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Abstract

This is a list of exercises to go with the EMS School “New perspectives on the
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General advice Realistically, there is no way you can do all of these problems

during the School. You should choose some that you like and get help setting yourself

up. Help is available by the following people on the following topics:

Mohammad Akhtar Mutations;

Liana Heuberger Classification of the 29 (26) surfaces, toric complete intersections;

Alessandro Oneto Quantum orbifold cohomology;

Andrea Petracci Quantum orbifold cohomology;

1This sheet was put together in great haste and I expect that it contains several errors and

misprints. I keep a corrected and updated version of this document on my teaching page

http://wwwf.imperial.ac.uk/ acorti/teaching.html
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Thomas Prince Mutations, toric complete intersections; Picard–Fuchs operators;

Ketil Tveiten Rigid maximally mutable Laurent polynomials. Topology of f(x, y) =

0. Monodromy and ramification index.

1 Log del Pezzo surfaces

(1) Let X be the stack [(xy + zw = 0)/µr] where µr acts with weights (1, wa − 1, a)

and hcf(r, a) = 1 and hcf(wr,wa−1) = 1 (so the moduli space X is the surface quotient

singularity 1/n(1, p − 1) with n = wr, p = wa). Show that Ext1OX
(Ω1

X,OX) ∼= Cm−1

where w = mr + w0, 0 ≤ w0 < r.

(2) Let the isolated surface quotient singularity X = 1/n(1, p − 1) have Gorenstein

index r = 3. Show that: either X is of class T ; or X = 1
3(3m+2)(1, 3m+ 1) with content{

m, 16(1, 1)
}

; or X = 1
3(3m+1)(1, 6m + 1) with content

{
m, 13(1, 1)

}
. Draw some of the

cones and stare at them.

Do a similar analysis for Gorenstein index 2, 4 and 5.

(3) Consider a del Pezzo surface X with k quotient singularities 1/3(1, 1).

(i) Somehow or other convince yourself that

h0(X,−nK) = 1 +
n(n+ 1)

2
K2 + k ×

−1
3 if n ≡ 1 (mod 3)

0 if n ≡ 0, 2 (mod 3)

(the official reference of this kind of thing is Reid’s Young Person’s Guide.)

(ii) Show that K2
X = 12−n− 5k

3 where n ∈ Z is the topological Euler number e(X0)

of the smooth locus of X, i.e. the complement X \ S of the set S of singular points of

X.

(iii) Assume that k = 1 and X has no free (−1)-curves (that is, (−1)-curves con-

tained in the smooth locus of X). Show that X = P(1, 1, 3). (Hint: use the minimal

model program.)

(iv) Conclude that if k = 1 then X is the blow up of P(1, 1, 3) at ≤ 8 general points.

(v) (Harder) Study the case k = 2 in a similar vein.

(4) Procure yourself 5 general lines in P2, blow up the 10 points of intersection to

obtain a surface Y , contract the strict transforms of the 5 general lines to obtain

a surface X. Show that X is a Del Pezzo surface with 5 singular points 1/3(1, 1)

and degree K2 = 2/3. Show that X has a free (−1)-curve, that is a (−1)-curve not

intersecting any of the singular points. Contracting this (−1)-curve yields a surface X1

with 5 singular points 1/3(1, 1) and degree K2
X = 2/3. Show that X1 in turn has no

free (−1)-curves. Give an alternative Italian-style birational geometry construction of

X1. (I don’t know how to do this.)
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2 Fano polygons, polytopes and mutations

(5) Find 16 reflexive Fano polygons. (DON’T ask google) and find all the maximally

mutable Laurent polynomials supported on them.

(6) Find an example of an “immutable” Fano polygon.

[Try P(3, 5, 11). Now find another one.]

(7) A polygon P is called centrally symmetric if v ∈ P implies that −v ∈ P . Show

that any centrally symmetric polygon is minimal. It is conjectured that there exists

at most one centrally symmetric polygon in each mutation equivalence class – can you

prove this?

(8) Let P ⊂ R2 be a Fano polygon. Let v1, . . . ,vk be the vertices of P in counter-

clockwise order, and write vi − vi−1 = miei where mi ∈ N and ei is a primitive lattice

vector. Show that the Minkowski factors of P correspond to integer linear combinations:∑
wiei = 0, where 0 ≤ wi < mi

Generalize to higher dimensional Minkowski decompositions.

(9) Let P ⊂ R3 be a Fano polytope in 3D. Show that there are finitely mutations out

of P .

(10) In this question you will learn how to encode lattice polygons by using continued

fractions representing zero.

(i) For integers ai ≥ 2 define

[a0, . . . , an] = a0 −
1

a1 −
1

a2 −
1

a3 − · · · −
1

an

The purpose of this part of the question is to make sense of the expression [a0, . . . , an]

for ai ∈ Z.

Indeed write: (
−qn−1 qn

−pn−1 pn

)
=

(
0 1

−1 a0

)
· · ·

(
0 1

−1 am

)
and define [a0, . . . , an] = pn

qn
. Show that this equals the above definition when all ai ≥ 2.

(ii) Let P be a Fano polygon. Construct a subdivision of the spanning fan of

P corresponding to the minimal resolution of the toric surface XP . Starting from a
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vertex v = e0 of P , let e0, e1, . . . , en be the generators of the rays of the subdivision in

counterclockwise order. Show that(
ei

ei+1

)
=

(
0 1

−1 ai

)(
ei−1

ei

)
where −ai = E2

i is the selfintersection of the corresponding divisor in the minimal

resolution.

(iii) Show that [a0, ..., an] = 0 “with multiplicity one”. Viceversa, starting with a

sequence a0, . . . , an of integers such that [a0, . . . , an] = 0 with multiplicity one, construct

a corresponding Fano polygon.

(11) Write down and understand the complete mutation graph of the polygon with

vertex matrix: (
1 0 −1 0

0 1 0 −1

)
(we don’t know how to do this. If you do, let us know.)

3 Toric complete intersections

(12) Find all singularities of X and compute K2
X for X one of the following toric

complete intersections:

(i)

1 1 1 0 0 0 2 0

0 1 2 1 1 3 4 1

(ii)

1 1 2 1 0 0 2 2

0 0 1 2 1 1 2 2

(iii)

1 3 1 1 0 0 1 3

0 2 2 2 1 1 2 4

(iv)

1 0 0 3 0 1 3

1 1 0 0 3 0 3

3 0 1 3 3 0 6

4 Picard–Fuchs differential equations

(13) Consider the good-old complete elliptic integral

π(λ) =
1

2π i

∮
d λ√

x(x− 1)(x− λ)
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(i) By using the residue theorem around λ = 0, show the power series expansion

π(λ) =
∑
n≥0

(
−1/2

n

)2

λn

(ii) Conclude that π(λ) is a solution of the Picard–Fuchs ordinary differential equation:(
λ(λ− 1)

d2

d λ2
+ (2λ− 1)

d

dλ
+

1

4

)
π(λ) = 0

[For an alternative approach see Clemens A scrapbook of complex curve theory.]

(14) (i) Choose a few (say 5) polygons from Figure 4 (make sure you choose them

with different values of n);

(ii) For each of these polygons P figure out all of the maximally mutable Laurent

polynomials f(x, y) with Newt f = P ;

(iii) Compute the “generic” genus of the completion and normalization of the curve

f(x, y) = 0;

(iv) Can you now guess the answer to the following question: If P ⊂ NR is a Fano

polygon and f(x, y) a generic maximally mutable Laurent polynomial with Newt f = P ,

what is the genus of the completion–normalization of the curve f(x, y) = 0? Can you

prove it?

5 Quantum cohomology

In questions 15 and 16, you are asked to compute part of the small quantum cohomology

of Del Pezzo surfaces of degree 2 and 3 näıvely from the definition.

(15) Cubic surface (i) Let X = X2
3 ⊂ P3 be a nonsingular cubic surface. Let

A be the class of a hyperplane section and consider the subspace of H•X with basis

1, A,A2 = 3pt. Show that quantum multiplication by A preserves this subspace and it

is given by the matrix

M =

0 108q2 756q3

1 9q 108q2

0 1 0


[Hint. The relevant enumerative information is: 〈A,A,A〉1 = 27, 〈A,A,A2〉2 = 12〈pt〉2 =

12× 27, 〈A,A2, A2〉3 = 27× 〈pt,pt〉3 = 27× 84.]

(ii) This is one of the simples examples of a mirror theorem: e6qψ0—cf. Q 8(4)—

satisfies the hypergeometric operator

D3 − 3q(3D + 1)(3D + 2).
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(16) Degree two del Pezzo X = X2
4 ⊂ P(13, 2) Make a similar discussion for

the del Pezzo surface of degree 2, X = X2
4 ⊂ P(13, 2):

(i) In the obvious basis

M =

0 552q2 7, 488q3

1 28q 552q2

0 1 0


(For instance, 7, 488 = 6×1248, where 1248 is the number of cubics through two general

points of X.)

(ii) Make contact with the appropriate hypergeometric differential operator D3 −
4q(4D + 1)(4D + 3).

The next 7 questions form a series on the basics of orbi-curves, which should help

to later build a feeling for how quantum orbifold cohomology is put together. An orbi-

curve is a nodal twisted curve
(
C, xi(ri)

)
where all points with non-trivial stabiliser are

marked with an isomorphism Gxi = µri (sometimes I omit the marked points from the

notation).

(17) (i) Persuade yourselves that the orbifold fundamental group of a smooth orbi-

curve
(
C, xi(ri)

)
is

πorb1 C = π1
(
Cr {xi}

)
/〈γrii 〉

where γi are small loops around the punctures.

(ii) Let C be a smooth orbi-curve and G a finite group. Show that to give a rep-

resentable morphism C → BG is equivalent to give a group homomorphism πorb1 C → G

which sends each γi to an element of order ri. The data is also equivalent to give a

principal G-bundle on C, that is a space π : Gy E → C (where C is the coarse moduli

space of C) which is a principal G-bundle over Cr{xi} and has inertia group µri above

xi.

(18) Show Riemann-Roch and Serre duality for an orbi-curve C. For example, if L

is a line bundle, then we get representations of µri on the fibre Lxi of L at xi and a

Riemann-Roch formula

χ(C, L) = degL+ 1− g −
∑ ki

ri

(19) If
(
C;xi(ri)

)
is a n-pointed orbi-curve and f :

(
C;xi(ri)

)
→ X is a stable rep-

resentable morphism, then f∗TX makes sense is an orbi-bundle and µri = Gxi acts

through the representation into Gf(x); we label the representation at xi by its weights
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0 ≤ wi,j < ri; persuade yourself that the expected dimension of the moduli space is

dimX0,n,β = χ
(
C, f∗TX

)
+ n− 3 =

= −KX · β + dimX + n− 3−
n∑
i=1

dimX∑
j=1

wi,j
ri

[Hint. Denote by

L•f = f∗Ω1
X → Ω1

C

the cotangent complex of the morphism f . The deformation theory of f is controlled

by the hyperext algebra Ext•
(
Lf ,OC

)
.]

(20) Let f :
(
C, xi(ri)

)
→ X be a stable morphism. Let us assume that f is a embed-

ding locally at every point of C. In this case, there is a locally free sheaf Nf , the normal

bundle of f , defined by the sequence

0→ N∨f → Ω1
X → Ω1

C → 0

This needs to be taken with a pinch of salt: show that, when C has nodes, the natural

sheaf homomorphism TX → Nf is not surjective.

(21) Find concrete models for the moduli stacks of stable morphisms of degree ≤ 2

from orbi-curves to P(1, 1, 2). Determine which components have the correct dimension,

which are smooth as Deligne-Mumford stacks, and the nature of all the singular points.

[Degree two is very tough, but try to do at least the case of morphisms of degree

3/2.]

(22) Give a sensible definition of a “stacky” topological Euler number of a smooth

stack curve. State some properties of the topological Euler number. Let C be a smooth

proper curve and G a finite group acting on C: calculate the stacky topological Euler

number of the stack [C/G] in terms of vertices, edges and faces of a G-invariant cellular

decomposition of C.

(23) (i) Given a Deligne-Mumford stack X, build a model for the simplicial stack

made of moduli stacks X0,•,0 of genus 0 •-pointed stable morphisms of degree 0 in

terms of “higher inertia” stacks X•. Carefully identify all degeneneracy and face maps.

(ii) Build a model for the moduli stack X1,1,0 of genus 1 1-pointed stable morphisms

of degree 0. Be careful: this is rather tricky. For instance if X = BG, then X1,1,0 is a

moduli stack of G-twisted covers.

In the next two questions, you are asked to compute the small quantum orbifold

cohomology of a simple explicit stack X näıvely from the definition. This is hard work

but it does give a “body” to a very abstract formalism.
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If w = (w0, . . . , wn) is an integer vector and X = Pw the corresponding weighted

projective space, than the components of the inertia stack are in 1-to-1 correspondence

with the set

F =
{ ki
wi
| i = 0, . . . , n; 0 ≤ ki < wi

}
We denote by X0,n,d(f1, . . . , fn) the connected component of X0,n,d of stable morphisms

which “evaluate” in the components of inertia corresponding to f1, . . . , fn ∈ F .

I often confuse degree in cohomology with degree in the Chow ring—please sort out

the factors of 2 on your own.

(24) X = P(1, 1, 3) (i) Show that H•orbX is generated as a vector space by classes

1, η 1
3
, A = O(1), η 2

3
, A2 in cohomology degrees 0, 2/3, 1, 4/3, 2.

(ii) Show directly from the definition that

η 1
3
∪ η 1

3
= η 2

3
, and η 1

3
∪ η 2

3
= A2 =

1

3
pt.

[Hint. For the first one look for constant representable morphisms in X0,3,0(
1
3

3
). Note

that the last point evaluates with inversion in P(3) 2
3
. The moduli space has virtual

dimension 0 + 2− 2/3− 2/3− 2/3=0; etc.

For the second look for constant representable morphisms in X0,3,0(1/3, 2/3, 0); the

expected dimension of the moduli space is 0+2−2/3−4/3 = 0; the relevant component

of the moduli space is isomorphic to P(3); by definition

η 1
3
∪ η 2

3
= e3 ∗1 =

1

3
pt

—whatever it is, it has degree
∫
P(3) 1 = 1/3.]

Finally, it is clear that η 2
3
∪ η 2

3
= 0; indeed, X0,3,0(

2
3

3
) has virtual dimension 0 + 2−

4/3− 4/3− 4/3 < 0.

(iii) First note that codim q = 1+1+3
1×1×3 = 5/3 (why?). In the basis above, write down

the matrix of quantum multiplication by A:

M =


0 aq

1
3 0 0 0

0 0 0 bq
1
3 0

1 0 0 0 0

0 0 0 0 cq
1
3

0 0 1 0 0


and show that a = b = c = 1/3 by interpreting the unknown entries a, b, c in terms of

stacky Gromov-Witten invariants.

[Hints: First, from A ∗ η 1
3

= 1aq and integrating against A2:

1/3 aq = degA2 aq = 〈1, A2〉 aq = 〈A ∗ η 1
3
, A2〉 = 〈A, η 1

3
, A2〉1/3 q
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or

a = 3

∫
X0,3,1/3

e∗1(A) ∪ e∗2(η 1
3
) ∪ e∗3(A2) ∩ e(E).

Here X0,3,1/3 parameterises representable morphisms with image a curve of degree 1/3

on X; knowing what these curves are, we must be looking at X0,3,1/3(0, 1/3, 0); the

virtual dimension is

dimX0,3,1/3(0, 1/3, 0) = 5/3 + 2− 2/3 = 3.

The virtual dimension is the actual dimension and the problem is unobstructed; you

can integrate:

a = 3

∫
X0,3,1/3

e∗1(A) ∪ e∗2(η 1
3
) ∪ e∗3(A2) =

=

∫
X0,2,1/3

e∗1(A) ∪ e∗2(η 1
3
) =

∫
P(1,3)

A =
1

3

Sanity check: a = 3〈A, η 1
3
, A2〉1/3 = 〈A, η 1

3
, 3A2〉1/3 = (by the divisor axiom) =

1/3〈η 1
3
,pt〉1/3 = 1/3: there is just one orbi-line of degree 1/3 that passes through the

singular point and one additional general point. The corresponding stable morphism

has no automorphisms, hence this line contributes with “multiplicity 1” to 〈η 1
3
, pt〉1/3.

Second, from A ∗ η 2
3

= bq η 1
3
, we derive

1

3
b = b 〈η 1

3
, η 2

3
〉 = 〈A, η 2

3
, η 2

3
〉1/3

The relevant moduli space is X0,3,1/3(1, 2/3, 2/3); it has expected dimension

5/3 + 2− 4/3− 4/3 = 1.

The only way to achieve this is by gluing a morphism in X0,3,0(
2
3

3
) with one in X0,2,1/3(1/3, 0);

the two orbi-curves glue as a nontrivial twisted curve and the map is constant on the

first component. This space is two dimensional; we have to deal with a one-dimensional

2/3

2/3
2/3

1/3

x
1x

2

x
3

Figure 1: X0,3, 1
3

(
0, 2

3
, 2
3

)
obstruction bundle. Note that the first component is in X0,3,0(

2
3

3
) which has negative
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virtual dimension 0 + 2 − 3 × (4/3) = −2 but it is still there. Fortunately, we can

calculate b using the associativity relations:

A2 ∗ η 2
3

= A ∗ (A ∗ η 2
3
) = bqA ∗ η 1

3
= abq21, hence

abq2 = 〈A2 ∗ η 2
3
,pt〉 = 〈A2, η 2

3
, pt〉 2

3
q2.

We calculate an integral over X0,3,2/3(0, 2/3, 0); the generic point of this moduli space is

a stable morphism from a reducible curve with three components: The key thing to keep

2/3 2/3                             2/3

1/3                                                            1/3

x
2

x
3

x
1

Figure 2: X0,3, 2
3

(
0, 2

3
, 0
)

in mind is that the corresponding morphism always has a µ3 of automorphisms over

P(1, 1, 3), coming from the central component C on which the morphism is constant.

The central component maps to Bµ3 and it carries an induced µ3-bundle; this bundle

has a µ3 of automorphisms which survive as nontrivial automorphisms of C over Bµ3.

Having said this, we can now calculate b:

ab =
1

3
b =

1

3

∫
X0,3,2/3(0,2/3,0)

e∗1(pt) ∪ e∗2(η 2
3
) ∪ e∗3(pt) =

1

3

∫
P(3)

1 =
1

9

that is, b = 1/3.

Third, show that c = a. Indeed, from A ∗A2 = cq η 2
3
, we get

1/3 cq = cq deg〈η 2
3
∪ η 1

3
〉 = cq〈η 2

3
, η 1

3
〉 = 〈A,A2, η 1

3
〉1/3 q

and c = 3〈A,A2, η 1
3
〉1/3 = 〈A,pt, η 1

3
〉1/3 = 1/3〈pt, η 1

3
〉1/3 = 1 as before.]

(iv) Let D = q ddq and consider the quantum differential equation

DΨ = ΨM for Ψ: C× → EndH•orb(X,C).

In the given basis, write Ψ = (ψ0, . . . , ψn) where ψi are column vectors; find the ordinary

differential equation satisfied by ψ0.

[Hint.

33(D − 2/3)(D − 1/3)D3ψ0 = 33(D − 2/3)(D − 1/3)D2ψ2 =

33(D − 2/3)(D − 1/3)Dψ4 = 32(D − 2/3)(D − 1/3)q1/3ψ3 =

32q1/3(D − 1/3)Dψ3 = 3q1/3(D − 1/3)q1/3ψ1 =

3q2/3Dψ1 = qψ0]
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(25) X = X2
3 ⊂ P(13, 2) (i) Note that X can be written as(

yx0 + a1(x2, x3) = 0
)
⊂ P(13, 2)

Build a mental picture of X by studying the obvious birational map X 99K P2: X is

obtained by blowing up three collinear points and contracting the proper transform of

the line (x0 = 0). Let A = OX(1). In particular, on X, there are:

• Three ‘lines’ of A-degree 1/2;

• Three fibrations by ‘conics’ of A-degree 1;

• One map to P2.

(ii) Convince yourself that the orbifold cohomology of X has basis 1, A, η, A2 in

degrees 0, 1, 1, 2; degA2 = 3/2 and deg η2 = 1/2.

(iii) Use the information in (i) to show that quantum multiplication by A is given

in this basis by the following matrix where codim q = 2:

M =


0 q〈A,A,pt〉1 0 0

1 0 2
3q

1
2 〈A, η,A〉 1

2
q〈A, pt, A〉1

0 2q〈A,A, η〉 1
2

0 0

0 1 0 0

 =

=


0 3q 0 0

1 0 1
2q

1
2 3q

0 3
2q

1
2 0 0

0 1 0 0

 .

(iv) Verify directly that the cyclic vector ψ0—cf. Q 8(4)—satisfies the ‘expected’

hypergeometric operator

2D3(2D − 1)− 3q(3D + 1)(3D + 2).

[Hint: First rewrite Dψ = ψM in the new basis

φ0 = ψ0

φ1 = Dψ0 = ψ1

φ2 = ψ3 +
3

2
q

1
2ψ2

φ3 = ψ2

A small calculation shows that the equation in the new basis is:

DΦ = Φ


0 3q 0 0

1 0 15
4 q

1
2q

1
2

0 1 0 0

0 0 3
4q

1
2 0


11



In this form it is easy to calculate the equation satisfied by φ0 = ψ0.]

(v) Show that the quantum products calculated in (iii), together with associativity,

determine the whole small quantum cohomology ring. In particular, show that this

determines the curious Gromov-Witten number:

〈η, η, η〉 1
2

= −3

4
.

(vi) The direct calculation of the number in (v) leads to a beautiful case study in

excess intersection theory: the expected dimension of the moduli space is 1+2−3×1 = 0;

1/2
1/2

1/2
1/2

x
2

x
3

x
1

1/2

Figure 3: X0,3,1/2

(
1
2

3)
however, the picture shows an actual moduli space of dimension 1 (the four points on

the component on which the morphism to X is constant). If you feel brave enough,

calculate 〈η, η, η〉 1
2

= −3
4 by a study of the virtual class.

6 Conjecture B

(26) Verify Conjecture B for the following surfaces taken from the 26 surfaces in

Table 2:

(i) No. 26, extended to all of H<2
orb(X,C)⊕ C(−KX).

(ii) No. 22, nonextended, with mirror

f(x, y) =
(1 + y)3

xy
+

1

y
+ xy

(iii) No. 15, nonextended, with mirror

f(x, y) =
(1 + x)2(1 + y)2

xy
+

(1 + y)2

x
+ 2y − 4

(iv) No. 4, nonextended, with mirror

f(x, y) =
(

1 +
1

x
+

1

y

)4( y
x2

+
y2

x

)
− 24
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(27) In this question we verify Conjectures A and B in a simple 3-fold situation:

(i) Find all the rigid maximally mutable Laurent polynomials on the 3D Fano poly-

tope with vertex matrix: 0 1 0 −2

0 0 1 −3

1 −1 −1 −1


You should find precisely two such polynomials:

f(x, y, z) = xz−1 + yz−1 + 2x−1y−1z−1 + x−2y−3z−1 + 3x−1y−2z−1 + 3y−1z−1 + z + 2z−1

g(x, y, z) = xz−1 + yz−1 + 2x−1y−1z−1 + x−2y−3z−1 + 3x−1y−2z−1 + 3y−1z−1 + z + 3z−1

(ii) Compute the first few terms of the quantum period and the Picard–Fuchs dif-

ferential operators for these two polynomials. (Don’t be too proud: go and get some

help: ask someone with a computer):

Lf = −D3 + 4t2(D + 1)(7D2 + 14D + 8) + t4128(D + 1)(D + 2)(D + 3)

Lg = −D3 + 8t2(D + 1)(5D2 + 10D + 6)− t4144(D + 1)(D + 2)(D + 3)

(iii) Show that Vol(P ?) = 48. Go on a table of Fano 3-folds and find that there are

two families with K2 = 48. Show that f is mirror to X(1,1) ⊂ P2 × P2; and g is mirror

to P1 × P1 × P1.

(28) Find all the rigid maximally mutable Laurent polynomials on the 4D Fano

polytope with vertex matrix: 
1 0 0 0 −2

0 1 0 0 −2

0 0 1 0 −2

0 0 0 1 −1


You should just find

f(x, y, z, w) = x+ y + z + w +
2

xyz
+

1

x2y2z2w

(ii) Compute the first few terms of the quantum period and the Picard–Fuchs dif-

ferential operator:

−D4 + 124t4(D + 1)(D + 2)2(D + 3)

(iii) Show that f is mirror to the 4-dimensional quadric.
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(29) Find all the rigid maximally mutable Laurent polynomials on the 4D Fano

polytope with vertex matrix:
1 0 0 0 −1 −1 −1 −1

0 1 0 0 −1 −1 −1 −1

0 0 1 0 1 0 0 −1

0 0 0 1 −1 0 −1 0


You should just find

f(x, y, z, w) = x+ y + z + w +
z

xyw
+

1

xy
+

1

xyw
+

1

xyz

(ii) Compute the first few terms of the quantum period and the Picard–Fuchs dif-

ferential operator.

(iii) Show that f is mirror to the 4-dimensional toric hypersurface X of type (2, 1)

in the toric variety F with weight data:

1 1 1 0 1 1 1

0 0 0 1 1 1 1

(what IS this variety?)

7 Appendix

Table 2: Complete intersection descriptions of the represen-

tatives of Table 1 for the 26 mutation-equivalence classes with

singularity content (n, {m× 1
3(1, 1)}).

# Weights and line bundles

1 1 2 3 5 10

2 1 3 3 2 2 6 4

3

1 0 0 2 1 1 4

0 1 0 1 2 1 4

0 0 1 1 1 2 4

4
1 0 1 1 2 4

0 1 1 2 1 4

5
1 0 2 2 1 1 4 2

0 1 1 1 2 2 2 4
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6
1 0 1 1 2 4

1 1 0 3 3 6

7

1 0 0 0 0 1 1 2 −2 2 0

0 1 0 0 0 2 −1 1 −1 1 0

0 0 1 0 0 −2 2 1 1 0 2

0 0 0 1 0 −1 1 −1 2 0 1

0 0 0 0 1 1 −1 −1 1 0 0

8

1 0 1 0 3 2 5

0 1 1 0 2 3 5

0 0 1 1 1 1 3

9 none

10

1 0 0 0 1 1 1 3

0 1 0 0 2 0 0 2

0 0 1 0 2 0 0 2

1 0 0 1 4 0 0 4

11

1 0 0 3 0 1 3

1 1 0 0 3 0 3

2 0 1 3 3 0 6

12 1 3 3 1 6

13
1 0 1 1 1 3

1 1 3 0 0 3

14
1 0 0 1 1 2

1 1 3 0 0 3

15

1 0 0 1 0 1 2

0 1 0 0 1 1 2

1 0 1 0 1 3 4

16

1 0 0 1 1 0 2

0 1 0 1 0 1 2

1 1 1 4 0 0 4
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17

1 0 0 0 1 0

0 1 0 0 2 3

0 0 1 1 0 2

0 0 0 1 1 3

18
1 1 0 1 3 4

0 1 1 0 0 1

19

1 1 0 2 1 0 3

0 1 0 1 0 1 2

1 2 1 5 0 0 5

20

1 0 0 1 0

0 1 0 2 3

0 0 1 1 3

21 1 1 3 1 4

22
1 0 1 3 0 3

0 1 0 0 1 1

23
1 0 3 −1 1 2

2 1 3 1 0 4

24

1 0 0 1 1

0 1 0 1 2

0 1 1 0 3

25
1 0 1 2

1 1 0 3

26 1 1 3
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Table 1: Representatives for the 26 mutation-equivalence classes of Fano polygons P ⊂
NQ with singularity content (n, {m × 1

3
(1, 1)}). The degrees −K2

X = 12 − n − 5m
3

of the

corresponding toric varieties are also given. See also Figure 4.

# V(P ) n m −K2
X

1 (7, 5), (−3, 5), (−3,−5) 10 1 1
3

2 (3, 2), (−3, 2), (−3,−2), (3,−2) 8 2 2
3

3 (3, 1), (3, 2), (−1, 2), (−2, 1), (−2,−3), (−1,−3) 6 3 1

4 (3, 2), (−1, 2), (−2, 1), (−2,−3) 9 1 4
3

5 (2, 1), (1, 2), (−1, 2), (−2, 1), (−2,−1), (−1,−2), (1,−2), (2,−1) 4 4 4
3

6 (3, 2), (−1, 2), (−2, 1), (−2,−1), (−1,−2) 7 2 5
3

7 (2, 1), (1, 2), (−1, 2), (−2, 1), (−2,−1), (−1,−2), (1,−1) 2 5 5
3

8 (2, 1), (1, 2), (−1, 2), (−2, 1), (−2,−1), (−1,−2) 5 3 2

9 (1, 1), (−1, 2), (−2, 1), (−1,−1), (1,−2), (2,−1) 0 6 2

10 (1, 1), (−1, 2), (−1,−2), (1,−2) 8 1 7
3

11 (1, 1), (−1, 2), (−2, 1), (−1,−1), (2,−1) 3 4 7
3

12 (3, 1), (−3, 1), (0,−1) 6 2 8
3

13 (1, 1), (−1, 2), (−1,−1), (2,−1) 6 2 8
3

14 (1, 1), (−1, 2), (−2, 1), (−1,−1), (1,−1) 4 3 3

15 (1, 1), (−1, 2), (−1,−1), (1,−1) 7 1 10
3

16 (1, 1), (−1, 2), (−1, 0), (0,−1), (2,−1) 5 2 11
3

17 (1, 0), (1, 1), (−1, 2), (−2, 1), (−1,−1), (0,−1) 3 3 4

18 (1, 0), (0, 1), (−1, 1), (−1,−3) 6 1 13
3

19 (1, 1), (−1, 2), (−1, 1), (0,−1), (2,−1) 4 2 14
3

20 (1, 1), (−1, 2), (−2, 1), (−1,−1), (0,−1) 2 3 5

21 (1, 1), (−1, 2), (−1,−2) 5 1 16
3

22 (1, 1), (−1, 2), (−1,−1), (0,−1) 5 1 16
3

23 (1, 1), (−1, 2), (0,−1), (2,−1) 3 2 17
3

24 (0, 1), (−1, 2), (−2, 1), (−1, 0), (1,−1) 4 1 19
3

25 (0, 1), (−1, 2), (−2, 1), (1,−1) 3 1 22
3

26 (−1, 2), (−2, 1), (1,−1) 2 1 25
3
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Figure 4: Representatives for the 26 mutation-equivalence classes of Fano polygons P ⊂ NQ

with singularity content (n, {m× 1
3
(1, 1)}). See also Table 1.
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