Biomedical Engineering Year 1

1. Find the general solutions of the following equations.

(a)
$$y'' + 3y' - 4y = 7e^{3x}$$

- (b) $y'' 3y' + 2y = e^{2x}$.
- (c) $y'' 4y' + 4y = e^{2x}$.
- (d) $2y'' 3y' + y = x^2$.
- (e) $y'' 2y' + 2y = e^x \sin x$.
- (f) $y'' + y' + y = 49xe^{2x}$.
- (g) $y'' 2y' + y = x^3$.
- (h) $y'' + 9y = \cos^2 x$.
- 2. Find the solution of the equation

$$y'' + 6y' + 8y = 12\cosh 2x,$$

for which y(0) = 0 and y'(0) = 1.

3. Show that the substitution $x = e^t$ converts the equation

$$ax^2\frac{d^2y}{dx^2} + bx\frac{dy}{dx} + cy = 0,$$

in which a, b and c are constants, into an equation with constant coefficients. Hence find the general solution of the equation

$$x^2 \frac{d^2 y}{dx^2} \, + \, x \frac{dy}{dx} \, + \, y \, = \, 0 \, .$$

4. A particle of mass m moves along the x axis under the influence of a restoring force $-m\omega^2 x$ and a frictional force mk, where ω and k are positive constants. The frictional force acts at all times to oppose the motion. If the particle is launched from the origin with velocity V in the positive x direction, show that it first comes to rest at time t = T, where $\omega T = \tan^{-1}(\omega V/k)$ and find x(T).

(Optional) Show that no further motion can take place unless $V > 3^{1/2}k/\omega$. [Hint : for t > T, the equation of motion of the particle is $mx'' = -m\omega^2 x + mk$, and x'(T) = 0. Find x(t) for t > T and consider x'(t) for t > T.]

5. A raindrop of mass m falling through the atmosphere is subject to air resistance proportional to the square of its velocity v. Show that the equation of motion is

$$m\frac{dv}{dt} = mg - mkv^2$$

where g is the acceleration due to gravity and k is a positive constant. If x is the distance fallen after time t from an initial state of rest, show that $\frac{dy}{dx} = 2(g - ky)$, where $y = v^2$. Find v as a function of x and determine the terminal velocity.

[Hint:
$$\frac{dv}{dt} = \frac{dv}{dx}\frac{dx}{dt} = \frac{dv}{dx}v = \frac{1}{2}\frac{d}{dx}v^2$$
.]

P.T.O.

Answers for Problems 9

1. (i) $y' = y \cot x + \sin x$. (ii) $x^2 y' - xy = y^2$. 2. (i) y = 2x + 1. (ii) $y = 1/2(1 + x^2)^2$. (iii) $y = 1 \pm (1 - x^2)^{\frac{1}{2}}$. (iv) $y = 2x (1 - kx^2)^{-1}$. (v) $xy^2 + x^3 = c$. (vi) $x^3 + y^3 = cxy$. (vii) $y = (1 - 2\cos x)\cos x$. (viii) $y = (2x + c) e^{(-x^2)}$. (ix) $y = \frac{1}{4}x^2 - \frac{1}{3}x + \frac{1}{2} - \frac{1}{12}x^{-2}$. 3. A = 2 and B = -1. $(x - y - 3)^4 = k(2x + y - 3)$. 4. (i) $3x^3 + xy - x - 2y^2 = c$. (ii) $x^2y^2 + 2xy = c$. 5. n = 2. $x^5 + 3x^4y - x^3y^2 = c$. 6. $xy^4 - 2xy^2 + \frac{1}{2}x^2y^6 - x^2y^4 + \frac{1}{2}y^2 = c$. 7. $\frac{2}{5} \frac{R^2 H^{1/2}}{ka^2}$.