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Exercise 1. To maintain mental sanity, I will denote points of I (resp.
S1, D2) by the letters t, s (resp. z, w) and I will use the letters H,G,F for
maps from I × I, I × S1, D2 to X, respectively.

(i)⇒ (ii): let f : S1 → X be continuous map and we want to show that it
can be extended to a continuous map on D2. By (i), f is nullhomotopic, so
there exists a continuous map G : I × S1 → X such that G(0, ·) is constant
and G(1, ·) = f . Let x0 ∈ X be the value of G(0, ·). We define F : D2 → X
by

F (w) =

{
G
(
|w|, w|w|

)
if w 6= 0,

x0 if w = 0.

If F is continuous we are done because F is an extension of f to D2. We have
to show that F is continuous. This was missing in many of your solutions!

The situation is summarised by the following commutative diagram

I × S1 G //

π
��

X

D2

F

<<

where π : I × S1 → D2 is defined by π(t, z) = tz for all t ∈ I and z ∈ S1.
Since I×S1 is compact and D2 is Hausdorff, π is closed. Since π is closed and
surjective, π is a quotient map. Since π is a quotient map, F is continuous
by the universal property of the quotient topology.

More explicitly, if C is a closed subset of X, then G−1(C) is closed in
I × S1. Since π is closed and surjective, F−1(C) = π(G−1(C)) is closed in
D2.

Another method. I will show an explicit proof of the continuity of F . It
is clear that it is enough to show that F is continuous at the point 0. So
let U be a neighbourhood of x0 in X. For every z ∈ S1, the map G is
continuous at (0, z) and the products [0, ε) × V constitute a local basis of
neighbourhoods of (0, z) in I×S1, as ε ∈ (0, 1] and V is a neighbourhood of
z in S1. Therefore, for every z ∈ S1, there exist a real number 0 < εz ≤ 1
and a neighbourhood Vz of z in S1 such that G([0, εz)× Vz) ⊆ U .

Since S1 is compact, we can extract from the open cover {Vz}z∈S1 a finite
subcover {Vz1 , . . . , Vzn}. This implies that if ε = min{εz1 , . . . εzn} then each
point of [0, ε)×S1 is contained in [0, εzi)×Vzi for some i ∈ {1, . . . , n}. Hence
G([0, ε) × S1) ⊆ U . Therefore F (w) ∈ U for all w ∈ D2 such that |w| < ε.
We have found a neighbourhood of 0 in D2 which is mapped into U by F .

This is the only proof, known by me, that shows that limw→0 F (w) = x0.
You can see that both proofs of the continuity of F rely on a compactness
argument.
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(ii) ⇒ (i): let f : S1 → X be a continuous map. By (ii) it extends to
D2, so there exists a continuous map F : D2 → X such that F |S1 = f . Let
π : I × S1 → D2 be defined by π(t, z) = tz for t ∈ I and z ∈ S1. Consider
the map G : I × S1 → X defined by G = F ◦ π.

I × S1 G //

π
��

X

D2

F

<<

G is continuous, because it is the composite of two continuous maps, and
such that G(0, ·) = F (0) is constant and G(1, ·) = f . So G is a homotopy
between f and a constant map.

(ii)⇒ (iii): this is the most difficult part of the exercise. A lot of you have
not understood that in (i) and (ii) we consider free homotopies, whereas in
(iii) we are considering homotopies relatively to {0, 1}.

Let γ : I → X be a loop based at x0 ∈ X. Consider φ : I → S1 defined
by φ(s) = e2πis for s ∈ I. In other words, φ glues 0 and 1 together. Since
γ(0) = γ(1), there exists a map f : S1 → X such that γ = f ◦ φ.

I

φ
��

γ // X

S1
f

>>

Is f continuous? Since I is compact and S1, φ is closed. Since φ is closed
and surjective, φ is a quotient map. Therefore f is continuous because of
the universal property of the quotient topology.

By (i) (since we have already shown that (i) ⇔ (ii)) we know that f is
nullhomotopic, so there exists G : I × S1 → X such that G(0, ·) : S1 → X is
constant and G(1, ·) = f . Let x1 ∈ X be the value of G(0, ·). The point x1
can be different from x0. Consider the map p : I × I → I × S1 defined by
p(t, s) = (t, e2πis) for t, s ∈ I.

I × I
p
��

G◦p // X

I × S1
G

;;

In general, the composite G ◦ p : I × I → X is not a homotopy between γ
and the constant loop relatively to {0, 1}. So we need to find another way.

By (ii) there exists a continuous map F : D2 → X such that F |S1 = f .
Let ψ : I × D2 → D2 be a deformation retraction of D2 onto the point
1 ∈ S1 = ∂D2. For instance we can take

ψ(t, w) = (1− t) + tw for t ∈ I, w ∈ D2

because D2 is convex. Now, consider H : I × I → X defined by

H(t, s) = F (ψ(t, (π ◦ p)(1, s))) = F (ψ(t, e2πis)) = F (1− t+ te2πis)

for all t, s ∈ I. Here π : I × S1 → D2 and p : I × I → I × S1 are defined
above. We can see that H(1, s) = γ(s) and H(t, 0) = H(t, 1) = H(0, s) = x0
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for all t, s ∈ I. So H is a homotopy between γ and the constant loop based
at x0 relatively to {0, 1}.

Another proof of (ii) ⇒ (iii). Let me sketch another proof that I learnt
from the solution of some of you. Let γ : I → X be a loop based at x0 and
let F : D2 → X be as above, i.e. F (e2πit) = γ(t) for all t ∈ I. In particular,
F (1) = x0. Now, consider the loop β : I → D2 based at 1 ∈ D2 defined by
β(t) = e2πit for all t ∈ I. We have γ = F ◦β. Let F? : π1(D

2, 1)→ π1(X,x0)
be the group homomorphism induced by F . So in π1(X,x0) we have [γ] =
[F ◦ β] = F?[β]. Since D2 is contractible, [β] = e and hence [γ] = e.

Remark. Some of you have used the presentation of π1(X,x0) as homotopy
classes of maps S1 → X. Firstly, here you have to be very careful with based
points. Secondly, proving that this presentation is true is equivalent to solve
this exercise. So, in my opinion, you cannot assume this. I will be more
precise below.

By [(S1, 1), (X,x0)] I denote the set of equivalence classes of continuous
maps of pointed topological spaces (S1, 1) → (X,x0) with respect to the
equivalence relation given by the homotopy rel {1}. Let φ : I → S1 be
the loop based at 1 ∈ S1 defined by φ(s) = e2πis for s ∈ I. It is well
known that [φ] is a generator of the group π1(S

1, 1) ' Z. Consider the
function Ψ: [(S1, 1), (X,x0)] → π1(X,x0) defined by Ψ([f ]) = f?([φ]) for
all f : (S1, 1) → (X,x0). I think that proving that Ψ is well defined and
bijective is more or less equivalent to solve this exercise.

(iii) ⇒ (i): let f : S1 → X be continuous map. So γ = f ◦ φ : I → X is
a loop based at x0 = f(1), where φ : I → S1 is defined by φ(s) = e2πis for
s ∈ I.

I

φ
��

γ // X

S1
f

>>

By (iii) there exists a homotopy between γ and the constant path based
at x0 relatively to {0, 1}, i.e. a continuous map H : I × I → X such that
H(0, ·) is constant with value x0, H(1, ·) = γ, H(·, 0) = H(·, 1) is constant
with value x0. Consider p = idI × φ : I × I → I × S1. It is easy to see that
there exists a map G : I × S1 → X such that H = G ◦ p.

I × I
p
��

H // X

I × S1
G

;;

The map p is a quotient map because I × I is compact, I ×S1 is Hausdorff,
and p is surjective. Therefore G is continuous by the universal property of
the quotient topology. G is a homotopy between G(0, ·) = x0 and G(1, ·) =
f .

Finally we prove that a space X is simply connected if and only if all
maps S1 → X are homotopic.

(⇒) assume that X is simply connected and let f : S1 → X and f ′ : S1 →
X be two maps. From what we have proved above, we know that f and f ′



4

are nullhomotopic, i.e. there exist two points x, x′ ∈ X such that f ∼ cx
and f ′ ∼ cx′ . The symbol ∼ denotes the homotopy relation and cx : S1 → X
denotes the constant map with value x. Since X is path connected, a path
between x and x′ provides a homotopy between cx and cx′ . Since homotopy
is an equivalence relation, f ∼ cx ∼ cx′ ∼ f ′.

(⇐) assume that all maps from S1 to X are homotopic. For any x, x′ ∈ X,
a homotopy between the constant maps cx and cx′ provide a path between x
and x′. Therefore X is path connected. We need to show that π1(X,x0) = 0
for all x0 ∈ X. From what we have proven above, it is enough to show that
every map S1 → X is homotopic to a constant map. But this is the case.

Exercise 2. As you see in Exercise 4, the assumption that both U and
V are open is necessary for Van Kampen’s theorem to hold. So, here, you
have to choose two open Möbius strips that overlap. In this case U ∩ V is
homeomorphic to (0, 1)× S1.

Exercise 3. (a) Many of you have written that there is a natural inclusion
S1 ↪→ S1 ∨ S1. In my opinion there are two natural embeddings of S1 in
S1 ∨ S1!

(b) For n ∈ Z, let rn : S1 ∨ S1 → S1 such that the first circle of S1 ∨ S1

is mapped identically on S1 and the second circle of S1 ∨ S1 is mapped
onto S1 via z 7→ zn. By a, b we denote the two standard generators of
π1(S

1∨S1) ' Z∗Z and by x we denote the standard generator of π1(S
1) ' Z.

It is clear that (rn)?(a) = x and (rn)?(b) = nx. This shows that rn and rm
are not homotopic if n 6= m.

Exercise 5. (a) I will adapt the proof of Proposition 1.26 in Hatcher’s
Algebraic topology. Let X be a path-connected topological space and let
n ≥ 3 be an integer. Let A be a set and, for α ∈ A, let ϕα : Sn−1 → X be a
continuous map. Let Y be obtained by gluing X and |A| copies of Dn via
ϕα’s.

Let s0 be a base point of Sn−1. Choose a basepoint x0 ∈ X and a path
γα in X from x0 to ϕα(s0) for each α.

Let us expand Y to a slightly larger space Z that deformation retracts
onto Y . The space Z is obtained from Y by attaching rectangular strips
Sα = I×I, with the lower edge I×{0} attaced along γα, the right edge {1}×I
attached along an arc in enα, and all the left edges {0} × I of the different
strips identified together. The top edges of the strips are not attached to
anything, and this allows us to deformation retract Z onto Y .

In each cell enα choose a point yα not in the arc along which Sα is attached.
Let U = Z \ ∪α∈A{yα} and let V = Z \X. Notice that U , V and U ∩ V are
path-connected and X = U ∪V . It is clear that U deformation retracts onto
X, and V is contractible. Since π1(V ) = 0, van Kampen’s theorem applied
to the cover {U, V } says that π1(Z) is isomorphic to the quotient of π1(U)
by the normal subgroup generated by image of the map π1(U ∩V )→ π1(U).

But U∩V deformation retracts to a space made up of spheres Sn−1 linked
together by paths. One can see that U ∩ V is homotopically equivalent to
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α S

n−1
α . Since n ≥ 3, Sn−1 is simply connected. Therefore U ∩ V is

simply connected. This shows that π1(Z) is isomorphic to π1(U). Since
Z deformation retracts to Y and U deformation retracts to X, we have
π1(X) ' π1(Y ).


