (c, α̂, τ)
/√

σ̂2(c, τ),

where σ̂2(c, τ) is as in Theorem 5.1. By a Slutsky argument,

V (c)
d→ N(µ(τ)

/√
σ2(τ), 1)

if σ2(τ) 6= 0, where σ2(τ) is given in Theorem 5.3. As in Subsection 3.6.2, we

want to maximize µ(τ)
/√

σ2(τ). Since
∫ τ

0
cg(α0(s), s) ds

P→ µ(τ) and

∫ τ

0
cfc(α0(s), s) ds

P→ σ2(τ),

it suffices to maximize

Zl(c) :=

(∫ τ

0
cfc(α0(s), s) ds

)− 1
2
∫ τ

0
cg(α0(s), s) ds.

As for fixed alternatives, we shall only consider the side condition (N2). The

optimization problem we want to solve is
{
Zl(c) → max
∑n

i=1 ci(t)(∇αfi)(α0(t), t) = 0, for -almost all t ∈ [0, τ ].
(5.16)

To ease notation, we use the abbreviation f0(·) := f(α0(·), ·).

Theorem 5.5. Suppose that for all i = 1, . . . , n, t ∈ [0, τ ],

fi(α0(t), t) = 0 implies (gi(t) = 0 and ∇αfi(α0(t), t) = 0).

Suppose that g(·)
f0(·) ,

∇1f(α0(·),·)
f0(·) , . . . ,

∇kαf(α0(·),·)
f0(·) are elements of L2(f0 · (Pn⊗ )).

A solution of (5.16) in the class of all c ∈ L2(f0 · (Pn⊗ )) is given by

c̃(s) := Q
B(α0(s),s)
f0(s)·Pn

g(s)

f0(s)
,

where B(xα, s) =
(
∇1f(xα,s)
f(xα,s) , . . . ,

∇kαf(xα,s)
f(xα,s)

)
.
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Proof. First note that

‖c̃‖2
f0·(Pn⊗ ) =

∫ τ

0

∥∥∥∥Q
B(α0(s),s)
f0(s)·Pn

g(s)

f0(s)

∥∥∥∥
2

f0(s)·Pn

ds

≤
∫ τ

0

∥∥∥∥
g(s)

f0(s)

∥∥∥∥
2

f0(s)·Pn

ds =

∥∥∥∥
g(·)
f0(·)

∥∥∥∥
2

f0·(Pn⊗ )

<∞.

The side condition is satisfied by c̃, since the side condition can be rewritten as

<c(s),
∇j f(α0(s), s)

f0(s)
>f0(s)·Pn

= 0, ∀j =1, . . . , kα, almost all s ∈ [0, τ ].

Using the properties (3.3) of projection matrices and twice the Cauchy-Schwarz

inequality, we get for any c which is admissible for (5.16) that the following holds

true:

n

∫ τ

0
cg(s) ds =

∫ τ

0
<c(s),

g(s)

f0(s)
>f0(s)·Pn

ds

=

∫ τ

0
<Q

B(α0(s),s)
f0(s)·Pn

c(s),
g(s)

f0(s)
>f0(s)·Pn

ds

=

∫ τ

0
<c(s), c̃(s)>f0(s)·Pn

ds

≤
∫ τ

0
‖c(s)‖f0(s)·Pn

‖c̃(s)‖f0(s)·Pn
ds

≤
(∫ τ

0
‖c(s)‖2

f0(s)·Pn
ds

) 1
2
(∫ τ

0
‖c̃(s)‖2

f0(s)·Pn
ds

) 1
2

=

(
n

∫ τ

0
cf0c(s) ds

) 1
2

‖c̃‖f0·(Pn⊗ ) ,

with equality if c = c̃.

5.6 Optimal Weights are Admissible

In the previous sections, we have seen that optimal weights against fixed or lo-

cal alternatives are given by certain weighted orthogonal projections. The goal

of this section is to show that weights defined in this way actually satisfy the

conditions needed for the asymptotic results under the null hypothesis (Theo-

rem 5.1), under fixed alternatives (Theorem 5.2), and under local alternatives

(Theorem 5.3).

First, we sketch the basic idea to satisfy the orthogonality condition (N2’).

If d is an n-dimensional vector of stochastic processes and w is an n-dimensional

vector of nonnegative stochastic processes, both possibly depending on xθ ∈ X θ,

then the weights

c(xθ, ·) = Q
B(xθ,·)

w(xθ,·)·Pn
d(xθ, ·), (5.17)
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satisfy (N2’), where for (xα⊤,xβ⊤)⊤∈ X θ,

B(xα,xβ, t) =

( ∇1f(xα, t)

w(xα,xβ, t)
, . . . ,

∇kαf(xα, t)

w(xα,xβ, t)

)
. (5.18)

Indeed, for j = 1, . . . , kα,

n∑

i=1

ci(x
θ, t)∇j fi(x

α, t) =<c(xθ, t),
∇j f(xα, t)

w(xθ, t)
>w(xθ,t)·Pn

= 0.

Next, we give a setup in which the other conditions needed for the asymptotic

results are satisfied. We define c in a slightly more general way to be able to

reuse the result in the next chapter. We focus on an i.i.d. setup. Suppose

that d is an n-dimensional vector of stochastic processes, w is an n-dimensional

vector of nonnegative stochastic processes, and B is an n×k-matrix of stochastic

processes. B, w, and d may all depend on xθ ∈ X θ. The matrix B need not

be defined by (5.18). We consider c defined by

c(xθ, ·) = Q
B(xθ,·)

w(xθ,·)·Pn
d(xθ, ·). (5.19)

If wi(x
θ, t) = 0 we set ci(x

θ, t) = 0. The last requirement is needed since (5.19)

only defines c(xθ, t) up to a w(xθ, t) ·Pn-null set. To show that c satisfies certain

properties of stochastic processes like e.g. predictability we need this more precise

definition.

We use the following conditions:

(LSW1) (several conditions for weighted projections) There exists a compact,

convex set K ⊂ X θ such that {θ0(t) : t ∈ [0, τ ]} is in its interior and

such that the following holds true:

For all t ∈ [0, τ ], i = 1, . . . , n, j = 1, . . . , k, the mappings di(·, t) : K →
R, Bij(·, t) : K → R, and wi(·, t) : K → R are twice differentiable.

Furthermore, di, ∇j di, ∇j ∇νdi, wi, ∇j wi, ∇j ∇νwi, w
−1
i , Biµ, ∇jBiµ,

and ∇j ∇νBiµ, i = 1, . . . , n, j, ν = 1, . . . , kθ, µ = 1, . . . , k, are càglàd,

adapted, locally bounded stochastic processes with values in the space

C(K) of all continuous mappings from K into R equipped with the

supremum norm.

(LSW2) (properties of
−−−−⇀
BwB)

−−−−⇀
BwB(xθ, t) is invertible for all xθ ∈ K, t ∈ [0, τ ],

and continuous in (xθ, t) ∈ K × [0, τ ].

Theorem 5.6. Suppose conditions (N1), (LSW1), and (LSW2) are satisfied,

c(xθ, ·) = Q
B(xθ,·)

w(xθ,·)·Pn
d(xθ, ·),
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where xθ ∈ X θ. Furthermore, suppose that (di,Bi, wi, fi) are i.i.d. and sup-

pose that the following random elements have an l-th moment that is uniformly

bounded in (xθ, t) = (xα,xβ, t) on K × [0, τ ], where l = max(ν−1, (1/8 + ν/4)−1):

d1(x
θ, t),∇θd1(x

θ, t),∇⊤
θ∇θd1(x

θ, t),

w1(x
θ, t),∇θw1(x

θ, t),∇⊤
θ∇θw1(x

θ, t),

B1(x
θ, t),∇jB1(x

θ, t),∇j ∇νB1(x
θ, t), j, ν = 1, . . . , kθ,

f1(x
α, t),∇αf1(x

α, t),∇⊤
α∇αf1(x

α, t).

Then the following conditions hold true: (N3)-(N7). Furthermore, the asymp-

totic variance σ2(t) from Theorem 5.1 is given by

σ2(t) =

∫ t

0

∥∥∥QB1(θ0(s),s)
w1(θ0(s),s)·Pd1(θ0(s), s)

∥∥∥
2

f1(α0(s),s)·P
ds.

Moreover, we have the following:

(i) (fixed alternatives)

If in addition to the above, (di,Bi, wi, hi) are i.i.d., hi are càglàd, locally

bounded, adapted stochastic processes with uniformly bounded third moment

and the mappings

E[(Q
B1(·)
w1(·)·Pd1(·))h1(·)] : K × [0, τ ] →R

and

E[(Q
B1(·)
w1(·)·Pd1(·))f1(·)] : K × [0, τ ] →R

are equicontinuous at θ0 then (F1) and (F2) hold true. In particular, if, in

addition, (N1’) holds true and λi(t) = hi(t) then uniformly in t ∈ [0, τ ],

n−
1
2T (c, θ̂, t)

P→
∫ t

0
E
[{
Q
B1(θ0(s),s)
w1(θ0(s),s)·Pd1(θ0(s), s)

}
{h1(s) − f1(α0(s), s)}

]
ds

and

σ̂2(c, t)
P→
∫ t

0
E

[(
Q
B1(θ0(s),s)
w1(θ0(s),s)·Pd1(θ0(s), s)

)2
h1(s)

]
ds.

(ii) (local alternatives)

If in addition to the above the following holds: (di,Bi, wi, fi, gi) are i.i.d.,

gi are càglàd, locally bounded, adapted stochastic processes with uniformly

bounded third moment and the mapping

E[(Q
B1(·)
P d1(·))g1(·)] : K × [0, τ ] → R

is equicontinuous at θ0 then (L1) and (L2) hold true.
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In the above, we have l ≥ 4 since 0 < ν ≤ 1/2. If the covariates are bounded

then the l-th moment condition is trivially satisfied.

Proof. Let C = K × [0, τ ] and let the event An be defined by

An := {(θ̂(t), t) ∈ C ∀ t ∈ [0, τ ]} ∩ {det(BwB(xθ, t)) > L∀ (xθ, t) ∈ C} (5.20)

with L := 1/2 inf(xθ,t)∈C det(
−−−−⇀
BwB(xθ, t)). Note that L > 0 since by (LSW2),

−−−−⇀
BwB is invertible on the compact set C. By (N1), by (LSW2), and by the

integrability of B⊤
1w1B1, (recall that l ≥ 4), we have P(An) → 1.

Now we show (N3). On An, the matrixBwB(xθ, t) is invertible for (xθ, t) ∈ C,

and hence, dropping the dependence on (xθ, t) ∈ C,

c = QBw·Pn
d = d−B(BwB)−1Bwd. (5.21)

By (LS1), the components of B(·, t), d(·, t), and w(·, t) are twice differentiable

and thus Q
B(·,t)
w(·,t)·Pn

d(·, t) : Ct → R
n is twice differentiable. This shows (N3).

Furthermore, on An, the first derivative of c can be written as (dropping the

dependence on (xθ, t) ∈ C):

∇jQ
B
w·Pn

d =∇j

(
d−B

(
BwB

)−1
Bwd

)

=∇j d− (∇jB)
(
BwB

)−1
Bwd

+B
(
BwB

)−1
[(
∇jBwB

) (
BwB

)−1
Bwd−∇jBwd

]
(5.22)

and the second derivative ∇ν∇jQ
B
Pn
d of c equals

∇ν∇j d− (∇ν∇jB)
(
BwB

)−1
Bwd+ (∇jB)∇ν

((
BwB

)−1
Bwd

)

+ (∇νB)
(
BwB

)−1
[(
∇jBwB

) (
BwB

)−1
Bwd−∇jBwd

]

+B∇ν

((
BwB

)−1
[(
∇jBwB

) (
BwB

)−1
Bwd−∇jBwd

])
.

(5.23)

Next, we prove that (N4) holds. Let θ ∈ bm(K). By Lemma A.6, d(θ(·), ·),
w(θ(·), ·), and B(θ(·), ·) are predictable. Furthermore, since di, wi, and Bij are

locally bounded as stochastic process into the space C(K) of continuous functions

equipped with the supremum norm, di(θ(·), ·), wi(θ(·), ·), and Bij(θ(·), ·) are

locally bounded as real-valued stochastic processes. Furthermore, we assumed in

(LSW1) that w−1
i is locally bounded. Thus by Lemma 3.7, the process c(θ(·), ·)

is locally bounded and predictable. Let

gij(t) := I{det(BwB(θ0(t), t)) > L}∇j

(
Q
B(θ0(t),t)
w(θ0(t),t)·Pn

d(θ0(t), t)
)

i
.

Clearly, on An, gij(t) = (∇j ci)(α0(t),β0(t), t). Using Cramer’s rule and the

local boundedness of B, w, and d, one can show that gij is locally bounded.
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Since the determinant is continuous and hence measurable, gij is predictable as

a sum/product/quotient of predictable processes.

Next, we show that the growth conditions given in (N5) hold. On An,

|ci| ≤ |di| −
√
k max

j=1,...,k
|Bij |‖(BwB)−1‖‖Bwd‖.

By the integrability condition, and Lemma A.4,

sup
i=1,...,n
(xθ,t)∈C

|di(x
θ, t)| = oP(n1/8+ν/4) and sup

i=1,...,n
(xθ,t)∈C

|Bij(x
θ, t)| = oP(n1/8+ν/4).

By the strong law of large numbers (Theorem A.5), BwB and Bwd converge

in probability to bounded limits, uniformly on C. By Lemma 3.3 this also holds

for (BwB)−1. Hence,

sup
i=1...n
(xθ,t)∈C

|ci(xθ, t)I(An)| = oP(n1/8+ν/4).

Using the formulas for ∇jQ
B
w·Pn

d and ∇ν∇jQ
B
w·Pn

d on An, the remaining condi-

tions of (N5) can be shown similarly.

Differentiability of fi(·, t) is a part of (LS1). The rest of (N6) is a direct

consequence of the remark after Lemma A.6.

To see (N7), one uses the expressions for c, ∇j c, and ∇j ∇νc on An and the

two laws of large numbers: Theorem A.4 and Theorem A.5.

Next, we show (i). The convergence of h is a consequence of the law of large

numbers given in Theorem A.4. The convergence of chc follows by (5.22) and

the same law of large numbers. This shows (F1). To see (F2), one uses (5.22) and

Theorem A.5. By the same theorem and (LSW2),
−⇀
ch(xθ, s) = E[(Q

B1(xθ,s)

w1(xθ,s)·P
d(xθ, s)]

and similarly for
−⇀
cf . Hence, the equicontinuity conditions of (F1) are part of

the conditions in (i). The limits of n−1/2T (c, θ̂, t) and σ̂2(c, t) are consequences

of Theorem A.4 and Theorem 5.2.

(ii) can be shown similarly to (i).



Chapter 6

Checking a Semiparametric

Model

In Chapter 3 and Chapter 5, we only considered models with time-dependent

parameters. However, many models in survival analysis require that certain

parameters are constant over time. The prime example is the classical Cox

model (2.1), where the regression parameter β does not depend on time. We

can ignore that some parameters do not depend on time and use the techniques

of Chapter 5. In fact, we shall do this to construct a check of the Cox model in

Chapter 7. But of course, ignoring that parameters are constant over time does

not use all information about the model.

The goal of this chapter is to extend the techniques of Chapter 5 to make use

of the information that some parameters are constant over time. Basically, we

want to check the model (1.4) mentioned in the introduction, which, with some

more precision than in the introduction, can be written as follows:

λi(t) = f(X i(t),α
v(t),αc) for some αv ∈ bm(Xαv),αc ∈ Xαc , (6.1)

where Xαv ⊂ R
kαv and Xαc ⊂ R

kαc are convex sets, f is a known continu-

ous function and the observable covariates Xi are vectors of locally bounded

predictable stochastic processes.

Similar to Chapter 5, we shall not be working with (6.1) but with the follow-

ing, slightly more general model:

λi(t) = fi(α
v(t),αc, t) for some αv ∈ bm(Xαv),αc ∈ Xαc , (6.2)

where Xαv ⊂ R
kαv , Xαc ⊂ R

kαc are convex sets, and for each αv ∈ bm(Xαv)

and αc ∈ Xαc , the observable stochastic processes fi(α
v(·),αc, ·) are predictable

and locally bounded.

To see that every model of type (6.1) can be written as (6.2), one only has to

let fi(α
v(t),αc, t) := f(X i(t),α

v(t),αc) and note that under the assumptions of
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(6.1), Lemma A.6 and Lemma A.7 imply that for all αv ∈ bm(Xαv), αc ∈ Xαc ,

the stochastic process f(X i(t),α
v(t),αc) is locally bounded and predictable.

6.1 Orthogonality Conditions

To use that αc does not depend on time, we work with our test statistic T at

time t = τ . Thus we use

T (c,θ) = n−
1
2

∫ τ

0
c(θ(t), t)⊤(dN(t) − f(α(t), t) dt) .

Note that since in this chapter, we always consider T (c,θ, t) at time t = τ , we

remove time from the list of arguments of T and write T (c,θ).

The parameter θ is composed of several components, some from the null

hypothesis (denoted by α = (αv,αc)), some which are used to direct the test

(denoted by γ) and some (this is different from Chapter 5) that are used to

satisfy the orthogonality conditions (denoted by η). Before describing the details

of these components we first give an overview how θ is composed:

= α︷ ︸︸ ︷ = β︷︸︸︷
θ = (αv,αc,γ︸ ︷︷ ︸

= ψ

,η ) ∈ Θ := bm(Xαv) × Xαc × bm(X γ)︸ ︷︷ ︸
=: Ψ

×Xη,

= α(t)⊤︷ ︸︸ ︷ = β(t)⊤︷ ︸︸ ︷ =: Xα︷ ︸︸ ︷
=: Xβ︷ ︸︸ ︷

θ(t) = (αv(t)⊤,αc⊤,γ(t)⊤︸ ︷︷ ︸
= ψ(t)⊤

,η⊤)⊤∈X θ = Xαv × Xαc × X γ︸ ︷︷ ︸
=: Xψ

×Xη ⊂ R
kθ .

We require X θ to be convex. Similarly to the previous chapter, kθ (resp. kψ, . . .)

denotes the dimension and xθ (resp. xψ, . . .) denotes an element of X θ (resp.

Xψ, . . .). As in Chapter 5, we will use the operator ∇j = ∂
∂xθj

for j = 1, . . . , kθ,

and the row vectors of operators ∇θ, ∇α, and ∇β. The following row vectors of

operators are defined analogously: ∇ψ, ∇αv , ∇αc , and ∇η.
Using the test statistic only at time t = τ enables us to work with the relaxed

orthogonality condition (1.8). We will use it in the following modified version:

We assume that we have a stochastic process

η̂ : Ω × Ψ → Xη,

indexed by Ψ := bm(Xαv) × Xαc × bm(X γ) such that the following condition

is satisfied:
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(SP1a) (orthogonality condition) For all ψ = (αv,αc,γ) ∈ Ψ,
∫ τ

0

n∑

i=1

ci(ψ(s), η̂(ψ), s)∇αcfi(α
v(s),αc, s) ds = 0.

By plugging in η̂(ψ) into c we can satisfy the orthogonality condition (SP1a)

as replacement for (1.8) and still require that for θ ∈ Θ the stochastic process

c(θ(·), ·) is predictable.

The test statistic we use is T (c, θ̂), where θ̂ := (ψ̂, η̂(ψ̂)), and where ψ̂ is

some estimator for ψ.

To tie in with the notation of Chapter 5 and to use results of that chapter,

all parameters besides those from the null hypothesis on which ĉ depends are

denoted by β. The first components of β, denoted by γ ∈ bm(X γ), where

X γ ⊂ R
kγ , will be used to direct the test. We will interpret η̂ as an estimator

of the last components of β. These last components of β will be denoted by η

and thus we shall write β = (γ,η).

Using this notation, we may state the other orthogonality condition (1.6) as

follows:

(SP1b) (orthogonality condition) For P ⊗ almost all (ω, t),

n∑

i=1

ci(ω,x
θ, t)∇αvfi(ω,x

αv

,xα
c

, t) = 0, ∀xθ =



xα

v

xα
c

xβ


 ∈ X θ.

6.2 Asymptotics under the Null Hypothesis

In order to show asymptotic normality of T (c, θ̂) under the null hypothesis,

we reuse parts of the proof of Theorem 5.1. Therefore we need to consider the

conditions (N1)-(N7) which were assumed in Theorem 5.1. Conditions (N3)-(N7)

of Theorem 5.1 will be part of the assumptions of the next theorem. Condition

(N2) will be replaced by the conditions (SP1a) and (SP1b) which we already

introduced. Instead of (N1), we use the following conditions:

(SP2a) (convergence of ψ̂)

There exists ψ0 = (α0,γ0) ∈ Ψ such that for some 0 < ν ≤ 1/2,

sup
t∈[0,τ ]

‖ψ̂(t) −ψ0(t)‖ =OP(n−1/4−ν/2)

and such that the total variation of components of ψ̂ −ψ0 satisfies
∫ τ

0
|d(ψ̂j(t) − ψ0,j(t))| P→0, j = 1, . . . , kψ,

where ψ0,j denotes the jth component of ψ0.
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Condition (SP2a) can be ensured by using the smoothing procedure of Sec-

tion 4.2.

(SP2b) (convergence of η̂(ψ̂) and η̂(ψ0))

There exists a deterministic vector η0(ψ0) ∈ R
kη such that

η̂(ψ̂)−η0(ψ0) = OP(n−1/4−ν/2) and η̂(ψ0)−η0(ψ0) = OP(n−1/4−ν/2).

So under (SP2a) and (SP2b), the combined parameter estimator θ̂ = (ψ̂, η̂(ψ̂))

converges to θ0 := (ψ0,η0(ψ0)).

If the null hypothesis (6.2) holds true the following theorem gives asymptotic

normality of T (c, θ̂).

Theorem 6.1. Suppose conditions (SP1a), (SP1b), (SP2a), (SP2b), (N3) -

(N7) hold true and that

λi(·) = fi(α
v
0(·),αc

0, ·), i = 1, . . . n,

where α0(t) = (αv
0(t)

⊤,αc
0
⊤)⊤. Then

T (c, ψ̂, η̂(ψ̂))
d→ N(0, σ2(c)),

where

σ2(c) =

∫ τ

0

−−⇀
cfc(θ0(s), s) ds.

Furthermore,

σ̂2(c) :=
1

n

∫ τ

0
c(θ̂(s), s)⊤diag(dN(s))c(θ̂(s), s)

P→ σ2(c).

Proof. First, we show that (N1) and (N1’) hold true. By (SP2a), (SP2b), we have

supt∈[0,τ ] ‖θ̂(t)− θ0(t)‖ = OP(n−1/4−ν/2), since by definition, θ̂ = (ψ̂, η̂(ψ̂)) and

θ0 = (ψ0,η0(ψ0)). Since η̂(ψ̂)−η0(θ0) does not depend on time, the condition

on the total variance of θ̂ − θ0 reduces to the condition of the total variance of

ψ̂ −ψ0 given in (SP2b).

The remainder of the proof can be done along the lines of the proof of The-

orem 5.1. The only difference occurs when we show that the second term on the

right hand side of (5.6) vanishes. This term is

n−
1
2

∫ t

0

[
n∑

i=1

ci(θ0(s), s)∇αfi(α0(s), s)

]
(α̂(s) −α0(s)) ds. (6.3)

We only need to consider (6.3) for t = τ . We may rewrite (6.3) for t = τ as the

sum of

n−
1
2

∫ τ

0

[
n∑

i=1

ci(θ0(s), s)∇αvfi(α0(s), s)

]
(α̂v(s) −αv

0(s)) ds (6.4)
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and

n−
1
2

∫ τ

0

[
n∑

i=1

ci(θ0(s), s)∇αcfi(α0(s), s)

]
ds(α̂c −αc

0). (6.5)

By (SP1b), the term (6.4) is zero. Because of (SP1a), we may rewrite the first

part of (6.5) as

n−
1
2

∫ τ

0

[
n∑

i=1

(
ci(θ0(s), s) − ci(ψ0(s), η̂(ψ0), s)

)
∇αcfi(α0(s), s)

]
ds,

which by a Taylor expansion is equal to

n−
1
2 (η0(ψ0) − η̂(ψ0))

⊤

∫ τ

0

[
n∑

i=1

(∇ηci)(ψ0(s), η̃, s)
⊤∇αcfi(α0(s), s)

]
ds

for some η̃ between η0(ψ0) and η̂(ψ0). Hence, as ‖α̂c−αc
0‖‖η0(ψ0)− η̂(ψ0)‖ =

OP(n−1/2−ν) and as n−ν(∇ηc)(∇αcf) converges uniformly on C to zero by (N7),

the term (6.5) converges to 0 in probability.

6.3 Least Squares Projections

Similar to Section 5.4, we first describe a simple way of ensuring the orthogo-

nality conditions (SP1a) and (SP1b). Again, we take some n-variate vector of

stochastic processes d(xθ, t), depending on xθ ∈ X θ, and define c by an orthog-

onal projection of d. Since condition (SP1a) involves all of [0, τ ], this projection

should involve all time-points.

Recall the space L2(Pn⊗ ) from Section 3.2. The conditions (SP1a) and

(SP1b) are equivalent to the statement that

<c(θ(·), ·),u>Pn⊗ = 0 ∀ u ∈ U(α),θ = (α,β) ∈ Θ,

where U(α) := Uv(α) + Uc(α), Uc(α) = {columns of (∇αcf)(α(·), ·)} , and

Uv(α) =
{
f̃(·)g(·) : g ∈ bm([0, τ ]) and f̃(·) column of (∇αvf)(α(·), ·)

}
.

Recall from Section 3.2, that Q
U(α)
Pn⊗

is the orthogonal projection onto U(α)⊥

with respect to < ·, ·>Pn⊗ . As weights we want to use

c(θ(·), ·) = Q
U(α)
Pn⊗

d(θ(·), ·). (6.6)

Equation (6.6) only defines c(θ(·), ·) as an equivalence class of functions that are

equal almost everywhere with respect to Pn⊗ . However, in our test statistic T ,
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we will integrate c(θ(·), ·) with respect to the counting process N(t). Consider

the set B of jumps of N , i.e. B = {(i, t) ∈ {1, . . . , n} × [0, τ ] : Ni(t) 6= Ni(t−)}.
Clearly, (Pn⊗ )(B) = 0. Hence, (6.6) does not define c(θ(·), ·) on A. Thus we

need to pick a particular element of this equivalence class. For the one that we

pick, we need to be able to verify the conditions of Theorem 6.1. We shall do so

for weighted projections in Section 6.5.

For now, we contend ourselves by giving an explicit formula for Q
U(α)
Pn⊗

.

The orthogonal projection onto Uv(α)⊥ can be reduced to ordinary orthogo-

nal projections in R
n as follows: For t ∈ [0, τ ], let A(t) := (∇αvf)(α(t), t) and

let Q
A(t)
Pn

be the orthogonal projection matrix onto {columns of A(t)}⊥ in R
n.

If A(t) has full column rank then Q
A(t)
Pn

= I − A(t)(A(t)⊤A(t))−1A(t)⊤. Let

Q
Uv(α)
Pn⊗

: L2(Pn⊗ ) → L2(Pn⊗ ) be given by

Q
Uv(α)
Pn⊗

(x)(t) = Q
A(t)
Pn

x(t).

By Lemma B.2, Q
Uv(α)
Pn⊗

is the projection onto Uv(α)⊥. Define the set

Ũc(α) = Q
Uv(α)
Pn⊗

Uc(α) = {QUv(α)
Pn⊗

y : y column of (∇αcf)(α(·), ·)},

and let Q
Ũc(α)
Pn⊗

be the orthogonal projection onto Ũc(α)
⊥
. By Lemma B.3,

Q
U(α)
Pn⊗

= Q
Uv(α)
Pn⊗

Q
Ũc(α)
Pn⊗

= Q
Ũc(α)
Pn⊗

Q
Uv(α)
Pn⊗

. Using that Ũc(α) is a finite set, we

immediately get the following result:

Proposition 6.1. Let B :=
∫ τ
0 f̃(s)

⊤
f̃(s) ds, f̃(t) := Q

A(t)
Pn

(∇αcf)(α(t), t), and

A(t) = (∇αvf)(α(t), t). If B is invertible then for a ∈ L2(Pn⊗ ),

Q
U(α)
Pn⊗

(a)(t) = Q
A(t)
Pn

a(t) − f̃(t)B−1

∫ τ

0
f̃(s)

⊤
Q
A(s)
Pn

a(s) ds. (6.7)

6.4 Optimal Weights under Alternatives

For brevity, we restrict ourselves to fixed alternatives given by λi(t) = hi(t). The

modification to local alternatives can be done in a similar way to Subsection 5.5.2.

We want to consider optimal tests based on

V (c) := T (c, θ̂)
/√

σ̂2(c),

where σ̂2(c) is as in Theorem 6.1. As in Subsection 3.6.1 and in Subsection 5.5.1,

the optimality criterion we use is the approximate Bahadur efficiency, for which

we need convergence results under the null hypothesis as well as under the fixed

alternative. Under the null hypothesis we use Theorem 6.1. Since the orthog-

onality conditions are not part of Theorem 5.2, we may reuse this theorem for
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convergence under the alternative. One can argue as in Subsection 5.5.1, to see

that it suffices to maximize

Z(c) :=

∫ τ

0

(
ch(α0(s), s) − cf(α0(s), s)

)
ds

(∫ τ

0
chc(α0(s), s) ds

)− 1
2

.

Instead of optimizing c in the class of all weights satisfying all conditions for

Theorem 6.1 and Theorem 5.2, we optimize only under the orthogonality condi-

tion (SP1a) and (SP1b). Actually, we only require (SP1a) and (SP1b) for the

limit α0 of the parameter estimator and we are looking for weights c that do

not depend on α. At the end of this section, we extend the optimal weights to

weights depending on α that satisfy (SP1a) and (SP1b). Thus, the optimization

problem we are interested in solving is





Z(c) → max
∑n

i=1 ci(t)∇αvfi(α0(t), t) = 0, for almost all t ∈ [0, τ ].
∫ τ
0

∑n
i=1 ci(s)∇αcfi(α0(s), s) ds = 0.

(6.8)

It will turn out that the solution of (6.8) is given by a certain orthogonal

projection onto the orthogonal space to V (α0) where V (α) can be defined as fol-

lows: V (α) := Vv(α) + Vc(α), Vc(α) =
{

ef(·)
h(·) : f̃(·) column of (∇αcf)(α(·), ·)

}
,

and

Vv(α) =

{
f̃(·)
h(·)g(·) : f̃(·) column of (∇αvf)(α(·), ·) and g ∈ bm([0, τ ])

}
.

Proposition 6.2. Suppose that for all i = 1, . . . , n, t ∈ [0, τ ],

hi(t) = 0 implies (fi(α0(t), t) = 0 and ∇αfi(α0(t), t) = 0).

If h(·)−f(α0(·),·)
h(·) and

(∇j f)(α0(·),·)
h(·) , j = 1, . . . , kα, are elements of L2(h · (Pn⊗ ))

then for all c ∈ L2(h · (Pn⊗ )) that are admissible for (6.8), the following holds:

Z(c∗) ≥ Z(c),

where c∗ ∈ L2(h · (Pn⊗ )) is given by

c∗ = Q
V (α0)
h·(Pn⊗ )

h(·) − f(α0(·), ·)
h(·) .

Proof. We can rewrite the first side condition as follows:

<c(t),
v(t)

h(t)
>h(t)·Pn

= 0, ∀ columns v(t) of (∇αvf)(α0(t), t) and almost all t.
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We can rewrite this further as

<c,v>h·(Pn⊗ )= 0 ∀v ∈ Vv(α0).

We can rewrite the second side condition as follows:

<c,v>h·(Pn⊗ )= 0 ∀v ∈ Vc(α0).

Thus, the side conditions can be written in a combined way as follows:

<c,v>h·(Pn⊗ )= 0, ∀v ∈ V (α0).

Using properties of orthogonal projections and the Cauchy-Schwarz inequality,

we get for all c that are admissible for (6.8) that

n

∫ τ

0

(
ch(s) − cf(α0(s), s)

)
ds =<c,

h(·) − f(α0, ·)
h(·) >h·(Pn⊗ )

=<Q
V (α0)
h·(Pn⊗ )c,

h(·) − f(α0, ·)
h(·) >h·(Pn⊗ )

=<c, c∗>h·(Pn⊗ )

≤ ‖c‖h·(Pn⊗ ) ‖c∗‖h·(Pn⊗ )

=

(
n

∫ τ

0
chc(s) ds

) 1
2

‖c∗‖h·(Pn⊗ )

with equality if c = c∗. By the assumptions,
∫ τ
0 chc(s) ds = 0 implies that∫ τ

0

(
ch(s) − cf(α0(s), s)

)
ds = 0 and hence, Z(c∗) ≤ n−1/2 ‖c∗‖h·(Pn⊗ ), with

equality if c = c∗.

If we define c(α) = Q
V (α)
h·(Pn⊗ )

h(·)−f(α(·),·)
h(·) then c(α0) = c∗ and c satisfies

the conditions (SP1a) and (SP1b). Of course, the definition of c is only up to

h · (Pn⊗ )-null sets, which is not precise enough for the other conditions we

need for the convergence results. In the next section, we shall give more details,

especially concerning η̂ and show that under suitable conditions an element of the

equivalence class c(α) satisfies the remaining conditions we need for convergence

under the null hypothesis as well as under fixed alternatives.

6.5 Weighted Projections are Admissible

In the previous section, we have seen that optimal weights are given by certain

weighted orthogonal projections. The goal of this section is to show that one

can choose a stochastic process that is an element of the equivalence class de-

fined by weighted orthogonal projections, that can be shown to satisfy the other

conditions needed for the asymptotic results.
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Suppose d and w are n-variate vectors of stochastic processes and Bc is an

n × kc-matrix of stochastic processes and Bv is an n × kv-matrix of stochastic

processes. All of these stochastic processes may depend on xψ ∈ Xψ. We want

to pick an element of the equivalence class defined by

Q
V (ψ)
w(ψ(·),·)·(Pn⊗ )d(ψ(·), ·), (6.9)

where V (ψ) := Vv(ψ) + Vc(ψ), Vc(ψ) = {columns of Bc(ψ(·), ·)}, and

Vv(ψ) = {y(·)g(·) : y column of Bv(ψ(·), ·) and g ∈ bm([0, τ ])} .

Remark 6.1. Consider the optimal weights of the previous section. As the alter-

native is completely known, for these weights we have ψ = α. Furthermore, the

optimal weights are given by (6.9) with

w(xα, t) = h(t), d(xα, t) =
h(t) − f(xα, t)

h(t)
,

Bc(xα, t) =
∇αcf(xα, t)

h(t)
, and Bv(xα, t) =

∇αvf(xα, t)

h(t)
.

The element of the equivalence class (6.9) we pick is c(ψ(·), η̂(ψ), ·), where

c(xψ,η, t) = Q
Bv(xψ,t)

w(xψ,t)·Pn

(
d(xψ, t) −Bc(xψ, t)η

)
, (6.10)

η̂(ψ) =

(∫ τ

0
B̃cwB̃c(ψ(s), s) ds

)−1 ∫ τ

0
B̃cwd(ψ(s), s) ds, (6.11)

and B̃c(xψ, t) = Q
Bv(xψ,t)

w(xψ,t)·Pn
Bc(xψ, t). As before, we set

ci(x
ψ,η, t) = 0 if wi(x

ψ, t) = 0.

By Lemma B.2 and Lemma B.3, c(ψ(·), η̂(ψ), ·) is an element of the equivalence

class defined by (6.9).

As already mentioned, we want to consider the conditions needed for the

asymptotic results, i.e. Theorem 6.1 for convergence under the null hypothesis

and Theorem 5.2 for convergence under fixed alternatives.

Whether (SP1a) and (SP1b) are satisfied depends on the combination of Bc,

Bv, and w. In general, if diag(w)Bc = ∇αcf and diag(w)Bv = ∇αvf then

(SP1a) and (SP1b) hold true.

Condition (SP2a) is concerned with the convergence of ψ̂. This depends on

the particular estimators used in ψ̂. In the following, we assume that (SP2a)

holds true.

Mainly, we need to show that condition (SP2b), which concerns the con-

vergence of η̂, holds true. After that, we may use Theorem 5.6 with d in that
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theorem replaced by d(xψ, t)−Bc(xψ, t)η to get (N3)-(N7), (F1), (F2), (L1), and

(L2). For this to work, the following conditions suffice. Similarly to (SP1) and

(SP2), they are not minimal conditions but represent reasonable assumptions.

(SPW1) (conditions for weighted projections) There exists a compact, convex

set K ⊂ Xψ such that {ψ0(t) : t ∈ [0, τ ]} is in its interior and such

that the following holds true:

For all t ∈ [0, τ ], i = 1, . . . , n, the mappings di(·, t), Bc
ij(·, t), j =

1, . . . , kc, Bv
iν(·, t), ν = 1, . . . , kv, and wi(·, t) from K into R are twice

differentiable. Furthermore, di, ∇j di, ∇j ∇νdi, wi, ∇j wi, ∇j ∇νwi, w
−1
i ,

Bc
iµ, ∇jB

c
iµ ∇j ∇νB

c
iµ, µ = 1, . . . , kc, and Bv

iµ, ∇jB
v
iµ, ∇j ∇νB

v
iµ, µ =

1, . . . , kv, i = 1, . . . , n, j, ν = 1, . . . , kθ, are càglàd, adapted, locally

bounded stochastic processes with values in the space C(K) of all

continuous mappings from K into R equipped with the supremum

norm.

(SPW2) (properties of certain matrices)
−−−−−⇀
BvwBv(xψ, t) is invertible for all

xψ ∈ K, t ∈ [0, τ ], and continuous in (xψ, t) ∈ K × [0, τ ]. The ma-

trix
∫ τ
0 E[B̃c

1(ψ(s), s)⊤w1(ψ(s), s)B̃c
1(ψ(s), s)] ds is invertible for ψ ∈

bm(K), where B̃c
1(x

ψ, t) = Q
Bv

1(xψ,t)

w1(xψ,t)·P
Bc

1(x
ψ, t).

Theorem 6.2. Suppose conditions (SP2a), (SPW1), and (SPW2) are satisfied,

c is defined by (6.10), and η̂ is defined by (6.11). Furthermore, suppose that

(di,B
v
i ,B

c
i , wi, fi) are i.i.d. and suppose that the following random elements have

an l-th moment that is uniformly bounded in (xθ, t) = (xα,xβ, t) on K × [0, τ ],

where l = max(ν−1, (1/8 + ν/4)−1, 6):

d1(x
θ, t),∇θd1(x

θ, t),∇⊤
θ∇θd1(x

θ, t),

w1(x
θ, t),∇θw1(x

θ, t),∇⊤
θ∇θw1(x

θ, t),

Bc
1(x

θ, t),∇jB
c
1(x

θ, t),∇j ∇νB
c
1(x

θ, t), j, ν = 1, . . . , kθ,

Bv
1(x

θ, t),∇jB
v
1(x

θ, t),∇j ∇νB
v
1(x

θ, t), j, ν = 1, . . . , kθ,

f1(x
α, t),∇αf1(x

α, t),∇⊤
α∇αf1(x

α, t).

Then the following conditions hold true: (SP2b), (N1), and (N3)-(N7).

Furthermore, we have the following result concerning fixed alternatives:

If in addition to the above, (di,B
v
i ,B

c
i , wi, fi, hi) are i.i.d., hi are càglàd, locally

bounded, adapted stochastic processes with uniformly bounded third moment and

the mappings

E[(Q
Bv

1(·)

w1(·)·Pd1(·))h1(·)] : K × [0, τ ] →R
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and

E[(Q
Bv

1(·)

w1(·)·Pd1(·))f1(·)] : K × [0, τ ] →R

are equicontinuous at ψ0 then (F1) and (F2) hold true. In particular, if, in

addition, λi(t) = hi(t) then

n−
1
2T (c, ψ̂, η̂(ψ̂))

P→
∫ τ

0
E
[
d̃1(ψ0(s), s) {h1(s) − f1(α0(s), s)}

]
ds (6.12)

and

σ̂2(c)
P→
∫ τ

0
E

[(
d̃1(ψ0(s), s)

)2
h1(s)

]
ds (6.13)

uniformly in t ∈ [0, τ ], where d̃1 = QU
w1(ψ0(·),·)·(P⊗ )d1, U = Uv + Uc,

Uc = {elements of Bc
1(ψ0(·), ·)}, and

Uv = {y(·)g(·) : y(·) element of Bv
1(ψ0(·), ·) and g ∈ bm([0, τ ])} .

Proof. We start by proving that (SP2b) holds. Let

η0(ψ) =

(∫ τ

0
A(ψ(s), s) ds

)−1(∫ τ

0
D(ψ(s), s) ds

)
,

where

A(xψ, s) = E[U(xψ, s)⊤w1(x
ψ, s)U(xψ, s)],

D(xψ, s) = E[U(xψ, s)⊤w1(x
ψ, s)d1(x

ψ, s)],

and U(xψ, t) = Q
Bv

1(xψ ,t)

w1(xψ ,t)·P
Bc

1(x
ψ, t). Consider the decomposition

η̂(ψ̂) − η0(ψ0) = (η̂(ψ̂) − η̂(ψ0)) + (η̂(ψ0) − η0(ψ0)).

First, we show η̂(ψ̂) − η̂(ψ0) = OP(n−1/4−ν/2). By a Taylor expansion,
∫ τ

0
B̃cwB̃c(ψ̂(s), s) ds−

∫ τ

0
B̃cwB̃c(ψ0(s), s) ds =

=

∫ τ

0
∇ψB̃cwB̃c(ψ̂(s), s)

(
ψ̂(s) −ψ0(s)

)
ds

≤


 sup
xψ∈K
s∈[0,τ ]

‖∇ψB̃cwB̃c(xψ, s)‖



(

sup
s∈[0,τ ]

∥∥∥ψ̂(s) −ψ0(s)
∥∥∥
)

for some ψ̃ between ψ̂ and ψ0. By Theorem A.5, (SPW2), and Lemma 3.3 on

page 44, the first term is stochastically bounded. Hence, by (SP2a),
∫ τ

0
B̃cwB̃c(ψ̂(s), s) ds−

∫ τ

0
B̃cwB̃c(ψ0(s), s) ds = OP(n−1/4−ν/2).
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Hence, using Lemma 3.3 and Lemma 3.5,

(∫ τ

0
B̃cwB̃c(ψ̂(s), s) ds

)−1

−
(∫ τ

0
B̃cwB̃c(ψ0(s), s) ds

)−1

= OP(n−1/4−ν/2).

Similarly, one can show that
∫ τ

0
B̃cwd(ψ̂(s), s) ds−

∫ τ

0
B̃cwd(ψ0(s), s) ds = OP(n−1/4−ν/2).

Next, we show η̂(ψ0) − η0(ψ0) = OP(n−1/2). We only show

∫ τ

0
B̃cwd(ψ0(s), s) ds−

∫ τ

0
D(ψ0(s), s) ds = OP(n−

1
2 ). (6.14)

The proof of
∫ τ

0
B̃cwB̃c(ψ0(s), s) ds−

∫ τ

0
A(ψ0(s), s) ds = OP(n−

1
2 )

is similar. The left hand side of (6.14) can be written as

∫ τ

0
(a− Ea⊤1) ds−

∫ τ

0

(
b(F )−1g − E[b1](EF 1)

−1 E g⊤1

)
ds, (6.15)

where

ai := Bc
iwidi, bi := Bc

i
⊤wiB

v
i , F i := Bv

i
⊤wiB

v
i , gi := Bv

iwidi,

F := 1
n

∑n
i=1 F i, and b := 1

n

∑n
i=1 bi. Since we assume l ≥ 6, using the multi-

variate central limit theorem and dropping the dependence on ψ0(s) and s,

n
1
2

∫ τ

0

(
a− Ea⊤1

)
ds = n−

1
2

n∑

i=1

∫ τ

0

(
ai − Ea⊤1

)
ds = OP(1).

The integrand of the second term of (6.15) can be rewritten as follows:

b
(
F−1 − (EF 1)

−1
)
g +

(
b− E b1

)
(EF 1)

−1g+

+ E b1(EF 1)
−1
(
g − E g⊤1

)
.

(6.16)

Hence, the absolute value of the second term of (6.15) is less than

∫ τ

0

∥∥F−1 − (EF 1)
−1
∥∥ ds sup

s∈[0,τ ]
‖g‖‖b‖

+

∫ τ

0

∥∥b− E b1

∥∥ ds sup
s∈[0,τ ]

‖(EF 1)
−1‖‖g‖+

+

∫ τ

0

∥∥∥g − E g⊤1

∥∥∥ ds sup
s∈[0,τ ]

‖E b1‖‖(EF 1)
−1‖.
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The suprema are stochastically bounded by the assumptions, a law of large

numbers (Theorem A.4), and Lemma 3.3. We may interpret the components bi

as elements of L2( ). Using a central limit theorem for random variables in the

Hilbert space L2( ) (Theorem A.6), we get that the components of

n−
1
2

n∑

i=1

(bi − E b1) (6.17)

converge weakly to a random element of L2( ). Hence, the components of (6.17)

are stochastically bounded. By these arguments and similar reasoning for F i

and gi,

(∫ τ

0
‖b− E b1‖2 ds

) 1
2

= OP(n−
1
2 ),

(∫ τ

0
‖F − EF 1‖2 ds

) 1
2

= OP(n−
1
2 ),

and

(∫ τ

0
‖g − E g⊤1‖2 ds

) 1
2

= OP(n−
1
2 ).

Using Lemma 3.5 we get

(∫ τ

0
‖F−1 − (EF 1)

−1‖2 ds

) 1
2

= OP(n−
1
2 ).

Since
∫ τ
0 ‖b − E b1‖ds ≤

(∫ τ
0 ‖b− E b1‖2 ds

) 1
2
√
τ , the second term of (6.15) is

of order n−1/2. This finishes the proof that (SP2b) holds.

As already mentioned before the theorem, we may use Theorem 5.6 with

d(xψ,η, t) = d(xψ, t)−Bc(xψ, t)η replacing d of that lemma to get (N3)-(N7),

(F1), (F2), (L1), and (L2). It remains to show that the limits in (6.12) and

(6.13) are indeed the terms on the right hand side. This follows from the limits

given in Theorem 5.6 and by considering Lemma B.3.
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Chapter 7

Competing Models that are

not Separated from the Null

Hypothesis - The Problem of a

Vanishing Variance

The tests we use are always based on the test statistic T . In Theorem 3.1, The-

orem 5.1, and Theorem 6.1 we discussed the asymptotic distribution of the test

statistic under the null hypothesis. To apply these results we need to standardize

T as can be seen e.g. in Section 3.4. For this standardization, we need that the

asymptotic variance of T is not zero. The goal of this chapter is to character-

ize the case in which the asymptotic variance vanishes and to suggest several

approaches how to deal with this problem.

We focus on a particular test for a Cox-type model as null hypothesis, using

the optimal weights against fixed alternatives given in Subsection 5.5.1. First, in

Section 7.1, we introduce the setup we will be dealing with in more detail. After

that, in Section 7.2, we give equivalent conditions for the asymptotic variance

to vanish. In Section 7.3, it is sketched what type of asymptotic distribution

of n1/2T to expect if the asymptotic variance of T is zero. In Section 7.4, we

describe a test to detect whether the asymptotic variance is 0. We suggest to

combine this test with our goodness-of-fit test to get a sequential test that is

asymptotically conservative, irrespective of whether the asymptotic variance is

zero or not. Another approach to deal with the problem of a vanishing variance

is to use bootstrap procedures. This approach is mentioned briefly in Section 7.5.
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7.1 A Nonparametric Check for the Cox Model

We want to check the Cox-type model (2.5), i.e. the model given by the intensity

λi(t) = αv(t)ρi(α
c, t), (7.1)

where the baseline αv and the regression parameter αc ∈ Xαc ⊂ R
kαc are

unknown, and where the nonnegative stochastic processes ρi are observable.

Interpreting αc as functions that are constant over time, we use the tech-

niques of Chapter 5 with α(t) = (αv(t),αc⊤)⊤ and

fi(x
α, t) = xαv

ρi(x
αc

, t),

for xα = (xαv

,xα
c⊤)⊤. This approach does not use all information about the null

hypothesis, since it ignores that αc is constant over time. Hence, if (7.1) holds

true with a time-dependent parameter αc, we will not be able to reject. But the

approach has the advantage of a simpler form of the test and the advantage that

no estimate of the baseline αv(t) is needed, as we shall see shortly.

The derivative of f with respect to the parameters is given by

∂

∂xα
fi(x

α, t) =

(
ρi(x

αc

, t), xαv ∂

∂xαc ρi(x
αc

, t)

)
.

If the weights c satisfy (N2’) then, considering the first component of the deriva-

tive of fi, the test statistic simplifies to

n−
1
2

∫ t

0
c(s)⊤dN(s).

We focus on tests directed to be optimal against another Cox-type model given

by

λi(t) = βv(t)hi(β
c, t), (7.2)

where the baseline βv and the regression parameter βc ∈ Xβc ⊂ R
kβc are un-

known and the nonnegative stochastic process hi is observable.

The results of Subsection 5.5.1 suggest using the weights

c(t) = Q
eB(t)
(βv(t)h(βc,t))·Pn

βv(t)h(βc, t) − αv(t)ρ(αc, t)

βv(t)h(βc, t)
= Q

eB(t)
(βv(t)h(βc,t))·Pn

1,

where

B̃(t) =

(
ρ(αc, t)

βv(t)h(βc, t)
,

∂
∂αcρ(αc, t)αv(t)

βv(t)h(βc, t)

)
.
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This simplifies to

c(αc,βc, t) = Q
B(αc,βc,t)
h(βc,t)·Pn

1 (7.3)

and

B(αc,βc, t) =

(
ρ(αc, t)

h(βc, t)
,

∂
∂αcρ(αc, t)

h(βc, t)

)
. (7.4)

Note that c does not depend on αv(t) and βv(t). If BhB(αc,βc, t) is invertible

then

c(αc,βc, t) = 1 −B(αc,βc, t)
(
BhB(αc,βc, t)

)−1
Bh(αc,βc, t).

Similarly to the previous chapters, we adopt the following notation in this

chapter: Since we do not need to estimate αv and βv, the combined parameter

θ denotes the remaining parameters, i.e. θ = (αc⊤,βc⊤)⊤. An estimator of θ is

denoted by θ̂ = (α̂c⊤, β̂c⊤)⊤. For j = 1, . . . , kθ := kαc + kβc , ∇j denotes ∂
∂θj

,

i.e. for j = 1, . . . , kαc , ∇j denotes ∂
∂αc

j
and for j = 1, . . . , kβc , ∇j+kαc denotes

∂
∂βc

j
. Furthermore, ∇θ := (∇1, . . . ,∇kθ ), ∇αc := (∇1, . . . ,∇kαc ), and ∇βc :=

(∇kαc+1, . . . ,∇kθ ).

In the remainder of this chapter, we assume that the null hypothesis holds

true, i.e. we have

λi(t) = αv
0(t)ρi(α

c
0, t), (7.5)

for some αv
0, α

c
0. As always, the limit of β̂c is denoted by βc

0.

7.2 When does the Variance Vanish Asymptotically?

We can use the results about the convergence of T to a normal distribution or

to a Gaussian process only if the asymptotic variance is positive under the null

hypothesis. We consider the test of the previous section using the weight c given

in (7.3).

Assume that we are in the i.i.d. setup of Theorem 5.6 with d1(t) = 1,

B1(θ, t) =
(

ρ1(αc,t)
h1(βc,t) ,

∇αcρ1(αc,t)
h1(βc,t)

)
, and w1(θ, t) = h1(β

c, t). Furthermore, assume

that (7.5) holds true, that that αv
0(t) > 0∀ t, that (h1(β

c
0, t) = 0 iff ρ1(α

c
0, t) = 0),

and that h1(β
c
0, t) = 0 implies ∇αcρ1(α

c
0, t) = 0. By Theorem 5.6, the asymp-

totic variance of T (c, θ̂, τ) under the null hypothesis is given by

σ2(τ) =

∫ τ

0

∥∥∥QB1(θ0,s)
h1(βc

0,s)·P1
∥∥∥

2

(αv
0(s)ρ1(αc

0,s))·P
ds.
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By the assumptions, we can rewrite σ2(τ) as follows:

σ2(τ) =

∫

Ω×[0,τ ]

(
Q
B1(θ0,s)
h1(βc

0,s)·P1
)2
αv

0(s)ρ1(α
c
0, s) dµ(ω, s),

where µ = I{h1(β
c
0, ·) 6= 0} · (P ⊗ ). As ρ1 ≥ 0, the asymptotic variance σ2(τ)

equals 0 iff for µ-almost all (ω, t) ∈ Ω × [0, τ ],

(Q
B1(θ0,t)
h1(βc

0,t)·P1)(ω) = 0.

Thus σ2(τ) = 0 iff for -almost all t,

1 ∈ spanν(t)

{
ρ1(α

c
0, t)

h1(β
c
0, t)

,
∇j ρ1(α

c
0, t)

h1(β
c
0, t)

, j = 1, . . . , kαc

}
,

where ν(t) = I{h1(β
c
0, t) 6= 0} · P and spanν(t) denotes the span in L2(ν(t)).

Hence, σ2(τ) = 0 iff for -almost all t,

h1(β
c
0, t) ∈ spanν(t) {ρ1(α

c
0, t),∇j ρ1(α

c
0, t), j = 1, . . . , kαc} .

By the assumptions, we get σ2(τ) = 0 iff

for -almost all t, h1(β
c
0, t) ∈ spanP {ρ1(α

c
0, t),∇j ρ1(α

c
0, t), j = 1, . . . , kαc} ,

(7.6)

where spanP denotes the span in L2(P).

To use our test we need to ensure that (7.6) does not hold. Since θ0 =

(αc
0
⊤,βc

0
⊤)⊤ is unknown, one needs to be careful when testing against alternatives

for which there exists θ0 such that (7.6) holds. Usually, there will be such θ0:

Most models include αc and βc such that

hi(β
c, s) = ρi(α

c, s) = Ri(s) for all i, s,

where Ri(s) is the at-risk indicator. In the classical Cox model (2.1) one merely

has to choose αc = 0. Another example where (7.6) holds is the following: If ρ

and h use the same type of model, like the Cox model, and share some covariates

then hi = ρi if the other covariates do not have any influence.

One way to ensure that (7.6) does not hold is to first identify the set D
of all θ0 for which (7.6) holds and then to test the null hypothesis θ0 ∈ D.

This requires special considerations for different combinations of ρ and h. In

Section 7.4, we propose a general test for (7.6), which can be used for many

combinations of ρ and h without having to identify for which θ0 the condition

(7.6) holds true.
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7.3 Distribution of the Test Statistic

if the Variance Vanishes

In this section, we discuss informally the asymptotic behavior of T (c, θ̂, τ) un-

der the null hypothesis (7.1) if (7.6) holds true. That is we use the setup of

Section 7.1 and assume that (7.5) holds true. We use the weights c given by

(7.3) and thus the asymptotic variance of T (c, θ̂, τ) is zero. The considerations

will suggest that in this case n1/2T (c, θ̂, τ) converges to a weighted sum of χ2-

distributed random variables.

First, note that in this case c(αc
0,β

c
0, ·) = 0. Let θ̂ = (α̂c⊤, β̂c⊤)⊤ be an

estimator of θ = (αc⊤,βc⊤)⊤ and let θ0 = (αc
0
⊤,βc

0
⊤)⊤ be the limit of θ̂. A Taylor

expansion of n1/2T (c, θ̂, τ) around θ0 yields that n1/2T (c, θ̂, τ) is equal to

n
1
2 (θ̂ − θ0)

⊤n−
1
2

∫ τ

0
∇θc(θ0, s)

⊤dM(s)

− n
1
2 (θ̂ − θ0)

⊤

(
1

n

∫ τ

0
(∇θc)(θ0, s)

⊤(∇αcρ)(αc
0, s)α

v
0(s) ds

)
n

1
2 (θ̂ − θ0)

+ n
1
2 (θ̂ − θ0)

⊤

(
1

n

n∑

i=1

∫ τ

0
∇⊤
θ∇θci(θ0, s) dMi(s)

)
n

1
2 (θ̂ − θ0)

+R,

where R denotes the remainder term of third order. Under suitable conditions,

the last two terms converge stochastically to 0.

If it can be shown that n1/2(θ̂−θ0) and n−1/2
∫ τ
0 ∇θc(θ0, s)

⊤dM(s) converge

jointly to a multivariate normal distribution then n1/2T (c, θ̂, τ) converges in

distribution to a quadratic form of a multivariate normal distribution, which

can be written as a weighted sum of χ2-distributed random variables. If the

estimators α̂c and β̂c are both maximum partial likelihood estimators one can

see the joint normality under i.i.d. assumptions as follows: The idea is to argue

similar to Lemma 7.2 of Section 7.4. First, write n−1/2
∫ τ
0 ∇θc(θ0, s)

⊤dM(s),

α̂c, and β̂c as sums of i.i.d. random variables plus vanishing remainder terms.

After that, apply the multivariate central limit theorem.

7.4 A Sequential Test

As in the previous sections, we work with an i.i.d. setup and consider the optimal

test of the Cox-type model (7.1) directed against the Cox-type alternative (7.2)

using the weights c given by (7.3). We have seen that in order to apply our test,

we need to ensure that (7.6) does not hold. We propose to employ a test whose

null hypothesis is (7.6) to verify this. We call this test ’preliminary test’. Only if
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we reject (7.6), we use our tests based on the standardized test statistic T (c, θ̂, ·),
which we call ’test of fit’. Combining the preliminary test and the test of fit to

a sequential test which rejects iff both tests reject, one arrives at a conservative

test which can be used regardless of whether (7.6) holds or not. In particular,

the sequential test is valid even if the null hypothesis and the competing model

are nested or overlapping.

7.4.1 The Preliminary Test

Let η = (ρ,∇αcρ). For the preliminary test, we use the test statistic H(θ̂),

where

H(θ) :=

∫ τ

0

∥∥∥∥Q
η(αc,s)
R(s)·Pn

h(βc, s)

h(βc, s)

∥∥∥∥
2

R(s)·Pn

ds

and R(s) is the at-risk indicator defined by Ri(s) = I{ρi(α
c
0, s) > 0}. Thus,

H(θ) is the integrated euclidean distance of h(βc, ·), suitably normed, to the

space spanned by the columns of η(αc, ·). We reject (7.6) for large values of

H(θ̂). We divide h(βc, s) by h(βc, s) to make the test statistic invariant with

respect to certain transformations of h(βc, ·), see the following remark.

Remark 7.1. H and V (1)(c) = T (c,θ, τ)/
√
σ̂2(c, τ) are invariant with respect to

certain transformations of ρ and h that do not change the models: If ρ(αc, s) is

replaced by ρ(αc, s)b(θ, s) for some (possibly random) b : X θ × [0, τ ] → (0,∞)

then H and V (1)(c) do not change. Indeed, H is unchanged since η(αc, s) and

η(αc, s)b(θ, s) span the same space. For a similar reason, the weights c given

in (7.3) and hence V (1)(c) do not change. Furthermore, H and V (1)(c) do not

change if h(βc, s) is replaced by h(βc, s)b(θ, s).

Next, we show that H converges to a quadratic form of a multivariate normal

distribution. We start with a lemma which assumes the following as given:

n
1
2 (θ̂ − θ0)

d→ N(0,Σ) and Σ̂
P→ Σ, (7.7)

where Σ̂ can be any consistent estimator of the asymptotic covariance matrix Σ.

Lemma 7.1. Suppose the Cox-type model (7.5) holds true. Suppose that (ρi, hi)

are i.i.d., ρi(α
c, ·), hi(β

c, ·) are càglàd, locally bounded stochastic processes, ρi

is three times continuously differentiable with respect to αc and hi is twice con-

tinuously differentiable with respect to βc. Suppose that E[ηi(α
c, t)⊤ηi(α

c, t)] is

invertible for all (αc, t) ∈ K× [0, τ ] and continuous in (αc, t) on K× [0, τ ], where

K is a convex, compact set containing αc
0 in its interior. Suppose that ρi(α

c, t)

and its first, second, and third partial derivatives with respect to αc are uniformly

bounded on K × [0, τ ] and suppose that hi(β
c, t) and its first and second partial

derivatives with respect to βc are uniformly bounded on G × [0, τ ], where G is
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a convex, compact set containing βc
0 in its interior. Suppose that Ri(s) = 0 iff

(ρi(α
c, s) = 0 and hi(β

c, s) = 0 for all αc ∈ K, βc ∈ G). Furthermore, suppose

that Eh1(β
c
0, t) is bounded away from 0. If (7.6) and (7.7) hold true then

H(θ̂)
d→X⊤AX,

where X ∼ N(0,Σ) and A is some deterministic matrix. Furthermore,
∫ τ

0

1

n
B(θ̂, s)⊤B(θ̂, s) ds

P→ A,

where

B(θ, s) = ∇θ
(
Q
η(αc,s)
R(s)·Pn

h(βc, s)

h(βc, s)

)
R(s).

Remark 7.2. If ηη(αc, s) is invertible then B(θ, s) has the following form, where

we do not show the dependence on θ and s:

For j = 1, . . . , kαc , and ν = kαc + 1, . . . , kθ,

Bj =
[
− (∇j η)(ηη)−1ηh+ η(ηη)−1

(
(∇j η)η + η(∇j η)

)
(ηη)−1ηh

− η(ηη)−1(∇j η)h
]
(h)−1,

Bν =
(
∇νh− η(ηη)−1η(∇νh)

)
(h)−1 −

(
h− η(ηη)−1ηh

)
(h)−2∇νh.

Proof of Lemma 7.1. Consider the event An := {ηη(αc, t) invertible for all t ∈
[0, τ ],αc ∈ K}. By Lemma 3.3 and Theorem A.4, P(An) → 1. Hence, it suffices

to show the assertions on An. From now on we work on An. By (7.6),

Q
η(αc

0,s)

R(s)·Pn

h(βc
0, s)

h(βc
0, s)

= 0

for all s ∈ [0, τ ]. Hence,

∇θH(θ0) = 2

∫ τ

0
B(θ0, s)

⊤

(
Q
η(αc

0,s)

R(s)·Pn

h(βc
0, s)

h(βc
0, s)

)
ds = 0

and furthermore,

∇⊤
θ∇θH(θ0) = 2

∫ τ

0
B(θ0, s)

⊤B(θ0, s) ds.

By a Taylor expansion of H(θ̂) around θ0,

H(θ̂) =
1

2
n

1
2 (θ̂ − θ0)

⊤1

n
∇⊤
θ∇θH(θ̃)n

1
2 (θ̂ − θ0)

for some θ̃ on the line segment between θ̂ and θ0. It remains to show that
1
2n∇⊤

θ∇θH(θ̃) and 1
2n∇⊤

θ∇θH(θ̂) = 1
n

∫ τ
0 B(θ̂, s)⊤B(θ̂, s) ds both converge stochas-

tically to the same limit. By using a law of large numbers (Theorem A.5) and an
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explicit computation of 1
n∇⊤

θ∇θH(θ), which is rather lengthy, this can be shown

by the continuity of the limit in θ. To see the continuity of the limit in θ, one

uses the dominated convergence theorem. We shall not write down the explicit

formulas.

The previous lemma shows that H(θ̂) converges in distribution to a quadratic

form of normally distributed random vectors. The p-value of our preliminary

test which rejects for large values of H(θ̂) can thus be approximated as fol-

lows: Generate an i.i.d. sample X1, . . . ,Xb from N(0, Σ̂) for some b ∈ N. The

approximated p-value is

1

b

b∑

i=1

I

{
H(θ̂) <X⊤

i

∫ τ

0

1

n
B(θ̂, s)⊤B(θ̂, s) dsXi

}
.

We recommend using b ≥ 1000. A more elegant way of simulating the p-value

can be derived by considering the eigenvalues of the quadratic form, see Johnson

and Kotz (1970).

7.4.2 Joint Convergence of the Estimators

of Two Different Cox Models

To apply Lemma 7.1, we still need the asymptotic distribution of θ̂ = (α̂c⊤, β̂c⊤)⊤

under the null hypothesis, i.e. the joint asymptotic distribution of α̂c and β̂c if

(7.5) is satisfied. Suppose that both α̂c and β̂c are maximum partial likelihood

estimators, i.e. α̂c maximizes

X(αc) =
1

n

n∑

i=1

∫ τ

0
log(ρi(α

c, s)) dNi(s) −
∫ τ

0
log(ρ(αc, s)) dN(s)

and β̂c maximizes

Y (βc) =
1

n

n∑

i=1

∫ τ

0
log(hi(β

c, s)) dNi(s) −
∫ τ

0
log(h(βc, s)) dN(s).

Since we work under the Cox-type model (7.5), the desired limit αc
0 of α̂c is

given by the model. Under regularity conditions, β̂c converges to the maximizer

βc
0 of

y(βc) =

∫ τ

0

(−−−−−⇀
log(h)ρ(αc

0,β
c, s) − log(

−⇀
h (βc, s))−⇀ρ (αc

0, s)
)
αv

0(s) ds.

Conditions for the stochastic convergence of α̂c and β̂c can be given similar to the

considerations in Andersen and Gill (1982), Prentice and Self (1983), and Gandy

and Jensen (2005c). The next lemma assumes this stochastic convergence. It is

an extension of results about the maximum partial likelihood estimator under

misspecified models, see e.g. Lin and Wei (1989).
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Lemma 7.2. Suppose the Cox-type model (7.1) holds true. Suppose that (ρi, hi)

are i.i.d., ρi is twice continuously differentiable with respect to αc and hi is

twice continuously differentiable with respect to βc. Suppose that ρi(α
c, t) and

its first and second partial derivatives with respect to αc are uniformly bounded

on K×[0, τ ] and suppose that hi(β
c, t) and its first and second partial derivatives

with respect to βc are uniformly bounded on G× [0, τ ], where K is a convex, com-

pact set containing αc
0 in its interior and G is a convex, compact set containing

βc
0 in its interior. Furthermore, suppose that y(βc) is twice continuously differ-

entiable and ∇⊤
βc∇βcy(βc

0) is invertible. Suppose that x(αc) is twice continuously

differentiable and ∇⊤
αc∇αcx(αc

0) is invertible, where

x(αc) =

∫ τ

0

(−−−−−⇀
log(ρ)λ(αc, s) − log(−⇀ρ (αc, s))

−⇀
λ (s)

)
ds.

If −⇀ρ and
−⇀
h are bounded away from 0 and if β̂c P→ βc

0, α̂
c P→ αc

0 then

n
1
2 (θ̂ − θ0)

d→ N(0,Σ),

for some matrix Σ. Furthermore,

Σ̂ :=
(
A(α̂c, β̂c)

)−1
WW

(
A(α̂c, β̂c)

)−1 P→ Σ,

where

A(αc,βc) =

(
∇⊤
αc∇αcX(αc) 0

0 ∇⊤
βc∇βcY (βc)

)

and the ith row of W ∈ R
n×(kαc+kβc ) is given by

W i =
(∫ τ

0

(
∇αcρi(α̂c, s)

ρi(α̂c, s)
− ∇αcρ(α̂c, s)

ρ(α̂c, s)

)
dNi(s),

∫ τ

0

(
∇βchi(β̂

c, s)

hi(β̂
c, s)

− ∇βch(β̂c, s)

h(β̂c, s)

)
dNi(s)

−
∫ τ

0

(
(∇βchi)(β̂

c, s)

h(β̂c, s)
− hi(β̂

c, s)
∇βch(β̂c, s)

(h(β̂c, s))2

)
dN(s)

)
.

Before we begin with the proof of the previous lemma, we give formulas for

∇⊤
αc∇αcX(αc) and ∇⊤

βc∇βcY (βc), which appear in the definition of A(αc,βc).

For j, µ = 1, . . . , kαc ,

∇µ∇jX(αc) =
1

n

∫ τ

0

(∇µ∇j ρ(αc, s)

ρ(αc, s)
− ∇j ρ(αc, s)∇µρ(αc, s)

ρ(αc, s)2

)⊤
dN(s)

−
∫ τ

0

(∇µ∇j ρ(αc, s)

ρ(αc, s)
− ∇j ρ(αc, s)∇µρ(αc, s)

(ρ(αc, s))2

)
dN(s)



118 CHAPTER 7. VANISHING VARIANCE

and for j, µ = kαc + 1, . . . , kθ,

∇µ∇j Y (βc) =
1

n

∫ τ

0

(∇µ∇j h(βc, s)

h(βc, s)
− ∇j h(βc, s)∇µh(βc, s)

h(βc, s)2

)⊤
dN(s)

−
∫ τ

0

(∇µ∇j h(βc, s)

h(βc, s)
− ∇j h(βc, s)∇µh(βc, s)

(h(βc, s))2

)
dN(s).

Proof of Lemma 7.2. The score function for θ = (αc⊤,βc⊤)⊤ is given by

U(θ) := n
1
2 (∇αcX(αc),∇βcY (βc))⊤.

Since U(θ̂) = 0, a Taylor expansion of U(θ̂) around θ0 yields

−U(θ0) = A(θ̃)(θ̂ − θ0)

for θ̃ on the line segment between θ0 and θ̂ and hence,

n
1
2 (θ̂ − θ0) = −A(θ̃)−1n

1
2U(θ0).

The assumptions guarantee that A(θ̃) and A(θ̂) converge stochastically to the

same limit given by diag(∇⊤
αc∇αcx(αc

0),∇⊤
βc∇βcy(βc

0)), which is invertible by the

assumptions. Similar to the proof of Theorem 2.1 in Lin and Wei (1989), we shall

write n1/2U(θ0) as a sum of i.i.d. random variables plus a vanishing remainder.

For ease of notation, we shall frequently drop the dependence on θ0 and on the

integration variable s.

n
1
2∇βcY (βc

0) = n−
1
2

n∑

i=1

∫ τ

0

∇βchi

hi
dNi − n

1
2

∫ τ

0

∇βch

h
dN

= n−
1
2

n∑

i=1

∫ τ

0

(
∇βchi

hi
−

−−−⇀∇βch
−⇀
h

)
dNi −B −C −D,

where

B = n
1
2

∫ τ

0

(
∇βch

h
−

−−−⇀∇βch
−⇀
h

)
(
dN − λds

)
,

C = n
1
2

∫ τ

0

(
∇βch

h
−

−−−⇀∇βch
−⇀
h

)(
λ−−⇀

λ
)

ds, and

D = n
1
2

∫ τ

0

(
∇βch

h
−

−−−⇀∇βch
−⇀
h

)
−⇀
λ ds.
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B converges stochastically to 0 by Lenglart’s inequality. To show thatC vanishes

asymptotically one can argue as follows: Rewriting C and using the Cauchy-

Schwarz inequality we get

‖C‖2 ≤n 1
2 sup

s∈[0,τ ]
|−⇀h |−1

(∫ τ

0

∥∥∥∇βch−−−−⇀∇βch
∥∥∥

2
ds

) 1
2
(∫ τ

0

∣∣∣λ−−⇀
λ
∣∣∣
2
ds

) 1
2

+ n
1
2 sup

s∈[0,τ ]
‖∇βch‖

(∫ τ

0

∣∣∣h−1 −−⇀
h

−1
∣∣∣
2
ds

) 1
2
(∫ τ

0

∣∣∣λ−−⇀
λ
∣∣∣
2
ds

) 1
2

.

Using the central limit theorem for the Hilbert space L2( ) (Theorem A.6) we

get

(∫ τ

0

∥∥∥∇βch−−−−⇀∇βch
∥∥∥

2
ds

) 1
2

= OP(n−
1
2 ),

(∫ τ

0

∣∣∣−⇀h − h
∣∣∣
2

ds

) 1
2

= OP(n−
1
2 ),

and

(∫ τ

0

∣∣∣λ−−⇀
λ
∣∣∣
2

ds

) 1
2

= OP(n−
1
2 ).

By e.g. Lemma 3.3 we also get

(∫ τ

0

∣∣∣−⇀h −1 − h−1
∣∣∣
2

ds

) 1
2

= OP(n−
1
2 ).

Hence, |C| P→ 0. Using a 2-dimensional Taylor expansion of the mapping (a, b) →
(a/b), D can be rewritten as

D = n
1
2

∫ τ

0

1
−⇀
h

(
∇βch− h

−−−⇀∇βch
−⇀
h

)
−⇀
λ ds+ oP(1).

Hence,

n
1
2∇βcY (βc

0) = n−
1
2

n∑

i=1

w
(βc)
i + oP(1),

where

w
(βc)
i =

∫ τ

0

(
∇βchi

hi
−

−−−⇀∇βch
−⇀
h

)
dNi −

∫ τ

0

1
−⇀
h

(
(∇βchi) − hi

−−−⇀∇βch
−⇀
h

)
−⇀
λ ds.

Using similar arguments, we can rewrite n1/2∇αcX(αc
0) as follows:

n
1
2∇αcX(αc

0) = n−
1
2

n∑

i=1

w
(αc)
i + oP(1),

where

w
(αc)
i =

∫ τ

0

(
∇αcρi

ρi
−

−−−⇀∇αcρ
−⇀ρ

)
dNi.
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w
(αc)
i has a simpler form than w

(βc)
i because (7.1) holds true. Let wi :=

(w
(αc)
i ,w

(βc)
i ). The definition of βc

0 and (7.1) guarantee that wi has mean zero.

We want to apply the multivariate central limit theorem for wi. For this we need

to show that wi is square integrable. To see that w
(αc)
i is square integrable, first

we rewrite it as follows:

∫ τ

0

(
∇αcρi

ρi
−

−−−⇀∇αcρ
−⇀ρ

)
(dNi − λi ds) +

∫ τ

0

(
∇αcρi

ρi
−

−−−⇀∇αcρ
−⇀ρ

)
λi ds.

To see that the first term is square integrable, we use Lenglart’s inequality. The

second term is square integrable by the assumptions. Similarly, it can be shown

that w
(βc)
i is square integrable. Hence, by the multivariate central limit theorem,

n
1
2U(θ0)

d→ N(0,E[w⊤
1w1]).

By means of Lenglart’s inequality and a law of large numbers (Theorem A.5), it

can be shown that
1

n
W⊤W

P→ E[w⊤
1w1].

7.5 Using the Bootstrap

Another approach to deal with the problem of a vanishing variance is to use boot-

strap methods. Bootstrap methods are computer-intensive resampling methods

to obtain distributions of test statistics.

In our case, we want to obtain the distribution of a test statistic that is to

be used as a goodness-of-fit test. If we use the classical bootstrap approach, i.e.

we sample from the individuals with replacement then we approximate the dis-

tribution from which the sample was generated - irrespective of whether the null

hypothesis holds true. This would guarantee the level of the test, but unfortu-

nately the level would also be kept under alternatives, i.e. the power and the level

of the test would agree. So the standard scheme of resampling from the individ-

uals with replacement is not suitable for our case. In order to achieve a powerful

test, one needs to sample from the distribution under the null hypothesis.

Again, we focus on the Cox model. In fact,we only consider the simple

right censorship model described in Section 2.1: For each individual i, there

are the time of the event Ti and the censoring time Ci. We observe only Xi =

Ci ∧Ti and whether the event occurs via the indicator variable δi = I{Ti = Xi}.
Furthermore, for each individual we observe covariates Zi which, for simplicity,

are assumed to be constant over time.
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We estimate the regression parameter αc by the maximum partial likelihood

estimator α̂c and the integrated baseline Av(t) =
∫ t
0 α

v(s) ds by the Breslow

estimator Âv(t). The distribution of the censoring times Ci can be estimated by

the Kaplan-Meier estimate

Ĝ(t) = 1 −
n∏

i=1

(
1 − I{Xi ≤ t}(1 − δi)∑n

j=1 I(Xj ≤ Xi)

)
.

The estimated distribution function of the event time T given the row vector

of covariates Z is

F̂Z(t) = 1 − exp(− exp(Zα̂c)Âv(t)).

If we assume that censoring is independent of the covariates and the survival

time then we may use several resampling schemes. We denote one bootstrap

sample by (X∗
i , δ

∗
i ,Z

∗
i ), i = 1, . . . , n.

Davison and Hinkley (1997, Algorithm 7.2) suggest the following resampling

scheme conditional on the value of the covariates and conditional on the censoring

distribution. We shall call this algorithm conditional bootstrap.

For i = 1, . . . , n, independently do the following:

1. Generate T ∗
i from the estimated event time distribution F̂Zi

(t).

2. If δi = 0 then set C∗
i = Xi. If δi = 1 then generate C∗

i from the conditional

censoring distribution given that Ci > Xi, that is generate from Ĝ(t)−Ĝ(Xi)

1−Ĝ(Xi)
,

t ≥ Xi.

3. Set Z∗
i = Zi, X

∗
i = C∗

i ∧ T ∗
i , and δ∗i = I{X∗

i = T ∗
i }.

We also consider the following approach that does not condition on covariates

and censoring distribution. We shall call this algorithm unconditional bootstrap.

1. Draw an i.i.d. sample Z∗
1, . . . ,Z

∗
n from the set {Z1, . . . ,Zn} with replace-

ment.

2. For i = 1, . . . , n, generate independent random variables T ∗
i from the esti-

mated event time distribution F̂Z∗

i
(t).

3. For i = 1, . . . , n, generate independent random variables C∗
i from the esti-

mated censoring distribution Ĝ(t).

4. Set X∗
i = C∗

i ∧ T ∗
i and δ∗i = I{X∗

i = T ∗
i }, i = 1, . . . , n.

The previous approaches can be adapted to several events per individual as

long as the censoring is independent.
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Suppose we want to use a one-sided test based on V (c) = T (c, τ)/
√
σ̂2(c, τ)

that rejects for large values. For each bootstrap sample, we can compute the

appropriate weight c∗ and the test statistic V ∗(c∗). Now we draw m independent

bootstrap samples V ∗
1 (c∗1), . . . , V

∗
m(c∗m). The p-value based on these bootstrap

samples is

1

m

m∑

j=1

I{V (c) ≤ V ∗
j (c∗j )}.

Note that we work with the standardized test statistic. This approach is some-

times called prepivoting.

Both resampling schemes are similar concerning the amount of computation

needed. In Subsection 8.3.3, we try both schemes in a simulation study. The

results of the simulation study do not lead to a clear recommendation for one of

the two resampling schemes.



Chapter 8

Special Cases and Simulation

Results

The goal of this chapter is twofold: Firstly, we give explicit formulas to test

the fit of several special models. We suggest several choices of weights, focusing

particularly on weights chosen via a competing Cox-type model. Besides giving

the optimal weights, we also consider ad hoc weights based on unweighted or-

thogonal projections, since they are computationally simpler. As in the previous

chapters, those weights are often called least squares weights.

Secondly, we investigate the behavior of the methods presented in this thesis

using simulation studies. For this, the methods have been implemented by the

author in the statistical programming language R.

In Section 8.1, we consider tests for the Aalen model as null hypothesis,

mainly using the setup of Chapter 3. In Section 8.2, we discuss the semipara-

metric restriction of the Aalen model given in (2.7). Similarly to the Aalen

model, we do not need to estimate the parameters of the model to apply our

methods, since the parameters act linearly on the intensity. In Section 8.3, we

consider Cox-type models as null hypothesis. In Section 8.4, we consider para-

metric models. In particular, we shall consider parametric Cox models.

8.1 Checking Aalen Models

In this section, we present simulation studies using Aalen’s model (2.6) as null

hypothesis, i.e. we test the model

λi(t) = Y i(t)α(t).

In particular, we will consider tests that are sensitive against Cox’s model (2.1).
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8.1.1 The Weights

In Chapter 3, for testing against the Cox model λi(t) = λ0(t) exp(Zi(t)β)Ri(t),

we suggested the ad hoc weights c(β̂, t), where

c(β, t) = Q
Y (t)
Pn

ρ(β, t)

with

ρi(β, t) = exp(Zi(t)β)Ri(t).

If Y Y (t) is invertible then

c(β, t) = ρ(β, t) − Y (t)
(
Y Y (t)

)−1
Y ρ(β, t). (8.1)

We also derived optimal weights against fixed alternatives in Subsection 3.6.1.

Using the estimates derived in that section, we get the weights

c(t) = Q
B̃(t)
h(t)·Pn

1,

where B̃(t) = diag(h−1(t))Y (t) with hi(t) = λ0(t)ρi(β0, t). Since λ0(t) is a scalar

value,

c(t) = Q
B̃(t)
h(t)·Pn

1 = Q
B(t)
ρ(β0,t)·Pn

1,

where B(t) = diag(ρ−1(β0, t))Y (t). Instead of β0, we plug in the maximum

partial likelihood estimator β̂ of β. If Y ρ−1Y (β̂, t) is invertible then

Q
B(t)

ρ(bβ,t)·Pn

1 = 1 − diag(ρ−1(β̂, t))Y (t)
(
Y ρ−1Y (β̂, t)

)−1
Y (t). (8.2)

8.1.2 Simulation Results

Our simulation study uses a setup which was also considered in McKeague and

Utikal (1991). As covariates, we take independent random variables xi, i =

1, . . . , n, that are uniformly distributed on [0, 1]. The simulation is for classical

survival analysis, i.e. we have λi(t) = 0 if Ni(t−) = 1. We assume independent

right censoring with i.i.d. random variables Ci, i = 1, . . . , n, following an expo-

nential distribution with parameter chosen such that 27% of the observations

before τ are censored. Let Ri(t) := I{Ci > t,Ni(t−) = 0}. In our simulations

we have Yi(t) = (1, xi)Ri(t), i.e. we consider checks for the Aalen model

λi(t) = Ri(t)α1(t) +Ri(t)xiα2(t).

First, we consider c given by the ad hoc choice (8.1) to make our tests

powerful against a Cox model. As covariates Z for the Cox model we use Zi(t) =

(xi). Table 8.1 gives levels and powers at the asymptotic 5% level. The test

statistics V (1), V (2), and V (3) are as given in Section 3.4. We also display some
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Table 8.1: Observed levels and powers for tests of the Aalen model λi(t) =

Ri(t)α1(t) + Ri(t)xiα2(t) using the Cox model λi(t) = λ0(t) exp(βxi)Ri(t) as

competing model with weights given by (8.1). The asymptotic level is 5%. The

number of replications is 10000. We used τ = 2. The test based on V (1) is one-

sided. Results from McKeague and Utikal (1991, table 1(b)) are also displayed

(1000 replications).

true λi λi(t) = (1 + xi)Ri(t) λi(t) = 1/2 exp(2xi)Ri(t)

statistic V (1) V (2) V (3) McKU V (1) V (2) V (3) McKU

n observed level observed power

75 0.0350 0.0272 0.0341 0.1693 0.0262 0.0538

150 0.0430 0.0399 0.0431 0.2996 0.0838 0.1354

300 0.0452 0.0420 0.0442 0.212 0.5198 0.2286 0.3084 0.243

600 0.0490 0.0472 0.0459 0.8060 0.5320 0.6276

1200 0.0468 0.0485 0.0486 0.106 0.9734 0.8847 0.9256 0.579

Table 8.2: Observed levels and powers for tests using the optimal weights given

by (8.2). The setup is as in Table 8.1.

true λi λi(t) = (1 + xi)Ri(t) λi(t) = 1/2 exp(2xi)Ri(t)

statistic V (1) V (2) V (3) V (1) V (2) V (3)

n observed level observed power

75 0.0452 0.0374 0.0414 0.2067 0.0583 0.0896

150 0.0451 0.0387 0.0431 0.3646 0.1458 0.1944

300 0.0449 0.0427 0.0469 0.6003 0.3286 0.4063

600 0.0465 0.0462 0.0468 0.8651 0.6601 0.7345

1200 0.0478 0.0468 0.0461 0.9900 0.9449 0.9665

results from the goodness-of-fit test suggested by McKeague and Utikal (1991,

table 1(b)). In the simulation where the true model is an Aalen model most

observed levels are close to or below the nominal level of 5%. The tests are

conservative for small n. If λi(t) = 1/2 exp(2xi)Ri(t) then the power increases

as n increases with best results for the one-sided test based on V (1).

In a simulation using the optimal weights given by (8.2) instead of the ad

hoc weights given by (8.1), the results are as given in Table 8.2. The power of

the tests simulated under the competing Cox model against which the test is

directed increases.

We also consider the alternative λi(t) = min(xi, 1 − xi)Ri(t). To detect

this alternative we choose di = I{xi 6∈ [0.25, 0.75]} and use the weight c(t) =
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Q
Y (t)
Pn

d(t). Results of the simulations are in Table 8.3. The test is sensitive

against this alternative for small sample sizes. In the simulations where the null

hypothesis (2.6) holds true, the observed level is close to or below 5% again.

Table 8.3: Observed levels and powers for the test of the Aalen model λi(t) =

Ri(t)α1(t)+Ri(t)xiα2(t) using di = I{xi 6∈ [0.25, 0.75]} and τ = 10 with asymp-

totic level 5%. The number of replications was 10000. The test based on V (1)

is two-sided. Results from McKeague and Utikal (1991, table 1(b)) are also

displayed (1000 replications).

true λi(t) λi(t) = (1 + xi)Ri(t) λi(t) = min(xi, 1 − xi)Ri(t)

statistic V (1) V (2) V (3) V (1) V (2) V (3) McKU

n observed level observed power

50 0.0417 0.0187 0.0269 0.8746 0.7170 0.8194

100 0.0455 0.0287 0.0346 0.9959 0.9828 0.9919

180 0.0455 0.0348 0.0397 1.0000 1.0000 1.0000 0.912

Comparing these results to those of McKeague and Utikal (1991) we see that

our tests are much better at attaining the prescribed level in the simulations in

which the null hypothesis (2.6) holds true. Furthermore, we get a greater power

against the stated alternatives. Of course, the greater power is not surprising

since the test of McKeague and Utikal (1991) is an omnibus test and our test

was designed to detect these specific alternatives.

In order to direct the test against the Cox model we need to estimate the

regression parameter of the Cox model. To assess how much power is lost due to

this estimation, we conducted some simulation studies which indicate that the

loss is small. For example in the setup of Table 8.1 with λi(t) = 1/2 exp(2xi)Ri(t)

and a sample size of n = 300 we used c(t) = Q
Y (t)
Pn

d, where di = exp(2xi), and

got an empirical rejection rate of 0.5267 for the one-sided test based on V (1), the

simulation from Table 8.1 with the estimated parameter resulted in an empirical

rejection rate of 0.5198.

8.2 Checking Semiparametric Additive Risk Models

Using the notation of Chapter 6, the intensity under the semiparametric restric-

tion of the Aalen model (2.7) can be written as

λi(t) = fi(α
v(t),αc, t) := Y v

i (t)αv(t) + Y c
i (t)αc
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for some αv ∈ bm(Xαv), αc ∈ Xαc . Since ∇αvfi(α(t), t) = Y v
i (t) and

∇αcfi(α(t), t) = Y c
i (t), condition (SP1a) can be rewritten as

∫ τ

0

n∑

i=1

ci(ψ(s), η̂(ψ), s)Y c
i (s) ds = 0, ∀ ψ ∈ Ψ (8.3)

and (SP1b) as

n∑

i=1

ci(ψ(t), η̂(ψ), t)Y v
i (t) = 0, ∀ ψ ∈ Ψ, t ∈ [0, τ ]. (8.4)

If the weights satisfy (8.3) and (8.4) then

∫ τ

0

n∑

i=1

ci(ψ(s), η̂(ψ), s)fi(α(s), s) ds = 0, ∀ψ = (α,γ) ∈ Ψ

and hence we may rewrite the test statistic T (c, τ) as

n−
1
2

∫ τ

0
c(ψ(s), η̂(ψ), s)⊤dN(s).

Furthermore, since (8.3) and (8.4) only depend on α through c, we may choose

c and η̂ that do not depend on α = (αv,αc).

8.2.1 Least Squares Weights

We want to use the projection approach of Section 6.3 in which we project

arbitrary weights orthogonal to

U = {columns of Y c(·)} + {y(·)g(·) : y column of Y v and g ∈ bm([0, τ ])}.

As sketched in Section 6.3, if A :=
∫ τ
0 Ỹ

c(s)
⊤
Ỹ c(s) ds is invertible, where

Ỹ c(t) := Q
Y v(t)
Pn

Y c(t), then for a ∈ L2(Pn⊗ ),

QU
Pn⊗

(a)(t) = Q
Y v(t)
Pn

a(t) − Ỹ c(t)A−1

∫ τ

0
Ỹ c(s)

⊤
Q
Y v(s)
Pn

a(s) ds.

For example, to test against a Cox model, we may use

c(λ0,β, η̂(λ0,β)) = Q
Y v(s)
Pn

ρ(β, s)λ0(s) − Ỹ c(s)η̂(λ0,β), (8.5)

where

η̂(λ0,β) = A−1

∫ τ

0
Ỹ c(s)

⊤
Q
Y v(s)
Pn

ρ(β, s)λ0(s) ds.

Here, we need an estimator of the baseline and we shall use the smoothing

approach of Section 4.2.
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If one wants to test against the full Aalen model

λi(t) = Y v
i (t)α

v(t) + Y c
i (t)α

c(t), (8.6)

where now αc may depend on time, then the problem of an asymptotically

vanishing variance arises. Here, one cannot use an estimate of the intensity

under (8.6) and use its orthogonal project to U as weights. Furthermore, using

the weights QU
Pn⊗

yc, where yc is a column of Y c, leads to σ2 = 0 as well. A

simple approach to solve this particular problem is to use c = QU
Pn⊗

d, where

d(t) = yc(t)I{t ≤ s} for some 0 < s < τ .

8.2.2 Optimal Weights

As optimal weights against a fixed alternative, Proposition 6.2 suggests to use

an element of the equivalence class

c(α(·), ·) = QV
h·(Pn⊗ )

h(·) − (Y v(·)αv(·) + Y c(·)αc)

h(·) = QV
h·(Pn⊗ )1,

where V = Vv +
{

ef(·)
h(·) : f̃ column of Y c

}
and

Vv =

{
f̃(·)
h(·)g(·) : f̃ column of Y v and g ∈ bm([0, τ ])

}
.

Note that because of the linear structure of the intensity, V and c do not depend

on α. If A :=
∫ τ
0 Ỹ

chỸ c(s) ds is invertible, where

Ỹ v(t) := diag(h−1(t))Y v(t) and Ỹ c(t) := Q
gY v(t)
h(t)·Pn

diag(h−1(t))Y c(t),

then

c(t) = Q
gY v(t)
h(t)·Pn

(
1 − Ỹ c(t)A−1

∫ τ

0
Ỹ ch(s) ds

)
. (8.7)

To test against a competing Cox model, one may want to use

hi(t) = λ̂0(t)ρi(β̂, t), (8.8)

where β̂ is the maximum partial likelihood estimator and λ̂0 is a smoothed

version of the Breslow estimator using the approach of Section 4.2.

8.2.3 Simulation Results

The simulation is based on the same setup as in Subsection 8.1.2. We use Y c
i (t) =

(Ri(t)xi) and Y v
i (t) = (Ri(t)), i.e. the null hypothesis is

λi(t) = Ri(t)α
v
1(t) +Ri(t)xiα

c
1. (8.9)
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We will consider three true intensities, the first two of them, (1 + xi)Ri(t) and

1/2 exp(2xi)Ri(t), have been used in Subsection 8.1.2. The censoring in these

two cases is 27% and we take τ = 2. The third true intensity we use is (1 +

10t) exp(xi)Ri(t). In this case 28% of the values are censored and τ = 1/2. Our

simulations are based on 10000 replications. For the tests we use a nominal size

of 5%.

The first simulations use the weights given by (8.5), i.e. we test against the

Cox model with the ad hoc weights. The estimator λ̂0 of the baseline is the

smoothed Breslow estimator using the smoother given in Example 4.1 and the

bandwidth given by (4.7). We observed the levels/powers displayed in Table 8.4.

The last two rows were added to verify that the observed level actually converges

to 5% under the null hypothesis.

Table 8.5 contains the tests using the optimal weights against a Cox model

given in (8.7) and (8.8). using the same smoothed Breslow estimator λ̂0.

Next, we consider the following parametric version of Cox’s model as com-

peting model:

λ0(t) = (1 + at) exp(βxi)Ri(t), (8.10)

where a and β are the unknown parameters. We will use the maximum partial

likelihood estimators â and β̂ defined as maximizer of the partial likelihood

given by (2.9), which we computed numerically. As weights, we shall use the

same choice as for the tests with a competing semiparametric Cox model with

λ̂0(t) = 1 + ât. Table 8.6 contains the corresponding simulation results.

For comparison purposes, Table 8.7 gives the simulation results of testing the

full Aalen model

λi(t) = Ri(t)α1(t) +Ri(t)xiα2(t), (8.11)

using the one-sided test based on V (1) and the ad hoc choice of weights against

a Cox model given in Subsection 3.5.3.

Table 8.4: Test of the null hypothesis (8.9) using the competing Cox model

λi(t) = λ0(t) exp(βxi)Ri(t) with the weights given in (8.5).

true λi(t) (1 + xi)Ri(t) 1/2 exp(2xi)Ri(t) (1 + 10t) exp(xi)Ri(t)

n

75 0.0508 0.1835 0.1995

150 0.0571 0.3334 0.4433

300 0.0639 0.5707 0.7697

600 0.0623 0.8405 0.9723

1200 0.0638 0.9871 0.9999

2400 0.0586

4800 0.0541
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Table 8.5: Test of the null hypothesis (8.9) using the one-sided test based on

V (1) and the optimal weights given by (8.8) and (8.7).

true λi(t) (1 + xi)Ri(t) 1/2 exp(2xi)Ri(t) (1 + 10t) exp(xi)Ri(t)

n

75 0.0594 0.2478 0.2676

150 0.0612 0.4166 0.5659

300 0.0670 0.6641 0.8821

600 0.0630 0.9083 0.9962

1200 0.0623 0.9930 1.0000

Table 8.6: Test of the null hypothesis (8.9) using the competing parametric Cox

model (8.10) with the weights given in (8.5) using λ̂0(t) = 1 + ât.

true λi(t) (1 + xi)Ri(t) 1/2 exp(2xi)Ri(t) (1 + 10t) exp(xi)Ri(t)

n

75 0.0556 0.1708 0.2189

150 0.0532 0.3085 0.4542

300 0.0532 0.4968 0.7789

600 0.0578 0.7731 0.9756

1200 0.0534 0.9583 0.9999

From the simulations one can draw the following conclusions. Under the null

hypothesis, the tests using the semiparametric approach are slightly liberal. For

the simulations with true intensity λi(t) = 1/2 exp(2xi)Ri(t), the power of the

tests using the ad hoc weights are in the same range. In the case of the true

intensity λi(t) = (1 + 10t) exp(xi)Ri(t), we get a considerable improvement with

the tests that assume time-independent influence of the second covariate. Of

course, the tests using the optimal weights have the greatest power.

Table 8.7: Simulation results for tests of the full Aalen model (8.11) using the

one-sided test based on V (1) and the weights given in Subsection 3.5.3.

true λi(t) (1 + xi)Ri(t) 1/2 exp(2xi)Ri(t) (1 + 10t) exp(xi)Ri(t)

n

75 0.0350 0.1693 0.1601

150 0.0430 0.2996 0.2913

300 0.0452 0.5198 0.5101

600 0.0490 0.8060 0.7973

1200 0.0468 0.9734 0.9722
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8.3 Checking Cox Models

In this section, we consider checks of a Cox-type model (2.5), i.e. the model given

by the intensity

λi(t) = fi(α
v(t),αc) := αv(t)ρi(α

c, t), (8.12)

where the baseline αv(t) and the regression parameter αc ∈ Xαc ⊂ R
kαc are

unknown, and where the nonnegative stochastic processes ρi are observable.

In Section 7.1, we already considered testing this model based on the non-

parametric approach of Chapter 5.

8.3.1 Checks Using the Semiparametric Approach

In this section, we use checks based on the approach of Chapter 6. In this setup,

for the generalized Cox model (8.12), we have ∇αvfi(α
v(t),αc, t) = ρi(α

c, t) and

∇αcfi(α
v(t),αc, t) = αv(t)(∇αcρi)(α

c, t). Again, for weights satisfying (SP1b),

the test statistic simplifies to

n−
1
2

∫ τ

0
c(s)⊤dN(s).

Furthermore, we may rewrite the optimal weights against the fixed alternative

λi(t) = hi(t) as follows:

c(αv(t),αc,η, t) = Q
ρ(αc,t)/h(t)
h(t)·Pn

(1 − αv(t)(∇αcρ)(αc, t)η)

and

η̂(αv,αc) =

(∫ τ

0
B̃chB̃c(αc, s)αv(s)2 ds

)−1 ∫ τ

0
B̃ch(αc, s)αv(s) ds,

where

Q
ρ(αc,t)/h(t)
h(t)·Pn

= I − ρ(αc, t)

h(t)

(
ρh−1ρ(αc, t)

)−1 1

n
ρ(αc, t)⊤

and

B̃c(αc, t) = Q
ρ(αc,t)/h(t)
h(t)·Pn

(∇αcρ)(αc, t)

h(t)
.

In particular, if we consider a competing Cox-type model given by

λi(t) = γv(t)hi(γ
c, t),

then the above simplifies to

c(αv(t),αc, γv(t),γc,η, t) = Q
ρ(αc,t)/h(γc ,t)
h(γc ,t)·Pn

(1 − αv(t)(∇αcρ)(αc, t)η)
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and

η̂(αv,αc, γv,γc) =

(∫ τ

0
B̃chB̃c(αc,γc, s)

αv(s)2

γv(s)
ds

)−1 ∫ τ

0
B̃ch(αc, s)αv(s) ds,

where

Q
ρ(αc,t)/h(γc ,t)
h(γc ,t)·Pn

= I − ρ(αc, t)

h(γc, t)

(
ρh−1ρ(αc,γc, t)

)−1 1

n
ρ(αc, t)⊤

and B̃c(αc,γc, t) = Q
ρ(αc,t)/h(γc ,t)
h(γc ,t)·Pn

(∇αcρ)(αc, t)

h(γc, t)
.

8.3.2 Using an Alternative Estimator of the Variance

Under suitable conditions, another consistent estimator for the variance σ2 in

Theorem 5.1 for the particular case of the Cox model (8.12) is given by

σ̂2
(2)(c, t) :=

∫ t

0
cρc(θ̂, s)

dN(s)

ρ(α̂c, s)
.

If the fixed alternative λi(t) = hi(t) holds then under suitable conditions,

σ̂2
(2)(c, t)

P→
∫ t

0

−−⇀cρc(θ0, s)

−⇀
h (s)

−⇀ρ (αc
0, s)

ds.

Hence, we might also consider a test based on

Ṽ (1)(c) := T (c, θ̂, τ)
/√

σ̂2
(2)(c, τ).

An argument similar to the derivation of optimal tests using the nonparametric

approach of Chapter 5 (which we also used in Chapter 7) against the completely

known fixed alternative λi(t) = hi(t) leads to the following optimal choice for c

in the sense of approximate Bahadur efficiency:

c∗(2)(α
c, s) := Q

B(αc,s)
ρ(αc,s)·Pn

h(s)

ρ(αc, s)

ρ(αc, s)

h(s)
,

where B(αc, s) =

(
1,

∇1ρ(αc, s)

ρ(αc, s)
, . . . ,

∇kαcρ(αc, s)

ρ(αc, s)

)
. In this case,

(
1

n

∫ τ

0

∥∥∥c∗(2)(αc
0, s)

∥∥∥
2

ρ(αc
0,s)·Pn

h(s)

ρ(αc
0, s)

ds

) 1
2

converges to the approximate Bahadur slope.
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8.3.3 Simulation Results

We start with some simulations for the simpler tests suggested in Section 7.1.

In Table 8.8, we present a simulation study for the special case with at most

one event per individual. We use independent censoring and assume that the

lifetimes and the covariates of the individuals are i.i.d. All tests except one are

one-sided tests based on V (1) = T (c, τ)
/√

σ̂2(c, τ), where the optimal weights c

are given by (7.3). The tests use an asymptotic level of 0.05.

Setup 1 considers the case of nested Cox models. Simulation a) illustrates

that under the null hypothesis the preliminary tests attains the prescribed level,

whereas - as expected - the test of fit does not meet the prescribed level.

Simulation b) demonstrates that under the alternative, both the preliminary and

the test of fit reject. Simulation b) was modeled after a simulation used by Lin

and Wei (1991) and Marzec and Marzec (1997a) to allow comparisons. The test

by Lin Wei, Cox’s test, Schoenfeld’s test, and Wei’s test all have powers of less

than 0.25 for n = 100. Only some of the tests suggested by Marzec and Marzec

(1997a) come close with the best test achieving a power of 0.971 for n = 100.

Setup 2 shows how the test behaves when the alternative is separated but

close to the alternative. In Simulation a) the test of fit is slightly liberal. We also

did Simulation a) for n = 400, 800, 1600 and got rejection rates of the preliminary

test of 0.078, 0.321, 0.879. This indicates that our test of fit seems to be applicable

in this setup, only the preliminary test is slow in picking this up. Simulation b) is

identical to Simulation a), except that now we used the test based on Ṽ (1)(c∗(2))

from Subsection 8.3.2, i.e. we use an alternative estimator for the variance. Now,

the test of fit is slightly conservative. It is no general conclusion that Ṽ (1)(c∗(2))

leads to a conservative test and V (1) leads to a liberal test; other simulations, not

reported here, suggest that in some cases the test based on Ṽ (1)(c∗(2)) is liberal

and the test based on V (1) is conservative. Simulation c) is modeled after Lin

and Wei (1991) and Marzec and Marzec (1997a) to allow comparisons. The test

by Lin Wei, Cox’s test, Schoenfeld’s test, and Wei’s test all have powers of less

than 0.25 for n = 100. The test by Lin and Wei (1991) has a power of 0.447 for

n = 200, Cox’s test, Schoenfeld’s test, and Wei’s test all have powers of less than

0.15 for n = 200 and the best test from Marzec and Marzec (1997a) achieves a

power of 0.577 for n = 200.

Setup 3 illustrates the case where the null hypothesis and the alternative

share a common submodel. The sequential procedure achieves the asymptotic

level in Simulation a). In Simulation b), the power increases with n.

Summarizing, our tests seem to have a good power, even if the sequential

procedure is used. The test of fit may be slightly liberal, but the sequential

procedure is conservative.
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Table 8.8: Observed rejection rates. The true intensity is λi(t) = Ri(t)gi, where

gi is given in the third column. The censoring distribution is U(0, τ), where τ

is given in the second column. Simulations used 1000 replications. All but one

test are based on V (1) using the optimal weights given by (7.3).

preliminary test test of fit sequential test

τ gi \ n = 50 100 200 50 100 200 50 100 200

Setup 1: λi(t) = λ0(t)Ri(t) exp(aZi1) vs. λi(t) = λ0(t)Ri(t) exp(aZi1 + bZi4)

a) 5 exp(0.2Zi1) 0.055 0.057 0.035 0.122 0.122 0.103 0.053 0.056 0.035

b) 7 exp(0.2Zi1 + 0.5Zi4) 0.823 0.990 1.000 0.892 0.995 1.000 0.822 0.990 1.000

Setup 2: λi(t) = λ0(t)Ri(t) exp(aZi5) vs. λi(t) = λ0(t)Ri(t)(1 + aZi5)

a) 4 exp(0.2Zi5) 0.009 0.008 0.026 0.082 0.078 0.064 0.008 0.006 0.011

b) 4 exp(0.2Zi5) † 0.011 0.021 0.029 0.045 0.054 0.037 0.005 0.006 0.006

c) 5 1 + 0.5Zi5 0.183 0.581 0.911 0.521 0.628 0.774 0.143 0.407 0.696

Setup 3: λi(t) = λ0(t)Ri(t) exp(aZi1 + bZi2) vs. λi(t) = λ0(t)Ri(t) exp(aZi1 + bZi3)

a) 4 exp(0.2Zi1) 0.037 0.054 0.044 0.099 0.121 0.093 0.031 0.053 0.042

b) 4 exp(0.2Zi1 + 0.2Zi3) 0.214 0.393 0.671 0.320 0.488 0.758 0.200 0.379 0.667

Zi1, Zi2, Zi3 ∼ N(0, 1), P(Zi4 = 1) = P(Zi4 = −1) = 1,

Zi5 is a standard normal random variable truncated at ±1.96.

†: Test based on Ṽ (1)(c∗(2)) from Subsection 8.3.2.

We also redid some of the simulations of Table 8.8 using the optimal weights

based on the semiparametric approach. Based on 10000 replications, for the

simulation 2a), we got rejection rates of 0.0741 for n = 50, 0.0575 for n = 100,

and 0.0535 for n = 200. For the simulation 2c), we got rejection rates of 0.5018

for n = 50, 0.6199 for n = 100, and 0.7872 for n = 200. Even though the

power did not increase under the alternative, the observed level under the null

hypothesis was closer to the nominal level. This can be attributed to the less

restrictive weights of the semiparametric orthogonality conditions.

We also did some bootstrap simulations corresponding to the two bootstrap

procedures suggested in Section 7.5. Since simulating a bootstrap procedure

requires much computing time, we only considered the case n = 50 and used

m = 500 bootstrap replications. We also only did 500 repetitions of the simula-

tions. Still, the result in Table 8.9 give some insight. No clear suggestion as to

which bootstrap procedure to use can be made - none of them is always better

with respect to being more conservative or being more powerful. But indeed,
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both bootstrap procedures seem to work well in the simulations under the null

hypothesis, even though in some of the simulations the bootstrap procedures are

slightly liberal. Distinguishing between the cases in which the hypotheses are

nested, overlapping, or separated does not seem to be necessary for the boot-

strap procedures. There is no clear picture whether it is better, with respect to

the power of the tests, to use one of the bootstrap procedures or the sequential

procedure. In Setup 1b) the power using the bootstrap is comparable to using

the sequential procedure, in Setup 2c) it is greater, and in Setup 3b) it is less.

Table 8.9: Simulation results for the setups of Table 8.8 using the bootstrap

procedures described in Section 7.5 using n = 50.

Setup: 1a) 1b) 2a) 2b) 2c) 3a) 3b)

Unconditional Bootstrap: 0.070 0.830 0.048 0.072 0.250 0.046 0.152

Conditional Boostrap: 0.048 0.790 0.056 0.056 0.216 0.060 0.170

8.4 Checking Parametric Models

Thus far, the test statistic always simplified to an integral with respect to the

counting process. For parametric models this is usually not the case. Consider

the following parametric Cox model

λi(t) = (1 + at) exp(Zi(t)β)Ri(t),

where a is a real-valued parameter, β is a vector-valued parameter, the observable

covariates Zi are row vectors of predictable stochastic processes, and Ri are the

at-risk indicators. We do not have time-dependent parameters in this model.

(SP1b) consists of the conditions

∫ τ

0

n∑

i=1

ci(s) exp(Zi(s)β)Ri(s) ds = 0

and

∫ τ

0

n∑

i=1

ci(s)Zi(s) exp(Zi(s)β)Ri(s) ds = 0.

So in this case, the test statistic simplifies to

T (c, τ) =

n∑

i=1

∫ τ

0
ci(s) (dNi(s) − exp(Zi(s)β)Ri(s) ds) .
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Even though we do not present simulation studies with a parametric null hy-

pothesis, we give the form of optimal weights against fixed alternatives. Consider

a general parametric model of type

λi(s) = fi(α
c, s),

where αc is a finite-dimensional unknown parameter and fi is observable. Then

the optimal weights against a fixed alternative with intensity hi(t) is given by

c(αc, t) =Q
B(αc,·)
h·(Pn⊗ )

(
h(·) − f(αc, ·)

h(·)

)
(t)

=1 − f(αc, t)

h(t)
− ∇αcf(αc, t)

h(t)
D−1(αc)A(αc),

where B(αc, t) := diag(h−1(t))∇αcf(αc, t),

A(αc) =

∫ τ

0

(
∇αcf(αc, s) − (∇αcf)fh−1(αc, s)

)
ds,

and

D(αc) =

∫ τ

0
(∇αcf)h−1(∇αcf)(αc, s) ds.

Of course, the above assumes that D(αc) is invertible. As estimators, one can

plug in the maximum partial likelihood estimators based on (2.9).

With some parametric models, one has to be careful, though. Consider a

simple Weibull distribution. If the shape parameter is negative then the intensity

is unbounded. If it is positive, then the intensity is zero at time 0 even though

the individual is at risk at time 0. Using such a model as null hypothesis or

as alternative with the optimal weights may lead to problems since then the

integrals A(αc) and D(αc) need not be finite.



Chapter 9

Applications to Real Datasets

We applied our tests to three real datasets. The first from software reliability

is chosen to illustrate the applicability of the methods outside classical survival

analysis where we may have multiple events per point process. The second exam-

ple considers some models for the PBC dataset given in Fleming and Harrington

(1991). The last example is an application to the well-known Stanford heart

transplant data (Miller and Halpern, 1982).

9.1 A Dataset from Software Reliability

We start by considering a dataset from software reliability used in Gandy and

Jensen (2004). It contains bug reports of 73 open source software projects. Two

different sets of covariates are considered in the aforementioned paper and Aalen

models with those covariates are fitted. The first set of covariates includes only

the current size of the source code of the projects as covariate. The second set

of covariates includes the size of the source code of the projects a fixed time

ago, changes in the size of source code since then and the number of recent

bug reports. Note that in both cases, no baseline in the form of a covariate

identically equal to 1 was included. Checking this using d(t) = 1 as suggested

in Subsection 3.5.2, we get the p-values of Table 9.1 for our tests applied to the

two different sets of covariates, where V (1), V (2), and V (3) are as in Section 3.4.

In the dataset with one covariate all three tests suggest a bad fit of the model

that could possibly be improved by including a baseline. In the case of three

covariates the hypothesis that the Aalen model is the correct one is supported.

This agrees with the conclusion of Gandy and Jensen (2004).
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Table 9.1: p-values for the software reliability datasets from Gandy and Jensen

(2004) using di(t) = 1. The test based on V (1) is two-sided.

test statistic V (1) V (2) V (3)

one covariate 0.0100 0.0022 0.0155

three covariates 0.7805 0.3655 0.5914

9.2 PBC Data

Our next example considers the PBC dataset presented in Fleming and Harring-

ton (1991), where it is analyzed at length using Cox’s model. It contains data

about the survival of 312 patients with primary biliary cirrhosis (PBC). We use

the corrections of the dataset given by Fleming and Harrington (1991, p. 188).

We discuss the fit of several Cox models, Table 9.2 gives an overview over

the covariates in these models. A more detailed description will follow.

Table 9.2: Covariates of the Cox models used for the PBC dataset.

Model Covariates

4.4.2(b) age, albumin, bilirubin, edema, hepatomegaly, prothrombin

4.4.3(c) age, edema, log(albumin), log(bilirubin), log(prothrombin)

A edema, log(albumin), log(bilirubin), log(prothrombin),

I{age > 50}, I{age > 60}
B edema, log(albumin), log(bilirubin), log(prothrombin),

I{age > 50}, I{age > 60}, log(copper), log(SGOT)

We use the methods given in Section 7.1 and the sequential procedure sug-

gested in Section 7.4. The results are displayed in Table 9.3. Using the alterna-

tive test statistic from Subsection 8.3.2 we arrive at the same conclusions.

Fleming and Harrington (1991) first develop a Cox model (model 4.4.2(b))

which includes the covariates age, albumin, bilirubin, edema, hepatomegaly, and

prothrombin time. Hereby, albumin is the amount of a certain protein in the

blood, bilirubin is the level of a liver bile pigment, edema is an indicator for the

presence of a certain swelling caused by excess fluids, hepatomegaly is an indi-

cator for the presence of a swelling or enlargement of the liver, and prothrombin

time is the amount of time it takes a blood sample to begin coagulation in a

certain laboratory test. To improve the fit, Fleming and Harrington (1991) add

some transformed covariates and use model selection techniques to arrive at a

Cox model (model 4.4.3(c)) which uses the following covariates: age, edema,

log(albumin), log(bilirubin), and log(prothrombin time). They claim that model

4.4.2(b) does not have a good fit. Our test can be used to formally check this.

As can be seen in Table 9.3, model 4.4.2(b) is clearly rejected.
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Next, we consider a modification of model 4.4.3(c), called model A, in which

we replace the covariate age by two covariates indicating whether the individual is

older than 50 or 60 years. Note that model A and model 4.4.3(c) are overlapping

models. Using model 4.4.3(c) as null hypothesis and directing against model A

indicates that the fit of model 4.4.3(c) is not perfect. Reversing the roles and

using model A as null hypothesis, model A is not rejected.

Using further covariates (the amount of copper in the urine per day and the

level of the enzyme SGOT) the models can be improved. This is not totally

surprising, since Fleming and Harrington (1991) deliberately built models that

did not include these covariates. Consider a Cox model, called model B, where

we include the covariates edema, log(albumin), log(bilirubin), log(prothrombin

time), log(urine copper), log(SGOT), and indicators for persons older than 50

and older than 60. Using this model as competing model to the models 4.4.3(c)

and A, we get a clear rejection. Note that model A and model B are nested,

whereas model 4.4.3(c) and model B are overlapping.

We also computed p-values of our test of fit based on the two bootstrap

procedures of Section 7.5 using m = 1000 bootstrap replications. Furthermore,

we also used the tests of Subsection 8.3.1 that use the information that β does

not depend on time. In Table 9.3, these tests are described as ’semiparametric

test of fit’. The results reinforce our conclusions except for maybe the rejection

of model 4.4.3(c) with the competing model A.

Table 9.3: Comparison of several models from the PBC dataset. The table

contains the p-values. The p-values of the preliminary test are based on 10000

replications.

null hypothesis 4.4.2(b) 4.4.3(c) A 4.4.3(c) A

competing model 4.4.3(c) A 4.4.3(c) B B

preliminary test < 10−4 0.0335 < 10−4 0.0144 0.0008

test of fit < 10−4 0.0178 0.4373 < 10−4 < 10−4

sequential test < 10−4 0.0335 0.4373 0.0144 0.0008

test of fit † 0.000 0.043 0.429 0.000 0.004

test of fit ∗ 0.001 0.049 0.465 0.001 0.002

semiparametric test of fit < 10−4 0.0441 0.2648 < 10−4 < 10−4

semiparametric test of fit † 0.000 0.090 0.223 0.001 0.000

semiparametric test of fit ∗ 0.000 0.101 0.234 0.001 0.000
†: p-value based on unconditional bootstrap

∗: p-value based on conditional bootstrap

In Grønnesby and Borgan (1996), the dataset is analyzed with Aalen’s model

using the covariates baseline, bilirubin, edema dichotomized (the values 0 and 0.5
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are pooled together), albumin (zero for the highest half then linear), prothrombin

time (zero for the lowest half then linear), age, interaction of age and prothrombin

time. Grønnesby and Borgan (1996) investigate the fit of the linear model and

the model 4.4.3(c) of Fleming and Harrington (1991) and conclude that “the fit

of both models is acceptable”. Their formal goodness-of-fit test for the linear

model yields a p-value of .075 for Aalen’s model and .197 for the Cox model.

Furthermore they mention that the linear model “suffers from [...] negative

estimated intensities”.

Using the just mentioned coding of covariates for an Aalen model, our one-

sided test of Aalen’s model with the competing Cox model 4.4.3(c) based on V (1)

and the least squares weights leads to a p-value of .034 rejecting Aalen’s model

at the 5% level. Using the optimal weights the picture is far clearer, leading to

a p-value of less than 10−5. This clearly indicates that the model suggested by

Grønnesby and Borgan (1996) lacks fit.

9.3 Stanford Heart Transplant Data

The last example uses the Stanford heart transplant dataset given by Miller

and Halpern (1982). It contains information about the survival of n = 184

patients that received heart transplants. Two covariates are given: age at time

of transplant (denoted by ai) and a donor-recipient mismatch score (denoted

by bi). The covariate bi was only recorded for n = 157 patients, and at the

beginning we only consider those patients.

Among the models fitted by Miller and Halpern (1982) are several Cox mod-

els. The mismatch score bi is not significant in a Cox model with covariates

Zi = (ai, bi). Based on a graphical method, Miller and Halpern (1982) state

that the fit of the model with covariates Zi = (ai) is “not ideal”. To improve

the fit, they consider a model based on the covariates Zi = (ai, a
2
i ) for which

they find no lack of fit. These findings are supported using formal tests by Lin

et al. (1993) and Marzec and Marzec (1997a).

In the sequel, we fit and test Aalen’s additive model. Let Ri(t) denote the

at-risk indicator of the i-th patient. If we use the model Yi(t) = (1, ai)Ri(t)

our two-sided least squares test based on V (1) using di(t) = bi is not significant

(p-value .401) whereas the test using di(t) = a2
i is significant (p-value .004). Our

one-sided test based on V (1) directed against the Cox model with Zi = (ai)

based on least squares weights is significant as well (p-value .0167). If we include

a2
i as suggested by our test, and consider the model

λi(t) = Ri(t)(α
v
1(t) + aiα

v
2(t) + a2

iα
v
3(t)), (9.1)

our test against the Cox model with covariates Zi = (ai, a
2
i ) using the one-sided
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test based on V (1) and the least squares weights is not significant (p-value .153).

Using the optimal weights, the test is significant (p-value .030), suggesting that

(9.1) does not fit perfectly.

From now on, we no longer use the covariate bi and thus can use all n = 184

patients in the study. If we test (9.1) against the Cox model with Zi = (ai, a
2
i )

using all patients, we still do not get a rejection with the least squares weights

(p-value .114), and with the optimal weights the test is still significant (p-value

.032).

Next, we want to check the following submodel of (9.1):

λi(t) = Ri(t)(α
v
1(t) + aiα

c
1 + a2

iα
c
2). (9.2)

We expect that this model fits worse than (9.2) and hope that our tests lead

to this conclusion. We test against the same Cox model as before using the

nonparametric estimator for the baseline with bandwidth given by (4.7). With

the least squares weights proposed in (8.2.1), the p-value is .043, and with the

optimal weights proposed in (8.2.2). the p-value is .008. We may conclude that

the model (9.2) has a bad fit, leaving the Cox model suggested by Miller and

Halpern (1982).
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Chapter 10

Some Remarks

In this chapter, we give some further remarks concerning our approach. We

only sketch the ideas. In Section 10.1 we show that with a modified variance

estimator, the need to estimate the unknown model parameters does not affect

the power of the test. In Section 10.2, we mention how our test can be modified

to direct it against several competing models. In Section 10.3, we sketch some

possible extensions of our approach. In Section 10.4, we mention a relation to

estimating equations in semiparametric models.

10.1 Plugging in Estimators does not Lower the Power

Usually, some parameters from the null hypothesis are unknown. If they do not

act affine-linearly on the intensity we have to estimate them. To guarantee that

these estimated parameters do no affect the asymptotic distribution of the test

statistic T we introduced the orthogonality conditions. If we use an alternative

estimator for the variance, then - under certain conditions - the need to estimate

the parameters and the orthogonality conditions do not affect the approximate

Bahadur slope of the test, i.e. we do not loose any power. We demonstrate this

in the parametric setup of Section 8.4. As null hypothesis we use the model

λi(s) = fi(α
c, s),

whereαc is an unknown finite-dimensional parameter and the observable fi(α
c, s)

is a predictable stochastic process.

Under suitable conditions, an alternative consistent estimator for the variance

of T (c, α̂c, τ) is given by

σ̂2
(2)(c) :=

∫ τ

0
cfc(α̂c, s) ds,
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where α̂c is some estimator for αc. In contrast to the usual estimator of the vari-

ance, 1/n
∫ τ
0 c(α̂

c, s)⊤diag(dN(s))c(α̂c, s), the estimator σ̂2
(2)(c) uses explicitly

the structure of the null hypothesis.

Similarly to Section 6.4, one can derive the following optimal weights in the

sense of approximate Bahadur efficiency:

c(αc, t) =Q
B(αc,·)
f(αc,·)·(Pn⊗ )

(
h(·) − f(αc, ·)
f(αc, ·)

)
(t)

=
h(t) − f(αc, t)

f(αc, t)
−B(αc, t)D−1(αc)A(αc)

where B(αc, t) = diag(f(αc, ·)−1)∇αcf(αc, ·), ∇αcf(αc, t) = ∂
∂αcf(αc, t),

A(αc) =

∫ τ

0

(
(∇αcf)(f−1)h(αc, s) −∇αcf(αc, s)

)
ds,

and

D(αc) =

∫ τ

0
(∇αcf)(f−1)(∇αcf)(αc, s) ds.

The main difference to Section 8.4 is that now the orthogonal projections are

weighted by f and not by h. Now the approximate Bahadur slope is given by

∥∥∥∥Q
B1(αc

0,·)

f1(αc
0,·)·(P⊗ )

(
h1(·) − f1(α

c
0, ·)

f1(αc
0, ·)

)∥∥∥∥
2

f1(αc
0,·)·(P⊗ )

.

We estimate αc by the maximum partial likelihood estimator α̂c defined as the

maximizer of the log partial likelihood C given in (2.9). Hence, (∇αcC)(α̂c) = 0,

where the score function (∇αcC)(αc) is given by

(∇αcC)(αc) =

∫ τ

0

n∑

i=1

∇αcfi(α
c, t)

fi(αc, t)
dNi(t) −

∫ τ

0

n∑

i=1

∇αcfi(α
c, t) dt.

Under suitable conditions, it can be shown that if λi(t) = hi(t) then

1

n
(∇αcC)(αc) −A(αc)

P→ 0,

uniformly in a neighborhood of αc
0. Furthermore,

A(αc)
P→
(
<
∇j f1(α

c, ·)
f1(αc, ·) ,

h(·) − f1(α
c, ·)

f1(αc, ·) >f1(αc,·)·(P⊗ )

)

j=1,...,kαc

.

Thus if the right hand side is continuous in αc and if α̂c P→ αc
0, then for j =

1, . . . , kαc ,

<
∇j f1(α

c
0, ·)

f1(αc
0, ·)

,
h(·) − f1(α

c
0, ·)

f1(αc
0, ·)

>f1(αc
0,·)·(P⊗ )= 0.
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Hence,

Q
B1(αc

0,·)

f1(αc
0,·)·(P⊗ )

(
h1(·) − f1(α

c
0, ·)

f1(αc
0, ·)

)
=
h1(·) − f1(α

c
0, ·)

f1(αc
0, ·)

.

And thus the approximate Bahadur slope is equal to

∥∥∥∥
h1(·) − f1(α

c
0, ·)

f1(αc
0, ·)

∥∥∥∥
2

f1(αc
0,·)·(P⊗ )

.

This is precisely the slope we would get if the parameter αc
0 was known. Thus

if we direct against a fixed alternative which happens to be true, then we do

not loose any efficiency by estimating αc. Of course this depends on the specific

estimator for αc and on the specific estimator for the variance of T .

10.2 Using Several Competing Models

We confined ourselves to a single competing model. To check a model against

ν competing models with a test of level α, one can proceed as follows: Use the

test for each competing model separately and reject if the p-value of any of the

tests exceeds α/ν. Of course, this is only a very crude approach.

To improve it, we would have to consider the joint distribution of our test

statistics. In fact, instead of using an n-dimensional vector of stochastic processes

as weights, one can use an n× p-matrix C of predictable stochastic processes as

weights. To direct against different alternatives we may use the columns of C.

The following p-variate vector of stochastic processes can be used as basis for

tests:

T̃ (C, t) = n−
1
2

∫ t

0
C(s)⊤

(
dN(s) − λ̂(s) ds

)
.

Indeed, the asymptotic distribution of T̃ (C, t) can be derived similarly to Chap-

ter 3, Chapter 5, and Chapter 6. Under orthogonality conditions, T̃ (C, t) con-

verges to a mean zero p-variate Gaussian martingale. One can construct a tests

that rejects for large values of

T̃ (C, τ)⊤
(
Σ̂(τ)

)−1
T̃ (C, τ).

where Σ̂(τ) is some consistent estimator of the asymptotic covariance matrix of

T̃ (C, τ) - which we assume to be invertible.

10.3 Possible Extensions

In our setup, we observe n counting processes N1, . . . , Nn. One can interpret this

as a marked point process Ñ on [0, τ ] where the marks are in the set {1, . . . , n}
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and indicate which individual experiences the event. We could replace the mark

space {1, . . . , n} by some general mark space, say X. Now all sums
∑n

i=1 can be

replaced by integrals over the mark space X.

An example of this are spatio-temporal models, where events are observed in

time and space. Here, the mark space is X = R
2 or X = R

3. Asymptotics can

be derived if the area/volume of an observation window tends to infinity.

The approach used in this thesis is not confined to survival analysis or point

processes. In classical statistic, usually one has n independent observations. For

each of these observations, one can compute some residual. After that one can

use a weighted sum of these residuals as test statistics - with weights restricted

such that the derivative of the test statistic with respect to the model parameters

is zero. The one can expect that the (asymptotic) distribution of the weighted

residuals does not depend on which estimator is used for the model parameters.

10.4 Relation to Estimation

in Semiparametric Models

In our approach, we want to test the fit of the model and orthogonalize our test

statistic in a special way such that it does not depend on which estimator of the

model parameters is used. This is related to an approach used for estimation

purposes in general semiparametric models. The approach is as follows:

In a semiparametric model, usually there is a finite-dimensional parameter θ

which is the focus of interest and there is another, possibly infinite-dimensional,

parameter η one is less interested in. The parameter η is usually called a ’nui-

sance’ parameter. For example, in the semiparametric Cox model (2.1), the

regression parameter β is the parameter of interest and the baseline λ0 is the

nuisance parameter.

Often, estimation of θ is based on the score function, which is defined as the

derivative of the (log)-likelihood with respect to θ. In general, this score function

depends on the unknown nuisance parameter η. Plugging in an estimator η̂ for η

into the score function for θ usually leads to an estimator θ̂, whose distribution

depends on the distribution of the estimator η̂.

Asymptotically, one can avoid this by modifying the score function for θ

suitably. Indeed, this can be accomplished by a certain orthogonal projection.

This has the advantage that the asymptotic distribution of the estimator of θ

does not depend on which estimator η̂ of η is used. Basically, one can use any

estimator η̂ of η that converges at an appropriate rate.



Chapter 11

Conclusions

We introduced model checks based on weighted martingale residuals for a large

class of models from survival analysis. A particular feature is that we may

direct the tests to be sensitive against certain ’competing models’ by choosing

the weights suitably. We would like to stress that the tests we propose are

model checks. Since it may be the case that neither the null hypothesis nor the

competing model is appropriate, a rejection of the null hypothesis is no conclusive

evidence for the competing model.

A key idea of the test is that the weights are required to be orthogonal to

the derivative of the intensity of the counting process with respect to the model

parameters. This has two advantages. First, the asymptotic distribution of

the test statistic does not depend on the distribution of the estimators of the

model parameters. Therefore, we can use any ’off-the-shelf’ estimator from the

literature that is consistent at a certain rate. The second advantage is that

the asymptotic distribution is relatively simple, allowing us to choose optimal

weights against local and fixed alternatives.

The weights are n-variate stochastic processes with the essential requirement

that they should be predictable. For some tests, as for example for the test

against a Cox model, we have to insert estimates of parameters which destroy

the property of predictability of the weights. Nevertheless we want that plug-

ging in the parameter does not change the asymptotic distribution of our test

statistic. If the parameter is finite-dimensional then by Taylor expansions, it

can be shown that this is the case. However, in some cases we need to plug in

estimated functions. Now we need estimators that besides converging uniformly

also have the property that the total variation of the difference to the limiting

value converges to zero. We propose a modified kernel smoothing algorithm to

satisfy these requirements. In the kernel smoothing approach the choice of the

bandwidth is critical and our ad hoc choice could conceivably be improved. The

condition on the total variation is needed because the estimated functions are
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not assumed to be predictable.

Model checks based on martingale residuals have been previously considered

in the literature. Most of these checks use a Cox model as null hypothesis

with ad hoc weights for the martingale residuals. Even for the Cox model,

our approach of choosing weights such that they satisfy certain orthogonality

conditions with respect to all parameters - both the finite and infinite dimensional

parameters - seems to be new. For other models, the field of model checks is still

underdeveloped.

In Chapters 7-9, we mainly focused on the additive Aalen model (2.6), a

semiparametric restriction of it (2.7), and on Cox-type models (2.5). The results

from Chapter 5 and Chapter 6 can be used for other (semiparametric) models

from survival analysis as well, most notably the combined Cox-Aalen models

(2.11) and (2.12).

We derived the asymptotic distribution of our test statistic and showed how to

choose optimal weights. The optimal weights are essentially weighted orthogonal

projections of the difference between the intensity of the alternative and the

intensity under the null hypothesis. We also provided ad hoc weights based on

unweighted orthogonal projections.

One has to be careful with some weights - the asymptotic variance of our test

statistic may converge to zero and thus we cannot use the asymptotic normality

of our test statistic to construct tests. In particular, this may be the case if we

are dealing with nested hypotheses. For a particular test of Cox-type models

we suggested two approaches to deal with this problem: a sequential procedure

and a bootstrap procedure. In the sequential procedure we test whether the

asymptotic variance is zero or not before applying our test of fit. The sequential

procedure is asymptotically conservative.

We conducted extensive simulation studies that reveal that the tests can

be used for practical sample sizes. Furthermore, not surprisingly, our directed

test has greater power than other goodness-of-fit tests. Of course, no general

suggestions for the sample size to attain a certain power can be made, because

this depends on the alternative to be detected. The simulations show that the

optimal weights lead to some improvement in the power compared with ad hoc

weights.

We applied some of our methods to three different datasets: a dataset from

software reliability and two datasets from medical studies. We have seen that

our methods are useful in practice: formal conclusions can be drawn that have

not been possible with previous methods.

Summarizing, we suggested and analyzed model checks that can be used for

many standard models in survival analysis. Simulation studies and applications

to real datasets showed that the tests are promising.



Appendix A

Some Tools From Probability

Theory

In this chapter, we collect some results mainly from the theory of stochastic

processes. We only give proofs for some non-standard results.

A.1 Counting Processes

Counting processes are basic to survival analysis. We shall introduce them

briefly. An adapted, càdlàg stochastic process N is called a counting process

if N(0) = 0 and if the paths of N are step functions, whose discontinuities are

upward jumps of size 1.

If N1 and N2 are counting processes, we say that they “have no common

jumps”, if ∆N1∆N2 is indistinguishable from 0, where ∆N1(t) = N1(t)−N1(t−)

is the size of the jump of N1 at time t.

If N = (N1, . . . , Nk)
⊤ is a k-variate process then it is a k-variate counting

process, if each Ni is a counting process and if for i 6= j, the processes Ni and

Nj do not have common jumps.

A.2 Predictable Covariation

In this section, we recall the predictable covariation of a local martingale.

Theorem A.1. If X,Y are local square integrable martingales then there exists

a predictable process 〈X,Y 〉 of finite variation, which is unique up to indistin-

guishability, such that XY − 〈X,Y 〉 is a local square integrable martingale.

If X = Y , we abbreviate 〈X,X〉 by 〈X〉.
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Lemma A.1. Let N be a counting process on [0, τ ], 0 < τ <∞, which satisfies

EN(τ) < ∞. If N admits a continuous compensator A, i.e. M = N − A is a

local martingale, then the following holds true.

(i) A,N,M are locally bounded and locally square-integrable.

(ii) 〈M〉 = A

The following theorem can be found in Fleming and Harrington (1991, The-

orem 2.4.3).

Theorem A.2. Suppose that H1 and H2 are locally bounded predictable processes

and N1 and N2 are counting processes with compensators A1 and A2. Let Mi =

Ni −Ai, i = 1, 2. Then

〈∫ ·

0
H1(s) dM1(s),

∫ ·

0
H2(s) dM2(s)

〉
(t) =

∫ t

0
H1(s)H2(s) d 〈M1,M2〉 (s).

A.3 Rebolledo’s Theorem

This section contains a central limit theorem for martingales. For each n ∈ N,

i ∈ {1, . . . , r}, let Mn
i be a local square integrable càdlàg martingale defined on

[0, τ ], 0 < τ <∞, and let Mn = (Mn
1 , . . . ,M

n
r )⊤.

Suppose that for each ǫ > 0, Mn,ǫ = (Mn,ǫ
1 , . . . ,Mn,ǫ

r )⊤ is a vector of local

square integrable càdlàg martingales that contains all jumps of components of

Mn larger than ǫ, i.e. |∆Mn
i (t) − ∆Mn,ǫ

i (t)| ≤ ǫ for all t ∈ [0, τ ], i ∈ {1, . . . r}.
Of course, we could choose Mn,ǫ = Mn, but in general, this choice will not

satisfy the conditions needed for Theorem A.3.

Let V : [0, τ ] → R
r×r be a continuous function that has positive semidefinite

increments, i.e. for all s, t ∈ [0, τ ], s ≤ t, V (t) − V (s) is positive semidefinite.

Let M∞ be an r-variate continuous Gaussian martingale with 〈M∞〉 = V .

Such a process can be constructed by starting with an r-dimensional Brownian

motion and multiplying it with a suitable decomposition of V .

The following theorem is due to Rebolledo (1980). We give the version from

Andersen et al. (1993, p. 83f). Note that as always all limits are as n tends to

infinity.

Theorem A.3. If

〈Mn〉 (t)
P→ V (t) ∀t ∈ [0, τ ] and

〈Mn,ǫ
i 〉 (t)

P→ 0 ∀t ∈ [0, τ ], ǫ > 0, i ∈ {1, . . . , r},

then in (D[0, τ ])r,

Mn d→M∞.
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Furthermore, uniformly in t ∈ [0, τ ],

[Mn](t)
P→ V (t).

In the previous theorem, [Mn] = ([Mn
i ,M

n
j ])i,j=1,...,r is the quadratic co-

variation of Mn. The quadratic covariation of two semimartingales X and Y is

defined by [X,Y ](t) = X(t)Y (t)−X(0)Y (0)−
∫ t
0 Y (s−) dX(s)−

∫ t
0 X(s−) dY (s).

In our applications, usually Mn(t) =
∫ t
0 c(s)

⊤( dN(s) − λ(s) ds), where c is an

n-variate vector of predictable processes, N is an n-variate counting process

and λ is the intensity of N . Then [Mn](t) =
∑n

i=1

∫ t
0 ci(s)

2 dNi(s). We usu-

ally use Mn,ǫ(t) =
∑n

i=1

∫ t
0 ci(s)I{ci(s) > ǫ}d(Ni(s)−Λi(s)). Then 〈Mn,ǫ〉 (t) =∫ t

0 c
2
i (s)I{ci(s) > ǫ}dΛi(s). Thus the second condition of Theorem A.3 is satis-

fied if supi=1...n
s∈[0,τ ]

|ci(s)| P→ 0.

A.4 Lenglart’s Inequality

The inequality we present in this section is due to Lenglart (1977). The following

version is from Jacod and Shiryaev (1987).

Lemma A.2. Let X be a càdlàg, adapted process and A an increasing, pre-

dictable process such that for every bounded stopping time T ,

E |X(T )| ≤ E |A(T )|.

Then, for all stopping times T and all ǫ, η > 0,

P

(
sup
s≤T

|X(s)| ≥ ǫ

)
≤ η

ǫ
+ P (A(T ) ≥ η)

We use this inequality in the following context: If M is a square integrable

local martingale and T a bounded stopping time then EM(T )2 ≤ E〈M〉(T ).

Hence, for all stopping times T and all ǫ, η > 0,

P

(
sup
s≤T

|M(s)| ≥ ǫ

)
≤ η

ǫ2
+ P (〈M〉 (T ) ≥ η) .

The following is essentially an application of Lenglart’s inequality.

Lemma A.3. Suppose N , λ, and M are as given in Section 2.2. If e
(n)
i :

Ω × [0, τ ] → R, 1 ≤ i ≤ n, n ∈ N, are functions, supi=1...n
t∈[0,τ ]

|e(n)
i (t)| P→ 0, and λ

converges uip on [0, τ ] then

1

n

∫ t

0
e(n)(s)

⊤
dN(s)

P→ 0 and
1

n

∫ t

0
e(n)(s)

⊤
dM(s)

P→ 0 uniformly in t ∈ [0, τ ].
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We implicitly assume measurability of supi=1...n
t∈[0,τ ]

|e(n)
i (t)| and the existence of the

integrals.

Proof. Since

〈
M
〉
(τ) =

〈
1

n

n∑

i=1

(
Ni(·) −

∫ ·

0
λi(s) ds

)〉
(τ) =

1

n2

n∑

i=1

∫ τ

0
λi(s) ds

=
1

n

∫ τ

0
λ(s) ds

P→ 0,

Lenglart’s inequality implies M → 0 uip on [0, τ ]. Therefore,

1

n

n∑

i=1

∫ t

0
|dNi(s)| = N(t) = M(t) +

∫ t

0
λ(s) ds

P→
∫ t

0

−⇀
λ (s) ds

uniformly in t ∈ [0, τ ]. Hence, dropping the dependence of e on n,

∣∣∣∣
1

n

∫ t

0
e(s)⊤dN(s)

∣∣∣∣ ≤
1

n

n∑

i=1

∣∣∣∣
∫ t

0
ei(s) dNi(s)

∣∣∣∣

≤ 1

n

n∑

i=1

∫ t

0
|dNi(s)| sup

i=1...n
s∈[0,τ ]

|ei(s)| P→ 0

uniformly in t ∈ [0, τ ]. The second statement can be shown similarly.

A.5 Limit Theorems in the i.i.d. Case

The following strong law of large numbers is due to Rao (1963), where, for some

0 < τ < ∞, the symbol D[0, τ ] is defined as the space of all càdlàg functions

from [0, τ ] into R.

Theorem A.4. Suppose X1, X2, . . . are i.i.d. D[0, τ ]-valued random variables.

If E
[
supt∈[0,τ ] |X1(t)|

]
<∞ then

sup
t∈[0,τ ]

∣∣∣∣∣
1

n

n∑

i=1

Xi(t) − E[X1(t)]

∣∣∣∣∣→ 0 almost surely.

The following extension to càdlàg processes in Banach spaces can be found

in Andersen and Gill (1982, Theorem III.I,Appendix III). Let B be a separable

Banach space with norm ‖ · ‖. The space of càdlàg functions from [0, τ ] into B is

denoted by DB[0, τ ]. We will only use B = C(K), where K is some compact eu-

clidean space and C(K) is the space of all continuous functions K → R endowed

with the supremum norm.
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Theorem A.5. Suppose X1, X2, . . . are i.i.d. elements of DB[0, τ ]. If

E sup
t∈[0,τ ]

‖X1(t)‖ <∞

then

sup
t∈[0,τ ]

∥∥∥∥∥
1

n

n∑

i=1

Xi(t) − E[X1(t)]

∥∥∥∥∥→ 0 almost surely.

Remark A.1. The laws of large numbers we discussed are for càdlàg processes.

But, as suggested in Andersen and Gill (1982), one merely has to reverse the

time scale to use them for càglàd processes.

Lemma A.4. Let X1, X2, . . . be i.i.d. random variables with E |X1|p < ∞ for

some p > 0. Then

n−1/p sup
i=1,...,n

|Xi| P→ 0 (n→ ∞).

Proof. Let Yi := |Xi|p. For all ǫ > 0, using Bernoulli’s inequality and dominated

convergence,

P(
1

n
sup

i=1,...,n
Yi > ǫ) = 1 − P(Yi ≤ nǫ, i = 1, . . . , n) = 1 − (1 − P(Y1 > nǫ))n

≤ 1 − (1 − nP(Y1 > nǫ)) = nP(Y1 > nǫ)

≤ ǫ−1

∫
Y1I{Y1 > nǫ}dP → 0 (n→ ∞).

Hence,

n−1/p sup
i=1,...,n

|Xi| = (n−1 sup
i=1,...,n

|Yi|)1/p P→ 0 (n→ ∞).

The following is a central limit theorem in Hilbert spaces given in Ledoux

and Talagrand (1991, Corollary 10.9) and in van der Vaart and Wellner (1996,

p. 92).

Theorem A.6. Let H be a separable Hilbert space and let X,X1, X2, . . . be i.i.d.

stochastic elements in H (equipped with its Borel-σ algebra). If E(f(X)) = 0 for

all f in the dual space H ′, and E ‖X‖2 < ∞ then n−1/2
∑n

i=1Xi converges in

distribution in H.
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A.6 Stochastic Processes Indexed by Time and Other

Parameters

In this section we collect some results concerning stochastic processes that do

not only depend on t ∈ [0, τ ] but also on further parameters.

In the next lemma, we implicitly assume that appropriate measurability con-

ditions are satisfied.

Lemma A.5. Let Xβ ⊂ R
kβ be an open set, an, a : Ω×Xβ×[0, τ ] → R, n ∈ N be

functions. Suppose β̂
P→ β0 ∈ Xβ, and suppose there exist an open neighborhood

C ⊂ Xβ of β0 such that an
P→ a uniformly on C × [0, τ ] and a(·, t) : Xβ → R is

continuous at β0 uniformly in t ∈ [0, τ ].

Then an(β̂, t)
P→ a(β0, t) uniformly in t ∈ [0, τ ].

Proof. For all t ∈ [0, τ ],
∣∣∣an(β̂, t) − a(β0, t)

∣∣∣ ≤
∣∣∣an(β̂, t) − a(β̂, t)

∣∣∣+
∣∣∣a(β̂, t) − a(β0, t)

∣∣∣ .

The continuity of a shows that the second term converges to 0 uniformly on

[0, τ ]. Since C is an open neighborhood of β0, P(β̂ ∈ C) → 1 and hence the

convergence of an implies
∣∣∣an(β̂, t) − a(β̂, t)

∣∣∣ P→ 0 uniformly in t ∈ [0, τ ].

Lemma A.6. Let A ⊂ R
k be a measurable set. For all a ∈ A, let Xa : Ω×[0, τ ] →

R be a predictable stochastic process such that for each (ω, t) ∈ Ω × [0, τ ], the

mapping X·(ω, t) : A → R is continuous. Let α : Ω × [0, τ ] → A be a predictable

process. Then the process (ω, t) 7→ Xα(ω,t)(ω, t) is predictable.

Proof. Recall that a stochastic process is called predictable if it is measurable

with respect to the predictable σ-algebra on Ω × [0, τ ]. There are predictable

processes βk : Ω × [0, τ ], k ∈ N, of the form

βk(ω, t) =
k∑

i=1

xk(i)I{(ω, t) ∈ Bk(i)},

such that βk → α pointwise as k → ∞, where xk(i) ∈ A, i = 1, . . . , k, and

{Bk(i), i = 1, . . . , k} is a partition of Ω × [0, τ ] into predictable sets. Then

Xβk(t)(ω, t) =

k∑

i=1

Xxk(i)(ω, t)I{(ω, t) ∈ Bk(i)}.

Therefore, Xβk(t)(ω, t) is predictable as a sum/product of predictable processes.

By the continuity of X·(ω, t), we have for all (ω, t) that

Xα(t)(ω, t) = lim
k→∞

Xβk(t)(ω, t).

Hence, Xα(t)(ω, t) is predictable.
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Remark A.2. The preceding lemma is still true if we replace predictable by

progressive.

The following lemma shows that certain real valued stochastic processes that

depend on a parameter a ∈ A ⊂ R
ν , where A is compact, can be considered

stochastic processes that take values in the Banach space C(A) of continuous

functions A → R equipped with the supremum-norm and the corresponding

Borel-σ-algebra. This property is part of the conditions (LS1), (LSW1), and

(SPW1). It allows the application of the strong law of large numbers for càdlàg

processes in Banach spaces (Theorem A.5) to get uniform convergence with re-

spect to parameters and time. An example for these stochastic processes is the

intensity of the nonparametric model (5.1).

Lemma A.7. Let f : Rl ×A→ R be a continuous function, where A ⊂ R
ν is a

compact set. Suppose that X is an l-variate vector of stochastic processes. Let

x(ω, t) denote the mapping Ω×[0, τ ] → C(A) given by x(ω, t)(a) = f(X(ω, t),a).

Then x(t) is a stochastic process with values in C(A). Furthermore, we have the

following:

(i) If X is càglàd then x is càglàd.

(ii) If X is locally bounded then x is locally bounded and, in particular,

supa∈A |x(·)(a)| is a locally bounded real valued stochastic process.

Proof. First, we show that the mapping g : Rl → C(A), g(z) = f(z, ·) is contin-

uous. Let z ∈ Rl and ǫ > 0. Choose any δ > 0. Then f is uniformly continuous

on the compact set Ū(z, δ)×A, where Ū(z, δ) := {y ∈ R
l : |z− y| ≤ δ}. Hence,

there is δ̃ > 0 such that for y1,y2 ∈ Ū(z, δ), θ1,θ2 ∈ A,

|y1 − y2| < δ̃, |θ1 − θ2| < δ̃ implies |f(y1,θ1) − f(y2,θ2)| < ǫ.

Hence, for all y ∈ Rl,

|y − z| < min(δ̃, δ) implies sup
θ∈A

|f(y,θ) − f(z,θ)| < ǫ,

showing that g is indeed continuous. Since x(t) = g(X(t)), the properties of g

and X imply that x(t) is measurable for each t, i.e. it is a stochastic process.

Furthermore, if X is càglàd then the continuity of g implies that x is càglàd.

Next, we show (ii). Suppose that X is locally bounded. Let νi, i ∈ N be a

localizing sequence forX. Then there exists Ki <∞ such that ‖X(t∧νi)‖ < Ki.

Let Bi := {y ∈ R
l : ‖y‖ < Ki}. Since Bi × A is compact, f(Bi × A) is compact

and hence bounded. Clearly,

sup
a∈A

|x(a, t ∧ νi)| ≤ max
b∈Bi,a∈A

|f(b, a)| <∞
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and hence νi is a localizing sequence for x(t). Since the norm is continuous

on C(A), supa∈A |x(t)(a)| is a random variable for each t and thus a stochastic

process. It is a locally bounded process since x is a locally bounded process.



Appendix B

Orthogonal Projections

In this chapter we collect some results about orthogonal projections. Some of

the notation used can be found in Section 3.2.

Lemma B.1. Suppose H is a vector space over R with scalar product < ·, ·>.

If y1, . . . , yk ∈ H are such that the matrix A := (<yη, yξ>)η,ξ=1,...,k is invertible

then

Q : H → H,x 7→ x− (y1, . . . , yk)A
−1(<y1, x>, . . . , <yk, x>)⊤

is the orthogonal projection onto the space orthogonal to G, where G is the space

spanned by y1, . . . , yk.

Proof. For x ∈ H and i ∈ {1, . . . , k},

<yi, Qx> =<yi, x> − (<yi, y1>, . . . , <yi, yk>)A−1(<y1, x>, . . . , <yk, x>)⊤

=<yi, x> − <yi, x>= 0.

Hence Q maps into G⊥. Clearly P : H → H,x 7→ x−Qx maps into G. Since P

and Q are linear, Q is the orthogonal projection onto G⊥, see e.g. Rudin (1974,

p. 84).

The following results are needed for the projections in Chapter 6. Let

(A,A, µ) be a measure space with µ(A) < ∞. Consider the product space

C = (A,A, µ) ⊗ ([0, τ ],B[0, τ ], ), where 0 < τ < ∞, B[0, τ ] is the Borel-σ-

algebra on [0, τ ], and is Lebesgue measure. Let w : C → [0,∞) be measurable

and define the measure ν = w · (µ⊗ ). Let x1, . . . , xk ∈ L2(ν). Define the set

U =





k∑

j=1

xj(u, s)gj(s) ∈ L2(ν) : g1, . . . , gk measurable



 .

For each s ∈ [0, τ ], let Q
X(·,s)
h(·,s)·µ be the projection onto X(·, s)⊥, with respect to

the measure h(·, s) · µ. where X(·, s) = {x1(·, s), . . . , xk(·, s)}.
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Lemma B.2. Q : L2(ν) → L2(ν) defined by

Q(x)(u, s) = (Q
X(·,s)
h(·,s)·µx(·, s))(u)

is the projection onto U⊥ with respect to ν.

Proof. Clearly, Q maps into U and for each x ∈ U , Qx = x. To show that

Q is an orthogonal projection we need that Q is a linear bounded operator

that satisfies QQ = Q and <Qx,y >ν=< x, Qy >ν for all x,y ∈ L2(ν). The

linearity of Qv(t) for each t ∈ [0, τ ] implies the linearity of Q. Let x,y ∈
L2(ν). Since ‖Qx‖2

ν =
∫ τ
0 ‖(Qx)(s)‖2

h(·,s)·µ ds =
∫ τ
0 ‖Qv(s)x(s)‖2

h(·,s)·µ ds ≤∫ τ
0 ‖x(s)‖2

h(·,s)·µ ds = ‖x‖2
ν , the mapping Q is a bounded operator. Since

((QQ)x)(u, s) = (Q(Qx))(u, s) = Qv(s)((Qx)(·, s))(u)
= Qv(s)(Qv(s)x(·, s))(u) = (Qv(s)Qv(s))x(·, s)(u)
= Qv(s)x(·, s)(u) = (Qx)(s, u),

we have QQ = Q. Furthermore,

<Qx,y>ν =

∫ τ

0
<Qv(s)x(·, s),y(·, s)>h(·,s)·µ ds

=

∫ τ

0
<x(·, s),Qv(s)y(·, s)>h(·,s)·µ ds =<x, Qy>ν .

Lemma B.3. Let H be a Hilbert space and suppose that V,W ⊂ H. Let Ṽ =

QWV = {QW v : v ∈ V }, where QW is the orthogonal projection onto W⊥.

Then QV +W = QṼQW = QWQṼ is the orthogonal projection onto (V +W )⊥,

where QṼ is the orthogonal projection onto Ṽ ⊥.

Proof. Let x = y+ z ∈ Ṽ +W , where y ∈ Ṽ and z ∈W . Since Ṽ ⊥W , we have

y ∈W⊥ and hence QṼQW y = QṼ y = 0. Furthermore, QṼQW z = QṼ 0 = 0 and

hence QṼQWx = 0. As a concatenation of two projections, QṼQW is clearly

linear and bounded (and thus continuous). Hence, QṼQWx = 0 for all x in the

closure of the span of Ṽ +W . For x ∈ (Ṽ +W )⊥, we have x ∈ Ṽ ⊥ and x ∈W⊥,

and hence QṼQWx. Thus QV +W is the orthogonal projection onto (Ṽ +W )⊥.

It remains to show (Ṽ +W )⊥ = (V +W )⊥. Let u ∈ (V +W )⊥. Then for x̃ ∈ Ṽ

and y ∈W there exists x ∈ V such that x̃ = QWx. Hence,

<u, x̃+ y>=<u,QWx> +0 =<QWu, x>=<u, x>= 0

and thus u ∈ (Ṽ +W )⊥. If u ∈ (Ṽ +W )⊥ then for x ∈ V and y ∈ W we have

QWx ∈ Ṽ and hence

<u, x+ y>=<QWu, x> +0 =<u,QWx>= 0.

Thus u ∈ (V +W )⊥.



List of Symbols and

Abbreviations

∇j , 49, 72, 96, 111

∇θ,∇α,∇β, 72, 96

∇αc , 96, 111

∇ψ,∇αv ,∇η, 96

∇βc , 111

∇, 49

[0, τ ], observation interval, 13

‖·‖µ, 32

0, 15

< ·, ·>µ, 32

∧, 14

1, 15

A, 15
−⇀
A, 16

AB, 15
−−⇀
AB, 16

Ai, i-th row of A, 14

α, 31, 71

αc, 95

αv, 95

AxB, 15
−−−⇀
AxB, 16

β, 71, 97

bm(·), 15
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H. Poincaré Sect. B (N.S.), 13(2):171–179. Cited on page 151.

León, L. F. and Tsai, C.-L. (2004). Functional form diagnostics for Cox’s pro-

portional hazards model. Biometrics, 60:75–84. Cited on page 26.

Lin, D. Y. (1991). Goodness-of-fit analysis for the Cox regression model based

on a class of parameter estimators. J. Amer. Statist. Assoc., 86(415):725–728.

Cited on page 26.

Lin, D. Y. and Spiekerman, C. F. (1996). Model checking techniques for para-

metric regression with censored data. Scand. J. Statist., 23(2):157–177. Cited

on pages 28 and 29.

Lin, D. Y. and Wei, L. J. (1989). The robust inference for the Cox proportional

hazards model. J. Amer. Statist. Assoc., 84(408):1074–1078. Cited on pages

37, 56, 60, 116, and 118.

Lin, D. Y. and Wei, L. J. (1991). Goodness-of-fit tests for the general Cox

regression model. Statistica Sinica, 1:1–17. Cited on pages 25 and 133.

Lin, D. Y., Wei, L. J., and Ying, Z. (1993). Checking the Cox model with

cumulative sums of martingale-based residuals. Biometrika, 80(3):557–572.

Cited on pages 23, 27, 29, and 140.

Lin, D. Y. and Ying, Z. (1994). Semiparametric analysis of the additive risk

model. Biometrika, 81(1):61–71. Cited on pages 18 and 27.

Lin, D. Y. and Ying, Z. (1995). Semiparametric analysis of general additive-

multiplicative hazard models for counting processes. Ann. Statist., 23(5):1712–

1734. Cited on pages 3 and 19.

Martinussen, T. and Scheike, T. H. (2002). A flexible additive multiplicative

hazard model. Biometrika, 89(2):283–298. Cited on pages 3, 19, and 20.

Martinussen, T., Scheike, T. H., and Skovgaard, I. M. (2002). Efficient estimation

of fixed and time-varying covariate effects in multiplicative intensity models.

Scand. J. Statist., 29(1):57–74. Cited on pages 3, 20, and 30.

Marzec, L. and Marzec, P. (1993). Goodness of fit inference based on stratifi-

cation in Cox’s regression model. Scand. J. Statist., 20(3):227–238. Cited on

page 22.



168 BIBLIOGRAPHY

Marzec, L. and Marzec, P. (1997a). Generalized martingale-residual processes

for goodness-of-fit inference in Cox’s type regression models. Ann. Statist.,

25(2):683–714. Cited on pages 24, 133, and 140.

Marzec, L. and Marzec, P. (1997b). On fitting Cox’s regression model with

time-dependent coefficients. Biometrika, 84(4):901–908. Cited on page 30.

Marzec, L. and Marzec, P. (1998). Testing based on sampled data for propor-

tional hazards model. Statist. Probab. Lett., 37(2):303–313. Cited on page

26.

May, S. and Hosmer, D. W. (1998). A simplified method of calculating an

overall goodness-of-fit test for the Cox proportional hazards model. Lifetime

Data Analysis, 4:393–403. Cited on page 23.

May, S. and Hosmer, D. W. (2004). A cautionary note on the use of the

Grønnesby and Borgan goodness-of-fit test for the Cox proportional hazards

model. Lifetime Data Analysis, 10:283–291. Cited on page 23.

McKeague, I. W. (1988). Asymptotic theory for weighted least squares estimators

in Aalen’s additive risk model. Contemp. Math., 80:139–152. Cited on pages

18 and 43.

McKeague, I. W. and Sasieni, P. D. (1994). A partly parametric additive risk

model. Biometrika, 81(3):501–514. Cited on pages 3 and 18.

McKeague, I. W. and Sun, Y. (1996). Towards an omnibus distribution-free

goodness-of-fit test for the Cox model. Statistica Sinica, 6:579–588. Cited on

page 25.

McKeague, I. W. and Utikal, K. J. (1991). Goodness-of-fit tests for additive

hazards and proportional hazards models. Scand. J. Statist., 18:177–195. Cited

on pages 25, 27, 124, 125, and 126.

Miller, R. and Halpern, J. (1982). Regression with censored data. Biometrika,

69(3):521–531. Cited on pages 8, 137, 140, and 141.

Miller, R. G. (1998). Survival analysis. Wiley. Notes by Gail Gong. Problem

solutions by Alvaro Munoz. Reprint. Cited on page 11.

Moreau, T., O’Quigley, J., and Mesbah, M. (1985). A global goodness-of-fit

statistic for the proportional hazards model. J. Roy. Statist. Soc. Ser. C,

34(3):212–218. Cited on page 24.

Murphy, S. A. (1995). Asymptotic theory for the frailty model. Ann. Statist.,

23(1):182–198. Cited on page 20.



BIBLIOGRAPHY 169

Murphy, S. A. and Sen, P. K. (1991). Time-dependent coefficients in a Cox-type

regression model. Stochastic. Process. Appl., 39:153–180. Cited on pages 3

and 20.

Nagelkerke, N., Oosting, J., and Hart, A. (1984). A simple test for goodness

of fit of Cox’s proportional hazards model. Biometrics, 40:483–486. Cited on

page 26.

Ng’andu, N. H. (1997). An empirical comparison of statistical tests for assessing

the proportional hazards assumption of Cox’s model. Statist. Med., 16:611–

626. Cited on page 27.

Nielsen, G. G., Gill, R. D., Andersen, P. K., and Sørensen, T. I. A. (1992). A

counting process approach to maximum likelihood estimation in frailty models.

Scand. J. Statist., 19(1):25–43. Cited on page 20.

Nikitin, Y. (1995). Asymptotic Efficiency of Nonparametric Tests. Cambridge

University Press. Cited on page 39.

Parmar, M. K. and Machin, D. (1995). Survival analysis. A practical approach.

Wiley. Cited on page 11.

Parzen, M. and Lipsitz, S. R. (1999). A global goodness-of-fit statistic for Cox

regression models. Biometrics, 55(2):580–584. Cited on page 26.

Pons, O. (2000). Nonparametric estimation in a varying-coefficient Cox model.

Math. Meth. Statist., pages 376–398. Cited on page 20.

Prentice, R. L. and Self, S. G. (1983). Asymptotic distribution theory for

Cox-type regression models with general relative risk form. Ann. Statist.,

11(3):804–813. Cited on pages 16, 17, and 116.

Rao, R. R. (1963). A law of large numbers for D[0,1]-valued random variables.

Theory of Probability and its Applications, 8:70–74. Cited on page 152.

Rebolledo, R. (1980). Central limit theorems for local martingales. Z. Wahrsch.

Verw. Gebiete, 51(3):269–286. Cited on page 150.

Rudin, W. (1974). Real and complex analysis. McGraw-Hill, New York, 2nd

edition. Cited on page 157.

Sasieni, P. (1993). Some new estimators for Cox regression. Ann. Statist.,

21(4):1721–1759. Cited on pages 17, 37, 56, and 60.



170 BIBLIOGRAPHY

Scheike, T. H. (2002). The additive nonparametric and semiparametric Aalen

model as the rate function for a counting process. Lifetime Data Anal.,

8(3):247–262. Cited on page 28.

Scheike, T. H. and Martinussen, T. (2004). On estimation and tests of time-

varying effects in the proportional hazards model. Scand. J. Statist., 31(1):51–

62. Cited on pages 20 and 30.

Scheike, T. H. and Zhang, M.-J. (2002). An additive multiplicative Cox-Aalen

regression model. Scand. J. Statist., 29:75–88. Cited on pages 3 and 19.

Scheike, T. H. and Zhang, M.-J. (2003). Extensions and applications of the

Cox-Aalen survival model. Biometrics, 59(4):1036–1045. Cited on pages 20

and 30.

Schoenfeld, D. (1980). Goodness-of-fit tests for the proportional hazards regres-

sion model. Biometrika, 67:145–154. Cited on page 21.

Smith, P. J. (2002). Analysis of failure and survival data. Chapman and

Hall/CRC. Cited on page 11.

Song, H. H. and Lee, S. (2000). Comparison of goodness of fit tests for the Cox

proportional hazards model. Commun.Statist.-Simula., 29(1):187–206. Cited

on page 27.

Song, M.-U., Jeong, D.-M., and Song, J.-K. (1996). Checking the additive risk

model with martingale residuals. J. Korean Statist. Soc., 25(3):433–444. Cited

on page 27.

Spiekerman, C. F. and Lin, D. (1996). Checking the marginal Cox model for

correlated failure time data. Biometrika, 83(1):143–156. Cited on page 23.
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Zusammenfassung

In dieser Arbeit werden gerichtete Anpassungstests für Regressionsmodelle aus

der Lebensdaueranalyse (Survival Analysis) vorgeschlagen und untersucht. In

der Lebensdaueranalyse versucht man das Auftreten gewisser Ereignisse zu analy-

sieren. Hierzu werden mehrere Individuen über einen Zeitraum beobachtet,

denen diese Ereignisse zugeordnet sind. Anders formuliert, beobachtet man

für jedes Individuum einen Zählprozess, welcher die Anzahl der Ereignisse bis

zu einem gewissen Zeitpunkt angibt. Das klassische Beispiel ist eine klini-

sche Studie, wobei die Individuen Patienten sind und die Ereignisse Tod oder

Rückfall sein können. Regressionsmodelle werden eingesetzt, um das Auftreten

der Ereignisse mit Einflussgrößen in Verbindung zu setzen. Das bekannteste Mo-

dell ist ein Modell mit proportionalen Ausfallraten, welches auf Cox zurückgeht.

Häufig sind die Regressionsmodelle semiparametrische Modelle, d.h. sie bein-

halten sowohl unbekannte endlichdimensionale Parameter als auch unbekannte

Funktionen. Regressionsmodelle werden typischerweise über die Intensität der

Zählprozesse der Ereignisse definiert. Die Differenz zwischen dem Zählprozess

und der integrierten Intensität ist ein Martingal.

Als Ausgangspunkt für Modellüberprüfungen wird häufig die Differenz zwi-

schen den Zählprozessen und den geschätzten integrierten Intensitäten verwen-

det. Diese Differenzen werden Martingalresiduen genannt. Die Teststatistiken,

die in dieser Arbeit betrachtet werden, sind die Summe gewichteter Integral-

transformationen der Martingalresiduen.

Eine Kernidee der Arbeit ist, dass durch geschickte Wahl der Gewichte die

asymptotische Verteilung der Teststatistik nicht von den gewählten Schätzern

der Modellparameter abhängt, solange diese gewisse Konsistenzraten aufwei-

sen. Man kann somit zwischen verschiedenen Standardschätzern aus der Li-

teratur auswählen, ohne dass sich die asympotische Verteilung der Teststatistik

ändert. Außerdem ergibt sich eine beträchtliche Vereinfachung der asympto-

tischen Verteilung. Bisherige Ansätze betrachten Teststatistiken, die nur un-

abhängig von der Verteilung der Schätzer der unendlichdimensionalen Parameter

der Modelle sind.

Eine weitere Kernidee der Arbeit besteht darin, die Gewichte in der Test-
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statistik so zu wählen, dass die Macht des Tests gegen gewisse Alternativen

besonders groß ist. Häufig wird hierzu ein weiteres Regressionsmodell ausgewählt

und der Test so ausgerichtet, dass er gegen dieses Modell eine besonders große

Macht aufweist. Ein solches Modell wird konkurrierendes Modell genannt.

Im Folgenden wird nun etwas detaillierter auf den Inhalt eingegangen. Die

Arbeit beginnt mit einem Überblick über einige in der Literatur vorhandene Mo-

delle und über verfügbare Modellüberprüfungen. Anschließend werden die Tests

entwickelt. Hierbei wird mit der asymptotischen Verteilung der Teststatistik

gearbeitet, die sich ergibt, wenn die Anzahl der beobachteten Individuen gegen

unendlich strebt. Zunächst wird ein einfaches additives Modell betrachtet, das

so genannte Aalen Modell, in dem die Parameter Funktionen sind, die linear

eingehen. Hier vereinfacht sich die Teststatistik des Anpassungstests sehr stark

und die Modellparameter müssen nicht einmal geschätzt werden. Anschließend

wird die Annahme, dass die Funktionen als Parameter linear eingehen, fallen

gelassen. Dies ist deutlich aufwendiger, da nun die Modellparameter geschätzt

werden müssen. Als drittes wird der Test auf semiparametrische Modelle erwei-

tert, wobei die Teststatistik dahingehend modifiziert wird, dass sie ausnützt, dass

einige Parameter zeitkonstant sind.

Wie bereits erwähnt, führt die geschickte Wahl der Gewichte zu einer relativ

einfachen asymptotischen Verteilung der Teststatistik. Dadurch wird es möglich,

optimale Gewichte gegen lokale Alternativen im Sinne der approximativen Ba-

hadur Effizienz und gegen feste Alternativen im Sinne der Pitman Effizienz zu

ermitteln. Die optimalen Gewichte lassen sich mit Hilfe von gewissen gewichteten

Orthogonalprojektionen darstellen.

Um den Test gegen konkurrierende Modelle auszurichten, müssen Parame-

ter der konkurrierenden Modelle geschätzt werden und die Konvergenzraten der

verwendeten Schätzer bekannt sein, selbst wenn das Modell nicht zutrifft. In der

Arbeit wird für das Cox und das Aalen Modell gezeigt, dass die Standardschätzer

selbst dann mit der parametrischen Rate konvergieren, wenn die Modelle nicht

zutreffen. Diese Ergebnisse gehen über das in der Literatur Vorhandene hinaus.

Setzt man in die optimalen Gewichte geschätzte Parameter von konkurrieren-

den Modellen ein, so kann unter gewissen Umständen die asymptotische Varianz

der Teststatistik Null sein. Um dieses Problem in den Griff zu bekommen, wird

für einen speziellen Anpassungstest eines Cox Modells in der Arbeit ein sequen-

tielles Testverfahren entwickelt. In einem ersten Schritt wird die Hypothese

getestet, dass die asymptotische Varianz Null ist. In einem zweiten Schritt wird

dann der Anpassungstest durchgeführt. Neben diesem sequentiellen Test wird

in der Arbeit auch ein Bootstrap-Ansatz vorgeschlagen.

Die Arbeit beinhaltet Simulationsstudien. Diese zeigen, dass die Tests für in

der Praxis vorkommende Stichprobenumfänge anwendbar sind. Außerdem sieht
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man, dass durch die richtige Wahl der Gewichte die Macht der Tests höher ist

als bei anderen Verfahren aus der Literatur.

Darüber hinaus konnten die neu entwickelten Tests auch erfolgreich zur Anal-

yse von realen Datensätzen herangezogen werden. Es wurden drei verschiedene

Datensätze betrachtet. Diese stammen aus der Softwarezuverlässigkeit und aus

medizinischen Studien. Hier können formale Aussagen über die Güte der An-

passung gewisser Modelle gemacht werden, was mit bisher bekannten Verfahren

nicht mit gleicher Präzision möglich war.

Abschließend wird kurz auf einige besondere Aspekte und mögliche Erwei-

terungen der neuen Testmethodik eingegangen. Es wird gezeigt, dass in einem

parametrischen Modell die Tatsache, dass die Parameter geschätzt werden müs-

sen, nicht die Macht des Anpassungstests reduziert. Außerdem wird auf Tests

gegen mehrere konkurrierende Modelle eingegangen und gezeigt, wie die vorgestell-

ten Anpassungstests auf andere Modelle erweitert werden können. Schließlich

wird noch ein Zusammenhang zwischen den Anpassungstests und Schätzverfahren

in allgemeinen semiparametrischen Modellen hergestellt.

Zusammenfassend wurden in dieser Arbeit neue Anpassungstests für Mo-

delle der Lebensdaueranalyse entwickelt und ihre asymptotischen Eigenschaf-

ten analysiert. Dabei zeigen sowohl Simulationsstudien als auch Anwendungen

der Tests auf reale Datensätze, dass mit den neuen Testverfahren Modelle der

Lebensdaueranalyse weit besser überprüft werden können als das bisher der Fall

war.
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