M3P14 Elementary Number Theory— Problem Sheet 2.

This is assessed coursework. Please hand in solutions to the starred questions on Monday $17^{\rm th}$ November.

 (1^*) Find the smallest non-negative integer x simultaneously satisfying

$$\begin{cases} x \equiv 2 \mod 3 \\ x \equiv 3 \mod 5 \\ x \equiv 1 \mod 4. \end{cases}$$

(2) (a) How many elements does (Z/9Z) have? And how many does (Z/9Z)[×] have? For each element of (Z/9Z)[×], find its inverse (using any method you like).
(b) What is the solution to 7x ≡ 5 mod 9?

(3^{*}) Compute 2⁹⁹⁹⁰ mod 9991 and use your answer to say whether you believe that 9991 is prime. (Hint: by Fermat's "little" theorem, if p is prime, then, for all $a, a^p \equiv a \mod p$.)

(4) (a) Solve the congruence $x^{113} \equiv 347 \mod 463$. (b) Solve the congruence $x^{275} \equiv 139 \mod 588$.

(5) (a) Let b, k, and n be integers that satisfy

$$\operatorname{hcf}(b,m) = 1$$
 and $\operatorname{hcf}(k,\varphi(m)) = 1$.

Show that b has *exactly one* k-th root $\mod m$.

(b) Suppose instead that $hcf(k, \varphi(m)) > 1$; show that either b has no k-th roots mod n, or else it has at least two roots mod m.

(c) If m = p is a prime, look at some examples and try to guess a formula for the number of k-th roots of b mod p (assuming that it has at least one).

(6^{*}) Let b, k, and n be integers; assume that $hcf(k,\varphi(m)) = 1$, and let y, z > 0 be natural numbers such that

$$ky - \varphi(m)z = 1.$$

(a) If m is a product of distinct primes, show that $x \equiv b^y \mod m$ is always a solution to

$$x^k \equiv b \mod m$$

even if hcf(b, m) > 1.

(b) Show that the method does not work for the congruence $x^5 \equiv 6 \mod 9$.

(7)(a) Evaluate $\varphi(1)$, $\varphi(100)$, $\varphi(101)$ and $\varphi(102)$.

- (b) Prove that if n is odd then $\varphi(2n) = \varphi(n)$.
- (c) Prove that if n > 2 then $\varphi(n)$ is even.

(8) Here is a low-level proof of the Fermat-Euler theorem. Say $m \in \mathbb{N}$ and $a \in \mathbb{Z}$ with hcf(a, m) = 1. Let S be the set $(\mathbb{Z}/m\mathbb{Z})^{\times}$.

(a) Prove that the map $x \mapsto ax$ is a bijection from S to itself (hint: write down an inverse).

- (b) Deduce that $\prod_{s \in S} s \equiv \prod_{s \in S} as \mod m$. (c) If P denotes $\prod_{s \in S} s$ then prove that $P \in S$. (d) Deduce from (b) that $P \equiv a^{\varphi(m)}P$ and from (c) that $a^{\varphi}(m) \equiv 1 \mod m$.
 - (9) Let f and g be functions $\mathbb{N} \to \mathbb{C}$. Define a new function f * g by

$$(f * g)(n) = \sum_{d|n} f(d)g(n/d),$$

where the sum is, as usual, over the (positive) divisors of n. Prove that if f and g are multiplicative, then (f * g) is also multiplicative.

(10) Let d(n) denote the number of (positive) divisors of n, and let $\sigma(n)$ denote their sum. If $n = \prod_{i=1}^{r} p_i^{e_i}$ with p_1, p_2, \ldots, p_r distinct primes, then show that

(a) $d(n) = \prod_i (e_i + 1),$ (b) $\sigma(n) = \prod_i \frac{p_i^{e_i + 1} - 1}{p_i - 1}.$

(11^{*}) (a) For $x \ge 2$, show that

$$\sum_{n \le x} \frac{\log n}{n} = \frac{1}{2} \log^2 x + A + O\left(\frac{\log x}{x}\right), \text{ and}$$
$$\sum_{2 \le n \le x} \frac{1}{n \log n} = \log(\log x) + B + O\left(\frac{1}{x \log x}\right)$$

where A, B are constants. (b) If $x \ge 2$, prove that

$$\sum_{n \le x} \frac{d(n)}{n} = \frac{1}{2} \log^2 x + 2\gamma \log x + O(1)$$

where d(n) is the number of divisors of n and γ is Euler's constant.