Groups Rings and Fields, Example Sheet 3

Dr Alessio Corti a.corti@dpmms.cam.ac.uk

February 2003

(1) Write $X^2 + Y^2 + Z^2$ and $X^2Y^2 + Y^2Z^2 + Z^2X^2$ in terms of the elementary symmetric functions in X, Y and Z. Suppose that $X^3 - a_1X^2 + a_2X - a_3 \in \mathbb{C}[X]$ has roots α , β and γ . Find the monic polynomial with roots α^2 , β^2 and γ^2 .

Suppose that $X^3 - a_1 X^2 + a_2 X - a_3 \in \mathbb{C}[X]$ has roots α , β and γ all non-zero. Find the monic polynomial with roots $1/\alpha$, $1/\beta$ and $1/\gamma$. [Hint. This is easy.]

(2) Use Newton's Identities relating the symmetric powers to the elementary symmetric functions to express the symmetric powers p_2 , p_3 and p_4 in three variables X, Y and Z in terms of the corresponding elementary symmetric functions.

(3) Let $G \cong C_4$ be the subgroup of $GL_2(\mathbb{C})$ generated by the matrix $A = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$. When G acts on $\mathbb{C}[X, Y]$ in the obvious way, show that $\mathbb{C}[X, Y]^G = \mathbb{C}[XY, X^4, Y^4]$. (You can use the Noether method as explained in class, or try to do it by "brute force").

Repeat the process for $G \cong C_4$, the subgroup of $GL_2(\mathbb{C})$ generated by the matrix $\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}$.

(4) Let G be the subgroup of $GL_2(\mathbb{C})$ generated by the matrix $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. G acts on $\mathbb{C}[X, Y]$ in the obvious way. Compute the ring of invariants as follows.

- 1. Noether's proof gives just one polynomial. Find it and give its coefficients.
- 2. Take the monomials of depth less than 4 and symmetrize them with respect to the group action.
- 3. Deduce that

$$\mathbb{C}[X,Y]^G = \mathbb{C}[X^2 + Y^2, X^2Y^2, XY(X^2 - Y^2)].$$

Repeat the last question replacing A by $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$. What is the ring of invariants?

(5) Let *D* be the subgroup of $GL_2(\mathbb{C})$ generated by the matrices $A = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, and $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Show that *D* is the dihedral group of order 8. *D* acts on $\mathbb{C}[X,Y]$ in the obvious way. Show that

$$\mathbb{C}[X,Y]^D = \mathbb{C}[XY,X^4 + Y^4]$$

(6) Let Q be the subgroup of $GL_2(\mathbb{C})$ generated by the matrices $A = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, and $B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$. Show that Q is the quaternionic group of order 8. Q acts on $\mathbb{C}[X, Y]$ in the obvious way. Show that

$$\mathbb{C}[X,Y]^Q = \mathbb{C}[X^4 + Y^4, X^2Y^2, XY(X^4 - Y^4)].$$

(7) In three variables Newton's recurrence formulae $e_1 = p_1$, $2e_2 = p_1e_1 - p_2$, $3e_3 = p_1e_2 - p_2e_1 + p_3$ and so on give the following

- $p_2 = e_1^2 2e_2$, so we can eliminate e_1^2 in favour of p_2 ;
- $p_4 = p_3e_1 p_2e_2 + p_1e_3 = (p_2e_1 p_1e_2 + 3e_3)e_1 p_2e_2 + e_1e_3 = (p_2 e_2)e_1^2 p_2e_2 + 4e_1e_3$ so we can eliminate e_1e_3 in favour of p_4 ;
- $p_6 = p_5e_1 p_4e_2 + p_3e_3 = p_4e_1^2 p_3e_2e_1 + p_2e_3e_1 p_4e_2 + p_2e_1e_3 p_1e_2e_3 + 3e_3e_3$ whence iductively we can eliminate e_3e_3 in favour of p_6 .

(8) Let R[[X]] be the ring of formal power series $\sum_{i=0}^{\infty} a_i X^i$ with coefficients in R.

(i) Show that an element of form $1 + a_1X + a_2X^2 + \cdots$ is a unit in R[[X]]. What are the units?

(ii) Show that if R is Noetherian then so is R[[X]].