Examples 1: singularities of surfaces

A. C.

In the following problems, you better use the following **Theorem** (see [AVGZ]): Let $f: \mathbb{C}^n, 0 \to \mathbb{C}, 0$ be an analytic function defining an isolated singularity $\{f = 0\} \subset \mathbb{C}^n$, let J be the ideal generated by the partial derivatives $\frac{\partial f}{\partial x_i}$ and let $\alpha = (a_1, \ldots, a_n)$ be a weight.

Assume that

$$f = f_0 + h$$

where $f_0 = 0$ is an isolated singularity and $d = \deg_{\alpha} f_0 < \deg_{\alpha} h$. Out of a monomial basis of \mathcal{O}/J_0 , let x^{m_1}, \ldots, x^{m_k} be those monomials with $\deg_{\alpha} x^{m_i} > d$. Then f is analytically equivalent to

$$f_0 + \sum c_i x^{m_i}$$

for some constants $c_i \in \mathbb{C}$.

(1) If $f = x^2 y + O(4)$ defines an isolated singularity $\{f = 0\} \subset \mathbb{C}^2$, then f is analytically equivalent to

$$x^2y + y^k$$

for some $k \ge 4$.

(2) In this question, we classify canonical surface singularities $\{f(x, y, z) = 0\} \subset \mathbb{C}^3$:

(i) Show that for all weightings α of the variables $x, y, z, \deg_{\alpha}(xyz) \geq \deg_{\alpha}(f) + 1$.

(ii) Prove that f has a nonzero part f_2 of degree 2, so in suitable coordinates:

$$f_2 = x^2 + y^2 + z^2, \text{ or}$$

= xy, or
= x²

In the first case we have an A_1 -singularity; otherwise:

(iii) If $f_2 = x^2$, then is suitable coordinates $f = xy + z^k$. (iv) If $f_2 = x^2$, then $x^2 + g(y, z)$ and $g_3 \neq 0$. Further cases are: (v)

$$g_3 = y^3 + z^3$$
, then $x^2 + y^3 + z^3$ or
= $y^2 z$, then $x^2 + y^2 z + z^k$ ($k \ge 4$), or
= y^3 .

In the last case we have the three possibilities

$$\begin{cases} x^2 + y^3 + yz^3 \\ x^2 + y^3 + z^4 \\ x^2 + y^3 + z^5. \end{cases}$$

(vi) Explicitly resolve all these singularities and check that they are canonical.

(3) Let ζ be a primitive 2*n*th root of 1 and consider the matrices

$$A = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Check that A, B generate a finite group $G \subset SL_2(\mathbb{C})$ of order 4n. Prove that $\mathbb{C}^2/G = \{x^2 + y^2z + z^n = 0\}.$

(4) Resolve the elliptic Gorenstein singularity

 $T_{p,q,r}$ defined by $xyz + x^p + y^q + z^r = 0$ for $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} \le 1$.

[Hint: do the case $p, q, r \ge 3$ first.]

(5) Resolve the elliptic Gorenstein singularities given by:

$$x^{2} + y^{3} + z^{k} = 0$$
 for $k = 6, 7, 8, 9, 10, 11$, and
 $x^{2} + y^{3} + yz^{l} = 0$ for $l = 5, 7$.

[Hint: start out with a blowup with weights 3, 2, 1.]