Number Theory Example Sheet 4 Michaelmas 2004

Dr Alessio Corti

22nd November, 2004

(Questions marked with a * are optional.)

(1) Assuming that $\pi = 3.1415926...$ correct to seven decimal places, prove that the first three convergents to π are:

$$\frac{22}{7}, \quad \frac{333}{106}, \quad \frac{355}{113}.$$

Verify that $|\pi - 355/113| < 10^{-6}$.

(2) Find the fundamental solutions of the Pell equations $x^2 - Ny^2 = 1$ for N = 5, 7, 11, 13, 17.

(3) Find two solutions in positive integers for each of the equations $x^2 - 21y^2 = 1$, $x^2 - 29y^2 = 1$.

(4) Prove that the number with continued fraction $[10, 10^{2!}, 10^{3!}, ...]$ is transcendental.

(5) Following the examples in class, use the continued fraction algorithm to factor the numbers: 9509, 13561, 8777.

(6) Let M, N be positive integers such that N is not a square, and $M \leq \sqrt{N}$. If x, y is a solution of the equation $x^2 - Ny^2 = M$, prove that x/y is a convergent of \sqrt{N} .

(7) Use Pollard's p-1 method with k = 840 and a = 2 to try to factor n = 53467. Then try with a = 3.

(8*) Prove that, if (x_n, y_n) for n = 1, 2, ... is the sequence of positive solutions of the Pell equation $x^2 - Ny^2 = 1$ written in increasing values of x_n, y_n , then x_n and y_n satisfy a recurrence relation

$$u_{n+2} - 2au_{n+1} + u_n = 0$$

where a is a positive integer. Find a when N = 7.