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Alessio Corti and Masaki Hanamura

This paper is a continuation of [CH], where we formulated the motivic analogue of the
decomposition theorem in [BBD]. The decomposition theorem says, if X, S are quasi-projective
complex algebraic varieties with X smooth, and p : X → S is a projective map, then the direct
image of the constant sheaf Rp∗QX is a direct sum of intersection complexes (of local systems
on smooth locally closed subvarieties of S) with shifts. The motivic analogue is a conjectural
statement that the decomposition be lifted to a decomposition in a suitably defined motivic
category. In [CH] we defined the category of Chow motives over S, and showed that the
existence of the motivic decomposition in this category is a consequence of the conjectures of
Grothendieck and of Bloch-Beilinson-Murre.

If the map p : X → S is a resolution of singularities, one of the direct summands of Rp∗QX

is the intersection complex ICS = ICS(Q) of S. The motivic decomposition has a direct
summand corresponding to the intersection complex. We will call it the motivic intersection
complex of S. The Chow group of this object we call the intersection Chow group of S, and
denote it by ICHr(S).

The content of this paper is as follows.
(1) In §3 we give an acount of this theory, under the conjectures of Grothendieck and of

Bloch-Beilinson-Murre. The definition of intersection Chow group ICHr(S) of a quasi-projective
variety S rests on the existence of the motivic decomposition for a desingularization p : X → S.
The group ICHr(S) is a canonical subquotient of the Chow group CHr(X). We then derive a
formula (3.9) for the intersection Chow group in terms of the Chow groups of X and of the
exceptional loci of p. These Chow groups have filtrations denoted F •

S , which appear in the
formula. The filtration has to do with the perverse Leray filtration on objects in the motivic
category, which is defined using the motivic decomposition.

(2) In §4 we give an unconditional definition of intersection Chow group. Here “uncondi-
tional” means independent of any conjectures. For this we take the formula mentioned above,
and turn it into the definition. We need to define the filtrations F •

S on Chow groups, without
assuming the existence of motivic decomposition. This can be done, using cohomology realiza-
tions, as Shuji Saito did for the case S = Spec k. We can show the intersection Chow group is
well-defined, independent of the choice of a resolution.
§4 was inspired by §3, but it is logically independent. We do not even need the motivic

category of Chow motives in §4.
(3) There is an analogous formula for the intersection cohomology of S, in terms of the

cohomology of the exceptional loci of a desingularization, see (2.4). This is discussed in §2.

In the summer of 1996 the second author had a chance to communicate the present work
to Bob MacPherson. On that occasion we had conversations on the motivic analogue of the
lifting theorem [BBFFK], which later developped into [Ha-2]. We would like take the present
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opportunity to thank Bob cordially for these discussions and for his profound influence on our
work.

Throughout this paper we consider quasi-projective varieties over k = C. The Chow group
of a quasi-projective variety X, tensored with Q, is denoted CH(X).

Let Db
c(S) = Db

c(S(C), Q) denote the derived category of sheaves of Q-vector spaces on
S(C) with cohomology sheaves bounded and constructible. The cohomology of X is always
with Q-cofficients: H i(X) = H i(X, Q). For intersection complex and perverse sheaves, we
always take the middle perversity and Q as coefficients: IH i(X) = IH i(X, Q). We refer to
[GM-1], [BBD] and [Bo] for expositions on intersection complexes and perverse sheaves; see
[CH] for additional information. Perv(S) denotes the category of perverse sheaves on S(C).

§1. Stratification of a projective map and the decomposition theorem.

(1.1) Definition. Let S be an irreducible quasi-projective variety over C. An algebraic Whit-
ney stratification S = {Sα} of S is a filtration of S by closed sets

S = S0 ⊃ S1 ⊃ · · · ⊃ Sα ⊃ · · · ⊃ SdimS

such that Sα − Sα+1 are smooth of codimension α (or empty) satisfying Whitney’s conditions
A and B (see [GM-2, Chap.I] for details).

Let X be a quasi-projective variety and p : X → S be a projective map. p : X → S is a
stratified map over S if there is a Whitney stratification Σ of X such that p is a stratified map
with respect to Σ and S ([GM-2, p.42]). In particular, p is a stratified fiber bundle over each
stratum S0

α := Sα − Sα+1.
Let Xα = p−1(Sα), pα : Xα → Sα the induced map, and iα : Sα → S, kα : Xα → X

be the closed immersions. Let X0
α = p−1(S0

α) and p0
α : X0

α → S0
α be the induced map. For

α = 0, we will drop the subscript as follows: S0 = S0
0 = S − S1, X0 = X0

0 = X − X1, and
p0 = p0

0 : X0 → S0. We thus have a commutative diagram:

X
kα←−−−Xα←↩X0

α




y

p





y

pα





y

p0
α

S
iα←−−−Sα←↩S0

α

Given a projective map p : X → S, there is a Whitney stratification S on S over which p is
stratified.

(1.2) Definition. Let X, S be quasi-projective varieties, with X smooth, and p : X → S a
projective map. Let S = {Sα} be a Whitney stratification of S over which p is stratified.

A resolution of p : X → S over S is a collection {πα : X̃α → Xα} consisting of smooth
quasi-projective varieties X̃α and projective surjective maps πα, for α ≥ 1.

Let ια = kα ◦ πα : X̃α → X and qα = pα ◦ πα : X̃α → Sα.

X̃α

↙




y

πα

X ←↩ Xα




y

p





y

pα

S ←↩ Sα
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Given a projective map p : X → S with smooth X, stratified over S, there exists a resolution
over S.

Remark. We may require πα be desingularizations, rather than projective surjective maps.
For purposes of later sections, however, it is more convenient to allow projective surjective
maps.

The following is known as the decomposition theorem, [BBD]. In the statement, pRip∗QX =
pHiRip∗QX , where pHi is perverse cohomology, and ICSα

(V) is the intersection complex of a
local system V.

(1.3) Theorem. Let X be smooth and p : X → S a projective map, stratified over S = {Sα}.
Then there is a non-canonical direct sum decomposition

Rp∗QX =
⊕

i

pRip∗QX [−i]

and a unique direct sum decomposition

pRip∗QX =
⊕

α

ICSα
(Vi

α)[dim Sα] ,

where Vi
α is a local system on S0

α. One thus has a direct sum decomposition

Rp∗QX =
⊕

i,α

ICSα
(Vi

α)[−i + dim Sα] .

Remark. One has V
i
0 = Ri−dimSp0

∗QX0 .

(1.4) Proposition. Let X be smooth and p : X → S a projective map, stratified over {Sα}.
Keep the notation in (1.1) and (1.3).

(1) Let
k∗

α : Rp∗QX → iα∗Rpα∗QXα

be the map induced by kα; upon applying the functor pHi, one has a map

p
H

i(k∗
α) : pRip∗QX → iα ∗

pRipα∗QXα
.

The restriction of this to
⊕

Sβ⊂Sα
ICSβ

(Vi
β)[dim Sβ],

⊕

Sβ⊂Sα

ICSβ
(Vi

β)[dim Sβ]→ iα∗
pRipα∗QXα

,

is a split injection.
(2) Let

kα∗ : iα∗Rpα∗DXα
[−2d]→ Rp∗QX

be the map induced by kα ( DXα
is the dualizing complex of Xα); upon applying pHi, one has

p
H

i(kα∗) : iα∗
p
H

i
(

Rpα∗DXα
[−2d]

)

→ pRip∗QX .

Composition of this with the quotient map to
⊕

Sβ⊂Sα
ICSβ

(Vi
β)[dim Sβ],

p
H

i(kα∗) : iα∗
p
H

i
(

Rpα∗DXα
[−2d]

)

→
⊕

Sβ⊂Sα

ICSβ
(Vi

β)[dim Sβ] ,
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is a split surjection.

Proof. (1) The map k∗
α is the adjunction map Rp∗QX → iα∗iα

∗Rp∗QX , with identification
iα

∗Rp∗QX = Rpα∗QXα
. Take a decomposition Rp∗QX =

⊕

ICSα
(Vi

α)[−i + dim Sα]. Examine
the adjunction map on each summand to obtain the proof.

(2) is dual to (1).

(1.5) Proposition. Let X be smooth and p : X → S a projective map, stratified over {Sα},
and {πα : X̃α → Xα} its resolution over {Sα}. Keep the notation in (1.2) and (1.3).

(1) Let ι∗α : Rp∗QX → iα∗Rqα∗QX̃α
be the map ια induces; applying p

H
i, one has a map

p
H

i(ι∗α) : pRip∗QX → iα∗
pRiqα∗QX̃α

.

The restriction of this map to the direct summand ICSα
(Vi

α)[dim Sα],

p
H

i(ι∗α) : ICSα
(Vi

α)[dim Sα]→ iα∗
pRiqα∗QX̃α

,

is a split injection.
(2) Let iα∗ : iα∗Rqα∗DX̃α

[−2d]→ Rp∗QX be the map ια induces; applying pHi one has

p
H

iια∗ : iα∗
p
H

iRqα∗DX̃α
[−2d]→ pRip∗QX .

The composition of this with the quotient map to ICSα
(Vi

α)[dim Sα],

p
H

i(ια∗) : iα∗
p
H

iRp̃α∗DX̃α
[−2d]→ ICSα

(Vi
α)[dim Sα] ,

is a split surjection.

Proof. (1) The maps X̃α → Xα → X induce the maps

Rp∗QX → iα∗Rpα∗QXα
→ iα∗Rqα∗QX̃α

.

Applying pHi, one has

pRip∗QX → iα∗
pRipα∗QXα

→ iα∗
pRiqα∗QX̃α

.

According to the theory of weights [BBD],[SaM], the three perverse sheaves have weight filtra-
tions; pRip∗QX and Riqα∗QX̃α

are of pure weight i, and Ripα∗QXα
is of weight ≤ i since pα is

proper. Taking GrW
i , one has maps in a semi-simple abelian category.

pRip∗QX → iα ∗ GrW
i

pRipα∗QXα
→ iα ∗

pRiqα∗QX̃α
.

By Proposition (1.4), the map ICSα
(Vi

α)[dim Sα]→ iα∗ GrW
i

pRipα∗QXα
is a split injection.

One has only to show iα ∗ GrW
i

pRipα∗QXα
→ iα ∗

pRiqα∗QX̃α
is a split injection when re-

stricted to S0
α; equivalently, letting (Xα)s = pα

−1(s) and (X̃α)s = qα
−1(s) for s ∈ S0

α, the
map

GrW
i H i−dimSα((Xα)s)→ H i−dimSα((X̃α)s)

is an injection. This is [De, part II, Proposition 8.2.5].
(2) Dual to (1).

§2. Intersection cohomology of projective maps.
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In this section X, S are quasi-projective varieties, X is smooth, and p : X → S a projective
map.

(2.1) Recall Db
c(S) is the bounded derived category of contructible sheaves. There is the perverse

t-structure on this, in paticular the functors pτ≤ and pτ≥. For simplicity, denote them by τ≤
and τ≥.

For the object Rp∗QX , Theorem (1.3) implies τ≤kRp∗QX is a subobject, and non-canonically
a direct summand. One thus has a filtration by subobjects.

This filtration induces a filtration on Ha(X), as follows. Let

F ν
S Ha(X) := HomDb

c(S)(QS, τ≤−ν

(

Rp∗QX [a]
)

) ,

it is a subspace of HomDb
c(S)(QS, Rp∗QX [a]) = Ha(X), with a non-canonical splitting. The

decreasing filtration F •
S on Ha(X) thus defined has the following properties.

(1) F− dimS
S Ha(X) = Ha(X).

(2) For ν large enough, F ν
S Ha(X) = 0.

(3) The graded pieces in the filtration are

Grν
FS

Ha(X) = F ν
S/F ν+1

S Ha(X) = Hom(QS, pRa−νp∗QX [ν]) .

If p is stratified over {Sα}, with the notation in Theorem (1.3) this is equal to

Hom(QS,
⊕

α

ICSα
(Va−ν

α )[dim Sα][ν]) =
⊕

α

IHν+dimSα(Sα, Va−ν
α ) .

(2.2) Assume p is stratified over {Sα}, and {πα : X̃α → Xα} its resolution over {Sα}. For each
α ≥ 1 the map ια induces maps

ι∗α : Ha(X)→ Ha(X̃α)

and
ια ∗ : HBM

2 dimX−a(X̃α)→ Ha(X) .

Here HBM
∗ denotes Borel-Moore homology. Taking graded pieces for F •

S , one has maps

ι∗α : Grν
FS

Ha(X)→ Grν
FS

Ha(X̃α) and ια ∗ : Grν
FS

HBM
2 dimX−a(X̃α)→ Grν

FS
Ha(X) .

The next Proposition follows from Proposition (1.5).

(2.3) Proposition. (1) The kernel of the map
∑

α≥1 ι∗α : Grν
FS

Ha(X)→
⊕

α≥1 Grν
FS

Ha(X̃α)

is equal to IHν+dimS(S, Va−ν
0 ).

(2) The image of the map
∑

α≥1 ια∗ :
⊕

α≥1 Grν
FS

HBM
2 dimX−a(X̃α)→ Grν

FS
Ha(X) is equal to

⊕

α≥1 IHν+dimSα(Sα, Va−ν
α ).

In the case p is birational, we can describe the intersection cohomology of S in terms of the
cohomology of X and {X̃α}, and the filtrations F •

S .

(2.4) Theorem. If p : X → S is a birational map, d = dim S,

IHa(S) =

⋂

α≥1(ι
∗
α)−1F a−d+1

S Ha(X̃α)
∑

α≥1 ια∗F
a−d+1
S HBM

2d−a(X̃α)
.
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We omit the proof, which is similar to the proof of an analogous formula for the intersection
Chow group, Theorem (3.9).

§3. The intersection Chow group (under hypotheses).

(3.1) Let S be a quasi-projective variety over k = C. Denote by (Smooth/k, Proj/S) the
category of smooth quasi-projective varieties X equipped with projective maps to S, p : X → S.

For X, Y in (Smooth/k, Proj/S), CHa(X×S Y ) denotes the rational Chow group of dimen-
sion a of the variety X ×S Y . An element of this group is a relative correpondence from X to
Y .

If X, Y, Z are in (Smooth/k, Proj/S), with Y equi-dimensional, we have a map, the com-
position of correspondences,

CHa(X ×S Y )⊗ CHb(Y ×S Z)→ CHa+b−dim Y (X ×S Z)

which sends u⊗v to v ◦u, see [CH] for the definition. The composition is associative. In partic-
ular if X has connected components Xi,

⊕

i CHdimXi
(X ×S Xi) is a ring with the composition

as multiplication. The identity element is the class of the diagonal ∆X = id.
Let CHM(S) be the pseudo-abelian category of Chow motives over S, defined in [CH]. It

has the following properties.

(1) An object of CHM(S) is of the form

(X, r, P ) = (X/S, r, P )

where X is a smooth variety over k with a projective (not necessarily smooth) map p : X → S,
r ∈ Z, and if X has connected components Xi,

P ∈
⊕

i

CHdim Xi
(X ×S Xi)

such that P ◦ P = P . If (Y, s, Q) is another object, Yj the components of Y , then

Hom((X, r, P ), (Y, s, Q)) = Q ◦ (
⊕

j

CHdim Yj−s+r(X ×S Yj)) ◦ P .

Composition of morphisms is induced from the composition of relative correspondences.
Denote by M = (X, r, P ) 7→M(n) = (X, r + n, P ) the “Tate twist” functor.
(2) There is a functor h : (Smooth/k, Proj/S)opp → CHM(S), which sends p : X → S to

the object h(X/S) = (X/S, 0, id). Note h(X/S)(n) = (X/S, n, id).
If X and Y are objects of (Smooth/k, Proj/S) and f : X → Y is a map over S, there

corresponds a morphism
f ∗ : h(Y/S)→ h(X/S) .

If X, Y are equidimensional, there corresponds

f∗ : h(X/S)→ h(Y/S)(dimY − dim X) .

(3) There is a functor
CH0(S,−) : CHM(S)→ V ectQ
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(the target is the category of Q-vector spaces) such that CH0(S, (X, r, P ) ) = CH0((X, r, P )) =
P∗ CHr(X).

Define CHt(S,−) : CHM(S) → V ectQ by CHt(S, K) = CHt(K) = CH0(K(t)). Note
CHr(h(X/S)) = CH0(h(X/S)(r)) = CHr(X).

(4) There is the realization functor

ρ : CHM(S)→ Db
c(S)

such that on objects
(X, r, P ) 7→ P∗Rp∗QX [2r] .

Here P∗ := ρ(P ) ∈ EndDb
c(S)(Rp∗QX) is a projector, and P∗Rp∗QX is its image, which exists

since Db
c(S) is pseudo-abelian.

(3.2) For p : X → S in (Smooth/k, Proj/S) and r ∈ Z, let

p
H

∗(X/S, r) :=
⊕

i

pRi+2rp∗QX ,

called the total perverse cohomology , a graded perverse sheaf (grading by i). Denote the cate-
gory of graded perverse sheaves by gr Perv(S). One has a map

HomCHM(S)((X/S, r, id), (Y/S, s, id) )→ Homgr Perv(S)(
p
H

∗(X/S, r), p
H

∗(Y/S, s) ) ,

obtained using the functor ρ and perverse cohomology. The image of this map is denoted by
Homgr Perv(S)(

pH∗(X/S, r), pH∗(Y/S, s) )alg. It is proved in [CH] that this group is closed under
composition.

The pseudo-abelian category of Grothendieck motives over S, denoted by M(S) has ob-
jects (X/S, r, p) where X/S is in (Smooth/k, Proj/S), and p ∈ End(pH∗(X/S, r) )alg is an
idempotent. Morphisms are defined by

Hom((X, r, p), (Y, s, q)) = q ◦ Hom(p
H

∗(X/S, r), p
H

∗(Y/S, s) )alg ◦ p .

There is a canonical full functor cano : CHM(S)→M(S) and a faithful realization functor
ρ : M(S)→ gr Perv(S). The following diagram commutes.

CHM(S)
cano
−−−→ M(S)





y

ρ





y

ρ

Db
c(S)

pH∗

−−−→ gr Perv(S)

Here p
H

∗ =
⊕

i
p
H

i is the total perverse cohomology functor.

(3.3) Theorem. [CH, §7] Assume the conjecture of Grothendieck and the conjecture of Bloch-
Beilinson-Murre. Let p : X → S be as before. Let {Sα} be a Whitney stratification of S over
which p is stratified. Then:

(1) There are local systems Vj
α on Sα − Sα+1, non-canonical direct sum decomposition in

CHM(S)
h(X/S) =

⊕

j,α

hj
α(X/S)
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and isomorphisms
ρ(hj

α(X/S)) ∼= ICSα
(Vj

α)[−j + dim Sα]

in Db
c(S).

(2) For each i, the sum
⊕

j≤i, α hj
α(X/S) is a well-defined subobject of h(X/S) (independent

of the decomposition).
(3) The category M(S) is semi-simple abelian, and the functor ρ : M(S) → Perv(S) is

exact and faithful.
(4) For i ∈ Z, let CHM(S)i (resp. M(S)i) be the full subcategory of CHM(S) (resp. M(S))

consisting of objects with realizations of pure perverse degree i. Then the canonical functor
cano : CHM(S)i →M(S)i is an equivalence of categories.

For the rest of this section, we assume the conjecture of Grothendieck and the
conjecture of Bloch-Beilinson-Murre.

(3.4) Let p : X → S be as above. Define a subobject pτ≤i of h(X/S)(r) by:

τ≤i(h(X/S)(r) ) :=
⊕

j≤i+2r, α

hj
α(X/S)(r)

the sum over (j, α) with j ≤ i + 2r. This is a subobject with a non-canonical splitting. pτ≤i

gives an increasing filtration by subobjects. From now we write τ≤i for pτ≤i. The subquotients
are

τ≤i/τ≤i−1(h(X/S)(r) ) =
⊕

α

hi+2r
α (X/S)(r) .

This decomposition is uniquely determined, independent of {Sα} (this follows from (3.3), (4) ).
Correspondingly CHr(X) = CH0(S, h(X/S)(r) ) has a decreasing filtration F •

S defined by

F ν
S CHr(X) = CH0

(

S, τ≤−ν(h(X/S)(r))
)

⊂ CHr(X) .

Note F ν
S CHr(X) = CHr(X) for ν small enough, and F ν

S CHr(X) = 0 for ν large enough. We
conjecture CHr(X) = F− dimS

S CHr(X). The graded quotients are

Grν
FS

CHr(X) = CH0(S,
⊕

α

h2r−ν
α (X/S)(r) ) = CHr(S,

⊕

α

h2r−ν
α (X/S) ) .

Each piece CHr(S, h2r−ν
α (X/S) ) is a direct summand of Grν

FS
CHr(X), in particular a subgroup.

Thus one can write
CHr(S, h2r−ν

α (X/S) ) = A/F ν+1
S

for a subgroup A ⊂ F ν
S . With a slight abuse of notation, we write A = F ν+1

S +CHr(S, h2r−ν
α (X/S) ).

The filtration τ≤i is respected by morphisms in CHM(S), see [CH, Theorem (7.4),(1)]. If
u : h(X/S)(r)→ h(Y/S)(s) is a morphism, there is a unique morphism τ≤iu : τ≤ih(X/S)(r)→
τ≤ih(Y/S)(s) such that the following diagram commutes.

h(X/S)(r)
u
−−−→ h(Y/S)(s)

x





x





τ≤i h(X/S)(r)
τ≤iu
−−−→τ≤i h(Y/S)(s)

Thus one has induced morphisms τ≤i/τ≤i−1h(X/S)(r)→ τ≤i/τ≤i−1h(Y/S)(s). This is the direct
sum, for α, of morphisms hi+2r

α (X/S)(r)→ hi+2r
α (Y/S)(s).
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(3.5) Definition. Let X0 and S0 be smooth quasi-projective, and p0 : X0 → S0 be a smooth
projective map. Let S be a quasi-projective variety and S0 → S an open immersion.

Take a smooth variety X, an open immersion X0 → X and a projective map p : X → S
which extends p0. Let h(X/S) =

⊕

hj
α(X/S) be a decomposition as in Theorem (3.3). Define

the intersection Chow group of the higher direct image Rip0
∗QX0 to be

ICHr(S, Rip0
∗QX0) := CH0(S, hi+dimS

0 (X/S)(r) ) .

The group depends on p0 : X0 → S0, S and i. As we show below, it does not depend on
the choice of p : X → S. One should take Rip0

∗QX0 as a notation; the intersection Chow group
is not determined by S and the local system Rip0

∗QX0 alone.

(3.6) Proposition. (1) The object hj
0(X/S) is independent of the choice of p : X → S, up to

canonical isomorphism. Hence ICHr(S, Rip0
∗QX0) is well-defined.

(2) Let S1 ⊂ S0 be an open set, X1 = p−1(S1), and p1 : X1 → S1 the induced map. Then
one has a canonical isomorphism ICHr(S, Rip0

∗QX0) = ICHr(S, Rip1
∗QX1).

Proof. (1) More precisely if p′ : X ′ → S is another extension of p0, there is an isomorphism

ι(X, X ′) : hj
0(X/S)→ hj

0(X
′/S) ;

If X ′′ → S is another such, the three isomorphisms satisfy the cocycle condition ι(X, X ′′) =
ι(X, X ′)ι(X ′, X ′′).

To prove this, one is reduced to the case where there is a map f : X ′ → X over S, extending
the identity on X0. Then f ∗ : h(X/S) → h(X ′/S) induces an isomorphism f ∗ : hj

0(X/S) →
hj

0(X
′/S).

(2) This is obvious.

(3.7) Definition. Let S be an irreducible quasi-projective variety of dimension d, and p : X →
S its desingularization (proper birational map from a smooth variety). Define the intersection
Chow group by

ICHr(S) := CH0(S, hd
0(X/S) ) .

This is a special case of Definition (3.5),where one takes a smooth open set S0 ⊂ S , p0 = id :
X0 = S0 → S0, and i = 0. By Proposition (3.6), the intersection Chow group is well-defined.

The map ια : X̃α → X induces maps ια
∗ : CHr(X)→ CHr(X̃α) and ια ∗ : CHdimX−r(X̃α)→

CHr(X), thus also maps between the graded pieces

Grν
FS

CHdimX−r(X̃α)
ια∗−−−→Grν

FS
CHr(X)

ια
∗

−−−→Grν
FS

CHr(X̃α) .

Taking the sum over α ≥ 1, one has maps

∑

α≥1

ι∗α : CHr(X)−−−→
⊕

α≥1

CHr(X̃α) ,

∑

α≥1

ια∗ :
⊕

α≥1

CHdim X−r(X̃α)→ CHr(X) ,

as well as the maps on graded pieces.
Proposition (1.5) and Theorem (3.3) imply:
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(3.8) Proposition. (1) The kernel of the map
∑

α≥1 ι∗α : Grν
FS

CHr(X)−−−→
⊕

α≥1 Grν
FS

CHr(X̃α)

is equal to CHr(h2r−ν
0 (X/S) ).

(2) The image of the map
∑

α≥1 ια∗ :
⊕

α≥1 Grν
FS

CHdimX−r(X̃α) → Grν
FS

CHr(X) is equal
to CHr(S,

⊕

α≥1 h2r−ν
α (X/S) ).

(3.8.1) Corollary. One has

ICHr(S, Rip0
∗QX) = Ker[ Gr2r−i−dimS

FS
CHr(X)→

⊕

α≥1

Gr2r−i−dim S
FS

CHr(X̃α) ]

= Cok[
⊕

α≥1

Gr2r−i−dimS
FS

CHdimX−r(X̃α)→ Gr2r−i−dimS
FS

CHr(X) ] .

(3.9) Theorem. If p : X → S is a birational map, d = dim S,

ICHr(S) =

⋂

α≥1(ι
∗
α)−1F 2r−d+1

S CHr(X̃α)
∑

α≥1 ια∗F
2r−d+1
S CHd−r(X̃α)

.

Proof. The map
∑

α≥1 ι∗α : Grν
FS

CHr(X)−−−→
⊕

α≥1 Grν
FS

CHr(X̃α) is injective for ν 6= 2r−

d, and has kernel equal to ICHr(S) if ν = 2r−d. The map
∑

α≥1 ια∗ :
⊕

α≥1 Grν
FS

CHdimX−r(X̃α)→

Grν
FS

CHr(X) is surjective for ν 6= 2r − d and has image equal to CHr(S,
⊕

α≥1 hd
α(X/S) ) for

ν = 2r − d. So
⋂

α≥1

(ι∗α)−1F 2r−d+1
S CHr(X̃α) = F 2r−d+1

S CHr(X) + ICHr(S)

and
∑

α≥1

ια∗F
2r−d+1
S CHd−r(X̃α) = F 2r−d+1

S CHr(X) ,

from which the claim follows.

We note some properties of the filtration F •
S .

(3.10) Proposition. Let X be smooth and p : X → S a projective map. Let S ↪→ S ′ be
a closed immersion of quasi-projective varieties. Then the filtration F •

S and F •
S′ on CHr(X)

coincide.

(3.11) Proposition. (1) Let X and Y be smooth varieties, projective over S, and f : X → Y
be a projective surjective map. Then:

(1) The injection f ∗ : CHr(Y ) → CHr(X) is strictly compatible with the filtrations FS,
namely F ν

S CHr(Y ) = (f ∗)−1F ν
S CHr(X).

(2) The surjection f∗ : CHs(X) → CHs(Y ) is strictly compatible with the filtrations FS,
namely f∗F

ν
S CHr(X) = F ν

S CHr(Y ).

Proof. (1) Take a smooth subvariety X ′ ⊂ X such that the restriction f |X′ : X ′ → Y is
generically finite. Considering the composition of f ∗ : CHr(Y )→ CHr(X) with the restriction
CHr(X)→ CHr(X ′), one is reduced to the case where f is generically finite.

In that case the map f ∗ : h(Y/S)→ h(X/S) has a left inverse (1/d)f∗ : h(X/S)→ h(Y/S),
where d is the degree of p. Twisting and taking τ≤−ν, one has

f ∗ : τ≤−ν h(Y/S)(r)→ τ≤−ν h(X/S)(r)
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with left inverse (1/d)f∗. The claim follows.
(2) Similar to (1).

§4. Unconditional theory of the intersection Chow group.

(4.1) For a smooth projective variety X over k, Shuji Saito defined a filtration F • on the Chow
group CHr(X), [SaS-1, 2]. In a similar way, if X is a smooth variety with a projective map to
S, one can define a filtration F •

S on the Chow group of X.
Let S be a quasi-projective variety, and X a smooth variety with a projective map p :

X → S. For another smooth variety W with a projective map q : W → S, an element
Γ ∈ CHdim X−s(W ×S X) induces a map Γ∗ : CHr−s(W ) → CHr(X), see [CH]. The cycle class
of Γ in Borel-Moore homology gives a map Γ∗ : Rq∗QW [−2s] → Rp∗QX ; passing to perverse
cohomology one has a map (for each ν)

p
H

2r−νΓ∗ : p
H

2r−2s−νRq∗QW →
p
H

2r−νRp∗QX .

(Here p
H

∗ stands for perverse cohomology.)
We define a filtration F •

S on CHr(X) as follows. Let CHr(X) = F− dimS
S CHr(X). Assume

F ν
S has been defined. Define

F ν+1
S CHr(X) :=

∑

Image[Γ∗ : F ν
S CHr−s(W )→ CHr(X) ]

where the sum is over (q : W → S, Γ ∈ CHdim X−s(W ×S X) ) satisfying the following condition:
the map pH2r−νΓ∗ : pH2r−2s−νRq∗QW →

pH2r−νRp∗QX is zero. One can show:

(4.2) Proposition. The filtration F •
S on CHr(X) has the following properties.

(1) CHr(X) = F−dim S
S CHr(X). For any Γ ∈ CHdim X−s(W ×S X), the induced map Γ∗ :

CHr−s(W )→ CHr(X) respects F •
S .

(2) If pH2r−νΓ∗ : pH2r−2s−νRq∗QW →
pH2r−νRp∗QX is zero, then Γ∗ sends F ν

S CHr−s(W )
to F ν+1

S CHr(X).
(3) The filtration is the smallest one with properties (1) and (2).

(4.3) Definition. Let S be an irreducible quasi-projective variety of dimension d, and p :
X → S a resolution of singularities. Take a Whitney stratification {Sα} of S and resolutions
X̃α → Xα so that (p, {X̃α → Xα}) is stratified over {Sα}. Recall ια : X̃α → X are the induced
maps, which give rise to maps ια∗ : CHd−r(X̃α)→ CHr(X) and ια

∗ : CHr(X)→ CHr(X̃α).
Define the intersection Chow group as a subquotient of the Chow group of X given by:

ICHr(S) :=

⋂

α≥1(ι
∗
α)−1F 2r−d+1

S CHr(X̃α)
∑

α≥1 ια∗F
2r−d+1
S CHd−r(X̃α)

.

(4.4) Theorem. ICHr(S) is well-defined (up to canonical isomorphism) independent of the
choice of a desingularization p : X → S, a stratification and a resolution.

(4.5) Proposition. (1) Let X and Y be smooth varieties, projective over S, and f : X → Y
be a projective surjective map. Then:

(1) The injection f ∗ : CHr(Y ) → CHr(X) is strictly compatible with the filtrations FS,
namely F ν

S CHr(Y ) = (f ∗)−1F ν
S CHr(X).
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(2) The surjection f∗ : CHs(X) → CHs(Y ) is strictly compatible with the filtrations FS,
namely f∗F

ν
S CHr(X) = F ν

S CHr(Y ).

Proof. Take a smooth subvariety X ′ ⊂ X that maps generically finitely onto Y . Let
i : X ′ → X be the inclusion and f ′ := f ◦ i : X ′ → Y . For (1), suppose α ∈ CHr(Y ) such that
f ∗α ∈ F ν

S CHr(X). Then f ′
∗i

∗f ∗α = d α ∈ F ν
S CHr(Y ) (d = deg f ′) by the functoriality of FS

with respect to pull-back and push-forward. The proof of (2) is similar.

In the rest of this section we give the proof of Theorem (4.4).
The definition depends on X, S = {Sα} and {πα : X̃α → Xα}. Let

N =
⋂

α≥1

(ι∗α)−1F 2r−d+1
S CHr(X̃α) and D =

∑

α≥1

ια∗F
2r−d+1
S CHd−r(X̃α)

be the subgroups of CHr(X), which appear in (4.4).If (X ′, S′, π′
α : X̃ ′

α → X ′
α) is another choice,

the groups N ′, D′ are similarly defined subgroups of CHr(X ′). We must show there is a
canonical isomorphism N/D ∼= N ′/D′.

(I) Assume X = X ′, S = S′, and only (X̃α → Xα) differs. One may assume there are
projective surjective maps gα : X̃ ′

α → X̃α over Xα. Then (4.5) shows N = N ′ and D = D′.

(II) Assume X = X ′ and S and S′ differ. One may assume S′ is a refinement of S.
Let (p : X → S, {πα : X̃α → Xα}) be a resolution of p over S. Let Sα i be the irreducible

components of Sα, Xα i = p−1(Sα i), and X̃α i = q−1
α (Sα i).

We construct a resolution of p over S′ as follows. Let S ′
α j be the irreducible components of

S ′
α, for α ≥ 1. Let X ′

α j = p−1(S ′
α j).

If S ′
α j is an irreducible component of Sα, say S ′

α j = Sα i, let X̃ ′
α j = X̃α i. If S ′

α j 6⊂ Sα let

Sβ be such that S ′
α j ⊂ Sβ and S ′

α j 6⊂ Sβ+1. Take smooth X̃ ′
α j so that there are a projective

surjective map X̃ ′
α j → X ′

α j and a map g : X̃ ′
α j → X̃β over S, namely the following diagram

commutes.
X̃ ′

α j

g
−−−→X̃β





y





y

X ′
α j−−−→Xβ




y





y

S ′
α j ↪→ Sβ

Let X̃ ′
α = qjX̃

′
α j, and π′

α : X̃ ′
α → X ′

α the induced map.
We now show N = N ′. Clealy N ′ ⊂ N . The inclusion N ⊂ N ′ follows from the existence

of the maps g. Similarly one shows D = D′.

(III) Assume now X and X ′ are not equal. In view of the weak factorization theorem, one
may assume X ′ is a blow-up of X along a smooth center.

Let µ : X ′ → X be the blow-up of a smooth center Z ⊂ X. Assume the maps X ′ → X → S
are stratified over S. Let D ⊂ N ⊂ CHr(X) and D′ ⊂ N ′ ⊂ CHr(X ′) be defined as above.

In the rest of this section we show: µ∗(N) ⊂ N ′, µ∗(N
′) ⊂ N , µ∗(D) ⊂ D′, µ∗(D

′) ⊂ D.
Letting K = Ker µ∗, N ′ = N

⊕

(K ∩N ′), D′ = D
⊕

(K ∩D′), and K ∩N ′ = K ∩D′. Hence

µ∗ : N/D
∼
→ N ′/D′ .

12



(4.6) Let S be a quasi-projective variety, Z a smooth variety with a projective map Z → S,
and π : E → Z a Pn-bundle. Let ξ ∈ CH1(E) be the first Chern class of OE(1). One has
CHr(E) =

⊕

0≤i≤n−1 CHr−i(Z) · ξi. One easily shows the following proposition. (From now we
will not write ξi.)

Proposition. The above decomposition is compatible with the filtrations F •
S , namely

F •
S CHr(E) =

⊕

0≤i≤n−1

F •
S CHr−i(Z) .

(4.7) Let S be quasi-projective, X smooth, and p : X → S be a projective map. (We do not
assume p is birational, although we are mainly interested in that case. Let Z ⊂ X be a smooth
subvariety and µ : X ′ → X be the blow-up of a smooth center Z ⊂ X. Let E be the exceptional
divisor. One has a commutative diagram with maps as labeled.

E
j

−−−→X ′





y

g





y

µ

Z
i

−−−→X

If c is the codimension of Z, g is a Pn-bundle with n = d− c− 1.
The kernel of the map g∗ : CHr−1(E)→ CHr−n−1(Z) is:

Ker g∗ =
⊕

0≤i≤n−2

F •
S CHr−1−i(Z) ⊂ CHr−1(E) =

⊕

0≤i≤n−1

F •
S CHr−1−i(Z) .

It has the filtration induced from F •
S on CHr−1(E).

One has an isomorphism

Ker g∗ ⊕ CHr(X)
∼
→ CHr(X ′) ,

which sends (α, x) to j∗α + ν∗x.

(4.8) Proposition. The injective map j∗j∗ : Ker g∗ → CHr(E) is strictly compatible with the
filtrations F •

S .

Proof. Easy to show by decomposing both groups to the sum of the Chow groups of Z.

We now assume p : X → S is birational, and Z is a union of strata in the stratification (Sα).
We have maps µ∗ : CHr(X) → CHr(X ′) and µ∗ : CHr(X ′) → CHr(X). One has µ∗µ

∗ = id,
Ker µ∗ = Ker g∗, and CHr(X)⊕Ker g∗ ∼= CHr(X ′). D ⊂ N ⊂ CHr(X) and D′ ⊂ N ′ ⊂ CHr(X ′)
be defined as above.

We may assume, for each component X̃α i of X̃α, either one of the following conditions is
satisfied.

(a) Xα i 6⊂ Z, and ι−1
α Z ∩ X̃α i is a normal crossing divisor of X̃α i, or

(b) Xα i 6⊂ Z.

One may take, as resolutions of p ◦ µ : X ′ → S, X̃ ′
α = qX̃ ′

α i where

X̃ ′
α i =

{

X̃α i in case (a)

X̃α i ×Z E in case (b)
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In case (b), X̃ ′
α i is a Pn-bundle over X̃α i. Note also that there is some Xα i containing Z, so

one can take a smooth variety Z ′ which fits into the following commutative diagram

Z ′→X̃α i




y
h





y

Z→Xα i

where h : Z ′ → Z is projective surjective. Let ι′α : X̃ ′
α → X ′ be the induced maps. It is now

easy to show the following descriptions for N and N ′.

(4.9) Proposition. (1) One has

N =
⋂

type (a)

(ι∗α)−1F 2r−d+1
S CHr(X̃α i)

⋂

(i∗)−1F 2r−d+1
S CHr(Z) .

Here the first intersection is over X̃α i of type (a). The restriction of ια : X̃α → X to each
component X̃α i is still denoted ια.

(2) Similarly,

N ′ =
⋂

type (a)

(ι′
∗

α)−1F 2r−d+1
S CHr(X̃α i) ∩ (j∗)−1F 2r−d+1

S CHr(E) .

(Recall for X̃α of type (a), ι′α is the map X̃ ′
α = X̃α → X ′.)

Proof. (1) Let z ∈ CHr(X). For a component X̃α i of type (b),

z|Z ∈ F 2r−d+1
S CHr(Z) implies z|X̃α i

∈ F 2r−d+1
S CHr(X̃α i) .

Conversely assume z|X̃α i
∈ F 2r−d+1

S CHr(X̃α i) for each X̃α i. Take a component Xα i containing

Z and Z ′ → Z as above. We have z|Z′ ∈ F 2r−d+1
S CHr(Z ′), hence z|Z ∈ F 2r−d+1

S CHr(Z) by
Proposition.

(2) Similar to (1).

(4.10) Proposition. (1) µ∗(N) ⊂ N ′. (2) µ∗(N
′) ⊂ N . (3) N ′ = N ⊕ (K ∩N ′).

Proof. (1) Obvious.
(2) For z′ ∈ N ′,

i∗µ∗z
′ = g∗i

!z′

= g∗(c(E) · j∗x′)

where c(E) is the top Chern class of the excess bundle E. Thus i∗µ∗z
′ ∈ F 2r−d+1

S CHr(Z).
(3) Follows from (1), (2) and µ∗µ

∗ = id on N .

The proofs of the two propositions below are similar.

(4.11) Proposition. (1) D =
∑

type (a) = ια ∗F
2r−d+1
S CHd−r(X̃α i)+i∗F

2r−d+1
S CHd−r(Z) . The

first sum is over X̃α i of type (a).
(2) D′ =

∑

type (a) = ι′α ∗F
2r−d+1
S CHd−r(X̃α i) + j∗F

2r−d+1
S CHd−r(E) .

(4.12) Proposition. (1) µ∗(D
′) ⊂ D. (2) µ∗(D) ⊂ D′. (3) D′ = D ⊕ (K ∩D′).

14



Proof. (1) Obvious.
(2) For α ∈ F 2r−d+1

S CHd−r(Z),

µ∗i∗α = j∗(c(E) · g∗α) ∈ j∗F
2r−d+1
S CHd−r(E) .

(3) Follows from (1) and (2).

(4.13) Proposition. We have K ∩N ′ = K ∩D′. Hence an isomorphism µ∗ : N/D
∼
→ N ′/D′,

the inverse being the map induced by µ∗.

Proof. If z ∈ K, z = j∗w for an element w ∈ Ker g∗. If z ∈ K ∩ N ′, Proposition (4.8)
implies w ∈ F 2r−d+1

S CHr−1(E). Thus z ∈ K ∩D′.

(4.14) Let X be a quasi-projective variety, with a quasi-projective map p to S. One can define
a unique filtration F •

S on the Chow group CHs(X) satisfying properties. The definition of the
filtration and the verification of the properties are similar to the case S = Spec k, which was
carried out in [CH].

(1) CHr(X) = F−dim S
S CHr(X) and F ν

S CHr(X) = 0 for ν large enough.
(2) If f : X → Y be a projective map over S, f∗ : CHs(X)→ CHs(Y ) respects the filtrations

F •
S . If in addition f is surjective, f∗ is strictly compatible with the filtrations.

(3) If j : U ↪→ X is an open immersion, then j∗ : CHs(X)→ CHs(U) is strictly compatible
with F •

S .
(4) If f : X → Y be an lci map of relative dimension d and f is over S, and

X ′−−−→Y ′





y





y

g

X
f
−−−→Y

a Cartesian square where g : Y ′ → Y is a quasi-projective map, then the refined Gysin map
f ! : CHs(Y

′)→ CHs+d(X
′) respects F •

S .
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