Algebraic Topology M3P21 2015 solutions 3

AC Imperial College London a.corti@imperial.ac.uk

11thth March 2015

A small disclaimer

This document is a bit sketchy and it leaves some to be desired in several other respects too. I thought it is more useful to you if I show you this now than if I show you a much better document at a time infinitely far into the future.

(1)

$$\sum_{i=1}^{n} (-1)^{i} \dim H_{i} =$$

$$= \sum_{i=1}^{n} (-1)^{i} \dim \ker \phi_{i} + \sum_{i=1}^{n} (-1)^{i-1} \dim \operatorname{im} \phi_{i-1} =$$

$$= \sum_{i=1}^{n} (-1)^{i} (\dim \ker \phi_{i} + \dim \operatorname{im} \phi_{i})$$

since dim im $\phi_0 = \dim \operatorname{im} \phi_n = 0$. But dim ker $\phi + \dim \operatorname{im} \phi = \dim V$ for all linear maps $\phi: V \to W$.

(2) (a) By exactness at A, $0 = im(0) = ker(\phi)$ so ϕ is an isomorphism onto its image as desired. Exactness at C gives $C = ker(0) = im(\psi)$, and

so $C = \operatorname{im} \psi \cong B/\ker(\phi) = B/(\operatorname{im} \phi)$ by the first isomorphism theorem of group theory and exactness at B.

(b) Injectivity: If $\phi(a) + \rho(c) = 0$, then applying ψ yields c = 0 by exactness of the sequence and the defining property of ρ . Hence $\phi(a) = 0$ and so a = 0 by exactness. Surjectivity: For any $b \in B$ put $c = \psi(b)$ and write $b = (b - \rho(c)) + \rho(c)$. Notice that $b - \rho(c) \in \ker(\psi)$ since $\psi(b - \rho(c)) =$ $c - (\psi \circ \rho)(c) = 0$, and hence $b - \rho(c) = \phi(a)$ for some a by exactness.

Woffle The maps in the exact sequence $0 \to \mathbb{Z}_n \to \mathbb{Z}_{n^2} \to \mathbb{Z}_n \to 0$ are given by $\phi(x \mod n) = (nx \mod n^2)$ (well-defined since if x changes by a multiple of n then nx changes by a multiple of n^2 ; and clearly a group homomorphism) and $\psi(x \mod n^2) = (x \mod n)$ (well-defined since n^2 is a multiple of n. The obvious guess $\rho(x \mod n) = x \mod n^2$ is not well defined since n is not a multiple of n^2 . We can force well-definedness by insisting that $x \in \{0, 1, \ldots, n-1\}$ but the resulting ρ would not be a group homomorphism (consider $\rho(x+x)$ and $\rho(x) + \rho(x)$ for x = n - 1).

In fact $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ is not isomorphic to \mathbb{Z}_4 (it has no elements of order 4) and, more generally, and for the same reason, $\mathbb{Z}_n \oplus \mathbb{Z}_n$ is not isomorphic to \mathbb{Z}_{n^2} (all elements have order dividing n, so no element has order n^2).

A theorem of linear algebra states that linear subspaces of vector spaces over a field always have complements, and if $D \subset B$ complements $\ker(\psi)$ then the natural map $D \to B/\ker(\psi)$ is an isomorphism. Thus $D \cong B/\ker(\psi) \cong$ $\operatorname{im} \psi = C$, and composing the inverse of the composition of these isomorphisms with the inclusion of D into B yelds the desired linear map ρ .

(3) This is a straight-up Mayer-Vietoris question. We have a long exact sequence

$$\cdots \to H_1(\mathbb{R}^n) \to H_0(U \cap V) \to H_0(U) \oplus H_0(V) \to H_0(\mathbb{R}^n) \to 0.$$

Now $H_1(\mathbb{R}^n) = 0$ since \mathbb{R}^n is contractible (or even only since \mathbb{R}^n is simplyconnected) so $H_0(U \cap V)$ injects into $H_0(U) \oplus H_0(V)$ with image equal to the kernel of the surjection $\phi : H_0(U) \oplus H_0(V) \to H_0(\mathbb{R}^n)$. Now $H_0(U) \cong$ $H_0(V) \cong H_0(\mathbb{R}^n) \cong \mathbb{Z}$ since all three spaces are path-connected; conversely $H_0(U \cap V) \cong \mathbb{Z}$ would *imply* that $U \cap V$ is path-connected by Hatcher Proposition 2.6.

It seems intuitively obvious that a surjection $\mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}$ must have a "1-dimensional" kernel. In fact, this would be obvious from the standard rank-nullity theorem if we were using homology with coefficients in the abelian

group G = (k, +), where k is a field—for example $k = \mathbb{Q}$ (so this is then one way of answering the question, assuming that Mayer-Vietoris works with G-coefficients).

Alternatively "rank-nullity for abelian groups" (Google!) shows that $H_0(U \cap V)$ has rank 1, and since $H_0(U \cap V)$ is torsion-free by Hatcher Proposition 2.6, $H_0(U \cap V) \cong \mathbb{Z}$.

Arguably the least pretentious way out is to note that $\phi(a, b) = a - b$ if we use augmentation to identify H_0 of each of U, V, \mathbb{R}^n with \mathbb{Z} , and so then obviously ker $(\phi) = \{(a, a) : a \in \mathbb{Z}\} \cong \mathbb{Z}$.

(4) It suffices to compute the induced maps on π_1^{ab} , or equivalently on π_1 since all fundamental groups in this question are abelian.

(a) We know that $\pi_1(S^1 \times S^1) \cong \mathbb{Z}^2$ via the isomorphism whose inverse sends $(m, n) \in \mathbb{Z}^2$ to the homotopy class of the loop $t \mapsto (e^{2\pi i m t}, e^{2\pi i n t})$. Thus (exactly as in Homework 3) it follows straight from the definitions that $f_*(m, n) = (am + bn, cm + dn)$, or in other words $f_* = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

(b) Similarly, what we have proved about fundamental groups is enough to deduce that the map $\mathbb{Z} \to \pi_1(S^1 \times B^2)$, $m \mapsto [t \mapsto (e^{2\pi i m t}, 1)]$, is a group isomorphism (using that B^2 is contractible). It is then once again immediate from the definitions that $i_*(m, n) = m$.

(5) Notice that $U \cap V = L \sqcup R$, where $L = (X \times (0, \frac{1}{2}))/\sim$ and $R = (X \times (\frac{1}{2}, 1))/\sim$. Hence the question comes down to understanding the relation between the homology groups of U, V, L, R and X. I claim that there exist four homotopy equivalences $\alpha : L \to X$, $\beta : R \to X$, $\gamma : U \to X$ and $\delta : V \to X$ such that the following four diagrams commute:

Let's assume for now that this is true. Then we have the following commu-

tative diagram:

The arrows (1), (2), (3), (4) will be explained presently; (1), (3), (4) are isomorphisms. Hence there is one and only one way of defining ϕ such that the diagram commutes. Once (1), (2), (3), (4) have been defined, it will therefore be possible to compute ϕ , and the result will be as claimed.

(1) is the canonical isomorphism identifying the homology of a disjoint union with the direct sum of the homologies of its pieces (Hatcher Proposition 2.6). So (1) maps (l, r) to $\lambda_*(l) + \rho_*(r)$, where $\lambda : L \to U \cap V$ and $\rho : R \to U \cap V$ are the inclusions.

(2) is defined to be the composition of $i_* \oplus j_*$ with (1). In other words, (2) maps a pair (l,r) to $(i_*(\lambda_*(l) + \rho_*(r)), j_*(\lambda_*(l) + \rho_*(r))) = ((i|_L)_*(l) + (i|_R)_*(r), (j|_L)_*(l) + (j|_R)_*(r)).$

(3) maps (l, r) to $(\alpha_*(l), \beta_*(r))$. This is an isomorphism since α, β are homotopy equivalences.

(4) maps (u, v) to $(\gamma_*(u), \delta_*(v))$. This is an isomorphism since γ, δ are homotopy equivalences.

As indicated above, with these definitions in place we can compute $\phi(a, b)$. In order to do so, we write $(a, b) = (3)(l, r) = (\alpha_*(l), \beta_*(r))$. Then $\phi(a, b) = (4)(2)(l, r)$ by commutativity of the diagram. Thus, $\phi(a, b) = (4)(2)(l, r) = (\gamma_*(i|_L)_*(l) + \gamma_*(i|_R)_*(r), \delta_*(j|_L)_*(l) + \delta_*(j|_R)_*(r))$. Finally, using the four small diagrams, $\phi(a, b) = (\alpha_*(l) + \beta_*(r), \alpha_*(l) + f_*\beta_*(r)) = (a + b, a + f_*(b))$ as desired.

It remains to discuss the four small diagrams, i.e. to define $\alpha, \beta, \gamma, \delta$, check that they are indeed homotopy equivalences as claimed, and that the diagrams actually commute.

Defining α, β, γ is easy since L, R, U are obviously homeomorphic to $X \times interval$. For example, $L = (X \times (0, \frac{1}{2}))/\sim$ and all equivalence classes are single points, so we can just put $\alpha([(x, t)]) = x$; likewise $\beta([(x, t)]) = x$ and $\gamma([(x, t)]) = x$. Clearly the first and the third diagram commute.

In order to define δ we produce a homeomorphism $\hat{\delta} : V \to X \times (0, 1)$ and define $\delta = \operatorname{pr}_X \circ \hat{\delta}$. In order to define $\hat{\delta}$ we recall that $V = (X \times ([0, \frac{1}{2}) \cup (\frac{1}{2}, 1]))/\sim$ and employ a piecewise definition: For $t \in [0, \frac{1}{2})$ put $\hat{\delta}([(x, t)]) = (x, t + \frac{1}{2})$. For $t \in (\frac{1}{2}, 1]$ put $\hat{\delta}([(x, t)]) = (f(x), t - \frac{1}{2})$. This is well-defined since the only nontrivial equivalence relations are $(x, 1) \sim (f(x), 0)$, and indeed (x, 1) gets mapped to $(f(x), \frac{1}{2})$ by the second part of the definition of $\hat{\delta}$, as does (f(x), 0) by the first part.

Given that δ is a homeomorphism (which is the only step of the proof I'm skipping—this follows easily from f being a homeomorphism), it is clear that δ is a homotopy equivalence. Commutativity of the second and fourth diagrams is clear from the definitions.

(6) X is homotopic to $(\vee^n S^1) \vee S^2$ so by repeated applications of Seifert-van Kampen $\pi_1(X) = \mathbb{Z}^{\star n}$. There are various ways to compute homology. An efficient way is to use the exact sequence of the pair (X, A) where $A = \vee^n S^1$. First check that $H_1 A = \mathbb{Z}^n$, $H_0 A = \mathbb{Z}$ and all other $H_i A = (0)$. Then note that (X, A) is a good pair so $H_i(X, A) = H_i X/A = H_i S^2$. The exact sequence looks like

$$H_2 A\big((=(0)\big) \to H_2 X \to H_2 X/A(=\mathbb{Z}) \to H_1 A(=\mathbb{Z}^n) \to H_1 X \to H_1 X/A\big(=(0)\big)$$

Note that by excision $H_2(X, A) = H_2(S^2, \text{pt})$ and the natural map $H_2(X, A) \rightarrow H_1 A$ factors through $H_1 \text{ pt} \rightarrow H_1 A$ induced by the natural inclusion $\text{pt} \rightarrow A$ hence it is the zero map. It follows that:

$$H_i X = \begin{cases} \mathbb{Z} & \text{if } i = 0\\ \mathbb{Z}^n & \text{if } i = 1\\ \mathbb{Z} & \text{if } i = 2\\ (0) & \text{otherwise} \end{cases}$$

(7) This is dead easy: upto homeomorphism it doesn't matter where the lines are: $X = (\mathbb{R}^2 \setminus \{P_1, P_2, P_3\}) \times \mathbb{R}$ is homotopic to $\vee^3 S^1$, hence $\pi_1(X) = \mathbb{Z}^{\star 3}$ and $H_0 X = \mathbb{Z}$, $H_1 X = \mathbb{Z}^3$, and all other H_i are (0).

(8) $\mathbb{P}^2(\mathbb{C})$ minus a line is the affine plane \mathbb{C}^2 so $X = \mathbb{C}^2 \setminus \{0\} = \mathbb{R}^4 \setminus \{0\} \sim S^3$. So $\pi_1(X) = (0)$, $H_3 X = H_0 X = \mathbb{Z}$ and all other $H_i X = (0)$.

(9) Right. Well (X, A) is a good pair so $H_i(X, A) = H_i(X/A)$ and X/A is the torus again: $H_i(X, A) = H_i S^1 \times S^1$ and everybody knows what these groups are: $H_0 = H_2 = \mathbb{Z}$, $H_1 = \mathbb{Z}^2$ and all other $H_i = 0$.

(10) Oh, I don't know. If $A = S^{n-1} \subset S^n$ then $S^n/A = S^n \vee S^n$. So let $\pi: S^n \to S^n \vee S^n$ be the quotient map and $h = \mathrm{id} \vee \varphi: S^n \vee S^n \to S^n$ where $\varphi: S^n \to S^n$ is your favourite map of degree -1 fixing the point where the two sphere are joined. Now $f = h \circ \pi$ will do the trick.