
ar
X

iv
:1

81
2.

09
99

9v
2 

 [
m

at
h.

N
T

] 
 1

6 
Ju

n 
20

22

Potential automorphy over CM fields

By Patrick B. Allen, Frank Calegari, Ana Caraiani, Toby Gee, David

Helm, Bao V. Le Hung, James Newton, Peter Scholze, Richard Taylor,

and Jack A. Thorne

Abstract

Let F be a CM number field. We prove modularity lifting theorems

for regular n-dimensional Galois representations over F without any self-

duality condition. We deduce that all elliptic curves E over F are poten-

tially modular, and furthermore satisfy the Sato–Tate conjecture. As an

application of a different sort, we also prove the Ramanujan Conjecture for

weight zero cuspidal automorphic representations for GL2(AF ).
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1. Introduction

In this paper, we prove the first unconditional modularity lifting theo-

rems for n-dimensional regular Galois representations without any self-duality

conditions. A version of these results were proved in [CG18] conditional on

two conjectures. The first conjecture was that the Galois representations con-

structed by Scholze in [Sch15] satisfy a strong form of local-global compatibility

at all primes. The second was a vanishing conjecture for the mod-p cohomol-

ogy of arithmetic groups localized at non-Eisenstein primes which mirrored the

corresponding (known) vanishing theorems for cohomology corresponding to

tempered automorphic representations in characteristic zero. We prove many

cases of the first of these conjectures in this paper. Our arguments crucially ex-

ploit work of Caraiani and Scholze [CS19b] on the cohomology of non-compact

Shimura varieties (see also [CS17] for the compact version of these results).

The details of this argument are carried out in §4 and §5. (It turns out that,

in the easier case when l 6= p, one can argue more directly using the original
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construction in [Sch15], and this is done in §3.) On the other hand, we do not

resolve the second conjecture concerning the vanishing of mod-p cohomology in

this paper. Rather, we sidestep this difficulty by a new technical innovation; a

derived version of “Ihara avoidance” which simultaneously generalizes the main

idea of [Tay08] as well as a localization in characteristic zero idea first used

in [KT17]. This argument, together with the proofs of the main automorphy

lifting theorems, is given in §6. The result is that we are able to prove quite gen-

eral modularity lifting theorems in both the ordinary and Fontaine–Laffaille

case for general n-dimensional representations over CM fields, in particular

Theorems 6.1.1 and 6.1.2. Instead of reproducing those theorems here (which

require a certain amount of notation), we instead reproduce here a few corol-

laries of our main theorems which are worked out in §7. The first theorem is

a special case of Corollaries 7.1.13 and 7.1.14:

Theorem 1.0.1. Let E be an elliptic curve over a CM number field F .

Then E and all the symmetric powers of E are potentially modular. Conse-

quently, the Sato–Tate conjecture holds for E.

For an application of a different sort, we also have the following special

case of the Ramanujan conjecture (see Corollary 7.1.15):

Theorem 1.0.2. Let F be a CM field, and let π be a regular algebraic

cuspidal automorphic representation of GL2(AF ) of weight 0. Then, for all

primes v of F , the representation πv is tempered.

This is, to our knowledge, the first case of the Ramanujan conjecture to

be proved for which neither the underlying Galois representation V nor some

closely related Galois representation (such as V ⊗2 or Symm2 V ) is known to

occur as a summand of the étale cohomology of some smooth proper algebraic

variety over a number field; in such cases temperedness (at unramified primes)

is ultimately a consequence of Deligne’s purity theorem. Our proof, in contrast,

follows more closely the original strategy proposed by Langlands. Langlands

explained [Lan70] how one could deduce Ramanujan from functoriality; namely,

functoriality implies the automorphy of Symmn(π) and Symmn(π∨) as well as

the product Symmn(π)⊠Symmn(π∨). Then, by considering standard analytic

properties of the standard L-function associated to Symmn(π) ⊠ Symmn(π∨)

(and exploiting a positivity property of the coefficients of this L-function) one

deduces the required bounds. As an approximation to this, we show that all

the symmetric powers of π (and π∨) are potentially automorphic, and then

invoke analytic properties of the Rankin–Selberg L-function (in the guise of

the Jacquet–Shalika bounds [JS81b]) as a replacement for the (potential) au-

tomorphy of their product.
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1.1. A brief overview of the argument. Let F/F+ be an imaginary CM

field, let K ⊂ GLn(A
∞
F ) be a compact open subgroup, let XK denote the cor-

responding (non-Hermitian) locally symmetric space, let E/Qp denote a finite

extension with ring of integers O, and let V = Vλ denote a local system on XK

which is a lattice inside an algebraic representation of weight λ defined over E.

(For example, V could be the trivial local system O.) After omitting a finite set

of primes S containing the p-adic places (and satisfying some further hypothe-

ses), one may define a Hecke algebra T = TS as the image of a formal ring of

Hecke operators in EndD(O)(RΓ(XK ,V)) where D(O) is the derived category

of O-modules. (This is isomorphic to the usual ring of Hecke operators acting

on H∗(XK ,V) up to a nilpotent ideal, but for technical reasons it is better to

work in the derived setting, cf. [NT16].) For a non-Eisenstein maximal ideal m,

the main result of [Sch15] guarantees the existence of a Galois representation

ρm : GF,S → GLn(Tm/J)

characterized, up to conjugation, by the characteristic polynomials of Frobe-

nius elements at places v 6∈ S, where J is a nilpotent ideal whose exponent

depends only on n and [F : Q]. It is crucial for applications to modularity

lifting theorems (following the strategy outlined in [CG18]) to know that this

Galois representation satisfies local–global compatibility at all primes. (As

usual, in order to talk about local-global compatibility at a prime in S, one

has to work with variants of T including Hecke operators at these primes — we

ignore all such distinctions here). Since Tm/J is (in general) not flat over O,
it is not exactly clear what one should expect to mean by local–global com-

patibility. For example, for primes l 6= p, a (torsion) representation which is

Steinberg at l need not be ramified at l. Instead, we ask that the characteristic

polynomials of ρm(σ) for σ ∈ Iv for v|l ∈ S and l 6= p have the expected shape.

Such a condition is amenable to arguments using congruences, and we prove a

version of this compatibility in §3 (see Theorem 3.1.1). Note that our theorem

only applies to a limited range of l; in particular, we assume that the level Kv

(for v|l ∈ S and l 6= p) satisfies the inclusions Iwv,1 ⊂ Kv ⊂ Iwv (where Iwv
and Iwv,1 are the Iwahori and pro-l Iwahori respectively) and additionally l

satisfies various splitting conditions relative to the field F . This suffices for ap-

plications to modularity, where we make a soluble base change to ensure that

Theorem 3.1.1 applies to both Taylor–Wiles primes and the ramified primes S

away from p. This part of the argument requires only the construction of

Galois representations in [Sch15].

Local–global compatibility for l = p is more subtle. Indeed, we are not

confident enough to formulate a precise conjecture of what local–global com-

patibility means in general in the torsion setting. Instead, we restrict to two

settings where the conjectural formulation of local–global compatibility is more
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transparent; the case when ρm should be Fontaine–Laffaille (assuming, in par-

ticular, that p is unramified in F ) and the ordinary case (with no restriction

on F ); §4 and §5 are devoted to proving such theorems. In both of these

cases, the underlying strategy is as follows. Associated to our data is a quasi-

split unitary group ‹G over F+ which is a form of GL2n that splits over F/F+.

There is a parabolic subgroup P of ‹G whose Levi subgroup G over F+ may be

identified with ResF/F+ GLn, and hence associated with the locally symmetric

spaces XK as above. The point of this construction is that ‹G may be associ-

ated to a Shimura variety ‹X‹K (and thus to Galois representations of known

provenance) whereas the cohomology of XK appears inside (in some non-trivial

way) a spectral sequence computing the cohomology of the boundary ∂‹X‹K of

the Borel–Serre compactification of ‹X‹K . One now faces several complications.

The first is that the cohomology of the boundary involves different parabolic

subgroups of ‹G besides P . This is resolved by the assumption that m is non-

Eisenstein. The second is separating inside the boundary cohomology (associ-

ated to P ) the contribution coming from G and that coming from the unipotent

subgroup U of P . Fortunately, the unipotent subgroup U is abelian and well

understood, and we show (for p > n2) that the relevant cohomology we are

interested in occurs as a direct summand of the cohomology of ∂‹X‹K (see The-

orem 4.2.1). Note that, for a general coefficient system V = Vλ on XK , there

are a number of different coefficient systems V
λ̃
on ‹X‹K for which H∗(∂‹X‹K ,Vλ̃)

can be related to H∗(XK ,Vλ), and this freedom of choice will be important in

what follows. By these arguments, we may exhibit RΓ(XK ,Vλ/̟m)m up to

shift as a direct summand of RΓ(∂‹X‹K ,Vλ̃/̟m)m̃. (Here m̃ is the corresponding

ideal of the Hecke algebra ‹T for ‹G, and ρm̃ is the corresponding (reducible) 2n-

dimensional representation associated to m, from which ρm was constructed.)

Now suppose that d is the complex (middle) dimension of ‹X‹K . We now make

crucial use of the following theorem, which is the main theorem of [CS19b] (see

Theorem 4.3.3 for a more general statement.)

Theorem 1.1.1 (Caraiani–Scholze [CS19b, Theorem 1.1]). Assume that

F+ 6= Q, that m is non-Eisenstein, and that ρm̃ is decomposed generic in the

sense of Definition 4.3.1. Assume that, for every prime l which is the residue

characteristic of a prime dividing S or ∆F , there exists an imaginary quadratic

field F0 ⊂ F in which l splits. Then

H i(‹X‹K ,Vλ̃/̟)m̃ = 0 if i < d, and H i
c(‹X‹K ,Vλ̃/̟)m̃ = 0 if i > d.

This immediately gives a diagram as follows:

Hd(‹X‹K ,Vλ̃[1/p])m̃ ←֓ Hd(‹X‹K ,Vλ̃)m̃ ։ Hd(∂‹X‹K ,Vλ̃)m̃.
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where the leftmost term can be understood in terms of automorphic forms on

Shimura varieties, and in particular (under appropriate assumptions) gives rise

to Galois representations having the desired p-adic Hodge theoretic properties,

and the rightmost term (by construction) now sees the part ofRΓ(∂‹X‹K ,Vλ̃/̟m)m̃
which (after shifting) contributes in degree d, at least up to a fixed level of

nilpotence.

The idea is then to choose the weight λ̃ so that V
λ̃
on ‹X‹K is related to Vλ

on XK by the action of a Weyl group as in Kostant’s formula [Kos61, Theorem

5.14] (to do this integrally, we need to assume that p is sufficiently large), and

that by varying λ̃ we may see all of the cohomology of RΓ(XK ,Vλ/̟m)m
in the degree d cohomology of RΓ(∂‹X‹K ,Vλ̃/̟m)m̃. This idea only works for

some weights and degrees, so to get around this, we first deepen the levels

K and ‹K at some other place above p which allows us to modify the weight

λ at the corresponding embeddings without changing the Hecke algebra. For

the modified λ, we can then find λ̃ and a Weyl group element giving us to

access to Hq(XK ,Vλ)m for q ≥ ⌊d2⌋ (see Proposition 4.4.1), and we handle the

remaining degrees by taking duals. This part of the argument (including the

invocation of Theorem 1.1.1) requires various local assumptions on F which can

always be achieved after a soluble base change but are not generally satisfied

(in particular, they are not satisfied when F+ = Q). We then extract the

relevant properties of ρm from those of the determinant associated to m̃. This

summarizes the argument of §4.

In §5, we prove a different local–global compatibility theorem in the or-

dinary case. Although not strictly necessary for our main theorems (for com-

patible families, by taking sufficiently large primes, one can aways reduce to

the Fontaine–Laffaille case), this allows us to prove a modularity lifting theo-

rem which may have wider applicability — in particular, the main local–global

compatibility result of this section (Theorem 5.5.1) applies to any prime p,

provided F contains an imaginary quadratic field in which p splits. The gen-

eral approach in this section is similar to that of §4. However, instead of

exhibiting RΓ(XK ,Vλ/̟m)m up to shift as a direct summand (as a Hecke

module) of RΓ(∂‹X‹K ,Vλ̃/̟m)m̃, (whose proof in §4 required p > n2), we make

arguments on the level of completed cohomology, and exploit a version of Emer-

ton’s ordinary parts functor. A key computation is that of the ordinary part

of a parabolic induction from P to ‹G in §5.3 following arguments of Hauseux

[Hau16]. Because only part of the cohomology of the unipotent radical U is or-

dinary, only relative Weyl group elements appear in the degree shifts (see The-

orem 5.4.3) and consequently we only obtain shifts by multiples of [F+ : Q] in

this way. We get around this by a trick using the centre of G, showing that the

Hecke algebra acting on H∗(XK ,Vλ) can be understood in terms of the Hecke

algebra acting only in degrees that are multiples of [F+ : Q] (Lemma 5.4.16).
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As in the Fontaine–Laffaille case, we can then extract the relevant properties

of ρm from those of the determinant associated to m̃.

We now turn to the modularity lifting theorems of §6. A key hypothesis

of [CG18] was the truth of a vanishing conjecture for integral cohomology local-

ized at a non-Eisenstein maximal ideal m outside a prescribed range (mirrored

by the characteristic zero vanishing theorems of Borel and Wallach [BW00]).

This conjecture remains unresolved. Instead, we exploit a localization in char-

acteristic zero idea first employed in [KT17]. This requires a slightly stronger

residual modularity hypothesis — namely, that ρm actually comes from an au-

tomorphic representation rather than one merely associated to a torsion class

— but this will be satisfied for our applications, and is at any rate required

at other points at the argument (for example to know that the residual modu-

larity hypothesis is preserved under soluble base change). Two points remain.

The first, which is mostly technical, is to show that the approach of [CG18]

and [KT17] is compatible with the fact that we only have Galois representa-

tions to T/J for some nilpotent ideal J . The second, which is more serious,

is to show that the localization argument of [KT17] is compatible with the

“Ihara avoidance argument” of [Tay08] and the (essentially identical) l0 > 0

version of this argument in [CG18]. (Here l0 is the parameter of [BW00] which

measures the failure of the underlying real group to admit discrete series and

which plays plays a fundamental role in [CG18].) To explain the problem, we

briefly recall the main idea of [Tay08] in the l0 = 0 setting (the difficulties are

already apparent in this case). One compares two global deformation problems

which (for exposition) differ only at an auxiliary prime v with l = N(v) ≡ 1

mod p, and which at all other primes have smooth local deformation condi-

tions. The corresponding local deformation rings R
(1)
v and R

(2)
v at the prime v

are taken to be tame local deformation rings which the image of tame inertia

has minimal polynomial (X − 1)n or (X − ζ1) . . . (X − ζn) respectively for dis-

tinct roots of unity ζi ≡ 1 mod v. The corresponding patched modules H
(1)
∞

and H
(2)
∞ constructed via the Taylor–Wiles method ([TW95, Kis09]) have the

expected depth over S∞. On the one hand, the generic fibre of R
(2)
v is geo-

metrically irreducible, which forces H
(2)
∞ to have full support over R

(2)
v . On

the other hand, there is an isomorphism R
(1)
v /̟ = R

(2)
v /̟, and this gives

an identification H
(1)
∞ /̟ ≃ H

(2)
∞ /̟. But now, the ring R

(1)
v has the con-

venient property that any irreducible component of its special fibre comes

from a unique irreducible component of the generic fibre, and from this a

modularity result is deduced in [Tay08] using commutative algebra. Sup-

pose we now drop the hypothesis that the integral cohomology all contributes

to cohomology in a single degree (still in our l0 = 0 setting), but we con-

tinue to assume this holds after inverting p. Now we can no longer control
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the depth of the S∞-modules H
(1)
∞ and H

(2)
∞ , and so knowing H

(2)
∞ [1/p] 6= 0

and H
(1)
∞ /̟ = H

(2)
∞ /̟ does not imply that H

(1)
∞ [1/p] 6= 0. For example, it

could happen that H
(1)
∞ = H

(1)
∞ /̟ = H

(2)
∞ /̟. The resolution of this diffi-

culty is not to simply compare the patched modules in fixed (final) degree,

but the entire patched complex in the derived category. The point is now that

these complexes in characteristic p (which are derived reductions of perfect S∞-

complexes for the ring of diamond operators S∞) remember information about

characteristic zero. As a simple avatar of this idea, if M is a finitely gener-

ated Zp-module, then M [1/p] is non-zero if and only if M ⊗L Fp has non-zero

Euler characteristic over Fp. The main technical formulation of this princi-

ple which allows us to prove a version of Ihara avoidance in our setting is

Lemma 6.3.4.

Finally, in §7, we apply the results of previous sections to prove Theo-

rems 1.0.1 and 1.0.2. We begin with some preliminaries on compatible systems

in order to show there are enough primes such that the corresponding residual

representations satisfy hypotheses of our modularity lifting theorems. As ex-

pected, the arguments of this section make use of the p-q switch ([Wil95], but

first exploited in the particular context of potential automorphy in [Tay03])

and a theorem of Moret-Bailly [MB89].
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tended by all the authors of this paper) whose goal was to explore possible

consequences for modularity. It was during this workshop (in November 2016)

that the new Ihara avoidance argument was found. The authors gratefully

acknowledge the IAS for the opportunity to run this workshop, and thank

Matthew Emerton for his participation. We are also very grateful to Lambert

A’Campo and Konstantin Miagkov for helpful comments and questions on an

earlier draft.

1.2. Notation. We write all matrix transposes on the left; so tA is the

transpose of A. We will write charA for the characteristic polynomial of a

matrix A. We write GLn for the usual general linear group (viewed as a

reductive group scheme over Z) and Tn ⊂ Bn ⊂ GLn for its subgroups of

diagonal and of upper triangular matrices, respectively. We will write O(n)

(resp. U(n)) for the group of matrices g ∈ GLn(R) (resp. GLn(C)) such that
tgcg = 1n.

If R is a local ring, we write mR for the maximal ideal of R.
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If ∆ is an abelian group, we will let ∆tor denote its maximal torsion

subgroup and ∆tf its maximal torsion free quotient. If ∆ is profinite and

abelian, we will also write ∆(l) for its Sylow pro-l-subgroup, which is naturally

isomorphic to its maximal pro-l continuous quotient. If Γ is a profinite group,

then Γab will denote its maximal abelian quotient by a closed subgroup. If

ρ : Γ → GLn(Ql) is a continuous homomorphism, then we will let ρ : Γ →
GLn(Fl) denote the semi-simplification of its reduction, which is well defined

up to conjugacy (by the Brauer–Nesbitt theorem). IfM is a topological abelian

group with a continuous action of Γ, then by H i(Γ,M) we shall mean the

continuous cohomology.

If R is a (possibly non-commutative) ring, then we will write D(R) for

the derived category of R-modules. By definition, an object of D(R) is a

cochain complex of R-modules. An object of D(R) is said to be perfect if it is

isomorphic in this category to a bounded complex of projective R-modules.

If R is a complete Noetherian local ring, C ∈ D(R) is a perfect complex,

and T → EndD(R)(C) is a homomorphism of R-algebras, then the image T of T

in EndD(R)(C) is a finiteR-algebra, which can therefore be written as a product

T =
∏

m Tm of its localizations at maximal ideals. There is a corresponding

decomposition 1 =
∑

m em of the unit in T as a sum of idempotents. Since

D(R) is idempotent complete, this determines a decomposition C = ⊕mCm in

D(R). The direct summands Cm are well-defined up to unique isomorphism.

We usually reserve the symbol C• to refer to an element in the category of

cochain complexes, although hopefully statements of the form C• = 0 in D(R)

will not cause any confusion.

If G is a locally profinite group, and U ⊂ G is an open compact subgroup,

then we write H(U,G) for the algebra of compactly supported, U -biinvariant

functions f : G → Z, with multiplication given by convolution with respect

to the Haar measure on G which gives U volume 1. If X ⊂ G is a compact

U -biinvariant subset, then we write [X] for the characteristic function of X,

an element of H(U,G).
If G is a reductive group over a field k and T ⊂ G is a split maximal

torus, then we write W (G,T ) for the Weyl group (the set of k-points of the

quotient NG(T )/T ). For example, if F/Q is a number field, then we may

identify W ((ResF/QGLn)C, (ResF/Q Tn)C) with S
Hom(F,C)
n . If P ⊂ G is a

parabolic subgroup which contains T , then there is a unique Levi subgroup

L ⊂ P which contains T . We write WP (G,T ) for the absolute Weyl group of

this Levi subgroup, which may be identified with a subgroup of W (G,T ).

Suppose that G comes equipped with a Borel subgroup B containing T .

Then we can form X∗(T )+ ⊂ X∗(T ), the subset of B-dominant characters.

If P is a parabolic subgroup of G which contains B, with Levi L as above,

then B ∩ L is a Borel subgroup of L and we write X∗(T )+,P for the subset of
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(B ∩ L)-dominant characters. The set

WP (G,T ) = {w ∈W (G,T ) | w(X∗(T )+) ⊂ X∗(T )+,P}

is a set of representatives for the quotient WP (G,T )\W (G,T ).

Galois representations. If F is a perfect field, we let F denote an algebraic

closure of F and GF the absolute Galois group Gal(F/F ). We will use ζn to

denote a primitive nth-root of 1. Let ǫl denote the l-adic cyclotomic character

and ǫl its reduction modulo l. We will also let ωl : GF → µl−1 ⊂ Z×l denote

the Teichmüller lift of ǫl. If E/F is a separable quadratic extension, we will

let δE/F denote the non-trivial character of Gal(E/F ). We will write BrF for

the Brauer group of F .

We will write Qlr for the unique unramified extension of Ql of degree r

and Zlr for its ring of integers. We will write Qnr
l for the maximal unramified

extension of Ql and Znr
l for its ring of integers. We will also write Ẑnr

l for the

l-adic completion of Znr
l and “Qnr

l for its field of fractions.

If K is a finite extension of Qp for some p, we write Knr for its maximal

unramified extension; IK for the inertia subgroup of GK ; FrobK ∈ GK/IK for

the geometric Frobenius; and WK for the Weil group. If K ′/K is a Galois

extension we will write IK ′/K for the inertia subgroup of Gal(K ′/K). We will

write ArtK : K×
∼−→ W ab

K for the Artin map normalized to send uniformizers to

geometric Frobenius elements. We will write ωl,r for the character GQlr
→ Z×lr

such that ωl,r ◦ArtQlr
sends l to 1 and sends a ∈ Z×lr to the Teichmüller lift of

a mod l. This is sometimes referred to as “the fundamental character of niveau

r.” (Thus ωl,1 = ωl.)

We will let recK be the local Langlands correspondence of [HT01], so

that if π is an irreducible complex admissible representation of GLn(K), then

recK(π) is a Frobenius semi-simple Weil–Deligne representation of the Weil

group WK . We will write rec for recK when the choice of K is clear. We write

recTK for the arithmetic normalization of the local Langlands correspondence,

as defined in e.g. [CT14, §2.1]; it is defined on irreducible admissible represen-

tations of GLn(K) defined over any field which is abstractly isomorphic to C

(e.g. Ql).

If (r,N) is a Weil–Deligne representation of WK , we will write (r,N)F−ss

for its Frobenius semisimplification. If ρ is a continuous representation of GK
over Ql with l 6= p then we will write WD(ρ) for the corresponding Weil–

Deligne representation of WK . (See for instance section 1 of [TY07].) By a

Steinberg representation of GLn(K) we will mean a representation Sp n(ψ) (in

the notation of section 1.3 of [HT01]) where ψ is an unramified character of

K×. If πi is an irreducible smooth representation of GLni(K) for i = 1, 2,

we will write π1 ⊞ π2 for the irreducible smooth representation of GLn1+n2(K)
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with rec(π1 ⊞ π2) = rec(π1) ⊕ rec(π2). If K ′/K is a finite extension and if π

is an irreducible smooth representation of GLn(K) we will write BCK ′/K(π)

for the base change of π to K ′ which is characterized by recK ′(BCK ′/K(π)) =

recK(π)|WK′ .

If ρ is a de Rham representation of GK over Qp, then we will write WD(ρ)

for the corresponding Weil–Deligne representation of WK , and if τ : K →֒ Qp

is a continuous embedding of fields, then we will write HTτ (ρ) for the multiset

of Hodge–Tate numbers of ρ with respect to τ . Thus HTτ (ρ) is a multiset

of dim ρ integers. In fact if W is a de Rham representation of GK over Qp

and if τ : K →֒ Qp, then the multiset HTτ (W ) contains i with multiplicity

dim
Ql
(W ⊗τ,K “K(i))GK . Thus, for example, HTτ (ǫp) = {−1}.

If G is a reductive group over K and P is a parabolic subgroup with

unipotent radical N and Levi component L, and if π is a smooth representation

of L(K), then we define Ind
G(K)
P (K) π to be the set of locally constant functions

f : G(K) → π such that f(hg) = π(hN(K))f(g) for all h ∈ P (K) and g ∈
G(K). It is a smooth representation of G(K) where (g1f)(g2) = f(g2g1). This

is sometimes referred to as ‘natural’ or ‘un-normalized’ induction. We let

δP denote the determinant of the action of L on LieN . Then we define the

‘normalized’ or ‘unitary’ induction n-Ind
G(K)
P (K) π to be Ind

G(K)
P (K)(π⊗|δP |

1/2
K ). If P

is any parabolic in GLn1+n2 with Levi component GLn1 ×GLn2 , then π1 ⊞ π2

is a sub-quotient of n-Ind
GLn1+n2 (K)

P (K) π1 ⊗ π2.
We will let c denote complex conjugation on C. We will write ArtR (resp.

ArtC) for the unique continuous surjection

R× ։ Gal(C/R)

(resp. C× ։ Gal(C/C)). We will write recC (resp. recR), or simply rec, for the

local Langlands correspondence from irreducible admissible (LieGLn(R) ⊗R

C, O(n))-modules (resp. (LieGLn(C)⊗RC, U(n))-modules) to continuous, semi-

simple n-dimensional representations of the Weil group WR (resp. WC). (See

[Lan89].) If πi is an irreducible admissible (LieGLni(R)⊗R C, O(ni))-module

(resp. (LieGLni(C)⊗RC, U(ni))-module) for i = 1, . . . , r and if n = n1+ · · ·+
nr, then we define an irreducible admissible (LieGLn(R)⊗RC, O(n))-module

(resp. (LieGLn(C)⊗R C, U(n))-module) π1 ⊞ · · · ⊞ πr by

rec(π1 ⊞ · · ·⊞ πr) = rec(π1)⊕ · · · ⊕ rec(πr).

If π is an irreducible admissible (LieGLn(R) ⊗R C, O(n))-module, then we

define BCC/R(π) to be the irreducible admissible (LieGLn(C) ⊗R C, U(n))-

module defined by

recC(BCC/R(π)) = recR(π)|WC
.
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If π is an irreducible admissible representation of GLn(AF ) and ξ ∈
(Zn+)

Hom(F,C), we say that π is regular algebraic of weight ξ if the infinites-

imal character of π∞ is the same as that of V ∨ξ , where Vξ is the algebraic

representation of ResF/Q GLn of highest weight ξ (see Section 2.2.1). We say

that it is regular algebraic if it is regular algebraic of some weight.

We will write || || for the continuous homomorphism

|| || =
∏

v

| |v : A×/Q× −→ R×>0,

where each | |v has its usual normalization, i.e. |p|p = 1/p.

Now suppose that K/Q is a finite extension. We will write || ||K (or

simply || ||) for || || ◦NK/Q. We will also write

ArtK =
∏

v

ArtKv : A×K/K
×(K×∞)0

∼−→ Gab
K .

If v is a finite place of K, we will write k(v) for its residue field, qv for #k(v),

and Frobv for FrobKv . If v is a real place of K, then we will let [cv ] denote the

conjugacy class in GK consisting of complex conjugations associated to v. If

K ′/K is a quadratic extension of number fields, we will denote by δK ′/K the

nontrivial character of A×K/K
×NK ′/KA×K ′ . (We hope that this will cause no

confusion with the Galois character δK ′/K . One equals the composition of the

other with the Artin map for K.) If K ′/K is a soluble, finite Galois extension

and if π is a cuspidal automorphic representation of GLn(AK) we will write

BCK ′/K(π) for its base change to K
′, an (isobaric) automorphic representation

of GLn(AK ′) satisfying

BCK ′/K(π)v = BCK ′
v/Kv|K

(πv|K )

for all places v of K ′. If πi is an automorphic representation of GLni(AK)

for i = 1, 2, we will write π1 ⊞ π2 for the automorphic representation of

GLn1+n2(AK) satisfying

(π1 ⊞ π2)v = π1,v ⊞ π2,v

for all places v of K.

We will call a number field K a CM field if it has an automorphism c such

that for all embeddings i : K →֒ C one has c ◦ i = i ◦ c. In this case, either K

is totally real or a totally imaginary quadratic extension of a totally real field.

In either case, we will let K+ denote the maximal totally real subfield of K.

Suppose that K is a number field and

χ : A×K/K
× −→ C×
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is a continuous character. If there exists a ∈ ZHom(K,C) such that

χ|(K×
∞)0 : x 7−→

∏

τ∈Hom(K,C)

(τx)aτ ,

we will call χ algebraic. In this case, we can attach to χ and a rational prime

l and an isomorphism ı : Ql
∼−→ C, a unique continuous character

rl,ı(χ) : GK −→ Q
×
l

such that for all v 6 |l we have

ı ◦ rl,ı(χ)|WKv
◦ ArtKv = χv.

There is also an integer wt(χ), the weight of χ, such that

|χ| = || ||−wt(χ)/2
K .

(See the discussion at the start of [BLGGT14, §A.2] for more details.)

If K is a totally real field, we call a continuous character

χ : A×K/K
× −→ C×

totally odd if χv(−1) = −1 for all v|∞. Similarly, we call a continuous charac-

ter

µ : GK −→ Q
×
l

totally odd if µ(cv) = −1 for all v|∞.

2. Preliminaries on the cohomology of locally symmetric spaces

and Galois representations

Our main objects of study in this paper are n-dimensional Galois repre-

sentations and their relation to the cohomology of congruence subgroups of

GLn (equivalently, the cohomology of the locally symmetric spaces attached

to congruence subgroups of GLn). In this introductory section we establish

some basic notation and definitions concerning these objects, and recall some

of their fundamental known properties. In particular, we will define cohomol-

ogy groups associated to an arbitrary weight and level and also define the

Hecke algebras which act on these cohomology groups.

2.1. Arithmetic locally symmetric spaces : generalities.

2.1.1. Symmetric spaces. Let F be a number field and let G be a con-

nected linear algebraic group over F . We consider a space of type S −Q for

G := ResF/QG, in the sense of [BS73, §2] (see also [NT16, §3.1]). This is a

pair consisting of a homogeneous space XG for G(R) and a family of Levi

subgroups of GR satisfying certain conditions. From [BS73, Lem. 2.1], the

homogeneous space XG is determined up to isomorphism. We will refer to
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XG as the symmetric space for G. For example, if G = GLn,F , we can take

XG = GLn(F∞)/K∞R× for K∞ ⊂ GLn(F∞) a maximal compact subgroup.

An open compact subgroup KG ⊂ G(A∞F ) is said to be neat if all of its

elements are neat. An element g = (gv)v ∈ G(A∞F ) is said to be neat if the

intersection ∩vΓv is trivial, where Γv ⊂ Q
×

is the torsion subgroup of the

subgroup of F
×
v generated by the eigenvalues of gv acting via some faithful

representation of G.

We will call a ‘good subgroup’ any neat open compact subgroup KG ⊂
G(A∞F ) of the form KG =

∏
vKG,v, the product running over finite places v

of F . If KG is a good subgroup, then we define

XG
KG

:= G(F )\
Ä
XG ×G(A∞F )/KG

ä
and XG := G(F )\

Ä
XG ×G(A∞F )

ä
,

the latter with the discrete topology on G(A∞F ).

These topological spaces may be given the structure of smooth manifolds,

and G(A∞F ) acts on XG by right translation. We can identify XG
KG

= XG/KG.

Note that the space XG is diffeomorphic to Euclidean space. The neatness

condition on KG implies that XG
KG

can be identified with a finite disjoint

union of quotients of XG by the action of torsion-free arithmetic subgroups of

G(F ).

We letX
G
denote the partial Borel–Serre compactification ofXG (see [BS73,

§7.1]). Define

X
G
KG

:= G(F )\
Ä
X

G ×G(A∞F )/KG

ä
and XG := G(F )\

Ä
X

G ×G(A∞F )
ä
.

For any good subgroup KG ⊂ G(A∞F ), the space X
G
KG

, which can be identified

with XG/KG, is compact (see [BS73, Theorem 9.3]). More precisely, X
G
KG

is a compact smooth manifold with corners with interior XG
KG

; the inclusion

XG
KG
→֒ X

G
KG

is a homotopy equivalence. We also define ∂XG = X
G − XG

and

∂XG
KG

:= G(F )\
Ä
∂XG ×G(A∞F )/KG

ä
and ∂XG := G(F )\

Ä
∂XG ×G(A∞F )

ä
.

2.1.2. Hecke operators and coefficient systems. If S is a finite set of finite

places of F we set GS := G(A∞,SF ) and GS := G(AF,S), and similarly KS
G =∏

v 6∈S KG,v and KG,S =
∏
v∈SKG,v . We also sometimes write G∞ = G(A∞F ).

Let R be a ring and let V be an R[G(F )×KG,S ]-module, finite free as R-

module. We now explain how to obtain a local system of finite free R-modules,

also denoted V, on XG
KG

, and how to equip the complex RΓ(XG
KG
,V) ∈ D(R)

with an action of the Hecke algebra H(GS ,KS
G), following the formalism of

[NT16] (in particular, viewing XG ×G(A∞F ) as a right G(F )×G(A∞F )-space).

The R[G(F ) ×KG,S ]-module V determines (by pullback from a point) a

G(F )×GS ×KG,S-equivariant sheaf, also denoted V, of finite free R-modules
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on XG × G(A∞F ), hence (by descent under a free action, as in [NT16, Lem.

2.17]) a GS × KG,S-equivariant sheaf V on XG. By taking derived global

sections we obtain RΓ(XG,V), which is an object of the derived category

of R[GS × KG,S ]-modules. By taking derived invariants under KG we ob-

tain RΓ(KG, RΓ(XG,VXG
)), which is an object of the derived category of

H(GS ,KS
G)⊗Z R-modules.

On the other hand, if we only think of V as a KG-equivariant sheaf on XG,

it is equivalent to a sheaf V on XG
KG

(applying once again [NT16, Lem. 2.17]).

The complex RΓ(XG
KG
,V) is naturally isomorphic in D(R) to the image of the

complex RΓ(KG, RΓ(XG,VXG
)) under the exact forgetful functor

D(H(GS ,KS
G)⊗Z R)→ D(R),

cf. [NT16, Prop. 2.18]. In this way, we obtain a canonical homomorphism

(2.1.3) H(GS ,KS
G)⊗Z R→ EndD(R)(RΓ(X

G
KG
,V)).

The same formalism applies equally well to the Borel–Serre compactification

(because G(F )×KG acts freely on X
G×G(A∞F )). Even more generally, if Y is

any right GS×KG,S-space and C is any bounded-below complex of GS×KG,S-

equivariant sheaves of R-modules on Y , there is a homomorphism

H(GS ,KS
G)⊗Z R→ EndD(R)(RΓ(KG, RΓ(Y,C))).

Taking j : XG ×G(A∞F )→ X
G ×G(A∞F ) to be the canonical open immersion

and V to be an R[G(F ) × KG,S ]-module, finite free as R-module, this deter-

mines an action of the Hecke algebra on the cohomology groups with compact

support:

H(GS ,KS
G)⊗Z R→ EndD(R)(RΓ(G(F ) ×KG, RΓ(X

G ×G(A∞F ), j!V)))
= EndD(R)(RΓc(X

G
KG
,V)).

We have the following lemma, which is a consequence of the existence of the

Borel–Serre compactification (see [BS73, §11]):

Lemma 2.1.4. Let KG be a good subgroup, let R be a Noetherian ring, and

let V be an R[G(F )×KG]-module, finite free as R-module. Then H∗(XG
KG
,V)

is a finitely generated R-module.

A variant of this construction arises when we are given a normal good

subgroup K ′G ⊂ KG with the property that KS
G = (K ′G)

S . Then we write

RΓKG/K
′
G
(XG

K ′
G
,V) ∈ D(R[KG/K

′
G]) for the complex in this category com-

puting the cohomology of H∗(XG
K ′

G
,V) with its natural KG/K

′
G = KG,S/K

′
G,S-

action. The image of this complex under the forgetful functorD(R[KG/K
′
G])→
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D(R) is RΓ(XG
K ′

G
,V), and there is a homomorphism

(2.1.5) H(GS ,KS
G)⊗Z R→ EndD(R[KG/K

′
G])(RΓKG/K

′
G
(XG

K ′
G
,V))

which recovers (2.1.3) after composition with the map

(2.1.6) EndD(R[KG/K
′
G])(RΓKG/K

′
G
(XG

K ′
G
,V))→ EndD(R)(RΓ(X

G
KG
,V))

given by the functor RΓ(KG/K
′
G, ?).

The following lemma is a strengthening of Lemma 2.1.4:

Lemma 2.1.7. Let KG be a good subgroup, and let K ′G ⊂ KG be a normal

subgroup which is also good. Let R be a Noetherian ring, and let V be an

R[G(F ) × KG]-module, finite free as R-module. Then RΓKG/K
′
G
(XG

K ′
G
,V) is

a perfect object of D(R[KG/K
′
G]); in other words, it is isomorphic in this

category to a bounded complex of projective R[KG/K
′
G]-modules.

Proof. Pullback induces an isomorphismRΓKG/K
′
G
(X

G
K ′

G
,V)→ RΓKG/K

′
G
(XG

K ′
G
,V),

so it suffices to show that RΓKG/K
′
G
(X

G
K ′

G
,V) is a perfect complex. As in [BS73,

§11], we see that X
G
KG

admits a finite triangulation; this pulls back to a G(F )×
KG-invariant triangulation of X

G×G(A∞F ). Let C• be the corresponding com-

plex of simplicial chains. It is a bounded complex of finite free Z[G(F )×KG]-

modules. The lemma now follows on observing that RΓKG/K
′
G
(X

G
K ′

G
,V) is

isomorphic in D(R[KG/K
′
G]) to the complex HomZ[G(F )×K ′

G](C•,V). �

Finally we introduce some notation relevant for relating the Hecke op-

erators of G and of its parabolic subgroups. Let us therefore now assume

that G is reductive, and let P = MN be a parabolic subgroup with Levi sub-

group M. Let KG ⊂ G(A∞F ) be a good subgroup. In this situation, we define

KP = KG ∩ P(A∞F ), KN = KG ∩ N(A∞F ), and define KM to be the image of

KP in M(A∞F ). We say that KG is decomposed with respect to P = MN if we

have KP = KM ⋉KN; equivalently, if KM = KG ∩M(A∞F ).

Assume now that KG is decomposed with respect to P = MN, and let

S be a finite set of finite places of F such that for all v 6∈ S, KG,v is a

hyperspecial maximal compact subgroup of G(Fv). In this case, we can define

homomorphisms

rP : H(GS ,KS
G)→H(PS ,KS

P) and rM : H(PS,KS
P)→H(MS ,KS

M),

given respectively by “restriction to P” and “integration along N”; see [NT16,

§2.2.3, 2.2.4] for the definitions of these maps, along with the proofs that they

are indeed algebra homomorphisms and that integration along N preserves

integrality. We write

(2.1.8) S = rM ◦ rP
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for the composite map, or S = SGM when we wish to emphasize the ambient

groups. By abuse of notation, we also denote by rP, rM and S = SGM the same

maps for the local Hecke algebras at v 6∈ S.
2.1.9. The Hecke algebra of a monoid. We in fact need a slight generaliza-

tion of the discussion in the previous section, which we outline now in a similar

way to [NT16, §2.2].

We first discuss the local situation. Let F be a non-archimedean local field,

and let G be a reductive group over F . Let q denote the cardinality of the

residue field of F . If U ⊂ G(F ) is an open compact subgroup and ∆ ⊂ G(F )

is an open submonoid which is invariant under left and right multiplication by

elements of U , then we can consider the subset H(∆, U) ⊂ H(G(F ), U) of func-

tions f : G(F ) → Z which are supported in ∆. It follows from the definition

of the convolution product that this subset is in fact a subalgebra. If R is a

ring andM is an R[∆]-module (or more generally, a complex of R[∆]-modules)

then there is a corresponding homomorphism H(∆, U)→ EndD(R)(RΓ(U,M)).

This extends the formalism for the full Hecke algebra described in [NT16, 2.2.5]

and recalled in the previous section.

Now let P ⊂ G be a parabolic subgroup with Levi decomposition P =

MN , and let P =MN denote the opposite parabolic. Let U ⊂ G be an open

compact subgroup which admits an Iwahori decomposition with respect to P .

By definition, this means that if we define UN = U ∩N(F ), UM = U ∩M(F ),

and UN = U ∩N(F ), then the two product maps

UN × UM × UN → U and UN × UM × UN → U

are bijective. In this case, we write ∆M ⊂ M(F ) for the set of U -positive

elements, i.e. those t ∈ M(F ) which satisfy tUN t
−1 ⊂ UN and UN ⊂ tUN t

−1.

We define ∆ = UN∆MUN .

Lemma 2.1.10. ∆M and ∆ are monoids. Moreover, ∆M is open inM(F ),

∆ is open in G(F ), we have U∆U = ∆, and ∆ ∩M(F ) = ∆M .

Proof. It is clear from the definition that ∆M is closed under multiplica-

tion, and also that ∆M , ∆ are open in M(F ) and G(F ), respectively. To show

that U∆U = ∆, we simply observe that if m ∈ ∆M , then the definition of

positivity gives

UmU = UmUNUMUN = UmUMUN = UNUMUNmUMUN

= UNUMmUMUN ⊂ UN∆MUN = ∆.

To show that ∆ is closed under multiplication, we must show that Um1Um2U ⊂
U∆MU . Using the definition of positivity, we see that

Um1Um2U = Um1UNUMUNm2U = Um1UMm2U,
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so it is equivalent to show m1UMm2 ⊂ ∆M ; and this is true, since UM ⊂ ∆M .

Finally, the identity ∆∩M(F ) = ∆M follows from the following observation: if

u1tū2 = m ∈M(F ), for u1 ∈ UN , t ∈ ∆M and ū2 ∈ UN , then ū2 = t−1u−11 m ∈
P (F ) ∩ N(F ), so ū2 must be the identity. Similarly, u1 must be the identity,

so m = t ∈ ∆M . �

It follows that the Hecke algebras H(∆, U) and H(∆M , UM ) are defined.

Moreover, ∆P = ∆ ∩ P (F ) is a monoid, and we can consider also the Hecke

algebra H(∆P , UP ).

Lemma 2.1.11. Consider the two maps rP : H(∆, U) → H(∆P , UP ) and

rM : H(∆P , UP ) → H(∆M , UM ) given by restriction to P (F ) and integration

along UN , respectively. Then both rP and rM are algebra homomorphisms.

Proof. It follows from [NT16, Lemma 2.7] that the map H(P (F ), UP ) →
H(M(F ), UM ) is an algebra homomorphism whenever the condition UP =

UN ⋊UM is satisfied. It remains to show that rP is an algebra homomorphism.

The proof is the same as the proof of [NT16, Lemma 2.4, 1.] once we take

into account the identity, valid for any function f : G(F ) → R with compact

support contained in UP (F ) (and a fortiori, any function f ∈ H(∆, U)):
∫

g∈G(F )
f(g) dg =

∫

u∈U

∫

p∈P (F )
f(pu) dp du. �

It will be helpful later to note that the maps rP and rM ◦ rP are quite

simple, being given on basis elements by the formulae rP ([UmU ]) = [UPmUP ]

and rM ◦ rP ([UmU ]) = #(UN/mUNm
−1)[UMmUM ] = |δP (m)|−1F [UMmUM ],

respectively. As in the unramified case, we will write S or SGM for the composite

rM ◦ rP .
Lemma 2.1.12. Consider the map t : H(∆M , UM ) → H(∆, U) of Z-

modules given on basis elements by t([UMmUM ]) = [UmU ]. Then t is an

algebra homomorphism.

Proof. This is [BK98, Corollary 6.12]. �

Thus we have constructed injective algebra homomorphisms

t : H(∆M , UM )→H(∆, U)

S : H(∆, U)→H(∆M , UM )

with the property that for any m ∈ ∆M , t ◦ S([UmU ]) = |δP (m)|−1F [UmU ]

and S ◦ t([UMmUM ] = |δP (m)|−1F [UMmUM ]. In certain circumstances, we can

extend the domain of definition of these homomorphisms. Following [BK98],

we say that an element z ∈ ∆M which lies in the centre of M is strongly

positive if for any open compact subgroups H1,H2 of UN (resp. H1,H2 of

UN ), there exists n ≥ 0 such that znH1z
−n ⊂ H2 (resp. z−nH1z

n ⊂ H2).
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Lemma 2.1.13. Let z ∈ ∆M be strongly positive. Then :

(1) [UMzUM ] lies in the centre of H(∆M , UM ), is invertible inH(M(F ), UM ),

and H(∆M , UM )[[UMzUM ]−1] = H(M(F ), UM ).

(2) Let R be a ring in which q is a unit, and suppose that [UzU ] is invertible

in H(G(F ), U)⊗ZR. Then t⊗ZR and S⊗ZR extend uniquely to algebra

isomorphisms

t : H(M(F ), UM )⊗Z R→ (H(∆, U)⊗Z R)[[UzU ]−1]

and

S : (H(∆, U)⊗Z R)[[UzU ]−1]→ H(M(F ), UM )⊗Z R.

Proof. The element [UMzUM ] lies in the centre of H(∆M , UM ) because

z lies in the centre of M(F ), by assumption. Its inverse is [UMz
−1UM ].

The equality H(∆M , UM )[[UMzUM ]−1] = H(M(F ), UM ) holds because for any

m ∈ M(F ), there exists n ≥ 0 such that znm ∈ ∆M , hence [UMmUM ] =

[UMzUM ]−n[UMz
nmUM ] ∈ H(∆M , UM )[[UMzUM ]−1]. This shows the first

part. The second part is elementary. �

Lemma 2.1.14. Let R be a ring, let W be an R[P (F )]-module, and let

V = Ind
G(F )
P (F )W . Then there is a natural morphism φ : V U → r∗PW

UP

of H(∆, U) ⊗Z R-modules. Moreover, writing (?)∼ for the forgetful functor

from H(∆, U) ⊗Z R-modules to R-modules, the induced morphism (V U )∼ →
(r∗PW

UP )∼ has a functorial splitting.

Proof. Let g1, . . . , gn ∈ G(F ) be representatives for the double quotient

P (F )\G(F )/U ; we assume that g1 = 1. Then there is an isomorphism of R-

modules V U ∼= ⊕ni=1W
giUg

−1
i ∩P (F ), which sends a function f ∈ V U to the tuple

(f(g1), . . . , f(gn)). This is the desired functorial splitting. We claim that the

map V U → WUP corresponding given by projection to the first component is

in fact Hecke equivariant (with respect to rP ). To see this, choose f ∈ V U ,

and let v = f(1), m ∈ ∆M . We calculate

([UmU ] · f)(1) =
∫

g∈UmU
f(g) dg =

∫

p∈P (F )

∫

u∈U
1pu∈UmUf(pu) dp du

=

∫

p∈P (F )∩UmU
f(p) dp = [UPmUP ] · f(1),

as required. �

We now describe how we will apply the above discussion in the global

situation. Let F now denote a number field, let G be a reductive group over F ,

and let P ⊂ G be a parabolic subgroup with Levi decomposition P = MN. Let

KG ⊂ G(A∞F ) be a good subgroup of the form K = KG,SKG,TK
T∪S
G , notation

and assumptions being as follows:
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(1) T, S are finite disjoint sets of finite places of F .

(2) For each place v 6∈ S ∪ T of F , GFv is unramified and Kv is a hyper-

special maximal subgroup of G(Fv).

(3) For each place v ∈ T , KG,v admits an Iwahori decomposition with

respect to P. We write ∆G,v ⊂ G(Fv) for the corresponding open sub-

monoid and ∆G,T =
∏
v∈T ∆G,v. We define ∆P,T and ∆M,T similarly.

We thus have a map

S : H(GS∪T ×∆G,T ,K
S
G)→H(MS∪T ×∆M,T ,K

S
M).

Let R be a ring. Applying Lemma 2.1.14 (cf. [NT16, Corollary 2.6]), we see

that there is a split morphism in D(R)

RΓ([IndG
∞

P∞ XP]/KG, R)→ RΓ(XP
KP
, R),

which is equivariant for the action of H(GS∪T ×∆G,T ,K
S
G)⊗Z R by endomor-

phisms on the source and target (the latter action being via the map rP, and

induction being in the same sense as in [NT16, §3.1]). The splitting need not

be equivariant, but we see that in any case there is a surjective morphism

H∗([IndG
∞

P∞ XP]/KG, R)→ r∗PH
∗(XP

KP
, R)

ofH(GS∪T×∆G,T ,K
S
G)⊗ZR-modules. Similarly [NT16, Proposition 3.4] shows

that there is a split morphism in D(R)

RΓ(XM
KM

, R)→ RΓ(XP
KP
, R),

which is equivariant for the action of H(PS∪T × ∆P,T ,K
S
P) ⊗Z R by endo-

morphisms on the source and target (the action on the source being via the

map rM). Altogether there is no S-equivariant map between the complexes

RΓ([IndG
∞

P∞ XP]/KG, R) and RΓ(XM
KM

, R), these morphisms considered above

will together allow us, in the course of proving Theorem 2.4.8 below, to show

that S descends to a map between the Hecke algebras which act faithfully on

these complexes. Moreover, in the presence of invertible strongly positive ele-

ments as in the statement of Lemma 2.1.13, we will be able to show that this

induced map on Hecke algebras is compatible with localisation.

2.2. Arithmetic locally symmetric spaces : the quasi-split unitary group.

2.2.1. The quasi-split unitary group, the Siegel parabolic, and its Levi sub-

group. We now specialize the above discussion to our case of interest. We fix

an integer n ≥ 1. Let F be an (imaginary) CM number field with maximal

totally real subfield F+. Let Ψn be the matrix with 1’s on the anti-diagonal

and 0’s elsewhere, and set

Jn =

Ç
0 Ψn

−Ψn 0

å
.
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We write ‹Gn = ‹G for the group scheme over OF+ with functor of points

‹G(R) = {g ∈ GL2n(R ⊗OF+ OF ) | tgJngc = Jn}.

Then ‹GF+ is a quasi-split reductive group over F+; it is a form of GL2n which

becomes split after the quadratic base change F/F+. If v is a place of F+ which

splits in F , then a choice of place v|v of F determines a canonical isomorphism

ιv : ‹G(F+
v ) ∼= GL2n(Fv). Indeed, there is an isomorphism F+

v ⊗F+ F ∼= Fv ×
Fvc and ιv is given by the natural inclusion ‹G(F+

v ) ⊂ GL2n(Fv) × GL2n(Fvc)

followed by projection to the first factor.

We write T ⊂ B ⊂ ‹G for the subgroups consisting, respectively, of the

diagonal and upper-triangular matrices in ‹G. Similarly we writeG ⊂ P ⊂ ‹G for

the subgroups consisting, respectively, of the block upper diagonal and block

upper-triangular matrices with blocks of size n× n. Then P = U ⋊G, where

U is the unipotent radical of P , and we can identify G with ResOF /OF+
GLn

via the map

g =

Ç
A 0

0 D

å
7→ D ∈ GLn(R ⊗OF+ OF ).

We observe that after extending scalars to F+, T and B form a maximal torus

and a Borel subgroup, respectively, of ‹G, and G is the unique Levi subgroup

of the parabolic subgroup P of ‹G containing T .

In order to simplify notation, we now write ‹X = X
‹G and X = XG.

Similarly, we will use the symbols ‹K and K to denote good subgroups of
‹G(A∞F+) and G(A

∞
F+) = GLn(A

∞
F ), respectively.

We note that the dimensions of these symmetric spaces are

dimR
‹X = 2n2[F+ : Q], dimRX = n2[F+ : Q]− 1.

We now want to describe some explicit (rational and integral) coefficient

systems for these symmetric spaces. The integral coefficient systems we define

will depend on a choice of a prime p and a dominant weight for either G or ‹G.

We therefore fix a prime p and a finite extension E/Qp in Qp which contains

the images of all embeddings F →֒ Qp. We write O for the ring of integers

of E, and ̟ ∈ O for a choice of uniformizer.

We first treat the case of G. Let Ω be a field of characteristic 0 and large

enough such that Hom(F,Ω) has [F : Q] elements. We identify the character

group X∗((ResF+/Q T )Ω) with (Zn)Hom(F,Ω) in the usual way, by identifying

(ResF/Q GLn)Ω =
∏

τ∈Hom(F,Ω)

GLn

and by identifying (λ1, . . . , λn) ∈ Zn with the character

diag(t1, . . . , tn) 7→ tλ11 . . . tλnn
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of the diagonal maximal torus in GLn. The ResF+/Q(B∩G)Ω-dominant weights

are exactly those in the subset (Zn+)
Hom(F,Ω) given by those tuples (λτ,i) satis-

fying the condition

λτ,1 ≥ λτ,2 ≥ · · · ≥ λτ,n
for each τ ∈ Hom(F,Ω).

Associated to λ we have the algebraic representation Vλ of (ResF/QGLn)Ω
of highest weight λ. We may identify Vλ = ⊗τ∈Hom(F,Ω)Vλτ , where Vλτ is the

irreducible representation of GLn,Ω of highest weight λτ . If λ ∈ (Zn+)
Hom(F,Ω),

we define λ∨ ∈ (Zn+)
Hom(F,Ω) by the formula λ∨τ,i = −λτ,n+1−i. Then there is

an isomorphism V ∨λ
∼= Vλ∨ , although this is not true for the integral lattices

defined below without further hypotheses on λ.

Now take Ω = E. For each τ ∈ Hom(F,E), we let Vλτ ⊂ Vλτ be the

GLn(O)-invariant O-lattice defined in [Ger19, §2.2] (and calledMλτ there). We

note that this is the integral dual Weyl module of highest weight λτ , obtained

by evaluating an algebraic induction on O. (Geometrically, the dual Weyl

module of highest weight λτ is obtained as in the Borel–Weil theorem, by

taking global sections of a line bundle determined by λτ over the full flag variety

associated to GLn.) We write Vλ = ⊗τ∈Hom(F,E)Vλτ for the corresponding O-
lattice in Vλ. Thus Vλ is an O[∏v|pGLn(OFv )]-module, finite free as O-module.

We next treat the case of ‹G. Let Ĩ ⊂ Hom(F,Ω) be a subset such that

Hom(F,Ω) = Ĩ⊔ Ĩc. Given τ ∈ Hom(F+, E), we will sometimes write τ̃ for the

unique element of Ĩ extending τ . The choice of Ĩ determines an isomorphism

(ResF+/Q
‹G)Ω ∼=

∏

τ∈Hom(F+,Ω)

GL2n,Ω

taking (ResF+/Q T )Ω to the product of the diagonal maximal tori in the GL2n’s,

and hence an identification of the character group X∗((ResF+/Q T )Ω) with

(Z2n)Hom(F+,Ω). The (ResF+/QB)Ω-dominant weights are exactly those in the

subset (Z2n
+ )Hom(F+,Ω). The isomorphism (Zn)Hom(F,Ω) ∼= (Z2n)Hom(F+,Ω) iden-

tifies a weight λ with the weight λ̃ = (λ̃τ,i) given by the formula

(2.2.2) λ̃τ = (−λτ̃ c,n, . . . ,−λτ̃ c,1, λτ̃ ,1, λτ,2, . . . , λτ̃ ,n).

Now let Ω = E. We define integral structures under the assumption that each

place v of F+ above p splits in F . Let Sp denote the set of p-adic places of

F , and let Sp denote the set of p-adic places of F+. Let S̃p ⊂ Sp be a subset

such that Sp = S̃p ⊔ S̃cp. Let Ĩ = Ĩp denote the set of embeddings τ : F →֒ E

inducing an element of S̃p. Given v ∈ Sp, we will sometimes write ṽ for the

unique element of S̃p lying above v.
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The choice of S̃p determines isomorphisms

‹G⊗OF+ OF+,p
∼=
∏

v∈Sp

GL2n,O
F+
v

The lattice V
λ̃
⊂ V

λ̃
corresponding to a dominant weight λ̃ ∈ X∗((ResF+/Q

‹G)E)
is defined as in the previous paragraph. Thus V

λ̃
is an O[∏v|p

‹G(OF+
v
)]-module,

finite free as O-module.

We can now define Hecke algebras. Again, we do this first for G. Let S

be a finite set of finite places of F containing the p-adic ones, and let K be

a good subgroup of GLn(A
∞
F ) such that Kv = GLn(OFv ) if v 6∈ S and Kv ⊂

GLn(OFv ) if v|p. Then for any λ ∈ (Zn+)
Hom(F,E) the complex RΓ(XK ,Vλ) is

defined (as an object of D(O), up to unique isomorphism), and comes equipped

with an action of Hecke algebras by endomorphisms (see (2.1.3)). We define

Tv = H(GLn(Fv),GLn(OFv )) ⊗Z O and TS = H(GLSn ,K
S) ⊗Z O and, if V

is an O[KS ]-module, finite free as O-module, then we write TS(K,V) for the

image of the O-algebra homomorphism

TS → EndD(O)(RΓ(XK ,V))
constructed in §2.1.2. If V = Vλ then we even write TS(K,λ) = TS(K,Vλ).

We now treat the case of ‹G. Let S be a finite set of finite places of F

containing the p-adic ones and such that S = Sc, and let S denote the set of

places of F+ below a place of S. Let ‹K be a good subgroup of ‹G(A∞F+) such

that ‹Kv = ‹G(OF+
v
) for each place v 6∈ S, and such that ‹Kv ⊂ ‹G(OF+

v
) for

each place v|p. In order to simplify notation, we set ‹GS = ‹GS , ‹GS = ‹GS , and
similarly ‹KS = ‹KS and ‹KS = ‹KS .

For any λ̃ ∈ (Z2n
+ )Hom(F+,E) the complex RΓ(X‹K ,Vλ̃) is defined, and

comes equipped with an action as in (2.1.3). We define ‹TS = H(‹GS , ‹KS)⊗ZO
and if Ṽ is an O[‹KS ]-module, finite free as O-module, then we write ‹TS(‹K, Ṽ)
for the image of the O-algebra homomorphism

‹TS → EndD(O)(RΓ(X‹K , Ṽ))

constructed in §2.1.2. If Ṽ = V
λ̃
, then we even write ‹TS(‹K, λ̃) = ‹TS(‹K,V

λ̃
).

We also denote by

(2.2.2) S : ‹TS → TS

the map induced by (2.1.8).

Note that Lemma 2.1.7 shows that both TS(K,λ) and ‹TS(‹K, λ̃) are finite
O-algebras. We emphasize that the Hecke algebra TS(K,λ) is defined only

under the assumptions that S contains the p-adic places of F , that K is a

good subgroup such that Kv = GLn(OFv) for all v 6∈ S, and that λ is a
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dominant weight for G. The use of this notation therefore implies that these

assumptions are in effect. Similar remarks apply to the Hecke algebra ‹TS(‹K, λ̃)
(in particular, the use of this notation implies that S is stable under complex

conjugation, a condition we do not impose for GLn).

If K ′ ⊂ K is a normal good subgroup with (K ′)S = KS, R is an O-
algebra, and V is an R[KS ]-module, finite free as R-module, then we write

TS(K/K ′,V) = TS(RΓK/K ′(XK ′ ,V)) for the image of the homomorphism (cf.

2.1.5):

TS → EndD(R[K/K ′])(RΓK/K ′(XK ′ ,V)).

There are canonical surjective homomorphismsTS(RΓK/K ′(XK ′ ,V))→ TS(K ′,V)
and TS(RΓK/K ′(XK ′ ,V)) → TS(K,V), induced respectively by the forgetful

functor D(R[K/K ′]) → D(R) and the functor RΓ(K/K ′, ?) : D(R[K/K ′]) →
D(R). If further K/K ′ is abelian, then we define K/K ′TS = TS ⊗O O[K/K ′]
and write K/K ′TS(RΓK/K ′(XK ′ ,V)) for the image of the homomorphism

K/K ′TS → EndD(R[K/K ′])(RΓK/K ′(XK ′ ,V)).

The analogous construction is valid as well for ‹G but since we will not use it,

we do not write down the definition.

We will also occasionally encounter other complexes endowed with actions

of the rings TS and ‹TS . (For example, the cohomology RΓ(∂‹X‹K ,Vλ̃) of the

boundary ∂‹X‹K of the Borel–Serre compactification of ‹X‹K .) If C• ∈ D(R) and

we are given an O-algebra homomorphism TS → EndD(R)(C
•), then we will

write TS(C•) for the image of this homomorphism. More generally, if K ′ ⊂ K
is a normal good subgroup with (K ′)S = KS and C• ∈ D(R[K/K ′]) is a

complex endowed with anO-algebra homomorphismTS → EndD(R[K/K ′])(C
•),

then we will write TS(C•) for the image of TS in EndD(R[K/K ′])(C
•). If further

K/K ′ is abelian, then we will write K/K ′TS(C•) for the image of K/K ′TS in

EndD(R[K/K ′])(C
•).

If the complex C• has bounded cohomology, then the map TS(C•) →
TS(H∗(C•)) has nilpotent kernel; this is a consequence of the following lemma.

Lemma 2.2.3. Let R be a (possibly non-commutative) Z-algebra, let C• ∈
D(R) be a complex, and let T ⊂ EndD(R)(C

•) be a commutative subring. Let

I = ker(T → EndR(H
∗(C•))), and suppose that there exists an integer d ≥ 0

such that H i(C•) = 0 if i 6∈ [0, d]. Then Id+1 = 0.

Proof. We show by induction on d ≥ 0 that if φ0, . . . , φd ∈ EndD(R)(C
•)

satisfy H∗(φi) = 0 for i = 0, . . . , d, then φ0 ◦ φ1 ◦ · · · ◦ φd = 0 in EndD(R)(C
•).

The case d = 0 follows because in this case, C• is isomorphic to H0(C•) in

D(R).
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In general, we can assume that τ≤d−1(φ0 ◦ · · · ◦ φd−1) = 0. There is an

exact triangle

τ≤d−1C
• f

//C•
g

//Hd(C•) //

We obtain exact sequences

HomD(R)(H
d(C•), C•) //HomD(R)(C

•, C•) //HomD(R)(τ≤d−1C
•, C•)

and

HomD(R)(C
•, τ≤d−1C

•) //HomD(R)(C
•, C•) //HomD(R)(C

•,Hd(C•)).

We deduce the existence of elements α ∈ HomD(R)(H
d(C•), C•) and β ∈

HomD(R)(C
•, τ≤d−1C

•) such that α ◦ g = φ0 ◦ · · · ◦ φd−1 and f ◦ β = φd.

We thus conclude that φ0 ◦ · · · ◦ φd = α ◦ g ◦ f ◦ β = 0. �

As an illustration of the use of this result, suppose thatK ′ ⊂ K is a normal

good subgroup with (K ′)S = KS , so that the Hecke algebra TS(K/K ′,Vλ) is
defined. We then have a diagram of Hecke algebras

TS(K ′,Vλ)← TS(K/K ′,Vλ)→ TS(K,Vλ),

where the kernel I of the left arrow satisfies IdimRX = 0 (by Lemma 2.2.3

applied with R = O[K/K ′]). In particular, if J ⊂ TS(K,Vλ) denotes the

image of I, then there exists a canonical map TS(K ′,Vλ) → TS(K,Vλ)/J of

TS-algebras. Similar statements for the Hecke algebras which act faithfully on

cohomology could be proved using the Hochschild–Serre spectral sequence (for

the covering XK ′ → XK).

Nilpotent ideals of Hecke algebras will occur frequently throughout this

paper and they often have their origins in applications of the above Lemma

2.2.3. (Compare, for example, the statement and proof of Proposition 2.3.9

below.) We note that the integer dimRX depends only on n and the degree

[F : Q]; the exponents of the nilpotent ideals we consider will also usually have

this property.

2.2.4. Some useful Hecke operators. In this section we define most of the

Hecke operators that we will need at various points later in the paper. We fix

once and for all a choice ̟v of uniformizer at each finite place v of F .

We first define notation for unramified Hecke operators. If v is a finite

place of F and 1 ≤ i ≤ n is an integer then we write Tv,i ∈ H(GLn(Fv),GLn(OFv ))

for the double coset operator

Tv,i = [GLn(OFv ) diag(̟v , . . . ,̟v , 1, . . . , 1)GLn(OFv)],
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where ̟v appears i times on the diagonal. This is the same as the operator

denoted by TM,v,i in [NT16, Prop.-Def. 5.3]. We define a polynomial

Pv(X) = Xn − Tv,1Xn−1 + · · · + (−1)iqi(i−1)/2v Tv,iX
n−i + . . .

+ qn(n−1)/2v Tv,n ∈ H(GLn(Fv),GLn(OFv ))[X].
(2.2.5)

It corresponds to the characteristic polynomial of a Frobenius element on

recTFv
(πv), where πv is an unramified representation of GLn(Fv). We also find

it helpful to introduce, for any σ ∈ WFv , the polynomial Pv,σ(X) ∈ Tv[X] =

(H(GLn(Fv),GLn(OFv ))⊗ZO)[X], which equals the characteristic polynomial

of σ on recTFv
(πv). We write Pv,σ(X) =

∑n
i=0(−1)iev,i(σ)Xn−i.

If v is a place of F+ unramified in F , and v is a place of F above v, and

1 ≤ i ≤ 2n is an integer, then we write T̃v,i ∈ H(‹G(F+
v ), ‹G(OF+

v
))⊗ZZ[q

−1
v ] for

the operator denoted TG,v,i in [NT16, Prop.-Def. 5.2]. We define a polynomial

‹Pv(X) = X2n − T̃v,1X2n−1 + · · ·+ (−1)jqj(j−1)/2v T̃v,j + . . .

+ qn(2n−1)v T̃v,2n ∈ H(‹G(F+
v ), ‹G(OF+

v
))⊗Z Z[q−1v ][X].

(2.2.6)

It corresponds to the characteristic polynomial of a Frobenius element on

recTFv
(πv), where πv is the base change of an unramified representation σv

of the group ‹G(F+
v ). Again if σ ∈WFv then we write

‹Pv,σ(X) =

2n∑

i=0

(−1)iẽv,i(σ)Xn−i ∈ ‹Tv[X] = (H(‹G(F+
v ), ‹G(OF+

v
))⊗Z O)[X]

for the polynomial corresponding to the characteristic polynomial of σ on

recTFv
(πv).

We next define notation for some ramified Hecke operators. If v is a finite

place of F , and c ≥ b ≥ 0 are integers, then we write Iwv(b, c) for the subgroup

of GLn(OFv ) consisting of those matrices which reduce to an upper-triangular

matrix modulo ̟c
v , and to a unipotent upper-triangular matrix modulo ̟b

v.

We define Iwv = Iw(0, 1) and Iwv,1 = Iwv(1, 1); thus Iwv is the standard

Iwahori subgroup of GLn(OFv). If 1 ≤ i ≤ n is an integer and c ≥ 1, then we

will write Uv,i ∈ H(GLn(Fv), Iwv(b, c)) for the double coset operator

Uv,i = [Iwv(b, c) diag(̟v, . . . ,̟v , 1, . . . , 1)Iwv(b, c)],

where ̟v appears i times on the diagonal. Note that this depends both on the

uniformizer ̟v and on the chosen level. We hope that this abuse of notation

will not cause confusion. We also define

Uv = [Iwv(b, c) diag(̟
n−1
v ,̟n−2

v , . . . ,̟v , 1)Iwv(b, c)].

If u ∈ Tn(OFv ), then we define

〈u〉 = [Iwv(b, c)uIwv(b, c)].
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Note that the subgroups Iwv(b, c) all admit Iwahori decompositions with re-

spect to the standard upper-triangular Borel subgroup of GLn. We write

∆v ⊂ GLn(Fv) for the submonoid defined by

∆v = ⊔µ∈Zn
+
Iwv diag(̟

µ1
v , . . . ,̟

µn
v )Iwv.

We now assume that each p-adic place of F+ splits in F . In this case we set

∆p =
∏
v∈Sp

∆v. If λ ∈ (Zn)Hom(F,E), then we define a homomorphism (of

monoids) αλ : ∆p → E× by the formula

αλ((kv,1 diag(̟
av,1
v , . . . ,̟

av,n
v )kv,2)v∈Sp) =

∏

v∈Sp

∏

τ∈HomQp (Fv,E)

n∏

i=1

τ(̟v)
av,i(wG

0 λ)τ,i ,

where wG0 is the longest element in the Weyl groupW ((ResF+/QG)E , (ResF+/Q T )E).

If λ ∈ (Zn+)
Hom(F,E) is dominant, then GLn(Fp) acts on Vλ⊗OE = Vλ; we write

(g, x) 7→ g ·x for this action. We endow Vλ with the structure of O[∆p]-module

via the formula

g ·p x = αλ(g)
−1g · x.

This is well defined: the fact that the lattice Vλ is preserved under this twisted

action follows as in [Ger19, Definition 2.8] from Lemma 2.2 of loc. cit. - the

point is that wG0 λ is the lowest weight vector in Vλ, so g ·x is divisible by αλ(g)

when g ∈ ∆p. Using the construction in §2.1.2, we see that if K ⊂ GLn(A
∞
F )

is a good subgroup, and for each place v|p of F we have Kv = Iwv(b, c), then

there is a canonical homomorphism

H(GS ,KS)⊗Z H(∆p,Kp)→ EndD(O)(RΓ(XK ,Vλ)),
and in particular all the Hecke operators Uv,i and Uv act as endomorphisms of

RΓ(XK ,Vλ). Note that the action of these operators depends on the choice of

uniformizer ̟v, because the twisted action ·p does.

Now suppose that v is a finite place of F+ which splits in F , and let v

be a place of F above it. Then ι−1v (Iwv(b, c)) = ι−1vc (Iwvc(b, c)) (where here

the subgroup Iwv(b, c) is inside GL2n(Fv)), and we write Ĩwv(b, c) for this

subgroup of ‹G(F+
v ). We define a Hecke operator in H(‹G(F+

v ), Ĩwv(b, c)) for

each i = 1, . . . , 2n by the formula

‹Uv,i = ι−1v [Iwv(b, c) diag(̟v , . . . ,̟v , 1, . . . , 1)Iwv(b, c)],

where ̟v appears i times on the diagonal. We also define

‹Uv = ι−1v [Iwv(b, c) diag(̟
2n−1
v ,̟2n−2

v , . . . ,̟v , 1)Iwv(b, c)].

If u ∈ T (OF+,v), then we define

〈u〉 = [Ĩwv(b, c)uĨwv(b, c)].

If ̟vc = ̟c
v, then ‹Uvc,i = ‹Uv,2n−i‹U−1v,2n and ‹Uvc = ‹Uv‹U1−2n

v,2n .
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We write ‹∆v ⊂ ‹G(F+
v ) for the submonoid defined by

‹∆v = ι−1v
Ä
⊔µ∈Z2n

+
Iwv diag(̟

µ1
v , . . . ,̟

µ2n
v )Iwv

ä

(which is independent of the choice of v). Now suppose that each p-adic place

of F+ splits in F . In this case we set ‹∆p =
∏
v∈Sp

‹∆v. If λ̃ ∈ (Z2n)Hom(F+,E),

then we define a homomorphism α̃
λ̃
: ‹∆p → E× by the formula

α̃
λ̃
((kv,1ι

−1
ṽ (diag(̟

av,1
ṽ , . . . ,̟

av,2n
ṽ ))kv,2)v∈Sp

) =
∏

v∈Sp

∏

τ∈HomQp(Fṽ ,E)

2n∏

i=1

τ(̟ṽ)
av,i(w

‹G
0 λ̃)τ,i ,

where w
‹G
0 is the longest element in the Weyl groupW ((ResF+/Q

‹G)E , (ResF+/Q T )E).

Here we recall that ṽ ∈ S̃p is a fixed choice of place of F lying above v, and

that it appears also in the definition of V
λ̃
. If λ̃ ∈ (Z2n

+ )Hom(F+,E) is dominant,

then ‹Gp acts on V
λ̃
⊗O E = V

λ̃
; we write (g, x) 7→ g · x for this action. We

endow V
λ̃
with the structure of O[‹∆p]-module via the formula

g ·p x = α̃
λ̃
(g)−1g · x.

Using the construction in §2.1.2, we see that if ‹K ⊂ ‹G(A∞F+) is a good subgroup,

and for each place v|p of F+ we have ‹Kv = Ĩwv(b, c), then there is a canonical

homomorphism

H(‹GS , ‹KS)⊗Z H(‹∆p, ‹Kp)→ EndD(O)(RΓ(‹X‹K ,Vλ̃)),
and in particular all the Hecke operators ‹Uv,i and ‹Uv act as endomorphisms of

RΓ(‹X‹K ,Vλ̃).
If v is a finite place of F , prime to p, and Iv is an open compact subgroup

of GLn(Fv) satisfying Iwv(1, 1) ⊂ Iv ⊂ Iwv(0, 1), then Iwv(0, 1)/Iv can be

identified with a quotient of (k(v)×)n, and we define

Ξv = (F×v )n/(ker(O×Fv
)n → (k(v)×)n → Iwv(0, 1)/Iv).

The group Iv admits an Iwahori decomposition with respect to the para-

bolic subgroup Bn = TnNn of GLn, so we may apply the theory of §2.1.9.

Moreover, [Fli11, Corollary 3.4] shows that for any g ∈ Ξv, the element

[IvgIv ] ∈ H(GLn(Fv), Iv)⊗Z O is invertible (this uses our assumption that qv
is a unit in O). Lemma 2.1.13 thus implies that there is an injective O-algebra
homomorphism

t : Ξv →H(GLn(Fv), Iv)⊗Z O,
which sends any positive g ∈ Ξv to the double coset [IvgIv ]. Given any α ∈ F×v ,

we write tv,i(α) ∈ H(GLn(Fv), Iv) ⊗Z O for the image under t of the element

q
−〈λ,ρ+(1−n)/2 det〉
v (1, . . . , 1, α, 1, . . . , 1) of O[Ξv], where λ ∈ X∗(Tn) denotes the
image of α under the natural projection Ξv → (F×v /O×Fv

)n = X∗(Tn) and
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ρ ∈ X∗(Tn) is the usual half-sum of positive roots, and where α sits in the

ith position. We write ev,i(α) ∈ H(GLn(Fv), Iv) ⊗Z O for the coefficient of

(−1)iXn−i in the polynomial
∏n
i=1(X − tv,i(α)). If σ ∈ WFv , then we set

tv,i(σ) = tv,i(α) and ev,i(σ) = ev,i(α), where α ∈ F×v is such that the restriction

of σ to the maximal abelian extension of Fv equals ArtFv(α). We define the

polynomial

(2.2.7)

Pv,σ(X) =

n∏

i=1

(X − tv,i(σ)) =
n∑

i=0

(−1)iev,i(σ)Xn−i ∈ H(GLn(Fv), Iv)⊗ZO[X].

Proposition 2.2.8. Let πv be an irreducible admissible Qp[GLn(Fv)]-

module.

(1) We have πIvv 6= 0 if and only if πv is isomorphic to an irreducible

subquotient of a representation Ind
GLn(Fv)
Bn(Fv)

χ, where χ = χ1 ⊗ · · · ⊗ χn :

(F×v )n → Q
×
p is a smooth character which factors through the quotient

(F×v )n → Ξv .

(2) Suppose that πIvv 6= 0. Then for any α ∈ F×v , ev,i(α) acts on πIvv as a

scalar ev,i(α, πv) ∈ Q
×
p .

(3) Suppose that πIvv 6= 0, and let (rv, Nv) = recTFv
(πv). Then for any σ ∈

WFv , the characteristic polynomial of rv(σ) is equal to
∑n

i=0(−1)iev,i(α, πv)Xn−i,

where α = Art−1Fv
(σ|F ab

v
).

Proof. The first part follows from [Fli11, Theorem 2.1]. The second part

is a consequence of the fact that the elements ev,i(α) lie in the centre of

H(GLn(Fv), Iv)⊗ZO, which in turn follows from the explicit description of the

centre in [Fli11, Proposition 4.11]. The final part follows from the description

in [Fli11, §4] of the action of this centre on the Iv-invariants in the induced

representation n-Ind
GLn(Fv)
Bn(Fv)

χ. �

Now suppose that v is a finite place of F , prime to p and split over F+,

and write pv ⊂ GL2n(OFv ) for the parahoric subgroup consisting of matri-

ces whose reduction modulo ̟v is block upper-triangular, with blocks of sizes

n, 1, 1, . . . , 1. Projection to the lower right-hand block determines a homomor-

phism pv → Bn(k(v)). We write pv,1 ⊂ pv for the kernel of the composite

homomorphism pv → Bn(k(v))→ Tn(k(v)).

Let qv ⊂ GL2n(Fv) be an open compact subgroup such that pv,1 ⊂ qv ⊂ pv ,

and set p̃v = ι−1v (pv), p̃v,1 = ι−1v (pv,1), and q̃v = ι−1v (qv). These are open

compact subgroups of ‹G(F+
v ) and we can identify p̃v ∩G(F+

v ) = GLn(OFvc
)×

Iwv and p̃v,1 ∩G(F+
v ) = GLn(OFvc

)× Iwv,1. In particular, we may identify the

quotient p̃v/p̃v,1 with (k(v)×)n. The group q̃v admits an Iwahori decomposition
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with respect to the parabolic subgroup P = GU , so we may use the theory

developed in §2.1.9.

Lemma 2.2.9. The element g = (̟−cv · 1n, 1n) ∈ GLn(Fvc) ×GLn(Fv) =

G(F+
v ) is strongly positive and the element [q̃vgq̃v ] ∈ H(‹G(F+

v ), q̃v) ⊗Z O is

invertible.

Proof. After applying ιv, we see that to prove the lemma it is enough to ex-

plain why [qv diag(̟v, . . . ,̟v, 1, . . . , 1)qv ] is an invertible element ofH(GL2n(Fv), qv)⊗Z

O (where ̟v, 1 each occur n times). It follows from [Fli11, Corollary 3.4] that

[Iwv(1) diag(̟v , . . . ,̟v , 1, . . . , 1)Iwv(1)] is invertible inH(GL2n(Fv), Iwv(1))⊗Z

O, while it follows from [Fli11, Theorem 4.5] that [Iwv(1) diag(̟v, . . . ,̟v, 1, . . . , 1)Iwv(1)]

and [qv] commute. We deduce that [qv diag(̟v, . . . ,̟v , 1, . . . , 1)qv ] = [qv] ·
[Iwv(1) diag(̟v , . . . ,̟v , 1, . . . , 1)Iwv(1)] is invertible, as required. �

Lemma 2.1.13 implies that there is an injective O-algebra homomorphism

t : H(GLn(Fvc)×GLn(Fv),GLn(OFvc
)× Iv)⊗Z O → H(‹G(F+

v ), q̃v)⊗Z O.

We write Ξv for the quotient of (F×v )n associated to the group Iv. If σ ∈WFv ,

then we write, with apologies for the abuse of notation, tv,i(σ) ∈ H(‹G(F+
v ), q̃v)⊗Z

O for the image under t of the element ‖σ‖−nv tv,i(σ) ∈ H(GLn(Fv), Iv) ⊗Z O
defined previously. We write ev,i(σ) ∈ H(‹G(F+

v ), q̃v) ⊗Z O for the coefficient

of (−1)iXn−i in the polynomial

(2.2.10) Pv,σ(X) =

n∏

i=1

(X − tv,i(σ)) ∈ (H(‹G(F+
v ), q̃v)⊗Z O)[X].

If σ ∈ WFvc
, then we define evc,i(σ) ∈ H(‹G(F+

v ), q̃v) ⊗Z O to be the image

under t of the element ‖σ‖i(n−1)v evc,i(σ) ∈ H(GLn(Fvc),GLn(OFvc
))⊗ZO. We

define the polynomial

(2.2.11) Pvc,σ(X) =
n∑

i=0

(−1)iev,i(σ)Xn−i ∈ (H(‹G(F+
v ), q̃v)⊗Z O)[X].

We finally define for any σ ∈WFv the polynomial

‹Pv,σ(X) = Pvc,σ−c(X)Pv,σ(X) ∈ (H(‹G(F+
v ), q̃v)⊗Z O)[X],

and define elements ẽv,i(σ) ∈ H(‹G(F+
v ), q̃v) ⊗Z O by the formula ‹Pv,σ(X) =∑2n

i=0(−1)iẽv,i(σ)Xn−i.

Lemma 2.2.12. Suppose given an irreducible admissible Qp[‹G(F+
v )]-module

π̃v such that π̃q̃vv 6= 0, and let σ ∈WFv . Then :

(1) Each operator ẽv,i(σ) acts by a scalar ẽv,i(σ, π̃v) ∈ Qp on π̃q̃vv .
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(2) Let (rv , Nv) = recTFv
(π̃v ◦ ι−1v ). Then the characteristic polynomial of

rv(σ) is equals
∑2n

i=0(−1)iẽv,i(σ, π̃v)Xn−i.

Proof. We fix a choice of isomorphism ι : Qp → C, so that normalized

induction and normalized restriction (i.e. Jacquet module) may be defined

over Qp. The proof uses well-known principles (cf. [Ber84, Lemma 1.17]).

First, there exists a tamely ramified character χ : T (F+
v ) → Q

×
p such that π̃v

is a subquotient of an induced representation Π̃ = n-Ind
‹G(F+

v )

B(F+
v )
χ. Identifying

T (F+
v ) = T2n(Fv), we may identify χ with a tuple of tamely ramified characters

ψ1, . . . , ψ2n : F×v → Qp. To prove the the lemma, it suffices to show that ẽv,i(σ)

acts as a scalar on the subspace of q̃v-invariants of Π̃, this scalar being equal

to the degree i symmetric polynomial in ψ1(Art
−1
Fv

(σ)), . . . , ψ2n(Art
−1
Fv

(σ)).

Let R = Qp[T (F
+
v )/T (OF+

v
)] and let χu : T (F+

v ) → R× be the uni-

versal unramified character. We consider the induced representation Π̃u =

n-Ind
‹G(F+

v )

B(F+
v )

(χ ⊗ χu), a smooth R[‹G(F+
v )]-module. Then Π̃q̃v

u is a finite free

R-module and for any homomorphism x : R → Qp, corresponding to an

unramified character χx : T (F+
v ) → Q

×
p with induced representation Π̃x =

n-Ind
‹G(F+

v )

B(F
+
v )
(χ⊗ χx), the induced map

(Π̃q̃v
u )⊗R,x Qp → Π̃q̃v

x

is an isomorphism. We may identify χ⊗χx with a tuple ψx,1, . . . , ψx,2n : F×v →
Qp of tamely ramified characters. To prove the lemma, it in fact suffices to show

for a Zariski dense set of points x ∈ SpecR(Qp) that the Hecke operator ẽv,i(σ)

acts by a scalar on Π̃q̃v
x which is equal to the degree i symmetric polynomial

in ψx,1(Art
−1
Fv

(σ)), . . . , ψx,2n(Art
−1
Fv

(σ)).

Consider the Jacquet module rP (Π̃x) = (Π̃x)U(F+
v ) ⊗ δ

−1/2
P , an admissible

Qp[G(F
+
v )]-module. Then [BK98, Theorem 7.9] asserts that the natural map

q : (Π̃x)
q̃v → rP (Π̃x)

GLn(OFvc
)×Iv

is an isomorphism which satisfies the formula

hq(x) = δ
1/2
P (g)q(t(h)x)

for any x ∈ (Π̃x)
q̃v and Hecke operator h = [(GLn(OFvc

)× Iv)g(GLn(OFvc
) ×

Iv)] ∈ H(GLn(Fvc)×GLn(Fv),GLn(OFvc
)× Iv)⊗ZO. The geometrical lemma

([Zel80, 1.2, Theorem]) asserts that rP (Π̃x) admits a filtration by induced rep-

resentations σx,Yvc ,Yv , indexed by partitions {1, . . . , 2n} = Yvc ⊔ Yv, that may

be described as follows:

σx,Yvc ,Yv =
Ä
n-Ind

GLn(Fvc )
Bn(Fvc)

⊗i∈Yvcψ−cx,i
ä
⊗
Ä
n-Ind

GLn(Fv)
Bn(Fv)

⊗i∈Yvψx,i
ä
.
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For a Zariski dense set of points x (including those for which the central element

(̟vc · 1n, 1n) ∈ GLn(Fvc)×GLn(Fv) acts by a distinct scalar on each induced

representation σx,Yvc ,Yv), this filtration splits and rP (Π̃x) is isomorphic to a

sum of induced representations. The Hecke operators ev,i(σ) and evc,i(σ
−c)

act as a scalar in the subspace of GLn(OFvc
) × Iv-invariants in each sum-

mand and a calculation shows that the scalar by which
∑

i+j=k ev,i(σ)evc ,j(σ
−c)

acts in each summand is the degree k elementary symmetric polynomial in

ψx,1(Art
−1
Fv

(σ)), . . . , ψx,2n(Art
−1
Fv

(σ)) – in particular, independent of the choice

of summand.

Transferring this information back along the map q shows that at such

points x, the element ẽv,k(σ) =
∑

i+j=k ev,i(σ)evc ,j(σ
−c) acts by a scalar on

(Π̃x)
q̃v , which equals the degree k elementary symmetric polynomial in ψx,1(Art

−1
Fv

(σ)), . . . , ψx,2n(Art
−1
Fv

(σ)).

This completes the proof. �

Fix a choice of Frobenius lift φv ∈WFv . We define Resv ∈ (H(‹G(F+
v ), q̃v)⊗Z

O) to be the resultant of the polynomials Pvc,φ−c
v
(X) and Pv,φv (X).

Proposition 2.2.13. Let π̃v be an irreducible admissible Qp[‹G(F+
v )]-

module and suppose that π̃q̃vv 6= 0, and let (rv, Nv) = recTFv
(π̃v ◦ ι−1v ). Let Tv de-

note the Qp-subalgebra of End
Qp

(π̃q̃vv ) generated by the images of the elements

evc,i(φ
−c
v ) and ev,i(φv). Then for each maximal ideal m ⊂ Tv , either Resv ∈ m

or Resv 6∈ m, Tv,m = Tv/m = Qp, and for all τv ∈ IFv , NvPv,φv (rv(φv)) = 0

and (rv(τv)− 1)Pv,φv (rv(φv)) = 0 in M2n(Tv/m) =M2n(Qp).

Proof. We use again some of the ideas in the proof of Lemma 2.2.12.

Choose an isomorphism ι : Qp → C. For m ≥ 1, let Stm denote the Steinberg

representation of GLm(Fv) (i.e. the square-integrable quotient of Ind
GLm(Fv)
Bm(Fv)

Qp).

Then there is an isomorphism recTFv
(Stm) = Spm, where Spm is the Weil–

Deligne representation on Q
m
p = ⊕mi=1Qp · ei where WFv acts on ei by the

character | · |1−i ◦Art−1Fv
and Nv acts by Nve1 = 0, Nvei = ei−1 (i = 2, . . . ,m).

Since π̃q̃vv 6= 0, we can find an isomorphism

(rv, Nv) ∼= ⊕si=1 Spαi
(ψi| · |(1−2n)/2)

for some tamely ramified characters ψi : F
×
v → Q

×
p ; then π̃ ◦ ι−1v is isomorphic

to a subquotient of the induced representation

Π = n-Ind
GL2n(Fv)
Pα(Fv)

⊗si=1 Stαi(ψi ◦ ArtFv),

where Pα is the standard parabolic subgroup of GL2n corresponding to the

partition 2n = α1+ · · ·+αs. Let Π̃ = Π ◦ ιv . Let T ′v denote the Qp-subalgebra

of EndQp
(Π̃q̃v ) generated by the images of the elements evc,i(φ

−c
v ) and ev,i(φv).
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Then Tv is a quotient of T ′v and it suffices to show that the conclusion of the

lemma holds with Tv replaced by T ′v.

By the geometrical lemma, we can find a filtration of rP (Π̃) with graded

pieces indexed by tuples µ = (µij)i=1,2,j=1,...,s, where the µij are non-negative

integers such that for each j = 1, . . . , s, µ1j + µ2j = αj and for each i = 1, 2,

µi1 + · · · + µis = n. The representation of G(F+
v ) = GLn(Fvc) × GLn(Fv)

indexed by the tuple µ is

σµ =
Ä
n-Ind

GLn(Fvc )
P1(Fvc)

Stµ1s(θ
−c
1s )⊗ · · · ⊗ Stµ11(θ

−c
11 )
ä

⊗
Ä
n-Ind

GLn(Fv)
P2(Fv)

Stµ21(θ21)⊗ · · · ⊗ Stµ2s(θ2s)
ä
,

where θij : F
×
v → Q

×
p is the character given by the formulae

θ1j = ψj| · |µ2j/2, θ2j = ψj| · |−µ1j/2

for j = 1, . . . , s.

We recall that the natural projection Π̃q̃v → rP (Π̃)GLn(OFvc
)×Iv is an

isomorphism. The maximal ideals m ⊂ T ′v correspond to the different factori-

sations ‹Pv,φv (X) = Pvc,φ−c
v
(X)Pv,φv (X) that occur in Π̃q̃v . Each factorisation

arises from (at least one) µ such that (σµ)
GLn(OFvc

)×Iv 6= 0: the corresponding

factorisation is given by

Pvc,φ−c
v
(X) =

s∏

j=1

µ1j∏

k=1

(X − (θ−c1j | · |(1−2n−αj+2k−1)/2)(φ−cv ))

=

s∏

j=1

µ1j∏

k=1

(X − (θ1j| · |(1−2n+αj+1−2k)/2)(φv)),

Pv,φv(X) =

s∏

j=1

µ2j∏

k=1

(X − θ2j | · |(1−2n+µ2j−µ1j+1−2k)/2)(φv)).

If (σµ)
GLn(OFvc

)×Iv 6= 0, then we must have µ1j ∈ {0, 1} for all j = 1, . . . , s.

Let us choose therefore a maximal ideal m such that Resv 6∈ m and a tuple µ

giving rise to m. Combining [Tho21, Proposition 2.2] and Lemma 2.2.12, we

find that T ′v,m = T ′v/m = Qp. Let Q(X) denote the image of Pv,φv (X) modulo

m. Examining the action of Q(rv(φv)) in the summand Spαj
(ψj | · |(1−2n)/2) of

(rv , Nv), we see that Q(rv(φv)) either annihilates this summand (if µ1j = 0) or

at least has image contained in the span of the vector e1. In either case we

find that IFv acts trivially on the image of Q(rv(φv)) and Nv annihilates this

image. This is what we needed to show. �
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Corollary 2.2.14. Let π̃v be an irreducible admissible Qp[‹G(F+
v )]-module

and suppose that π̃q̃vv 6= 0. Let ρ : GFv → GL2n(Qp) be a continuous represen-

tation such that WD(ρ)F−ss ∼= recTFv
(π̃v ◦ ι−1v ). Let Tv be defined as in the

proposition. Then for all τv ∈ IFv , we have the equality

Res(2n)!v (ρ(τv)− 1)Pv,φv (ρ(φv)) = 0

in M2n(Qp)⊗Qp
Tv =M2n(Tv).

Proof. We can again take this statement ‘one maximal ideal of Tv at a

time’. The number (2n)! is a crude upper bound for the Qp-dimension of Tv.

In particular, if Resv ∈ m then Res
(2n)!
v Tv,m = 0. We therefore need only show

that for each maximal ideal m such that Resv 6∈ m, we have the equality

(ρ(τv)− 1)Q(ρ(φv)) = 0

in M2n(Qp) for every τv ∈ IFv , where Q(X) denotes the image of Pv,φv (X)

modulo m. Let ρ(φv) = su be the multiplicative Jordan decomposition (so

that s is semisimple, u is unipotent, and s, u commute). Then rv(φv) = s,

by definition of Frobenius semi-simplification. Since Resv mod m is non-zero,

Q(ρ(φv)) and Q(rv(φv)) have the same image, which is the the span of the

eigenspaces of rv(φv) corresponding to eigenvalues which are not roots of Q(X).

Since NvQ(rv(φv)) = 0, we find that for each τv ∈ IFv , ρ(τv) and r(τv) agree

on the image of Q(rv(φv)). We finally conclude that

(ρ(τv)− 1)Q(ρ(φv)) = (rv(τv)− 1)Q(rv(φv)) = 0,

as required. �

We now describe the behavior of some of the above Hecke operators un-

der parabolic restriction, with respect to the Siegel parabolic. We first give

the statements in the unramified case. In order to ease notation, we use the

following convention: if f(X) is a polynomial of degree d, with unit constant

term a0, then f
∨(X) = a−10 Xdf(X−1).

Proposition 2.2.15. Let v be a place of F , unramified over the place v

of F+. Let

S : H(‹G(F+
v ), ‹G(OF+

v
))→H(G(F+

v ), G(OF+
v
))

denote the homomorphism defined by (2.1.8). Then we have

S(‹Pv(X)) = Pv(X)qn(2n−1)v P∨vc(q
1−2n
v X).

Proof. See [NT16, Proposition-Definition 5.3]. �

We now discuss the ramified split case. Suppose first that v is a place of F

which is split over the place v of F+. Let Ĩv be a subgroup of ‹G(F+
v ) satisfying

Ĩwv(1, 1) ⊂ Ĩv ⊂ Ĩwv(0, 1). Then Ĩv ∩G(F+
v ) may be identified with a product
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Ivc × Iv of open compact subgroups of GLn(Fvc) and GLn(Fv), respectively. If

σ ∈WFv , then we define

(2.2.16)

‹Pv,σ(X) =
2n∏

i=1

(X−ι−1v (tv,i(σ))) =
2n∑

i=0

(−1)iι−1v (ev,i(σ))X
2n−i ∈ H(‹G(F+

v ), Ĩv)⊗ZO[X].

The group Ĩv admits an Iwahori decomposition with respect to the parabolic

subgroup P , and the element (̟−1vc · 1n, 1n) ∈ G(F+
v ) = GLn(Fvc) × GLn(Fv)

is strongly positive and defines a Hecke operator [Ĩv(̟
−1
vc · 1n, 1n)Ĩv] which

is invertible in H(‹G(F+
v ), Ĩv) ⊗Z O. We can therefore apply Lemma 2.1.13,

allowing us to state the following result.

Proposition 2.2.17. For any σ ∈WFv , we have

S(‹Pv,σ(X)) = Pv,σ(X)‖σ‖n(1−2n)v Pvc,σ−c(‖σ‖2n−1v X).

Proof. This results from a calculation using the definition of ‹Pv,σ(X) and

the formula for the composite S ◦ t given in §2.1.9. (Let α ∈ F×vc be such that

ArtFvc
(α) agrees with the restriction of σc to the maximal abelian extension of

Fvc . For the element ((1, . . . α−1, . . . 1), 1n) of GLn(Fvc)×GLn(Fv), the action

of S◦t on the corresponding Hecke operator is by multiplication by ‖σ‖−nv .) �

Suppose next that v is a place of F which is split over the place v of F+ and

that q̃v ⊂ ‹G(F+
v ) is an open compact subgroup such that p̃v,1 ⊂ q̃v ⊂ p̃v. Write

q̃v ∩G(F+
v ) = GLn(OFvc

)× Iv. We have already observed that Lemma 2.1.13

applies in this situation, and we have the following analogue of Proposition

2.2.17, which is proved in the same way.

Proposition 2.2.18. For any σ ∈ WFv , we have S(Pv,σ(X)) = Pv,σ(X)

and S(Pvc,σ−c(X)) = ‖σ‖n(1−2n)v Pvc,σ−c(‖σ‖2n−1v X).

2.2.19. Duality and twisting. In this section we record some operations

that relate different cohomology groups and the actions of the corresponding

Hecke operators. We deal with duality first. Let S be a finite set of finite

places of F such that S = Sc. There are anti-involutions

ι : H(GS ,KS)→H(GS ,KS)

and (if S = Sc)

ι̃ : H(‹GS , ‹KS)→H(‹GS , ‹KS)

given on double cosets by ι̃([‹KSg‹KS ]) = [‹KSg−1‹KS ] (resp. ι([KSgKS ]) =

[KSg−1KS]). In particular we have anti-involutions ι̃ : ‹TS → ‹TS and ι :
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TS → TS (which are actually involutions, since these Hecke algebras are com-

mutative). If v 6∈ S then we have the formulae

ι̃(‹Pv(X)) = q2n(2n−1)v
‹P∨v (q1−2nv X) = ‹Pvc(X),

ι(Pv(X)) = qn(n−1)v P∨v (q
1−n
v X).

If m̃ ⊂ ‹TS (resp. m ⊂ TS) is a maximal ideal with residue field a finite exten-

sion of k, then we define m̃∨ = ι̃(m) (resp. m∨ = ι(m)). The following lemma

describes the action of ι̃ at ramified split places. The interaction between these

involutions and Poincaré duality is described by the following proposition. We

write ‹D = dimR
‹X (resp. D = dimRX).

Proposition 2.2.20. Let R = O or O/̟m for some m ≥ 1. Let ‹K ⊂
‹G(A∞F+) (resp. K ⊂ GLn(A

∞
F )) be a good subgroup, and let V be an R[‹KS ]-

module (resp. R[KS ]-module), which is finite free as an R-module. Let V∨ =

Hom(V, R). Then there is an isomorphism

RHomR(RΓc(‹X‹K ,V), R) ∼= RΓ(‹X‹K ,V∨)[‹D]

(resp.

RHomR(RΓc(XK ,V), R) ∼= RΓ(XK ,V∨)[D])

in D(R) that is equivariant for the action of H(‹GS , ‹KS) (resp. H(GS ,KS)),

when this Hecke algebra acts by ι̃t (resp. ιt) on the left-hand side and in the

usual way on the right-hand side.

Proof. See [NT16, Prop. 3.7]. �

Corollary 2.2.21. Let R = O or O/̟m for some m ≥ 1. Let ‹K ⊂
‹G(A∞F+) (resp. K ⊂ GLn(A

∞
F )) be a good subgroup, and let V be an R[‹KS ]-

module (resp. R[KS ]-module), which is finite free as an R-module. Let V∨ =

Hom(V, R). Then ι̃ (resp. ι) descends to an isomorphism

‹TS(RΓc(‹X‹K ,V)) ∼= ‹TS(RΓ(‹X‹K ,V∨))

(resp. an isomorphism

TS(RΓc(XK ,V)) ∼= TS(RΓ(XK ,V∨))

of R-algebras. In particular, if m̃ (resp. m) is a maximal ideal of ‹TS (resp.

TS) in the support of H∗c (‹X‹K ,V) (resp. H∗c (XK ,V)), then m̃∨ (resp. m∨) is

in the support of H∗(‹X‹K ,V∨) (resp. H∗(XK ,V∨)).
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Proof. We justify the statements for GLn. The proposition implies that

there is a commutative diagram

TS //

ι

��

EndD(R)(RΓc(XK ,V))

��

TS // EndD(R)(RΓ(XK ,V∨)),

where the horizontal arrows are the canonical ones and the right vertical arrow

is the one induced by the Poincaré duality isomorphism. The statement of

the corollary is equivalent to the assertion that image under ι of the kernel of

top horizontal arrow is equal to the kernel of the lower horizontal arrow. This

follows from the commutativity of the diagram. �

We next deal with twisting for the group G. Let K ⊂ GLn(A
∞
F ) be a

good subgroup and let ψ : GF → O× be a continuous character such that

ψ ◦ ArtFv is trivial on det(Kv) for each place v 6∈ S of F . We define an

isomorphism of O-algebras fψ : H(GS ,KS) ⊗Z O → H(GS ,KS) ⊗Z O by the

formula fψ(f)(g) = ψ(ArtF (det(g)))
−1f(g). (It is an isomorphism because it

has an inverse, given by the formula f−1ψ = fψ−1 .) If Kv = GLn(OFv) for each

v 6∈ S (so that ψ is unramified outside S and H(GS ,KS)⊗ZO = TS) then we

have the formula fψ(Tv,i) = ψ(Frobv)
−iTv,i for each finite place v 6∈ S of F . If

m ⊂ TS is a maximal ideal with residue field a finite extension of k, then we

define m(ψ) = fψ(m).

Proposition 2.2.22. Let K ⊂ GLn(A
∞
F ) be a good subgroup, and sup-

pose that S contains the p-adic places of F . Let ψ : GF → O× be a continuous

character satisfying the following conditions :

(1) For each finite place v ∤ p of F , ψ ◦ArtFv is trivial on det(Kv).

(2) There is m = (mτ )τ ∈ ZHom(F,E) such that for each place v|p of F , and

for each k ∈ det(Kv), we have

ψ(ArtFv(k)) =
∏

τ∈HomQp (Fv,E)

τ(k)−mτ .

Let µ ∈ (Zn+)
Hom(F,E) be the dominant weight defined by the formula µτ =

(mτ , . . . ,mτ ) for each τ ∈ Hom(F,E). Then for any λ ∈ (Zn+)
Hom(F,E) there

is an isomorphism

RΓ(XK ,Vλ) ∼= RΓ(XK ,Vλ+µ)
in D(O) which is equivariant for the action of H(GS ,KS)⊗ZO when H(GS ,KS)⊗Z

O acts in the usual way on the left-hand side and and by fψ on the right-hand

side.
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Proof. The character ψ defines a class inH0(XK ,Vµ) = HomSh(XK )(O,Vµ).
By tensor product this determines a morphism Vλ → Vλ ⊗O Vµ ∼= Vλ+µ of

sheaves on XK , hence a morphism RΓ(XK ,Vλ)→ RΓ(XK ,Vλ+µ) in D(O). In
order to determine how this morphism behaves with respect to the action of

Hecke operators, we will repeat this calculation in D(H(GS ,KS)⊗Z O).
Let A = Ind

GLn(A∞
F )

GLn(F ) O = H0(XG,O). There is an isomorphism

H0(XG,Vλ) ∼= A⊗O Vλ
ofO[GLn(A

∞,S
F )×KS)]-modules, and hence a canonical isomorphism inD(H(GS ,KS)⊗Z

O):
RΓ(XK ,Vλ) ∼= RΓ(K,A⊗O Vλ).

The same applies when λ is replaced by any other dominant weight in (Zn+)
Hom(F,E).

The class ψ in H0(XK ,Vµ) corresponds to the K-equivariant map gψ : A →
A ⊗O Vµ which sends a function f : GLn(F )\GLn(A

∞
F ) → O to gψ(f)(g) =

ψ(det(g))f(g). The map gψ becomes GS ×KS-equivariant when we twist the

action on the source, giving

gψ : A→ A⊗O Vµ(ψ−1,S).
By definition, the twist (ψ−1,S) means that the action of an element g ∈ GS
is twisted by ψ(det(g))−1. Taking the tensor product by Vλ and then taking

derived K-invariants gives a morphism

RΓ(XK ,Vλ)→ RΓ(XK ,Vλ+µ(ψ−1,S))
in D(H(GS ,KS)⊗Z O), hence a H(GS ,KS)⊗Z O-equivariant isomorphism

RΓ(XK ,Vλ)→ RΓ(XK ,Vλ+µ(ψ−1,S))
in D(O). The proof of the proposition is complete on noting that there is a

canonical isomorphism

RΓ(XK ,Vλ+µ(ψ−1,S)) ∼= RΓ(XK ,Vλ+µ)
inD(O), which is equivariant for the action ofH(GS ,KS)⊗ZO whenH(GS ,KS)⊗Z

O acts in the natural way on the source and by fψ on the target. �

Corollary 2.2.23. Suppose that S contains the p-adic places of F , and

let K ⊂ GLn(A
∞
F ) be a good subgroup such that Kv = GLn(OFv ) for each

place v 6∈ S of F . Let ψ : GF → O× be a continuous character satisfying the

following conditions :

(1) For each finite place v ∤ p of F , ψ ◦ArtFv is trivial on det(Kv).

(2) There is m = (mτ )τ ∈ ZHom(F,E) such that for each place v|p of F , and

for each k ∈ det(Kv), we have

ψ(ArtFv(k)) =
∏

τ∈HomQp (Fv,E)

τ(k)−mτ .
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Let µ ∈ (Zn+)
Hom(F,E) be the dominant weight defined by the formula µτ =

(mτ , . . . ,mτ ) for each τ ∈ Hom(F,E). Then for any λ ∈ (Zn+)
Hom(F,E), fψ

descends to an isomorphism

TS(K,λ) ∼= TS(K,λ+ µ).

In particular, if m is a maximal ideal of TS which is in the support of H∗(XK ,Vλ),
then m(ψ) is in the support of H∗(XK ,Vλ+µ).

Proof. This is an immediate consequence of Proposition 2.2.22. �

2.3. Some automorphic Galois representations. In the next two sections

of this chapter, we state some results asserting the existence of Galois rep-

resentations associated to automorphic forms. Although the main results of

this paper concern the relation between classical automorphic representations

and Galois representations, we must also consider the Galois representations

associated to torsion classes, and therefore valued in (possibly p-torsion) Hecke

algebras. This goes some way towards explaining the need to state so many

closely related results here. A large part of this paper will be taken up with the

problem of studying the local properties of the Hecke–algebra valued Galois

representations whose existence is asserted in the statement of Theorem 2.3.7.

2.3.1. Existence of Galois representations attached to automorphic forms.

If π is an irreducible admissible representation of GLn(AF ) and λ ∈ (Zn+)
Hom(F,C),

we say that π is of weight λ if the infinitesimal character of π∞ is the same as

that of V ∨λ .

Theorem 2.3.2. Let π be a cuspidal automorphic representation of GLn(AF )

of weight λ ∈ (Zn+)
Hom(F,C). Then for any isomorphism ι : Qp → C, there ex-

ists a continuous semisimple representation rι(π) : GF → GLn(Qp) satisfying

the following condition : for each prime l 6= p above which both F and π are

unramified, and for each place v|l of F , rι(π)|GFv
is unramified and the char-

acteristic polynomial of rι(π)(Frobv) is equal to the image of Pv(X) in Qp[X]

under the homomorphism Tv → Qp associated to ι−1πv.

Proof. This is the main theorem of [HLTT16]. �

Theorem 2.3.3. Suppose that F contains an imaginary quadratic field.

Let π be a cuspidal automorphic representation of ‹G(AF+), and let ξ be an ir-

reducible algebraic representation of ‹GC such that π is ξ-cohomological. Then

there exists a partition 2n = n1 + · · ·+ nr and discrete, conjugate self-dual au-

tomorphic representations Π1, . . . ,Πr of GLn1(AF ), . . . ,GLnr(AF ), satisfying

the following conditions :

(1) Let Π = Π1⊞ · · ·⊞Πr. If l is a prime unramified in F and above which

π is unramified, then Π is unramified above l and for each place v|l of
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F lying above a place v of F+, Πv and πv are related by unramified

base change.

(2) If F0 ⊂ F is an imaginary quadratic field and l′ is a prime which splits

in F0, then for each place v|l′ of F lying above a place v of F+, Πv
and πv are identified under the induced isomorphism ιv : ‹G(F+

v ) ∼=
GL2n(Fv).

(3) The infinitesimal character of Π is the same as that of the representa-

tion (ξ ⊗ ξ)∨ of GL2n(F ⊗Q C).

Consequently1, there exists for any isomorphism ι : Qp → C a continuous

semisimple representation rι(π) : GF → GL2n(Qp) satisfying the following

conditions :

(a) For each prime l 6= p which is unramified in F and above which π is

unramified, and for each place v|l of F , rι(π)|GFv
is unramified and

the characteristic polynomial of rι(π)(Frobv) is equal to the image of
‹Pv(X) in Qp[X].

(b) For each place v|p of F , rι(π) is de Rham and for each embedding

τ : F →֒ Qp, we have

HTτ (rι(π)) = {λ̃τ,1 + 2n− 1, λ̃τ,2 + 2n − 2, . . . , λ̃τ,2n},

where λ̃ ∈ (Z2n
+ )Hom(F,Qp) is the highest weight of the representation

ι−1(ξ ⊗ ξ)∨ of GL2n over Qp.

(c) If F0 ⊂ F is an imaginary quadratic field and l is a prime which splits

in F0, then for each place v|l of F lying above a place v of F+, there

is an isomorphism WD(rι(π)|GFv
)F-ss ∼= recTFv

(πv ◦ ιv).
Proof. We will deduce this from [Shi14]. The main wrinkle is that this

reference gives a case of base change for unitary similitude groups (while our

group ‹G is a unitary group, with trivial similitude factor). Let laux be an

auxiliary prime at which both F and π are unramified. In order to prove the

proposition, it suffices to prove the existence of an automorphic representation

Π of GL2n(AF ) satisfying the second and third requirements, and satisfying

the first requirement at almost all rational primes, including laux. We can

then use strong multiplicity 1 and our freedom to vary laux in order to recover

the proposition as stated. The existence and local properties of the Galois

representation are then a consequence of the existence of Π (a result due to

many people, but see e.g. [Car14]).

1The fact that the Πi are not mentioned in these consequences is not an oversight. We use

the Galois representations associated to the Πi in order to construct rι(π) and verify that it

has the expected properties.
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Let ‹G′ denote the similitude group associated to ‹G; thus there is a short

exact sequence

1 //ResF+/Q
‹G //‹G′ //Gm

//1

of reductive groups over Q. By the main result of [Shi14], it suffices to find

an irreducible algebraic representation ξ′ of ‹G′C and a cuspidal automorphic

representation π′ of ‹G′(AQ) satisfying the following conditions:

• The restriction π′|‹G(AF+ )
contains π.

• π′ is ξ′-cohomological.

• π′ is unramified at laux.

Arguing as in the proof of [HT01, Thm. VI.2.9], we see that it is enough to

show the existence of a continuous character ψ : A×F0
/F0

× → C× satisfying

the following conditions:

• The restriction ψ|(A×
F0

)c=1 is equal to the restriction of the central char-

acter ωπ : (A×F )
c=1 → C× of π to (A×F0

)c=1.

• ψ is of type A0, i.e. its restriction to F×0,∞ arises from a character of

the torus (ResF0/Q Gm)C.

• ψ|O×
F0,l

aux
is trivial.

The existence of such a character follows from the algebraicity of ωπ|(A×
F0

)c=1 ,

itself a consequence of the fact that π is ξ-cohomological. �

2.3.4. Existence of Hecke algebra-valued Galois representations. Let S be

a finite set of finite places of F , containing the p-adic places.

Theorem 2.3.5. Let m ⊂ TS(K,λ) be a maximal ideal. Suppose that S

satisfies the following conditions :

• S = Sc.

• Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F

in which l splits.

Then there exists a continuous, semi-simple representation

ρm : GF,S → GLn(T
S(K,λ)/m)

satisfying the following condition : for each finite place v 6∈ S of F , the charac-

teristic polynomial of ρm(Frobv) is equal to the image of Pv(X) in (T(K,λ)/m)[X].

We note that our condition on S can always be achieved after possibly

enlarging S.
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Proof. Fix an embedding TS(K,λ)/m →֒ Fp. According to [Sch15, Cor.

5.4.3], there is an n-dimensional continuous semisimple Galois representation

ρm : GF,S → GLn(Fp) such that for each finite place v 6∈ S of F , the character-

istic polynomial of ρm(Frobv) is equal to the image of

Xn − Tv,1Xn−1 + · · · + (−1)iqi(i−1)/2v Tv,iX
n−i + · · · + (−1)nqn(n−1)/2v Tv,n

in Fp[X]. (Our condition on S ensures that we can appeal to the results

of [Sch15] in a case where they are unconditional, cf. Theorem 2.3.3 and the

discussion in [Sch15, Rem. 5.4.6]). Combining the Chebotarev density theorem,

the Brauer–Nesbitt Theorem and the vanishing of the Brauer group of a finite

field [DS74, Lem. 6.13], we see that ρm can in fact be realized over TS(K,λ)/m.

�

Definition 2.3.6. We say that a maximal ideal m ⊂ TS is of Galois

type if its residue field is a finite extension of k, and there exists a continuous,

semi-simple representation ρm : GF,S → GLn(T
S/m) such that for each finite

place v 6∈ S of F , the characteristic polynomial of ρm(Frobv) is equal to the

image of Pv(X) in (TS/m)[X].

We say that a maximal ideal m ⊂ TS is non-Eisenstein if it is of Galois

type and ρm is absolutely irreducible.

Note that Theorem 2.3.5 can be viewed as asserting that, under a suitable

condition on S, any maximal ideal of TS in the support of H∗(XK ,Vλ) is of

Galois type. We observe that if m ⊂ TS is of Galois type, then so is m∨,

and in fact ρm∨
∼= ρ∨m ⊗ ǫ1−n. In particular, if m is non-Eisenstein, then so is

m∨. Similarly, if ψ : GF,S → O× is a continuous character, and m ⊂ TS is a

maximal ideal of Galois type, then so is m(ψ), and in fact ρm(ψ)
∼= ρm ⊗ ψ. In

particular, if m is non-Eisenstein, then so is m(ψ).

Theorem 2.3.7. Let m ⊂ TS(K,λ) be a maximal ideal. Suppose that S

satisfies the following conditions :

• S = Sc.

• Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F

in which l splits.

Suppose moreover that ρm is absolutely irreducible. Then there exists an integer

N ≥ 1, which depends only on n and [F : Q], an ideal I ⊂ TS(K,λ) satisfying

IN = 0, and a continuous homomorphism

ρm : GF,S → GLn(T
S(K,λ)m/I)

satisfying the following condition : for each finite place v 6∈ S of F , the charac-

teristic polynomial of ρm(Frobv) is equal to the image of Pv(X) in (T(K,λ)m/I)[X].
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Proof. This follows from [Sch15, Cor. 5.4.4]. �

Theorem 2.3.8. Let m̃ ⊂ ‹TS(‹K, λ̃) be a maximal ideal. Suppose that S

satisfies the following condition :

• Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F

in which l splits.

(Note that the condition S = Sc is implicit in the use of the notation ‹TS here.)

Then there is a continuous, semi-simple representation

ρm̃ : GF,S → GL2n(‹TS(‹K, λ̃)/m̃)

satisfying the following condition : for each finite place v 6∈ S of F , the charac-

teristic polynomial of ρm̃(Frobv) is equal to the image of ‹Pv(X) in (‹TS(‹K, λ̃)/m̃)[X].

Proof. The existence of a 2n-dimensional group determinant ‹Dm̃ valued

in ‹TS(‹K, λ̃)/m̃ and with the given characteristic polynomials on Frobenius

elements at places v 6∈ S is implicit in [Sch15] and also follows from [NT16,

Theorem 5.7], as we now explain. The result [NT16, Theorem 5.7] shows that

if the group ‹K is small, in the sense that there is a rational prime q 6= p such

that ‹Kq is contained in the principal congruence subgroup at level q (if q is

odd) or 2q (if q = 2), then there is even a 2n-dimensional group determinant

valued in ‹TS(RΓ(‹X‹K ,Vλ̃/(̟))) such that for each finite place v 6∈ S of F ,

the characteristic polynomial of Frobv is equal to the image of ‹Pv(X). The

surjection

‹TS(‹K, λ̃)→ ‹TS(RΓ(‹X‹K ,Vλ̃/(̟)))

is bijective at the level of maximal ideals, so this implies the existence of the

desired group determinant when ‹K is small. When ‹K is not small, we choose

an odd rational prime q1 which is prime to S, and let ‹K1 denote the intersection

of ‹K with the principal congruence subgroup of ‹G(“OF+) of level q1. Let S1
denote the union of S with the set of q1-adic places of F . Then there is a

diagram of Hecke algebras

‹TS1(‹K1, λ̃)← ‹TS1(‹K/‹K1, λ̃) ։ ‹TS1(‹K, λ̃) →֒ ‹TS(‹K, λ̃),
where the left-facing arrow has nilpotent kernel and so induces a bijection at

the level of maximal ideals. Let m̃1 ⊂ ‹TS1(‹K, λ̃) denote the pullback of m̃ along

the right-hand inclusion. Since ‹K1 is small, there exists a group determinant
‹Dm̃1

valued in ‹TS1(‹K, λ̃)/m̃1 and with the correct characteristic polynomials

at places outside S1. Let ‹Dm̃,1 denote the pushforward of ‹Dm̃1
to ‹TS(‹K, λ̃)/m̃.

Thus ‹Dm̃,1 is a 2n-dimensional group determinant of GF,S1 with the property
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that for any finite place v 6∈ S1 of F , ‹Dm̃,1(X − Frobv) equals the image of
‹Pv(X).

Choose another odd rational prime q2 6= q1 which is prime to S, and

repeat this construction to obtain a group determinant ‹Dm̃,2 of GF,S2 valued in
‹TS(‹K, λ̃)/m̃ with the property that for any finite place v 6∈ S2 of F , ‹Dm̃,2(X −
Frobv) equals the image of ‹Pv(X). Since the Frobenius elements at places

v 6∈ S1∪S2 are dense in GF,S1∪S2 , the group determinants ‹Dm̃,1 and ‹Dm̃,2 have

the same characteristic polynomials on all elements of GF,S1∪S2 . By [Che14,

Lemma 1.12], these group determinants are equal and we can take ‹Dm̃ =
‹Dm̃,1 = ‹Dm̃,2.

To obtain a true representation from this group determinant, we first fix

an embedding ‹TS(‹K, λ̃)/m̃ →֒ Fp. The group determinant determines a repre-

sentation over Fp, by [Che14, Theorem A]. It follows by the same argument as

in the proof of Theorem 2.3.5 that this representation can in fact be realized

over ‹TS(‹K, λ̃)/m̃. �

A similar argument shows that [NT16, Theorem 5.7] implies the following

result.

Proposition 2.3.9. Suppose that S satisfies the following conditions :

• S = Sc.

• Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F

in which l splits.

Then there exists an ideal I ⊂ ‹TS(‹K, λ̃) satisfying I2 dimR
‹X = 0 and a 2n-

dimensional group determinant ‹D of GF,S valued in ‹TS(‹K, λ̃)/I such that for

each finite place v 6∈ S of F , the characteristic polynomial ‹D(X − Frobv) is

equal to the image of ‹Pv(X) in (‹TS(‹K, λ̃)/I)[X].

Proof. When ‹K is small, this is an immediate consequence of [NT16, The-

orem 5.7], together with the observation that the natural map

‹TS(‹K, λ̃)→ lim←−
m≥1

‹TS(RΓ(‹X‹K ,Vλ̃/(̟m)))

is an isomorphism. Moreover, in this case we can take I = 0. In general,

we introduce an odd rational prime q1 as in the proof of Theorem 2.3.8 and

consider again the diagram

‹TS1(‹K1, λ̃)← ‹TS1(‹K/‹K1, λ̃) ։ ‹TS1(‹K, λ̃) →֒ ‹TS(‹K, λ̃).
The map ‹TS1(‹K/‹K1, λ̃)→ ‹TS1(‹K1, λ̃) has kernel J1 satisfying J

dimR
‹X

1 = 0 (be-

cause the cohomology of RΓ(‹X‹K1
,V

λ̃
) is 0 for degrees not lying in [0,dimR

‹X−
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1]). Taking I1 to be the ideal of ‹TS1(‹K, λ̃) generated by the image of J1, we

obtain a 2n-dimensional group determinant ‹D1 of GF,S1 valued in ‹TS(‹K, λ̃)/I1
such that for each finite place v 6∈ S1 of F , ‹D1(X −Frobv) equals the image of

‹Pv(X), and moreover IdimR
‹X

1 = 0.

Introducing an odd rational prime q2 6= q1 which is prime to S, we obtain

similarly an ideal I2 ⊂ ‹TS(‹K, λ̃) satisfying IdimR
‹X

2 = 0 and a group determi-

nant ‹D2 valued in ‹TS(‹K, λ̃)/I2 and having properties analogous to ‹D1. We

take I = (I1, I2) and ‹D to be the projection of ‹D1 to ‹TS(‹K, λ̃)/I. Consider-

ation of characteristic polynomials at places v 6∈ S1 ∪ S2, as in the proof of

Theorem 2.3.8, shows that ‹D equals the projection of ‹D2 to ‹TS(‹K, λ̃)/I. It

follows that ‹D has the property required by the proposition. �

2.4. Boundary cohomology. In the remaining section of this chapter we

prove some results about the boundary cohomology of the arithmetic locally

symmetric spaces of G and ‹G. This is made possible by the existence of

Galois representations attached to Hecke eigenclasses in the cohomology of

these groups and of their Levi subgroups. The important observation is usually

that the cohomology of a certain stratum in the boundary can be observed to

vanish after localization at a sufficiently nice (e.g. non-Eisenstein) maximal

ideal of a suitable Hecke algebra.

2.4.1. The Siegel parabolic. Let ‹K ⊂ ‹G(A∞F+) be a good subgroup which

is decomposed with respect to the Levi decomposition P = GU (cf. §2.1.2).

We set K = ‹K ∩G(A∞F+) and KU = ‹K ∩ U(A∞F+).

Let m ⊂ TS(K,λ) be a non-Eisenstein maximal ideal, and suppose that

S = Sc. Let m̃ ⊂ ‹TS denote the pullback of m under the homomorphism

S : ‹TS → TS defined in (2.2.2). In order to state the first main result of this

subsection, we recall that the boundary ∂‹X‹K = ‹X ‹K − ‹X‹K of the Borel–Serre

compactification of ‹X‹K has a ‹G(A∞F+)-equivariant stratification indexed by

the parabolic subgroups of ‹G which contain B. See [NT16, §3.1.2], especially

[NT16, Lem. 3.10] for more details. For such a standard parabolic subgroup Q,

we denote by ‹XQ
‹K the stratum labelled by Q. The stratum ‹XQ

‹K can be written

as

‹XQ
‹K = Q(F+)\

Ä
XQ × ‹G(A∞F+)/‹K

ä
.

As discussed in §2.1.2, there is, for any λ̃ ∈ (Z2n
+ )Hom(F+,E), a homomorphism

‹TS → EndD(O)(RΓ(‹XQ
‹K ,Vλ̃)).
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Therefore, we can define the localization RΓ(‹XQ
‹K ,Vλ̃)m̃. (This complex will

be non-zero in D(O) if and only if the maximal ideal m̃ of ‹TS occurs in the

support of the cohomology groups H∗(‹XQ
‹K ,Vλ̃).)

Theorem 2.4.2. Let m ⊂ TS(K,λ) be a non-Eisenstein maximal ideal

and let m̃ = S∗(m) ⊂ ‹TS . Let λ̃ ∈ (Z2n
+ )Hom(F+,E). Then there is a natural

‹TS-equivariant isomorphism

RΓ(‹XP
‹K ,Vλ̃)m̃

∼→ RΓ(∂‹X‹K ,Vλ̃)m̃
in D(O).

Proof. There is no harm in enlarging S, so we first add finitely many

places to S, ensuring that it satisfies the condition of Theorem 2.3.5. The

proof is similar to the proof of [NT16, Thm. 4.2], which applies to the case

of ResF/QGLn and which shows that the cohomology of the stratum labelled

by any proper parabolic subgroup of ResF/QGLn is Eisenstein. Since P is

a maximal parabolic of ‹G, the inclusion ‹XP
‹K ⊂ ∂‹X‹K is an open embedding,

which induces a natural, ‹TS-equivariant map

RΓc(‹XP
‹K ,Vλ̃)m̃ → RΓ(∂‹X‹K ,Vλ̃)m̃,

and which fits into an excision distinguished triangle

RΓc(‹XP
‹K ,Vλ̃)m̃ → RΓ(∂‹X‹K ,Vλ̃)m̃ → RΓ(∂‹X‹K \ ‹XP

‹K ,Vλ̃)m̃
[1]→ .

We will show that RΓ(∂‹X‹K \ ‹XP
‹K ,Vλ̃)m̃ = 0 in D(O), by showing that for

each standard proper parabolic subgroup Q ⊂ ‹G with Q 6= P , we have

RΓc(‹XQ
‹K ,Vλ̃)m̃ = 0 in D(O). Applying the same argument to the excision

triangle for the inclusion from ‹XP
‹K to its closure, this will also show that the

natural map

RΓc(‹XP
‹K ,Vλ̃)m̃ → RΓ(‹XP

‹K ,Vλ̃)m̃
is an isomorphism.

In order to show this vanishing, it suffices (after possibly shrinking ‹K at

the p-adic places of F+) to show that if Q 6= P is a standard proper parabolic

subgroup of ‹G, then RΓ(‹XQ
‹K , k)m̃ = 0. (We are using here that if C• is a

perfect complex in D(O), then C• = 0 in D(O) if and only if C• ⊗L
O k = 0

in D(k). We are also using Poincaré duality to exchange cohomology with

compact support for usual cohomology, as in [NT16, Prop. 3.7].)

We will in fact show that, for any maximal ideal m̃′ ⊂ ‹TS in the support

of RΓ(‹XQ
‹K , k), there exists a semisimple residual Galois representation

ρ̄m̃′ : GF,S → GL2n(‹TS/m̃′)
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such that for each place v 6∈ S of F , the characteristic polynomial of ρm̃′ equals

the image of ‹Pv(X) in (‹TS/m̃′)[X]. Moreover, assume that the Levi component

M of Q is of the form

ResF/F+GLn1 × · · · × ResF/F+GLnr × ‹Gn−s
for integers r ≥ 1, ni ≥ 1, s ∈ {1, . . . , n} satisfying

∑r
i=1 ni = s. (More

precisely, that it is the block diagonal subgroup of ‹G associated to the partition

2n = n1 + · · ·+ nr + 2(n− s) + nr + · · ·+ n1. These describe all the standard

F+-rational Levi subgroups of ‹G.) Then we have

(2.4.3) ρ̄m̃′ = ⊕ri=1ρ̄
′
i ⊕ ρ̄′(n− s)⊕ri=1 (ρ̄

′
i)
c,∨,

where ρ̄′i is ni-dimensional and ρ̄′(n − s) is (2n − 2s)-dimensional. The non-

Eisenstein condition on m implies that

ρ̄m̃ = ρ̄1 ⊕ ρ̄2,
where both ρ̄1, ρ̄2 are (absolutely) irreducible n-dimensional representations.

This shows that, unless r = 1 and s = n, RΓ(‹XQ
‹K , k)m̃ = 0. The case r =

1, s = n corresponds precisely to the Siegel parabolic P .

Let us define TS
Q = H(QS , ‹KS

Q) ⊗Z O and TS
M = H(MS , ‹KS

M ) ⊗Z O.
We recall (cf. §2.1.2) that there are homomorphisms rQ : ‹TS → TS

Q and

rM : TS
Q → TS

M , and that we set S‹GM = rM ◦ rQ. We first claim that, for

any maximal ideal m̃′ of ‹TS in the support of H∗(‹XQ
‹K , k), there exists a good

subgroup ‹K ′M ⊂ ‹KM with (‹K ′M )S = ‹KS
M and a maximal ideal m′ of TS

M in the

support of H∗(XM
‹K ′

M

, k) such that m̃′ = S‹G,∗M (m′). This follows the same steps

as the proof of [NT16, Theorem 4.2], which we outline here.

Firstly, one can describe the cohomology RΓ(‹XQ
‹K , k) together with its

‹TS-action in terms of the pullback under rQ : ‹TS → TS
Q of the cohomology of

finitely many locally symmetric spaces forQ. More precisely, using the Iwasawa

decomposition away from S, we can write ‹G(A∞F+) =
⊔r
i=1Q(A∞F+)gi‹K and

obtain r locally symmetric spaces XQ
KQ,i

, with KQ,i := Q(A∞F+) ∩ gi‹K(gi)
−1,

together with an isomorphism

RΓ(‹XQ
‹K , k) ≃

r⊕

i=1

r∗Q
Ä
RΓ(XQ

KQ,i
, k)
ä

in D(‹TS). The proof in [NT16], which identifies equations (4.2) and (4.3) of

loc. cit., applies verbatim to our situation, so we do not repeat it here.

Secondly, fix a neat compact open subgroup KQ ⊂ Q(A∞F+), which can be

any of the KQ,i considered above. Let Q =M ⋉N be a Levi decomposition of

Q. Let KM be the image of KQ inM(A∞F+) and KN := KQ∩N(A∞F+). LetW
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be the object in the derived category of sheaves on XM
KM

corresponding to the

object RΓ(KN,S, k) in D(k[KM,S ]) under the formalism in section 2.1.2. Then,

using an argument that is formally identical to that on pages 56-58 of [NT16],

we obtain an isomorphism

RΓ(XQ
KQ
, k) ≃ r∗M

Ä
RΓ(XM

KM
,W)
ä

in D(TS
Q). The corresponding statement in loc. cit. is obtained by combining

the second and fourth displayed equations on page 58.

Finally, we consider the spectral sequence that computes the total coho-

mology of RΓ(XM
KM

,W). Let W i be the local systems on XM
KM

corresponding

to the cohomology groups H i(KN,S , k). The first two steps above show that

there exists a maximal ideal m′ of TS
M in the support of some H∗(XM

‹K ′
M

,W i)

such that m̃′ = S‹G,∗M (m′). It remains to shrink the level KM,S in order to

trivialize all the W i. This could, a priori, cause a problem because the map

on cohomology groups need not be injective. However, we are only interested

in keeping track of a maximal ideal m′ of TS
M . The Hochschild–Serre spectral

sequence shows that shrinking the level does not cause problems, as in the

proof of [NT16, Lemma 4.3]. (See also the example below Lemma 2.2.3 for an

illustration of the same phenomenon in the derived category.)

In order to complete the proof of the theorem, it therefore suffices to

show that for any good subgroup KM ⊂ M(A∞F ) with KS
M = ‹KS

M and for

any maximal ideal m′ of TS
M in the support of H∗(XM

KM
, k), there exists a

semisimple residual Galois representation

ρ̄S∗(m′) : GF,S → GL2n(‹TS/S∗(m′))
such that for each place v 6∈ S of F , the characteristic polynomial of ρS∗(m′)

equals the image of ‹Pv(X) in (‹TS/m̃′)[X]; and moreover, that this Galois

representation admits a decomposition of the form (2.4.3).

After possibly shrinking KM once more, we can assume that it admits

a decomposition KM = K1 × · · · × Kr × ‹Ks, where Ki ⊂ GLni(A
∞
F ) and

‹Ks ⊂ ‹Gn−s(A∞F+). After possibly enlarging k, we can moreover assume, in the

obvious notation, (by the Künneth formula) that there exist maximal ideals

m1, . . . ,mr, m̃s of the Hecke algebras TS
GLn1

, . . . ,TS
GLnr

,TS
‹Gn−s

, respectively,

which are in the supports of the groupsH∗(X
GLn1
K1

, k), . . . ,H∗(X
GLnr
Kr

, k),H∗(X
‹Gn−s

‹Ks
, k),

respectively, and such that m′ is identified with (m1, . . . ,mr, m̃s) under the iso-

morphism

TS
M → TS

GLn1
⊗O ⊗ · · · ⊗O TS

GLnr
⊗O TS

‹Gn−s
.

We can moreover assume that all of the the maximal ideals m1, . . . ,mr, m̃s and

m′ have residue field k.
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Let us write P iv(X) ∈ TS
GLni

[X] and ‹P sv (X) ∈ TS
‹Gn−s

[X] for the analogues

for the groups GLni and
‹Gn−s of the Hecke polynomials defined in §2.2.4. By

Theorem 2.3.5 and Theorem 2.3.8, there exist continuous, semi-simple repre-

sentations

ρmi
: GF,S → GLni(k) (i = 1, . . . , r)

and

ρm̃s
: GF,S → GL2(n−s)(k)

such that for each finite place v 6∈ S of F and for each i = 1, . . . , r, the

characteristic polynomial of ρmi
(Frobv) is equal to P iv(X) mod mi; and the

characteristic polynomial of ρm̃s
(Frobv) is equal to ‹P sv (X) mod m̃s.

The proof of the theorem is complete on noting that we can take

ρS∗(m′) =
r⊕

i=1

Ä
ρmi
⊗ ǫn1+···+ni−2n ⊕ ρc,∨mi

⊗ ǫ1−(n1+···+ni)
ä
⊕ ρm̃s

⊗ ǫ−s.

That this choice is valid rests on the computation of the image of ‹Pv(X) under

the map S‹GM . The details are very similar to the proof of [NT16, Prop.-Def.

5.3], and are omitted. �

We can now state the second main result of this subsection, which takes

Theorem 2.4.2 as its starting point.

Theorem 2.4.4. Let ‹K ⊂ ‹G(A∞F+) be as at the start of §2.4.1, and let

λ ∈ (Zn+)
Hom(F,E) be a dominant weight whose image in (Z2n)Hom(F+,E) is

‹G-dominant. Let m ⊂ TS(K,λ) be a non-Eisenstein maximal ideal, and let

m̃ ⊂ ‹TS denote its pullback under the homomorphism S : ‹TS → TS . Then the

homomorphism S : ‹TS → TS descends to a homomorphism

‹TS(RΓ(∂‹X‹K ,Vλ̃)m̃)→ TS(RΓ(XK ,Vλ)m).
Proof. The first step in the proof is to note that it suffices to show that S

descends to a homomorphism

‹TS(RΓ(∂‹XP
‹K ,Vλ̃))→ TS(RΓ(XK ,Vλ)),

by Theorem 2.4.2. On the other hand, the discussion at the end of §2.1.9 shows

that S descends to a homomorphism

(2.4.5) ‹TS(RΓ(∂‹XP
‹K ,Vλ̃))→ ‹TS(RΓ(XP

‹KP
,V

λ̃
)),

where ‹TS acts on the latter complex via rP . It therefore suffices to show that

S descends to a homomorphism

(2.4.6) ‹TS(RΓ(XP
‹KP
,V

λ̃
))→ ‹TS(RΓ(XK ,Vλ)),
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where ‹TS acts on the latter cohomology groups via S = rG ◦ rP . In fact, it

even suffices to show that for each m ≥ 1, S descends to a homomorphism

(2.4.7) ‹TS(RΓ(XP
‹KP
,V

λ̃
/̟m))→ ‹TS(RΓ(XK ,Vλ/̟m)),

cf. [NT16, Lemma 3.12].

However, arguing in the same way as on [NT16, p. 58], we see that there

is an isomorphism

RΓ(XP
‹KP
,V

λ̃
/̟m) ∼= RΓ(‹KS

P ×KS , RΓ(Inf
PS×KS

GS×KS
XG, R1

‹KU,S
∗ V

λ̃
/̟m)),

where the derived pushforward sends (complexes of) PS × ‹KP,S-equivariant

sheaves on XG to PS ×KS-equivariant sheaves on XG. Suppose we knew that

Vλ/̟m was a direct summand of R1
‹KU,S
∗ V

λ̃
/̟m; then we could conclude, by

arguing in the same way as at the top of [NT16, p. 59], that r∗GRΓ(XK ,Vλ/̟m)

is isomorphic to a direct summand of RΓ(XP
‹KP
,V

λ̃
/̟m) in the category

D(H(PS × ‹KP,S, ‹KP )⊗Z O/̟m),

implying the existence of the homomorphism (2.4.7).

It remains to construct the desired splitting of Vλ/̟m as a direct sum-

mand of R1
‹KU,S
∗ V

λ̃
/̟m. To do this, we recall the following two facts:

• ‹KP is a semidirect product ‹KP = ‹KU ⋊ K (by assumption: ‹K is

decomposed with respect to the Levi decomposition P = GU).

• There is a ‹KP -equivariant embedding Vλ → Vλ̃, which splits after re-

striction to K. (This follows from [NT16, Corollary 2.11].)

The morphism Vλ/̟m → R1
‹KU,S
∗ V

λ̃
/̟m is the composite of the reduction

modulo ̟m of the given map Vλ → V ‹KU,S

λ̃
, together with the morphism

(V
λ̃
/̟m)

‹KU,S → R1
‹KU,S
∗ V

λ̃
/̟m whose existence is assured by the universal

property of the derived functor.

The morphismR1
‹KU,S
∗ V

λ̃
/̟m → Vλ/̟m is the composite of the morphism

R1
‹KU,S
∗ V

λ̃
/̟m → V

λ̃
/̟m (given by restriction to the trivial subgroup) and the

reduction modulo ̟m of the K-equivariant splitting V
λ̃
→ Vλ. This completes

the proof. �

Here is a variant of Theorem 2.4.4 where we now take trivial coefficients

but consider additional Hecke operators at some ramified places.

Theorem 2.4.8. Let ‹K ⊂ ‹G(A∞F+) be as at the start of §2.4.1, and let

m ⊂ TS(K, 0) be a non-Eisenstein maximal ideal, and let m̃ ⊂ ‹TS denote its

pullback under the homomorphism S : ‹TS → TS . Suppose moreover that there

is a subset R ⊂ S satisfying the following conditions :
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• Each place v ∈ R is prime to p and is split over F+.

• For each place v ∈ R−Rc lying over a place v of F+, ‹Kv = q̃v , where

q̃v contains p̃v,1 and is contained in p̃v . For each place v ∈ R ∩ Rc
lying over a place v of F+, ‹Kv = Ĩv , where Ĩv contains Ĩwv,1 and is

contained in Ĩwv .

Let T = S−(Rc−R). Let ‹TT
R ⊂ H(‹G(A∞F+), ‹K)⊗ZO denote the (commutative)

O-subalgebra generated by ‹TS and all the elements tv,i(σ) (v ∈ R,σ ∈ WFv )

and ev,i(σ) (v ∈ Rc − R,σ ∈ WFv). Let TT
R ⊂ H(GLn(A

∞
F ),K) ⊗Z O denote

the (commutative) O-subalgebra generated by TT and all the elements tv,i(σ)

(v ∈ R,σ ∈ WFv ). Then there is a map S : ‹TT
R → TT

R, which descends to an

O-algebra homomorphism

‹TT
R(RΓ(∂‹X‹K ,O)m̃)→ TT

R(RΓ(XK ,O)m).
Proof. Let R0 = R∪Rc, S0 = S −R0. The map S is the one described in

§2.1.2 (at unramified places) and §2.1.9 (see in particular Lemma 2.1.13, which

applies at the ramified places we consider here, cf. the discussion at the end

of §2.2.4). Once again, by Theorem 2.4.2, it will be enough to us to show that

S descends to a homomorphism

‹TT
R(RΓ(‹XP

‹K ,O))→ TT
R(RΓ(XK ,O)).

In order to show the existence of this homomorphism we first recall, following

the discussion at the end of §2.1.9, that S arises by localisation from the

composite of homomorphisms

rP : H(‹GS ×∆‹G,R0
, ‹KS0)→H(PS ×∆P,R0 ,

‹KS0
P )

and

rG : H(PS ×∆P,R0 ,
‹KS0
P )→H(GS ×∆G,R0 ,K

S0).

Moreover, there are morphisms of complexes

RΓ(XP
‹KP
,O) α→ RΓ(‹XP

‹K ,O)
β→ RΓ(XP

‹KP
,O)

and

RΓ(XK ,O)
γ→ RΓ(XP

‹KP
,O) δ→ RΓ(XK ,O)

satisfying the following conditions:

• β respects the action of H(‹GS ×∆‹G,R0
, ‹KS0) (when this algebra acts

by rP on the target of β).

• γ respects the action of H(PS × ∆P,R0 ,
‹KS0
P ) (when this algebra acts

by rG on the source of γ).

• βα and δγ both equal the identity.
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Let ‹TT
R,+ denote the intersection of ‹TT

R with H(‹GS × ∆‹G,R0
, ‹KS0) ⊗Z O (in-

tersection taken inside H(‹GS0 , ‹KS0) ⊗Z O). Define TT
R,+ similarly. Then

S(‹TT
R,+) ⊂ TT

R,+ and the above listed properties immediately imply that

S+ = S|‹TT
R,+

descends to a morphism as in the top horizontal arrow of the

following diagram

‹TT
R,+(RΓ(

‹XP
‹K ,O))

//

⊂

��

TT
R,+(RΓ(XK ,O))

⊂

��‹TT
R(RΓ(

‹XP
‹K ,O)) TT

R(RΓ(XK ,O)).

By construction, we can find an element z ∈ ‹TT
R,+(RΓ(

‹XP
‹K ,O)) with the fol-

lowing properties:

• z is a unit in ‹TT
R(RΓ(

‹XP
‹K ,O)) and

‹TT
R(RΓ(

‹XP
‹K ,O)) =

‹TT
R,+(RΓ(

‹XP
‹K ,O))[z

−1].

• S+(z) is a unit inTT
R(RΓ(XK ,O)) andTT

R(RΓ(XK ,O)) = TT
R,+(RΓ(XK ,O))[S+(z)−1].

Indeed, we can take z to be a product (over places of R0) of strongly positive

Hecke operators, as in the statement of Lemma 2.1.13. We deduce that in fact

S descends to a homomorphism

‹TT
R(RΓ(‹XP

‹K ,O))→ TT
R(RΓ(XK ,O)),

as required. �

2.4.9. Some results on rational cohomology.

Theorem 2.4.10. Fix a choice of isomorphism ι : Qp → C.

(1) Let π be a cuspidal, regular algebraic automorphic representation of

GLn(AF ) of weight ιλ. Suppose that there exists a good subgroup K ⊂
GLn(AF ) such that (π∞)K 6= 0. Then the map TS → Qp associated to

the Hecke eigenvalues of (ι−1π∞)K factors through the quotient TS →
TS(K,λ).

(2) Let q0 = [F+ : Q]n(n−1)/2, l0 = [F+ : Q]n−1. Let K ⊂ GLn(AF ) be

a good subgroup, and let m ⊂ TS(K,Vλ) be a maximal ideal such that

ρm is absolutely irreducible. Then for each j ∈ Z, the group

Hj(XK ,Vλ)m[1/p]
is non-zero only if j ∈ [q0, q0+ l0]; moreover if one of the groups in this

range is non-zero, then they all are.

If f : TS(K,Vλ)m → Qp is a homomorphism, then there exists a

cuspidal, regular algebraic automorphic representation π of GLn(AF )

of weight ιλ such that f is associated to the Hecke eigenvalues of

(ι−1π∞)K . In particular, there is an isomorphism rι(π) ∼= ρm.
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Proof. For the first part, it suffices to show that there is a non-zero eigen-

vector for H(GLn(A
∞,S
F ),KS) in H∗(XK , Vιλ) with the eigenvalue of Tv,i equal

to its eigenvalue of Tv,i on π
Kv
v .

Likewise, for the second part it suffices to show that the groupHj(XK , Vιλ)m :=

Hj(XK ,Vλ)m⊗O,ιC is non-zero only if j ∈ [q0, q0+ l0], that if one of the groups

in this range is non-zero they all are, and that if f : H(GLn(A
∞,S
F ),KS)→ C

is a system of Hecke eigenvalues appearing in H∗(XK , Vιλ)m then there is a

cuspidal, regular algebraic automorphic representation of GLn(AF ) of weight

ιλ giving rise to this system of Hecke eigenvalues.

As a consequence of Franke’s theorem [Fra98, Thm. 18], as in [FS98, §2.2],

we have a canonical decomposition

H∗(XK , Vιλ) =

Ñ
⊕

{Q}∈C

H∗(mG,K∞;AVιλ,{Q} ⊗C Vιλ)(χλ)

éK

.

In this formula, C is the set of associate classes of parabolic Q-subgroups

of ResF/QGLn. The cohomology on the right hand side is relative Lie algebra

cohomology, mG is the Lie algebra of the real points of the algebraic group given

by the kernel of the map NF/Q ◦ det : ResF/QGLn → GL1, and AVιλ,{Q} is a

certain space of automorphic forms (in particular, it is a GLn(A
∞
F )-module).

Finally, the (χλ) denotes a twist of the GLn(A
∞
F )-module structure, deter-

mined by the central character of Vιλ, which appears because the automorphic

forms considered in loc. cit. are by definition invariant under translation by

R>0 ⊂ (ResF/QGLn)(R). We set E{Q} = H∗(mG,K∞;AVιλ,{Q} ⊗C Vιλ)(χλ).

The summand EK{G} is the cuspidal cohomology group

H∗cusp(XK , Vιλ) =
⊕

π

(π∞)K ⊗C H
∗(mG,K∞;π∞ ⊗C Vιλ)

where the sum is over cuspidal automorphic representations π of GLn(AF )

with central character ξ satisfying ξ|R>0 = ξ−1ιλ |R>0 , where ξιλ is the central

character of Vιλ.

Let M be a maximal ideal of H(GLn(A
∞,S
F ),KS) ⊗Z C in the support

of EK{Q}. Suppose Q ⊂ ResF/QGLn is the standard (block upper triangular)

parabolic subgroup corresponding to the partition n = n1+· · ·+nr. We denote

its standard (block diagonal) Levi factor by LQ. In order to simplify notation,

we set

W =W ((ResF/Q GLn)C, (ResF/Q Tn)C),

WQ =WQ((ResF/Q GLn)C, (ResF/Q Tn)C),

and

WQ =WQ((ResF/QGLn)C, (ResF/Q Tn)C)
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for the respective Weyl groups (notation as in §1.2). It follows from [FS98,

Prop. 3.3] (see also the proof of [Fra98, Thm. 20]) that M corresponds to

the system of Hecke eigenvalues for the (unnormalized) parabolic induction

Ind
GLn(A∞

F )

Q(A∞)
σ∞, where σ =

⊗r
i=1 πi is a cuspidal automorphic representation

of LQ(AQ) =
∏r
i=1 GLni(AF ) whose infinitesimal character matches that of

the dual of the (LQ)C-representation with highest weight w(ιλ+ρ)−ρ, for some

w in the set WQ. Here ρ denotes half the sum of the (ResF/QBn)C-positive

roots, and we note that each w(ιλ+ ρ)− ρ is a dominant weight for (LQ)C. In

particular, the πi are regular algebraic cuspidal automorphic representations

of GLni(AF ) (whose weight depends on w).

We sketch how this statement can be deduced from the proof of [FS98,

Prop. 3.3]. The space AVιλ,{Q} decomposes, as a GLn(A
∞
F )-module, into a

direct sum ⊕ϕAVιλ,{Q},ϕ. Each space of automorphic forms AVιλ,{Q},ϕ is the

quotient of a space denoted WQ,π̃ ⊗ S(ǎGQ) in loc. cit. It is also observed in

the proof of [FS98, Prop. 3.3] that this space, as a GLn(A
∞
F )-module, has

a filtration whose quotients are isomorphic as GLn(A
∞
F )-modules to a nor-

malized parabolic induction Ind
GLn(A∞

F )

Q(AQ) (δQ ⊗ π∞). Our notation differs from

[FS98], as we are writing Ind for unnormalized parabolic induction. Here

π is a cuspidal automorphic representation of LQ(AQ) whose infinitesimal

character corresponds under the normalized Harish-Chandra isomorphism to

a weight in the W -orbit of the infinitesimal character of V ∨ιλ (by [FS98, 1.2

c)]). The normalization is given by the character δQ of LQ(AQ) defined by

δQ(l) = e〈HQ(l),ρQ〉, where HQ is the standard height function defined in [FS98,

p.769] and ρQ is half the sum of the roots in the unipotent radical of Q. Al-

though π will not always be regular algebraic, the twist σ := δQ ⊗ π will be.

More precisely, we show that the infinitesimal character of σ equals that of

the dual of the (LQ)C-representation with highest weight λw := w(ιλ+ ρ)− ρ,
for some w ∈ WQ. Indeed, we have v ∈ WQ such that the infinitesimal char-

acter χσ = χπ + ρQ = v(ιλ∨ + ρ) + ρQ, where ιλ
∨ is the highest weight of

V ∨ιλ (which has infinitesimal character ιλ∨+ρ). A short calculation shows that

χσ = λ∨w0,Qvw0
+ρLQ

, where ρLQ
is half the sum of the positive roots for LQ, w0

is the longest element of W and w0,Q is the longest element of WQ. Note that

since WQ is characterized by taking dominant weights for GLn to dominant

weights for LQ (equivalently, taking anti-dominant weights to anti-dominant

weights), w0,Qvw0 is an element of WQ, so this gives the desired statement.

Returning to the proof of the theorem, it now follows from Thm. 2.3.2

that there is a Galois representation

rι(M) : GF → GLn(Qp)

such that, for all but finitely many v /∈ S, the characteristic polynomial of

rι(M)(Frobv) equals Pv(X) mod M. Indeed, (cf. the proof of [NT16, Thm. 4.2])
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we have

rι(M) =

r⊕

i=1

rι(πi)⊗ ǫ−(ni+1+···+nr).

We can now deduce that if Q is a proper parabolic, then (EK{Q})m =

EK{Q}⊗TS(K,Vλ)
TS(K,Vλ)m vanishes. SupposeM is a maximal ideal ofH(GLn(A

∞,S
F ),KS)⊗Z

C in the support of (EK{Q})m. On the one hand, the representation rι(M) is

reducible in this case, but we have an isomorphism rι(π) ∼= ρm. This con-

tradicts the assumption that ρm is absolutely irreducible, so we deduce that

(EK{Q})m = 0.

Finally, we show both parts of the theorem. It suffices to show that if π

is a cuspidal automorphic representation of GLn(AF ) with central character

matching ξ−1ιλ on R>0, then

(1) H∗(mG,K∞;π∞ ⊗ Vιλ) is zero unless π is regular algebraic of weight

ιλ.

(2) If π is regular algebraic of weight ιλ then Hj(mG,K∞;π∞ ⊗ Vιλ) van-
ishes for j /∈ [q0, q0 + l0] and is non-zero for j ∈ [q0, q0 + l0].

The first claim follows from [BW00, Ch. II, Prop. 3.1]. The second claim follows

from [Clo90, Lem. 3.14] and the Künneth formula for relative Lie algebra

cohomology (in the notation of loc. cit., our Lie algebra mG is a direct sum

of g̃v for each infinite place v of F and an abelian Lie algebra of dimension

[F+ : Q]− 1; the range of non-zero cohomological degrees is n− 1 for (g̃v,Kv)-

cohomology, so we get range (n− 1)[F+ : Q] + [F+ : Q]− 1 = l0 in total). �

Theorem 2.4.11. Let ρ ∈ X∗(ResF+/Q Tn) denote half the sum of the

positive roots of ResF+/Q
‹G. Fix an isomorphism ι : Qp → C. Let λ̃ ∈

(Z2n
+ )Hom(F+,E)) be a highest weight with the following property : for any w ∈

WP ((ResF+/Q
‹G)C, (ResF+/Q T )C), there are no (characteristic 0) cuspidal

automorphic representations for G of weight ιλw, where λw = w(λ̃+ ρ)− ρ.
Let m̃ ⊂ ‹TS be a maximal ideal which is in the support of H∗(‹X‹K ,Vλ̃)

with the property that ρ̄m̃ is a direct sum of n-dimensional absolutely irreducible

representations of GF . Let d = 1
2 dimRX

‹G = n2[F+ : Q].

Then Hd(‹X‹K ,Vλ̃)m̃[1/p] is a semisimple ‹TS [1/p]-module, and for every

homomorphism f : ‹TS(Hd(‹X‹K ,Vλ̃)m̃) → Qp, there exists a cuspidal, regular

algebraic automorphic representation π̃ of ‹G(AF+) of weight ιλ̃ such that f is

associated to the Hecke eigenvalues of (ι−1π̃∞)
‹K .

Proof. The proof uses similar ingredients to the proof of Theorem 2.4.10

above. We must understand the systems of ‹TS-eigenvalues occurring in

Hd(‹X‹K , Vιλ̃)m̃ := Hd
Ä‹X‹K ,Vλ̃

ä
m̃
[1/p]⊗E,ι C
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As a consequence of [Fra98, Thm. 18], as in [FS98, §2.2], applied to the group

ResF+/Q
‹G, we have a canonical decomposition

Hd(‹X‹K , Vιλ̃) =
Ñ
⊕

{‹P}∈C
Hd
(
g̃, ‹K∞;A

V
ιλ̃
,{‹P} ⊗C V

ιλ̃

)
é‹K

.

Here, C is the set of associate classes of parabolic Q-subgroups of ResF+/Q
‹G.

The cohomology on the right hand side is relative Lie algebra cohomology,

g̃ is the Lie algebra of (ResF+/Q
‹G)(R), and A

V
ιλ̃
,{‹P} is a certain space of

automorphic forms for ResF+/Q
‹G. (We note that in this case there is no

additional character twist of the ‹G(A∞F )-module structure, because the max-

imal split torus in the center of ResF+/Q
‹G is trivial; equivalently, the m‹G

of [FS98] is equal to g̃ because ResF+/Q
‹G has no rational characters.) Set

E
{‹P} := Hd

(
m‹G, ‹K∞;A

V
ιλ̃
,{‹P} ⊗C V

ιλ̃

)
. The summand E

‹K
{‹G} is the cuspidal

cohomology group

Hd
cusp

Ä‹X‹K , Vιλ̃
ä
=
⊕

π̃

(π̃∞)
‹K ⊗C Hd

Ä
g̃, ‹K∞; π̃∞ ⊗C V

ιλ̃

ä
,

where the sum runs over cuspidal automorphic representations of ‹G(AF+). We

see that the theorem will be proved if we can establish the following two claims:

(1) If ‹P is a proper standard parabolic subgroup of ResF+/Q
‹G different

from the Siegel parabolic, then
(
ι−1E

‹K
{‹P}
)
m̃
:= ι−1E

‹K
{‹P} ⊗‹TS(‹K,λ̃) ‹TS(‹K, λ̃)m̃ = 0.

(2) If ‹P = P is the Siegel parabolic subgroup of ResF+/Q
‹G, then we also

have
(
ι−1E

‹K
{‹P}
)

m̃
= 0.

The same argument as in the proof of Theorem 2.4.10 shows that if M̃ is a

maximal ideal of ‹TS[1/p] which occurs in the support of ι−1E
‹K
{‹P}, then M̃

corresponds to the system of Hecke eigenvalues appearing in

Å
Ind

‹G(A∞
F+ )

‹P (A∞
F+ )

ι−1σ∞
ã‹K

,

where σ is a cuspidal automorphic representation of L‹P (AF+) whose infin-

itesimal character equals the dual of the infinitesimal character of the irre-

ducible algebraic representation of L‹P of highest weight w(ιλ̃ + ρ) − ρ, for

some w ∈ W ‹P ((ResF+/Q
‹G)C, (ResF+/Q T )C). The second claim now follows

immediately from our hypothesis that there are no such automorphic represen-

tations in the case ‹P = P .
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As in the proof of Theorem 2.4.2, we note that the Levi subgroup L‹P is

isomorphic to a product ResF/F+ GLn1 ×· · ·×ResF/F+ GLnr ×U(n− s, n− s),
for some decomposition 2n = n1+ · · ·+nr+2(n−s). We can now establish the

first claim: using the existence of Galois representations attached to regular

algebraic cuspidal automorphic representations of GLm and U(m,m) form ≤ n
(i.e. using Theorem 2.3.2 and Theorem 2.3.3), we see that there exists a Galois

representation r(M̃) : GF → GL2n(Qp) such that, for all but finitely many

places v of F , r(M̃) is unramified at v and r(M̃) has characteristic polynomial

equal to ‹Pv(X) mod M̃. Moreover, this representation has at least 3 Jordan–

Hölder factors as soon as (r, s) 6∈ {(1, n), (0, 0)} (by an argument identical

to the one appearing at the end of the proof of Theorem 2.4.2). Since we

are assuming that ρm̃ has 2 irreducible constituents, each of dimension n, this

would lead to a contradiction, showing that we must in fact have
(
ι−1E

‹K
{‹P}
)
m̃
=

0. This completes the proof. �

3. Local-global compatibility, l 6= p

3.1. Statements. Let F be a CM field containing an imaginary quadratic

field, and fix an integer n ≥ 1. Let p be a prime, and let E be a finite extension

of Qp inside Qp large enough to contain the images of all embeddings of F in

Qp. We assume that each p-adic place v of F+ splits in F .

Let K ⊂ GLn(A
∞
F ) be a good subgroup, and let λ ∈ (Zn+)

Hom(F,E). Let S

be a finite set of finite places of F , containing the p-adic places, and satisfying

the following conditions:

• S = Sc.

• Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F

in which l splits.

We recall (Theorem 2.3.7) that under these hypotheses, that if m ⊂ TS(K,λ)

is a non-Eisenstein maximal ideal, then there is a continuous homomorphism

ρm : GF,S → GLn(T
S(K,λ)m/I)

characterized, up to conjugation, by the characteristic polynomials of Frobe-

nius elements at places v 6∈ S; here I is a nilpotent ideal whose exponent

depends only on n and [F : Q]. Our goal in this chapter is to describe the

restriction of ρm to decomposition groups at some prime-to-p places where

ramification is allowed.

To this end, we suppose given as well a subset R ⊂ S satisfying the

following conditions:

• Each place v ∈ R is prime to p.
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• For each place v ∈ R, there exists an imaginary quadratic field F0 ⊂ F
in which the residue characteristic of v splits. In particular, v is split

over F+.

• For each place v ∈ R, Kv contains Iwv,1 and is contained in Iwv. For

each place v ∈ Rc −R, Kv = GLn(OFv ). (Note that Rc ⊂ S since S is

assumed stable under complex conjugation.)

Let T = S − (Rc − R). We define TT
R ⊂ H(GLn(A

∞
F ),K) ⊗Z O to be the

(commutative) O-subalgebra generated by TT and all the elements tv,i(σ) (v ∈
R,σ ∈WFv), as in the statement of Theorem 2.4.8. We define

TT
R(K,λ) ⊂ EndD(O)(RΓ(XK ,Vλ))

to be the image of TT
R. Thus there are inclusions

TS(K,λ) ⊂ TT (K,λ) ⊂ TT
R(K,λ).

Theorem 3.1.1. Let notation and assumptions be as above. Then we

can find an integer N ≥ 1 (depending only on n and [F : Q]), an ideal IR ⊂
TT
R(K,λ)m satisfying INR = 0, and a continuous homomorphism

ρm,R : GF,T → GLn(T
T
R(K,λ)m/IR)

satisfying the following conditions :

(1) For each place v 6∈ T of F , the characteristic polynomial of ρm,R(Frobv)

is equal to the image of Pv(X) in (TT
R(K,λ)m/IR)[X].

(2) For each place v ∈ R, and for each element σ ∈ WFv , the char-

acteristic polynomial of ρm,R(σ) is equal to the image of Pv,σ(X) in

(TT
R(K,λ)m/IR)[X].

In the statement of this theorem, TT
R(K,λ)m is the localization ofTT

R(K,λ)

as a TS(K,λ)-algebra; it is an O-subalgebra of EndD(O)(RΓ(XK ,Vλ)m) which
contains TS(K,λ)m. Instead of proving this theorem directly, we will in fact

prove the following statement:

Proposition 3.1.2. Let notation and assumptions be as above. Then

there exists an integer N ≥ 1 (depending only on n and [F : Q]), an ideal

IR ⊂ TT
R(K,λ)m satisfying INR = 0, and a TT

R(K,λ)m/IR-valued determinant

Dm,R on GF,T of dimension n satisfying the following conditions :

(1) For each place v 6∈ T , the characteristic polynomial of Frobv in Dm,R

is equal to the image of Pv(X) in (TT
R(K,λ)m/IR)[X].

(2) For each place v ∈ R, and for each element σ ∈WFv , the characteristic

polynomial of σ is equal to the image of Pv,σ(X) in (TT
R(K,λ)m/IR)[X].

Proposition 3.1.2 implies Theorem 3.1.1 by [Che14, Theorem 2.22]. The

remainder of §3 is devoted to the proof of Proposition 3.1.2. Although Proposi-

tion 3.1.2 is an assertion about determinants, not true representations, we will
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still use the assumption that m is non-Eisenstein in the proof, in particular as

it simplifies our analysis of the boundary cohomology (using the results proved

in §2.4.1).

3.2. The proof of Proposition 3.1.2. Let R1 = R ∩ Rc. Let R (resp. R1)

denote the set of places of F+ lying below a place of R (resp. R1). We begin

with a preliminary reduction.

Lemma 3.2.1. Fix for each v ∈ R a choice of Frobenius lift φv ∈WFv . In

order to prove Proposition 3.1.2, it is enough to prove it under the following

additional assumptions :

(1) Kv = Iwv,1 for each place v ∈ R. There exists an odd prime q, prime

to R and p, such that Kq = ker(GLn(OF,q)→ GLn(OF /(q))).
(2) For each place v ∈ R, the characteristic polynomials of ρm(φv) and

(ρc,∨m ⊗ ǫ1−2n)(φv) are coprime.

(3) There exists a character ψ : GF → O× of finite prime-to-p order,

unramified above R ∪Rc ∪ Sp, such that the composite ψ ◦ ArtF ◦ det :
K → O× is trivial and for each v ∈ R, the characteristic polynomials

of ψ(Frobv)ρm(φv) and ψ(Frobvc)
−1(ρm⊕ρc,∨m ⊗ǫ1−2n)(φv) are coprime.

(4) λ = 0.

(5) There exists a good subgroup ‹K ⊂ ‹G(A∞F+) satisfying the following

conditions :

(a) ‹K is decomposed with respect to P , and K = ‹K ∩G(A∞F+).

(b) ‹Kq = ker(‹G(OF+,q)→ ‹G(OF+/(q))).

(c) If v is a finite place of F+ which is prime to S, then ‹Kv =
‹G(OF+,v). If v ∈ R1, then ‹Kv = Ĩwv(1, 1). If v ∈ R − R1 and v

is the unique place of R lying above v, then ‹Kv = p̃v,1.

Proof. We first show that if Proposition 3.1.2 holds under assumption (1),

then it holds without this assumption. Let assumptions be as in Proposition

3.1.2, and let q1, q2 6= p be distinct odd primes not dividing any element of

S. Let Ki ⊂ K be the normal subgroup with Ki,v = Iwv(1, 1) if v ∈ R,

Ki,qi = ker(GLn(OF,qi) → GLn(OF /(qi))), and KR,qi
i = K. Let Si (resp. Ti)

denote the union of S (resp. T ) with the set of qi-adic places of F . Let

mi ⊂ TTi denote the pullback of m under the inclusion TTi → TT . For each

i = 1, 2 there is a diagram of TTi
R -algebras

TTi
R (Ki, λ)mi ← TTi

R (K/Ki, λ)mi ։ TTi
R (K,λ)mi → TT

R(K,λ)m.
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The left-hand arrow has nilpotent kernel of exponent d depending only on n and

[F : Q], by Lemma 2.2.3. By hypothesis, there exists an integer N ≥ 1, depend-

ing only on n and [F : Q], ideals Ji ⊂ TTi
R (Ki, λ)mi satisfying J

N
i = 0, and n-

dimensional group determinantsDi ofGF,Ti with coefficients inTTi
R (Ki, λ)mi/Ji

satisfying conditions (1) and (2) of Proposition 3.1.2.

Let Ii denote the image inTTi
R (K,λ)mi of the pre-image of Ji inTTi

R (K/Ki, λ)mi ,

and let I ⊂ TT
R(K,λ)m denote the ideal generated by the images of I1 and I2.

Then I2Nd = 0. Let Dm denote the pushforward of the determinant D1 to

TT
R(K,λ)m/I. Then by construction, Dm is an n-dimensional determinant of

GF,T1 satisfying condition (1) of Proposition 3.1.2 at prime-to-T1 places and

condition (2) at each place of R. However, the Chebotarev density theorem

and [Che14, Lemma 1.12] imply that Dm is also equal to the pushforward of D2

to TT
R(K,λ)m/I. We therefore obtain the required local-global compatibility

also at the q1-adic places of F . The proof of this step is complete on noting

that the exponent 2Nd of I indeed still depends only on n and the degree

[F : Q].

We next show that if Proposition 3.1.2 holds under assumptions (1) and

(2) in the statement of the lemma, then it holds under assumption (1). After

possibly enlarging O, we can find characters ψ1, ψ2 : GF → O× of finite, prime-

to-p order satisfying the following conditions:

• Both ψ1, ψ2 are unramified at each place of S.

• There is no rational prime r such that ψ1, ψ2 are both ramified at r.

• For each i = 1, 2 and for each place v ∈ R, the characteristic polyno-

mials of (ρm ⊗ ψi)(φv) and ((ρm ⊗ ψi))c,∨ ⊗ ǫ1−2n)(φv) are coprime.

Let Ki =
∏
v ker(ψi ◦ArtFv ◦ det : Kv → O×) and let Ti denote the union of T

with the set of places dividing a rational prime above which ψi is ramified. Let

mi denote the pullback of m to TTi . Proposition 2.2.22 shows that the truth

of Proposition 3.1.2 for TTi
R (Ki, λ)mi is equivalent to the truth of Proposition

3.1.2 for TTi
R (Ki, λ)mi(ψi), which we are assuming. On the other hand, an

argument very similar to the one given in the first part of the proof shows that

the truth of Proposition 3.1.2 for TTi
R (Ki, λ)m (i = 1, 2) implies the truth of

this proposition for TTi
R (K,λ)mi (i = 1, 2) and then for TT

R(K,λ)m. A very

similar argument shows that if the Proposition holds under assumptions (1) –

(3) in the statement of the lemma, then it holds under (1) and (2).

We next show that if Proposition 3.1.2 holds under assumptions (1) – (4)

in the statement of the lemma, then it holds under assumptions (1) – (3). Let

K be a good subgroup satisfying assumptions (1) – (3). The natural map

TT
R(K,λ)→ lim←−

m≥1

TT
R(RΓ(XK ,Vλ/(̟m)))
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is an isomorphism. For each m ≥ 1, let K(pm) = ker(K → GLn(OF,p/(pm))).
Then K(pm) also satisfies assumption (1). The local system Vλ/(̟m) on

XK(pm) is constant, so there is a canonical isomorphism of Hecke algebras

TT
R(K(pm),Vλ/(̟m)) ∼= TT

R(K(pm),O/(̟m)).

There is also a canonical surjection

TT
R(K(pm),O)→ TT

R(K(pm),O/(̟m)).

We consider the diagram of Hecke algebras

TT
R(K(pm),O/(̟m))← TT

R(K/K(pm),Vλ/(̟m))→ TT
R(K,Vλ/(̟m)),

where by Lemma 2.2.3, there is an integer d ≥ 1 depending only on n and

[F : Q] such that the kernel of the left-hand arrow is nilpotent of exponent

d. By assumption, therefore, we can find ideals Im ⊂ TT
R(K,Vλ/(̟m))m sat-

isfying INdm = 0 and n-dimensional group determinants Dm of GF,T valued in

TT
R(K,Vλ/(̟m))m/Im and satisfying the conditions (1) and (2) in the state-

ment of Proposition 3.1.2. Let

I = ker

Ñ
TT
R(K,λ)m →

∏

m≥1

TT
R(K,Vλ/(̟m))m/Im

é
.

Then INd = 0 and, by [Che14, Example 2.32], there is a unique n-dimensional

group determinant Dm valued in TT
R(K,λ)m/I whose pushforward to each ring

TT
R(K,Vλ/(̟m))m/Im equals Dm. This determinant Dm necessarily has the

required properties.

We finally show that if Proposition 3.1.2 holds under assumptions (1) –

(5) in the statement of the lemma, then it holds under assumptions (1) – (4).

Assume (1) – (4). We define ‹K =
∏
v
‹Kv as follows:

• If v 6∈ S, then ‹Kv = ‹G(OF+
v
).

• If v ∈ R1, then ‹Kv = Ĩwv(1, 1). If v ∈ R−R1 and v is the unique place

of R lying above v, then ‹Kv = p̃v,1.

• ‹Kq = ker(‹G(OF+,q)→ ‹G(OF+/(q))).

• If v is any other finite place of F+, then fixm ≥ 1 such that ker(‹G(OF+
v
)→

‹G(OF+/(̟m
v )))∩G(OF+

v
) ⊂ K∩G(OF+

v
), and set ‹Kv = ker(‹G(OF+

v
)→

‹G(OF+/(̟m
v ))) · (K ∩G(OF+

v
)).

It is easy to check that ‹K is a good open subgroup of ‹G(A∞F+) which is decom-

posed with respect to P and which satisfies ‹K ∩G(A∞F+) = K. The group K

therefore satisfies condition (5) of the lemma, and the proof of the lemma is

complete. �
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We henceforth fix a choice of Frobenius lift φv ∈ WFv for each place

v ∈ R and assume that K and m satisfy assumptions (1) – (5) of Lemma

3.2.1, and prove Proposition 3.1.2 for the Hecke algebra TT
R(K, 0). Let ‹K be

the good subgroup of ‹G(A∞F+) as in the statement of the lemma and let ‹TT
R ⊂

H(‹G(A∞F+), ‹K)⊗ZO denote the (commutative) O-subalgebra generated by ‹TS

and all the elements tv,i(σ) (v ∈ R,σ ∈WFv) and ev,i(σ) (v ∈ Rc−R,σ ∈WFv),

as in the statement of Theorem 2.4.8. Thus we have constructed an extension

of the homomorphism S : ‹TS → TS to a homomorphism S : ‹TT
R → TT

R. These

homomorphisms, together with the analogue of Proposition 3.1.2 for the group
‹G, will be the key to the proof. This analogue is as follows; it makes use of

the resultant Resv ∈ H(‹G(F+
v ), ‹Kv) ⊗Z O of the polynomials Pvc,φ−c

v
(X) and

Pv,φv (X) for a place v ∈ R − Rc, which was introduced before Proposition

2.2.13.

Proposition 3.2.2. There exists an integer N ≥ 1, depending only on

[F : Q] and n, an ideal Ĩc,R ⊂ ‹TT
R(RΓc(

‹X‹K ,O)) satisfying ĨNc,R = 0, and

a ‹TT
R(RΓc(

‹X‹K ,O))/Ĩc,R-valued determinant ‹Dc,R on GF,S of dimension 2n

satisfying the following conditions :

(1) For each place v 6∈ S of F , the characteristic polynomial of Frobv is

equal to the image of ‹Pv(X) in (‹TT
R(RΓc(

‹X‹K ,O))/ĨR)[X].

(2) For each place v ∈ R, and for each element σ ∈WFv , the characteristic

polynomial of σ is equal to the image of ‹Pv,σ(X) in (‹TT
R(RΓc(

‹X‹K ,O))/ĨR)[X].

(3) Let ‹trc,R : ‹TT
R(RΓc(

‹X‹K ,O))[GF,S ] → ‹TT
R(RΓc(

‹X‹K ,O))/Ĩc,R be the

trace associated to ‹Dc,R (cf. [Che14, §1.10]). Then for each place

v ∈ R − Rc, for each σ ∈ GF,S , and for each τv ∈ IFv , we have

Res
(2n)!
v ‹trc,R(σ(τv − 1)Pv,φv (φv)) = 0.

We note that this result, in the case where R is empty, is Proposition 2.3.9.

The result in this case is also contained implicitly in the proof of [Sch15, Cor.

5.2.6].

Proof. The proposition can be proved by re-doing the proof of [Sch15, Cor.

5.2.6] to keep track of the action of the additional Hecke operators at R. For

the reader’s benefit, we single out the following essential statement (cf. [Sch15,

Thm. 4.3.1, Cor. 5.1.11]): let C = “Qp, and let m ≥ 1 be an integer, and let

Tcl denote ‹TT
R, endowed with the weakest topology for which all of the maps

‹TT
R → EndC(H

0(X‹Kp‹Kp
, ωmk‹Kp‹Kp

⊗ I))

are continuous. (Here the right-hand side, defined as in the statement of [Sch15,

Thm. 4.3.1], is endowed with its natural (finite dimensional C-vector space)

topology and we are varying over all k ≥ 1 and open compact subgroups
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‹Kp ⊂ ‹G(F+
p ) such that ‹Kp‹Kp is a good subgroup.) Then for any continuous

quotient Tcl → A, where A is a ring with the discrete topology, there is

a unique A-valued determinant DA of GF,S of dimension 2n satisfying the

following conditions:

• For each place v 6∈ S of F , the characteristic polynomial of Frobv equals

the image of ‹Pv(X) in A[X].

• For each place v ∈ R, and for each element σ ∈WFv , the characteristic

polynomial of σ equals the image of ‹Pv,σ(X) in A[X].

• Let trA : A[GF,S ] → A denote the trace associated to DA. Then for

each place v ∈ R − Rc, for each σ ∈ GF,S, and for each τv ∈ IFv , we

have Res
(2n)!
v trA(σ(τv − 1)Pv,φv (φv)) = 0.

This statement can be proved in exactly the same way as [Sch15, Cor. 5.1.11],

by combining [Che14, Example 2.32] with the following observation: take a

cuspidal, cohomological automorphic representation π̃ of ‹G(AF+) such that

π̃∞,
‹K 6= 0 and an isomorphism ι : Qp → C, and let ‹TT

R(π̃) = im(‹TT
R ⊗OQp →

EndQp
(ι−1π̃∞,

‹K)). Consider the associated Galois representation (whose exis-

tence and local properties are described by Theorem 2.3.3):

rι(π̃) : GF,S → GL2n(Qp),

and let ρ : GF,S → GL2n(‹TT
R(π̃)) denote the composite of rι(π̃) with the

inclusion GL2n(Qp) ⊂ GL2n(‹TT
R(π̃)). Then we have the following properties:

• For each place v 6∈ S of F , the characteristic polynomial of ρ(Frobv)

equals the image of ‹Pv(X) in ‹TT
R(π̃)[X].

• For each place v ∈ R, and for each element σ ∈WFv , the characteristic

polynomial of ρ(σ) equals the image of ‹Pv,σ(X) in ‹TT
R(π̃)[X].

• For each place v ∈ Rc−R and for each τv ∈ IFv , we have Res
(2n)!
v ρ((τv−

1)Pv,φv (φv)) = 0 in M2n(‹TT
R(π̃)).

The first two points follow from Theorem 2.3.3 and Proposition 2.2.8 (note

that the images of ‹Pv(X) and ‹Pv,σ(X) in ‹TT
R(π̃)[X] in fact lie in Qp[X]). The

third point follows from the same Theorem and Corollary 2.2.14. (Our appeals

to Theorem 2.3.3 here are the source of our assumption, at the beginning of

this section, that each place of R has residue characteristic which splits in an

imaginary quadratic subfield of F .) �

Corollary 3.2.3. There exists an integer N ≥ 1, depending only on

[F : Q] and n, an ideal Ĩ∂,R ⊂ ‹TT
R(RΓ(∂

‹X‹K ,O)) satisfying ĨN∂,R = 0, and

a ‹TT
R(RΓ(∂

‹X‹K ,O))/Ĩ∂,R-valued determinant ‹D∂,R on GF,S of dimension 2n

satisfying the following conditions :
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(1) For each place v 6∈ S of F , the characteristic polynomial of Frobv is

equal to the image of ‹Pv(X) in (‹TT
R(RΓ(∂

‹X‹K ,O))/Ĩ∂,R)[X].

(2) For each place v ∈ R, and for each element σ ∈WFv , the characteristic

polynomial of σ is equal to the image of ‹Pv,σ(X) in (‹TT
R(RΓ(∂

‹X‹K ,O))/Ĩ∂,R)[X].

(3) Let ‹tr∂,R : ‹TT
R(RΓ(∂

‹X‹K ,O))[GF,S ] → ‹TT
R(RΓ(∂

‹X‹K ,O))/Ĩ∂,R be the

trace associated to ‹D∂,R. Then for each place v ∈ R−Rc, for each σ ∈
GF,S , and for each τv ∈ IFv , we have Res

(2n)!
v tr∂,R(σ(τv−1)Pv,φv (φv)) =

0.

Proof. There is a ‹TT
R-equivariant exact triangle in D(O):

RΓc(‹X‹K ,O) //RΓ(‹X‹K ,O) //RΓ(∂‹X‹K ,O) // ,

and consequently a natural homomorphism

‹TT
R(RΓc(

‹X‹K ,O)⊕RΓ(‹X‹K ,O))→ ‹TT
R(RΓ(∂

‹X‹K ,O))/J̃ ,
where J̃ is an ideal of square 0. To prove the corollary, it is therefore enough

to show that there is an integer N ≥ 1, depending only on [F : Q] and n, an

ideal Ĩ ⊂ ‹TT
R(RΓ(

‹X‹K ,O)) satisfying ĨN = 0, and a ‹TT
R(RΓ(

‹X‹K ,O))-valued
determinant ‹D on GF,S of dimension 2n satisfying the following conditions:

(1) For each place v 6∈ S of F , the characteristic polynomial ‹D(X −Frobv)

is equal to the image of ‹Pv(X) in ‹TT
R(RΓ(

‹X‹K ,O))/Ĩ [X].

(2) For each place v ∈ R, and for each element σ ∈WFv , the characteristic

polynomial of σ is equal to the image of ‹Pv,σ(X) in ‹TT
R(RΓ(

‹X‹K ,O))/Ĩ [X].

(3) Let ‹tr : ‹TT
R(RΓ(

‹X‹K ,O))[GF,S ] → ‹TT
R(RΓ(

‹X‹K ,O))/Ĩ be the trace as-

sociated to ‹D. Then for each place v ∈ R−Rc, for each σ ∈ GF,S, and
for each τv ∈ IFv , we have Res

(2n)!
v ‹tr(σ(τv − 1)Pv,φv (φv)) = 0.

By Proposition 2.2.20, there is a commutative diagram (determined by Verdier

duality)

H(‹G∞, ‹K) //

ι̃
��

EndD(O)(RΓc(‹X‹K ,O))

��

H(‹G∞, ‹K) // EndD(O)(RΓ(‹X‹K ,O)).
Let ι̃(‹TT

R)(RΓc(
‹X‹K ,O)) denote the image of the composite map

‹TT
R →H(‹G∞, ‹K)⊗Z O ι̃→ H(‹G∞, ‹K)⊗Z O → EndD(O)(RΓc(‹X‹K ,O)),

where the first and last maps are the canonical ones. The existence of the

above commutative diagram shows that ι̃ descends to an isomorphism

ι̃(‹TT
R)(RΓc(

‹X‹K ,O))→ ‹TT
R(RΓ(

‹X‹K ,O)).
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To complete the proof of the corollary, it is therefore enough to show that there

is a determinant ‹Dc,R,∨ of GF,S of dimension 2n with coefficients in a quotient

ι̃(‹TT
R)(RΓc(

‹X‹K ,O))/Ĩc,R,∨ by some nilpotent ideal Ĩc,R,∨ of exponent bounded

solely in terms of [F : Q] and n, and satisfying conditions analogous to those

required of ‹D. Using the same argument as in the statement of Proposition

3.2.2, it is enough to show the following: let π̃ be a cuspidal, cohomological

automorphic representation of ‹G(AF+) such that π̃∞,
‹K 6= 0, and let ι̃(‹TT

R)(π̃)

denote the image of the composite

‹TT
R ⊗O Qp →H(‹G∞, ‹K∞)⊗Z Qp

ι̃→H(‹G∞, ‹K∞)⊗Z Qp → EndQp
(ι−1π̃∞,

‹K).

Consider the associated Galois representation rι(π̃) : GF,S → GL2n(Qp), and

let ρ : GF,S → GL2n(ι̃(‹TT
R)(π̃)) denote the composite of rι(π̃)

∨⊗ǫ1−2n with the

inclusion GL2n(Qp) ⊂ GL2n(ι̃(‹TT
R)(π̃)). Then we have the following properties:

• For each place v 6∈ S of F , the characteristic polynomial of ρ(Frobv)

equals the image of ‹Pv(X) in ι̃(‹TT
R)(π̃)[X].

• For each place v ∈ R, and for each element σ ∈WFv , the characteristic

polynomial of ρ(σ) equals the image of ‹Pv,σ(X) in ι̃(‹TT
R)(π̃)[X].

• For each place v ∈ R−Rc and for each τv ∈ IFv , we have Res
(2n)!
v ρ(σ(τv−

1)Pv,φv (φv)) = 0 in M2n(ι̃(‹TT
R)(π̃)).

To see why these properties hold, we note that there is a commutative diagram

H(‹G∞, ‹K)

ι̃

��

// EndQp
(ι−1π̃∨,∞,

‹K)

��

H(‹G∞, ‹K) // EndQp
(ι−1π̃∞,

‹K)

where the horizontal arrows are the canonical ones and the right vertical arrow

is tranpose with respect to the natural duality between ι−1π̃∞,
‹K and ι−1π̃∨,∞,

‹K.
In particular, ι̃ determines an isomorphism ‹TT

R(π̃
∨) → ι̃(‹TT

R)(π̃). The above

points therefore follow from the analogous points for the cuspidal, cohomologi-

cal automorphic representation π̃∨ of ‹G(AF+), already established in the proof

of Proposition 3.2.2, together with the observation that there is an isomorphism

rι(π̃
∨) ∼= rι(π̃)

∨ ⊗ ǫ1−2n. �

We need one more lemma, which is an analogue of Hensel’s lemma for

group determinants.

Lemma 3.2.4. Let A be a complete Noetherian local O-algebra with residue

field k and let Γ be a group. Fix natural numbers n1, n2 and set n = n1 + n2.

Suppose given group determinants D1,D2 of Γ of dimensions n1, n2 with coef-

ficients in A, and let D = D1D2. Suppose moreover that, if Di = Di mod mA,
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then the semisimple representations ρi : Γ → GLni(k) with det ρi = Di for

i = 1, 2 have no common Jordan–Hölder factors.

Then :

(1) For any other group determinants E1, E2 of Γ of dimensions n1, n2 with

Ei mod mA = Di for i = 1, 2 and E1E2 = D, we have E1 = D1 and

E2 = D2.

(2) We have kerD = ker(D1) ∩ ker(D2).

Proof. We will give an expression for D1 which depends only on D, D1,

and D2. This will establish the first part of the lemma. Let R = A[Γ] and let

S = R/CH(D), where the Cayley–Hamilton ideal CH(D) is defined in [Che14,

§1.17]. By [Che14, Lemma 1.21], the homomorphism R → Mn1(k) ×Mn2(k)

determined by D1, D2 factors through S. Let e1, e2 ∈Mn1(k)×Mn2(k) be the

central idempotents which are the identity in one factor and zero in the other.

Following [BC09, p. 32, footnote], we may lift e1, e2 to idempotents e1, e2 ∈ S
such that e1 + e2 = 1 and e1e2 = 0.

We now consider the polynomial law D1,e1 on e1Se1 given by the formula

D1,e1(x) = D1(x + e2). According to [Che14, Lemma 2.4], D1,e1 is a determi-

nant e1Se1 → A of some dimension d1 ≤ n1. Reducing modulo mA, we see

that d1 = n1. It follows that the polynomial law D1,e2 on e2Se2 given by the

formula D1,e2(x) = D1(x+ e1) is of dimension 0, therefore constant and equal

to 1. Working over A[X], and invoking [Che14, Lemma 2.4(2)], we have

D1(X − e2) = D1,e1(X) = Xn1 ,

hence en1
2 = e2 ∈ CH(D1) ⊂ ker(D1). Similarly we deduce that e1 ∈ ker(D2).

We find that for any A-algebra B and any x ∈ S ⊗A B, we have

D1(x) = D1(e1x+ e2x) = D1(e1x),

and so

D(e1x+ e2) = D1(xe1) = D1(x).

Since the expression D1(x) = D(e1x + e2) only depends on D, D1, and D2,

this proves the first part of the lemma. For the second, we note that the

inclusion ker(D1) ∩ ker(D2) ⊂ ker(D) follows immediately from the definition.

For the other inclusion, take x ∈ ker(D), an A-algebra B, and y ∈ R⊗AB. By

symmetry, it is enough to show that D1(1 + xy) = 1. We have

D1(1 + xy) = D1(e1(1 + xy)) = D(1 + e1xy) = 1,

since e1x ∈ ker(D). This concludes the proof. �

We can now complete the proof of Proposition 3.1.2.
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Proof of Proposition 3.1.2. Let m̃ = S∗(m) ⊂ ‹TS . By Theorem 2.4.8, the

map S descends to a homomorphism

‹TT
R(RΓ(∂‹X‹K ,O)m̃)→ TT

R(RΓ(XK ,O)m).

By Propositions 2.2.15, 2.2.17 and 2.2.18 and Corollary 3.2.3, we see that we

can find an integer N ≥ 1, depending only on [F : Q] and n, an ideal IR ⊂
TT
R(RΓ(XK ,O)m) satisfying INR = 0, and a TT

R(K, 0)m/IR-valued determinant

D′ on GF,S of dimension 2n satisfying the following conditions:

(1) For each place v 6∈ S of F , the characteristic polynomial of Frobv under

D′ is equal to the image of Pv(X)q
n(2n−1)
v P∨vc(q

1−2n
v X) in (TT

R(K, 0)m/IR)[X].

(2) For each v ∈ R and for each σ ∈WFv , the characteristic polynomial of

σ underD′ is equal to the image of Pv,σ(X)‖σ‖n(1−2n)v P∨vc,σc(‖σ‖2n−1v X)

in (TT
R(K, 0)m/IR)[X].

(3) Let tr′ : TT
R(RΓ(XK ,O)m)[GF,S ]→ TT

R(RΓ(XK ,O)m)/IR be the trace

associated to D′. Then for each place v ∈ R − Rc, for each σ ∈ GF,S ,
and for each τv ∈ IFv , we have Res

(2n)!
v tr′(σ(τv − 1)Pv,φv (φv)) = 0.

By Theorem 2.3.7, we can assume (after possibly enlarging IR and increasing

N in a way still depending only on [F : Q] and n) that there exists a continuous

representation ρm : GF,S → GLn(T
T
R(K, 0)m/IR) such that for each finite place

v 6∈ S of F , det(X − ρm(Frobv)) equals the image of Pv(X) in TT
R(K, 0)m/IR.

Let D = det ρm. Looking at characteristic polynomials of Frobenius elements

for places v 6∈ S, we conclude thatD′ = det(ρm⊕ρc,∨m ⊗ǫ1−2n) = D(Dc,∨⊗ǫ1−2n).
(Note that our notation for twisted determinants is chosen so that it matches

the twisted representation; the polynomial law underlying Dc,∨⊗ǫ1−2n is given

by twisting with det(ǫ1−2n) = ǫn(1−2n).) To complete the proof of Proposition

3.1.2, we need to show that D satisfies the following conditions:

• For each place v ∈ R and for each σ ∈ WFv , the characteristic polyno-

mial of σ under D is the image of Pv,σ(X) in TT
R(K, 0)m/IR.

• D factors through GF,T and for each v ∈ S − T , the characteristic

polynomial of Frobv under D is the image of Pv(X) in TT
R(K, 0)m/IR.

We will then (in the notation of Proposition 3.1.2) be able to take Dm,R = D.

We take points these in turn. If v ∈ R, then there is a unique n-dimensional

group determinant Ev of WFv with coefficients in TT
R(K, 0)m such that for

each σ ∈WFv , the characteristic polynomial of σ under Ev equals the image of

Pv,σ(X). Similarly if v ∈ Rc −R there is a unique n-dimensional group deter-

minant Ev of WFv with coefficients in TT
R(K, 0)m which is unramified and such

that the characteristic polynomial of Frobv equals Pv(X). Our assumptions im-

ply that for each v ∈ R, we have D|WFv
(Dc,∨⊗ ǫ1−2n)|WFv

= Ev(E
c,∨
vc ⊗ ǫ1−2n).

We would like to deduce that D|WFv
= Ev.



68 P. ALLEN ET AL.

We first show that this holds in any quotient of TT
R(K, 0)m by a maximal

ideal. (Recall that m is, by assumption, a maximal ideal of TS(K, 0), so

that the ring TT
R(K, 0)m is not necessarily local.) By assumption (i.e. by

Lemma 3.2.1(3)), there is a character ψ : GF,S → O×, unramified above R ∪
Rc ∪ Sp, such that for each place v ∈ R, the characteristic polynomials of

ψ(Frobv)ρm(φv) and ψ(Frobvc)
−1(ρm ⊕ ρc,∨m ⊗ ǫ1−2n)(φv) are coprime. On the

other hand, Proposition 2.2.22 implies that we have for any v ∈ R equalities

det(ρm⊗ψ⊕(ρm⊗ψ)c,∨⊗ǫ1−2n)|WFv
= (Ev⊗ψ|WFv

)((Evc⊗ψ|WFvc
)c,∨⊗ǫ1−2n).

Looking at the roots of the characteristic polynomial of φv in each determinant

and using the bijection between group determinants over a finite field and

isomorphism classes of semisimple representations [Che14, Theorem 2.12], we

conclude that we must have det ρm|WFv
= Ev mod n for every maximal ideal

n ⊂ TT
R(K, 0)m. Lemma 3.2.4 then immediately implies that we have D|WFv

=

det ρm|WFv
= Ev.

It remains to check that for each place v ∈ R − Rc (hence vc ∈ S − T ),
ρm|WFvc

is unramified and det(X − ρm(Frobvc)) equals the image of Pvc(X)

in TT
R(K, 0)m/IR[X]. Equivalently, we must check that for each place v ∈

R−Rc, ρc,∨m ⊗ǫ1−2n|WFv
is unramified and det(X−(ρc,∨m ⊗ǫ1−2n)(Frobv)) equals

the image of q
n(2n−1)
v P∨vc(q

1−2n
v X) in TT

R(K, 0)m/IR[X]. The computation of

det(X − (ρc,∨m ⊗ ǫ1−2n)(Frobv)) follows from what we have done already, so

we just need to show that ρc,∨m ⊗ ǫ1−2n|WFv
is unramified. (Note that this is

stronger, in general, than the assertion that the associated group determinant

of ρc,∨m ⊗ ǫ1−2n|WFv
is unramified.) To show this, we use the following set of

relations, which follow on applying S to the corresponding set of relations for

the determinant D′:

• For each place v ∈ R − Rc, for each σ ∈ GF,S , and for each τv ∈ IFv ,

we have

S(Resv)(2n)! tr(ρm(σ(τv − 1)Pv,φv (φv)))

+ S(Resv)(2n)! tr((ρc,∨m ⊗ ǫ1−2n)(σ(τv − 1)Pv,φv (φv))) = 0.

We have already seen that if v ∈ R−Rc then Pv,φv (ρm(φv)) = 0, so we deduce

that for each v ∈ R−Rc and for each σ ∈ GF,S and for each τv ∈ IFv , we have

S(Resv)(2n)! tr((ρc,∨m ⊗ ǫ1−2n)(σ(τv − 1)Pv,φv (φv))) = 0.

By definition, Resv ∈ ‹TT
R is the resultant of the polynomials Pv,φv(X) and

Pvc,φ−1
vc
(X) in ‹TT

R[X]. The images of these polynomials in TT
R[X] under the

map S are computed by Proposition 2.2.18; they are (respectively) Pv,φv (X)

and q
n(2n−1)
v Pvc,φ−1

vc
(q1−2nv X) = q

n(2n−1)
v P∨vc(q

1−2n
v X). Thus S(Resv) ∈ TT

R is

the resultant of these two polynomials, and the image of S(Resv) modulo any
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maximal ideal of TT
R(K, 0)m coincides with the resultant of det(X − ρm(φv))

and det(X − ρc,∨m ⊗ ǫ1−2n(φv)). These polynomials in k[X] are coprime by

assumption (cf. Lemma 3.2.1), so we find that S(Resv) is a unit in TT
R(K, 0)m

and therefore that we have the stronger identity

tr((ρc,∨m ⊗ ǫ1−2n)(σ(τv − 1)Pv,φv (φv))) = 0.

The matrix (ρc,∨m ⊗ ǫ1−2n)(Pv,φv (φv)) = Pv,φv((ρ
c,∨
m ⊗ ǫ1−2n)(φv)) has unit de-

terminant. Since ρm is absolutely irreducible and σ ∈ GF,S is arbitrary, we

conclude that we must have (ρc,∨m ⊗ ǫ1−2n)(τv − 1) = 0 for all τv ∈ IFv or,

equivalently, that ρm|WFvc
is unramified. This is what we needed to show. �

4. Local-global compatibility, l = p (Fontaine–Laffaille case)

4.1. Statements. Let F be a CM field containing an imaginary quadratic

field, and fix an integer n ≥ 1. Let p be a prime, and let E be a finite extension

of Qp inside Qp large enough to contain the images of all embeddings of F in

Qp. We assume throughout this chapter that F satisfies the following standing

hypothesis:

• The prime p is unramified in F . Moreover, F contains an imaginary

quadratic field in which p splits.

Let K ⊂ GLn(A
∞
F ) be a good subgroup, and let λ ∈ (Zn+)

Hom(F,E). Let S

be a finite set of finite places of F , containing the p-adic places, stable under

complex conjugation, and satisfying the following condition:

• Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic subfield of F

in which l splits.

We recall (Theorem 2.3.7) that under these hypotheses, that if m ⊂ TS(K,λ)

is a non-Eisenstein maximal ideal, then there is a continuous homomorphism

ρm : GF,S → GLn(T
S(K,λ)m/J)

characterized, up to conjugation, by the characteristic polynomials of Frobe-

nius elements at places v 6∈ S; here J is a nilpotent ideal whose exponent

depends only on n and [F : Q]. Our goal in this chapter is to show that under

certain conditions, we can show that the restrictions of ρm to decomposition

groups at the p-adic places of F satisfy conditions coming from p-adic Hodge

theory. More precisely, we can show, after perhaps enlarging the nilpotent ideal

J , that they are Fontaine–Laffaille with the expected Hodge–Tate weights.

Before stating the main theorem of this chapter we first briefly recall some

of the properties of the Fontaine–Laffaille functor [FL82], with normalizations

as in [CHT08, Section 2.4.1].
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Let v be a p-adic place of F . We are assuming that Fv/Qp is unramified.

LetMFO be the category of finite OFv ⊗Zp O-modules M equipped with the

following data.

• A decreasing filtration FiliM of OFv ⊗ZpO-submodules that are direct

summands as OFv -modules. For an embedding τ : Fv →֒ E, define

the filtered O-module Mτ = M ⊗OFv⊗ZpO O where we view O as an

OFv ⊗Zp O-algebra via τ ⊗ 1. We assume that for each τ , there is an

integer aτ such that Filaτ Mτ =Mτ and Filaτ+p−1Mτ = 0.

• Frob−1p ⊗ 1-linear maps Φi : FiliM →M such that Φi|Fili+1M = pΦi+1

and M =
∑

iΦ
i FiliM .

Note that for M ∈ MFO,

FiliM =
∏

τ

FiliMτ and Φi =
∏

τ

Φiτ with Φiτ : FiliMτ →Mτ◦Frob−1
p
.

Given a tuple of integers a = (aτ ) ∈ ZHom(Fv ,E), we let MFaO be the full

subcategory ofMFO consisting of objects M such that for each τ , Filaτ Mτ =

Mτ and Filaτ+p−1Mτ = 0. We writeMF0
O forMF (0,...,0)

O . We let MFk and

MFak be the full subcategories of MFO and MFaO, respectively, of objects
annihilated by ̟.

When p > 2, there is an exact, fully faithful, covariant functor G0 from

MF0
O to the category of finite O-modules with continuous O-linear GFv -action

(see [CHT08, Section 2.4.1], where G0 is denoted G). The essential image of

G0 is closed under subquotients, and the restriction of G0 to MF0
k takes

values in the category of continuous GFv -representations on finite dimensional

k-vector spaces. Moreover, if M1 and M2 are objects of MF0
O such that

M1 ⊗OFv⊗ZpO M2 also lies inMF0
O, then

(4.1.0) G0(M1 ⊗OFv⊗ZpOM2) = G0(M1)⊗O G0(M2).

We extend G0 to a functor G onMFO by twisting as follows. FixM ∈ MFO
and a = (aτ ) ∈ ZHom(Fv,E) such that M ∈ MFaO. Define the crystalline

character ψa : GFv → O× by

ψa ◦ArtFv(x) =
∏

τ

τ(x)−aτ for x ∈ O×Fv
and ψa ◦ ArtFv(p) = 1,

and the objectM(a) ∈ MF0
O by FiliM(a)τ = Fili+aτ Mτ and ΦiM(a),τ = Φi+aτM,τ .

We then set

G(M) = G0(M(a)) ⊗O ψa.
Using (4.1.0), one checks that this is independent of a such that M ∈ MFaO.
We will denote by Ga the restriction of G toMFaO. Any Ga is fully faithful

and its essential image is stable under subquotients, but G is not full on all of
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MFO. We note also that the essential image of G is stable under twists by

crystalline characters.

Let M be an object of MFk. For each embedding τ : Fv →֒ E, we let

FLτ (M ) be the multiset of integers i such that

griM ⊗OFv⊗Zpk
k 6= 0,

counted with multiplicity equal to the k-dimension of this space, where we

view k as a OFv ⊗Zp k algebra via τ ⊗ 1. If p > 2 and M is a p-torsion free

object of MFO, the representation G(M) ⊗O E is crystalline and for every

embedding τ : Fv →֒ E we have

HTτ (G(M) ⊗O E) = FLτ (M ⊗O k).
Moreover, if W is an O-lattice in a crystalline representation of GFv such that

every τ -Hodge–Tate weight lies in [aτ , aτ + p− 2] for some integer aτ , then W

is in the essential image of Ga.

We can now state the main theorem of this chapter (with the same num-

bering as it occurs again immediately before the proof).

Theorem 4.5.1. Let m ⊂ TS(K,λ) be a non-Eisenstein maximal ideal.

Suppose that TS(K,λ)/m = k has residue characteristic p. Let v be a p-adic

place of F+, and suppose that the following additional conditions are satisfied:

(1) The prime p is unramified in F , and F contains an imaginary quadratic

field in which p splits.

(2) Let w be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F

in which l splits.

(3) For each place v|v of F , Kv = GLn(OFv).

(4) For every embedding τ : F →֒ E inducing the place v of F+,

λτ,1 + λτc,1 − λτ,n − λτc,n ≤ p− 2n− 1.

(5) p > n2.

(6) There exists a p-adic place v′ 6= v of F+ such that

∑

v′′ 6=v,v′

[F+
v̄′′ : Qp] >

1

2
[F+ : Q].

(7) ρm is decomposed generic (Definition 4.3.1).

(8) Assume that one of the following holds :

(a) H∗(XK ,Vλ)m[1/p] 6= 0, or

(b) for every embedding τ : F →֒ E inducing the place v of F+,

−λτc,n − λτ,n ≤ p− 2n − 2 and − λτc,1 − λτ,1 ≥ 0.
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Then there exists an integer N ≥ 1 depending only on [F+ : Q] and n, an ideal

J ⊂ TS(K,λ) satisfying JN = 0, and a continuous representation

ρm : GF,S → GLn(T
S(K,λ)m/J)

satisfying the following conditions :

(a) For each finite place v 6∈ S of F , the characteristic polynomial of

ρm(Frobv) equals the image of Pv(X) in (TS(K,λ)m/J)[X].

(b) For each place v|v of F , ρm|GFv
is in the essential image of Ga (with

a = (λτ,n) ∈ ZHom(Fv ,E)).

(c) There is M ∈ MFk such that ρm|GFv
∼= G(M) and for any embedding

τ : Fv →֒ E,

FLτ (M) = {λτ,1 + n− 1, λτ,2 + n− 2, . . . , λτ,n}.
The rest of this chapter is devoted to the proof of Theorem 4.5.1. The

proof will be by reduction to known results for automorphic forms on ‹G (in

particular, Theorem 2.3.3).

4.2. A direct summand of the boundary cohomology. In this section, we

show how to realize the cohomology of XK as a direct summand of the coho-

mology of the boundary ∂‹X‹K of the Borel–Serre compactification of ‹X‹K . This

is the first step in relating the cohomology of XK to automorphic forms on
‹G. We must first introduce some new notation, in addition to the notation

introduced in Section 2.4.

We recall (cf. §2.2.1) that we write Sp for the set of p-adic places of

F+, Sp for the set of p-adic places of F , and that we have fixed a subset

S̃p = {ṽ | v ∈ Sp} with the property that Sp = S̃p ⊔ S̃cp. Moreover, we write Ĩp

for the set of embeddings τ : F →֒ E inducing a place of S̃p. For any v ∈ Sp,
we write Ĩv for the set of embeddings τ : F →֒ E inducing ṽ. Similarly, we

write Iv for the set of embeddings τ : F+ →֒ E inducing v.

These choices determine an isomorphism (ResF+/Q
‹G)E ∼=

∏
τ∈Ĩp

GL2n.

For any embedding τ : F+ →֒ E, we set

Wτ =W (‹G⊗F+,τ E,T ⊗F+,τ E)

and

WP,τ =W (G⊗F+,τ E,T ⊗F+,τ E);

these may be identified with the Weyl groups of GL2n and GLn×GLn, respec-

tively. Since ‹G is equipped with the Borel subgroup B, we may also define the

subset WP
τ ⊂ Wτ of representatives for the quotient WP,τ\Wτ (cf. §1.2). We

write ρτ ∈ X∗(T ⊗F+,τ E) for the half-sum of the B ⊗F+,τ E-positive roots.

If v ∈ Sp, then we set Wv =
∏
τ∈Iv

Wτ , WP,v =
∏
τ∈Iv

WP,τ , and W
P
v =∏

τ∈Iv
WP
τ . We define ρv ∈ X∗((ResF+

v /Qp
T )E) to be the half-sum of the
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(ResF+
v /Qp

B)E-positive roots; thus we can identify ρv =
∑

τ∈Hom(F+
v ,E) ρτ .

Given a subset T ⊂ Sp, we set WT =
∏
v∈T Wv, and define WP,T and WP

T
sim-

ilarly. If T = Sp, then we drop T from the notation; thus W may be identified

with the Weyl group W ((ResF+/Q
‹G)E , (ResF+/Q T )E) of (ResF+/Q

‹G)E . We

write l : W → Z≥0 for the length function with respect to the Borel subgroup

B, and ρ ∈ X∗((ResF+/Q T )E) for the half-sum of the (ResF+/QB)E-positive

roots; thus we can identify ρ =
∑

v∈Sp
ρv.

If λ̃ ∈ (Z2n
+ )Hom(F+,E), and v ∈ Sp, then we set

λ̃v = (λ̃τ )τ∈HomQp (F
+
v ,E) ∈ (Z2n

+ )Hom(F+
v ,E).

If λ ∈ (Zn+)
Hom(F,E), and v ∈ Sp, then we set

λv = (λτ )τ∈HomQp (Fṽ,E)⊔HomQp (Fṽc ,E) ∈ (Zn+)
HomQp (F⊗F+F

+
v ,E).

Theorem 4.2.1. Let ‹K ⊂ ‹G(A∞F+) be a good subgroup which is de-

composed with respect to P , and with the property that for each v ∈ Sp,
‹KU,v = U(OF+

v
). Let m ⊂ TS be a non-Eisenstein maximal ideal, and let

m̃ = S∗(m) ⊂ ‹TS .

Choose a partition Sp = S1 ⊔ S2. Let λ̃ ∈ (Z2n
+ )Hom(F+,E) and λ ∈

(Zn+)
Hom(F,E) be dominant weights for ‹G and G, respectively. We assume that

the following conditions are satisfied:

(1) For each v ∈ S1, λ̃v = λv (identification as in (2.2.2)).

(2) For each v ∈ S2, λ̃v = 0.

(3) For each v ∈ S2, there exists wv ∈WP
v such that λv = wv(ρv)− ρv .

(4) p > n2. (We recall our blanket assumption throughout §4 that p is

unramified in F .)

If v ∈ S1, we let wv denote the identity element of Wv . We let w = (wv)v∈Sp
.

Then for any m ≥ 1, RΓ(XK ,Vλ/̟m)m[−l(w)] is a ‹TS-equivariant direct sum-

mand of RΓ(∂‹X‹K ,Vλ̃/̟m)m̃.

(If S is a ring and A,B ∈ D(S) are complexes equipped with homomor-

phisms of S-algebras

fA : R→ EndD(S)(A), fB : R→ EndD(S)(B),

then we say that A is an R-equivariant direct summand of B if there is a

complex C ∈ D(S) equipped with a homomorphism of S-algebras

fC : R→ EndD(S)(C)

and an isomorphism φ : B ∼= A⊕C in D(S) such that for each r ∈ R, we have
fB(r) = φ−1 ◦ (fA(r)⊕ fC(r)) ◦ φ.)
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Proof. By Theorem 2.4.2, it is enough to show that RΓ(XK ,Vλ/̟m)[−l(w)]
is a ‹TS-equivariant direct summand of RΓ(‹XP

‹K ,Vλ̃/̟
m). We will argue in a

similar way to the proof of Theorem 2.4.4.

Looking at the proof of Theorem 2.4.4, we see that there is a ‹TS-equivariant

isomorphism

RΓ(‹XP
‹KP
,V

λ̃
/̟m) ∼= RΓ(‹KS

P ×KS , RΓ(Inf
PS×KS

GS×KS
XG, R1

‹KU,S
∗ V

λ̃
/̟m))

in D(O/̟m), where ‹TS acts on both sides via the map rP , and that the

current theorem will be proved if we can establish the following claim:

• R1‹KU,S
∗ V

λ̃
/̟m admits Vλ/̟m[−l(w)] as a direct summand inD(ShPS×KS

(XG)),

the derived category of PS×KS-equivariant sheaves of O/̟m-modules

on XG.

In fact, R1
‹KU,S
∗ V

λ̃
/̟m is pulled back from RΓ(‹KU,S ,Vλ̃/̟m) ∈ D(ShKS

(pt)),

so it suffices to show that Vλ/̟m[−l(w)] is a direct summand ofRΓ(‹KU,S ,Vλ̃/̟m)

in this category.

We observe that ‹KU,S =
∏
v∈S
‹KU,v, and that V

λ̃
admits a corresponding

decomposition V
λ̃
= ⊗v∈Sp

V
λ̃v
. By the Künneth formula, it is therefore enough

to show the following two claims:

(1) If v ∈ S1, then Vλv/̟m is a direct summand of RΓ(‹KU,v,Vλ̃v/̟
m) in

D(O/̟m[Kṽ ×Kṽc ]).

(2) If v ∈ S2, then Vλv/̟m[−l(wv)] is a direct summand ofRΓ(‹KU,v,O/̟m)

in D(O/̟m[Kṽ ×Kṽc ]).

The first claim can be proved using the same argument as in the end of the proof

of Theorem 2.4.4. The second claim follows from Lemma 4.2.2 and Lemma

4.2.3 below (this is where we use our hypothesis p > n2). This completes the

proof of the theorem. �

Lemma 4.2.2. Let v ∈ Sp, let K = F+
v , and fix an integer m ≥ 1.

(1) For each i ∈ Z≥0 there is a G(OK)-equivariant isomorphism

H i(U(OK),O/̟m) ∼= HomZp(∧iZp
U(OK),O/̟m) = HomO(∧iO(U(OK)⊗ZpO),O/̟m)

with G(OK)-action on the right hand side induced by its conjugation

action on U(OK).

(2) Suppose p ≥ 2n−1. Given w ∈WP
v , let λw = w(ρv)−ρv ∈ (Zn+)

HomQp (F⊗F+F
+
v ,E)

(using the identification (2.2.2)). For each i ∈ Z≥0 there is a G(OK)-

equivariant isomorphism

HomO(∧iO(U(OK)⊗Zp O),O) ∼=
⊕

w∈WP
v̄

l(w)=i

Vλw
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Proof. Note that U(OK) is isomorphic (as an abstract group) to Z
n2[K:Qp]
p .

The usual isomorphismH1(U(OK),O/̟m) ∼= HomZp(U(OK),O/̟m) extends,

by cup product, to a morphism ∧∗HomZp(U(OK),O/̟m)→ H∗(U(OK),O/̟m).

This can be seen to be an isomorphism using the Künneth formula. This proves

the first part of the lemma.

For the second part, given τ ∈ HomQp(K,E) and w ∈ WP
τ , let λw =

w(ρτ )− ρτ ∈ (Zn+)
2. It is enough for us to show that for each i ∈ Z≥0 there is

a G(OK)-equivariant isomorphism

HomO(∧iO(U(OK)⊗OK ,τ O),O) ∼=
⊕

w∈WP
τ

l(w)=i

Vλw .

After tensoring up to E we do have such an isomorphism, by [Kos61]:

HomO(∧iO(U(OK)⊗OK ,τ O), E) ∼=
⊕

w∈WP
τ

l(w)=i

Vλw .

Since p ≥ 2n − 1, it follows from [Jan03, Cor. II.5.6] that Vλw ⊗O k is a

simple G ⊗OK ,τ k-module for all w ∈ WP
τ . It follows that intersecting the

lattice HomO(∧iO(U(OK) ⊗OK ,τ O),O) with a copy of Vλw arising from the

above decomposition gives a sublattice isomorphic to Vλw . By the remark

following [Jan03, Cor. II.5.6], we know that there are no non-trivial extensions

between the simple modules Vλw ⊗O k with varying w. Combining this with

the universal coefficient theorem [Jan03, Prop. I.4.18a] we deduce that there

are also no non-trivial extensions between the G ⊗OK ,τ O-modules Vλw . This

implies the existence of the desired isomorphism. �

Lemma 4.2.3. Let v ∈ Sp, let K = F+
v , and fix an integerm ≥ 1. Suppose

that p > n2. Then we have a natural isomorphism (inducing the identity on

cohomology)

RΓ(U(OK),O/̟m)
∼→

n2[K:Qp]⊕

i=0

H i(U(OK),O/̟m)[−i]

in D(O/̟m[G(OK)]).

Proof. We have already observed that there is an isomorphism

RΓ(U(OK),O/̟m)
∼→ H0(U(OK),O/̟m)⊕ τ≥1RΓ(U(OK),O/̟m)

(see claim (1) in the proof of Theorem 4.2.1). Under the assumption that p > n2

we can distinguish the remaining degrees of cohomology appearing in the above

direct sum using the action of central elements of G(OK). Let f = [K : Qp].

The centre of G(OK) is (OF ⊗OF+ OK)× and an element z ∈ (OF ⊗OF+ OK)×

acts on U(OK) as multiplication by (NF/F+ ⊗ id)(z) ∈ O×K . We denote by ζ
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a primitive pf − 1 root of unity in O×K . We can choose an element z of the

centre of G(OK) of order pf − 1 which acts as multiplication by ζ on U(OK).

It follows from Lemma 4.2.2 and the decomposition

U(OK)⊗Zp O =
⊕

σ:OK →֒O

U(OK)⊗OK ,σ O

that, for each degree i, we have a decomposition of H i(U(OK),O/̟m) into a

direct sum of G(OK)-modules

M(iσ) = HomO

(
⊗

σ

∧iσO (U(OK)⊗OK ,σ O),O/̟m

)

indexed by f -tuples of integers

{(iσ)σ:OK →֒O : 0 ≤ iσ ≤ n2,
∑

σ

iσ = i}.

The action of z on M(iσ) is multiplication by
∏
σ σ(ζ)

−iσ , so if we fix an em-

bedding σ0 and write ij for the jth Frobenius twist of σ0 then z acts as mul-

tiplication by σ0(ζ)
−

∑f−1
j=0 ijp

j

. Since we are assuming p > n2, the value of∑f−1
j=0 ijp

j mod pf − 1 determines the integers ij uniquely, with the excep-

tion (only occurring if p = n2 + 1) of when this value is 0 mod pf − 1, in

which case there are two possibilities: iσ = 0 for all σ and iσ = p − 1 for

all σ. As a consequence, for each degree 1 ≤ i ≤ n2f we can write down an

idempotent ei ∈ O[z] which induces the identity on H i(U(OK),O/̟m) and

the zero map on other degrees i′ 6= i. There is a homomorphism O[z] →
EndD(O/̟m[G(OK)])(τ≥1RΓ(U(OK),O/̟m)), so the idempotent-completeness

of the derived category implies the existence of a natural decomposition

τ≥1RΓ(U(OK),O/̟m) =

n2f⊕

i=1

eiRΓ(U(OK),O/̟m).

This completes the proof. �

4.3. Cohomology in the middle degree. In this section we state the funda-

mental result that we need to study cohomology in the middle degree using

automorphic representations of ‹G. We first need to recall a definition ([CS17,

Defn. 1.9] — although note that since our representations are in characteris-

tic p, the roles of p and l are reversed).

Definition 4.3.1. Let k be a finite field of characteristic p.

(1) Let l 6= p be a prime, and let L/Ql be a finite extension. We say

that a continuous representation r : GL → GLn(k) is generic if it is

unramified and the eigenvalues (with multiplicity) α1, . . . , αn ∈ k of

r(FrobL) satisfy αi/αj 6= |OL/mL| for all i 6= j.
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(2) Let L be a number field, and let r : GL → GLn(k) be a continuous

representation. We say that a prime l 6= p is decomposed generic for r

if l splits completely in L and for all places v|l of L, r|GLv
is generic.

(3) Let L be a number field, and let r : GL → GLn(k) be a continuous

representation. We say that r is decomposed generic if there exists a

prime l 6= p which is decomposed generic for r.

Note that if r and r′ give rise to the same projective representation then

one is (decomposed) generic if and only if the other is.

Lemma 4.3.2. Let L be a number field, and let r : GL → GLn(k) be a

continuous representation. Suppose that r is decomposed generic. Then there

exist infinitely many primes l 6= p which are decomposed generic for r.

Proof. Let K ′/Q denote the Galois closure of the extension of L(ζp) cut

out by r. Let l0 be a prime which is decomposed generic for r; then any other

prime l which is unramified in K ′ and such that Frobl, Frobl0 lie in the same

conjugacy class of Gal(K ′/Q) is also decomposed generic for r. There are

infinitely many such primes, by the Chebotarev density theorem. �

Let d = n2[F+ : Q] = 1
2 dimR

‹X = dimRX + 1.

Theorem 4.3.3. Suppose that [F+ : Q] > 1. Let m̃ ⊂ ‹TS(‹K, λ̃) be a

maximal ideal, and suppose that ρm̃ has length at most 2. Suppose that S

satisfies the following condition :

• Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F

in which l splits.

Suppose that ρm̃ is decomposed generic, in the sense of Definition 4.3.1. Then

we have

Hd(‹X‹K ,Vλ̃[1/p])m̃ ←֓ Hd(‹X‹K ,Vλ̃)m̃ ։ Hd(∂‹X‹K ,Vλ̃)m̃.
Proof. This is an immediate consequence of the main result in [CS19b].

This states that

H i(‹X‹K ,Vλ̃/̟)m̃ = 0 if i < d, and H i
c(‹X‹K ,Vλ̃/̟)m̃ = 0 if i > d,

under the assumptions on m̃ in the statement of the theorem. By considering

the short exact sequence of sheaves of O-modules on ‹X‹K
0→ V

λ̃
→ V

λ̃
→ V

λ̃
/̟ → 0
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and taking cohomology, we see thatHd(‹X‹K ,Vλ̃)m̃[̟] = 0, sinceHd−1(‹X‹K ,Vλ̃/̟) =

0. By considering the excision sequence for

‹X‹K →֒ ‹X ‹K ,
we see that the cokernel of the map Hd(‹X‹K ,Vλ̃)m̃ → Hd(∂‹X‹K ,Vλ̃)m̃ injects

into Hd+1
c (‹X‹K ,Vλ̃) = 0. �

Proposition 4.3.4. Suppose that [F+ : Q] > 1. Let ‹K ⊂ ‹G(A∞F+) be a

good subgroup which is decomposed with respect to P . Let λ̃ ∈ (Z2n
+ )Hom(F+,E).

Fix a decomposition Sp = S1 ⊔ S2. Suppose that the following conditions are

satisfied:

(1) For each v ∈ S2, λ̃v = 0.

(2) Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F

in which l splits.

(3) p > n2. (We remind the reader of our blanket assumption in §4 that p

is unramified in F .)

Let w ∈ WP
S2
, and let λw = w(λ̃ + ρ) − ρ ∈ (Zn+)

Hom(F,E). Let m ⊂ TS

be a non-Eisenstein maximal ideal in the support of H∗(XK ,Vλw), and let

m̃ = S∗(m) ⊂ ‹TS , and suppose that ρm̃ is decomposed generic. Then the map

S : ‹TS → TS descends to a homomorphism

‹TS(Hd(‹X‹K ,Vλ̃))m̃ → TS(Hd−l(w)(XK ,Vλw))m.
Moreover, the map

‹TS(Hd(‹X‹K ,Vλ̃))m̃ → ‹TS(Hd(‹X‹K ,Vλ̃))m̃[1/p]
is injective.

Proof. This results on combining Theorem 4.3.3 and Theorem 4.2.1. �

We introduce some useful language.

Definition 4.3.5. A weight λ̃ ∈ (Z2n
+ )Hom(F,E) will be said to be CTG

(“cohomologically trivial for G”) if it satisfies the following condition :

• Given w ∈ WP , define λw = w(λ̃ + ρ) − ρ ∈ (Zn+)
Hom(F,E). Then for

all w ∈ WP and for all i0 ∈ Z, there exists τ ∈ Hom(F,E) such that

λw,τ − λ∨w,τc 6= (i0, i0, . . . , i0).

This definition will be useful to us because Proposition 4.3.4 shows how to

relate a Hecke algebra for G acting on cohomology with integral coefficients to

a Hecke algebra for ‹G acting on cohomology with rational coefficients of weight

λ̃ (say). If the weight λ̃ is moreover CTG, then Theorem 2.4.11 (together with
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the purity lemma [Clo90, Lemma 4.9]) shows that this rational cohomology can

moreover be computed in terms of cuspidal automorphic forms for ‹G, which
have associated Galois representations with well-understood local properties.

Exploiting this is not straightforward since the weight for G depends both

on the chosen weight λ̃ and the chosen Weyl group element w (which must be

of a suitable length l(w) in order to target a particular cohomological degree

for XK). This problem will be dealt with in the next section with a ‘degree

shifting’ argument.

We first state a lemma which shows that there are “many” dominant

weights for ‹G which are CTG:

Lemma 4.3.6. Suppose that [F+ : Q] > 1. Let λ̃ ∈ (Z2n
+ )Hom(F+,E), and

fix a choice of embedding τ0 : F
+ →֒ E. Then there exists λ̃′ ∈ (Z2n

+ )Hom(F+,E)

satisfying the following conditions :

(1) λ̃τ = λ̃′τ for all τ 6= τ0.

(2) λ̃′ is CTG.

Proof. Let τ 6= τ0 be another embedding τ : F+ →֒ E. Note that a dom-

inant weight µ̃ ∈ (Z2n
+ )Hom(F+,E) is CTG if it satisfies the following condition:

for all w ∈WP , we have

(4.3.7)

n∑

i=1

(µw,τ̃,i − µw,τ̃c,i) 6=
n∑

i=1

(µw,τ̃0,i − µw,τ̃0c,i).

Let a ∈ Z≥0, and define λ̃′ ∈ (Z2n
+ )Hom(F+,E) by the formula λ̃′τ = λ̃τ if τ 6= τ0,

λ̃′τ0,1 = λ̃τ0,1 + a, λ̃′τ,i = λ̃τ0,i if i > 1. Then λ̃′ will satisfy condition (4.3.7) as

soon as a is sufficiently large (in a way depending on λ̃). �

4.4. The degree shifting argument. We are now going to show how to use

Proposition 4.3.4 to control the Hecke algebra of G acting on the cohomology

groups Hq(XK ,Vλ). We will do this “one place of F+ above p at a time”.

The argument will involve induction on the cohomological degree q. Since

the cohomology groups of locally symmetric spaces for G may contain torsion,

one needs an inductive argument to pass from the cohomology groups with

O-coefficients (which appear in Proposition 4.3.4) to cohomology groups with

O/̟m-coefficients (where one can use congruences to modify the weight).

The first step is the following proposition. Given a non-Eisenstein maxi-

mal ideal m ⊂ TS, we will set m̃ = S∗(m) ⊂ ‹TS . We will use the notation

A(K,λ, q) = TS(Hq(XK ,Vλ)m),
A(K,λ, q,m) = TS(Hq(XK ,Vλ/̟m)m),

and

Ã(‹K, λ̃) = ‹TS(Hd(‹X‹K ,Vλ̃)m̃).
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Note that there is no natural morphism A(K,λ, q) → A(K,λ, q,m).

Proposition 4.4.1. Let v, v′ be distinct places of Sp, and let λ ∈ (Zn+)
Hom(F,E).

(The condition that Sp has at least two distinct places implies, in particular,

that F+ 6= Q.) Fix an integer m ≥ 1. Let ‹K ⊂ ‹G(A∞F+) be a good subgroup.

Suppose that the following conditions are satisfied:

(1) For each embedding τ : F →֒ E inducing the place v of F+, we have

−λτc,1 − λτ,1 ≥ 0.

(2) We have

∑

v′′∈Sp

v′′ 6=v,v′

[F+
v′′

: Qp] >
1

2
[F+ : Q].

(3) For each p-adic place v′′ of F+ not equal to v, we have

U(OF+
v′′
) ⊂ ‹Kv′′ ⊂

®Ç
1n ∗
0 1n

å
mod ̟m

v′′

´
.

We have ‹Kv = ‹G(OF+
v
).

(4) p > n2. (We recall our blanket assumption in §4 that p is unramified

in F .)

(5) Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F

in which l splits.

(6) m ⊂ TS is a non-Eisenstein maximal ideal such that ρm̃ is decomposed

generic.

Define a weight λ̃ ∈ (Z2n
+ )Hom(F+,E) as follows : if τ ∈ Hom(F+, E) does not

induce either v or v′, then λ̃τ = 0. If τ induces v, then we set

λ̃τ = (−λτ̃ c,n, . . . ,−λτ̃ c,1, λτ̃ ,1, . . . , λτ̃ ,n).

(Note that this is dominant because of our assumption on λ.) If τ induces v′,

then we choose λ̃τ to be an arbitrary element of Z2n
+ .

Let q ∈
[⌊
d
2

⌋
, d− 1

]
. Then there exists an integer m′ ≥ m, an integer N ≥

1, a nilpotent ideal J ⊂ A(K,λ, q,m) satisfying JN = 0, and a commutative

diagram

‹TS //

S

��

Ã(‹K(m′), λ̃)

��

TS // A(K,λ, q,m)/J
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where ‹K(m′) ⊂ ‹K is the good subgroup defined by setting

‹K(m′)v′′ = ‹Kv′′ ∩
®Ç

1n ∗
0 1n

å
mod ̟m′

v′′

´
⊂ ‹G(OF+

v′′
)

if v′′ is a p-adic place of F+ not equal to v, and ‹K(m′)v′′ = ‹Kv′′ otherwise.

(Thus ‹K = ‹K(m), by hypothesis.) Moreover, the integer N can be chosen to

depend only on n and [F+ : Q].

Proof. The idea of the proof is to choose a Weyl group element w = w(q) ∈
WP such that l(w) = d − q and a weight λ̃ such that λ = w(λ̃ + ρ) − ρ, and
then apply Proposition 4.3.4. The actual argument is more subtle, because we

need to work with O-coefficients in order to access the Hecke algebras Ã(‹K, λ̃),
whilst the Hecke algebras A(K,λ, q,m) act on cohomology with torsion coeffi-

cients. We argue by descending induction on q, the induction hypothesis being

as follows:

Hypothesis 4.4.2. Let q ∈
[⌊
d
2

⌋
, d− 1

]
. Then the Proposition holds for

every cohomological degree i ∈ [q + 1, d − 1] and every m ∈ Z≥1. Moreover,

the integer N can be chosen to depend only on n, [F+ : Q], and q.

The induction hypothesis is always satisfied when q = d − 1. Assume

the induction hypothesis holds for some q ∈
[⌊
d
2

⌋
+ 1, d− 1

]
. We will prove

that the induction hypothesis holds for q − 1. Let us fix m, ‹K, and λ as in

the statement of the proposition. Note that the TS-algebra A(K,λ, q,m) is

independent of λv′′ for v
′′ ∈ Sp, v′′ 6= v, because KS acts on Vλ/̟m via the

projection to Kv. Modifying λ, we can therefore assume that in fact λv′ = λ̃v′ .

Let S1 = {v, v′}, and S2 = Sp − S1. Let w = w(q) ∈WP
S2

be any element

of length l(w) = d−q. Such an element exists because for any τ ∈ Hom(F+, E),

l(wτ ) takes all integer values in [0, n2] as wτ ranges over elements of WP
τ . We

have chosen our totally real field F+ to satisfy

∑

v̄′′∈S2

[F+
v̄′′ : Qp] >

1

2
[F+ : Q].

This means that the desired sum can take any value in [0, d2 + n2

2 ]. On the

other hand, q ∈
[⌊
d
2

⌋
, d
]
, so d− q ≤ d−

⌊
d
2

⌋
. Since n ≥ 1, we can indeed make

an appropriate choice of w.

Now we let λ′(q) = w(q)(λ̃+ρ)−ρ. This can be different from λ precisely

at those embeddings inducing a place of S2. In particular, the Hecke algebras

A(K,λ′(q), q,m) and A(K,λ, q,m) are canonically isomorphic as TS-algebras,

once again because KS acts on both Vλ′(q)/̟m and Vλ/̟m via projection to

Kv.
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There is a short exact sequence of TS-modules

0→ Hq(XK ,Vλ′(q))m/̟m → Hq(XK ,Vλ′(q)/̟m)m

→ Hq+1(XK ,Vλ′(q))m[̟m]→ 0.
(4.4.3)

Note that the ̟m-torsion Hq+1(XK ,Vλ′(q))m[̟m] does not, in general, inject

into Hq+1(XK ,Vλ′(q)/̟m)m, so we cannot reduce to understanding the Hecke

algebra A(q+1,K, λ′(q),m). However, the cohomology groupHq+1(XK ,Vλ′(q))m
is a finitely generated O-module, so Hq+1(XK ,Vλ′(q))m[̟m] does inject into

Hq+1(XK ,Vλ′(q))m/̟m′
provided that m′ ≥ m is chosen large enough for ̟m′

to annihilate the torsion submodule of Hq+1(XK ,Vλ′(q))m. This, in turn, in-

jects into Hq+1(XK ,Vλ′(q)/̟m′
)m. It follows that we have an inclusion

AnnTS Hq(XK ,Vλ′(q))m·AnnTS Hq+1(XK ,Vλ′(q)/̟m′
)m

⊂ AnnTS Hq(XK ,Vλ/̟m)m.
(4.4.4)

Let K(m′) = ‹K(m′) ∩G(A∞F+). Let m
∨ = ι(m) ⊂ TS (notation as in §2.2.19).

Then m∨ is a non-Eisenstein maximal ideal. Poincaré duality implies (cf. Corol-

lary 2.2.21 and [NT16, Thm. 4.2], and noting that O/̟m is an injective

O/̟m-module) that there is an equality

AnnTS H i(XK ,Vλ′(q)/̟m)m = ι(AnnTS Hd−1−i(XK ,V∨λ′(q)/̟m)m∨)

of ideals of TS . The existence of the Hochschild–Serre spectral sequence

H i
Ä
K/K(m′),Hj(XK(m′),V∨λ′(q)/̟m′

)m∨

ä
⇒ H i+j(XK ,V∨λ′(q)/̟m′

)m∨

implies that there is an inclusion

d−q−2∏

i=0

AnnTS H i(XK(m′),V∨λ′(q)/̟m′
)m∨ ⊂ AnnTS Hd−2−q(XK ,V∨λ′(q)/̟m′

)m∨ .

Applying Corollary 2.2.21 once more, we see that there is an inclusion

d−1∏

i=q+1

AnnTS H i(XK(m′),Vλ′(q)/̟m′
)m ⊂ AnnTS Hq+1(XK ,Vλ′(q)/̟m′

)m,

or equivalently

d−1∏

i=q+1

AnnTS H i(XK(m′),Vλ/̟m′
)m ⊂ AnnTS Hq+1(XK ,Vλ′(q)/̟m′

)m,

Combining this with (4.4.4), we deduce that there is an inclusion

AnnTS Hq(XK ,Vλ′(q))m ·
d−1∏

i=q+1

AnnTS H i(XK(m′),Vλ/̟m′
)m

⊂ AnnTS Hq(XK ,Vλ/̟m)m.

(4.4.5)
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By induction, we can find an integer N ≥ 1 and for each i = q + 1, . . . , d − 1

an integer m′i ≥ m′ such that

S
(
Ann‹TS H

d(‹X‹K(m′
i)
,V

λ̃
)m̃

)N
⊂ AnnTS H i(XK(m′),Vλ/̟m′

)m.

Moreover, Proposition 4.3.4 implies that there is an inclusion

S
Ä
Ann‹TS H

d(‹X‹K ,Vλ̃)m̃
ä
⊂ AnnTS Hq(XK ,Vλ′(q))m.

Let m′′ = supim
′
i, and note that for each i we have

Ann‹TS H
d(‹X‹K(m′′)

,V
λ̃
)m̃ ⊂ Ann‹TS H

d(‹X‹K(m′
i)
,V

λ̃
)m̃

(because this is true rationally, and the cohomology groups are torsion-free, by

Theorem 4.3.3). Finally, let N ′ = 1+(d− q− 1)N , and let J denote the image

of the ideal

S
Ä
Ann‹TS H

d(‹X‹K(m′′)
,V

λ̃
)m̃
ä

in A(K, q, λ,m). The existence of the inclusion (4.4.5) implies that S descends

to a morphism

Ã(‹K(m′′), λ̃)→ A(K,λ, q,m)/J,

and that the ideal J satisfies JN
′
= 0. This completes the proof. �

This proposition has the following consequence for Galois representations.

Proposition 4.4.6. Let v, v′ be distinct places of Sp, and let λ ∈ (Zn+)
Hom(F,E).

Fix an integer m ≥ 1. Let ‹K ⊂ ‹G(A∞F+) be a good subgroup. Suppose that the

following conditions are satisfied:

(1) For each embedding τ : F →֒ E inducing the place v, we have −λτc,1−
λτ,1 ≥ 0 and −λτc,n − λτ,n ≤ p− 2n − 1.

(2) We have
∑

v′′∈Sp

v′′ 6=v,v′

[F+
v′′

: Qp] >
1

2
[F+ : Q].

(3) For each p-adic place v′′ of F+ not equal to v, we have

U(OF+
v′′
) ⊂ ‹Kv′′ ⊂

®Ç
1n ∗
0 1n

å
mod ̟m

v′′

´
.

We have ‹Kv = ‹G(OF+
v
).

(4) p > n2. (We recall our blanket assumption in §4 that p is unramified

in F .)

(5) Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F

in which l splits.
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(6) m ⊂ TS is a non-Eisenstein maximal ideal such that ρm̃ is decomposed

generic.

Let q ∈
[⌊
d
2

⌋
, d− 1

]
. Then there exists an integer N ≥ 1 depending only on

[F : Q] and n, an ideal J ⊂ A(K,λ, q,m) satisfying JN = 0, and a continuous

representation

ρm : GF,S → GLn(A(K,λ, q,m)/J)

satisfying the following conditions :

(a) For each place v 6∈ S of F , the characteristic polynomial of ρm(Frobv)

is equal to the image of Pv(X) in (A(K,λ, q,m)/J)[X].

(b) For each place v|v of F , ρm|GFv
is in the essential image of the functor

Ga, for a = (λτ,n) ∈ ZHomQp (Fv,E).

(c) For each place v|v of F , there exists N ∈ MFk with ρm̃|GFv
∼= G(N )

and

FLτ (N) = {−λτc,n + 2n− 1, . . . ,−λτc,1 + n, λτ,1 + (n− 1), . . . , λτ,n}.
for each embedding τ ∈ HomQp(Fv , E).

Proof. Our hypotheses include those of Proposition 4.4.1. We choose the

weight λ̃ of Proposition 4.4.1 to be CTG (as we may, using Lemma 4.3.6 and our

freedom to specify λ̃v′). Let N0 be the integer denoted by N in the statement

of that proposition. Thus we can find an integer m′ ≥ m, a nilpotent ideal

J0 ⊂ A(q,K, λ,m) satisfying JN0
0 = 0, and a commutative diagram

‹TS //

S

��

Ã(‹K(m′), λ̃)

��

TS // A(K,λ, q,m)/J0 .

Let us abbreviate Ã = Ã(‹K(m′), λ̃) and A = A(K,λ, q,m). By Theorem

4.3.3, Ã is O-flat, and by Theorem 2.4.11, Ã⊗O Qp is semisimple and can be

computed in terms of cuspidal automorphic representations of ‹G. By Theorem

2.3.3, there exists a continuous homomorphism

ρ̃ : GF,S → GL2n(Ã⊗O Qp)

such that for any homomorphism f : Ã⊗O Qp → Qp, and for any finite place

v 6∈ S of F , f ◦ ρ̃(Frobv) has characteristic polynomial equal to the image

of ‹Pv(X) in Qp[X]; and for any place v|v of F , (f ◦ ρ̃)|GFv
is crystalline of

Hodge–Tate weights

HTτ (f ◦ ρ̃|GFv
) = {−λτc,n + (2n− 1), . . . ,−λτc,1 + n, λτ,1 + (n− 1), . . . , λτ,n}.

In particular, anyGFv -invariant O-lattice in Ã2n is crystalline with all τ -Hodge–

Tate weights in the interval [λτ,n, (2n − 1)− λτc,n]. Using our hypothesis that
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−λτc,n + (2n − 1) − λτ,n ≤ p − 2, we see that any GFv -invariant O-lattice in

Ã2n is in the image of the functor Ga with a = (λτ,n) ∈ ZHomQp(Fv ,E) (cf. the

discussion of the functor Ga at the beginning of §4).

This establishes part (c) of the proposition. Since for each τ ∈ HomQp(Fv , E)

the integers

−λτc,n + (2n − 1), . . . ,−λτc,1 + n, λτ,1 + (n − 1), . . . , λτ,n

are all distinct, and ρm̃
∼= ρm ⊕ (ρc,∨m ⊗ ǫ1−2n), it follows as well that ρm|GFv

6∼=
(ρc,∨m ⊗ ǫ1−2n)|GFv

.

Let ‹D = det ρ̃, a continuous determinant of GF,S of dimension 2n val-

ued in Ã (by [Che14, Ex. 2.32]). Its kernel is a 2-sided ideal of Ã[GF,S ] (see

[Che14, §1.17] for the definition of the kernel of a determinant). The forma-

tion of kernels commutes with flat base change over Ã, so there is an algebra

embedding

(Ã[GF,S]/ ker(‹D))⊗OQp = (Ã⊗OQp)[GF,S ]/ ker(‹D⊗OQp) ⊂M2n(Ã⊗OQp),

by [Che14, Thm. 2.12]. This is in particular an embedding of left Ã[GF,S ]-

modules. It follows that (Ã[GF,S]/ ker(‹D)) ⊗O Qp is a subrepresentation of

ρ̃2n, hence that for each v|v, the GFv -representation Ã[GF,S]/ ker(‹D) is in the

essential image of Ga.

Theorem 2.3.7 implies that there there is an integer N1 depending only

on [F : Q] and n, a nilpotent ideal J1 ⊂ A(K,λ, q,m) satisfying JN1
1 = 0, and

a continuous representation

ρm : GF,S → GLn(A(K,λ, q,m)/J1)

such that for each finite place v 6∈ S of F , ρm(Frobv) has characteristic polyno-

mial equal to the image of Pv(X) in (A(K,λ, q,m)/J1)[X]. Let J = (J0, J1) ⊂
A(K,λ, q,m); then JN = 0, whereN = N0+N1. We will show that the proposi-

tion holds with this choice of J and this value of N . Let us now write ρm for the

projection of ρm to a representation with coefficients in A(K,λ, q,m)/J = A/J .

Set ‹DA/J = ‹D ⊗‹A A/J . Then ‹DA/J = det(ρm ⊕ ρc,∨m ⊗ ǫ1−2n), hence

(ker det ρm) ∩ (ker det ρc,∨m ⊗ ǫ1−2n) ⊂ ker ‹DA/J .

The representation ρm ⊕ (ρc,∨m ⊗ ǫ1−2n) induces an A-algebra homomorphism

(A/J)[GF,S ]→Mn(A/J) ⊕Mn(A/J)

which, by [Che14, Thm. 2.22(i)], is surjective with kernel equal to (ker det ρm)∩
(ker det ρc,∨m ⊗ ǫ1−2n). We deduce that (A/J)[GF,S ]/ ker(‹DA/J ) is a quotient

A/J-algebra of Mn(A/J) ×Mn(A/J). By [Che14, Thm. 2.22(ii)], this forces

(A/J)[GF,S ]/ ker(‹DA/J ) =Mn(A/J) ×Mn(A/J).
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The surjection Ã[GF,S ] → (A/J)[GF,S ]/ ker(‹DA/J) factors through the

quotient Ã[GF,S ]/ ker(‹D) (see [Che14, Lem. 1.18]). It follows that for each

place v|v of F that Mn(A/J)×Mn(A/J), viewed as a left (A/J)[GFv ]-module,

is in the essential image of the functor Ga (the essential image is stable under

passage to subquotients). Since Mn(A/J)×Mn(A/J) contains ρm as a subob-

ject, it follows that ρm|GFv
is in the essential image of Ga, as desired. �

Remark 4.4.7. Ideas similar to, and more general than, those used in the

proof above were developed by Wake–Wang-Erickson [WWE19].

We now extend the range of cohomological degrees and allowable level

subgroups to which Proposition 4.4.6 applies.

Corollary 4.4.8. Let v ∈ Sp, and let K ⊂ GLn(A
∞
F ) be a good subgroup.

Let λ ∈ (Zn+)
Hom(F,E), and let m ⊂ TS(K,λ) be a non-Eisenstein maximal ideal.

Suppose that the following conditions are satisfied:

(1) For each place v|v of F , we have Kv = GLn(OFv).

(2) There exists a place v′ ∈ Sp such that v′ 6= v and

∑

v′′∈Sp

v′′ 6=v,v′

[F+
v′′

: Qp] >
1

2
[F+ : Q].

(3) For each embedding τ : F →֒ E inducing the place v of F+, we have

−λτc,1 − λτ,1 ≥ 0 and −λτc,n − λτ,n ≤ p− 1− 2n.

(4) p > n2. (We recall our blanket assumption in §4 that p is unramified

in F .)

(5) Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F

in which l splits.

(6) ρm is decomposed generic.

Let q ∈ [0, d − 1] and m ≥ 1 be integers. Then there exists an integer N ≥ 1

depending only on [F : Q] and n, an ideal J ⊂ A(K,λ, q,m) satisfying JN = 0,

and a continuous representation

ρm : GF,S → GLn(A(K,λ, q,m)/J)

satisfying the following conditions :

(a) For each place v 6∈ S of F , the characteristic polynomial of ρm(Frobv)

is equal to the image of Pv(X) in (A(K,λ, q,m)/J)[X].

(b) For each place v|v of F , ρm|GFv
is in the essential image of the functor

Ga, for a = (λτ,n) ∈ ZHomQp (Fv,E).
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(c) For each place v|v of F , there exists N ∈ MFk with ρm̃|GFv
∼= G(N )

and

FLτ (N) = {−λτc,n + (2n− 1), . . . ,−λτc,1 + n, λτ,1 + (n− 1), . . . , λτ,n}.
for each embedding τ ∈ HomQp(Fv , E).

Proof. Note that the existence of a ρm satisfying only condition (a) (local-

global compatibility at unramified places) is already known (Theorem 2.3.5).

We are therefore free to enlarge S if necessary. We first prove the corollary

with hypothesis (6) replaced by the stronger assumption that ρm̃ is decomposed

generic. Let K ′ ⊂ K be the good normal subgroup defined by the formula

K ′v = Kv if v ∤ p or v|v, and K ′v = Kv ∩ ker(GLn(OFv ) → GLn(OFv/̟
m
v ))

otherwise. Let ‹K ⊂ ‹G(A∞F+) be a good subgroup satisfying the following

conditions:

• ‹K ∩G(A∞F+) = K.

• ‹KS = ‹G(“OSF+).

• For each place v′′|p of F+, U(OK) ⊂ ‹Kv′′ .

• ‹Kv = G(OF+
v
).

Let ‹K ′ = ‹K(m) be the good subgroup defined as follows: if v′′ is a finite place

of F+ which is prime to p or equal to v, then ‹K ′v′′ = ‹Kv′′ . Otherwise, we set

‹K ′v′′ = ‹Kv′′ ∩
®Ç

1n ∗
0 1n

å
mod ̟m

v′′

´
.

Note that the triple (‹K ′, λ,m) satisfies the hypotheses of Proposition 4.4.6. We

let K ′ = ‹K ′ ∩G(A∞F+). There is a Hochschild–Serre spectral sequence

H i(K/K ′,Hj(XK ′ ,Vλ/̟m)m)⇒ H i+j(XK ,Vλ/̟m)m.

It follows that we have an inclusion
q∏

i=0

AnnTS Hq−i(XK ′ ,Vλ/̟m)m ⊂ AnnTS Hq(XK ,Vλ/̟m)m.

Suppose we could show that there is an integer N0 depending only on [F+ : Q]

and n and for each i = 0, . . . , q an ideal Ji ⊂ A(K ′, λ, q−i,m) satisfying JN0
i =

0 and a continuous representation ρm,i : GF,S → GLn(A(K
′, λ, q − i,m)/Ji)

satisfying the conditions the same conditions as ρm. Then the corollary would

follow, with J equal to the image in A(K,λ, q,m) of the intersection of the

pre-images of J0, . . . , Jq in TS, and N = qN0. A theorem of Carayol, [Car94,

Théorème 2], implies that the product representation

q∏

i=0

ρm,i : GF,S → GLn

(
q∏

i=0

A(K ′, λ, q − i,m)/Ji

)
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can be conjugated to take values in GLn(im(TS →∏q
i=0A(K

′, λ, q−i,m)/Ji)),

and the ring im(TS → ∏q
i=0A(K

′, λ, q − i,m)/Ji) has A(K,λ, q,m)/J as a

quotient.

We are therefore free to assume that K = K ′ and ‹K = ‹K ′, which we

now do. In this case, we can moreover assume that λv′′ = 0 if v′′ ∈ Sp
and v′′ 6= v. Note that ‹K satisfies the conditions of Proposition 4.4.6, so if

q− i ≥ ⌊d/2⌋, there’s nothing to do. Suppose instead that q− i < ⌊d/2⌋. Then
d− 1− q + i ≥ ⌊d/2⌋.

Our condition on λv then implies, together with [Jan03, Cor. II.5.6], that

there is an isomorphism Vλ∨ ∼= V∨λ . Let n0 = (2n + 1 − p)/2, and let µ0 ∈
(Zn+)

Hom(F,E) be defined by µ0,τ = (n0, . . . , n0) for each τ . Then the maximal

ideal m∨(ǫ−n0) of TS (cf. §2.2.19) is in the support of H∗(XK ,Vλ∨+µ0), and
the weight λ∨ + µ0 also satisfies the hypothesis (3) of the corollary.

Proposition 4.4.6 implies the existence of an ideal

J ′i ⊂ TS(Hd−1−q+i(XK ,Vλ∨+µ0/̟m))m∨(ǫ−n0 )

and a continuous representation

ρ′m,i : GF,S → GLn(T
S(Hd−1−q+i(XK ,Vλ∨+µ0/̟m))m∨(ǫ−n0 )/J

′
i)

satisfying the same conditions as ρm. Proposition 2.2.20 and Proposition 2.2.22

together imply that the isomorphism

TS → TS, [KSgKS ] 7→ ǫ(ArtK(det(g)))
−n0 [KSg−1KS]

descends to an isomorphism

f : TS(Hd−1−q+i(XK ,Vλ∨+µ0/̟m))m∨(ǫ−n0 ) → A(K,λ, q − i,m).

The proof in this case is completed by taking Ji = f(J ′i) and ρm,i = (f ◦ρ′m,i)∨⊗
ǫ1−2n+(p−1)/2.

We now remove the assumption that ρm̃ is decomposed generic, assuming

instead only that ρm is decomposed generic. After possibly enlarging k, we can

find a character ψ : GF → k× such that

(ρm ⊗ ψ)⊕ ((ρm ⊗ ψ)c,∨ ⊗ ǫ1−2n)
is decomposed generic, and ψ|GFv

is trivial for each place v ∈ S of F . Let

ψ : GF → O× denote the Teichmüller lift of ψ.

Choose a finite set S′ containing S and the set of places where ψ is ramified

and a good normal subgroup K ′ ⊂ K, all satisfying the following conditions:

• (K ′)S
′−S = KS′−S .

• The quotient K ′/K is abelian of order prime to p.

• For each place v of F , the restriction of ψ|GFv
◦ ArtFv to det(K ′v) is

trivial.

• S′ satisfies the analogue of hypothesis (5) of the corollary.
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Then there is a surjection A(K ′, λ, q,m)→ A(K,λ, q,m) of TS′
-algebras, so it

suffices to establish the corollary for A(K ′, λ, q,m). We write m(ψ) ⊂ TS′
for

the non-Eisenstein maximal ideal with ρm(ψ)
∼= ρm ⊗ ψ.

Let m̃(ψ) = S∗(m(ψ)). Then ρm̃(ψ) is decomposed generic, so the already

established case of the corollary implies that we can find an integer N ≥ 1 de-

pending only on [F+ : Q] and n, and an ideal J ′ ⊂ TS′
(Hq(XK ′ ,Vλ/̟m)m(ψ))

satisfying J ′n = 0, and a continuous representation

ρm(ψ) : GF,S′ → GLn(T
S′
(Hq(XK ′ ,Vλ/̟m)m(ψ))/J

′)

satisfying the conditions (a) – (c) of the corollary. Proposition 2.2.22 implies

that the isomorphism

TS′ → TS′
, [K ′

S
gK ′

S
] 7→ ψ(ArtF (det(g)))[K

′SgK ′
S
]

descends to an isomorphism

f : TS′
(Hq(XK ′ ,Vλ/̟m))m(ψ) → A(K ′, λ, q,m).

The proof is completed on taking J = f(J ′) and ρm = (f ◦ ρm(ψ))⊗ ψ−1. �

4.5. The end of the proof. We can now prove the main theorem of this

chapter. (For the reader’s convenience, we repeat the statement here.) To

avoid confusion, we also restate the standing hypotheses for this chapter in the

statement of the theorem.

Theorem 4.5.1. Let m ⊂ TS(K,λ) be a non-Eisenstein maximal ideal.

Suppose that TS(K,λ)/m = k has residue characteristic p. Let v be a p-adic

place of F+, and suppose that the following additional conditions are satisfied:

(1) The prime p is unramified in F , and F contains an imaginary quadratic

field in which p splits.

(2) Let w be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F

in which l splits.

(3) For each place v|v of F , Kv = GLn(OFv).

(4) For every embedding τ : F →֒ E inducing the place v of F+,

λτ,1 + λτc,1 − λτ,n − λτc,n ≤ p− 2n− 1.

(5) p > n2.

(6) There exists a p-adic place v′ 6= v of F+ such that

∑

v′′∈Sp

v′′ 6=v,v′

[F+
v̄′′ : Qp] >

1

2
[F+ : Q].

(7) ρm is decomposed generic (Definition 4.3.1).
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(8) Assume that one of the following holds :

(a) H∗(XK ,Vλ)m[1/p] 6= 0, or

(b) for every embedding τ : F →֒ E inducing the place v of F+,

−λτc,n − λτ,n ≤ p− 2n − 2 and − λτc,1 − λτ,1 ≥ 0.

Then there exists an integer N ≥ 1 depending only on [F+ : Q] and n, an ideal

J ⊂ TS(K,λ) satisfying JN = 0, and a continuous representation

ρm : GF,S → GLn(T
S(K,λ)m/J)

satisfying the following conditions :

(a) For each finite place v 6∈ S of F , the characteristic polynomial of

ρm(Frobv) equals the image of Pv(X) in (TS(K,λ)m/J)[X].

(b) For each place v|v of F , ρm|GFv
is in the essential image of Ga (with

a = (λτ,n) ∈ ZHom(Fv ,E)).

(c) There is M ∈ MFk such that ρm|GFv
∼= G(M) and for any embedding

τ : Fv →֒ E,

FLτ (M) = {λτ,1 + n− 1, λτ,2 + n− 2, . . . , λτ,n}.
Proof. Note that the existence of a ρm satisfying only condition (a) is

already known (Theorem 2.3.5). We are therefore free to enlarge S if necessary.

We first prove the theorem under the assumption that H∗(XK ,Vλ)m[1/p] 6= 0.

By Theorem 2.4.10, there exists an isomorphism ι : Qp → C and a cuspidal

automorphic representation π of GLn(AF ) of weight ιλ such that (π∞)K 6= 0

and such that rι(π) ∼= ρm. By [Clo90, Lemma 4.9], there is an integer w ∈
Z such that for each embedding τ : F →֒ E and for each i = 1, . . . , n, we

have λτ,i + λτc,n+1−i = w. Fix an embedding τ0 ∈ HomQp(Fṽ , E) such that

λτ0,1 + λτ0c,1 is maximal. (Recall that ṽ is a fixed choice of place of F lying

above v.)

After possibly enlarging E, we can (cf. [HSBT10, Lemma 2.2]) find a

continuous character ψ : GF → O× satisfying

• ψ is crystalline at each v | p,
• ψ is unramified at ṽ and at each v ∈ S − Sp,
• ψ ◦ ArtFṽc

|O×
Fṽc

=
∏
τ : Fṽ →֒E

(τc)λτ0,1+λτ0c,1 .

Define a weight µ = (µτ,1, . . . , µτ,n) ∈ (Zn+)
Hom(F,E) by letting µτ,i be the

unique τ -Hodge–Tate weight for ψ for each 1 ≤ i ≤ n. Note that for τ inducing

ṽ, µτ,i = 0 and µτc,i = −λτ0,1 − λτ0c,1 for all 1 ≤ i ≤ n.
Choose a finite set S′ containing S and the set of places where ψ is ramified

and a good normal subgroup K ′ ⊂ K, all satisfying the following conditions:

• (K ′)S
′−S = KS′−S .

• The quotient K ′/K is abelian.
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• For each finite place v ∤ p of F , the restriction of ψ|GFv
◦ ArtFv to

det(K ′v) is trivial.

• S′ satisfies the analogue of hypothesis (2) of the theorem.

By an argument with the Hochschild–Serre spectral sequence, just as in the

proof of Corollary 4.4.8, we are free to assume that K = K ′ and S = S′, and

we now do this. Let λ′ = λ+ µ. By Proposition 2.2.22, the map

TS → TS , [KSgKS ] 7→ ψ(ArtF (det(g)))[K
SgKS ]

descends to an isomorphism f : TS(K,λ′)m(ψ) → TS(K,λ)m. We observe that

for any τ ∈ HomQp(Fṽ , E), we have

−λ′τc,1 − λ′τ,1 = −λτc,1 − λτ,1 + λτ0c,1 + λτ0,1 ≥ 0

and (using that λτ,i + λτc,n+1−i = w is independent of τ and i)

−λ′τc,n − λ′τ,n = −λτc,n − λτ,n + λτ0c,1 + λτ0,1 = λτ,1 + λτc,1 − λτ0,n − λτ0c,n
≤ λτ0,1 + λτ0c,1 − λτ0c,n − λτ0,n ≤ p− 1− 2n.

In particular, λ′ satisfies the assumptions of Corollary 4.4.8.

We recall (Lemma 2.1.7) that RΓ(XK ,Vλ′) is a perfect complex, with

cohomology concentrated in the range [0, d− 1]. It follows (cf. [NT16, Lemma

3.11]) that the map

TS(K,λ′)→ lim←−
m≥1

TS(RΓ(XK ,Vλ′/̟m))

is an isomorphism. On the other hand, [KT17, Lem. 2.5] shows that for any

m ≥ 1, the kernel of the map

TS(RΓ(XK ,Vλ′/̟m))→
∏

q

TS(Hq(XK ,Vλ′/̟m))

is a nilpotent ideal I satisfying Id = 0. Applying Corollary 4.4.8, we see that

we can find an integer N ≥ 1 depending only on [F+ : Q] and n, an ideal

J ′ ⊂ TS(K,λ′)m(ψ) satisfying (J ′)N = 0, and a continuous representation

ρm(ψ) : GF,S → GLn(T
S(K,λ′)m(ψ)/J

′)

satisfying the following conditions:

(a’) For each place v 6∈ S of F , the characteristic polynomial of ρm(ψ)(Frobv)

is equal to the image of Pv(X) in (TS(K,λ′)m(ψ)/J
′)[X].

(b’) For each place v|v of F , ρm(ψ)|GFv
is in the essential image of the functor

Ga′ , for a′ = (λ′τ,n) ∈ HomQp(Fv, E).

(c’) For each place v|v of F , there exists N ∈ MFk with
Ä
ρm(ψ) ⊕ (ρc,∨

m(ψ) ⊗ ǫ
1−2n)

ä
|GFv

∼= G(N )
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and

FLτ (N) = {−λ′τc,n + (2n− 1), . . . ,−λ′τc,1 + n, λ′τ,1 + (n− 1), . . . , λ′τ,n}.
for each embedding τ ∈ HomQp(Fv , E).

Let us define J = f(J ′) and ρm = (f ◦ ρm(ψ))⊗ ψ−1. We see immediately that

ρm satisfies the requirements (a) and (b) of the theorem; it remains to establish

requirement (c), in other words to recover the Fontaine–Laffaille weights of ρm.

By the above, there isM ∈MFak such that ρm
∼= Ga(M). Let x : T(K,λ)m →

Qp denote the homomorphism which gives the action of Hecke operators on

ι−1(π∞)K . The pushforward ρx = x ◦ ρm via x is a continuous representation

of GF,S which is crystalline at ṽ and ṽc, satisfying HTτ (ρx) = FLτ (M) for each

τ ∈ Hom(F,E) inducing the place v of F+. It therefore suffices to show that

HTτ (ρx) = {λτ,1 + n− 1, λτ,2 + n− 2, . . . , λτ,n}
for each τ ∈ Hom(F,E) inducing the place v of F+, or equivalently that

HTτ (ρx ⊗ ψ) = {λ′τ,1 + n− 1, λ′τ,2 + n− 2, . . . , λ′τ,n}.
Let ωπ : A×F → C× denote the central character of π. Then ωπ is a

character of type A0 and for each embedding τ : F →֒ E inducing the place v

of F+, we have

HTτ (rι(ωπ)) =

{
n∑

i=1

λτ,i

}
.

Moreover, we have det ρx = rι(ωπ)ǫ
n(1−n)/2, hence det(ρx⊗ψ) = rι(ωπ)ǫ

n(1−n)/2ψn,

as this can be checked on Frobenius elements at unramified places. We are now

done: HTτ (ρx ⊗ ψ) is an n-element subset of

FLτ (N) = {−λ′τc,n + (2n− 1), . . . ,−λ′τc,1 + n, λ′τ,1 + (n− 1), . . . , λ′τ,n}.
with sum equal to

∑n
i=1(λ

′
τ,i + n− i). By construction, we have

−λ′τc,n + (2n − 1) > · · · > −λ′τc,1 + n > λ′τ,1 + (n− 1) > · · · > λ′τ,n.

The only possibility is that HTτ (ρx⊗ψ) has the required form. This completes

the proof of the theorem in the case H∗(XK ,Vλ)m[1/p] 6= 0.

We now treat the second case, assuming that for every embedding τ ∈
Hom(F,E) inducing the place v of F+, we have

−λτc,n − λτ,n ≤ p− 2n− 2 and − λτc,1 − λτ,1 ≥ 0.

In this case Corollary 4.4.8 applies directly, and it only remains to identify the

Fontaine–Laffaille weights of ρm for each place v|v of F . There are M,M
′ ∈

MFak such that ρm|GFv
∼= G(M) and (ρc,∨m ⊗ ǫ1−2n)|GFv

∼= G(M
′
). We choose

a continuous character ψ : GF → O× satisfying

• ψ is crystalline at each v′ | p,
• ψ is unramified at ṽ,
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• ψ ◦ ArtFṽc
=
∏
τ : Fṽ →֒E

(τc) on O×Fṽc
.

After enlarging S, as in the first part of the proof, we can assume that ψ is

unramified outside S, in which case the maximal ideal m(ψ) of TS is defined

and occurs in the support of H∗(XK ,Vλ′), where the weight λ′ ∈ (Zn+)
Hom(F,E)

is defined by the formula λ′τ = λτ if τ does not induce the place ṽc of F , and

λ′τ = λτ − (1, . . . , 1) if τ does induce the place ṽc of F . We observe that the

weight λ′ also satisfies the assumptions of Corollary 4.4.8.

We can now conclude. Let τ ∈ Hom(F,E) be an embedding inducing the

place ṽ of F . The sets FLτ (M) and FLτ (M
′
) partition the 2n distinct integers

−λτc,n + (2n− 1) > · · · > −λτc,1 + n > λτ,1 + (n− 1) > · · · > λτ,n

and FLτ (M ) and FLτ (M
′
) + 1 partition the 2n distinct integers

−λτc,n + 2n > · · · > −λτc,1 + (n+ 1) > λτ,1 + (n− 1) > · · · > λτ,n.

Using Lemma 4.5.2, this forces

FLτ (M) = {λτ,1 + (n − 1), λτ,2 + (n− 2), . . . , λτ,n}
and

FLτ (M
′
) = {−λτc,n + (2n− 1), . . . ,−λτc,1 + n}.

Since G(M
′
) = (ρc,∨m ⊗ ǫ1−2n)|GFv

, this implies that for each place v|v of F ,

ρm|GFv
has the correct Fontaine–Laffaille weights. �

Lemma 4.5.2. Let m ≥ 1 be an integer and let A,B,C,D be sets of

integers each of size m. Assume that for any c ∈ C and d ∈ D, we have c > d.

If A ∪B = C ∪D and (A+ 1) ∪B = (C + 1) ∪D and both of these sets have

2m elements, then A = C and B = D.

Proof. We induct on m. Let c be the largest element of C and let d be the

smallest element of D. Since A ∪ B = C ∪D and (A+ 1) ∪B = (C + 1) ∪D,

we must have c ∈ A and d ∈ B. We can then apply the inductive hypothesis

to A′ = A \ {c}, B′ = B \ {d}, C ′ = C \ {c}, and D′ = D \ {d}. �

5. Local-global compatibility, l = p (ordinary case)

5.1. Statements. Let F be a CM field, and fix an integer n ≥ 1. Let p

be a prime, and let E be a finite extension of Qp inside Qp large enough to

contain the images of all embeddings of F in Qp. We assume throughout this

chapter that F satisfies the following standing hypothesis:

• F contains an imaginary quadratic field in which p splits.

In contrast to §4, we do not assume that p is unramified in F . As in §4, our

goal in this chapter is to establish local-global compatibility for some Hecke

algebra-valued Galois representations at the p-adic places of F . More pre-

cisely, we will show that after projection to the ordinary Hecke algebra, these
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Galois representations satisfy an ordinariness condition (see (b) and (c) in the

statement of Theorem 5.5.1 below – the consequences of this condition will be

explored in §6.2.6). Before formulating the main theorem of this chapter, we

must define these ordinary Hecke algebras.

Let K ⊂ GLn(A
∞
F ) be a good subgroup, and let λ ∈ (Zn+)

Hom(F,E). Let S

be a finite set of finite places of F , containing the p-adic places, stable under

complex conjugation. We assume that the following conditions are satisfied:

• Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic subfield of F

in which l splits.

• For each place v|p of F , Kv = Iwv. For each finite place v 6∈ S of F ,

Kv = GLn(OFv ).

If c ≥ b ≥ 0 are integers with c ≥ 1, then we define a good subgroup

K(b, c) ⊂ K by the formula K(b, c)v = Kv if v ∤ p and Kv = Iwv(b, c) if

v|p. Thus K(0, 1) = K. Then there is an isomorphism K(0, c)/K(b, c) ∼=∏
v|p Tn(OFv/̟

b
v). (We are using here notation for open compact subgroups

and Hecke operators that has been defined in §2.2.4.)

We define a Hecke algebra

TS,ord = TS ⊗O OJTn(OF,p)K[{Uv,1, . . . , Uv,n, U−1v,n}v|p]
(where the Uv,i are viewed as formal variables). We write Uv = Uv,1Uv,2 · · ·Uv,n−1 ∈
TS,ord and Up =

∏
v|p Uv. We observe that there is a canonical surjective O-

algebra homomorphism OJTn(OF,p)K→ O[K(0, c)/K(b, c)]. This extends to a

homomorphism

TS,ord → EndD(O[K(0,c)/K(b,c)])(RΓK(0,c)/K(b,c)(XK(b,c),Vλ)),
where each element Uv,i ofT

S,ord acts on the complex RΓK(0,c)/K(b,c)(XK(b,c),Vλ)
by the Hecke operator of the same name. By the theory of ordinary parts (cf.

[KT17, §2.4]), there is a well-defined direct summandRΓK(0,c)/K(b,c)(XK(b,c),Vλ)ord
of RΓK(0,c)/K(b,c)(XK(b,c),Vλ) in D(O[K(0, c)/K(b, c)]) on which Up acts in-

vertibly, and we define TS(K(b, c), λ)ord to be the image of the associated

homomorphism

TS,ord → EndD(O[K(0,c)/K(b,c)])(RΓK(0,c)/K(b,c)(XK(b,c),Vλ)ord)
or equivalently, extending our usage for the Hecke algebra TS ,

TS(K(b, c), λ)ord = TS,ord(RΓK(0,c)/K(b,c)(XK(b,c),Vλ)ord).
We observe that there is a canonical homomorphismTS(K(0, c)/K(b, c),Vλ)→
TS(K(b, c), λ)ord. The Hecke algebra in the source is defined in §2.2.1. In

general this homomorphism is neither injective nor surjective. However, we do

see from the existence of this homomorphism that for any maximal ideal m of
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TS(K(b, c), λ)ord, there exists an associated Galois representation ρm : GF,S →
GLn(T

S(K(b, c), λ)ord/m). We call a maximal ideal m of TS,ord with residue

field a finite extension of k of Galois type (resp. non-Eisenstein) if its pullback

to TS is of Galois type (resp. non-Eisenstein) in the sense of Definition 2.3.6.

The Hecke operators Uv,i ∈ TS(K(b, c), λ)ord are invertible (because Up
is). For each place v|p and for each i = 1, . . . , n, we define a character χλ,v,i :

GFv → TS(K(b, c), λ)ord,× as the unique continuous character satisfying the

identities

χλ,v,i◦ArtFv(u) = ǫ1−i(ArtFv(u))

(
∏

τ

τ(u)−(w
G
0 λ)τ,i

)
〈diag(1, . . . , u, . . . , 1)〉 (u ∈ O×Fv

)

(the product being over τ ∈ HomQp(Fv , E)) and

χλ,v,i ◦ ArtFv(̟v) = ǫ1−i(ArtFv(̟v))
Uv,i
Uv,i−1

.

We can now state the main theorem of this chapter. (As with Theorem 4.5.1

in §4.1, we will repeat the statement immediately before its proof with the

same numbering.)

Theorem 5.5.1. Suppose that [F+ : Q] > 1. Let K ⊂ GLn(A
∞
F ) be a

good subgroup such that for each place v ∈ Sp of F , Kv = Iwv. Let c ≥ b ≥ 0

be integers with c ≥ 1, let λ ∈ (Zn)Hom(F,E), and let m ⊂ TS(K(b, c), λ)ord

be a non-Eisenstein maximal ideal. Suppose that the following conditions are

satisfied:

(1) Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F

in which l splits.

(2) ρm is decomposed generic.

Then we can find an integer N ≥ 1, which depends only on [F+ : Q] and n, an

ideal J ⊂ TS(K(b, c), λ)ordm such that JN = 0, and a continuous representation

ρm : GF,S → GLn(T
S(K(b, c), λ)ordm /J)

satisfying the following conditions :

(a) For each finite place v 6∈ S of F , the characteristic polynomial of

ρm(Frobv) equals the image of Pv(X) in (TS(K(b, c), λ)ordm /J)[X].

(b) For each v ∈ Sp, and for each g ∈ GFv , the characteristic polynomial

of ρm(g) equals
∏n
i=1(X − χλ,v,i(g)).

(c) For each v ∈ Sp, and for each g1, . . . , gn ∈ GFv , we have

(ρm(g1)− χλ,v,1(g1))(ρm(g2)− χλ,v,2(g2)) . . . (ρm(gn)− χλ,v,n(gn)) = 0.
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We refer the reader to Lemma 6.2.11 for the comparison between the

condition (c) and the usual notion of an ordinary Galois representation. In

short, they coincide for representations with coefficients in a field and distinct

diagonal characters.

The rest of §5 is devoted to the proof of Theorem 5.5.1 (after proving

the theorem, we record a local-global compatibility result for a single ordinary

automorphic representation as a corollary). In the rest of the chapter, we make

the following additional standing hypothesis:

• For each place v|p of F , our fixed choices of uniformizer satisfy ̟vc =

̟c
v.

This simplifies notation once we introduce the group ‹G. It is important to note

that while the definition of the operators Uv,i above depends on the choice of

uniformizer ̟v , neither the complex RΓK(0,c)/K(b,c)(XK(b,c),Vλ)ord, nor the

Hecke algebra TS(K(b, c), λ)ord, nor the truth of Theorem 5.5.1 depend on

this choice.

5.2. Hida theory. In the previous section we introduced the ordinary Hecke

algebras TS(K(b, c), λ)ord. In §5.2, we recall the basic results about these

Hecke algebras and the complexes on which they act: this material goes under

the name “Hida theory”. We also describe how this theory is related to the

corresponding theory for the group ‹G.

5.2.1. The ordinary part of a smooth representation. Our first goal is to

show, following Emerton [Eme10a, Eme10b], how to define ordinary parts in

a more representation-theoretic way. We will work throughout with O/̟m

coefficients (for some fixed m ≥ 1) in order to avoid topological issues. We

first need to introduce some more notation. If G is a locally profinite group,

then we write Mod(O/̟m[G]) for the category of O/̟m[G]-modules, and

(5.2.2) Modsm(O/̟m[G]) ⊂ Mod(O/̟m[G])

for the full subcategory of smooth modules. More generally, if ∆ ⊂ G is an

open submonoid which contains an open compact subgroup of G, then we write

(5.2.3) Modsm(O/̟m[∆]) ⊂ Mod(O/̟m[∆])

for the full subcategory of smooth modules (by definition, those for which every

vector is fixed by an open subgroup of ∆). We write

M 7→M sm : Mod(O/̟m[∆])→ Modsm(O/̟m[∆])

for the functor of smooth vectors; it is right adjoint to the inclusion (5.2.3).

Lemma 5.2.4.

(1) The category Modsm(O/̟m[∆]) is abelian and has enough injectives.
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(2) Let ∆′ ⊂ ∆ be a subgroup which is either compact or open (∆′ is

therefore a locally profinite group). Then the forgetful functor

Modsm(O/̟m[∆])→ Modsm(O/̟m[∆′])

preserves injectives.

Proof. The functor M 7→ M sm has an exact left adjoint, so preserves

injectives. Since the category Mod(O/̟m[∆]) has enough injectives, so does

Modsm(O/̟m[∆]).

For the second part of the lemma, we split into cases. Suppose first that

∆′ ⊂ ∆ is an open subgroup. Then compact induction c-Ind∆∆′ is an exact left

adjoint to the forgetful functor. Suppose instead that ∆′ ⊂ ∆ is a compact

subgroup. In this case, we can find a compact open subgroup of ∆ which

contains ∆′. Using what we have already proved, we can assume that ∆ = G,

in which case the result follows from [Eme10b, Prop. 2.1.11]. �

We write Dsm(O/̟m[∆]) for the derived category of Modsm(O/̟m[∆]).

We introduce some monoids, with the aim of studying the theory for

G = GLn(Fp). We write Tn(Fp)
+ ⊂ Tn(Fp) for the open submonoid consisting

of those elements t ∈ Tn(Fp) with tNn(OF,p)t−1 ⊂ Nn(OF,p), and Tn(Fv)+ =

Tn(Fv) ∩ Tn(Fp)+. We recall (§2.2.4) that ∆p ⊂ GLn(Fp) denotes the monoid∏
v|p IwvTn(Fv)

+Iwv. If b ≥ 0 is an integer, we define

Tn(OF,p)(b) =
∏

v∈Sp

ker(Tn(OF,v)→ Tn(OF,v/̟b
v)),

Tn(OF,p)b = Tn(OF,p)/Tn(OF,p)(b),
Tn(Fp)

+
b = Tn(Fp)

+/Tn(OF,p)(b)
and

Tn(Fp)b = Tn(Fp)/Tn(OF,p)(b).
We write up ∈ Tn(Qp) ⊂ Tn(Fp) for the element (pn−1, pn−2, . . . , 1). It lies

in Tn(Fp)
+. We define Bn(Fp)

+ = Nn(OF,p) · Tn(Fp)+ ⊂ Bn(Fp). Note

that Bn(Fp)
+ ⊂ ∆p. We write Bn(OF,p)(b) for the pre-image in Bn(OF,p)

of Tn(OF,p)(b). It will be important for us to note that a complex C ∈
Dsm(O/̟m[Tn(Fp)

+
b ]) comes equipped with a functorial homomorphism

OJTn(OF,p)K[{Uv,1, . . . , Uv,n, U−1v,n}v∈Sp ]→ End
Dsm(O/̟m[Tn(Fp)

+
b ])(C)

via the map which is the canonical homomorphism

OJTn(OF,p)K→ O/̟m[Tn(OF,p)/Tn(OF,p)(b)]
on this subalgebra and which sends Uv,i to the matrix

diag(̟v , . . . ,̟v , 1, . . . , 1) ∈ Tn(Fv) ⊂ Tn(Fp)
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(with i occurrences of ̟v). Consequently, if T
S acts on a complex C, then we

can extend this to an action of the algebra TS,ord.

If λ ∈ X∗((ResF/Q Tn)E) = (Zn)Hom(F,E), then we write O(λ) for the

O[Tn(Fp)]-module defined as follows: it is a free rank 1 O-module on which an

element u ∈ Tn(OF,p) acts as multiplication by the scalar
∏
τ∈Hom(F,E)

∏n
i=1 τ(ui)

λτ,i

and on which any element diag(̟a1
v , . . . ,̟

an
v ) (ai ∈ Z) acts trivially.

We recall that in §2.2.4 we have defined, for any λ ∈ (Zn+)
Hom(F,E), a

twisted action (δ, v) 7→ δ ·pv of ∆p on Vλ. Projection to the lowest weight space

determines an O-module homomorphism Vλ → O(wG0 λ) which is equivariant

for the action of Bn(Fp)
+ (where Bn(Fp)

+ acts through the ·p-action on the

source and through its projection to Tn(Fp) on the target). We write Kλ for

the kernel of the projection Vλ → O(wG0 λ); it is again an O[Bn(Fp)+]-module,

finite free as O-module.

We now define various functors that together will allow us to study ordi-

nary parts using completed cohomology. We write

Γ(Nn(OF,p),−) : Modsm(O/̟m[∆p])→ Modsm(O/̟m[Tn(Fp)
+])

for the functor of Nn(OF,p)-invariants. If V ∈ Modsm(O/̟m[∆p]), then the

action of an element t ∈ Tn(Fp)+ on v ∈ Γ(Nn(OF,p), V ) is given by the formula

(5.2.5) t · v =
∑

n∈Nn(OF,p)/tNn(OF,p)t−1

ntv

(cf. [Eme10a, §3], and note that the action of t is by the ‘double coset operator’

[Nn(OF,p)tNn(OF,p)]). We write

Γ(Bn(OF,p)(b),−) : Modsm(O/̟m[∆p])→ Mod(O/̟m[Tn(Fp)
+
b ])

for the functor of Bn(OF,p)(b)-invariants. The action of an element t ∈ Tn(Fp)+b
is given by the same formula (5.2.5).

If c ≥ b ≥ 0 are integers with c ≥ 1, then we define Iwp(b, c) =
∏
v∈Sp

Iwv(b, c) ⊂
GLn(Fp). We write

Γ(Iwp(b, c),−) : Modsm(O/̟m[∆p])→ Mod(O/̟m[Tn(Fp)
+
b ])

for the functor of Iwp(b, c)-invariants. If V ∈ Modsm(O/̟m[∆p]), then the

action of an element t ∈ Tn(Fp)+ on v ∈ Γ(Iwp(b, c), V ) is given by the action

of the Hecke operator [Iwp(b, c)tIwp(b, c)] (cf. §2.1.9).

For any b ≥ 0, we consider the functors

Γ(Tn(OF,p)(b),−) : Modsm(O/̟m[Tn(Fp)
+])→ Mod(O/̟m[Tn(Fp)

+
b ])

and

Γ(Tn(OF,p)(b),−) : Modsm(O/̟m[Tn(Fp)])→ Mod(O/̟m[Tn(Fp)b])
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of Tn(OF,p)(b)-invariants. Finally, we write

ord : Modsm(O/̟m[Tn(Fp)
+])→ Modsm(O/̟m[Tn(Fp)])

and

ordb : Mod(O/̟m[Tn(Fp)
+
b ])→ Mod(O/̟m[Tn(Fp)b])

for the localization functors−⊗O/̟m[Tn(Fp)+]O/̟m[Tn(Fp)] and−⊗O/̟m[Tn(Fp)
+
b ]

O/̟m[Tn(Fp)b], respectively. (As the notation suggests, we will use localiza-

tion to define “ordinary parts”. The reader may object that the ordinary part

usually denotes a direct summand, rather than a localization. At least in the

context of O/̟m[Tn(Fp)
+
b ]-modules which are finitely generated as O/̟m-

modules, the two notions agree (cf. [Eme10b, Lemma 3.2.1] and also Proposi-

tion 5.2.15 below). We use localization here since it is easier to define without

finiteness conditions.)

Lemma 5.2.6. The following diagram is commutative up to natural iso-

morphism :

Modsm(O/̟m[Tn(Fp)
+])

Γ(Tn(OF,p)(b),−)
//

ord
��

Mod(O/̟m[Tn(Fp)
+
b ])

ordb
��

Modsm(O/̟m[Tn(Fp)])

Γ(Tn(OF,p)(b),−)
// Mod(O/̟m[Tn(Fp)b]).

Proof. Let M ∈ Modsm(O/̟m[Tn(Fp)
+]). There is a natural morphism

ordb Γ(Tn(OF,p)(b),M)→ Γ(Tn(OF,p)(b), ordM),

or equivalently

MTn(OF,p)(b) ⊗O/̟m[Tn(Fp)
+
b ] O/̟m[Tn(Fp)b]

→ (M ⊗O/̟m[Tn(Fp)+] O/̟m[Tn(Fp)])
Tn(OF,p)(b).

We must show that it is an isomorphism. It is injective becauseMTn(OF,p)(b) →
M is injective and localization is exact. To show it is surjective, let x ∈
M , and suppose that x ⊗ 1 ∈ (M ⊗O/̟m[Tn(Fp)+] O/̟m[Tn(Fp)])

Tn(OF,p)(b).

We must show that there exists n ≥ 0 such that unpx ∈ MTn(OF,p)(b). Since

M is smooth, there exists c ≥ b such that x ∈ MTn(OF,p)(c). On the other

hand, our assumption on x ⊗ 1 means that for any t ∈ Tn(OF,p)(b), there

exists n(t) such that u
n(t)
p (t − 1)x = 0 in M . Choosing n(t) to be as small as

possible, we see that n(t) depends only on the image of t in the (finite) quotient

Tn(OF,p)(b)/Tn(OF,p)(c). We can therefore take n = supt n(t). �
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Lemma 5.2.7.

(1) Each functor Γ(Nn(OF,p),−), Γ(Bn(OF,p)(b),−), and Γ(Iwp(b, c),−) is
left exact. For any b ≥ 0, the functor Γ(Nn(OF,p),−) sends injectives

to Γ(Tn(OF,p)(b),−)-acyclics.
(2) The functors ord and ordb are exact and preserve injectives.

Proof. It is immediate from the definitions that the three functors in the

first part are left exact. We now show that the functor Γ(Nn(OF,p),−) sends
injectives to Γ(Tn(OF,p)(b),−)-acyclics.

We have a commutative diagram

Modsm(O/̟m[∆p])

α

��

// Modsm(O/̟m[Tn(Fp)
+])

β

��

// Mod(O/̟m[Tn(Fp)
+
b ])

γ

��

Modsm(O/̟m[Bn(OF,p)(b)]) // Modsm(O/̟m[Tn(OF,p)(b)]) // Mod(O/̟m)

where the horizontal arrows are taking invariants and the vertical arrows are

restriction to compact or open subgroups. By Lemma 5.2.4, the vertical arrows

are exact and preserve injectives. We must show that if I ∈ Modsm(O/̟m[∆p])

is injective, then for each i > 0, RiΓ(Tn(OF,p)(b),Γ(Nn(OF,p),I)) = 0. Equiv-

alently (using the formula for a composition of derived functors, [Wei94, Corol-

lary 10.8.3]), we must show that

γRiΓ(Tn(OF,p)(b),Γ(Nn(OF,p),I)) = RiΓ(Tn(OF,p)(b),Γ(Nn(OF,p), αI)) = 0.

However, αI is injective, so this follows from the fact that the functor

Γ(Nn(OF,p),−) : Modsm(O/̟m[Bn(OF,p)(b)])→ Modsm(O/̟m[Tn(OF,p)(b)])
preserves injectives (because it has an exact left adjoint, given by inflation).

This proves the first part of the lemma.

We now prove the second part of the lemma. Both ord and ordb are

exact because localization is an exact functor. Since localization preserves

injectives in the case of a Noetherian base ring, ordb preserves injectives. To

show that ord preserves injectives, we go back to the definitions. Let I be an

injective object of Modsm(O/̟m[Tn(Fp)
+]), let M →֒ N be an inclusion in

Modsm(O/̟m[Tn(Fp)]), and let α : M → ord(I) be a morphism. We must

show that α extends to N .

For any b ≥ 0, passing to Tn(OF,p)(b)-fixed vectors gives a morphism (cf.

Lemma 5.2.6)

α(b) :MTn(OF,p)(b) → ord(I)Tn(OF,p)(b) ∼= ordb(ITn(OF,p)(b)).

The object ITn(OF,p)(b) ∈ Mod(O/̟m[Tn(Fp)
+
b ]) is injective, showing that we

can extend α(b) to a morphism α(b)′ : NTn(OF,p)(b) → ord(I)Tn(OF,p)(b). Zorn’s

lemma implies that there exists a maximal extension α′ : Lmax → ord(I) of
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α. The preceding argument shows that we can extend the map induced by

α′ on Tn(OF,p)(b)-invariants from L
Tn(OF,p)(b)
max to NTn(OF,p)(b). It follows that

we can extend α′ to Lmax + NTn(OF,p)(b). By maximality, and since N =

∪b≥0NTn(OF,p)(b), we have Lmax = N , as desired. �

Lemma 5.2.8. For any c ≥ b ≥ 0 with c ≥ 1, there is a natural isomor-

phism

ordb ◦Γ(Iwp(b, c),−) ∼= ordb ◦Γ(Bn(OF,p)(b),−)

of functors

Modsm(O/̟m[∆p])→ Mod(O/̟m[Tn(Fp)b]).

Proof. We first show that for any V ∈ Modsm(O/̟m[∆p]), the natural in-

clusion Γ(Iwp(b, c), V ) ⊂ Γ(Bn(OF,p)(b), V ) is a morphism of O/̟m[Tn(Fp)
+
b ]-

modules. A given element t ∈ Tn(Fp)
+
b acts on the source via the Hecke

operator [Iwp(b, c)tIwp(b, c)] and on the target by the formula (5.2.5). We see

that we must show that the map

N(OF,p)/tN(OF,p)t−1 → Iwp(b, c)/(Iwp(b, c) ∩ tIwp(b, c)t−1)

is bijective. This is true, because Iwp(b, c) admits an Iwahori decomposition

with respect to Bn (cf. §2.1.9).

The exactness of ordb implies that for any V ∈ Modsm(O/̟m[∆p]), there

is an inclusion ordb Γ(Iwp(b, c), V ) ⊂ ordb Γ(Bn(OF,p)(b), V ). We must show

that this is an equality.

We have O/̟m[Tn(Fp)
+
b ][up]

−1 = O/̟m[Tn(Fp)b]. Consequently, the

lemma will follow if we can show that for any v ∈ Γ(Bn(OF,p)(b), V ), there

exists n ≥ 0 such that unp · v ∈ Γ(Iwp(b, c), V ) = V Iwp(b,c).

Since V is smooth, there exists c′ > c such that v ∈ V Iwp(b,c′). By induc-

tion, it is enough to show that Up ·v ∈ V Iwp(b,c′−1). The definition of the Hecke

operator Up shows that this will follow if the double coset Iwp(b, c
′)upIwp(b, c

′)

is invariant under left multiplication by the group Iwp(b, c
′ − 1). This is true,

as proved in e.g. [Ger19, Lemma 2.19]. �

Lemma 5.2.9. Let π ∈ Dsm(O/̟m[∆p]) be a bounded below complex.

Then for any c ≥ b ≥ 0, c ≥ 1, there is a natural isomorphism

RΓ(Tn(OF,p)(b), ordRΓ(Nn(OF,p), π)) ∼= ordbRΓ(Iwp(b, c), π)

in D(O/̟m[Tn(Fp)b]).
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Proof. We will use [Wei94, Corollary 10.8.3] (composition formula for de-

rived functors) repeatedly. Since ord preserves injectives, this implies the exis-

tence of a natural isomorphism

RΓ(Tn(OF,p)(b),−) ◦ ord ∼= R(Γ(Tn(OF,p)(b), ord(−))
∼= R(ordb ◦Γ(Tn(OF,p)(b),−))
∼= ordbRΓ(Tn(OF,p)(b),−).

It follows that for π as in the statement of the lemma, there is a natural

isomorphism

RΓ(Tn(OF,p)(b), ordRΓ(Nn(OF,p), π)) ∼= ordbRΓ(Tn(OF,p)(b), RΓ(Nn(OF,p), π)).
Using the first part of Lemma 5.2.7, we see that there is a natural isomorphism

RΓ(Tn(OF,p)(b), RΓ(Nn(OF,p), π)) ∼= RΓ(Bn(OF,p(b), π)).
Lemma 5.2.8 implies the existence of a natural isomorphism

ordbRΓ(Bn(OF,p)(b), π)) ∼= R(ordb Γ(Bn(OF,p)(b),−))(π)
∼= R(ordb Γ(Iwp(b, c),−))(π)
∼= ordbRΓ(Iwp(b, c), π).

This concludes the proof. �

5.2.10. The ordinary part of completed cohomology. We now apply the

formalism developed in the previous section to the cohomology groups of the

spaces XK . If K ⊂ GLn(A
∞
F ) is a good subgroup, then there are functors

ΓKp,sm : Mod(O/̟m[G∞])→ Modsm(O/̟m[G(F+
p )])

and

ΓKp,sm : Mod(O/̟m[Gp,∞ ×∆p])→ Modsm(O/̟m[∆p])

which send a module M to Γ(Kp,M)sm. If λ ∈ (Zn+)
Hom(F,E), then we define

the weight λ completed cohomology

π(Kp, λ,m) = RΓKp,smRΓ(XG,Vλ/̟m) ∈ Dsm(O/̟m[∆p]).

If KS =
∏
v 6∈S GLn(OF,v), then π(Kp, λ,m) comes equipped with a homomor-

phism

(5.2.11) TS → EndDsm(O/̟m[∆p])(π(K
p, λ,m))

and, if Kp ⊂ ∆p, a canonical TS-equivariant isomorphism

(5.2.12) RΓ(Kp, π(K
p, λ,m)) ∼= RΓ(XK ,Vλ/̟m)

inD(O/̟m). We define π(Kp,m) = RΓKp,smRΓ(XG,O/̟m) ∈ Dsm(O/̟m[G(F+
p )]);

this complex comes equipped with a homomorphism

(5.2.13) TS → End
Dsm(O/̟m[G(F+

p )])(π(K
p,m)),
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which recovers (5.2.11) in the case λ = 0 after applying the forgetful functor

to Dsm(O/̟m[∆p]). We write TS(Kp,m) for the image of (5.2.13).

Lemma 5.2.14. Let K ⊂ GLn(A
∞
F ) be a good subgroup. Then TS(Kp,m)

is a semi-local ring, complete with respect to the J-adic topology defined by

its Jacobson radical J . For each maximal ideal m ⊂ TS(Kp,m), there is

a unique idempotent em ∈ TS(Kp,m) with the property emH
∗(π(Kp,m)) =

H∗(π(Kp,m))m.

Proof. See [GN22, Lemma 2.1.14]. �

One important consequence of Lemma 5.2.14 is that the localization

π(Kp,m)m ∈ Dsm(O/̟m[G(F+
p )])

is defined.

We define the ordinary part of completed cohomology

πord(Kp, λ,m) = ordRΓ(Nn(OF,p), π(Kp, λ,m)) ∈ Dsm(O/̟m[Tn(Fp)]).

(If λ = 0, then we write simply πord(Kp,m).) Its relation to the complex

RΓK(0,c)/K(b,c)(XK(b,c),Vλ)ord defined in §5.1 is the expected one:

Proposition 5.2.15. Let K ⊂ G∞ be a good subgroup with Kv = Iwv
for each v|p and KS =

∏
v 6∈S GLn(OFv ). Let c ≥ b ≥ 0 be integers with c ≥ 1.

Then for any λ ∈ (Zn+)
Hom(F,E), there is a TS,ord-equivariant isomorphism

RΓ(Tn(OF,p)(b), πord(Kp, λ,m)) ∼= RΓK(0,c)/K(b,c)(XK(b,c),Vλ/̟m)ord

in D(O/̟m[K(0, c)/K(b, c)]). (Recall that we may identify K(0, c)/K(b, c)

with Tn(OF,p)b.)
Proof. We compute. We have a TS-equivariant isomorphism

RΓ(Tn(OF,p)(b), ordRΓ(Nn(OF,p), π(Kp, λ,m))) ∼= ordbRΓ(Iwp(b, c), π(K
p, λ,m))

in D(O/̟m[Tn(Fp)b]). We have a morphism

RΓK(0,c)/K(b,c)(XK(b,c),Vλ/̟m)ord →RΓK(0,c)/K(b,c)(XK(b,c),Vλ/̟m)

→ ordbRΓ(Iwp(b, c), π(K
p, λ,m))

inD(O/̟m[Tn(OF,p)b]). Note that we identify RΓK(0,c)/K(b,c)(XK(b,c),Vλ/̟m)

andRΓ(Iwp(b, c), π(K
p, λ,m)) inD(O/̟m[Tn(OF,p)b]). To complete the proof,

we must show that our morphism induces an isomorphism on cohomology

groups. This, in turn, reduces us to the problem of showing that if M is

an O/̟m[U ]-module, finite as O/̟m-module, andMord is the maximal direct

summand of M on which U acts invertibly, then the natural map Mord →
M →M ⊗O/̟m[U ] O/̟m[U,U−1] is an isomorphism of O/̟m-modules. This

is true (cf. [Eme10b, Lemma 3.2.1]). �
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Corollary 5.2.16 (Independence of level). Let K ⊂ GLn(A
∞
F ) be a good

subgroup with Kv = Iwv for each v|p and KS =
∏
v 6∈S GLn(OFv ). Let c ≥ b ≥ 0

be integers with c ≥ 1. Then for any λ ∈ (Zn+)
Hom(F,E), the natural morphism

RΓK(0,max(1,b))/K(b,max(1,b))(XK(b,max(1,b)),Vλ/̟m)ord → RΓK(0,c)/K(b,c)(XK(b,c),Vλ/̟m)ord

in D(O/̟m[Tn(OF,p)b]) is an isomorphism.

Proposition 5.2.17. Let K ⊂ GLn(A
∞
F ) be a good subgroup with KS =∏

v 6∈S GLn(OF,v). Then there are TS-equivariant isomorphisms in D(O/̟m[Tn(Fp)]):

πord(Kp, λ,m) ∼= ordRΓ(Nn(OF,p), RΓKp,smRΓ(XG,O(wG0 λ)/̟m))

∼= πord(Kp,m)⊗O O(wG0 λ).
Proof. By definition, we have

πord(Kp, λ,m) = ordRΓ(Nn(OF,p), RΓKp,smRΓ(XG,Vλ/̟m)).

This depends only on the image of RΓKp,smRΓ(XG,Vλ/̟m) in the category

D(O/̟m[Bn(Fp)
+]. In this category, theBn(Fp)

+-equivariant morphism Vλ →
O(wG0 λ) induces a morphism

πord(Kp, λ,m)→ ordRΓ(Nn(OF,p), RΓKp,smRΓ(XG,O(wG0 λ)/̟m)).

To show that this is an isomorphism, we just need to check that

ordRΓ(Nn(OF,p), RΓKp,smRΓ(XG,Kλ/̟m)) = 0,

where we recall that Kλ = ker(Vλ → O(wG0 λ)). This follows from the observa-

tion that for sufficiently large N ≥ 1, we have uNp Kλ/̟m = 0 (cf. the proof of

[Ger19, Proposition 2.22]). The existence of the second isomorphism follows

from the fact that Nn(OF,p) acts trivially on O(wG0 λ). �

Corollary 5.2.18 (Independence of weight). Let K ⊂ GLn(A
∞
F ) be a

good subgroup with Kv = Iwv for each v|p and KS =
∏
v 6∈S GLn(OFv ). Let

c ≥ b ≥ 0 be integers with c ≥ 1. Then for any λ, λ′ ∈ (Zn+)
Hom(F,E) such

that O(wG0 λ)/̟m ∼= O(wG0 λ′)/̟m as O/̟m[Tn(OFp)(b)]-modules, there is an

TS,ord-equivariant isomorphism

RΓK(0,c)/K(b,c)(XK(b,c),Vλ/̟m)ord

∼= RΓK(0,c)/K(b,c)(XK(b,c),Vλ′/̟m)ord ⊗O O(wG0 λ)⊗O O((wG0 λ′)−1)

in D(O/̟m[Tn(Fp)b]).

Proof. Combine Propositions 5.2.15 and 5.2.17. �
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5.2.19. Results for the group ‹G. We recall that by assumption each p-adic

place of F+ splits in F , and that we have fixed for each place v ∈ Sp of F+ a

lift ṽ ∈ S̃p to a place of F . These choices determine an isomorphism
∏

v∈Sp

ιṽ : ‹G(F+
p ) ∼=

∏

v∈Sp

GL2n(Fṽ).

We have also fixed a maximal torus and Borel subgroup T ⊂ B ⊂ ‹G which

correspond under this isomorphism to T2n ⊂ B2n ⊂ GL2n. The theory of §5.2.1

can thus be easily generalized to study the completed cohomology of ‹G. Since
we will need to do this only in passing on our way to analyzing the complexes

πord(Kp, λ,m), we just give some brief indications. We will use some of the

Hecke operators and open compact subgroups defined in §2.2.4. We define

‹TS,ord =
‹TS ⊗O OJT (OF+,p)K[{‹Uv,1, . . . ,‹Uv,2n,‹U−1v,2n}v∈Sp ]

({‹Uvc,i − ‹Uv,2n−i‹U−1v,2n} v∈Sp

i=1,...,2n

)
.

We define ‹Uv = ‹Uv,1‹Uv,2 · · ·‹Uv,n−1 and ‹Up =
∏
v∈Sp

‹Uv ∈ ‹TS,ord. If ‹K ⊂
‹G(A∞F+) is a good subgroup with ‹Kv = Ĩwv for each v ∈ Sp, and c ≥ b ≥ 0

are integers with c ≥ 1, then we define ‹K(b, c) to be the good subgroup

with ‹K(b, c)v = ‹Kv if v 6∈ Sp and ‹K(b, c)v = Ĩwv(b, c) otherwise. If λ̃ ∈
(Z2n

+ )Hom(F+,E), then there is a well-defined direct summandRΓ‹K(0,c)/‹K(b,c)
(‹X‹K(b,c)

,V
λ̃
)ord

of RΓ‹K(0,c)/‹K(b,c)
(‹X‹K(b,c)

,V
λ̃
) on which ‹Up acts invertibly, and we define

‹T(‹K(b, c), λ̃)ord = ‹TS,ord(RΓ‹K(0,c)/‹K(b,c)
(‹X‹K(b,c)

,V
λ̃
)ord)

(i.e. the image of the‹TS,ord in the endomorphism algebra inD(O[‹K(0, c)/‹K(b, c)])

of this direct summand).

To compare Hida theory for ‹G and for GLn, we recall that the Levi sub-

group G of ‹G is identified with ResOF /OF+
GLn, which in particular identifies T

with ResOF /OF+
Tn. We extend the homomorphism S : ‹TS → TS (defined by

equation (2.1.8)) to a homomorphism ‹TS,ord → TS,ord, also denoted S, using
the identification

OJT (OF+,p)K ∼= OJTn(OF,p)K,
and by sending each operator ‹Uv,i to the operator Uvc,n−iU

−1
vc,n (if 1 ≤ i ≤ n)

and U−1vc,nUv,i−n (if n+1 ≤ i ≤ 2n). Note that these respective Hecke operators

are double coset operators for elements of T (F+
p ) and Tn(Fp) which match

under our identification T (F+
p ) = Tn(Fp).

We write T (F+
p )+ ⊂ T (F+

p ) for the submonoid of elements which are

contracting on N(OF+,p). Under our identification T (F+
p ) = Tn(Fp), we

have T (F+
p )+ ⊂ Tn(Fp)

+ (and the inclusion is strict provided n ≥ 2). Let
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Ĩwp(b, c) =
∏
v∈Sp

Ĩwv(b, c). We recall (§2.2.4) that we have defined ‹∆p =

Ĩwp(b, c)T (F
+
p )+ Ĩwp(b, c), an open submonoid of ‹G(F+

p ), and that we have

defined an action ·p of this monoid on V
λ̃
. If b ≥ 0 is an integer then we

define T (OF+,p)(b) = Tn(OF,p)(b) and write B(OF+,p)(b) for the pre-image

in B(OF+,p) of T (OF+,p)(b) under the natural projection to T . We define

B(F+
p )+ = N(OF+,p) · T (F+

p )+.

Fix m ≥ 1. If ‹K ⊂ ‹G(A∞F+) is a good subgroup with ‹Kv = Ĩwv for each

v ∈ Sp and λ̃ ∈ (Z2n
+ )Hom(F+,E), then we define

(5.2.20) π̃(‹Kp, λ̃,m) = RΓ‹Kp,sm
RΓ(X‹G,Vλ̃/̟

m) ∈ Dsm(O/̟m[‹∆p]).

If ‹KS = ‹G(“OSF+), then this complex comes equipped with a homomorphism

(5.2.21) ‹TS → End
Dsm(O/̟m[‹∆p])

(π̃(‹Kp, λ,m)).

We define π̃(‹Kp,m) = RΓ‹Kp,sm
RΓ(X‹G,O/̟m) ∈ Dsm(O/̟m[‹G(F+

p )]); this

complex comes equipped with a homomorphism

(5.2.22) ‹TS → End
Dsm(O/̟m[‹G(F+

p )])
(π̃(‹Kp,m))

that recovers (5.2.21) after applying the forgetful functor induced by the in-

clusion ‹∆p ⊂ ‹G(F+
p ). We also need the completed boundary cohomology. We

thus define

(5.2.23) π̃∂(‹Kp, λ̃,m) = RΓ‹Kp,sm
RΓ(∂X‹G,Vλ̃/̟

m) ∈ Dsm(O/̟m[‹∆p]).

This complex comes equipped with a homomorphism

(5.2.24) ‹TS → End
Dsm(O/̟m[‹∆p])

(π̃∂(‹Kp, λ̃,m)).

We define π̃∂(‹Kp,m) = RΓ‹Kp,sm
RΓ(∂X‹G,O/̟m) ∈ Dsm(O/̟m[‹G(F+

p )]); this

complex comes equipped with a homomorphism

(5.2.25) ‹TS → End
Dsm(O/̟m[‹G(F+

p )])
(π̃∂(‹Kp,m)).

If c ≥ b ≥ 0 are integers with c ≥ 1, then there are canonical ‹TS,ord-equivariant

isomorphisms

(5.2.26) RΓ(Ĩwp(b, c), π̃(‹Kp, λ̃,m)) ∼= RΓ(‹X‹K(b,c)
,V

λ̃
/̟m)

and

(5.2.27) RΓ(Ĩwp(b, c), π̃∂(‹Kp, λ̃,m)) ∼= RΓ(∂‹X‹K(b,c)
,V

λ̃
/̟m)

in D(O/̟m). We define the ordinary part of completed and completed bound-

ary cohomology:

π̃ord(‹Kp, λ̃,m) = ordRΓ(N(OF+,p), π̃(‹Kp, λ̃,m)) ∈ Dsm(O/̟m[T (F+
p )])
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and

π̃ord∂ (‹Kp, λ̃,m) = ordRΓ(N(OF+,p), π̃∂(‹Kp, λ̃,m)) ∈ Dsm(O/̟m[T (F+
p )]).

If λ̃ = 0, then we omit it from the notation. We have the following result,

which contains the analogues of some of the results in §5.2.10 for the group ‹G.

The proofs are entirely similar, so are omitted.

Proposition 5.2.28. Let ‹K ⊂ ‹G(A∞F+) be a good subgroup with ‹Kv =

Ĩwv for each Sp and ‹KS = ‹G(“OSF+). Let c ≥ b ≥ 0 be integers with c ≥ 1.

Then for any λ̃ ∈ (Z2n
+ )Hom(F+,E), there are ‹TS,ord-equivariant isomorphisms

RΓ(T (OF+,p)(b), π̃
ord(‹Kp, λ̃,m)) ∼= RΓ(T (OF+,p)(b),O(w

‹G
0 λ̃)⊗O π̃ord(‹Kp,m))

∼= RΓ‹K(0,c)/‹K(b,c)
(‹X‹K(b,c)

,V
λ̃
/̟m)ord

and

RΓ(T (OF+,p)(b), π̃
ord
∂ (‹Kp, λ̃,m)) ∼= RΓ(T (OF+,p)(b),O(w

‹G
0 λ̃)⊗O π̃ord∂ (‹Kp,m))

∼= RΓ‹K(0,c)/‹K(b,c)
(∂‹X‹K(b,c)

,V
λ̃
/̟m)ord

in Dsm(O/̟m[‹K(0, c)/‹K(b, c)]).

5.3. The ordinary part of a parabolic induction. In this subsection, we

compute the ordinary part (in the sense defined above) of a parabolic induc-

tion from G to ‹G, with the aim of understanding the ordinary part of the

cohomology of the boundary of the Borel–Serre compactification of ‹X‹K in

terms of the ordinary part of the cohomology of XK . Our calculations here

are purely local; the global application will be carried out in §5.4 below.

Let v be a p-adic place of F+. In this section, we write rWv =W (‹GF+
v
, TF+

v
),

rWP,v = W (GF+
v
, TF+

v
), and rWP

v ⊂ rWv for the set of representatives for the

quotient rWP,v\rWv which is associated to the choice of Borel subgroup BF+
v
.

We define rW =
∏
v∈Sp

rWv,
rWP =

∏
v∈Sp

rWP,v, and
rWP =

∏
v∈Sp

rWP
v .

Thus rW is the relative Weyl group of the group (ResF+/QG)Qp . Note that

in §4 we made use of the absolute Weyl group W ; there is a natural inclusion
rW ⊂ W , by which rW acts on e.g. the group X∗((ResF+/Q T )E). We write

lr(w) for the length of an element w ∈ rW as an element of the relative Weyl

group, and l(w) for its length as an element of the absolute Weyl group. Thus

wP0 , the longest element of WP (equivalently, of rWP ) has lr(w
P
0 ) = |Sp|n2

and l(wP0 ) = [F+ : Q]n2. As in §4, we write ρ ∈ X∗((ResF+/Q T )E) for the

half-sum of the (ResF+/QB)E-positive roots.

We recall (cf. §2.2.1) that P denotes the Siegel parabolic of ‹G, which has

unipotent radical U , while the Borel subgroup B has unipotent radical N . We
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identify G with ResF/F+ GLn; this group has standard Borel ResF/F+ Bn with

unipotent radical ResF/F+ Nn. The parabolic induction functor

Ind
‹G(F+

p )

P (F+
p )

: Modsm(O/̟m[P (F+
p )])→ Modsm(O/̟m[‹G(F+

p )])

is exact and preserves injectives (it is right adjoint to the exact restriction

functor Res
‹G(F+

p )

P (F+
p )

). We now define several more functors which are related to

parabolic induction.

We identify rW with the subgroup of permutation matrices of ‹G(F+
p ) =∏

ṽ∈S̃p
GL2n(Fṽ). We recall (cf. [BT65, Cor. 5.20]) that there is a (set-

theoretic) decomposition

‹G(F+
p ) =

⊔

w∈rWP

P (F+
p )wB(F+

p ).

If w ∈ rWP , then we define Sw = P (F+
p )wN(F+

p ) and S◦w = P (F+
p )wN(OF+,p) ⊂

Sw. The closure Sw of Sw in ‹G(F+
p ) can be described in terms of the Bruhat

ordering of rWP :

Sw =
⊔

w′≤w

Sw′ .

Note that if w′ < w, then lr(w
′) < lr(w). For an integer i ≥ 0, we define

‹G≥i =
⊔

w∈rWP

lr(w)≥i

Sw.

It is an open subset of ‹G(F+
p ) which is invariant under left multiplication by

P (F+
p ) and right multiplication by B(F+

p ).

If i ≥ 0, then we define a functor

I≥i : Modsm(O/̟m[P (F+
p )])→ Modsm(O/̟m[B(F+

p )])

by sending π to

I≥i(π) = {f : ‹G≥i → π | f locally constant, of compact support modulo P (F+
p ),

∀p ∈ P (F+
p ), g ∈ ‹G≥i, f(pg) = pf(g)},

where B(F+
p ) acts by right translation. If w ∈ rWP , then we define a functor

Iw : Modsm(O/̟m[P (F+
p )])→ Modsm(O/̟m[B(F+

p )])

by sending π to

Iw(π) = {f : Sw → π | f locally constant, of compact support modulo P (F+
p ),

∀p ∈ P (F+
p ), g ∈ Sw, f(pg) = pf(g)},

where again B(F+
p ) acts by right translation. We define a functor

I◦w : Modsm(O/̟m[P (F+
p )])→ Modsm(O/̟m[B(F+

p )+])
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by defining I◦w(π) ⊂ Iw(π) to be the set of functions with support in S◦w.

Proposition 5.3.1. (1) I≥0 = Res
‹G(F+

p )

B(F+
p )
◦ Ind‹G(F+

p )

P (F+
p )

.

(2) Each functor I≥i, Iw and I◦w is exact.

(3) For each integer i ≥ 0 and each π ∈ Modsm(O/̟m[P (F+
p )]), there is

a functorial exact sequence

0→ I≥i+1(π)→ I≥i(π)→ ⊕w∈rWP

lr(w)=i

Iw(π)→ 0.

Proof. The first part is the definition of induction. For the second part,

denote by I any of the functors appearing in the statement. To see the exact-

ness of I, choose a continuous section to the map ‹G(F+
p ) → P (F+

p )\‹G(F+
p )

(the existence of such a section is explained in [Hau16, §2.1]). This allows us

to functorially identify I(π) with the space of locally constant and compactly

supported functions from a subset C ⊂ P (F+
p )\‹G(F+

p ) to π. The formation of

locally constant and compactly supported functions is exact. The third part

is proved in the same way as [Hau16, Proposition 2.1.3]. �

It follows that for any π ∈ Dsm(O/̟m[P (F+
p )]), there is a functorial

distinguished triangle

(5.3.2) I≥i+1(π)→ I≥i(π)→ ⊕w∈rWP

lr(w)=i

Iw(π)→ I≥i+1(π)[1]

in Dsm(O/̟m[B(F+
p )]).

Lemma 5.3.3. Let π ∈ Dsm(O/̟m[P (F+
p )]) be a bounded below complex,

and fix an integer b ≥ 0. Let λ̃ ∈ (Z2n
+ )Hom(F+,E). Then for any i ≥ 0 and any

j ∈ Z, the sequence

0→ RjΓ(B(OF,p)(b),O(w‹G0 λ̃)⊗O I≥i+1(π))

→ RjΓ(B(OF,p)(b),O(w‹G0 λ̃)⊗O I≥i(π))

→ RjΓ(B(OF,p)(b),⊕w∈rWP

lr(w)=i

O(w‹G0 λ̃)⊗O Iw(π))→ 0

in Mod(O/̟m[T (F+
p )+b ]) associated to (5.3.2) is exact.

Proof. It suffices to show exactness after applying the exact forgetful func-

tor to Mod(O/̟m). We consider decompositions ‹G≥i = U1 ⊔U2 where U1, U2

are open sets which are invariant under left multiplication by P (F+
p ) and right

multiplication by B(OF+,p), and such that U1 ⊂ ‹G≥i+1. Any such decompo-

sition determines a functorial decomposition I≥i(π) = IU1(π) ⊕ IU2(π), where

IU1 denotes functions with support in U1, and similarly for U2. This decompo-

sition exists in the category Modsm(O/̟m[B(OF+,p)]). We see in particular
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that for any bounded below complex π ∈ Dsm(O/̟m[P (F+
p )]), the associated

morphism

RjΓ(B(OF,p)(b),O(w‹G0 λ̃)⊗O IU1(π))→ RjΓ(B(OF,p)(b),O(w‹G0 λ̃)⊗O I≥i(π))
in Mod(O/̟m) is injective. Since I≥i+1 is the filtered direct limit of the IU1

(which can be proven by following the same technique as in the proof of [Hau16,

Prop. 2.2.3]), it follows that the morphism

RjΓ(B(OF,p)(b),O(w‹G0 λ̃)⊗O I≥i+1(π))→ RjΓ(B(OF,p)(b),O(w‹G0 λ̃)⊗O I≥i(π))
is injective. Since this applies for any j ∈ Z, the exactness of the long exact

sequence in cohomology attached to the distinguished triangle (5.3.2) implies

that the sequence in the statement of the lemma is indeed a short exact se-

quence. �

Lemma 5.3.4. Let w ∈ rWP . Then :

(1) I◦w takes injectives to Γ(N(OF+,p),−)-acyclics.
(2) Let π ∈ Dsm(O/̟m[P (F+

p )]) be a bounded below complex. Then there

is a natural isomorphism

ordRΓ(N(OF+,p), I
◦
w(π))

∼= ordRΓ(N(OF+,p), Iw(π)).

Proof. For the first part, let π ∈ Modsm(O/̟m[P (F+
p )]), and fix an

O/̟m-embedding π →֒ I, where I is an injective O/̟m-module. Then there is

an embedding π →֒ Ind
P (F+

p )
1 I of O/̟m[P (F+

p )]-modules. We will show that

I◦w(Ind
P (F+

p )
1 I) is an injective smooth O/̟m[N(OF+,p)]-module. By [Eme10b,

Lem. 2.1.10], this will show the first part of the lemma.

Let C∞(P (F+
p )wN(OF+,p), I) denote the set of locally constant functions

F : P (F+
p )wN(OF+,p) → I. It is an injective smooth O/̟m[N(OF+,p)]-

module when N(OF+,p) acts by right translation. There is a natural isomor-

phism

I◦w(Ind
P (F+

p )
1 I) ∼= C∞(P (F+

p )wN(OF+,p), I),

which sends a function f : P (F+
p )wN(OF+

p
) → Ind

P (F+
p )

1 I to the function

F : P (F+
p )wN(OF+

p
) → I given by the formula F (x) = f(x)(1). This proves

the first part of the lemma.

For the second part, we note that we may define an exact functor

Jw : Modsm(O/̟m[P (F+
p )])→ Modsm(O/̟m[B(F+

p )+])

by the formula Jw(π) = Iw(π)/I
◦
w(π). Then for a bounded below complex

π ∈ Dsm(O/̟m[P (F+
p )]) there is a natural distinguished triangle

ordRΓ(N(OF+,p), I
◦
w(π))→ ordRΓ(N(OF+,p), Iw(π))→ ordRΓ(N(OF+,p), Jw(π))

→ ordRΓ(N(OF+,p), I
◦
w(π))[1].
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To prove the desired result, it is therefore enough to show that

ordRΓ(N(OF+,p), Jw(π)) = 0.

It is even enough to show that for any π ∈Modsm(O/̟m[P (F+
p )]) and for any

j ∈ Z, we have ordHj(N(OF+,p), Jw(π)) = 0, and this can be proved in the

same way as [Hau16, Lemme 3.3.1]. Indeed, it suffices to choose an element t ∈
T (F+

p )+, as in [Hau16, Lemme 3.1.3], such that Sw = ∪k≥0t−kS◦wtk. It follows
that t acts locally nilpotently on Jw(π), and consequently that each element of

H i(N(OF+,p), Jw(π)) is annihilated by the Hecke action of a sufficiently high

power of t. �

If w ∈ rWP , we define Nw = P (F+
p ) ∩ wN(OF+,p)w

−1. It is a compact

subgroup of P (F+
p ) which contains Nn(OF,p). We define a functor

Γ(Nw,−) : Modsm(O/̟m[P (F+
p )])→ Modsm(O/̟m[T (F+

p )+]),

where an element t ∈ T (F+
p )+ acts by the formula t · v = trtwNw(tw)−1/Nw

(twv)

(t ∈ T (F+
p )+). Note that this makes sense because twNw(t

w)−1 = P (F+
p ) ∩

wtN(OF+,p)t
−1w−1 ⊂ Nw. Note as well that wT (F+

p )+w−1 ⊂ Tn(Fp)
+ (by

definition of rWP ).

Lemma 5.3.5. Let w ∈ rWP and let π ∈ Dsm(O/̟m[P (F+
p )]) be a

bounded below complex. Then there is a natural isomorphism

RΓ(N(OF+,p), I
◦
w(π))

∼= RΓ(Nw, π).

Proof. By the first part of Lemma 5.3.4, it’s enough to show that there is

a natural isomorphism of underived functors

Γ(N(OF+,p), I
◦
w(−)) ∼= Γ(Nw,−).

The map sends an N(OF+,p)-invariant function f : P (F+
p )wN(OF+,p) → π

to the value f(w) ∈ πNw . It is easy to see that this is an isomorphism of

O/̟m-modules; what we need to check is that it is equivariant for the action of

T (F+
p )+. In other words, we need to check that for any f ∈ Γ(N(OF+,p), I

◦
w(π)),

we have

(5.3.6)
∑

n∈N(OF+,p)/tN(OF+ ,p)t
−1

f(wnt) =
∑

m∈Nw/twNw(tw)−1

mwtw−1f(w).

Conjugation by w−1 determines a mapNw/t
wNw(t

w)−1 → N(OF+,p)/tN(OF+,p)t
−1,

which is easily seen to be injective. On the other hand, if n ∈ N(OF+,p) and

f(wnt) 6= 0, then the class of n is in the image of this map; indeed, f(wnt)

can be non-zero only if wnt ∈ P (F+
p )wN(OF+,p), in which case we write

wnt = qwm, with q ∈ P (F+
p ) and m ∈ N(OF+,p), hence n = w−1qwt−1tmt−1.
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As w−1qwt−1 ∈ w−1P (F+
p )w ∩N(OF+,p) this shows that n is in the image of

this map. It follows that we can rewrite the left-hand side of (5.3.6) as

∑

m∈Nw/twNw(tw)−1

f(mwt) =
∑

m∈Nw/twNw(tw)−1

mwtw−1f(w),

which equals the right-hand side of (5.3.6). �

For the statement of the next lemma, we define, for any w ∈ rWP , a

character χw : T (F+
p )→ O× by the formula

χw(t) =
NF+

p /Qp
detF+

p
(Ad(tw)|LieU(F+

p )∩wN(F+
p )w−1)−1

|NF+
p /Qp

detF+
p
(Ad(tw)|LieU(F+

p )∩wN(F+
p )w−1)|p

.

Note that there is an isomorphism O(χw) ∼= O(−ρ + w−1wP0 (ρ)) ⊗O O(αw)
of O[T (F+

p )]-modules, where wP0 = wG0 w
‹G
0 is the longest element of rWP ,

and where αw : T (F+
p ) → O× is the character which is trivial on T (OF+,p)

and which satisfies the identity αw(t) = χw(t) for any element of the form

t = ι−1v (diag(̟a1
v , . . . ,̟

a2n
v )) (ai ∈ Z). We also write

τw : Modsm(O/̟m[Tn(Fp)])→ Modsm(O/̟m[Tn(Fp)])

for the functor which sends a module π to τw(π) = π, with action τw(π)(t)(v) =

π(tw
−1
)(v).

Lemma 5.3.7. Let w ∈ rWP and let π ∈ Dsm(O/̟m[G(F+
p )]) be a

bounded below complex. Then there is a natural isomorphism between the fol-

lowing two complexes in Dsm(O/̟m[Tn(Fp)]):

ordRΓ(Nw, Inf
P (F+

p )

G(F+
p )
π)

and

O/̟m(χw)⊗O/̟m τ−1w ordRΓ(Nn(OF,p), π)[−[F+ : Q]n2 + l(w)].

Proof. Let Nw ⋊w T (F
+
p )+ denote the monoid Nw × T (F+

p )+, equipped

with multiplication (twn(tw)−1, 1)(1, t) = (1, t)(n, 1) (where the product twn(tw)−1

is formed using the usual multiplication of the group ‹G(F+
p )). Let Nw,U =

Nw ∩ U(F+
p ). Then there is a short exact sequence

0→ Nw,U → Nw → Nn(OF,p)→ 0
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which is equivariant for the conjugation action of T (F+
p )+ via the map T (F+

p )+ →
Tn(Fp)

+, t 7→ tw. We consider the diagram, commutative up to natural iso-

morphism:

Modsm(O/̟m[P (F+
p )])

Resw

��

Modsm(O/̟m[Nw ⋊w T (F
+
p )+])

ΓNw,U

��

Modsm(O/̟m[Nn(OF,p)⋊w T (F
+
p )+])

α
//

ΓNn(OF,p)

��

Modsm(O/̟m[Nn(OF,p)⋊ Tn(Fp)
+])

ΓNn(OF,p)

��

Modsm(O/̟m[T (F+
p )+])

β
//

τw◦ord

,,❳❳
❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

❳

Modsm(O/̟m[Tn(Fp)
+])

ord
��

Modsm(O/̟m[Tn(Fp)]).

In this diagram we have abbreviated e.g. Γ(Nw,U ,−) = ΓNw,U
. We also ab-

breviate InfPG = Inf
P (F+

p )

G(F+
p )

. The torus action on e.g. ΓNw,U
is defined in the

usual way (cf. [Hau16, §3.2]). The exact functor Resw is defined by taking

Resw(π) = π as an O/̟m-module, with Resw(π)(nt)(v) = π(ntw)(v). We also

use Resw to denote the functor Resw ◦ InfPG. The α is the composite of the

equivalence

Modsm(O/̟m[Nn(OF,p)⋊wT (F
+
p )+])→ Modsm(O/̟m[Nn(OF,p)⋊wT (F+

p )+w−1])

induced by the map nt ∈ Nn(OF,p)⋊wT (F+
p )+w−1 7→ (n, tw

−1
) ∈ Nn(OF,p)⋊w

T (F+
p )+ with the localization

Modsm(O/̟m[Nn(OF,p)⋊wT (F+
p )+w−1])→ Modsm(O/̟m[Nn(OF,p)⋊Tn(Fp)+])

induced by the inclusion wT (F+
p )+w−1 ⊂ Tn(Fp)+. Similarly, the functor β is

the composite of the equivalence

Modsm(O/̟m[T (F+
p )+])→ Modsm(O/̟m[wT (F+

p )+w−1])

with the localization

Modsm(O/̟m[wT (F+
p )+w−1])→ Modsm(O/̟m[Tn(Fp)

+]).

Note that α takes injectives to ΓNn(OF,p)-acyclics; this can be deduced from

[Eme10b, Prop. 2.1.3], using the compactness of Nn(OF,p) and the observa-

tion that this localization can be thought of as a direct limit. Note that the

composite of all left vertical arrows is the functor ΓNw .
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Let π now be as in the statement of the lemma. We compute

ordRΓ(Nw, Inf
P
G π) = ordβRΓNn(OF,p)RΓNw,U

Resw InfPG π

= ordRΓNn(OF,p)αRΓNw,U
Resw InfPG π.

Since U(F+
p ) acts trivially on π, there is an isomorphism

RΓNw,U
Resw InfPG π

∼= Resw(π)⊗O/̟m RΓ(Nw,U ,O/̟m)

in Dsm(O/̟m[Nn(OF,p) ⋊w T (F
+
p )+]). To go further, we need to compute

the complex αRΓ(Nw,U ,O/̟m). To this end, we consider the action of the

element

zp = diag(p, . . . , p, 1, . . . , 1) ∈ T (F+
p )+

(where there are n entries equal to p and n entries equal to 1; note that this

element depends on our choice of set S̃p, which determines the identification of
‹G(F+

p ) with
∏
v∈Sp

GL2n(F
+
v )). It is in the centre of G(F+

p ), and is therefore

invertible in Tn(Fp)
+. Its action on the cohomology groups H i(Nw,U ,O/̟m)

is the one induced by its natural conjugation action on Nw,U ; in other words,

multiplication by p on this abelian group. The group Nw,U has rank n2[F+ :

Q]− l(w) as Zp-module, from which it follows that the Hecke action of zp on

H i(Nw,U ,O/̟m) factors through multiplication by pn
2[F+:Q]−l(w)−i (0 ≤ i ≤

n2[F+ : Q]− l(w)). The cohomology groups below the top degree i = n2[F+ :

Q] − l(w) therefore vanish after applying the functor α, and it follows from

[Hau16, Prop. 3.1.8] that

αRΓ(Nw,U ,O/̟m) ∼= O/̟m((χw)
w)[−[F+ : Q]n2 + l(w)]

∼= αO/̟m(χw)[−[F+ : Q]n2 + l(w)],

hence that

βRΓNw Resw InfPG π
∼= βRΓNn(OF,p)Res

w π⊗O/̟mO/̟m(χw)[−[F+ : Q]n2+l(w)].

We finally see that ordRΓ(Nw, Inf
P
G π) is isomorphic to

τ−1w ord βRΓNn(OF,p)Res
w π ⊗O/̟m O/̟m(χw)[−[F+ : Q]n2 + l(w)]

∼= O/̟m(χw)⊗O/̟m τ−1w ordRΓNn(OF,p)π[−[F+ : Q]n2 + l(w)]. �

Proposition 5.3.8. Let w ∈ rWP and let π ∈ Dsm(O/̟m[G(F+
p )]) be

a bounded below complex. Then there is a natural isomorphism between the

following two complexes in Dsm(O/̟m[Tn(Fp)]):

ordRΓ(N(OF+,p), Iw(Inf
P (F+

p )

G(F+
p )
π))

and

O/̟m(χw)⊗O/̟m τw−1 ordRΓ(Nn(OF,p), π)[−[F+ : Q]n2 + l(w)].
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Proof. This follows on combining Lemma 5.3.4, Lemma 5.3.5, and Lemma

5.3.7. �

5.4. The degree shifting argument. In this section, we give the analogue

for completed cohomology of the results of §4.2, by relating the completed

cohomology of X to the completed cohomology of the boundary ∂‹X . The

statement is simpler for completed cohomology than for cohomology at finite

level because the contribution of the unipotent radical of the Siegel parabolic

vanishes in the limit.

Theorem 5.4.1. Let ‹K ⊂ ‹G(A∞F+) be a good subgroup which is decom-

posed with respect to P . Let m ⊂ TS be a non-Eisenstein maximal ideal, and let

m̃ = S∗(m) ⊂ ‹TS . Then the complex Ind
‹G(F+

p )

P (F+
p )
π(Kp,m)m is a ‹TS-equivariant

direct summand of the complex π̃∂(‹Kp,m)m̃ in Dsm(O/̟m[‹G(F+
p )]).

Here and below we have written π(Kp,m)m for the complex previously

denoted Inf
P (F+

p )

G(F+
p )
π(Kp,m)m in order to lighten the notation.

Proof. We first show that there is a ‹TS-equivariant isomorphism

(RΓ‹Kp,sm
RΓ(Ind

‹G∞

P∞ XP ,O/̟m))m̃ ∼= (RΓ‹Kp,sm
RΓ(∂X‹G,O/̟

m))m̃ = π̃∂(‹Kp,m)m̃.

As in the proof of Theorem 2.4.2, it suffices to show that for each standard

proper parabolic subgroup Q ⊂ ‹G with Q 6= P , we have

H∗(RΓ‹Kp,sm
RΓ(Ind

‹G∞

Q∞ XQ, k))m̃) = lim−→‹K ′
p

H∗(‹XQ
‹Kp‹K ′

p

, k)m̃ = 0.

This follows from the corresponding finite level statement, which has already

been proved in the course of the proof of Theorem 2.4.2.

We therefore need to compute RΓ‹Kp,sm
RΓ(Ind

‹G∞

P∞ XP ,O/̟m). We will

in fact show that this complex admits Ind
‹G(F+

p )

P (F+
p )
RΓKp,smRΓ(XG,O/̟m) as a

‹TS-equivariant direct summand in Dsm(O/̟m[‹G(F+
p )]), where ‹TS acts on the

latter complex via the map S.
To see this, we compute

RΓ‹Kp,sm
RΓ(Ind

‹G∞

P∞ XP ,O/̟m)) ∼= RΓ‹Kp,sm
Ind

‹G∞

P∞ RΓ(XP ,O/̟m)

∼= ⊕g∈P (F+)\‹GS−Sp/
‹KS−Sp

Ind
‹G(F+

p )

P (F+
p )
RΓ‹Kp

P ,sm
ResP

∞

PS−Sp×g‹KP,S−Spg
−1 RΓ(XP ,O/̟m).
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Taking the summand corresponding to g = 1, we see that it will be enough to

exhibit an isomorphism

RΓ‹Kp
P ,sm

ResP
∞

PS−Sp×‹KP,S−Sp

RΓ(XP ,O/̟m)

∼= Inf
P (F+

p )

G(F+
p )
RΓKp,smResG

∞

GS−Sp×KS−Sp
RΓ(XG,O/̟m).

Let us write

ΓP -sm : Mod(O/̟m[P (F+
p )])→ Modsm(O/̟m[P (F+

p )]),

ΓU -sm : Mod(O/̟m[P (F+
p )])→ ModU -sm(O/̟m[P (F+

p )]),

and

ΓG-sm : Mod(O/̟m[G(F+
p )])→ Modsm(O/̟m[G(F+

p )])

for the functors of P , U and G-smooth vectors, respectively. The target cate-

gory for the second functor is O/̟m[P (F+
p )]-modules with a smooth action of

U(F+
p ). These functors are all right adjoint to forgetful functors, and therefore

preserve injectives. The restriction of ΓP -sm to ModU -sm(O/̟m[P (F+
p )]) is the

same as taking G-smooth vectors.

Unpacking the above, we see that it is enough to construct a Hecke-

equivariant isomorphism

Inf
P (F+

p )

G(F+
p )
RΓG-smH

0(G(F+)\G(A∞F+)/K
p,O/̟m)

→ RΓP -smH
0(P (F+)\P (A∞F+)/‹Kp

P ,O/̟m).

(5.4.2)

The morphism (5.4.2) is constructed using the canonical natural transforma-

tion Inf
P (F+

p )

G(F+
p )
◦RΓG-sm → RΓP -sm◦InfP (F+

p )

G(F+
p )

([NT16, Lemma 2.1]), and the mor-

phism Inf
P (F+

p )

G(F+
p )
H0(G(F+)\G(A∞F+)/K

p,O/̟m)→ H0(P (F+)\P (A∞F+)/‹Kp
P ,O/̟m)

given by inflation of functions. The Hecke-equivariance follows from [NT16,

Corollary 2.8].

To show that (5.4.2) is an isomorphism, it will be enough to show that

RΓU -smH
0(P (F+)\P (A∞F+)/‹Kp

P ,O/̟m) ∼= Inf
P (F+

p )

G(F+
p )
H0(G(F+)\G(A∞F+)/K

p,O/̟m).

Indeed, we can then take the derived functor of G-smooth vectors on both sides

to obtain (5.4.2) — this operation commutes with inflation from G to P , since

(the inflation of) a G-injective is acyclic for the functor of G-smooth vectors.

However, the cohomology groups of the left-hand side here can be com-

puted as

lim−→
Vp⊂U(F+

p )

∏

g∈G(F+)\G(A∞
F+ )/Kp

H i(Vp,H
0(U(F+)\U(A∞F+)/‹Kp

U ,O/̟m),
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the limit running over all open compact subgroups Vp ⊂ U(F+
p ).

Using strong approximation, we compute

H i(Vp,H
0(U(F+)\U(A∞F+)/‹Kp

U ,O/̟m)) = H i(U(F+) ∩ (‹Kp
UVp),O/̟m).

Taking the limit, we get a product of copies of O/̟m in degree 0, and 0 in all

higher degrees. This completes the proof. �

Combining this theorem with the results of the previous section, we obtain

the following.

Theorem 5.4.3. Let ‹K ⊂ ‹G(A∞F+) be a good subgroup which is decom-

posed with respect to P , and such that ‹Kv = Iwv for each place v ∈ Sp. Let

λ̃ ∈ (Z2n
+ )Hom(F+,E), let w ∈ rWP , and let λw = w(λ̃+ ρ)− ρ ∈ (Zn+)

Hom(F,E).

Let m ⊂ TS be a non-Eisenstein maximal ideal, and let m̃ = S∗(m). Fix in-

tegers c ≥ b ≥ 0 with c ≥ 1. Then for any j ∈ Z, S descends to a surjective

homomorphism

‹TS,ord(Hj(∂‹X‹K(b,c)
,V

λ̃
)ordm̃ )→ TS,ord(O(α

wG
0 ww

‹G
0

)⊗Oτ−1
wG

0 ww
‹G
0

Hj−l(w)(XK(b,c),Vλw)ordm ).

Proof. Let m ≥ 1. To save space, we abbreviate functors Γ(H,−) of H-

invariants as ΓH . By Theorem 5.4.1, Lemma 5.2.6, and Proposition 5.2.28, the

complex

RΓ‹K(0,c)/‹K(b,c)
(∂‹X‹K(b,c)

,V
λ̃
/̟m)ordm̃

admits the complex

ordbRΓT (OF+,p)(b)
O(w‹G0 λ̃)⊗O RΓN(OF+,p)

Ind
‹G(F+

p )

P (F+
p )
π(Kp,m)m̃

as a ‹TS,ord-equivariant direct summand. These direct sum decompositions are

compatible as m varies, so after passing to the inverse limit we get a surjection

of ‹TS,ord-algebras:

‹TS,ord(Hj(∂‹X‹K(b,c)
,V

λ̃
)ordm̃ )

→ ‹TS,ord(lim←−
m

ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
Ind

‹G(F+
p )

P (F+
p )
π(Kp,m)m̃).

(5.4.4)

On the other hand, it follows from Lemma 5.3.3 that for any i ≥ 0, we have a

short exact sequence of ‹TS,ord-modules:

0→ ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
I≥i+1π(K

p,m)m̃

→ ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
I≥iπ(K

p,m)m̃

→ ⊕w∈rWP

lr(w)=i

ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
Iwπ(K

p,m)m̃ → 0.
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These are compatible as m varies, and the cohomology groups are finitely gen-

erated O-modules, so we can pass to the limit to obtain short exact sequences

of O-modules. It follows that for any i ≥ 0 and any element w ∈ rWP of

length lr(w) = i, there are surjective homomorphisms of ‹TS,ord-algebras

‹TS,ord(lim←−
m

ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
I≥iπ(K

p,m)m̃)

→ ‹TS,ord(lim←−
m

ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
I≥i+1π(K

p,m)m̃)

(5.4.5)

and

‹TS,ord(lim←−
m

ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
I≥iπ(K

p,m)m̃)

→ ‹TS,ord(lim←−
m

ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
Iwπ(K

p,m)m̃).

(5.4.6)

By definition, I≥0π(K
p,m) is (the restriction to B(F+

p ) of) Ind
‹G(F+

p )

P (F+
p )
π(Kp,m).

On the other hand, Proposition 5.3.8 shows that there is a ‹TS,ord-equivariant

isomorphism

ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
Iwπ(K

p,m)m̃

∼= Rj−[F
+:Q]n2+l(w)ΓTn(OF,p)(b)O/̟m(χw)⊗O O(w‹G0 λ̃)⊗O τ−1w πord(Kp,m).

(5.4.7)

We recall that there is an isomorphism O(χw) ∼= O(−ρ+w−1wP0 ρ)⊗O O(αw).
We have (−ρ + w−1wP0 ρ + w

‹G
0 λ̃)

w = wG0 λx, where x = wG0 ww
‹G
0 . Here we

write wG0 for the longest element of WP , w
‹G
0 for the longest element of W ,

and note that the map w 7→ wG0 ww
‹G
0 is an involution of rWP which satisfies

l(wG0 ww
‹G
0 ) = [F+ : Q]n2 − l(w). Applying Propositions 5.2.15 and 5.2.17, it

follows that the cohomology group in (5.4.7) may be identified with

O(α
wG

0 xw
‹G
0

)⊗O τ−1
wG

0 xw
‹G
0

Hj−l(x)(XK(b,c),Vλx/̟m)ordm̃ .

Putting all of this together, we see that we can chain together the surjections

(5.4.4), (5.4.5) and (5.4.6) to obtain a surjection homomorphism of ‹TS,ord-

algebras

‹TS,ord(Hj(∂‹X‹K(b,c)
,V

λ̃
)ordm̃ )→ TS,ord(O(α

wG
0 xw

‹G
0

)⊗Oτ−1
wG

0 xw
‹G
0

Hj−l(x)(XK(b,c),Vλx)ordm̃ ).

The proof is complete on noting that H∗(XK(b,c),Vλx)ordm is a TS,ord-invariant

direct summand of H∗(XK(b,c),Vλx)ordm̃
. �
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In order to apply Theorem 5.4.3, we will make use of the following com-

binatorial lemma. We use the following notation: if λ ∈ (Zn+)
Hom(F,E) and

a ∈ Z, then λ(a) ∈ (Zn+)
Hom(F,E) is the highest weight defined by the formula

λ(a)τ,i = λτ,i+a for all τ ∈ Hom(F,E), i = 1, . . . , n. We recall as well that we

have previously fixed the notation S̃p for a set of p-adic places of F lifting Sp,

and Ĩp for the set of embeddings τ : F →֒ E inducing a place of S̃p (cf. §2.2.1).

Lemma 5.4.8. Fix m ≥ 1. Then we can find λ ∈ (Zn+)
Hom(F,E) with the

following properties :

(1) There is an isomorphism O(λ)/̟m ∼= O/̟m of Tn(Fp)-modules.

(2) The sum
∑n

i=1(λτ,i+λτc,i) is independent of the choice of τ ∈ Hom(F,E).

(3) For each i = 0, . . . , n2, there exists an element wi = (wi,v)v∈Sp
∈ rWP ,

an integer ai ∈ (p − 1)Z, and a dominant weight λ̃i ∈ (Z2n
+ )Hom(F+,E),

all satisfying the following conditions :

(a) λ̃i is CTG (cf. Definition 4.3.5).

(b) For each v ∈ Sp, lr(wi,v) = n2 − i. Consequently, l(wi) = [F+ :

Q](n2 − i).
(c) We have wi(λ̃i + ρ)− ρ = λ(ai).

Proof. Let M > 16n be a non-negative integer which is divisible by 8(p−
1)#(O/̟m)×. We will show that we can take λ to be the dominant weight

defined by the formulae

λτ =

®
(−nM,−2nM, . . . ,−n2M) if τ ∈ Ĩp;
(0,−M, . . . , (1− n)M) if τc ∈ Ĩp.

If λ̃(a) denotes the element of (Z2n)Hom(F+,E) that corresponds to λ(a) under

our identifications, then we have

λ̃(a) = ((n − 1)M − a, . . . ,−a,−nM + a, . . . ,−n2M + a).

In order to construct the elements wi and ai, we make everything explicit. Our

choice of the set S̃p determines an isomorphism of the group (ResF+/Q
‹G)Qp

with the group
∏
v∈Sp

ResFṽ/Qp
GL2n, hence an identification of rWv with S2n

and of rWP,v with the subgroup Sn × Sn. We can identify the set rWP
v of

representatives for the quotient rWP,v\rWv with the set of n-element subsets

of {1, . . . , 2n}. Given such a subset X, there is a unique permutation τ of

{1, . . . , 2n} with τ({1, . . . , n}) = X and with the property that τ is increasing

on both {1, . . . , n} and {n + 1, . . . , 2n}. The corresponding element of rWP
v

is σX = τ−1. The length of a permutation w ∈ S2n is given by the formula

l(w) = #{1 ≤ i < j ≤ 2n | w(i) > w(j)}.
Given i, we choose integers r, x ≥ 0 with nx+n−r = n2−i and 1 ≤ r ≤ n

(the choice is unique). We define wi by setting wi,v = σXi for each v ∈ Sp,
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where Xi = {x+1, x+2, . . . , x+ r, x+ r+2, x+ r+3, . . . , x+n+1}. We have

(wi,v(1), . . . ,wi,v(2n)) =

(n + 1, n+ 2, . . . , n+ x,1, 2, . . . , r, n + x+ 1, r + 1,

r + 2, . . . , n, n+ x+ 2, n + x+ 3, . . . , 2n).

We observe that indeed lr(wi,v) = n2 − i. We need to choose ai so that the

weight λ̃i = w−1i (λ̃(ai) + ρ) − ρ is dominant. We first calculate w−1i (λ̃(ai)).

For any τ ∈ Hom(F+, E), we have w−1i (λ̃(ai))τ,j = λ̃(ai)τ,wi(j), hence the τ

component of w−1i (λ̃(ai)) is equal to

(λ̃(ai)τ,n+1, . . . , λ̃(ai)τ,n+x,λ̃(ai)τ,1, . . . , λ̃(ai)τ,r, λ̃(ai)τ,n+x+1,

λ̃τ,r+1(ai), . . . , λ̃τ,n(ai), λ̃τ,n+x+2(ai), . . . , λ̃τ,2n(ai)).

= (−nM + ai, . . . ,−nxM + ai,(n− 1)M − ai, . . . , (n− r)M − ai,−n(x+ 1)M + ai,

(n− r − 1)M − ai, . . . ,−ai,−n(x+ 2)M + ai, . . . ,−n2M + ai).

We see that w−1i (λ̃(ai)) is dominant if and only if the following 4 inequalities

are satisfied:

(5.4.9) − nxM + ai ≥ (n− 1)M − ai,

(5.4.10) (n− r)M − ai ≥ −n(x+ 1)M + ai,

(5.4.11) − n(x+ 1)M + ai ≥ (n − r − 1)M − ai,

(5.4.12) − ai ≥ −n(x+ 2)M + ai.

These 4 inequalities are together equivalent to requiring that ai ∈ [(nx+2n−
r − 1)M/2, (nx + 2n − r)M/2], a closed interval of length M/2. Requiring

instead that w−1i (λ̃(ai) + ρ) − ρ is dominant leads to 4 similar inequalities,

where the left-hand side and right-hand side differ to those in (5.4.9)–(5.4.12)

by an integer of absolute value at most 2n−1. If we choose ai to be the unique

integer in [(nx + 2n − r − 1)M/2, (nx + 2n − r)M/2] which is congruent to

M/8 mod M/2, then w−1i (λ̃(ai) + ρ)− ρ is dominant.

To complete the proof of the lemma, we just need to explain why λ̃i =

w−1i (λ̃(ai) + ρ) − ρ is CTG. It suffices to show that for any τ ∈ Hom(F+, E),

and for any w ∈WP
v (where v is the place of F+ induced by τ), the number

[w(λ̃i + ρ)− ρ]τ,j + [w(λ̃i + ρ)− ρ]τ,2n+1−j

= w(λ̃i + ρ)τ,j +w(λ̃i + ρ)τ,2n+1−j

is not independent of j as j varies over integers 1 ≤ j ≤ n. To show this, it

suffices to show that the multiset

I = {(λ̃i + ρ)τ,j + (λ̃i + ρ)τ,k | 1 ≤ j < k ≤ 2n}
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does not contain any element with multiplicity at least n. We first consider

the multiset

I ′ = {λ̃i,τ,j + λ̃i,τ,k | 1 ≤ j < k ≤ 2n}.
It is a union of the three multisets

I ′1 = {(−nα+ β)M | 1 ≤ α ≤ n, 0 ≤ β ≤ n− 1},

I ′2 = {−n(α+ β)M + 2ai | 1 ≤ α < β ≤ n},
and

I ′3 = {(α + β)M − 2ai | 0 ≤ α < β ≤ n− 1}.
Note that each element of I ′1 has multiplicity 1. Each element of I ′2 and I ′3 has

multiplicity at most n/2. Moreover, I ′1, I
′
2, and I

′
3 are mutually disjoint (look

modulo M). It follows that no element of I ′ has multiplicity at least n. To

show that I has no element of multiplicity at least n, we use the analogous

decomposition I = I1∪I2∪I3. The sets I1, I2 and I3 are disjoint (look modulo

M , and use the fact that each entry of ρ has absolute value at most (2n−1)/2).

Each element of I1 appears with multiplicity 1, while each entry of I2 and I3
has multiplicity at most n/2. This completes the proof. �

Lemma 5.4.8 allows us to express certain cohomology groups of the spaces

XK in degrees divisible by [F+ : Q] in terms of middle degree cohomology of

the spaces ∂‹X‹K (and hence, using Theorem 4.3.3, of the spaces ‹X‹K). Indeed,

combining the results so far of this section, we obtain the following result.

Proposition 5.4.13. Suppose that [F+ : Q] > 1. Let m ≥ 1 be an

integer. Then there exists a dominant weight λ ∈ (Zn+)
Hom(F,E) such that a

finite index subgroup of O×F acts trivially on Vλ and for each i = 0, . . . , n2 − 1,

a dominant weight λ̃i ∈ (Z2n
+ )Hom(F+,E) which is CTG, an integer ai divisible

by (p − 1), and a Weyl element wi ∈ rWP such that the following conditions

are satisfied: Let ‹K ⊂ ‹G(A∞F+) be a good subgroup which is decomposed with

respect to P and such that for each v ∈ Sp, ‹Kv = Ĩwv . Fix integers c ≥ b ≥ 0

with c ≥ 1, and also an integer m ≥ 1. Let m ⊂ TS be a non-Eisenstein

maximal ideal. Let m̃ = S∗(m) ⊂ ‹TS , and suppose that ρm̃ is decomposed

generic. Then :

(1) There is an isomorphism O(λ)/̟m ∼= O/̟m of O[T (F+
p )]-modules.

(2) For each i = 0, . . . , n2−1, the map S descends to an algebra homomor-

phism

‹TS,ord(Hd(‹X‹K(b,c)
,V

λ̃i
)ordm̃ )→ TS,ord(O(αwi)⊗Oτ−1wi

H i[F+:Q](XK(b,c),Vλ(ai))ordm ).

Proof. This follows on combining Theorem 4.3.3, Theorem 5.4.3, and

Lemma 5.4.8. �
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In order to access all degrees of cohomology, we use a trick based on the

fact that the group G has a non-trivial centre. This is the motivation behind

the next few results.

If K ⊂ GLn(A
∞
F ) is a good subgroup, then we define

AK := F×\A×F /det(K) det(K∞)R>0.

The quotient map

AK → F×\A×F /det(K)F×∞

identifies AK with an extension of a ray class group by a real torus of dimension

[F+ : Q]− 1 (with cocharacter lattice F× ∩ det(K), a torsion-free congruence

subgroup of O×F ). We denote the identity component of AK by A◦K . If g ∈
GLn(A

∞
F ), then we set Γg,K = GLn(F )∩ gKg−1, or Γg = Γg,K if the choice of

K is fixed.

Lemma 5.4.14.

(1) The maps x 7→ (x, g) induce a homeomorphism
∐

[g]∈GLn(F )\GLn(A∞
F )/K

Γg\X ∼= XK .

(2) The determinant gives a continuous map

XK
det→ AK

which induces a bijection on sets of connected components.

(3) Suppose g ∈ GLn(A
∞
F ) and the two subgroups det(Γg) and det(F×∩K)

of F× are equal. Let Γ1
g = SLn(F ) ∩ Γg. Then the product map

Γ1
g × (F× ∩K)→ Γg

is a group isomorphism. Decomposing X similarly as

X1 × (
∏

v|∞

R>0)/R>0 = X,

where X1 = SLn(F∞)/
∏
v|∞ SU(n), we obtain a decomposition

Γg\X =
(
Γ1
g\X1

)
× (F× ∩K)\(

∏

v|∞

R>0)/R>0.

(4) Still assuming that det(Γg) = det(F× ∩K), the map det : F× ∩K →
F× ∩ det(K) is an isomorphism. The composition of maps
(
Γ1
g\X1

)
× (F× ∩K)\(

∏

v|∞

R>0)/R>0 = Γg\X →֒ XK → AK

is given by (x, z) 7→ det(g)zn, and the map z 7→ det(g)zn is an isomor-

phism from (F× ∩ K)\(∏v|∞R>0)/R>0 to the connected component

A
[det(g)]
K of AK containing [det(g)].
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Proof. The first part can be checked directly. The second part is equivalent

to the statement that det induces a bijection

G(F+)\G(A∞F+)/K → F×\(A∞F )×/det(K).

This follows from strong approximation for the derived subgroup of G, which is

isomorphic to ResF/F+ SLn. For the third part, injectivity of the natural map

Γ1
g × (F× ∩ K) → Γg follows from neatness of K (since F× ∩ K contains no

roots of unity, and hence no non-trivial elements of determinant 1). Surjectivity

follows from the assumption that det(Γg) = det(F× ∩ K). The remainder of

the third part (on the decomposition of Γg\X) is an immediate consequence.

Finally, for the fourth part, everything follows from the claim that det : F× ∩
K → F× ∩ det(K) is an isomorphism. Injectivity follows from neatness of K.

Surjectivity follows from strong approximation for SLn and the assumption

that det(F×∩K) = det(Γg). Indeed, suppose we have k ∈ K with det(k) ∈ F×.
We can find γ ∈ GLn(F ) such that det(γ) = det(k), and strong approximation

implies that we can find γ′ ∈ SLn(F ) and k′ ∈ gKg−1 ∩ SLn(A
∞
F ) such that

γ(gkg−1)−1 = γ′k′. We deduce that (γ′)−1γ = k′gkg−1 ∈ gKg−1 ∩ GLn(F )

has the same determinant as k, which shows surjectivity. �

The following lemma shows how to choose K so that the conditions of

Lemma 5.4.14 are satisfied.

Lemma 5.4.15. Let K be a good subgroup of G(A∞F+). Fix a finite set

T of finite places of F . There exists a good normal subgroup K ′ ⊂ K with

K ′T = KT such that det(Γg,K ′) = det(F× ∩K ′) for all g ∈ GLn(A
∞
F ).

Proof. We begin by choosing an ideal a of OF , prime to T , such that

ker(O×F → (OF /a)×) is torsion-free and is contained in F× ∩ K. This is

possible by Chevalley’s theorem [Che51, Thm. 1]. Similarly, we can choose

another ideal b of OF , prime to a and T , such that ker(O×F → (OF /ab)×) is

contained in (ker(O×F → (OF /a)×))n. We claim that

K ′ := ker(O×F → (OF /a)×) ·K(ab)

has the desired properties, where K(ab) is the intersection of K with the

principal congruence subgroup of level ab. Indeed, by construction we have

det(GLn(F )∩ gK ′g−1) = (ker(O×F → (OF /a)×))n for all g ∈ GLn(A
∞
F ), whilst

F× ∩K ′ = ker(O×F → (OF /a)×). �

The next lemma shows how to use Lemma 5.4.14 to understand all co-

homology groups of a space XK solely in terms of those in degrees divisi-

ble by [F+ : Q]. Note that dim(XK) = d − 1 = [F+ : Q]n2 − 1 and

dim(AK) = [F+ : Q]− 1.
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Lemma 5.4.16. Let K ⊂ GLn(A
∞
F ) be a good subgroup, and let λ ∈

(Zn+)
Hom(F,E). Suppose that the following conditions are satisfied:

(1) det(Γg) = det(F× ∩K) for all g ∈ GLn(A
∞
F ).

(2) F× ∩K acts trivially on Vλ.
Recall that we have defined a map det : XK → AK . Then R det∗(Vλ) (a

complex of sheaves of O-modules) is constant on each connected component of

AK , and we have R det∗(Vλ) =
⊕dim(X1)

i=0 Ri det∗(Vλ)[−i]. We obtain a TS,ord-

equivariant isomorphism of graded O-modules

(5.4.17)
dim(XK)⊕

i=0

H i(XK ,Vλ) ∼=

Ñ
dim(A◦

K)⊕

j=0

Hj(A◦K ,O)

é
⊗O

Ñ
dim(X1)⊕

k=0

H0(AK , R
kdet∗(Vλ))

é

where the Hecke action on the first factor
⊕dim(A◦

K)
j=0 Hj(A◦K ,O) is trivial.

As a consequence, the image of TS,ord in EndO(
⊕dim(XK)

i=0 H i(XK ,Vλ)) is
equal to its image in EndO(

⊕n2−1
i=0 H i[F+:Q](XK ,Vλ)).

Proof. It follows from our first assumption and Lemma 5.4.14 that every

connected component of XK decomposes as a product (Γ1
g\X1) × A

[det(g)]
K ,

with the map det given by the projection to the second factor. Our second

assumption implies that the local system Vλ on this component is pulled back

from a local system on Γ1
g\X1. We deduce that R det∗(Vλ) is constant on

A
[det(g)]
K (corresponding to RΓ(Γ1

g\X1,Vλ)) and it decomposes as the direct

sum of its shifted cohomology sheaves (since the same is true for any object in

D(O), such as RΓ(Γ1
g\X1,Vλ)). To save space, we now write H∗(· · · ) for the

graded cohomology module
⊕

iH
i(· · · ).

Passing to global sections on AK we get an isomorphism

H∗(XK ,Vλ) ∼= ⊕dim(X1)
i=0 H∗(AK , R

idet∗(Vλ))
∼= ⊕dim(X1)

i=0 ⊕[g]∈GLn(F )\GLn(A∞
F )/K H∗(A

[det g]
K , Ridet∗(Vλ))

∼= ⊕dim(X1)
i=0 ⊕[g]∈GLn(F )\GLn(A∞

F )/K H∗(A
[det g]
K ,O)⊗O H0(A

[det g]
K , Ridet∗(Vλ)).

Note that the cohomology groups H i(A
[det g]
K ,O) are torsion-free. We now use

that the groups H∗(A
[det g]
K ,O) are canonically independent of g, so can all

be identified with H∗(A◦K ,O). We thus obtain an isomorphism of graded O-
modules

H∗(XK ,Vλ) ∼= H∗(A◦K ,O)⊗O ⊕dim(X1)
i=0 ⊕[g]∈GLn(F )\GLn(A∞

F )/K H0(A
[det g]
K , Ridet∗(Vλ))

∼= H∗(A◦K ,O)⊗O
dim(X1)⊕

i=0

H0(AK , R
idet∗(Vλ)).
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We next need to understand the action of Hecke operators. If g ∈ GS , then
the action of the Hecke operator [KSgKS ] can be described with the aid of the

diagram

XK

det

��

XK∩gKg−1

p1
oo

p2
//

det

��

XK

det

��

AK AK∩gKg−1
q1

oo
q2

// AK .

Here p1 and q1 are induced by the action of g, while p2 and q2 are the natural

projections; the action of [KSgKS ] on RΓ(XK ,Vλ) is given by the formula p2,∗◦
p∗1. Pushing forward by det, we have a morphism q∗1R det∗ Vλ → q∗2R det∗ Vλ,
and the induced endomorphism of the complex RΓ(AK , R det∗ Vλ) in D(O)
agrees with [KSgKS ] under the natural identification RΓ(AK , R det∗ Vλ) ∼=
RΓ(XK ,Vλ). We see that the isomorphism (5.4.17) respects the action of

[KSgKS ] if [KSgKS ] acts in the usual way on the left-hand side, as multipli-

cation by [F× ∩ det(K) : F× ∩ det(K ∩ gKg−1)]i on H i(A◦K ,O), and in the

natural way on H0(AK , R
i det∗ Vλ). Our assumption det(Γg) = det(F× ∩K)

implies that F×∩det(K) = F×∩det(K ∩ gKg−1), giving the statement in the

lemma.

It remains to check the final statement of the lemma. There is an iso-

morphism H∗(A◦K ,O) ∼= ∧∗O Hom(F× ∩ det(K),O) of graded O-modules. It

follows that each cohomology group H0(AK , R
idet∗(Vλ)) appears as a direct

summand of H∗(XK ,Vλ) in [F+ : Q] consecutive degrees. In particular, it

appears as a direct summand of a cohomology group in a degree divisible by

[F+ : Q]. This completes the proof. �

For the statement of the next proposition, we remind the reader that in

§5.1 we have defined for each λ ∈ (Zn+)
Hom(F,E), v ∈ Sp and i = 1, . . . , n, a

character

χλ,v,i : GFv → TS,ord(H∗(XK(b,c),Vλ)ord)×.
Proposition 5.4.18. Suppose that [F+ : Q] > 1. Let K ⊂ GLn(A

∞
F ) be

a good subgroup such that for each v ∈ Sp, Kv = Iwv . Fix integers c ≥ b ≥ 0

with c ≥ 1, and also an integer m ≥ 1. Let m ⊂ TS be a non-Eisenstein

maximal ideal, and let m̃ = S∗(m). Suppose that the following conditions are

satisfied:

(1) ρm is decomposed generic.

(2) Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F

in which l splits.
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Then we can find λ ∈ (Zn+)
Hom(F,E) and an integer N ≥ 1 depending only on

[F+ : Q] and n such that the following conditions are satisfied:

(1) There is an isomorphism O(λ)/̟m ∼= O/̟m of O[T (F+
p )]-modules.

(2) For each i = 0, . . . , d−1, there exists a nilpotent ideal Ji of T
S,ord(H i(XK(b,c),Vλ)ordm )

satisfying JNi = 0 and a continuous n-dimensional representation

ρm : GF,S → GLn(T
S,ord(H i(XK(b,c),Vλ)ordm )/Ji)

such that the following conditions are satisfied:

(a) For each place v 6∈ S of F , the characteristic polynomial of ρm(Frobv)

is equal to the image of Pv(X) in (TS,ord(H i(XK(b,c),Vλ)ordm )/Ji)[X].

(b) For each place v|p of F and for each g ∈ GFv , the characteristic

polynomial of ρm(g) equals
∏n
j=1(X − χλ,v,j(g)).

(c) For each place v|p of F , and for each sequence g1, . . . , gn ∈ GFv ,

the image of the element

(g1 − χλ,v,1(g1))(g2 − χλ,v,2(g2)) . . . (gn − χλ,v,n(gn))
of TS(H i(XK(b,c),Vλ)ordm )[GFv ] in Mn(T

S(H i(XK(b,c),Vλ)ordm )/Ji)

under ρm is zero.

Proof. We choose λ using Proposition 5.4.13. Note that, for each cohomo-

logical degree i, by Theorem 2.3.7, we can find N , Ji and

ρm : GF,S → GLn(T
S,ord(H i(XK(b,c),Vλ)ordm )/Ji)

satisfying condition (a) of the proposition. Indeed, this theorem and the dis-

cussion after Lemma 2.2.3 gives a representation with values in a quotient

of TS(K(0, c)/K(b, c),Vλ)m by a nilpotent ideal, which we compose with the

canonical homomorphism to TS(K(b, c), λ)ordm . Arguing with the Hochschild–

Serre spectral sequence and twisting with characters as in the proof of Corollary

4.4.8, we are free to enlarge S and to shrink K at the prime-to-p places of S.

We can therefore assume that the following conditions are satisfied:

(1) For each place v ∈ Sp, the two representations ρm|GFv
, (ρc,∨m ⊗ǫ1−2n)|GFv

have no Jordan–Hölder factors in common.

(2) ρm̃ is decomposed generic.

(3) K satisfies the conditions of Lemma 5.4.16.

After enlarging O, we can assume that there exists a character χ : GF,S → k×

satisfying the following conditions:

(1) For each place v ∈ Sp, χ|GFv
is unramified.

(2) For each place v ∈ Sp, the two representations (ρm⊕ρc,∨m ⊗ǫ1−2n)⊗χ|GFv

and (ρm ⊕ ρc,∨m ⊗ ǫ1−2n) ⊗ χc,∨|GFv
have no Jordan–Hölder factors in

common.

(3) The representation ρm ⊗ χ⊕ ρc,∨m ⊗ χc,∨ǫ1−2n is decomposed generic.
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It follows from Lemma 5.4.16 and Carayol’s lemma (applied as in the proof

of Corollary 4.4.8) that it suffices to establish conditions (b) and (c) for cohomo-

logical degrees 0, [F+ : Q], . . . , (n2−1)[F+ : Q] (Carayol’s lemma then gives us

a Galois representation with coefficients inTS,ord(⊕n2−1
i=0 H i[F+:Q](XK(b,c),Vλ)ordm ) =

TS,ord(⊕d−1i=0H
i(XK(b,c),Vλ)ordm ) modulo a nilpotent ideal with the desired prop-

erties).

We choose a good subgroup ‹K ⊂ ‹G(A∞F+) which satisfies the conditions of

Proposition 5.4.13 and such that ‹K∩G(A∞F+) = K. For each i = 0, 1, . . . , n2−1,
we let λ̃i, ai and wi be as in the statement of Proposition 5.4.13. Generalizing

Proposition 2.2.22 slightly, we note that there is an isomorphism (cf. the proof

of Theorem 4.5.1)

f : TS,ord(H i[F+:Q](XK(b,c),Vλ(ai))ordm ) ∼= TS,ord(H i[F+:Q](XK(b,c),Vλ)ordm ),

which carries [KSgKS ] to ǫ−ai(ArtF (det(g)))[K
SgKS ] and satisfies the iden-

tity f ◦ χλ(ai),v,j = χλ,v,j ⊗ ǫ−ai (v ∈ Sp). (Note that ai is divisible by

p − 1, by construction, so we have m(ǫ−ai) = m in the notation of §2.2.19.)

To prove the proposition, it will therefore suffice to prove the analogue of

properties (b), (c) for the representation (f−1 ◦ ρm)⊗ ǫ−ai with coefficients in

TS,ord(H i[F+:Q](XK(b,c),Vλ(ai))ordm )/f−1Ji[F+:Q], which we already know satis-

fies the analogue of property (a). In order to simplify notation, we now write ρm
for this representation, Ji for the ideal f−1Ji[F+:Q], and χv,j for the character

χλ(ai),v,j valued in TS,ord(H i[F+:Q](XK(b,c),Vλ(ai))ordm ).

We obtain from Proposition 5.4.13 a surjective algebra homomorphism

‹TS,ord(Hd(‹X‹K(b,c)
,V

λ̃i
)ordm̃ )→ TS,ord(O(αwi)⊗Oτ−1wi

H i[F+:Q](XK(b,c),Vλ(ai))ordm ).

Theorem 4.3.3 says that Hd(‹X‹K(b,c)
,V

λ̃i
)ord
m̃

is a torsion-free O-module, and

Theorem 2.4.11 (or rather its proof) shows how to computeHd(‹X‹K(b,c)
,V

λ̃i
)ord
m̃
⊗O

Qp in terms of cuspidal automorphic representations of ‹G(A∞F+). Then [Ger19,

Lemma 5.4] (which is stated for automorphic representations of GLn, but

which applies here, since ‹G is split at the p-adic places of F+) shows that
‹TS,ord(Hd(‹X‹K(b,c)

,V
λ̃i
)ord
m̃

)[1/p] is a semisimple E-algebra. By Theorem 2.3.3

and [Tho15, Theorem 2.4], we can find a continuous representation

ρ̃ : GF,S → GL2n(‹TS,ord(Hd(‹X‹K(b,c)
,V

λ̃i
)ordm̃ )⊗O Qp)

satisfying the following conditions:

(1) For each finite place v 6∈ S of F , the characteristic polynomial of

ρ̃(Frobv) is equal to the image of ‹Pv(X).



128 P. ALLEN ET AL.

(2) For each place v|p of F , there is an isomorphism

(5.4.19) ρ̃|GFv
∼

á
ψv,1 ∗ ∗ ∗
0 ψv,2 ∗ ∗
...

. . .
. . . ∗

0 · · · 0 ψv,2n

ë

,

where for each i = 1, . . . , 2n, ψv,i : GF,v → Q
×
p is the continuous

character defined as follows. First, if v ∈ S̃p, then ψv,j is the unique

continuous character satisfying the following identities:

ψv,j◦ArtFv(u) = ǫ1−j(ArtFv(u))

(
∏

τ

τ(u)
−(w

‹G
0 λ̃i)τ |F+ ,j

)
〈diag(1, . . . , 1, u, 1, . . . , 1)〉 (u ∈ O×Fv

)

(the product being over τ ∈ HomQp(Fv , E)) and

ψv,j ◦ ArtFv(̟v) = ǫ1−j(ArtFv(̟v))‹Uv,j/‹Uv,j−1.
Second, if vc ∈ S̃p, then ψv,j = ψc,∨vc,2n+1−jǫ

1−2n.

We write ‹D for the 2n-dimensional determinant of GF,S associated to ρ̃. By

[Che14, Example 2.32], ‹D is valued in ‹TS,ord(Hd(‹X‹K(b,c)
,V

λ̃i
)ord
m̃

). To conserve

notation, we now write

Ã0 = ‹TS,ord(Hd(‹X‹K(b,c)
,V

λ̃i
)ordm̃ )

and

A0 = TS,ord(H i[F+:Q](XK(b,c),Vλ(ai))ordm ),

and J = Ji. By construction, we are given a homomorphism Ã0 → A0 which

agrees with S on Hecke operators away from p, and such that for each v ∈ Sp,
the image of the sequence

(ψv,1, . . . , ψv,2n)

of characters is the image of the sequence

(χc,∨vc,nǫ
1−2n, . . . , χc,∨vc,1ǫ

1−2n, χv,1, . . . , χv,n)

under the permutation w−1i .

The rings Ã0 and A0 are semi-local finite O-algebras. Let A be a local

direct factor of A0, and let Ã be the corresponding local direct factor of Ã0.

Thus there is a map Ã → A such that Ã → A/J is surjective. We will show

that the properties (b), (c) in the statement of the proposition hold in the ring

A/J ; since A0/J is a direct product, this will give the desired result.

We first verify that for each place v ∈ Sp, we have (ρm|GFv
)ss ∼= ⊕nj=1χv,j ,

where the overline denotes reduction modulo the maximal ideal of A. By

construction, we have

((ρm ⊕ ρc,∨m ⊗ ǫ1−2n)|GFv
)ss ∼= (ρm̃|GFv

)ss ∼= ⊕nj=1(χv,j ⊕ χc,∨vc,jǫ1−2n).
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Using the existence of the character χ and a character twisting argument as

in the proof of Corollary 4.4.8, we see that we also have an isomorphism (over

the residue field of A)

((ρm ⊗ χ⊕ ρc,∨m ⊗ χc,∨ǫ1−2n)|GFv
)ss ∼= ⊕nj=1(χv,jχ⊕ χc,∨vc,jχc,∨ǫ1−2n).

Our conditions on the character χ now force (ρm|GFv
)ss ∼= ⊕nj=1χv,j.

We can now argue in a similar way to the proof of Proposition 4.4.6.

Let ‹DA/J = ‹D ⊗A A/J . Then ‹DA/J = det(ρm ⊕ ρc,∨m ⊗ ǫ1−2n). Just as in

the proof of Proposition 4.4.6, we can identify (A/J)[GF,S ]/ ker(‹DA/J ) with

Mn(A/J) ×Mn(A/J) (where the first projection gives ρc,∨m ⊗ ǫ1−2n, and the

second projection gives ρm).

On the other hand, the map Ã[GF,S ] → (A/J)[GF,S ]/(ker ‹DA/J ) factors

through the quotient Ã[GF,S ]/(ker ‹D). There is an algebra embedding

Ã[GF,S ]/(ker ‹D) ⊂ Ã[GF,S]/(ker ‹D)⊗O Qp ⊂M2n(Ã⊗O Qp).

The explicit form of ρ̃|GFv
shows that for each v ∈ Sp and for each sequence of

elements Y, Y1, . . . , Y2n of elements of Ã[GFv ], we have

(5.4.20) det(X − ρ̃(Y )) =
2n∏

j=1

(X − ψv,j(Y ))

in Ã[X] and

(5.4.21) (ρ̃(Y1)− ψv,1(Y1))(ρ̃(Y2)− ψv,2(Y2)) . . . (ρ̃(Y2n)− ψv,2n(Y2n)) = 0

in M2n(Ã⊗O Qp). It follows that the same identities hold in Ã[GF,S ]/(ker ‹D),

hence in

(A/J)[GF,S ]/(ker ‹DA/J) =Mn(A/J) ×Mn(A/J).

More precisely, for any sequence of elements Y, Y1, . . . , Y2n of elements of

(A/J)[GFv ], we have

(5.4.22) det(X − ρm(Y )) det(X − ρc,∨m ǫ1−2n(Y )) =

2n∏

j=1

(X − ψv,j(Y ))

in (A/J)[X] and

(5.4.23)

Ñ
2n∏

j=1

(ρc,∨m ⊗ ǫ1−2n(Yj)− ψv,j(Yj)),
2n∏

j=1

(ρm(Yj)− ψv,j(Yj))

é
= (0, 0)

in Mn(A/J)×Mn(A/J) (note that order matters in these products). We need

to show how to deduce our desired identities (b), (c) from these ones. We now

fix a choice of place v ∈ Sp for the rest of the proof.

We can find an element e ∈ (A/J)[GFv ] which acts as 0 on ρc,∨m ⊗ǫ1−2n|GFv

and as the identity in ρm|GFv
(because these two representations have no
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Jordan–Hölder factors in common). By [Bou61, Ch. III, §4, Exercise 5(b)]

(lifting idempotents), we can assume that ρm(e) = 1 and ρc,∨m ⊗ ǫ1−2n(e) = 0,

and moreover that ψv,j(e) = 1 if ψv,j appears in ρm|GFv
(in other words, if

ψv,j = χv,j′ for some 1 ≤ j′ ≤ n, or equivalently if j = w−1i (n + k) for some

1 ≤ k ≤ n), and ψv,j(e) = 0 otherwise. Then applying the identity (5.4.22) to

ge ∈ (A/J)[GFv ] gives

Xn det(X − ρm(g)) =
2n∏

j=1

(X − ψv,j(ge)) = Xn
n∏

j=1

(X − χv,j(g)),

which is the sought-after property (b) of the proposition. To get property (c),

let g1, . . . , gn ∈ GFv , and let Y1, . . . , Y2n ∈ (A/J)[GFv ] be defined by Yj = e

if j ∈ w−1i ({1, . . . , n}), and Yj = gke if j = w−1i (n + k), k ∈ {1, . . . , n}. The

identity (5.4.23) then becomes

(0, (ρm(g1) − χv,1(g1))(ρm(g2) − χv,2(g2)) . . . (ρm(gn) − χv,n(gn))) = (0, 0)

in Mn(A/J) ×Mn(A/J). This completes the proof. �

5.5. The end of the proof. We can now complete the proof of the main

result of this chapter (Theorem 5.5.1). For the convenience of the reader, we

repeat the statement here. We recall our standing hypothesis in this chapter

that F contains an imaginary quadratic field in which p splits.

Theorem 5.5.1. Suppose that [F+ : Q] > 1. Let K ⊂ GLn(A
∞
F ) be a

good subgroup such that for each place v ∈ Sp of F , Kv = Iwv. Let c ≥ b ≥ 0

be integers with c ≥ 1, let λ ∈ (Zn)Hom(F,E), and let m ⊂ TS(K(b, c), λ)ord

be a non-Eisenstein maximal ideal. Suppose that the following conditions are

satisfied:

(1) Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F

in which l splits.

(2) ρm is decomposed generic.

Then we can find an integer N ≥ 1, which depends only on [F+ : Q] and n, an

ideal J ⊂ TS(K(b, c), λ)ordm such that JN = 0, and a continuous representation

ρm : GF,S → GLn(T
S(K(b, c), λ)ordm /J)

satisfying the following conditions :

(a) For each finite place v 6∈ S of F , the characteristic polynomial of

ρm(Frobv) equals the image of Pv(X) in (TS(K(b, c), λ)ordm /J)[X].

(b) For each v ∈ Sp, and for each g ∈ GFv , the characteristic polynomial

of ρm(g) equals
∏n
i=1(X − χλ,v,i(g)).
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(c) For each v ∈ Sp, and for each g1, . . . , gn ∈ GFv , we have

(ρm(g1)− χλ,v,1(g1))(ρm(g2)− χλ,v,2(g2)) . . . (ρm(gn)− χλ,v,n(gn)) = 0.

Proof. Let 0 ≤ q ≤ d− 1, m ≥ 1 be integers, and define

A(K,λ, q) = TS,ord(Hq(XK(b,c),Vλ)ordm ).

and

A(K,λ, q,m) = TS,ord(Hq(XK(b,c),Vλ/̟m)ordm ).

By the same sequence of reductions as in the proof of Theorem 4.5.1, it is

enough to show the existence of an ideal J ⊂ A(K,λ, q,m) satisfying JN = 0

and a continuous representation ρm : GF,S → GLn(A(K,λ, q,m)/J) satisfy-

ing conditions (a), (b) and (c) of the theorem. After an application of the

Hochschild–Serre spectral sequence and Corollary 5.2.16, we can assume that

c = b ≥ m. Corollary 5.2.18 allows us to assume that λ is the weight whose

existence is asserted by Proposition 5.4.18. The existence of a Galois represen-

tation valued in (quotients by nilpotent ideals of) the Hecke algebras A(K,λ, q)

and A(K,λ, q + 1) is then a consequence of Proposition 5.4.18. The existence

of the short exact sequence of TS,ord-modules

0→ Hq(XK(b,c),Vλ)ordm /̟m → Hq(XK(b,c),Vλ/̟m)ordm

→ Hq+1(XK(b,c),Vλ)ordm [̟m]→ 0

then implies the existence of a Galois representation ρm over a quotient of

A(K,λ, q,m) by a nilpotent ideal with the required properties. �

As suggested by a referee, we finish this section by recording a local-global

compatibility result for a single automorphic representation. This is a partial

generalisation of [Ger19, Proposition 5.10] and [Tho15, Theorem 2.4], although

we must impose an assumption on the residual Galois representation. In this

result, we drop the standing hypothesis that F contains an imaginary quadratic

field in which p splits.

Corollary 5.5.2. Let F be an imaginary CM field, let ι : Qp → C be an

isomorphism and let π be a cuspidal automorphic representation of GLn(AF ),

regular algebraic of weight ιλ for λ ∈ (Zn+)
Hom(F,Qp). Suppose that :

(1) For every v ∈ Sp, π is ι-ordinary at v (in the sense of [Ger19, Def. 5.3]).

(2) The residual representation rι(π) is decomposed generic and irreducible.
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Then rι(π)|GFv
is ordinary of weight λ, in the sense of [Ger19, §5.2], for

every v ∈ Sp. More precisely, for each place v ∈ Sp, there is an isomorphism

rι(π)|GFv
∼

á
ψv,1 ∗ ∗ ∗
0 ψv,2 ∗ ∗
...

. . .
. . . ∗

0 · · · 0 ψv,n

ë

,

where for each i = 1, . . . , n, ψv,i : GF,v → Q
×
p is the unique continuous charac-

ter satisfying the identities (cf. the definition of χλ,v,i in §5.1):

ψλ,v,i ◦ ArtFv(u) = ǫ1−i(ArtFv(u))

(
∏

τ

τ(u)−(w
G
0 λ)τ,i

)
〈u〉ι,i (u ∈ O×Fv

)

(the product being over τ ∈ HomQp(Fv ,Qp)) and, with fixed choices of uni-

formizers ̟v for v ∈ Sp,

ψv,i ◦ArtFv(̟v) = ǫ1−i(ArtFv(̟v))
u
(i)
λ,̟v

u
(i−1)
λ,̟v

,

with 〈u〉ι,i and u(i)λ,̟v
denoting Hecke eigenvalues on (ι−1πv)

ord defined in [Ger19,

Definition 5.5].

Proof. We make a solvable Galois base change to a CM field extension

F ′/F which is disjoint over F from the fixed field F
ker rι(π)

, contains an imag-

inary quadratic field in which p splits, and in which all the places in Sp split

completely. We will also assume that [F ′ : Q] > 2. Using [Ger19, Lemma 5.7],

we see that πF ′ is ι-ordinary at w for every place w|p of F ′ and it suffices to

prove the corollary under the additional assumptions that [F+ : Q] > 1 and F

contains an imaginary quadratic field in which p splits. Now the result follows

from Theorem 5.5.1 and Lemma 6.2.11. �

6. Automorphy lifting theorems

6.1. Statements. In this chapter, we will prove two automorphy lifting

theorems (Theorem 6.1.1 and Theorem 6.1.2) for n-dimensional Galois repre-

sentations of CM fields without imposing a self-duality condition. The first is

for Galois representations which satisfy a Fontaine–Laffaille condition.

Theorem 6.1.1. Let F be an imaginary CM or totally real field, let

c ∈ Aut(F ) be complex conjugation, and let p be a prime. Suppose given a

continuous representation ρ : GF → GLn(Qp) satisfying the following condi-

tions :

(1) ρ is unramified almost everywhere.
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(2) For each place v|p of F , the representation ρ|GFv
is crystalline. The

prime p is unramified in F .

(3) ρ is absolutely irreducible and decomposed generic (Definition 4.3.1).

The image of ρ|GF (ζp)
is enormous (Definition 6.2.28).

(4) There exists σ ∈ GF − GF (ζp) such that ρ(σ) is a scalar. We have

p > n2.

(5) There exists a cuspidal automorphic representation π of GLn(AF ) sat-

isfying the following conditions :

(a) π is regular algebraic of weight λ, this weight satisfying

λτ,1 + λτc,1 − λτ,n − λτc,n < p− 2n

for all τ .

(b) There exists an isomorphism ι : Qp → C such that ρ ∼= rι(π) and

the Hodge–Tate weights of ρ satisfy the formula for each τ : F →֒
Qp:

HTτ (ρ) = {λιτ,1 + n− 1, λιτ,2 + n− 2, . . . , λιτ,n}.

(c) If v|p is a place of F , then πv is unramified.

Then ρ is automorphic: there exists a cuspidal automorphic representation Π

of GLn(AF ) of weight λ such that ρ ∼= rι(Π). Moreover, if v is a finite place

of F and either v|p or both ρ and π are unramified at v, then Πv is unramified.

The second main theorem is for Galois representations which satisfy an

ordinariness condition.

Theorem 6.1.2. Let F be an imaginary CM or totally real field, let

c ∈ Aut(F ) be complex conjugation, and let p be a prime. Suppose given a

continuous representation ρ : GF → GLn(Qp) satisfying the following condi-

tions :

(1) ρ is unramified almost everywhere.

(2) For each place v|p of F , the representation ρ|GFv
is potentially semi-

stable, ordinary with regular Hodge–Tate weights. In other words, there

exists a weight λ ∈ (Zn+)
Hom(F,Qp) such that for each place v|p, there is

an isomorphism

ρ|GFv
∼

á
ψv,1 ∗ ∗ ∗
0 ψv,2 ∗ ∗
...

. . .
. . . ∗

0 · · · 0 ψv,n

ë

,
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where for each i = 1, . . . , n the character ψv,i : GFv → Q
×
p agrees with

the character

σ ∈ IFv 7→
∏

τ∈Hom(Fv,Qp)

τ(Art−1Fv
(σ))−(λτ,n−i+1+i−1)

on an open subgroup of the inertia group IFv .

(3) ρ is absolutely irreducible and decomposed generic (Definition 4.3.1).

The image of ρ|GF (ζp)
is enormous (Definition 6.2.28).

(4) There exists σ ∈ GF − GF (ζp) such that ρ(σ) is a scalar. We have

p > n.

(5) There exists a regular algebraic cuspidal automorphic representation π

of GLn(AF ) and an isomorphism ι : Qp → C such that π is ι-ordinary

and rι(π) ∼= ρ.

Then ρ is ordinarily automorphic of weight ιλ: there exists an ι-ordinary cuspi-

dal automorphic representation Π of GLn(AF ) of weight ιλ such that ρ ∼= rι(Π).

Moreover, if v ∤ p is a finite place of F and both ρ and π are unramified at v,

then Πv is unramified.

Remark 6.1.3. It follows from the existence of Π that the weight λ is

conjugate self-dual up to twist: there is an integer w ∈ Z such that for all

τ : F →֒ C and for each i = 1, . . . , n, we have λτ,i + λτc,n+1−i = w. (This in

turn is a consequence of the purity lemma of [Clo90, Lemma 4.9].) However,

we do not need to assume this at the outset. What we in fact prove is that ρ

contributes to the ordinary part of the completed cohomology; we then deduce

the existence of Π by an argument of “independence of weight”.

Remark 6.1.4. The image of the projective representation Pρ coincides

with the image of the adjoint representation ad ρ. Hence the first part of

conditions Theorem 6.1.1 (4) and Theorem 6.1.2 (4) are equivalent to ζp 6∈
F

ker ad ρ
. If p is unramified in F (as in condition (2) of Theorem 6.1.1), it

is implied by the non-existence of a surjection (ad ρ)(GF ) ։ (Z/pZ)×. It

may be possible to remove the requirement of such a σ by using arguments

similar to those of [Tho12], in particular by adding Iwahori level structure at

a prime which is not 1 mod p and then using [Tho12, Prop. 3.17]. However,

this would (at least) necessitate some modifications to the Ihara avoidance

arguments of §6.3, and so we have not attempted to do this, especially because

condition (4) is usually easy to verify in practice.

The proof of these two theorems will occupy the rest of this chapter. Since

this chapter is quite long, we now discuss the structure of the proof. We recall

that the authors of [CG18] implemented a generalization of the Taylor–Wiles

method in situations where the ‘numerical coincidence’ fails to hold, assuming
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the existence of Galois representations associated to torsion classes in the co-

homology of arithmetic locally symmetric spaces, and an appropriate form of

local-global compatibility for these Galois representations. They also had to

assume that the cohomology groups vanish in degrees outside a given range,

after localization at a non-Eisenstein maximal ideal. (This range is the same

range in which cohomological cuspidal automorphic representations of GLn
contribute non-trivially.) Under these assumptions, they proved rather gen-

eral automorphy lifting theorems; in particular, they were able to implement

the ‘Ihara avoidance’ trick of [Tay08] to obtain lifting results at non-minimal

level.

There are a few innovations that allow us to obtain unconditional results

here, building on the techniques of [CG18]. The first is the proof (in the

preceding sections) of a sufficiently strong version of local-global compatibility

for the torsion Galois representations constructed in [Sch15]. The second is

the observation that one can carry out a version of the ‘Ihara avoidance’ trick

under somewhat weaker assumptions than those used in [CG18]. Indeed, in

[KT17], it was shown that one can prove some kind of automorphy lifting

results using only that the rational cohomology is concentrated in the expected

range – and this is known unconditionally, by Matsushima’s formula and its

generalizations (in particular, Theorem 2.4.10). Here we show that the ‘Ihara

avoidance’ technique is robust enough to give a general automorphy lifting

result using only the assumption that the rational cohomology is concentrated

in the expected range.

We now describe the organization of this chapter. As the above discussion

may suggest, our arguments are rather intricate, and we have broken them

into several parts in the hope that this will make the individual steps easier to

digest. We begin in §6.2 by giving a set-up for Galois deformation theory. This

is mostly standard, although there are some differences to other works: we do

not fix the determinant of our n-dimensional Galois representations, and we

must prove slightly stronger versions of our auxiliary results (e.g. existence of

Taylor–Wiles primes) because of the hypotheses required elsewhere to be able

to prove local-global compatibility.

In §6.3 and §6.4, we carry out the main technical steps. First, in §6.3, we

give an axiomatic approach to the ‘Ihara avoidance’ technique that applies in

our particular set-up. Second, in §6.4, we describe an abstract patching argu-

ment that gives as output the objects required in §6.3. We find it convenient

to use the language of ultrafilters here, following [Sch18] and [GN22]. Finally,

in §6.5, we combine these arguments to prove Theorem 6.1.1 and Theorem

6.1.2
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6.2. Galois deformation theory. Let E ⊂ Qp be a finite extension of Qp,

with valuation ring O, uniformizer ̟, and residue field k. Given a complete

Noetherian local O-algebra Λ with residue field k, we let CNLΛ denote the

category of complete Noetherian local Λ-algebras with residue field k. We

refer to an object in CNLΛ as a CNLΛ-algebra.

We fix a number field F , and let Sp be the set of places of F above p.

We assume that E contains the images of all embeddings of F in Qp. We also

fix a continuous absolutely irreducible homomorphism ρ : GF → GLn(k). We

assume throughout that p ∤ 2n.

6.2.1. Deformation problems. Let S be a finite set of finite places of F

containing Sp and all places at which ρ is ramified. We write FS for the

maximal subextension of F/F which is unramified outside S. For each v ∈ S,
we fix Λv ∈ CNLO, and set Λ = “⊗v∈SΛv, where the completed tensor product

is taken over O. There is a forgetful functor CNLΛ → CNLΛv for each v ∈ S
via the canonical map Λv → Λ. A lift (also called a lifting) of ρ|GFv

is a

continuous homomorphism ρ : GFv → GLn(A) to a CNLΛv -algebra A such

that ρ mod mA = ρ|GFv
.

We let D�
v denote the set valued functor on CNLΛv that sends A to the

set of all lifts of ρ|GFv
to A. This functor is representable, and we denote the

representing object by R�
v .

A local deformation problem for ρ|GFv
is a subfunctor Dv of D�

v satisfying

the following:

• Dv is represented by a quotient Rv of R�
v .

• For all A ∈ CNLΛv , ρ ∈ Dv(A), and a ∈ ker(GLn(A) → GLn(k)), we

have aρa−1 ∈ Dv(A).
The notion of global deformation problem that we use in this paper is the

following:

Definition 6.2.2. A global deformation problem is a tuple

S = (ρ, S, {Λv}v∈S , {Dv}v∈S),

where:

• ρ, S, and {Λv}v∈S are as above.

• For each v ∈ S, Dv is a local deformation problem for ρ|GFv
.

This differs from that of [CG18, §8.5.2] and [KT17, Definition 4.2] in that

we don’t fix the determinant.

As in the local case, a lift (or lifting) of ρ is a continuous homomorphism

ρ : GF → GLn(A) to a CNLΛ-algebra A, such that ρ mod mA = ρ. We say

that two lifts ρ1, ρ2 : GF → GLn(A) are strictly equivalent if there is a ∈
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ker(GLn(A)→ GLn(k)) such that ρ2 = aρ1a
−1. A deformation of ρ is a strict

equivalence class of lifts of ρ.

For a global deformation problem

S = (ρ, S, {Λv}v∈S , {Dv}v∈S),

we say that a lift ρ : GF → GLn(A) is of type S if ρ|GFv
∈ Dv(A) for each

v ∈ S. Note that if ρ1 and ρ2 are strictly equivalent lifts of ρ, and ρ1 is of

type S, then so is ρ2. A deformation of type S is then a strict equivalence

class of lifts of type S, and we denote by DS the set-valued functor that takes

a CNLΛ-algebra A to the set of deformations ρ : GF → GLn(A) of type S.
Given a subset T ⊆ S, a T -framed lift of type S is a tuple (ρ, {αv}v∈T ),

where ρ : GF → GLn(A) is a lift of ρ of type S and αv ∈ ker(GLn(A) →
GLn(k)) for each v ∈ T . We say that two T -framed lifts (ρ1, {αv}v∈T ) and

(ρ2, {βv}v∈T ) to a CNLΛ-algebra A are strictly equivalent if there is a ∈
ker(GLn(A) → GLn(k)) such that ρ2 = aρ1a

−1, and βv = aαv for each v ∈ T .
A strict equivalence class of T -framed lifts of type S is called a T -framed de-

formation of type S. We denote by DTS the set valued functor that sends a

CNLΛ-algebra A to the set of T -framed deformations to A of type S.
Theorem 6.2.3. Let S = (ρ, S, {Λv}v∈S , {Dv}v∈S) be a global deforma-

tion problem, and let T be a subset of S. The functors DS and DTS are repre-

sentable; we denote their representing objects by RS and RTS , respectively.

Proof. This is well known. See [Gou01, Appendix 1] for a proof of the

representability of DS . The representability of DTS can be deduced from this.

�

If T = ∅, then tautologically RS = RTS . Otherwise, the relation between

these two deformation rings is given by the following lemma.

Lemma 6.2.4. Let S = (ρ, S, {Λv}v∈S , {Dv}v∈S) be a global deforma-

tion problem, and let T be a nonempty subset of S. Fix some v0 ∈ T , and

define T = OJ{Xv,i,j}v∈T,1≤i,j≤nK/(Xv0,1,1). The choice of a representative

ρS : GF → GLn(RS) for the universal type S deformation determines a canon-

ical isomorphism RTS
∼= RS“⊗OT .

Proof. This can be proved in the same way as the second part of [CHT08],

using Schur’s lemma. A representative for the universal T -framed deformation

over RS“⊗OT is (ρS , {1 + (Xv,i,j)}v∈T ). �

6.2.5. Some local deformation problems. We now fix some finite place v

of F and introduce the local deformation rings that we will use in the proofs

of our automorphy lifting theorems.
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6.2.6. Ordinary deformations. Assume that v|p, and that there is an in-

creasing filtration

0 = Fil
0
v ⊂ Fil

1
v ⊂ · · · ⊂ Fil

n
v = kn

that is GFv -stable under ρ|GFv
with one dimensional graded pieces. We will

construct and study a local deformation ring Rdet,ord
v whose corresponding

local deformation problem Ddet,ord
v will be used in the proof of our ordinary

automorphy lifting theorem.

Consider the completed group algebra OJO×Fv
(p)nK where O×Fv

(p) denotes

the pro-p completion of O×Fv
. There is an isomorphism ArtFv : O×Fv

(p) →
IF ab

v /Fv
(p). Fix a non-empty set of minimal prime ideals of OJO×Fv

(p)nK, and

let a be their intersection. We then set Λv = OJO×Fv
(p)nK/a.

For each 1 ≤ i ≤ n, let χ̃i : GFv → k× denote the character given by ρ|GFv

on Fil
i
v/Fil

i−1
v , and let χi = χ̃i|IFv

. For each 1 ≤ i ≤ n, we have a canonical

character χuniv
i : IFv → Λ×v that is the product of the Teichmüller lift of χi with

the map that sends IFv to the ith copy of O×Fv
(p) in O×Fv

(p)n via Art−1Fv
. The

ideal a corresponds to a fixed collection of ordered tuples of characters of the

torsion subgroup of IF ab
v /Fv

(p).

We recall some constructions from [Ger19, §3.1]. We recall that R�
v ∈

CNLΛv denotes the universal lifting ring of ρ|GFv
. Let F denote the flag variety

over O classifying complete flags 0 = Fil0 ⊂ · · · ⊂ Filn = On, and let Gv ⊂
F ×SpecO SpecR�

v denote the closed subscheme whose A-points for an R�
v -

algebra A consist of those filtrations Fil ∈ F(A) such that for each i = 1, . . . , n,

Fili is preserved by the specialization of the universal lifting to A and such that

the induced action of IFv ⊂ GFv on Fili /Fili−1 is by the pushforward of the

character χuniv
i .

We now define two ordinary deformation rings:

• We define R△v to be the image of the homomorphism

R�

v → H0(Gv ,OGv ).

• Let Λ̃v = OJF×v (p)nK ⊗OJO×
Fv

(p)nK Λv, and let R̃�
v = R�

v ⊗Λv Λ̃v. The

characters χuniv
i naturally extend to characters χ̃univ

i : GFv → Λ̃×v lifting

χ̃i. Let R̃det,ord
v denote the maximal quotient of R̃�

v over which the

relations

(6.2.7) det(X − ρ�(g)) =
n∏

i=1

(X − χ̃univ
i (g))

and

(6.2.8) (ρ�(g1)− χ̃univ
1 (g1))(ρ

�(g2)− χ̃univ
2 (g2)) . . . (ρ

�(gn)− χ̃univ
n (gn)) = 0
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hold for all g, g1, . . . , gn ∈ GFv . We define Rdet,ord
v to be the image of

the homomorphism

R�

v → R̃det,ord
v .

(A ring similar to Rdet,ord
v was also defined in [CS19a].)

Lemma 6.2.9. R̃det,ord
v is a finite Rdet,ord

v -algebra.

Proof. It is enough to show that R̃det,ord
v is a finite R�

v -algebra or, by the

completed version of Nakayama’s lemma, that R̃det,ord
v /mR�

v
is an Artinian k-

algebra. This follows from the relation (6.2.7) applied with g = ArtFv(̟v). �

For a domain R ∈ CNLΛv and K an algebraic closure of the fraction

field of R, an R-point of SpecR�
v factors through SpecR△v if and only if the

following condition is satisfied:

• Let ρ : GFv → GLn(R) be the pushforward of the universal lifting to R.

Then there is a filtration 0 = Fil0 ⊂ . . . ⊂ Filn = Kn on ρ⊗RK which

is preserved by GFv , and such that the action of IFv on Fili /Fili−1

(i = 1, . . . , n) is given by the push-forward of the universal character

χuniv
j to R.

On the other hand, suppose that R → S is an injective morphism of R�
v -

algebras, and suppose that there exist characters ψ1, . . . , ψn : GFv → S× such

that for each i = 1, . . . , n, ψi|IFv
equals the pushforward of χuniv

i to S, and that

for each g, g1, . . . , gn ∈ GFv , the analogues of the relations (6.2.7) and (6.2.8)

for the characters ψi and the pushforward of the universal lifting hold in S.

Then R�
v → R factors through Rdet,ord

v . We see in particular that there is an

inclusion of topological spaces SpecR△v ⊂ SpecRdet,ord
v : Indeed, applying the

above for R = R△v /p, where p is a mininal prime of R△v , and S its integral

closure in a sufficiently large finite extension of its fraction field; we see that

R�
v → R△v /p factors through Rdet,ord

v . Since the maximal reduced quotient

(R△v )red of R△v is the image of the map R�
v →

∏
pR
△
v /p, we deduce that there

is a surjection of R�
v -algebras R

det,ord
v ։ (R△v )red.

The ring R△v was introduced in [Ger19]. Its properties in an important

special case are summarized in the following proposition.

Proposition 6.2.10. If [Fv : Qp] >
n(n−1)

2 + 1 and ρ|GFv
is trivial, then

R△v is O-flat, reduced and equidimensional of dimension 1+n2+n(n+1)
2 [Fv : Qp].

Moreover, the map SpecR△v → SpecΛv is bijective on the level of generic

points, hence on the level of irreducible components.

Proof. This is essentially contained in [Tho15, Proposition 3.14]. More

precisely, that reference proves the proposition under the assumption that Λv =
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OJO×Fv
(p)nK, but also shows that minimal prime ideals of Λv generate minimal

prime ideals of R△v . The more general case where Λv is allowed to be a quotient

of OJO×Fv
(p)nK by the intersection of an arbitrary collection of minimal prime

ideals follows from this. �

Our analysis of the ring Rdet,ord
v will be coarser. It begins with the follow-

ing lemma.

Lemma 6.2.11. Let K be a field, G a group and ρ : G → GLn(K) a

representation. Suppose that there exist pairwise distinct characters χ1, . . . , χn :

G→ K× satisfying the following conditions :

(1) For all g ∈ G,

det(X − ρ(g)) =
n∏

i=1

(X − χi(g)).

(2) For all g1, . . . , gn ∈ G,

(ρ(g1)− χ1(g1))(ρ(g2)− χ2(g2)) · · · (ρ(gn)− χn(gn)) = 0.

Then there is a filtration 0 = Fil0 ⊂ · · · ⊂ Filn = Kn by G-stable subspaces

such that for each i = 1, . . . , n, Fili /Fili−1 ∼= K(χi).

Proof. We define subspaces 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ V = Kn

be declaring that for each i = 1, . . . , n, Vi/Vi−1 is the maximal subspace of

V/Vi−1 where G acts by the character χi. Each Vi is G-stable and the second

condition of the lemma implies that Vn = V . On the other hand, each Vi/Vi−1
is isomorphic to K(χi)

dimK Vi/Vi−1 . The first condition of the lemma implies

that we must therefore have dimK Vi/Vi−1 = 1 for each i = 1, . . . , n. The proof

is complete on taking Fili = Vi. �

Let U ⊂ SpecΛv be the open subscheme where the characters χuniv
1 , . . . , χuniv

n

are pairwise distinct, and let Z denote its complement.

Proposition 6.2.12. Let f : SpecR△v → SpecΛv , g : SpecRdet,ord
v →

SpecΛv be the structural maps. Suppose that ρ|GFv
is trivial and that [Fv :

Qp] >
n(n+1)

2 + 1.

(1) We have f−1(U) = g−1(U) as subspaces of SpecR�
v . Consequently, for

each irreducible component C of SpecΛv , there is a unique irreducible

component C ′ of SpecRdet,ord
v which dominates C . It has dimension

n2 + 1 + n(n+1)
2 [Fv : Qp].

(2) Let C ′ be an irreducible component of Rdet,ord
v which does not dominate

an irreducible component of SpecΛv . Then C ′ ⊂ g−1(Z) and C ′ has

dimension at most n2 − 1 + n(n+1)
2 [Fv : Qp].
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Proof. We have already observed that there is an inclusion SpecR△v ⊂
SpecRdet,ord

v . We must first show that if s : SpecK → g−1(U) ⊂ SpecRdet,ord
v

is a geometric point, then s factors through SpecR△v . By Lemma 6.2.9, s lifts

to a point s′ : SpecK → Spec R̃det,ord
v . Then Lemma 6.2.11 shows that s factors

through R△v . The first part of the proposition now follows from Proposition

6.2.10, which says that f |U induces a bijection on generic points, hence on

irreducible components.

For the second part, let C ′ be an irreducible component of Rdet,ord
v which

does not dominate an irreducible component of SpecΛv. It follows from the

first part that we must have g(C ′) ⊂ Z. To bound the dimension of C ′, we

claim that there is a permutation σ ∈ Sn such that C ′ is contained in the

closed subspace h−1(Z) of SpecR△,σv , where h : SpecR△,σv → SpecΛv is the

quotient of R�
v which is defined in the same way as R△v , except that we require

the action of IFv on the ith graded piece of the filtration to be by the character

χuniv
σ(i) . There is a corresponding surjective morphism Gσv → SpecR△,σv . To

show the claim, it suffices to check that there is a σ such that a geometric

generic point of C ′ is contained in SpecR△,σv . To see this, we observe that

the Galois representation corresponding to a geometric generic point of C ′

has semisimplification a direct sum of characters whose restriction to Iv is the

push-forward of ⊕ni=1χ
univ
i . It follows that this representation has a filtration

with the Galois action on its graded pieces given by the universal characters

in some order.

We thus have

dimC ′ ≤ dimh−1(Z) ≤ dimGσv ×SpecΛv Z.

We can bound dimGσv ×Spec Λv Z by bounding the dimension of the completed

local rings at its closed points, using essentially the same tangent space calcu-

lation as in [Ger19, Lemma 3.7] (although over a finite field). This yields

dimGσv×Spec ΛvZ ≤ 1+n2+n(n+1)/2+n(n+1)[Fv : Qp]/2−[Fv : Qp] ≤ n2−1+n(n+1)[Fv : Qp]/2,

using our assumption [Fv : Qp] >
n(n+1)

2 + 1. This completes the proof. �

6.2.13. Fontaine–Laffaille deformations. We again suppose v|p, but take
Λv = O. We assume that Fv/Qp is unramified. Recall that in §4.1 we defined

a category MFO and a functor G onMFO that take values in the category

of finite O-modules with continuous O-linear GFv -action.

For each embedding τ : Fv →֒ E, let λτ = (λτ,1, . . . , λτ,n) be a tuple of

integers satisfying

λτ,1 ≥ λτ,2 ≥ · · · ≥ λτ,n.
and

λτ,1 − λτ,n < p− n.
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We say a representation of GFv on a finite O-module W is Fontaine–Laffaille

of type (λτ )τ∈Hom(Fv,E) if there is M ∈ MFO with W ∼= G(M), and

FLτ (M ⊗O k) = {λτ,1 + n− 1, λτ,2 + n− 2, . . . , λτ,n}

for each τ : Fv →֒ E. The following proposition follows from [CHT08, §2.4.1]

and a twisting argument (see §4.1).

Proposition 6.2.14. Assume that ρ|GFv
is Fontaine–Laffaille of type

(λτ )τ∈Hom(Fv,E). Then there is a quotient RFL
v of R�

v satisfying the following.

(1) RFL
v represents a local deformation problem DFL

v .

(2) For a CNLO-algebra A that is finite over O, a lift ρ ∈ D�
v (A) lies in

DFL
v if and only if ρ is Fontaine–Laffaille of type (λτ )τ∈Hom(Fv ,E).

(3) RFL
v is a formally smooth over O of dimension 1+n2+ n(n−1)

2 [Fv : Qp].

6.2.15. Level raising deformations. Assume that qv ≡ 1 mod p, that ρ|GFv

is trivial, and that p > n. We take Λv = O.
Let χ = (χ1, . . . , χn) be a tuple of continuous characters χi : O×Fv

→ O×
that are trivial modulo ̟. We let Dχv be the functor of lifts ρ : GFv → GLn(A)

such that

charρ(σ)(X) =

n∏

i=1

(X − χi(Art−1Fv
(σ)))

for all σ ∈ IFv . Then Dχv is a local deformation problem, and we denote its

representing object by Rχv . The following two propositions are contained in

[Tay08, Proposition 3.1].

Proposition 6.2.16. Assume that χi = 1 for all 1 ≤ i ≤ n. Then R1
v

satisfies the following properties :

(1) SpecR1
v is equidimensional of dimension 1+n2 and every generic point

has characteristic zero.

(2) Every generic point of SpecR1
v/̟ is the specialization of a unique

generic point of SpecR1
v .

Proposition 6.2.17. Assume that the χi are pairwise distinct. Then

SpecRχv is irreducible of dimension 1 + n2, and its generic point has charac-

teristic zero.

6.2.18. Taylor–Wiles deformations. Assume that qv ≡ 1 mod p, and that

ρ|GFv
is unramified. We take Λv = O. We assume that ρ|GFv

has n-distinct

eigenvalues α1, . . . , αn ∈ k. For each 1 ≤ i ≤ n, let γi : GFv → k× be the

unramified character that sends Frobv to αi.
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Lemma 6.2.19. Let ρ : GFv → GLn(A) be any lift of ρ. There are unique

continuous characters γi : GFv → A×, for 1 ≤ i ≤ n, such that ρ is GLn(A)-

conjugate to a lift of the form γ1 ⊕ · · · ⊕ γn, where γi mod mA = γi for each

1 ≤ i ≤ n.
Proof. This is similar to [DDT97, Lemma 2.44]. The details are left to

the reader. �

Let ∆v = k(v)×(p)n, where k(v)×(p) is the maximal p-power quotient of

k(v)×. Let ρ : GFv → GLn(R
�
v ) denote the universal lift. Then ρ is GLn(R

�
v )-

conjugate to a lift of the form γ1 ⊕ · · · ⊕ γn, with γi mod mR� = γi. For each

1 ≤ i ≤ n, the character γi ◦ArtFv |O×
Fv

factors through k(v)×(p), so we obtain

a canonical local O-algebra morphism O[∆v] → R�
v . Note that this depends

on the choice of ordering α1, . . . , αn. It is straightforward to check that this

morphism is formally smooth of relative dimension n2.

6.2.20. Formally smooth deformations. Assume that v ∤ p. The following

is a standard argument in obstruction theory, and the proof is left to the reader.

Proposition 6.2.21. If H2(Fv , ad ρ) = 0, then R�
v is isomorphic to a

power series ring over O in n2 variables.

6.2.22. Presentations. Fix a global deformation problem

S = (ρ, S, {Λv}v∈S , {Dv}v∈S),
and for each v ∈ S, let Rv denote the object representing Dv. Let T be a

(possibly empty) subset of S such that Λv = O for all v ∈ S r T , and define

RT,locS = “⊗v∈TRv, with the completed tensor product being taken over O. It

is canonically a Λ-algebra, via the canonical isomorphism “⊗v∈TΛv ∼= “⊗v∈SΛv.
For each v ∈ T , the morphism DTS → Dv given by (ρ, {αv}v∈T ) 7→ α−1v ρ|GFv

αv
induces a local Λv-algebra morphism Rv → RTS . We thus have a local Λ-algebra

morphism RT,locS → RTS . To understand the relative tangent space of this map,

we use a Galois cohomology complex following [CHT08, §2] (cf. [KT17, §4.2]).

We let ad ρ denote the space of n×n matrices Mn×n(k) over k with adjoint

GF -action via ρ. For each v ∈ S, we let Z1(Fv , ad ρ) denote the k-vector space

of continuous 1-cocycles of GFv with coefficients in ad ρ. The map c 7→ (1+εc)ρ

gives an isomorphism

Z1(Fv , ad ρ)
∼−→ HomCNLΛv

(R�

v , k[ε]/(ε
2)).

We denote by L1v the pre-image of

HomCNLΛv
(Rv, k[ε]/(ε

2)) ⊆ HomCNLΛv
(R�

v , k[ε]/(ε
2))

under this isomorphism. Note that L1v contains the subspace of coboundaries.

We then let Lv be the image of L1v in H1(Fv , ad ρ).
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We define a complex C•S,T (ad ρ) by

CiS,T (ad ρ) =





C0(FS/F, ad ρ) if i = 0,

C1(FS/F, ad ρ)⊕
⊕

v∈T C
0(Fv , ad ρ) if i = 1,

C2(FS/F, ad ρ)⊕
⊕

v∈T C
1(Fv , ad ρ)⊕v∈SrT C1(Fv, ad ρ)/L1v if i = 2,

Ci(FS/F, ad ρ)⊕
⊕

v∈S C
i−1(Fv , ad ρ) otherwise,

with boundary map CiS,T (ad ρ)→ Ci+1
S,T (ad ρ) given by

(φ, (ψv)v) 7→ (∂φ, (φ|GFv
− ∂ψv)v).

We denote the cohomology groups of this complex by H i
S,T (ad ρ), and denote

their k-dimension by hiS,T (ad ρ) (we use similar notation for the k-dimension

of local and global Galois cohomology groups).

There is a long exact sequence in cohomology

0→ H0
S,T (ad ρ)→ H0(FS/F, ad ρ)→ ⊕v∈TH0(Fv, ad ρ)

(6.2.22)

→ H1
S,T (ad ρ)→ H1(FS/F, ad ρ)→ ⊕v∈TH1(Fv, ad ρ)⊕v∈SrT H1(Fv, ad ρ)/Lv

→ H2
S,T (ad ρ)→ H2(FS/F, ad ρ)→ ⊕v∈SH2(Fv , ad ρ)→ · · · .

Since we are assuming that p > 2, the groups H i(FS/F, ad ρ) vanish for i ≥ 3,

as do the groups H i(Fv , ad ρ). So H i
S,T (ad ρ) = 0 for i > 3, and we have a

relation among Euler characteristics

(6.2.23)

χS,T (ad ρ) = χ(FS/F, ad ρ)−
∑

v∈S

χ(Fv , ad ρ)−
∑

v∈SrT

(dimk Lv − h0(Fv , ad ρ)).

The trace pairing (X,Y ) 7→ tr(XY ) on ad ρ is perfect and GF -equivariant,

so ad ρ(1) is isomorphic to the Tate dual of ad ρ. For each v ∈ S, we let

L⊥v ⊆ H1(Fv, ad ρ(1)) be the exact annihilator of Lv under local Tate duality.

We then define

H1
S⊥,T (ad ρ(1)) = ker

(
H1(FS/F, ad ρ(1))→

∏

v∈SrT

H1(Fv , ad ρ(1))/L⊥v

)
.

The following is proved in the same way as [KT17, Proposition 4.7], based on

ideas of Kisin [Kis07, Prop. 4.1.5, Rem. 4.1.7].

Proposition 6.2.24. Let the notation and assumptions be as in the be-

ginning of §6.2.22, assume further that T is nonempty. Then there is a local
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Λ-algebra surjection RT,locS JX1, . . . ,XgK→ RTS , with

g = h1S,T (ad ρ) = h1S⊥,T (ad ρ(1))− h0(FS/F, ad ρ(1))

−
∑

v|∞

h0(Fv , ad ρ) +
∑

v∈SrT

(dimk Lv − h0(Fv , ad ρ)).

Proof. The first claim with g = h1S,T (ad ρ) follows from showing

H1
S,T (ad ρ)

∼= HomCNLΛ
(RTS/(mRT,loc

S
), k[ε]/(ε2))

∼= Homk(mRT
S
/(m2

RT
S
,m

RT,loc
S

), k).

To see this, note that any T -framed lifting of ρ to k[ε]/(ε2) can be written as

((1 + εκ)ρ, (1 + εαv)v∈T ), with κ ∈ Z1(FS/F, ad ρ), and αv ∈ ad ρ. It is the

trivial lift at v ∈ T if and only if

(1− εαv)(1 + εκ|GFv
)ρ|GFv

(1 + εαv) = ρ|GFv
,

equivalently,

κ|GFv
= (ad ρ|GFv

− 1)αv .

Such a lift is further of type S if and only if κ|GFv
∈ L1v for all v ∈ SrT . This

sets up a bijection between the set of 1-cocycles of the complex C•S,T (ad ρ) and

the set of T -framed lifts of type S that are trivial at v ∈ T . Two cocycles

(κ, {αv}v∈T ) and (κ′, {α′}v∈T ) define strictly equivalent T -framed lifts if and

only if there is β ∈ ad ρ such that

κ′ = κ+ (ad ρ− 1)β and α′v = αv + β,

for all v ∈ T , i.e. if and only if they differ by a coboundary. This induces the

desired isomorphism

H1
S,T (ad ρ)

∼= HomCNLΛ
(RTS/(mRT,loc

S
), k[ε]/(ε2)).

Since T is nonempty, h0S,T (ad ρ) = 0. Then (6.2.23) together with the

local and global Euler characteristic formulas imply

h1S,T (ad ρ) = h2S,T (ad ρ)−h3S,T (ad ρ)−
∑

v|∞

h0(Fv , ad ρ)+
∑

v∈SrT

(dimk Lv−h0(Fv , ad ρ)).

To finish the proof, we deduce equalities h2S,T (ad ρ) = h1
S⊥,T

(ad ρ(1)) and

h3S,T (ad ρ) = h0(FS/F, ad ρ(1)) by comparing the exact sequence

→ H1(FS/F, ad ρ)→ ⊕v∈TH1(Fv , ad ρ)⊕v∈SrT H1(Fv , ad ρ)/Lv
→ H2

S,T (ad ρ)→ H2(FS/F, ad ρ)→ ⊕v∈SH2(Fv, ad ρ)

→ H3
S,T (ad ρ)→ 0,
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which is part of (6.2.22), with the exact sequence

→ H1(FS/F, ad ρ)→ ⊕v∈TH1(Fv , ad ρ)⊕v∈SrT H1(Fv , ad ρ)/Lv
→ H1

S⊥,T (ad ρ(1))
∨ → H2(FS/F, ad ρ)→ ⊕v∈SH2(Fv, ad ρ)

→ H0(FS/F, ad ρ(1))
∨ → 0,

which is part of the Poitou–Tate long exact sequence. �

We will apply this with our choices of local deformation rings as in §6.2.5.

By applying Propositions 6.2.14, 6.2.16, 6.2.17, 6.2.21, and [BLGHT11, Lemma

3.3], we obtain the following:

Lemma 6.2.25. We assume that our deformation problem S and T ⊆ S

satisfy the following.

• T is a disjoint union Sp ⊔R ⊔ Sa.
• For each v ∈ Sp, we assume that Fv/Qp is unramified and that ρ|GFv

is as in Proposition 6.2.14. We take Dv = DFL
v .

• For each v ∈ R, we assume that qv ≡ 1 mod p and that ρ|GFv
is trivial.

We take Dv = Dχv
v for some tuple χv = (χv,1, . . . , χv,n) of characters

χv,i : O×Fv
→ O× that are trivial modulo ̟.

• For each v ∈ Sa, we assume that H2(Fv, ad ρ) = 0 and we take Dv =

D�
v .

Then RT,locS satisfies the following properties.

(1) Assume that χv,i = 1 for each v ∈ R and 1 ≤ i ≤ n. Then SpecRT,locS

is equidimensional of dimension 1 + n2|T | + n(n−1)
2 [F : Q], and ev-

ery generic point has characteristic 0. Further, every generic point of

SpecRT,locS /̟ is the specialization of a unique generic point of SpecRT,locS .

(2) Assume that χv,1, . . . , χv,n are pairwise distinct for each v ∈ R. Then

SpecRT,locS is irreducible of dimension 1 + n2|T | + n(n−1)
2 [F : Q] and

its generic point has characteristic 0.

In the ordinary case, we will use the following.

Lemma 6.2.26. We assume that our deformation problem S and T ⊆ S

satisfy the following.

• T is a disjoint union Sp ⊔R ⊔ Sa.
• For each v ∈ Sp, we assume that [Fv : Qp] >

n(n+1)
2 +1 and that ρ|GFv

is trivial. We take Λv to be the quotient of OJO×Fv
(p)nK by a mini-

mal prime ideal ℘v and take Dv = Ddet,ord
v to be the local deformation

problem classified by Rdet,ord
v .
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• For each v ∈ R, we assume that qv ≡ 1 mod p and that ρ|GFv
is trivial.

We take Dv = Dχv
v for some tuple χv = (χv,1, . . . , χv,n) of characters

χv,i : O×Fv
→ O× that are trivial modulo ̟.

• For each v ∈ Sa, we assume that H2(Fv, ad ρ) = 0 and we take Dv =

D�
v .

Then RT,locS satisfies the following properties.

(1) Assume that χv,i = 1 for each v ∈ R and 1 ≤ i ≤ n. Then SpecRT,locS

has dimension 1 + n2|T | + n(n+1)
2 [F : Q], any irreducible component

of maximum dimension has a characteristic 0 generic point, and any

irreducible component that does not have maximum dimension has di-

mension ≤ n2|T | − 1 + n(n+1)
2 [F : Q]. Further, any irreducible compo-

nent of SpecRT,locS /(λ) of maximum dimension is the specialization of

a unique generic point of SpecRT,locS .

(2) Assume that χv,1, . . . , χv,n are pairwise distinct for each v ∈ R. Then

SpecRT,locS has dimension 1 + n2|T | + n(n+1)
2 [F : Q], it has a unique

irreducible component of maximum dimension and the generic point of

this irreducible component has characteristic 0. Any other irreducible

component has dimension ≤ n2|T | − 1 + n(n+1)
2 [F : Q].

(3) If x is a point of SpecRT,locS lying in an irreducible component of non-

maximum dimension, then there is some v ∈ Sp such that the image of

x in SpecΛv lies in the closed locus defined by χuniv
i = χuniv

j for some

i 6= j.

Proof. For each v ∈ Sp, Proposition 6.2.12 implies that SpecRv has a

unique irreducible component of dimension dimRv = 1+ n2 + n(n+1)
2 [Fv : Qp],

and this irreducible component has characteristic 0. Let qv be the minimal

prime of Rv corresponding to this irreducible component. Then we can apply

[BLGHT11, Lemma 3.3] to

R′ = “⊗v∈SpRv/qv“⊗v∈R∪SaRv

together with Propositions 6.2.16, 6.2.17, and 6.2.21 to obtain the following:

(1) If χv,i = 1 for each v ∈ R and 1 ≤ i ≤ n, then SpecR′ is equidimen-

sional of dimension 1 + n2|T |+ n(n+1)
2 [F : Q], and every generic point

has characteristic 0. Further, every generic point of SpecR′/̟ is the

specialization of a unique generic point of SpecR′.

(2) If χv,1, . . . , χv,n are pairwise distinct for each v ∈ R, then SpecR′ is

irreducible of dimension 1+n2|T |+ n(n+1)
2 [F : Q] and its generic point

has characteristic 0.
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Since any minimal prime p of RT,locS pulls back to minimal prime ideals pv of

Rv for each v ∈ T , and induces a surjection

“⊗v∈TRv/pv → RT,locS /p,

we see that SpecR′ is a union of irreducible components of SpecRT,locS . To

finish the proof of the lemma, it suffice to note that if pv 6= qv for some v ∈ Sp,
then by Proposition 6.2.12, dimRv/pv ≤ n2−1+ n(n+1)

2 [Fv : Qp] and the image

of pv in Λv lies in the closed locus defined by χuniv
i = χuniv

j for some i 6= j. In

this case, dimRT,locS /p ≤ n2|T | − 1 + n(n+1)
2 [F : Q]. �

6.2.27. Taylor–Wiles primes. In this section we show how to generate

Taylor–Wiles data. We first need to introduce a definition, essentially equiva-

lent to that of [KT17, Defn. 4.10] and [CG18, §9.2] (see Remark 6.2.30 below).

For the moment, let k be any algebraic extension of Fp.

Definition 6.2.28. Let ad0 denote the space of trace zero matrices in

Mn×n(k) with the adjoint GLn(k)-action. An absolutely irreducible subgroup

H ⊆ GLn(k) is called enormous over k if it satisfies the following :

(1) H has no nontrivial p-power order quotient.

(2) H0(H, ad0) = H1(H, ad0) = 0.

(3) For any simple k[H]-submodule W ⊆ ad0, there is a regular semisimple

h ∈ H such that W h 6= 0.

Note that this only depends on the image of H in PGLn(k). If p divides

n, then no subgroup of GLn(k) is enormous (because ad0 contains the scalar

matrices).

Lemma 6.2.29. Let k′/k be an algebraic extension, and let H ⊂ GLn(k)

be a subgroup. Then H is enormous over k if and only if it is enormous over

k′.

Proof. It suffices to address condition (3), which is equivalent to the follow-

ing statement: for all non-zero k[H]-submodules W ⊆ ad0, there is a regular

semisimple element h ∈ H such that W h 6= 0. This makes it clear that if H is

enormous over k′, then it is enormous over k.

Suppose therefore that H is enormous over k. The property that a k′[H]-

module V satisfies V h = 0 is closed under taking direct sums and taking

quotients (the latter is true because V h 6= 0 if and only if Vh 6= 0). If V ⊂
ad0⊗kk′, then σhv = hσv for all σ ∈ Gal(k′/k) (since H ⊂ GLn(k)) and

so V h 6= 0 if and only if (σV )h 6= 0. In particular, if W ′ is a simple k′[H]-

submodule of ad0⊗kk′ with no invariants by h ∈ H, the same is true for σW ′

for all σ ∈ Gal(k′/k), as well as the submodule of ad0⊗kk′ generated by the

sum of all such σW ′. But the latter is stable under both H and Gal(k′/k), and
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thus (by descent) has the form W ⊗k k′ for some k[H]-submodule of ad0. But

now applying condition (3) to any k[H]-simple submodule of W , we deduce

that W h 6= 0 for some regular semisimple h, from which it follows that the

same holds for W ′. �

Henceforth we drop the ‘over k’ and refer simply to enormous subgroups

of GLn(k).

Remark 6.2.30. Assuming that k is sufficiently large to contain all eigenval-

ues of the elements of H, it can be checked that Definition 6.2.28 is equivalent

to [KT17, Definition 4.10].

We now return to the assumptions described at the beginning of §6.2,

assuming further that k contains all eigenvalues of the elements of ρ(GF ). We

again fix a global deformation problem

S = (ρ, S, {Λv}v∈S , {Dv}v∈S).

We define a Taylor–Wiles datum to be a tuple (Q, (αv,1, . . . , αv,n)v∈Q) consist-

ing of:

• A finite set of finite places Q of F , disjoint from S, such that qv ≡
1 mod p for each v ∈ Q.

• For each v ∈ Q, an ordering αv,1, . . . , αv,n of the eigenvalues of ρ(Frobv),

which are assumed to be k-rational and distinct.

Given a Taylor–Wiles datum (Q, (αv,1, . . . , αv,n)v∈Q), we define the augmented

global deformation problem

SQ = (ρ, S ∪Q, {Λv}v∈S ∪ {O}v∈Q, {Dv}v∈S ∪ {D�

v }v∈Q).

Set ∆Q =
∏
v∈Q k(v)

×(p)n. By §6.2.18, the fixed ordering αv,1, . . . , αv,n, for

each v ∈ Q, determines a Λ[∆Q]-algebra structure on RTSQ for any subset T

of S. Letting aQ = ker(Λ[∆Q] → Λ) be the augmentation ideal, the natural

surjection RTSQ → RTS has kernel aQR
T
SQ

.

Lemma 6.2.31. Let T ⊆ S. Assume that F is CM with maximal to-

tally real subfield F+, that ζp /∈ F , and that ρ(GF (ζp)) is enormous. Let

q ≥ h1
S⊥,T

(ad ρ(1)). Then for every N ≥ 1, there is a choice of Taylor–Wiles

datum (QN , (αv,1, . . . , αv,n)v∈QN
) satisfying the following :

(1) #QN = q.

(2) For each v ∈ QN , qv ≡ 1 mod pN , and v has degree one over Q.

(3) h1
S⊥QN

,T
(ad ρ(1)) = 0.
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Proof. Since the augmented deformation datum SQN
has Dv = D�

v for

v ∈ QN , we have Lv = H1(Gv, ad ρ) and

H1
S⊥QN

,T
(ad ρ(1)) = ker

Ñ
H1
S⊥,T (ad ρ(1))→

∏

v∈QN

H1(Fv , ad ρ(1))

é
.

So by induction, it suffices to show that given any cocycle κ representing a

nonzero element of H1
S⊥,T

(ad ρ(1)), there are infinitely many finite places v of

F such that

• v has degree one over Q and splits in F (ζpN );

• ρ(Frobv) has n-distinct eigenvalues αv,1, . . . , αv,n in k;

• the image of κ in H1(Fv, ad ρ(1)) is nonzero.

The set of places of F that have degree one over Q has density one, so it suffices

to show that the remaining properties are satisfied by a positive density set

of places of F . Then by Chebotarev density, we are reduced to showing that

given any cocycle κ representing a nonzero element of H1
S⊥,T

(ad ρ(1)), there is

σ ∈ GF (ζ
pN

) such that

• ρ(σ) has distinct k-rational eigenvalues;
• pσκ(σ) 6= 0, where pσ : ad ρ→ (ad ρ)σ is the σ-equivariant projection.

(The second condition guarantees that the restriction of κ will not be a cobound-

ary.) Since p ∤ n, we have a GF -equivariant decomposition ad ρ = k ⊕ ad0 ρ,

and we treat separately the cases where κ represents a cohomology class in

H1(FS/F, ad
0 ρ(1)) and in H1(FS/F, k(1)).

First assume that κ represents a cohomology class in H1(FS/F, ad
0 ρ(1)).

Let L/F be the splitting field of ρ. The definition of enormous implies that

the restriction map

H1(FS/F, ad
0 ρ(1))→ H1(FS/L(ζpN ), ad

0 ρ(1))GF

is injective. Indeed, letting H = ρ(GF (ζp)), since H has no p-power order

quotients, H = ρ(GF (ζ
pN

)) and H0(H, ad0 ρ) = 0 implies that the restriction

to H1(FS/F (ζpN ), ad
0 ρ) is injective. Then the condition H1(H, ad0 ρ) = 0

implies that the further restriction to H1(FS/L(ζpN ), ad
0 ρ(1)) is injective.

So the restriction of κ defines a nonzero GF (ζ
pN

)-equivariant homomorphism

Gal(FS/L(ζpN ))→ ad0 ρ.

LetW be a nonzero irreducible subrepresentation in the k-span of κ(Gal(FS/L(ζpN )).

The enormous assumption implies that there is σ0 ∈ GF (ζ
pN

) such that ρ(σ0)

has distinct k-rational eigenvalues and such that W σ0 6= 0. This implies that

κ(Gal(FS/L(ζpN )) is not contained in the kernel of the σ0-equivariant projec-

tion pσ0 : ad0 ρ→ (ad0 ρ)σ0 . If pσ0κ(σ0) 6= 0, then we take σ = σ0. Otherwise,
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we choose τ ∈ GL(ζ
pN

) such that pσ0κ(τ) 6= 0, and we take σ = τσ0. This does

the job since ρ(σ) = ρ(σ0) and κ(σ) = κ(σ0) + κ(τ).

Now assume that κ represents a cohomology class in H1(FS/F, k(1)). The

cohomology class of κ corresponds to a Kummer extension F (ζp, y) with y
p ∈

F (ζp). Since κ is nontrivial and ζp /∈ F , this extension F (ζp, y) is not abelian
over F . It follows that yp /∈ F (ζpN ) for any N ≥ 1, and the restriction of κ

to GF (ζ
pN

) is nontrivial. Since the extension F (ζpN , y)/F (ζpN ) has degree p,

it is disjoint from the extension cut out by the restriction of ρ to GF (ζ
pN

) by

the enormous assumption. It follows that we can find σ ∈ GF (ζ
pN

) such that

ρ(σ) has distinct eigenvalues and such that κ(σ) 6= 0 ∈ k. This completes the

proof. �

Proposition 6.2.32. Take T = S, and let q ≥ h1
S⊥,T

(ad ρ(1)). Assume

that F = F+F0 with F+ totally real and F0 an imaginary quadratic field,

that ζp /∈ F , and that ρ(GF (ζp)) is enormous. Then for every N ≥ 1, there

is a choice of Taylor–Wiles datum (QN , (αv,1, . . . , αv,n)v∈QN
) satisfying the

following :

(1) #QN = q.

(2) For each v ∈ QN , qv ≡ 1 mod pN and the rational prime below v splits

in F0.

(3) There is a local Λ-algebra surjection RT,locS JX1, . . . ,XgK→ RTSQN
, with

g = qn− n2[F+ : Q].

Proof. If v is a finite place of F that is degree one over Q, then the rational

prime below it must split in F0. So Proposition 6.2.24 and Lemma 6.2.31 imply

that the proposition holds with

g = −h0(FS/F, ad ρ(1)) − n2[F+ : Q] +
∑

v∈Q

(dimLv − dimh0(Fv , ad ρ)).

The assumptions that ρ(GF (ζp)) is enormous and that ζp 6∈ F imply that

H0(FS/F, ad ρ(1)) is trivial. For each v ∈ Q, we have Lv = H1(Fv , ad ρ),

so

dimLv − dimh0(Fv , ad ρ) = h0(Fv , ad ρ(1)) = n,

where the first equality follows from local Tate duality and the local Euler

characteristic, and the second from the fact that qv ≡ 1 mod p and ρ(Frobv)

has distinct eigenvalues. �

6.3. Avoiding Ihara’s lemma. In this section we will axiomatically explain

how to deduce a patched automorphy theorem from the result of the patching

process. See section 6.3.5 and particularly Proposition 6.3.8. We begin however

with a little commutative algebra.
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6.3.1. Some commutative algebra.

Lemma 6.3.2. Suppose that T is an excellent local ring with SpecT irre-

ducible, that f ∈ mT and that T/(f) has Krull dimension 0.

If T has dimension 0 then for every finitely generated T module M we

have

lgT (M/fM)− lgT (M [f ]) = 0

(and these lengths are both finite).

Otherwise T has dimension 1 and a unique prime ideal p other than mT .

In this case there is a constant a ∈ Z>0 such that for any finitely generated

T -module M we have

lgT (M/fM)− lgT (M [f ]) = a lgTp(Mp)

(and all these lengths are finite).

Proof. If T has dimension 0 then it is Artinian and every finitely generated

T -module has finite length. If the desired length equality holds for two modules

in a short exact sequence it also holds for the third (by the snake lemma). Thus

we are reduced to checking the lemma in the case M = T/mT , in which case

it is obvious.

Now suppose that T has dimension 1. Note that T/(f) is Artinian and

so any finitely generated T/(f)-module has finite length over T . Let T̃ denote

the normalization of T/p. As T is excellent, T̃ is a finitely generated T -module.

We will take a = lgT (T̃ /(f)). (This is positive because f is not a unit in T̃ . In

fact it lies in every maximal ideal.)

Note that the conclusion of the lemma is true forM = T/m and forM = T̃ .

Also note that, if the conclusion of the lemma holds for two modules in a short

exact sequence, then it holds for the third (again by the snake lemma). In

particular the lemma holds for all finite length T -modules.

Filtering M by the submodules piM we reduce to checking the lemma

for M a T/p-module. Write Q for the quotient T̃ /(T/p). It has support

{mT } ⊂ SpecT . If M is any finitely generated T/p-module we have an exact

sequence

TorT1 (M,Q) −→M −→M ⊗T T̃ −→M ⊗T Q −→ (0).

Both M ⊗T Q and TorT1 (M,Q) are finitely generated T -modules with support

contained in {mT }, and hence of finite length. Thus we are reduced to proving

the lemma for M a finitely generated T̃ -module.

Note that T̃ is a Dedekind domain with only finitely many maximal ideals,

and hence a PID. By the structure theorem for finitely generated modules over

a PID it suffices to check the conclusion of the lemma in the two cases: M is
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a finite length T̃ -module and M = T̃ . However we have already treated both

these cases. �

We will really make use of a derived version of this lemma. Suppose that

S is a ring, that T is a noetherian S-algebra and that C ∈ Db(S) is equipped

with a map T → EndDb(S)(C) over S such that the cohomology of C has finite

length over T . Then we define

lgT (C) =
∑

i

(−1)i lgT (H i(C)).

Note that if

C1 −→ C2 −→ C3 −→
is an exact triangle in Db(S) with compatible actions of T , and if two of the Ci
have cohomology of finite length over T , then so does the third and we have

lgT (C2) = lgT (C1) + lgT (C3).

Note also that if f ∈ S and the cohomology of C is finitely generated over T ,

then the cohomology of C ⊗L
S S/(f) is also finitely generated over T . (Look at

the long exact sequence in cohomology coming from the exact triangle

(C
f−→ C −→ C ⊗L

S S/(f) −→) = C ⊗L
S (S

f−→ S −→ S/(f) −→) .)

Before stating the derived version we need one other remark:

Lemma 6.3.3. Suppose that A is a noetherian ring and that m is a max-

imal ideal of A that is simultaneously a minimal prime ideal. Then A
∼−→

Am ×B for some ring B.

Proof. Let p1, ..., pr denote the other minimal prime ideals of A and set

I = p1 ∩ ... ∩ pr. If m ⊃ I then m ⊃ pi for some i, a contradiction. Thus

m + I = A and A/(m ∩ I) ∼−→ A/m × A/I. However m ∩ I is nilpotent

so we can lift the idempotent (1, 0) ∈ A/m × A/I to an idempotent e ∈ A.

Then 1 − e ∈ m and e will lie in every prime ideal of A other than m. Thus

m = em× (1− e)A ⊂ eA× (1− e)A, and every other prime ideal of A contains

e and so has the form eA × q. In particular eA is Artinian local and Am =

(eA)em = eA. �

Suppose that S is a noetherian ring, that T is a finite S-algebra, that p

is a minimal prime ideal of T and that C ∈ Db(S) is equipped with a map

T → EndDb(S)(C) over S. Let q denote the contraction of p to S. As T is finite

over S, we see that p is also maximal ideal in Tq, and so by the above lemma

we can write Tq ∼= Tp×B for some S-algebra B. Let ep ∈ Tq be the idempotent

corresponding (1, 0) ∈ Tp×B. Then, perhaps by an abuse of notation, we will

write

Cp = ep(C ⊗S Sq).
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It is an object of Db(Sq) with an action of Tp. It is not literally a localization

over T , but if C (with its action of T ) happens to be represented by a complex

of T -modules Ci, then Cp is represented by the complex Cip. Moreover if the

cohomology of C is finitely generated over S, then the cohomology of Cp has

finite length over Tp (being finitely generated over the Artinian ring Tp).

Lemma 6.3.4. Suppose that S is an excellent local ring and that f ∈ mS

is a non-zero divisor. Suppose also that T is a finite S-algebra with a maximal

ideal m such that SpecTm is irreducible and Tm/(f) has Krull dimension 0.

Note that Tm has dimension at most 1.

If Tm has dimension 0, then for every C ∈ Db(S) such that T → EndDb(S)(C)

over S and C has finitely generated cohomology we have

lgTm((C ⊗L
S S/(f))m) = 0.

If not, then Tm has a unique prime ideal p other than m. In this case there

is a ∈ Z>0 with the following property :

Suppose that C ∈ Db(S) such that C has finitely generated cohomology,

and that T → EndDb(S)(C) over S. Then

lgTm((C ⊗L
S S/(f))m) = a lgTp(Cp).

Proof. We will take the a as in lemma 6.3.2 for the ring Tm. If the lemma

holds for two terms in an exact triangle it holds for the third term too. Thus

one may inductively reduce to the case that C is quasi-isomorphic to M [i] for

a finitely generated S-module M with a compatible action of T . In this case

C ⊗L
S S/(f) is quasi-isomorphic to (M

f→M)[−i]. Moreover

lgTm((C ⊗L
S S/(f))m) = (−1)i(lgTm((M)/fM)m)− lgTm(M [f ]m))

and

lgTp(Cp) = (−1)i lgTp(Mp).

Thus the present lemma follows from lemma 6.3.2. �

We remark that if C is perfect then the cohomology of C and C ⊗S S/(f)
will automatically be finitely generated (over S and hence over T ). In this case,

if T is an S subalgebra of EndDb(S)(C), then it will automatically be finite over

S.

6.3.5. Application. Let Λ be a ring which is isomorphic to a power series

ring over O. We assume given the following objects:

(1) A power series ring S∞ = Λ[[X1, · · · ,Xr]] with augmentation ideal

a∞ = (X1, . . . ,Xr).
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(2) Perfect complexes C∞, C
′
∞ of S∞-modules, and a fixed isomorphism

C∞ ⊗L
S∞

S∞/̟ ∼= C ′∞ ⊗L
S∞

S∞/̟

in D(S∞/̟).

(3) Two S∞-subalgebras

T∞ ⊂ EndD(S∞)(C∞)

and

T ′∞ ⊂ EndD(S∞)(C
′
∞),

which have the same image in

EndD(S∞/̟)(C∞ ⊗L
S∞

S∞/̟) = EndD(S∞/̟)(C
′
∞ ⊗L

S∞
S∞/̟),

where these endomorphism algebras are identified using the fixed iso-

morphism. Call this common image T∞. Note that T∞ and T ′∞ are

finite S∞-algebras.

(4) Two Noetherian complete local S∞-algebras R∞ and R′∞ and surjec-

tions R∞ ։ T∞/I∞, R′∞ ։ T ′∞/I
′
∞, where I∞ and I ′∞ are nilpotent

ideals. We write I∞ and I
′
∞ for the image of these ideals in T∞. Note

that it then makes sense to talk about the support of H∗(C∞) and

H∗(C ′∞) over R∞, R′∞, even though they are not genuine modules

over these rings. These supports actually belong to the closed subsets

of SpecR∞, SpecR′∞ given by SpecT∞, SpecT ′∞, and hence are finite

over SpecS∞.

(5) An isomorphism R∞/̟ ∼= R′∞/̟ compatible with the S∞-algebra

structure and the actions (induced from T∞ and T ′∞) on

H∗(C∞ ⊗L
S∞

S∞/̟)/(I∞ + I
′
∞) = H∗(C ′∞ ⊗L

S∞
S∞/̟)/(I∞ + I

′
∞),

where these cohomology groups are identified using the fixed isomor-

phism.

(6) Integers q0 ∈ Z and l0 ∈ Z≥0.

Assumption 6.3.6. Our set-up is assumed to satisfy the following:

(1) dimR∞ = dimR′∞ = dimS∞ − l0, and dimR∞/̟ = dimR′∞/̟ =

dimS∞ − l0 − 1.

(2) (Behavior of components) Assume that each generic point of SpecR∞/̟

of maximal dimension (i.e. of dimension dimR∞ − 1) is the specializa-

tion of a unique generic point of SpecR∞ of dimension dimR∞, and

SpecR′∞ has a unique generic point x′ of dimension dimR∞. Assume

also that any generic points of SpecR∞, SpecR′∞, SpecR∞/̟ which

are not of maximal dimension have dimension < dimS∞ − l0 − 1.

These hypotheses imply every generic point of SpecR∞ and SpecR′∞
of dimension dimR∞ has characteristic 0.
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(3) (Generic concentration) There exists a dimension 1 characteristic 0

prime p of S∞ containing a∞ such that

H∗(C∞ ⊗L
S∞

S∞/p)[
1

p
] 6= 0,

and these groups are non-zero only for degrees in the interval [q0, q0+l0].

Note that SuppR∞
(H∗(C∞)) = SpecT∞ and SuppR′

∞
(H∗(C ′∞)) = SpecT ′∞.

(The only point being that the kernel of T∞ → EndS∞(H∗(C∞)) is nilpotent.)

The following result is an immediate corollary of Lemma 6.3.4.

Lemma 6.3.7. Suppose that x is a minimal prime of R∞/(̟) of dimen-

sion dimS∞ − l0 − 1 containing a minimal prime x of R∞ of dimension

dimS∞ − l0. Note that R∞,x has a unique minimal prime ideal x, and that

R∞,x/(̟) has Krull dimension 0. Moreover:

(1) If x ∈ SpecT∞ and if lgT∞,x
((C∞ ⊗L

S∞
S∞/(̟))x) 6= 0 then x ∈

SpecT∞ and lgT∞,x
(C∞,x) 6= 0.

(2) If x ∈ SpecT∞ then x ∈ SpecT∞. If moreover lgT∞,x
(C∞,x) 6= 0 then

lgT∞,x
((C∞ ⊗L

S∞
S∞/(̟))x) 6= 0.

The same is true with R′∞, T ′∞, C ′∞ replacing R∞, T∞ and C∞.

We now come to the principal result of this section.

Proposition 6.3.8. With the notation and assumptions just established,

SuppR∞
(H∗(C∞)) = SpecT∞ ⊂ SpecR∞

contains every irreducible component of SpecR∞ of maximal dimension.

Proof. As T∞ andH∗(C∞) are finite over S∞ we see that SuppS∞
(H∗(C∞))

is the image of SpecT∞ → SpecS∞. Thus SuppS∞
(H∗(C∞)) has dimension

at most dimR∞ = dimS∞ − l0, and any prime in SuppS∞,p
(H∗(C∞,p)) has

codimension at least l0 in SpecS∞,p.

Since S∞,p/p ∼= (S∞/p)[
1
p ], our assumptions imply that C∞,p ⊗L S∞,p/p

is non-zero and has cohomology concentrated in degrees [q0, q0 + l0]. Thus

C∞,p is quasi-isomorphic to a perfect complex of S∞,p-modules concentrated in

degrees [q0, q0+l0]. (See for instance [KT17, Lemma 2.3].) From the key [CG18,

Lemma 6.2] we deduce that H∗(C∞,p) is non-zero exactly in degree q0+ l0 and

that SuppS∞,p
(Hq0+l0(C∞,p)) contains a prime of codimension at most l0 in

SpecS∞,p. Thus SuppS∞
(H∗(C∞)) contains a prime of dimension dimS∞− l0.

Let x1 denote a pre-image of this prime in SpecT∞, so that x1 must be a

generic point of SpecR∞− SpecR∞/(̟) of dimension dimS∞ − l0. Moreover

lgT∞,x1
(C∞,x1) 6= (0). Choose a generic point x1 of SpecR∞/(x1,̟), which

must have dimension dimS∞− l0−1 and be a generic point of SpecR∞/(̟) in
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the image of SpecT∞. Let x′1 denote the corresponding point of SpecR′∞/(̟).

It can not be generic in SpecR′∞ and so must generalize to x′.

Now let x2 be any other generic point of SpecR∞ of dimension dimS∞−
l0. We wish to show that it lies in SpecT∞. Choose a generic point x2 of

SpecR∞/(x2,̟), which must have dimension dimS∞− l0−1 and be a generic

point of SpecR∞/(̟). Let x′2 denote the corresponding point of SpecR
′
∞/(̟).

It can not be generic in SpecR′∞ and so must generalize to x′.

We now repeatedly use Lemma 6.3.7. As lgT∞,x1
(C∞,x1) 6= (0), we deduce

that x1 ∈ SpecT∞ and lgT∞,x1
((C∞⊗L

S∞
S∞/(̟))x1) 6= 0. Hence x′1 ∈ SpecT ′∞

and lgT ′
∞,x′

1

((C ′∞ ⊗L
S∞

S∞/(̟))x′1) 6= 0, from which we deduce that x′ ∈
SpecT ′∞ and lgT ′

∞,x′
(C ′∞,x′) 6= 0. We further deduce that x′2 ∈ SpecT ′∞ and

lgT ′
∞,x′

2

((C ′∞ ⊗L
S∞

S∞/(̟))x′2) 6= 0. Hence x2 ∈ SpecT∞ and lgT∞,x2
((C∞ ⊗L

S∞

S∞/(̟))x2) 6= 0, from which we finally deduce that x2 ∈ SpecT∞ (and

lgT∞,x2
(C∞,x2) 6= (0)). �

Corollary 6.3.9. Let x be a prime of R∞ lying in an irreducible com-

ponent of SpecR∞ of maximal dimension. Let y be the contraction of x in

S∞. Then the support of H∗(C∞ ⊗L
S∞

S∞/y)y over SpecR∞ contains x. If

y is one dimensional of characteristic 0 this says that x is in the support of

H∗(C∞ ⊗L
S∞

S∞/y)[1/p].

Proof. It follows from Proposition 6.3.8 that x is contained in SpecT∞ and

occurs in the support of H∗(C∞). It also occurs in the support of H∗(C∞,y) =

H∗(C∞)y. Let r be maximal such that Hr(C∞,y)x is non-zero. From the Tor

spectral sequence

Tor
S∞,y

−i (Hj(C∞,y), S∞,y/y)⇒ H i+j(C∞,y ⊗L
S∞,y

S∞,y/y)

we see that Hr(C∞,y⊗L
S∞,y

S∞,y/y)x surjects onto Hr(C∞,y)x/y 6= (0), so that

x lies in the support of Hr(C∞,y ⊗L
S∞,y

S∞,y/y) = Hr(C∞ ⊗L
S∞

S∞/y)y, as

desired. �

6.4. Ultrapatching.

6.4.1. Set-up for patching. We begin by fixing a non-principal ultrafilter

F on the set N = {N ≥ 1}. We fix a ring Λ which is isomorphic to a power

series ring over O.
Let δ, g, q be positive integers and set ∆∞ = Znqp . We let T be a formal

power series ring over Λ (it will come from framing variables in our application)

and let S∞ = T [[∆∞]]. We view S∞ as an augmented Λ-algebra, and denote

the augmentation ideal by a∞. We also suppose we have two rings Rloc, R′ loc

in CNLΛ with a fixed isomorphism Rloc/̟ ∼= R′ loc/̟ and denote by R∞ and

R′∞ the formal power series rings in g variables over Rloc and R′ loc.
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Our input for patching is the following data for each N ∈ N ∪ {0}:
(1) A quotient ∆N of ∆∞ such that the kernel of ∆∞ → ∆N is contained

in (pNZp)
nq ⊂ ∆∞. If N = 0, we let ∆0 be the trivial group, thought

of as a quotient of ∆∞. We set SN = T [∆N ].

(2) A pair of perfect complexes CN , C′N in D(Λ[∆N ]), together with an iso-

morphism CN⊗L
Λ[∆N ]Λ/̟[∆N ] ∼= C′N⊗L

Λ[∆N ]Λ/̟[∆N ] in D(Λ/̟[∆N ]).

We denote these complexes by CN/̟ and C′N/̟ for short. We moreover

assume that we have commutative Λ[∆N ]-subalgebras TN ⊂ EndD(Λ[∆N ])(CN ),
T ′N ⊂ EndD(Λ[∆N ])(C′N ) which map to the same subalgebra

TN ⊂ EndD(Λ/̟[∆N ])(CN/̟) = EndD(Λ/̟[∆N ])(C′N/̟),

where these endomorphism algebras are identified using our fixed quasi-

isomorphism CN/̟ ∼= C′N/̟.

(3) A pair of rings RN , R
′
N in CNLΛ[∆N ] with an isomorphism RN/̟ ∼=

R′N/̟ together with Rloc- and R′ loc-algebra structures on T “⊗ΛRN
and T “⊗ΛR

′
N respectively which are compatible modulo ̟ with the

isomorphisms RN/̟ ∼= R′N/̟ and Rloc/̟ ∼= R′ loc/̟.

(4) Surjective Rloc- and R′ loc-algebra maps R∞ → T “⊗ΛRN and R′∞ →
T “⊗ΛRN , which are compatible modulo ̟.

(5) Nilpotent ideals IN of TN and I ′N of T ′N with nilpotence degree ≤ δ,

and continuous surjections RN → TN/IN , R
′
N → TN/I

′
N . We demand

that these maps are also compatible modulo ̟, in the following sense:

denote by IN and I
′
N the images of IN and I ′N in TN . Then the induced

maps RN/̟ → TN/(IN + I
′
N ) and R

′
N/̟ → TN/(IN + I

′
N ) are equal

when we identify RN/̟ and R′N/̟ via the fixed isomorphism between

them.

We moreover assume that for each N ≥ 1 we have isomorphisms πN :

CN⊗L
Λ[∆N ]Λ

∼= C0 and π′N : C′N⊗L
Λ[∆N ]Λ

∼= C′0 inD(Λ) which are compatible mod

̟. We obtain induced maps TN ⊗Λ[∆N ] Λ→ EndD(Λ)(C0) and T ′N ⊗Λ[∆N ] Λ→
EndD(Λ)(C′0) which we assume factor through maps TN ⊗Λ[∆N ] Λ → T0 and

T ′N ⊗Λ[∆N ] Λ → T ′0 which are surjective when composed with the projections

to T0/I0 and T ′0/I
′
0.

Finally, we assume that we have isomorphisms RN ⊗Λ[∆N ] Λ ∼= R0 and

R′N⊗Λ[∆N ]Λ ∼= R′0 which are compatible mod̟ and with the maps from R∞ in

part (4). We also also demand compatibility with the maps TN ⊗Λ[∆N ]Λ→ T0
and T ′N ⊗Λ[∆N ] Λ→ T ′0 above. More precisely, we denote by IN,0 and I ′N,0 the

images of IN and I ′N in T0/I0 and T ′0/I
′
0, and demand that the surjective maps

RN ⊗Λ[∆N ] Λ → (T0/I0)/IN,0 and R′N ⊗Λ[∆N ] Λ → (T ′0/I
′
0)/I

′
N,0 are identified

with the maps R0 → (T0/I0)/IN,0 andR
′
0 → (T ′0/I

′
0)/I

′
N,0 via the isomorphisms

RN ⊗Λ[∆N ] Λ ∼= R0 and R′N ⊗Λ[∆N ] Λ ∼= R′0.
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6.4.2. Patched complexes. Apart from Remark 6.4.14 and Proposition 6.4.17,

results and definitions in this subsection will be stated just for the complexes

CN and the associated objects and structures, but they also apply to the com-

plexes C′N .
Definition 6.4.3. Let J be an open ideal in S∞. Let IJ be the (cofinite)

subset of N ∈ N such that J contains the kernel of S∞ → SN . For N ∈ IJ , we
define

C(J,N) = S∞/J ⊗L
Λ[∆N ] CN ∈ D(S∞/J),

let T (J,N) denote the image of S∞/J⊗Λ[∆N ]TN in EndD(S∞/J)(C(J,N)), and

denote by I(J,N) the ideal generated by the image of IN in T (J,N). We have

I(J,N)δ = 0.

Additionally, for d ≥ 1 we define

R(d, J,N) = RN/m
d
RN
⊗Λ[∆N ] S∞/J.

For every d, J and N we have a surjective Rloc-algebra map R∞ → R(d, J,N),

which factors through a finite quotient R∞/m
e(d,J)
R∞

for some e(d, J) which is

independent of N .

For each pair (J,N) such that C(J,N) is defined, we fix a choice F(J,N)

of minimal complex of finite free S∞/J-modules which is quasi-isomorphic to

C(J,N) (cf. [KT17, Lemma 2.3]). Then for any i ∈ Z we have

rkS∞/J(F(J,N)i) = dimkH
i(C0 ⊗L

Λ k).

Remark 6.4.4. Recall that we have a surjective map RN → TN/IN . We

therefore obtain a surjective map RN ⊗Λ[∆N ] S∞/J → T (J,N)/I(J,N). For d

sufficiently large depending on J (but not depending on N) this map factors

through a surjective map R(d, J,N)→ T (J,N)/I(J,N). Indeed, it suffices to

show that there is an integer d0(J) such that for any d ≥ d0(J), and for any

x ∈ mTN , the image of xd in EndD(S∞/J)(C(J,N)) (and therefore the image of

xd in T (J,N)) is zero. Since

H∗(C(J,N) ⊗L
S∞/J k)

∼= H∗(C0 ⊗L
Λ k)

is a vector space of finite dimension independent of N and J , we can find an

integer d1 such that xd1H∗(C(J,N) ⊗L
S∞/J k) = 0 (because x acts through a

nilpotent endomorphism). The existence of the spectral sequence of a filtered

complex implies that there is an integer d2 such that xd2H∗(C(J,N)) = 0

(here we are using the fact that S∞/J has finite length as a module over itself).

Finally, the fact that C(J,N) is a perfect complex, with cohomology bounded

in a range which depends only on C0, implies the existence of the integer d0(J)

(use [KT17, Lemma 2.5]). (A similar argument appears at the start of the

proof of [KT17, Proposition 3.1].)
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Remark 6.4.5. If J contains a∞, then we can identify S∞/J with Λ/s(J),

where s(J) is an open ideal of Λ. For each N ∈ IJ , the isomorphism πN :

CN ⊗L
Λ[∆N ] Λ

∼= C0 induces an isomorphism πJ,N : C(J,N) ∼= C0 ⊗L
Λ Λ/s(J).

Remark 6.4.6. Suppose we have open ideals J1 ⊂ J2 of S∞ and N ∈ IJ1 .
Then we have a natural map C(J1, N) → C(J2, N) which induces a quasi-

isomorphism

S∞/J2 ⊗L
S∞/J1

C(J1, N) ∼= C(J2, N).

We obtain a surjective map T (J1, N) → T (J2, N) and the image of I(J1, N)

under this map is equal to I(J2, N). So we also obtain a surjective map

T (J1, N)/I(J1, N)→ T (J2, N)/I(J2, N).

For J an open ideal in S∞, F restricts to give a non-principal ultrafil-

ter on IJ , which we again denote by F. This corresponds to a point xF ∈
Spec(

∏
N∈IJ

S∞/J) by [GN22, Lemma 2.2.2], with localization (
∏
N∈IJ

S∞/J)xF
canonically isomorphic to S∞/J .

Definition 6.4.7. We make the following definitions :

C(J,∞) = (
∏

N∈IJ

S∞/J)xF ⊗∏
N∈IJ

S∞/J

∏

N∈IJ

C(J,N) ∈ D(S∞/J),

R(d, J,∞) = (
∏

N∈IJ

S∞/J)xF ⊗∏
N∈IJ

S∞/J

∏

N∈IJ

R(d, J,N),

T (J,∞) is defined to be the image of (
∏
N∈IJ

S∞/J)xF⊗∏
N∈IJ

S∞/J

∏
N∈IJ

T (J,N)

in EndD(S∞/J)(C(J,∞)), and the ideal I(J,∞) ⊂ T (J,∞) is defined to be the

image of (
∏
N∈IJ

S∞/J)xF ⊗∏
N∈IJ

S∞/J

∏
N∈IJ

I(J,N) in T (J,∞).

Remark 6.4.8. Since the rings R(d, J,N) are all quotients of R∞/m
e(d,J)
R∞

(and are in particular finite of bounded cardinality), the ultraproductR(d, J,∞)

is itself a quotient of R∞/m
e(d,J)
R∞

.

Lemma 6.4.9.

(1) I(J,∞) is a nilpotent ideal of T (J,∞), with I(J,∞)δ = 0.

(2) For d sufficiently large depending on J , the maps R(d, J,N)→ T (J,N)/I(J,N)

(see Remark 6.4.4) induce a surjective S∞/J-algebra map R(d, J,∞)→
T (J,∞)/I(J,∞).

Proof. The first part follows from the fact that
∏
N∈IJ

I(J,N) is a nilpo-

tent ideal of
∏
N∈IJ

T (J,N) with nilpotence degree ≤ δ. The second part fol-

lows by first considering the map
∏
N∈IJ

R(d, J,N)→∏
N∈IJ

(T (J,N)/I(J,N)) =

(
∏
N∈IJ

T (J,N))/(
∏
N∈IJ

I(J,N)), localising at xF and finally passing to the

image in T (J,∞)/I(J,∞). �

Proposition 6.4.10.
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(1) C(J,∞) is a perfect complex of S∞/J-modules.

(2) The maps R∞ → T (J,N)/I(J,N) induce a surjection R∞ → T (J,∞)/I(J,∞).

(3) If J contains a∞, then the isomorphisms πJ,N induce an isomorphism

πJ,∞ : C(J,∞) ∼= C0 ⊗L
Λ Λ/s(J).

(4) Suppose we have open ideals J1 ⊂ J2 of S∞. Then the maps C(J1, N)→
C(J2, N) in D(S∞/J1) for N ∈ IJ1 induce an isomorphism

S∞/J2 ⊗L
S∞/J1

C(J1,∞) ∼= C(J2,∞).

(5) Let J1, J2 be as in the previous part. The map C(J1,∞)→ C(J2,∞) in-

duces a surjective map T (J1,∞)→ T (J2,∞) and the image of I(J1,∞)

under this map is equal to I(J2,∞).

Proof. (1) Perfectness of C(J,∞) follows from [GN22, Corollary 2.2.7]

— to apply this Corollary we need to show that there are constants

D, a, b (independent of N) such that the complexes C(J,N) are each

quasi-isomorphic to complexes of finite free S∞/J-modules of rank ≤ D
concentrated in degrees [a, b]. This follows from the theory of minimal

resolutions, which we have already applied in order to assert the exis-

tence of the complexes F(J,N) above.

(2) By the previous part of the proof, the complexes F(J,N) (N ∈ IJ) fall
into finitely many isomorphism classes. Therefore there is an element

Σ0 of the ultrafilter F on IJ such that the F(J,N) are isomorphic for

all N ∈ Σ0. We fix isomorphisms (of complexes) between the F(J,N)

for N ∈ Σ0 and a single complex F(J,∞). Then for all N ∈ Σ0 we

can identify all the finite endomorphism algebras EndD(S∞/J)(C(J,N))

with each other. We deduce that there is a subset Σ1 ⊂ Σ0 with Σ1 ∈ F

such that, under this identification, the finite Hecke rings T (J,N) and

their ideals I(J,N) are also identified. So T (J,∞) ∼= T (J,N) and

I(J,∞) corresponds to I(J,N) for N ∈ Σ1. Since each map R∞ →
T (J,N)/I(J,N) is surjective, the map R∞ → T (J,∞)/I(J,∞) is also

surjective.

(3) The third part follows immediately from the exactness of products and

localization.

(4) First we consider the map of complexes

∏

N∈IJ1

C(J1, N)→
∏

N∈IJ1

C(J2, N).

Since
∏
N∈IJ1

S∞/J2 is a finitely presented
∏
N∈IJ1

S∞/J1-module (as

direct products are exact) the tensor product (
∏
N∈IJ1

S∞/J2)⊗∏
S∞/J1

commutes with direct products ([Sta13, Tag 059K]). We deduce (using
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Remark 6.4.6) that

(
∏

N∈IJ1

S∞/J2)⊗L∏
S∞/J1

∏

N∈IJ1

C(J1, N)

=
∏

N∈IJ1

S∞/J2 ⊗L
S∞/J1

C(J1, N) ∼=
∏

N∈IJ1

C(J2, N).

Localizing at xF gives the desired statement — since IJ1 is cofinite in

IJ2 we can naturally identify the localization of
∏
N∈IJ1

C(J2, N) with

the localization of
∏
N∈IJ2

C(J2, N).

(5) The final statement follows from the proof of part (2): there is a Σ ⊂ IJ1
with Σ ∈ F such that T (Ji,∞) ∼= T (Ji, N) and I(Ji,∞) corresponds

to I(Ji, N) under these isomorphisms for all N ∈ Σ. Now the desired

statement is a consequence of Remark 6.4.6. �

We write F(J,∞) for the minimal complex isomorphic to C(J,∞) in

D(S∞/J) constructed in the proof of the previous proposition.

Definition 6.4.11. We define a complex of S∞-modules

C∞ = lim←−
r

F(mr
S∞
,∞),

where the transition maps in the inverse limit are given by making a choice for

each r ≥ 1 of a map of complexes lifting the natural maps C(mr+1
S∞

,∞) →
C(mr

S∞
,∞) in D(S∞/m

r+1
S∞

). To see that such a map of complexes exists,

note that since F(mr+1
S∞

,∞) is a bounded complex of free S∞/m
r+1
S∞

-modules,

viewed as an element of the homotopy category K(S∞/m
r+1
S∞

) of chain com-

plexes of S∞/m
r+1
S∞

-modules, we have

Hom
K(S∞/mr+1

S∞
)(F(mr+1

S∞
,∞),F(mr

S∞
,∞)) = Hom

D(S∞/mr+1
S∞

)(C(mr+1
S∞

,∞), C(mr
S∞
,∞)).

Similarly, we let T∞ = lim←−J T (J,∞), where the transition maps in the

inverse limit are described in Proposition 6.4.10(5). The inverse system of

ideals I(J,∞) defines an ideal I∞ of T∞ which satisfies Iδ∞ = 0.

Proposition 6.4.12.

(1) C∞ is a bounded complex of finite free S∞-modules and for each open

ideal J of S∞ there is an isomorphism C∞ ⊗S∞ S∞/J ∼= C(J,∞) in

D(S∞/J).

(2) The natural map EndD(S∞)(C∞) → lim←−J EndD(S∞/J)(C(J,∞)) is an

isomorphism, and we therefore obtain an injective map T∞ → EndD(S∞)(C∞).

(3) The surjective Λ-algebra maps R∞ → T (J,∞)/I(J,∞) induce a surjec-

tion R∞ → T∞/I∞, which factors as a composition of the map R∞ →
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lim←−d,J R(d, J,∞) and the S∞-algebra map lim←−d,J R(d, J,∞) → T∞/I∞

defined by taking the inverse limit of the maps in Lemma 6.4.9(2).

Proof. (1) It follows from the proof of Proposition 6.4.10(1) that

rkS∞/mr
S∞

(F(mr
S∞
,∞)i) = dimkH

i(C0 ⊗L
Λ k)

for all r. Moreover, it follows from Proposition 6.4.10(4) and the fact

that any quasi-isomorphism of minimal complexes is an isomorphism

that the transition map F(mr+1
S∞

,∞)→ F(mr
S∞
,∞) induces an isomor-

phism

S∞/m
r
S∞
⊗S∞/mr+1

S∞
F(mr+1

S∞
,∞) ∼= F(mr

S∞
,∞).

It is now clear that C∞ is a bounded complex of finite free S∞-modules.

If J is an open ideal of S∞, then for r sufficiently large so that mr
S∞
⊂ J ,

C∞ ⊗S∞ S∞/J is isomorphic to S∞/J ⊗S∞/mr
S∞
F(mr

S∞
,∞), which is

quasi-isomorphic to C(J,∞) by Proposition 6.4.10(4).

(2) For the second part, we first note that T∞ injects into the inverse limit

lim←−J EndD(S∞/J)(C(J,∞)), since inverse limits are left exact. The nat-

ural map EndD(S∞)(C∞) → lim←−J EndD(S∞/J)(C(J,∞)) is an isomor-

phism, by the first part of this proposition and (the proof of) [KT17,

Lemma 2.13(3)].

(3) Since the T (J,∞) are finite rings, the inverse system I(J,∞)J sat-

isfies the Mittag-Leffler condition and the natural map T∞/I∞ →
lim←−J T (J,∞)/I(J,∞) is an isomorphism. For each J the surjective map

R∞ → T (J,∞)/I(J,∞) factors through a finite quotient R∞/m
d(J)
R∞

of R∞. Again, finiteness implies that the Mittag-Leffler condition

holds, so taking the inverse limit over J gives a surjective map R∞ =

lim←−J R∞/m
d(J)
R∞
→ T∞/I∞ = lim←−J T (J,∞)/I(J,∞). The desired factor-

ization of the map R∞ → T∞/I∞ follows from the fact that the maps

R∞ → T (J,∞)/I(J,∞) factor through R(d, J,∞) for d sufficiently

large. �

Remark 6.4.13. There is a natural isomorphismH∗(C∞) ∼= lim←−J H
∗(C∞/J) =

lim←−J H
∗(C(J,∞)), so the cohomology of C∞ is independent of the choices

of transition maps made to construct C∞. Moreover, if we denote by D∞
the complex constructed with a different choice of transition maps, we have

HomD(S∞)(C∞,D∞) = lim←−J HomD(S∞/J)(C(J,∞), C(J,∞)) by the argument

of Proposition 6.4.12(2), so there is a canonical isomorphism between C∞ and

D∞ in D(S∞).
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Remark 6.4.14. Note that the map α : R∞ → lim←−d,J R(d, J,∞) is surjec-

tive, and lim←−d,J R(d, J,∞) is an S∞-algebra. As S∞ is formally smooth over

Λ, we can choose a lift of the map S∞ → α(R∞) to a map S∞ → R∞. In fact,

we can and do make such a choice for R∞ and R′∞ compatibly mod ̟ since

(lim←−
d,J

R(d, J,∞))/̟ = lim←−
d,J

(R(d, J,∞)/̟) ∼= lim←−
d,J

(R′(d, J,∞)/̟),

and since the sequence

R∞ R∞/̟ × lim←−d,J R(d, J,∞) R(d, J,∞)/̟
x 7→(x mod ̟,α(x)) (y,z)7→α(y)−z mod ̟

(and the analogous one for R′∞) is exact. We regard R∞ as an S∞-algebra

from now on. The map R∞ → T∞/I∞ is an S∞-algebra map.

Lemma 6.4.15. The isomorphisms R(d, J,N) ⊗S∞/J S∞/(J + a∞) ∼=
R0/(m

d
R0
, s(J + a∞)) induce a surjective map R∞/a∞ → R0.

Proof. First we note that, following the proof of 6.4.10(4), the isomor-

phisms

R(d, J,N) ⊗S∞/J S∞/(J + a∞) ∼= R0/(m
d
R0
, s(J + a∞))

induce an isomorphism

R(d, J,∞) ⊗S∞/J S∞/(J + a∞) ∼= R0/(m
d
R0
, s(J + a∞)).

In particular, the mapR∞/a∞ → R(d, J,∞)⊗S∞/JS∞/(J+a∞) = R0/(m
d
R0
, s(J+

a∞)) is surjective, and factors through R∞/(m
e(d,J)
R∞

+ a∞) for some e(d, J).

Taking the inverse limit, we obtain a surjective map R∞/a∞ → R0. �

Proposition 6.4.16. There is an isomorphism C∞/a∞ → C0 in D(Λ)

which induces a map T∞ → T0 which becomes surjective when composed with

the projection T0 → T0/I0. Denoting the image of I∞ under this surjective

map by I∞,0, we obtain a surjective map R∞/a∞ → (T0/I0)/I∞,0. This map

is the composition of the map R∞/a∞ → R0 in Lemma 6.4.15 with the map

R0 → (T0/I0)/I∞,0 coming from our original set-up.

Proof. We have C∞/a∞ = lim←−r F(m
r
S∞
,∞)/a∞, and F(mr

S∞
,∞)/a∞ is a

minimal resolution of C∞/(mr
S∞

+ a∞) ∼= C(mr
S∞

+ a∞,∞). By Proposition

6.4.10(3), this is quasi-isomorphic to C0⊗L
ΛΛ/s(mr

S∞
+ a∞). Replacing C0 by a

quasi-isomorphic bounded complex of finite projective Λ-modules and applying

[KT17, Lemma 2.13], we see that the quasi-isomorphisms F(mr
S∞
,∞)/a∞ ∼=

C0 ⊗L
Λ Λ/s(mr

S∞
+ a∞) induce a quasi-isomorphism lim←−r F(m

r
S∞
,∞)/a∞ ∼= C0.

The induced map T∞ → EndD(Λ)(C0) is the composite of the surjec-

tive map T∞ → lim←−a∞⊂J
T (J,∞) and an inverse limit of maps T (J,∞) →

EndD(Λ/s(J))(C0⊗L
ΛΛ/s(J)). Each of these maps factors through T0, and if we
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denote the image of T0 in EndD(Λ/s(J))(C0⊗L
ΛΛ/s(J)) by T J0 then T (J,∞) sur-

jects onto T J0 /I0. Passing to the inverse limit gives the desired map T∞ → T0.

The compatibility with the map R∞ → R0 follows from the compatibility

between the maps TN → T0 and RN → R0 in our original set-up. �

We now separate out the primed and unprimed situations; so we have two

perfect complexes of S∞-modules, C∞ and C′∞.

Proposition 6.4.17.

(1) The quasi-isomorphisms CN/̟ ∼= C′N/̟ induce a quasi-isomorphism

C∞/̟ ∼= C′∞/̟.

(2) T∞ and T ′∞ have the same image in EndD(S∞)(C∞/̟) and EndD(S∞)(C′∞/̟),

via the identification C∞/̟ ∼= C′∞/̟ of the previous part. Call this

common image T∞.

(3) Write I∞ and I
′
∞ for the images of I∞ and I ′∞ in T∞ The actions of

R∞/̟ ∼= R′∞/̟ (induced from T∞ and T ′∞ respectively) on H∗(C∞/̟)/(I∞+

I
′
∞) and H∗(C′∞/̟)/(I∞ + I

′
∞) are identified via C∞/̟ ∼= C′∞/̟.

Proof. (1) The isomorphisms CN/̟ ∼= C′N/̟ in D(Λ[∆N ]) induce

compatible isomorphisms C(J +̟,∞) ∼= C′(J +̟,∞) for all J . Since

C∞/̟ = lim←−r F(m
r
S∞
,∞)/̟ and F(mr

S∞
,∞)/̟ is a minimal resolu-

tion of C(mr
S∞

+̟,∞) we have

HomD(S∞/̟)(C∞/̟, C′∞/̟) = lim←−
J

HomD(S∞/(J+̟))(C(J+̟,∞), C′(J+̟,∞)).

We therefore deduce the first part of the Proposition.

(2) By the proof of the previous part, it suffices to show that the images of

T∞ and T ′∞ in EndD(S∞/(J+̟))(C(J+̟,∞)) and EndD(S∞/(J+̟))(C′(J+
̟,∞)) respectively (which are T (J + ̟,∞) and T ′(J + ̟,∞)), are

identified via the quasi-isomorphisms C(J + ̟,∞) ∼= C′(J + ̟,∞).

This follows from the fact that for every N ∈ IJ+̟, T (J +̟,N) and

T ′(J +̟,N) are identified via the quasi-isomorphism C(J +̟,N) ∼=
C′(J +̟,N), which is a consequence of our original assumptions (see

point (2) in Section 6.4.1).

(3) It suffices to show that the maps R∞/̟ → T (J +̟,∞)/I(J +̟,∞)

and R′∞/̟ → T ′(J +̟,∞)/I ′(J +̟,∞) are equal when we identify

R∞/̟ with R′∞/̟, T (J + ̟,∞) with T ′(J + ̟,∞), and pass to

the quotient by I(J + ̟,∞) + I ′(J + ̟,∞). This follows from the

compatibility in point (5) of Section 6.4.1. �

6.5. The proof of Theorem 6.1.1. We are now in a position to prove the

first main theorem of this chapter (Theorem 6.1.1). We first establish the
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result under additional conditions in §6.5.1, then reduce to this case using

soluble base change in §6.5.12.

6.5.1. Application of the patching argument (Fontaine–Laffaille case). We

take F to be an imaginary CM number field, and fix the following data:

(1) An integer n ≥ 2 and a prime p > n2.

(2) A finite set S of finite places of F , including the places above p.

(3) A (possibly empty) subset R ⊂ S of places prime to p.

(4) A cuspidal automorphic representation π of GLn(AF ), regular alge-

braic of some weight λ.

(5) A choice of isomorphism ι : Qp
∼= C.

We assume that the following conditions are satisfied:

(6) If l is a prime lying below an element of S, or which is ramified in

F , then F contains an imaginary quadratic field in which l splits. In

particular, each place of S is split over F+ and the extension F/F+ is

everywhere unramified.

(7) The prime p is unramified in F .

(8) For each embedding τ : F →֒ C, we have

λτ,1 + λτc,1 − λτ,n − λτc,n < p− 2n.

(9) For each v ∈ Sp, let v denote the place of F+ lying below v. Then

there exists a place v′ 6= v of F+ such that v′|p and

∑

v′′ 6=v,v′

[F+
v′′

: Qp] >
1

2
[F+ : Q].

(10) The residual representation rι(π) is absolutely irreducible.

(11) If v is a place of F lying above p, then πv is unramified.

(12) If v ∈ R, then πIwv
v 6= 0.

(13) If v ∈ S−(R∪Sp), then πv is unramified, v /∈ Rc, andH2(Fv , ad rι(π)) =

0.

(14) S − (R ∪ Sp) contains at least two places with distinct residue charac-

teristics.

(15) If v 6∈ S is a finite place of F , then πv is unramified.

(16) If v ∈ R, then qv ≡ 1 mod p and rι(π)|GFv
is trivial.

(17) The representation rι(π) is decomposed generic in the sense of Defi-

nition 4.3.1 and the image of rι(π)|GF (ζp)
is enormous in the sense of

Definition 6.2.28.

We define an open compact subgroup K =
∏
vKv of GLn(“OF ) as follows:

• If v 6∈ S, or v ∈ Sp, then Kv = GLn(OFv ).

• If v ∈ R, then Kv = Iwv.
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• If v ∈ S − (R ∪ Sp), then Kv = Iwv,1 is the pro-v Iwahori subroup of

GLn(OFv).

The following lemma shows that K is neat, hence is a good subgroup of

GLn(A
∞
F ).

Lemma 6.5.2. Suppose that K =
∏
vKv ⊂ GLn(“OF ) is an open compact

subgroup and that there exists two places v, v′ of F such that v, v′ have distinct

residue characteristics q, q′ and Kv = Iwv,1, Kv′ = Iwv′,1. Then K is neat.

Proof. We show that if (gv, gv′ ) ∈ Iwv,1 × Iwv′,1, then the group Γv ∩ Γv′

(see the definition of neat in §2.1.1) is trivial. Suppose this is not the case,

then it contains a root of unity ζ of some prime order q′′.

If α is an eigenvalue of gv in F v, then α−1 is in the maximal ideal of OF v
.

The same is then true for ζ, thus q′′ = q. However, running the above for v′

instead of v also shows q′′ = q′, so q′ = q, a contradiction. �

By Theorem 2.4.10, we can find a coefficient field E ⊂ Qp and a maximal

ideal m ⊂ TS(K,Vλ) such that ρm
∼= rι(π). After possibly enlarging E, we

can and do assume that the residue field of m is equal to k. For each tuple

(χv,i)v∈R,i=1,...,n of characters χv,i : k(v)
× → O× which are trivial modulo ̟,

we define a global deformation problem by the formula

Sχ = (ρm, S, {O}v∈S , {DFL
v }v∈Sp ∪ {Dχv }v∈R ∪ {D�

v }v∈S−(R∪Sp)).

We fix representatives ρSχ of the universal deformations which are identified

modulo ̟ (via the identifications RSχ/̟
∼= RS1/̟). We observe that the

local deformation problems defining Sχ are formally smooth away from the

places in R. We define an O[KS ]-module Vλ(χ−1) = Vλ⊗OO(χ−1), where KS

acts on Vλ by projection to Kp and on O(χ−1) by the projection KS → KR =∏
v∈R Iwv →

∏
v∈R(k(v)

×)n.

Proposition 6.5.3. There exists an integer δ ≥ 1, depending only on n

and [F : Q], an ideal J ⊂ TS(RΓ(XK ,Vλ(χ−1)))m such that Jδ = 0, and a

continuous surjective homomorphism

fSχ : RSχ → TS(RΓ(XK ,Vλ(χ−1)))m/J
such that for each finite place v 6∈ S of F , the characteristic polynomial of

fSχ ◦ ρSχ(Frobv) equals the image of Pv(X) in TS(RΓ(XK ,Vλ(χ−1)))m/J .
Proof. This is a matter of combining the various local-global compatibility

results we have proved so far. The existence of a Galois representation ρm :

GF,S∪Sc → GLn(T
S(RΓ(XK ,Vλ(χ−1)))m/J) satisfying the required condition

at finite places v 6∈ S ∪ Sc is contained in Theorem 2.3.7. After conjugation,

we can assume that ρm mod m equals ρm. To prove the proposition, we need

to show that for each v ∈ S, ρm|GFv
is a lifting of ρ|GFv

of the appropriate
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type, and that for each v ∈ Sc − S, ρm|GFv
is unramifed and the characteristic

polynomial of ρm(Frobv) has the correct form. Theorem 4.5.1 shows that the

Fontaine–Laffaille condition is satisfied for each v|p. We apply Theorem 3.1.1

with the set S of places there equal to S ∪ Sc and the set R equal to S − Sp.
This shows that the appropriate condition on the characteristic polynomials

of elements ρm(σ) (σ ∈ IFv) is satisfied for each v ∈ R, and that ρm|GFv
is

unramifed with the characteristic polynomial ρm(Frobv) of the correct form for

v ∈ Sc − S. �

Recall (as in (6.3.5)) that it makes sense to talk about the support of

H∗(XK ,Vλ(1))m over RS1 , even though H∗(XK ,Vλ(1))m is not literally an

RS1-module. We can now state our first key technical result, which we will

prove below.

Theorem 6.5.4. Under assumptions (1)–(17) above, H∗(XK ,Vλ(1))m
has full support over RS1 .

Corollary 6.5.5. Under assumptions (1)–(17) above, suppose given a

continuous representation ρ : GF → GLn(Qp) satisfying the following condi-

tions :

(1) We have ρ ∼= rι(π).

(2) For each place v|p of F , ρ|GFv
is crystalline. For each embedding τ :

F →֒ Qp, we have

HTτ (ρ) = {λιτ,1 + n− 1, . . . , λιτ,n}.

(3) For each finite place v 6∈ S of F , ρ|GFv
is unramified.

(4) For each place v ∈ R, ρ|GFv
is unipotently ramified.

Then ρ is automorphic: there exists a cuspidal, regular algebraic automorphic

representation Π of weight λ such that ρ ∼= rι(Π). Moreover, if v is a finite

place of F such that v|p or v 6∈ S, then Πv is unramified.

Proof. After possibly enlarging the coefficient field E, and replacing ρ by

a GLn(Qp)-conjugate, we can assume that it takes values in GLn(O), and

that ρ mod ̟ = ρm. Then ρ is a lifting of type S1, so determines a homo-

morphism f : RS1 → E. Theorem 6.5.4 implies that ker f is in the support of

H∗(XK ,Vλ(1))m[1/p]; Theorem 2.4.10 then implies that there exists a cuspidal,

regular algebraic automorphic representation Π of weight λ such that ρ ∼= rι(Π)

and (Π∞)K 6= 0. This is the desired result (recall that Kv = GLn(OFv) if v|p
or v 6∈ S). �

Before proceeding to the proof of Theorem 6.5.4, we need to introduce

auxiliary level subgroups. These will be associated to a choice of Taylor–

Wiles datum (Q, (αv,1, . . . , αv,n)v∈Q) for S1 (see §6.2.27). We assume that
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for each v ∈ Q, there exists an imaginary quadratic subfield of F in which the

residue characteristic lv of v splits. This Taylor–Wiles datum is automatically

a Taylor–Wiles datum for all the global deformation problems Sχ, and so the

auxiliary deformation problems Sχ,Q are defined, and the deformation ring

RSχ,Q
has a natural structure of O[∆Q]-algebra, where ∆Q =

∏
v∈Q∆v =∏

v∈Q k(v)
×(p)n. The constructions we are about to give necessarily involve

a lot of notation. Accordingly, we invite the reader to review the notation

related to Hecke algebras in §2.2.1 before continuing.

We define two auxiliary level subgroups K1(Q) ⊂ K0(Q) ⊂ K. They are

good subgroups of GLn(A
∞
F ), determined by the following conditions:

• If v 6∈ S ∪Q, then K1(Q)v = K0(Q)v = Kv.

• If v ∈ Q, then K0(Q)v = Iwv and K1(Q)v is the maximal pro-prime-

to-p subgroup of Iwv.

Then there is a natural isomorphism K0(Q)/K1(Q) ∼= ∆Q, and surjective

morphisms of TS∪Q-algebras

(6.5.6)
K0(Q)/K1(Q)T

S∪Q(K0(Q)/K1(Q),Vλ(χ−1))→ TS∪Q(K0(Q),Vλ(χ−1))
→ TS∪Q(K,Vλ(χ−1)).

The first of these arises by taking K0(Q)-invariants (cf. §2.2.1 and note O[∆Q]

acts trivially on invariants) and the second is given by the formula t 7→ [K :

K0(Q)]−1πQ,∗ ◦ t ◦ π∗Q, where πQ : XK0(Q) → XK is the canonical projection;

note that [K : K0(Q)] ≡ (n!)|Q| mod p is a unit in O because of our assumption

that p > n. We define

TS∪Q
Q (K0(Q),Vλ(χ−1)) ⊂ EndD(O)(RΓ(XK0(Q),Vλ(χ−1)))

as in §3.1; it is the commutative TS∪Q(K0(Q),Vλ(χ−1))-subalgebra generated

by the operators Uv,i (v ∈ Q, i = 1, . . . , n), or equivalently the image of the

algebra TS∪Q
Q defined in §3.1. Similarly we define

TS∪Q
Q (K0(Q)/K1(Q),Vλ(χ−1)) ⊂ EndD(O[∆Q])(RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1)));

it is an O[∆Q]-algebra, which coincides with the image of the algebra TS∪Q
Q .

The first map in (6.5.6) extends to a surjective homomorphism

(6.5.7) TS∪Q
Q (K0(Q)/K1(Q),Vλ(χ−1))→ TS∪Q

Q (K0(Q),Vλ(χ−1))
which takes Uv,i to Uv,i for each v ∈ Q and for each i = 1, . . . , n.

We define mQ ⊂ TS∪Q(K,Vλ(χ−1)) to be the pullback of m under the

inclusion

TS∪Q(K,Vλ(χ−1)) ⊂ TS(K,Vλ(χ−1)).
We define

m
Q
0 ⊂ TS∪Q(K0(Q),Vλ(χ−1))
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to be the pullback of mQ and

m
Q
1 ⊂K0(Q)/K1(Q) T

S∪Q(K0(Q)/K1(Q),Vλ(χ−1))

to be the pullback of mQ
0 , these pullbacks being taken under the maps in (6.5.6).

We define n
Q
0 ⊂ TS∪Q

Q (K0(Q),Vλ(χ−1)) to be the ideal generated by m
Q
0 and

the elements Uv,i − qi(1−i)/2v αv,1 · · ·αv,i for each v ∈ Q and i = 1, . . . , n. We

define n
Q
1 ⊂ TS∪Q

Q (K0(Q)/K1(Q),Vλ(χ−1)) to be the pre-image of nQ0 under

the map (6.5.7).

Lemma 6.5.8. Each ideal mQ, mQ
0 , m

Q
1 , n

Q
0 , and n

Q
1 is a (proper) maximal

ideal.

Proof. This is clear for the ideals mQ, mQ
0 , and m

Q
1 . Since n

Q
1 is the pre-

image of nQ0 under a surjective algebra homomorphism, we just need to check

that nQ0 is a proper ideal. Equivalently, we must check that

H∗(XK0(Q),Vλ(χ−1)/̟)[mQ
0 ]

contains a non-zero vector on which each operator Uv,i (v ∈ Q, i = 1, . . . , n)

acts by the scalar αv,1 · · ·αv,i. This will follow from [KT17, Lemma 5.3] (or

rather its proof) if we can show that H∗(XK ,Vλ(χ−1))[mQ] is annihilated by

a power of m. This follows from the existence of ρm and its local-global com-

patibility at the places v ∈ Q. �

We can therefore form the localized complexes

RΓ(XK ,Vλ(χ−1))m, RΓ(XK ,Vλ(χ−1))mQ ,

RΓ(XK0(Q),Vλ(χ−1))mQ
0
, RΓ(XK0(Q),Vλ(χ−1))nQ0 ,

RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))mQ
1
, RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 .

The first four lie in D(O), the last two in D(O[∆Q]).

Lemma 6.5.9. The natural morphisms

RΓ(XK ,Vλ(χ−1))mQ → RΓ(XK ,Vλ(χ−1))m
and

RΓ(XK0(Q),Vλ(χ−1))nQ0 → RΓ(XK ,Vλ(χ−1))mQ

and

RΓ(∆Q, RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 )→ RΓ(XK0(Q),Vλ(χ−1))nQ0
in D(O) are isomorphisms.
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Proof. We must show that these morphisms in the derived category give

isomorphisms at the level of cohomology. For the first morphism, it is enough to

show that m is the unique maximal ideal of TS∪Q(K0(Q),Vλ(χ−1)) lying above

mQ, and we have seen this already in the proof of Lemma 6.5.8. It is clear from

the definitions for the third morphism. For the second, it is enough to check

that we have an isomorphism after applying the functor −⊗L
Ok : D(O)→ D(k).

We are therefore reduced to showing that the map of k-vector spaces

trK/K0(Q) : H
∗(XK0(Q),Vλ(χ−1)/̟)

n
Q
0
→ H∗(XK ,Vλ(χ−1)/̟)mQ

is an isomorphism. This is the content of [KT17, Lemma 5.4]. �

We see that there is a surjective homomorphism

K0(Q)/K1(Q)T
S∪Q(RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 )→

TS∪Q(RΓ(XK ,Vλ(χ−1))mQ) = TS∪Q(K,Vλ(χ−1))mQ .
(6.5.10)

The first ring K0(Q)/K1(Q)T
S∪Q(RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 ) is a local

O[∆Q]-algebra, its unique maximal ideal being identified with the pre-image of

mQ under the surjective homomorphism (6.5.10); indeed, this follows from the

fact that it acts nearly faithfully on H∗(XK1(Q),Vλ(χ−1))nQ1 (We recall ([Tay08,

Def. 2.1]) that a finitely generated module over a Noetherian local ring is said

to be nearly faithful if its annihilator is a nilpotent ideal). We can now state a

result asserting the existence of Galois representations valued with coefficients

in this Hecke algebra.

Proposition 6.5.11. There exists an integer δ ≥ 1, depending only on n

and [F : Q], an ideal J ⊂K0(Q)/K1(Q) T
S∪Q(RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 )

such that Jδ = 0, and a continuous surjective O[∆Q]-algebra homomorphism

fSχ,Q
: RSχ,Q

→K0(Q)/K1(Q) T
S∪Q(RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 )/J

such that for each finite place v 6∈ S ∪Q of F , the characteristic polynomial of

fSχ,Q
◦ ρSχ,Q

(Frobv) equals the image of Pv(X) in

K0(Q)/K1(Q)T
S∪Q(RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 )/J.

Proof. To save notation, let

T =K0(Q)/K1(Q) T
S∪Q(RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 ),

and T′ = TS∪Q
Q (K0(Q)/K1(Q),Vλ(χ−1))nQ1 . Then T ⊂ T′, and the inclusion

T→ T′ is a local homomorphism of finite O[∆Q]-algebras. By Theorem 2.3.7,

there is a nilpotent ideal J ′ ⊂ T′ and a Galois representation ρ
n
Q
1
: GF,S∪Q →

GLn(T
′/J ′) satisfying local-global compatibility at unramified places. After

conjugation, we can assume that ρ
n
Q
1
mod n

Q
1 equals ρm. We first need to show
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that ρ
n
Q
1
is a lifting of ρm of type Sχ,Q. The necessary conditions at places of S

can be checked just as in the proof of Proposition 6.5.3. There is no condition

at places of Q, so we obtain a morphism fSχ,Q
: RSχ,Q

→ T′/J ′ (which in fact

factors through the image of T in T′/J ′).

It remains to check that fSχ,Q
is a homomorphism of O[∆Q]-algebras.

Equivalently, we must check that it is a homomorphism of O[∆v]-algebras for

each place v ∈ Q. To this end, let us fix a place v ∈ Q. For each i = 1, . . . , n we

define a character ψv,i : WFv → (T′)× by the formula ψv,i(ArtFv(α)) = tv,i(α)

(notation as in §2.2.4). Theorem 3.1.1 shows that (after possibly enlarging J ′)

for each σ ∈WFv , we have the identity

det(X − ρ
n
Q
1
(σ)) =

n∏

i=1

(X − ψv,i(σ)).

Observe that the characters ψv,i mod n
Q
1 are pairwise distinct (because they

take Frobenius to αv,i, and these elements of k are pairwise distinct, by defi-

nition of a Taylor–Wiles datum). We can therefore apply [BC09, Prop. 1.5.1]

to conclude that ρ
n
Q
1
|WFv

is isomorphic to ⊕ni=1ψv,i, which shows that fSχ,Q
is

indeed a homomorphism of O[∆v]-algebras (cf. §6.2.18 for the definition of the

O[∆v]-algebra structure on RSχ,Q
). The proof is complete on taking J to be

the kernel of the map T→ T′/J ′. �

We are now ready to begin the proof of Theorem 6.5.4.

Proof of Theorem 6.5.4. Let

q = h1(FS/F, ad ρm(1)) and g = qn− n2[F+ : Q],

and set ∆∞ = Znqp . Let T be a power series ring over O in n2|S| − 1 many

variables, and let S∞ = T J∆∞K. Viewing S∞ as an augmented O-algebra, we
let a∞ denote the augmentation ideal.

Enlarging E if necessary, we can assume that E contains a primitive pth

root of unity. Then since p > n, for each v ∈ R we can choose a tuple

of pairwise distinct characters χv = (χv,1, . . . , χv,n), with χv,i : O×Fv
→ O×

trivial modulo ̟. We write χ for the tuple (χv)v∈R as well as for the induced

character χ =
∏
v∈R χv :

∏
v∈R Iv → O×. For each N ≥ 1, we fix a choice of

Taylor–Wiles datum (QN , (αv,1, . . . , αv,n)v∈QN
) as in Proposition 6.2.32 (this

is possible by our assumption that rι(π)(GF (ζp)) is enormous; we choose any

imaginary quadratic subfield of F in the application of Proposition 6.2.32). For

N = 0, we set Q0 = ∅. For each N ≥ 1, we let ∆N = ∆QN
and fix a surjection

∆∞ → ∆N . The kernel of this surjection is contained in (pNZp)
nq, since each

v ∈ Q satisfies qv ≡ 1 mod pN . We let ∆0 be the trivial group, viewed as a

quotient of ∆∞.



POTENTIAL AUTOMORPHY OVER CM FIELDS 173

For each N ≥ 0, the auxiliary deformation problems S1,QN
and Sχ,QN

are

defined, and we set RN = RS1,QN
and R′N = RSχ,QN

. Note that R0 = RS1

and R′0 = RSχ . Let R
loc = RS,locS1

and R′ loc = RS,locSχ
denote the corresponding

local deformation rings as in §6.2.22. For any N ≥ 1, we have RS,locS1,QN
= Rloc

and RS,locSχ,QN
= R′ loc. There are canonical isomorphisms Rloc/̟ ∼= R′ loc/̟ and

RN/̟ ∼= R′N/̟ for all N ≥ 0. For each N ≥ 1, RN and R′N are canonically

O[∆N ]-algebras and there are canonical isomorphisms RN ⊗O[∆N ] O ∼= R0

and R′N ⊗O[∆N ]O ∼= R′0, which are compatible with the isomorphisms modulo

̟. By Lemma 6.2.4, we have an Rloc-algebra structure on RN“⊗OT and an

R′ loc-algebra structure on R′N“⊗OT . The canonical isomorphism Rloc/̟ ∼=
R′ loc/̟ is compatible with these algebra structures and with the canonical

isomorphisms RN/̟ ∼= R′N/̟. We let R∞ and R′∞ be formal power series

rings in g variables over Rloc and R′ loc, respectively. Using Proposition 6.2.24

when N = 0 (noting that H0(FS/F, ad ρm(1)) = 0, because rι(π)|GF (ζp)
is

irreducible and ζp 6∈ F ), and Proposition 6.2.31 when N ≥ 1, there are local

O-algebra surjections R∞ → RN and R′∞ → R′N for any N ≥ 0. We can (and

do) assume that these are compatible with our fixed identifications modulo ̟,

and with the isomorphisms RN ⊗O[∆N ] O ∼= R0 and R′N ⊗O[∆N ] O ∼= R′0.

Let C0 = RHomO(RΓ(XK ,Vλ(1))m,O)[−d], and let T0 = TS(K,Vλ(1))m.
Then H i(C0)[1/p] ∼= HomE(H

d−i(XK ,Vλ(1))m[1/p], E) as T0-modules. Simi-

larly, we let C′0 = RHomO(RΓ(XK ,Vλ(χ−1))m,O)[−d], and T ′0 = TS(K,Vλ(χ−1))m.
For any N ≥ 1, we let

CN = RHomO[∆N ](RΓK0(Q)/K1(Q)(XK1(Q),Vλ(1))nQ1 ,O[∆N ])[−d]
and

TN =K0(Q)/K1(Q) T
S∪QN (RΓK0(Q)/K1(Q)(XK1(Q),Vλ(1))nQ1 ).

Similarly, we let

C′N = RHomO[∆N ](RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 ,O[∆N ])[−d]
and

T ′N =K0(Q)/K1(Q) T
S∪QN (RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 ).

For anyN ≥ 0, there are canonical isomorphisms CN⊗L
O[∆N ]k[∆N ] ∼= C′N⊗L

O[∆N ]

k[∆N ] in D(k[∆N ]). Using this isomorphism to identify EndD(O)(CN ⊗L
O k) =

EndD(O)(C′N⊗L
Ok), the images of TN and T ′N in this endomorphism algebra are

the same, and we denote it by TN . By Lemma 6.5.9, there are canonical isomor-

phisms CN ⊗L
O[∆N ] O ∼= C0 and C′N ⊗L

O[∆N ] O ∼= C′0 in D(O), and these isomor-

phisms are compatible with our fixed isomorphisms modulo ̟. By Proposition

6.5.11 we have nilpotent ideals IN of TN and I ′N of T ′N for each N ≥ 0, both

of nilpotence degree ≤ δ, and local O[∆N ]-algebra surjections RN → TN/IN
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and R′N → T ′N/I
′
N . The surjections are compatible with the canonical iso-

morphisms modulo ̟. Moreover, using the isomorphism RN/̟ ∼= R′N/̟ and

letting IN and I
′
N denote the images of IN and I ′N , respectively, in TN , the

induced surjections RN/̟ → TN/(IN + I
′
N ) and R′N/̟ → TN/(IN + I

′
N )

agree. The maps TN ⊗O[∆] O → T0 and T ′N ⊗O[∆] O → T ′0 induce surjections

onto T0/I0 and T ′0/I
′
0 respectively (surjectivity follows from Chebotarev den-

sity and the existence of the Galois representations with coefficients in T0/I0
and T0/I

′
0).

The objects introduced above satisfy the setup described in §6.4.1. We

can then apply the results of §6.4.2 and obtain the following.

• Bounded complexes C∞ and C′∞ of free S∞-modules, subrings T∞ ⊂
EndD(S∞)(C∞) and T ′∞ ⊂ EndD(S∞)(C′∞), and ideals I∞ and I ′∞ satis-

fying Iδ∞ = 0 and I ′δ∞ = 0. We also have S∞-algebra structures on R∞
and R′∞ and S∞-algebra surjections R∞ → T∞/I∞ and R′∞ → T ′∞/I

′
∞.

(See Proposition 6.4.12 and Remark 6.4.14.)

• Surjections of local O-algebras R∞/a∞ → R0 and R′∞/a∞ → R′0. We

have isomorphisms C∞ ⊗L
S∞

S∞/a∞ ∼= C0 and C′∞ ⊗L
S∞

S∞/a∞ ∼= C′0 in

D(O), inducing maps T∞ → T0 and T ′∞ → T ′0 that become surjective

when composed with the projections T0 → T0/I0 and T ′0 → T ′0/I
′
0, re-

spectively. We let I∞,0 and I ′∞,0 denote the images of I∞ and I ′∞,

respectively, under these surjective maps. Then the induced maps

R∞/a∞ → (T0/I0)/I∞,0 and R′∞/a∞ → (T ′0/I
′
0)/I

′
∞,0 factor through

R∞/a∞ → R0 and R′∞/a∞ → R′0, respectively. (See Lemma 6.4.15

and Proposition 6.4.16.)

• An isomorphism

C∞ ⊗L
S∞

S∞/̟ ∼= C′∞ ⊗L
S∞

S∞/̟

in D(S∞/̟). Under this identification, T∞ and T∞ have the same

image T∞ in

EndD(S∞/̟)(C∞ ⊗L
S∞

S∞/̟) = EndD(S∞)(C′∞ ⊗L
S∞

S∞/̟).

Let I∞ and I
′
∞ denote the images of I∞ and I ′∞, respectively, in T∞.

Then the actions of R∞/̟ ∼= R′∞/̟ on

H∗(C∞ ⊗L
S∞

̟)/(I∞ + I
′
∞)
∼= H∗(C′∞ ⊗L

S∞
S∞/̟)/(I∞ + I

′
∞)

are identified via C∞ ⊗L
S∞

S∞/̟ ∼= C′∞ ⊗L
S∞

S∞/̟. (See Proposi-

tion 6.4.17.)

Recall that R∞ and R′∞ are power series rings over Rloc and R′ loc, respec-

tively, in g = qn− n[F+ : Q] many variables. By Lemma 6.2.25, we have:
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• Each generic point of SpecR∞/̟ is the specialization of a unique

generic point of SpecR∞, and every generic point of SpecR∞ has char-

acteristic zero. Also, SpecR′∞ is irreducible and has characteristic zero

generic point.

• R∞ is equidimensional, and R∞ and R′∞ have the common dimension

1 + g + n2|S|+ n(n−1)
2 [F : Q].

Since F is CM, the quantity l0 for the locally symmetric space XK

is l0 = n[F+ : Q] − 1. Then since dimS∞ = n2|S| + qn and g =

qn− n[F+ : Q], we have

dimR∞ = dimR′∞ = dimS∞ − l0.
Finally, the isomorphism C∞⊗L

S∞
S∞/a∞ ∼= C0 implies that (C∞⊗L

S∞
S∞/a∞)[1/p]

has cohomology isomorphic to HomE(H
d−∗(XK ,Vλ(1))m[1/p], E). So Theo-

rem 2.4.10 implies that H∗(C∞⊗L
S∞

S∞/a∞)[1/p] 6= 0 and that the cohomology

is concentrated in degrees [q0, q0 + l0]. We have now satisfied all the assump-

tions of §6.3.5, so we can apply Proposition 6.3.8 to conclude that H∗(C∞) is

has full support over R∞, hence that H∗(C∞ ⊗L
S∞

S∞/a∞) = H∗(C0) has full

support over R∞/(a∞), hence that H∗(C0) has full support over RS1 . This

concludes the proof. �

6.5.12. End of the proof (Fontaine–Laffaille case). We now deduce The-

orem 6.1.1 from Corollary 6.5.5. The proof will be an exercise in applying

soluble base change. We first state the results that we need. Note that while

up to now E has denoted the coefficient field of our Galois representations,

having carried out our patching argument we no longer need this notation,

and we find it convenient to use E to denote a number field in the rest of the

proof.

Proposition 6.5.13. Fix an integer n ≥ 2, a prime p, and an isomor-

phism ι : Qp → C. Let F be an imaginary CM or totally real number field,

and let E/F be finite Galois extension such that Gal(E/F ) is soluble and E is

also imaginary CM or totally real. Then :

(1) Let π be a cuspidal, regular algebraic automorphic representation of

GLn(AF ) of weight λ = (λτ )τ∈Hom(F,C). Suppose that rι(π)|GE
is

irreducible. Then there exists a cuspidal, regular algebraic automor-

phic representation πE of GLn(AE) of weight λE,τ = λτ |E such that

rι(πE) ∼= rι(π)|GE
. If w is a finite place of E lying above the place v

of F , then we have recEw(πE) = recFv(π)|WEw
.

(2) Let ρ : GF → GLn(Qp) be a continuous representation such that

ρ|GE
is irreducible. Suppose that there exists a cuspidal, regular alge-

braic automorphic representation π of GLn(AE) of weight λ such that
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ρ|GE
∼= rι(π). Define λF = (λF,τ )τ∈Hom(F,C) by the formula λF,τ = λτ ′ ,

where τ ′ : E →֒ C is any extension of τ from F to E. Then λF is

independent of any choices, and there exists a cuspidal, regular alge-

braic automorphic representation πF of GLn(AF ) of weight λF such

that ρ ∼= rι(πF ). If w is a finite place of E lying above the place v of

F , then we have recEw(π) = recFv(πF ).

Proof. In either case we can reduce, by induction, to the case that E/F

is cyclic of prime order. Let σ ∈ Gal(E/F ) be a generator of the Galois group,

and let η : Gal(E/F )→ C× be a non-trivial character. We first treat the first

part of the proposition. We claim that π ⊗ (η ◦ Art−1F ) 6∼= π. Otherwise, there

would be an isomorphism

rι(π)⊗ ι−1η ∼= rι(π),

implying that rι(π)|GE
is reducible. We can therefore apply [AC89, Ch. 3,

Theorem 4.2] and [AC89, Ch. 3, Theorem 5.1] to conclude the existence of a

cuspidal, regular algebraic automorphic representation Π of GLn(AE) of weight

λE such that for almost all finite places w of E such that πw|F is unramified,

Πw is a lift of πw|F . The Chebotarev density theorem then implies that we

must have rι(Π) ∼= rι(π)|GE
, so we can take πE = Π.

We now treat the second part of the proposition. The isomorphism ρ|GE
∼=

rι(π), together with strong multiplicity one for GLn, implies that we have

πσ ∼= π. By [AC89, Ch. 3, Theorem 4.2] and [AC89, Ch. 3, Theorem 5.1],

there exists a cuspidal automorphic representation Π of GLn(AF ), which is

regular algebraic of weight λF , such that for almost all finite places w of E

such that Πw|F is unramified, πw is a lift of Πw|F . The Chebotarev density

theorem then implies that we must have rι(Π)|GE
∼= rι(π) ∼= ρ|GE

. Using the

irreducibility of ρ|GE
, we conclude that there is a twist Π⊗ (η ◦ Art−1F )i such

that rι(Π⊗(η◦Art−1F )i) ∼= ρ. We are done on taking πF = Π⊗(η◦Art−1F )i. �

Proof of Theorem 6.1.1. For the convenience of the reader, we recall the

hypotheses of Theorem 6.1.1. Let F be an imaginary CM or totally real field,

and let c ∈ Aut(F ) be complex conjugation. We are given a continuous repre-

sentation ρ : GF → GLn(Qp) satisfying the following conditions:

(1) ρ is unramified almost everywhere.

(2) For each place v|p of F , the representation ρ|GFv
is crystalline. The

prime p is unramified in F .

(3) ρ is absolutely irreducible and decomposed generic (Definition 4.3.1).

The image of ρ|GF (ζp)
is enormous (Definition 6.2.28).

(4) There exists σ ∈ GF − GF (ζp) such that ρ(σ) is a scalar. We have

p > n2.



POTENTIAL AUTOMORPHY OVER CM FIELDS 177

(5) There exists a cuspidal automorphic representation π of GLn(AF ) sat-

isfying the following conditions:

(a) π is regular algebraic of weight λ, this weight satisfying

λτ,1 + λτc,1 − λτ,n − λτc,n < p− 2n.

(b) There exists an isomorphism ι : Qp → C such that ρ ∼= rι(π) and

the Hodge–Tate weights of ρ satisfy the formula for each τ : F →֒
Qp:

HTτ (ρ) = {λιτ,1 + n− 1, λιτ,2 + n− 2, . . . , λιτ,n}.

(c) If v|p is a place of F , then πv is unramified.

The case where F is a totally real field can be reduced to the case where

F is totally imaginary by base change. We therefore assume now that F is

imaginary, and write F+ for its maximal totally real subfield. Let K/F (ζp) be

the extension cut out by ρ|GF (ζp)
. Choose finite sets V0, V1, V2 of finite places

of F having the following properties:

• For each v ∈ V0, v splits in F (ζp). For each proper subfieldK/K ′/F (ζp),

there exists v ∈ V0 such that v splits in F (ζp) but does not split in K
′.

• For each proper subfield K/K ′/F , there exists v ∈ V1 which does not

split in K ′.

• There exists a rational prime p0 6= p which is decomposed generic for

ρ, and V2 is equal to the set of p0-adic places of F .

• For each v ∈ V0 ∪ V1 ∪ V2, v ∤ 2, v ∤ p, and ρ and π are both unramified

at v.

If E/F is any finite Galois extension which is V0 ∪ V1 ∪ V2-split, then ρ|GE
has

the following properties:

• ρ(GE) = ρ(GF ) and ρ(GE(ζp)) = ρ(GF (ζp)). In particular, ρ|GE(ζp)
has

enormous image and there exists σ ∈ GE −GE(ζp) such that ρ(σ) is a

scalar.

• ρ|GE
is decomposed generic. Indeed, the rational prime p0 splits in E.

Let E0/F be a soluble CM extension satisfying the following conditions:

• Each place of V0 ∪ V1 ∪ V2 splits in E0 and the rational prime p is

unramified in E0.

• For each finite place w of E0, π
Iww
E0,w

6= 0.

• For each finite prime-to-p place w of E0, either both πE0,w and ρ|GE0,w

are unramified or ρ|GE0,w
is unipotently ramified, qw ≡ 1 mod p, and

ρ|GE0,w
is trivial.
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• For each place w|p of E+
0 , w splits in E0 and there exists a place w′ 6= w

of E+
0 such that w′|p and

∑

w′′ 6=w,w′

[E+
0,w′′ : Qp] >

1

2
[E+

0 : Q].

We can find imaginary quadratic fields Ea, Eb, Ec satisfying the following con-

ditions:

• Each rational prime lying below a place of V0∪V1∪V2 splits in Ea·Eb·Ec.
The prime p is unramified in Ea · Eb ·Ec.
• The primes 2, p split in Ea.

• If l 6∈ {2, p} is a rational prime lying below a place of E0 at which πE0,w

or ρ|E0,w is ramified, or which is ramified in E0 · Ea · Ec, then l splits
in Eb.

• If l 6∈ {2, p} is a rational prime which is ramified in Eb, then l splits in

Ec.

For example, we can choose any Ea satisfying the given condition. Then we

can choose Eb = Q(
√−pb), where pb is a prime satisfying pb ≡ 1 mod 4 and

pb ≡ −1 mod l for any prime l 6∈ {2, p} either lying below a place w of E0 at

which πE0,w or ρ|E0,w is ramified, or ramified in E0 · Ea, and Ec = Q(
√−pc),

where pc ≡ 1 mod 4pb is any prime not equal to p. (Use quadratic reciprocity

to show that pc splits in Eb.)

We let E = E0 · Ea · Eb · Ec. Then E/F is a soluble CM extension in

which each place of V0 ∪ V1 ∪ V2 splits, and the following conditions hold by

construction:

• The prime p is unramified in E.

• Let R denote the set of prime-to-p places w of E such that πE,w or

ρ|GEw
is ramified. Let Sp denote the set of p-adic places of E. Let

S′ = Sp∪R. Then if l is a prime lying below an element of S′, or which

is ramified in E, then E contains an imaginary quadratic field in which

l splits.

• If w ∈ R then ρ|GEw
is trivial and qw ≡ 1 mod p.

• The image of ρ|GE(ζp)
is enormous. The representation ρ|GE

is decom-

posed generic.

• There exists σ ∈ GE −GE(ζp) such that ρ(σ) is a scalar.

• For each place w|p of E+, there exists a place w′ 6= w of E+ such that

w′|p and
∑

w′′ 6=w,w′

[E+
w′′ : Qp] >

1

2
[E+ : Q].

By the Chebotarev density theorem, we can find infinitely many places v0
of E of degree 1 over Q such that ρ(Frobv0) is scalar and qv0 6≡ 1 mod p,
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v0 /∈ S′ ∪Rc and the residue characteristic of v0 is odd. Then H2(Ev0 , ad ρ) =

H0(Ev0 , ad ρ(1))
∨ = 0. We choose v0, v

′
0 with distinct residue characteristics

satisfying these conditions, and set S = S′∪{v0, v′0}. Note that if l0, l′0 denotes

the residue characteristic of v0, v
′
0, then l0, l

′
0 splits in any imaginary quadratic

subfield of E.

We see that the hypotheses (1)–(17) of §6.5.1 are now satisfied for E, πE ,

and the set S. We can therefore apply Corollary 6.5.5 to ρ|GE
and Proposition

6.5.13 to conclude that ρ is associated to a cuspidal, regular algebraic auto-

morphic representation Π of GLn(AF ) of weight λ. Taking into account the

final sentence of Corollary 6.5.5, we see that ΠE,w is unramified if w 6∈ S.
To finish the proof, we must show that Πv is unramified if v is a finite

place of F such that v ∤ p and both ρ and π are unramified at v. Using our

freedom to vary the choice of places v0, v
′
0, we see that if v ∤ p is a place of F

such that both ρ and π are unramified at v, then ΠE,w is unramified for any

place w|v of E. This implies that recFv(Πv) is a finitely ramified representation

of the Weil group WFv . Using the main theorem of [Var14] and the fact that

ρ is unramified at v, we see that recFv(Πv) is unramified, hence that Πv itself

is unramified. This concludes the proof. �

6.6. The proof of Theorem 6.1.2. We proceed to the proof of the second

main theorem of this chapter (Theorem 6.1.2). As in the case of the first the-

orem, we begin by establishing the result under additional conditions (§6.6.1),

then reduce the general case to this one by using soluble base change (§6.6.10).

6.6.1. Application of the patching argument (ordinary case). We take F

to be an imaginary CM number field, and fix the following data:

(1) An integer n ≥ 2 and a prime p > n.

(2) A finite set S of finite places of F , including the places above p.

(3) A (possibly empty) subset R ⊂ S of places prime to p.

(4) A cuspidal automorphic representation π of GLn(AF ), regular alge-

braic of some weight µ.

(5) A choice of isomorphism ι : Qp
∼= C.

We assume that the following conditions are satisfied:

(6) If l is a prime lying below an element of S, or which is ramified in

F , then F contains an imaginary quadratic field in which l splits. In

particular, each place of S is split over F+ and the extension F/F+ is

everywhere unramified.

(7) The residual representation rι(π) is absolutely irreducible.

(8) If v ∈ Sp then π
Iwv(1,1)
v 6= 0 and π is ι-ordinary at v (in the sense of

[Ger19, Def. 5.3]).

(9) If v ∈ R, then πIwv
v 6= 0.
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(10) If v ∈ S−(R∪Sp), then πv is unramified, v /∈ Rc, andH2(Fv , ad rι(π)) =

0.

(11) S − (R ∪ Sp) contains at least two places with distinct residue charac-

teristics.

(12) If v 6∈ S is a finite place of F , then πv is unramified.

(13) If v ∈ R, then qv ≡ 1 mod p and rι(π)|GFv
is trivial.

(14) The representation rι(π) is decomposed generic and the image of rι(π)|GF (ζp)

is enormous.

(15) If v ∈ Sp then [Fv : Qp] >
n(n+1)

2 + 1 and rι(π)|GFv
is trivial.

Theorem 6.6.2. With assumptions (1)–(15) as above, suppose given a

continuous representation ρ : GF → GLn(Qp) and a weight λ ∈ (Zn+)
Hom(F,Qp)

satisfying the following conditions :

(1) We have ρ ∼= rι(π).

(2) For each place v|p, there is an isomorphism

ρ|GFv
∼

á
ψv,1 ∗ ∗ ∗
0 ψv,2 ∗ ∗
...

. . .
. . . ∗

0 · · · 0 ψv,n

ë

,

where for each i = 1, . . . , n the character ψv,i : GFv → Q
×
p agrees with

the character

σ ∈ IFv 7→
∏

τ∈Hom(Fv,Qp)

τ(Art−1Fv
(σ))−(λτ,n−i+1+i−1)

on the inertia group IFv .

(3) For each place v|p of F , for each i = 1, . . . , n, and for each p-power

root of unity x ∈ OFv , we have
∏

τ∈Hom(Fv,Qp)

τ(x)λτ,n+1−i−µιτ,n+1−i = 1.

(4) For each finite place v 6∈ S of F , ρ|GFv
is unramified.

(5) For each place v ∈ R, ρ|GFv
is unipotently ramified.

Then ρ is ordinarily automorphic of weight ιλ: there exists an ι-ordinary cuspi-

dal automorphic representation Π of GLn(AF ) of weight ιλ such that ρ ∼= rι(Π).

Moreover, if v is a finite place of F and v 6∈ S, then Πv is unramified.

Note that we do not prove an analogue of Theorem 6.5.4 here, but rather

only an analogue of Corollary 6.5.5. This is due to our poor understanding of

the irreducible components of the local lifting rings of type Ddet,ord
v . Before

giving the proof of Theorem 6.6.2, we need to introduce some deformation

rings, Hecke algebras, and complexes on which they act. These complexes will
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represent the ordinary part of completed homology with O-coefficients. We

will use the notation for ordinary parts established in §5.1.

We define an open compact subgroup K =
∏
vKv of GLn(“OF ) as follows:

• If v 6∈ S then Kv = GLn(OFv ).

• If v ∈ Sp, then Kv = Iwv(1, 1).

• If v ∈ R, then Kv = Iwv.

• If v ∈ S − (R ∪ Sp), then Kv = Iwv,1 is the pro-v Iwahori subroup of

GLn(OFv).

Then (by Lemma 6.5.2) K is neat, so is a good subgroup of GLn(A
∞
F ). By

Theorem 2.4.10, we can find a coefficient field E ⊂ Qp and a maximal ideal

m ⊂ TS(K,µ)ord of residue field k such that ρm
∼= rι(π). If v ∈ Sp, we let

Λ1,v = OJO×Fv
(p)nK. We define Λ1 = “⊗v∈SpΛ1,v, the completed tensor product

being over O. The n-tuple of characters

χµ,v,i : O×Fv
(p)→ O×, x 7→

∏

τ∈HomQp(Fv,E)

τ(x)−(µιτ,n−i+1+i−1) (i = 1, . . . , n)

determines a homomorphism pµ,v : Λ1,v → O. We define ℘µ,v = ker pµ,v,

and write ℘0,v for the unique minimal prime of Λ1,v which is contained in

℘µ,v. We set Λv = Λ1,v/℘0,v and Λ = “⊗v∈SpΛv. We write pµ : Λ → O
for the homomorphism induced by the pµ,v and the universal property of the

completed tensor product, and set ℘µ = ker pµ. We use similar notation for

pλ; note that condition (3) in the statement of the theorem implies that ℘0,v

is also the unique minimal prime contained in ℘λ,v for each v ∈ Sp.
We define a global deformation problem for each character χ : KR → O×

which is trivial modulo ̟ by the formula

Sχ = (ρm, S, {O}v∈S−Sp∪{Λv}v∈Sp , {Ddet,ord
v }v∈Sp∪{Dχv }v∈R∪{D�

v }v∈S−(R∪Sp)).

We fix representatives ρSχ of the universal deformations which are identified

modulo ̟ (via the identifications RSχ/̟
∼= RS1/̟). We define an O[KS ]-

module Vµ(χ−1) = Vµ ⊗O O(χ−1), where KS acts on Vµ by projection to Kp

and on O(χ−1) by projection toKR. After possibly enlarging E, we can assume

that ρ takes values in O and that ρ mod ̟ = ρm; then ρ is a lifting of ρm of

type S1.
If c ≥ 1 is an integer, then we define

Λ1,c = O[
∏

v∈Sp

ker(Tn(OFv/̟
c
v)→ Tn(OFv/̟v))];

it is naturally a quotient of Λ1. For any c ≥ 1, the complex RΓ(XK(c,c),Vµ(χ−1))ord
is defined, as an object of D(Λ1,c). We define

A1(µ, χ, c) = RHomΛ1,c(RΓ(XK(c,c),Vµ(χ−1))ord,Λ1,c)[−d].
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It is a perfect complex in D(Λ1,c) (because RΓ(XK(c,c),Vµ(χ−1))ord is). The

Hecke algebra TS,ord acts on this complex by transpose. Moreover, Corollary

5.2.16 shows that for any c′ ≥ c ≥ 1 there is a TS,ord-equivariant isomorphism

(6.6.3) A1(µ, χ, c
′)⊗L

Λ1,c′
Λ1,c
∼= A1(µ, χ, c)

in D(Λ1,c). By construction, there are canonical TS,ord-equivariant isomor-

phisms

(6.6.4) A1(µ, χ, c) ⊗L
Λ1,c

Λ1,c/̟ ∼= A1(µ, 1, c) ⊗L
Λ1,c

Λ1,c/̟

inD(Λ1,c/̟). By [KT17, Lemma 2.13], we can find a perfect complex A1(µ, χ) ∈
D(Λ1) which comes equipped an action by TS,ord and with TS,ord-equivariant

isomorphisms

A1(µ, χ)⊗L
Λ1

Λ1,c
∼= A1(µ, χ, c)

in D(Λ1,c) (for each c ≥ 1) and

A1(µ, χ)⊗L
Λ1

Λ1/̟ ∼= A1(µ, 1) ⊗L
Λ1

Λ1/̟

inD(Λ1/̟). These isomorphisms are compatible with the isomorphisms (6.6.3)

for c′ ≥ c and with the isomorphisms (6.6.4) for varying characters χ, trivial

modulo ̟. Finally, we define A(µ, χ) = A1(µ, χ)⊗L
Λ1

Λ ∈ D(Λ).

Let ν ∈ X∗((ResF/Q T )E) = (Zn)Hom(F,E) be defined by

ντ = (0, 1, . . . , n− 1)

for all τ ∈ Hom(F,E). We define B1(µ, χ) = A1(µ, χ)⊗OO(ν+wG0 µ)−1, where
O(ν + wG0 µ)

−1 is the O[Tn(Fp)]-module described in §5.2.1. (In particular,

the action of Tn(OF,p) extends uniquely to an action of the completed group

algebra OJTn(OF,p)K.) Thus B1(µ, χ) is a perfect complex in D(Λ1), on which

the algebra TS,ord acts. We define B(µ, χ) = B1(µ, χ)⊗L
Λ1

Λ.

Lemma 6.6.5. The complex B1(µ, χ) is independent of µ. More pre-

cisely, for any µ′ ∈ (Zn+)
Hom(F,E), there is a TS,ord-equivariant isomorphism

B1(µ, χ) ∼= B1(µ
′, χ) in D(Λ1).

Proof. This follows from Proposition 5.2.17 and [KT17, Lemma 2.13]. �

Corollary 6.6.6. Let µ′ ∈ (Zn+)
Hom(F,E). Then there is a TS,ord-equivariant

isomorphism in D(O):
B1(µ, χ)⊗L

Λ1
O(ν + wG0 µ

′)−1 ∼= A1(µ
′, χ, 1) ⊗O O(ν + wG0 µ

′)−1.

Proof. By the lemma, it suffices to treat the case µ′ = µ. In this case the

left-hand side may be identified with

A1(µ, χ)⊗OO(ν+wG0 µ)−1⊗L
Λ1
O(ν+wG0 µ)−1 ∼= A1(µ, χ)⊗L

Λ1
O⊗OO(ν+wG0 µ)−1

Essentially by definition, this complex admits aTS,ord-equivariant isomorphism

to A1(µ, χ, 1) ⊗O O(ν + wG0 µ)
−1 in D(O). This completes the proof. �
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Let TS,Λ1 = TS ⊗O Λ1 ⊂ TS,ord.

Proposition 6.6.7. There exists an integer δ ≥ 1, depending only on n

and [F : Q], an ideal J ⊂ TS,Λ1(A(µ, χ)m⊗OO(ν+wG0 µ)−1) such that Jδ = 0,

and a continuous surjective homomorphism of Λ-algebras

fSχ : RSχ → TS,Λ1(A(µ, χ)m ⊗O O(ν + wG0 µ)
−1)/J

such that for each finite place v 6∈ S of F , the characteristic polynomial of fSχ ◦
ρSχ(Frobv) equals the image of Pv(X) in TS,Λ1(A(µ, χ)m⊗OO(ν+wG0 µ)−1)/J .

Proof. We will construct a compatible family of homomorphisms

fSχ,c : RSχ → TS,Λ1(A(µ, χ, c)m ⊗O O(ν + wG0 µ)
−1)/Jc,

one for each c ≥ 1. The desired homomorphism fSχ is then obtained by passage

to the limit, in a similar way to the proof of Theorem 4.5.1. It even suffices to

construct a family of homomorphisms

RSχ → TS,Λ1(RΓ(XK(c,c),Vµ(χ−1))ordm )/Jc;

in fact, the Hecke algebras are the same (the isomorphism being given by

transpose and twist by O(ν + wG0 µ)). Finally, it even suffices to construct a

family of homomorphisms

RSχ → TS,ord(RΓ(XK(c,c),Vµ(χ−1))ord)m/Jc;
an application of Carayol’s lemma (cf. [CHT08, Lemma 2.1.10]) then implies

that the image of RSχ is in fact contained in a nilpotent quotient of the subal-

gebra

TS,Λ1(RΓ(XK(c,c),Vµ(χ−1))ordm ) ⊂ TS,ord(RΓ(XK(c,c),Vµ(χ−1))ord)m.
This family of homomorphisms can be constructed exactly as in the proof of

Proposition 6.5.3, with the appeal to Theorem 4.5.1 being replaced instead

with an appeal to Theorem 5.5.1; here we are using the characterization of the

deformation functor Ddet,ord
v given in §6.2.6. �

We now need to describe the auxiliary objects associated to a choice of

Taylor–Wiles datum (Q, (αv,1, . . . , αv,n)v∈Q) for S1 (see §6.2.27), where each

place of Q is assumed to have residue characteristic split in some imaginary

quadratic subfield of F . Once again, this datum is automatically a Taylor–

Wiles datum for all the global deformation problems Sχ, and so the auxiliary

deformation problems Sχ,Q are defined, and the deformation ring RSχ,Q
has a

natural structure of O[∆Q]-algebra, where ∆Q =
∏
v∈Q∆v =

∏
v∈Q k(v)

×(p)n.

If c ≥ 1 is an integer then we define two auxiliary level subgroups

K(c, c)1(Q) ⊂ K(c, c)0(Q) ⊂ K(c, c).

They are good subgroups of GLn(A
∞
F ), determined by the following conditions:
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• If v 6∈ S ∪Q, then K(c, c)1(Q)v = K(c, c)0(Q)v = K(c, c)v .

• If v ∈ Q, then K(c, c)0(Q)v = Iwv and K(c, c)1(Q)v is the maximal

pro-prime-to-p subgroup of Iwv.

Then there is a natural isomorphism K(c, c)0(Q)/K(c, c)1(Q) ∼= ∆Q. We de-

fine A1(µ, χ,Q, c) to be

RHomΛ1,c[∆Q](RΓK(c,c)0(Q)/K(c,c)1(Q)(XK(c,c)1(Q),Vµ(χ−1))ord,Λ1,c[∆Q])[−d],

an object of D(Λ1,c[∆Q]). The algebra TS∪Q,ord
Q = TS∪Q,ord⊗TS∪Q TS∪Q

Q acts

on A1(µ, χ,Q, c) by transpose. As in the case where Q is empty, we can pass to

the limit with respect to c to obtain a complex A1(µ, χ,Q) ∈ D(Λ1[∆Q]) which

comes equipped with an action of TS∪Q,ord
Q and with TS∪Q,ord

Q -equivariant iso-

morphisms

A1(µ, χ,Q)⊗L
Λ1

Λ1,c
∼= A1(µ, χ,Q, c)

in D(Λ1,c) (for each c ≥ 1) and

A1(µ, χ,Q)⊗L
Λ1

Λ1/̟ ∼= A1(µ, 1, Q) ⊗L
Λ1

Λ1/̟

in D(Λ1/̟), all compatible with the similar data at level c. We define mQ

to be the contraction of m to TS∪Q,ord, and nQ to be the ideal of TS∪Q,ord
Q

generated by mQ and the elements Uv,i − αv,1 · · ·αv,i (v ∈ Q, i = 1, . . . , n).

Lemma 6.6.8. The ideal nQ occurs in the support of H∗(A1(µ, χ,Q)).

There are TS∪Q,ord-equivariant isomorphisms

A1(µ, χ,Q)nQ ⊗L
Λ1[∆Q] Λ1

∼= A1(µ, χ)mQ
∼= A1(µ, χ)m.

Proof. These properties can be established in the same way as in the finite

level (Fontaine–Laffaille) case. See §6.5.1. We omit the details. �

We define A(µ, χ,Q) = A1(µ, χ,Q)⊗L
Λ1

Λ, and ∆Q
TS∪Q,Λ1 = TS∪Q,Λ1 ⊗O

O[∆Q]. Note this acts on A(Λ, χ,Q)nQ via our identifications

K(c, c)0(Q)/K(c, c)1(Q) ∼= ∆Q

for each c and passing to the limit. Thus ∆Q
TS∪Q,Λ1(A(Λ, χ,Q)nQ) is a local

Λ[∆Q]-algebra.

Proposition 6.6.9. There exists an integer δ ≥ 1, depending only on n

and [F : Q], an ideal J ⊂∆Q
TS∪Q,Λ1(A(Λ, χ,Q)nQ ⊗O O(ν + wG0 µ)

−1) such

that Jδ = 0, and a continuous surjective homomorphism of Λ[∆Q]-algebras

fSχ,Q
: RSχ,Q

→∆Q
TS∪Q,Λ1(A(µ, χ,Q)nQ ⊗O O(ν + wG0 µ)

−1)/J

such that for each finite place v 6∈ S of F , the characteristic polynomial of

fSχ ◦ ρSχ(Frobv) equals the image of Pv(X) in ∆Q
TS∪Q,Λ1(A(µ, χ,Q)nQ ⊗O

O(ν + wG0 µ)
−1)/J .
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Proof. The existence of a Λ-algebra homomorphism

RSχ,Q
→∆Q

TS∪Q,Λ1(A(µ, χ,Q)nQ ⊗O O(ν + wG0 µ)
−1)/J

satisfying the given condition at finite places v 6∈ S ∪ Q of F is proved just

as in the proof of Proposition 6.6.7 above. The key point is to show that

this is a homomorphism of Λ[∆Q]-algebras. This can be proved in the same

way as in the proof of Proposition 6.5.11, by considering the enlarged algebra

TS∪Q,ord
Q (A(µ, χ,Q) ⊗O O(ν + wG0 µ)

−1)nQ . �

We are now ready to begin the proof of Theorem 6.6.2.

Proof of Theorem 6.6.2. We recall that we have constructed a homomor-

phism f : RS1 → O, classifying the representation ρ that we wish to show is

automorphic. We will show that ker f is in the support of

H∗(B(µ, 1)m ⊗L
Λ O(ν + wG0 λ)

−1).

By Corollary 6.6.6, this will show that ker f is in the support of

H∗(A(λ, 1, 1)m ⊗O O(ν +wG0 λ)
−1)[1/p],

in turn a quotient of

HomE(H
d−∗(XK(1,1),Vλ)m,O(ν + wG0 λ)

−1[1/p]).

The ι-ordinary automorphy of ρ will then follow from Theorem 2.4.10.

Our proof now closely follows the proof of Thm. 6.5.4. Let

q = h1(FS/F, ad ρm(1)) and g = qn− n2[F+ : Q],

and set ∆∞ = Znqp . Let T be a power series ring over Λ in n2|S| − 1 many

variables, and let S∞ = T J∆∞K. Viewing S∞ as an augmented Λ-algebra, we

let a∞ denote the augmentation ideal.

As in the proof of Thm. 6.5.4, we choose a character χ =
∏
v∈R χv :

∏
v∈R Iwv →

O× such that for each v ∈ R the n characters χv,i : k(v)
× → O× are trivial

modulo ̟ and pairwise distinct.

Let Rloc = RS,loc
Sord1

and R′ loc = RS,loc
Sordχ

denote the corresponding local defor-

mation rings as in §6.2.22. We let R∞ and R′∞ be formal power series rings in

g variables over Rloc and R′ loc, respectively.

We can then apply the results of §6.4.2 to complexes A(µ, χ,Q)nQ⊗OO(ν+
wG0 µ)

−1 (for choices of Taylor–Wiles data (Q, (αv,1, . . . , αv,n)v∈Q), proved to

exist using Proposition 6.2.32) and obtain the following.

• Bounded complexes C∞ and C′∞ of free S∞-modules, subrings T∞ ⊂
EndD(S∞)(C∞) and T ′∞ ⊂ EndD(S∞)(C′∞), and ideals I∞ and I ′∞ satis-

fying Iδ∞ = 0 and I ′δ∞ = 0. We also have S∞-algebra structures on R∞
and R′∞ and S∞-algebra surjections R∞ → T∞/I∞ and R′∞ → T ′∞/I

′
∞.

• Surjections of local Λ-algebras R∞/a∞ → RSord1
and R′∞/a∞ → RSordχ

.
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• Isomorphisms C∞⊗L
S∞
S∞/a∞ ∼= A(µ, 1)m⊗OO(ν+wG0 µ)−1 = B(µ, 1)m

and C′∞⊗L
S∞

S∞/a∞ ∼= A(µ, χ)m⊗OO(ν+wG0 µ)−1 = B(µ, χ)m in D(Λ).

This gives the necessary input for §6.3.5. Recall that R∞ and R′∞ are power

series rings over Rloc and R′ loc, respectively, in g = qn − n[F+ : Q] many

variables. It follows from parts (1) and (2) of Lemma 6.2.26 that we have

satisfied assumptions (1) and (2) of §6.3.5. To verify assumption (3), if we let

p denote the inverse image in S∞ of AnnΛ(O(ν + wG0 µ)
−1), then (Corollary

6.6.6) the complex

(C∞ ⊗L
S∞

S∞/p)[1/p] ∼= (B(µ, 1)m ⊗L
Λ O(ν + wG0 µ)

−1)[1/p]

has cohomology isomorphic to a quotient of HomE(H
d−∗(XK(1,1),Vµ)m[1/p], E).

Since π contributes to this quotient, Theorem 2.4.10 implies that H∗(C∞ ⊗L
S∞

S∞/p)[1/p] 6= 0 and that the cohomology is concentrated in degrees [q0, q0+ l0].

We have now satisfied all the assumptions of §6.3.5, and we apply Corol-

lary 6.3.9 with x ∈ Spec(R∞) the inverse image of ker f , so y ∈ Spec(S∞)

is the inverse image of AnnΛ(O(ν + wG0 λ)
−1). For each v ∈ Sp, the inertial

characters on the diagonal of ρ|GFv
are distinct, so x lies on a maximal dimen-

sion irreducible component of Spec(R∞) by part (3) of Lemma 6.2.26, and this

Corollary does apply. We deduce that the support of

H∗(B(µ, 1)m ⊗L
Λ O(ν + wG0 λ)

−1) [1/p]

contains ker f . This completes the proof. �

6.6.10. End of the proof (ordinary case). We can now deduce Theorem

6.1.2, our main automorphy lifting result in the ordinary case, from Theorem

6.6.2. The proof is a minor variation of the proof of our main automorphy

lifting result in the Fontaine–Laffaille case (see §6.5.12).

Proof of Theorem 6.1.2. For the convenience of the reader, we recall the

hypotheses of Theorem 6.1.2. Let F be an imaginary CM or totally real field,

and let c ∈ Aut(F ) be complex conjugation. We are given a continuous repre-

sentation ρ : GF → GLn(Qp) satisfying the following conditions:

(1) ρ is unramified almost everywhere.

(2) For each place v|p of F , the representation ρ|GFv
is potentially semi-

stable, ordinary with regular Hodge–Tate weights. In other words,

there exists a weight λ ∈ (Zn+)
Hom(F,Qp) such that for each place v|p,

there is an isomorphism

ρ|GFv
∼

á
ψv,1 ∗ ∗ ∗
0 ψv,2 ∗ ∗
...

. . .
. . . ∗

0 · · · 0 ψv,n

ë

,
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where for each i = 1, . . . , n the character ψv,i : GFv → Q
×
l agrees with

the character

σ ∈ IFv 7→
∏

τ∈Hom(Fv,Qp)

τ(Art−1Fv
(σ))−(λτ,n−i+1+i−1)

on an open subgroup of the inertia group IFv .

(3) ρ is absolutely irreducible and generic. The image of ρ|GF (ζp)
is enor-

mous. There exists σ ∈ GF − GF (ζp) such that ρ(σ) is a scalar. We

have p > n.

(4) There exists a regular algebraic cuspidal automorphic representation π

of GLn(AF ) and an isomorphism ι : Qp → C such that π is ι-ordinary

and rι(π) ∼= ρ.

The case where F is a totally real field can be reduced to the case where

F is totally imaginary by base change. We therefore assume now that F is

imaginary, and write F+ for its maximal totally real subfield. Let K/F (ζp) be

the extension cut out by ρ|GF (ζp)
. Choose finite sets V0, V1, V2 of finite places

of F having the following properties:

• For each v ∈ V0, v splits in F (ζp). For each proper subfieldK/K ′/F (ζp),

there exists v ∈ V0 such that v splits in F (ζp) but does not split in K
′.

• For each proper subfield K/K ′/F , there exists v ∈ V1 which does not

split in K ′.

• There exists a rational prime p0 6= p which is decomposed generic for

ρ, and V2 is equal to the set of p0-adic places of F .

• For each v ∈ V0 ∪ V1 ∪ V2, v ∤ 2, v ∤ p, and ρ and π are both unramified

at v.

If E/F is any finite Galois extension which is V0 ∪ V1 ∪ V2-split, then ρ|GE
has

the following properties:

• ρ(GE) = ρ(GF ) and ρ(GE(ζp)) = ρ(GF (ζp)). In particular, ρ|GE(ζp)
has

enormous image and there exists σ ∈ GE −GE(ζp) such that ρ(σ) is a

scalar.

• ρ|GE
is decomposed generic. Indeed, the rational prime p0 splits in E.

Let E0/F be a soluble CM extension satisfying the following conditions:

• Each place of V0 ∪ V1 ∪ V2 splits in E0.

• For each finite place w of E0, π
Iww
E0,w

6= 0.

• For each finite prime-to-p place w of E0, either both πE0,w and ρ|GE0,w

are unramified or ρ|GE0,w
is unipotently ramified, qw ≡ 1 mod p, and

ρ|GE0,w
is trivial.

• For each place w|p of E0, ρ|GE0,w
is trivial and [E0,w : Qp] > n(n +

1)/2 + 1.



188 P. ALLEN ET AL.

• For each place v|p of F , for each w|v of E0, and for each i = 1, . . . , n

the character ψv,i : GFv → Q
×
p agrees with the character

σ ∈ IFv 7→
∏

τ∈Hom(Fv,Qp)

τ(Art−1Fv
(σ))−(λτ,n−i+1+i−1)

on the whole of the inertia subgroup IE0,w ⊂ IFv .

• Let µ denote the weight of πE0 . Then for each place w|p of E0, and for

each p-power root of unity x ∈ E0,w, we have

ψv,i(ArtE0,w(x))
∏

τ∈Hom(E0,w ,Qp)

τ(x)µιτ,n−i+1+i−1 = 1.

We can find imaginary quadratic fields Ea, Eb, Ec satisfying the following con-

ditions:

• Each rational prime lying below a place of V0∪V1∪V2 splits in Ea·Eb·Ec.
• The primes 2, p split in Ea.

• If l 6∈ {2, p} is a rational prime lying below a place of E0 at which πE0,w

or ρ|E0,w is ramified, or which is ramified in E0 · Ea · Ec, then l splits
in Eb.

• If l 6∈ {2, p} is a rational prime which is ramified in Eb, then l splits in

Ec.

For example, we can choose any Ea satisfying the given conditions. Then we

can choose Eb = Q(
√−pb), where pb is a prime satisfying pb ≡ 1 mod 4 and

pb ≡ −1 mod l for any prime l 6∈ {2, p} either lying below a place w of E0 at

which πE0,w or ρ|E0,w is ramified, or ramified in E0 · Ea, and Ec = Q(
√−pc),

where pc ≡ 1 mod 4pb is a prime. (Use quadratic reciprocity to show that pc
splits in Eb.)

We let E = E0 · Ea · Eb · Ec. Then E/F is a soluble CM extension in

which each place of V0 ∪ V1 ∪ V2 splits, and the following conditions hold by

construction:

• Let R denote the set of prime-to-p places w of E such that πE,w or

ρ|GEw
is ramified. Let Sp denote the set of p-adic places of E. Let

S′ = Sp∪R. Then if l is a prime lying below an element of S′, or which

is ramified in E, then E contains an imaginary quadratic field in which

l splits.

• If w ∈ R then ρ|GEw
is trivial and qw ≡ 1 mod p.

• The image of ρ|GE(ζp)
is enormous. The representation ρ|GE

is decom-

posed generic.

• There exists σ ∈ GE −GE(ζp) such that ρ(σ) is a scalar.

• For each place w|p of E, ρ|GEw
is trivial and [Ew : Qp] > n(n+1)/2+1.

• Let πE denote the base change of π to E, which exists, by Proposition

6.5.13. Then πE is ι-ordinary, by [Ger19, Lemma 5.7].
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By the Chebotarev density theorem, we can find infinitely many places

v0 of E of degree 1 over Q such that ρ(Frobv0) is scalar and qv0 6≡ 1 mod p,

v0 /∈ S′ ∪Rc and the residue characteristic of v0 is odd. Then H2(Ev0 , ad ρ) =

H0(Ev0 , ad ρ(1))
∨ = 0. We choose v0, v

′
0 with distinct residue characteristics

satisfying these conditions, and set S = S′∪{v0, v′0}. Note that if l0, l′0 denotes

the residue characteristic of v0, v
′
0, then l0, l

′
0 splits in any imaginary quadratic

subfield of E.

We see that the hypotheses (1)–(15) of §6.6.1 are now satisfied for E, πE ,

and the set S. We can therefore apply Theorem 6.6.2 to ρ|GE
to conclude

the existence of a cuspidal, regular algebraic automorphic representation ΠE
of GLn(AE) such that ΠE is ι-ordinary of weight λE and rι(ΠE) ∼= ρ|GE

. By

Proposition 6.5.13 and [Ger19, Lemma 5.7], we can descend ΠE to obtain a

cuspidal, regular algebraic automorphic representation Π of GLn(AF ) such

that Π is ι-ordinary of weight λ and rι(Π) ∼= ρ. Taking into account the final

sentence of the statement of Theorem 6.6.2, we see that ΠE,w is unramified if

w 6∈ S.
To finish the proof, we must show that Πv is unramified if v is a finite

place of F such that v ∤ p and both ρ and π are unramified at v. Using our

freedom to vary the choice of places v0 v
′
0, we see that if v ∤ p is a place of F

such that both ρ and π are unramified at v, then ΠE,w is unramified for any

place w|v of E. This implies that recFv(Πv) is a finitely ramified representation

of the Weil group WFv . Using the main theorem of [Var14] and the fact that

ρ is unramified at v, we see that recFv(Πv) is unramified, hence that Πv itself

is unramified. This concludes the proof. �

7. Applications

7.1. Compatible systems. Suppose that F is a number field. We will

use a slight weakening of the definition of a weakly compatible system from

[BLGGT14]: By a rank n very weakly compatible system R of l-adic represen-

tations of GF defined over M we shall mean a 5-tuple

(M,S, {Qv(X)}, {rλ}, {Hτ})

where

(1) M is a number field;

(2) S is a finite set of primes of F ;

(3) for each prime v 6∈ S of F , Qv(X) is a monic degree n polynomial in

M [X];

(4) for τ : F →֒M , Hτ is a multiset of n integers;

(5) for each prime λ of M (with residue characteristic l say),

rλ : GF −→ GLn(Mλ)
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is a continuous, semi-simple representation such that

(a) if v /∈ S and v 6 |l is a prime of F , then rλ is unramified at v and

rλ(Frobv) has characteristic polynomial Qv(X).

(b) For l outside a set of primes of Dirichlet density 0, the represen-

tation rλ|GFv
is crystalline for all v|l, and for any M →֒ Mλ over

M , we have HTτ (rλ) = Hτ .

(c) For all λ, we have HTτ (det rλ) =
∑

h∈Hτ
h.

If we further drop hypothesis (5b), then we say that R is an extremely weakly

compatible system. The only dependence of an extremely weakly compatible

system on Hτ is via the condition on the determinant via hypothesis (5c). The

difference between very weakly compatible systems and the (merely) weakly

compatible systems in [BLGGT14] is that, if v|l, then we only insist that rλ|GFv

is de Rham for l in a set of Dirichlet density 1. The notion of an extremely

weakly compatible system is what used to be known as a compatible system,

but we use this language so as to emphasize that the condition of being a very

weakly compatible system is more stringent than being an extremely weakly

compatible system. (Here we implicitly use the following fact: any compatible

family of one dimensional representations is always de Rham [Hen82].) Of

course, we expect that any extremely weakly compatible system should give

rise to a weakly compatible system for an appropriate choice of Hτ . We have

adopted the present definition so that, as a consequence of Theorem 4.5.1, we

can deduce that the Galois representations constructed in [HLTT16] for n = 2

form a very weakly compatible system. (See Lemma 7.1.10.)

We will often write l for the residue characteristic of a prime λ of M

without comment. We shall write rλ for the semi-simplified reduction of rλ.

The representation rλ is a priori defined over the algebraic closure of OM/λ.
However, because its trace lies in OM/λ and because the Brauer groups of all

finite fields are trivial, it is actually a representation

rλ : GF −→ GLn(OM/λ).

We recall some further definitions from section 5.1 of [BLGGT14] which

apply mutatis mutandis to both very weakly and extremely weakly compatible

families:

A very (or extremely) weakly compatible system R is regular if, for each τ ,

the set Hτ has n distinct elements.

A very (or extremely) weakly compatible system R is irreducible if there

is a set L of rational primes of Dirichlet density 1 such that, for λ|l ∈ L, the
representation rλ is irreducible. We say that it is strongly irreducible if for all

finite extensions F ′/F the compatible system R|GF ′ is irreducible.
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Lemma 7.1.1. If R is an extremely weakly compatible system of rank 2,

then either rλ is irreducible for all λ or there exist weakly compatible systems

X1 and X2 of rank 1 with rλ ∼= χ1,λ ⊕ χ2,λ for all λ.

Proof. Suppose that for one prime λ0 the representation rλ0 is a sum of

characters rλ0 = χ1 ⊕ χ2. By the main result of [Hen82], we see that rλ0 is

de Rham. Hence each χi is also de Rham and so there are weakly compatible

systems X1 and X2 of rank 1 with χi,λ0 = χi for i = 1, 2. Then for all λ we

have rλ ∼= χ1,λ ⊕ χ2,λ. �

In view of Lemma 7.1.1, we say that an extremely weakly compatible

system of rank 2 is reducible if it is not irreducible, in which case every rep-

resentation rλ is reducible. Say that a very (or extremely) weakly compatible

system of rank 2 is Artin up to twist if there exists an irreducible Artin rep-

resentation ρ : GF → GL2(M ) with traces in M (possibly after increasing M)

and a weakly compatible system of one dimensional representations χλ such

that rλ ≃ ρ⊗ χλ.
Lemma 7.1.2. If R is an extremely weakly compatible system of rank 2

and R is irreducible, then either

(1) R is strongly irreducible, or

(2) R is Artin up to twist, or

(3) there is a quadratic extension F ′/F and a weakly compatible system X
of characters of GF ′ such that

R ∼= IndGF
GF ′
X ,

in which case we say that R is induced.

Proof. Suppose that R is not strongly irreducible, so that there exists a

finite extension E/F such that R|GE
is reducible. We may suppose that E/F

is Galois. Choose a prime λ of M of residue characteristic greater than 2.

Write rλ|GE
= χ1 ⊕ χ2.

Suppose that χ1 = χ2 = χ. As in the proof of Lemma 7.1.1, we deduce

that χ is de Rham. On the other hand, let φ denote the determinant of rλ, and

let 〈φ〉 be the character such that φ/〈φ〉 is the Teichmüller lift of the reduction φ

of φ. Since φ is a finite order character, we may assume (increasing E if

necessary) that this character is trivial after restriction to GE . By construction,

〈φ〉 = 1 and thus (because λ is assumed to have odd residue characteristic) 〈φ〉
admits a square root character ψ as a representation of GF . But then ψ2|GE

and χ2 coincide as representations of GE , since they are both equal to the

determinant of rλ|GE
. In particular, their ratio is a character of order dividing 2.

Increasing E by a finite extension if necessary, we may assume that ψ|GE
= χ.

Hence ψ|GE
is de Rham, and thus ψ is de Rham and extends to a compatible
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system of characters of GF . After twisting R by this compatible system, we

may assume that rλ|GE
is trivial. In particular, rλ factors through Gal(E/F ),

and is thus coming from an Artin representation ρλ : GF → GL2(Mλ), which

automatically extends to a (strongly) compatible system coming from an Artin

representation ρ : Gal(E/F ) → GL2(M) with traces in some finite extension

of M (specifically, the extension of M coming from the coefficient field of the

compatible family ψ). Hence R is Artin up to twist in this case.

Now assume that χ1 6= χ2. The group Gal(E/F ) permutes the two charac-

ters χi and, because rλ is irreducible, this action is transitive. Let F ′ denote the

the stabilizer of χ1. Then χ1 extends to a character of GF ′ and rλ = IndGF
GF ′

χ1.

As in the proof of Lemma 7.1.1, there is a weakly compatible system of char-

acters X of GF ′ with χλ = χ1. Then R ∼= IndGF
GF ′
X , as desired. �

Lemma 7.1.3. If R is an extremely weakly compatible system of rank 2

and R is irreducible, then for all l in a set of Dirichlet density 1 and all λ|l,
the residual representation rλ is absolutely irreducible.

If moreover R is neither induced nor Artin up to twist and ‹F denotes

the normal closure of F/Q, then one may additionally assume that the image

rλ(G‹F ) contains SL2(Fl).

Proof. This is immediate if R is Artin up to twist. If R ∼= IndGF
GF ′
X

then choose a prime v 6∈ S of F which splits in F ′ and such that Qv(X) has

distinct roots. (If no such prime v existed then we would have X = σX , where
1 6= σ ∈ Gal(F ′/F ), contradicting the irreducibility of R.) Then for any λ

not dividing the residue characteristic of v and modulo which Qv(X) still has

distinct roots, we see that rλ is irreducible.

Hence we may assume that R is strongly irreducible. In particular, since

the only connected Zariski closed subgroups of GL2 which act irreducibly con-

tain SL2, it follows that the Zariski closure of the image of rλ contains SL2(Mλ)

for all λ. We first prove, replacing M by a finite extension if necessary, that

the Galois representations rλ can all be made to land inside GL2(Mλ).

The image of rλ contains an element with distinct eigenvalues. Hence,

by the Cebotarev density theorem, there exists an auxiliary prime v 6∈ S such

that rλ(Frobv) has distinct eigenvalues. These eigenvalues are defined over a (at

most) quadratic extension of M . By enlarging M if necessary, we deduce that

the images of rλ for all λ ∤ N(v) contain an element with distinct eigenvalues

in Mλ, which allows one to conjugate the representation rλ to land in Mλ.

By choosing a second auxiliary prime of different residue characteristic and

enlarging M once again, we may ensure the image of rλ lies in GL2(Mλ) for

all λ.
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Let

sl =
⊕

λ|l

rλ : GF −→ GL2[M :Q](Ql),

so that S = {sl} form an extremely weakly compatible system with coefficients

Q. Let Gl denote the Zariski closure of the image of sl. It is contained in

(ResMQ GL2)×Q Ql. The pushforward of Gl to GL2/Ql via any embedding of

M →֒ Ql will contain SL2. We will write G◦l for the connected component of

the identity of Gl, G
ad
l for the quotient of Gl by its center and and Gsc

l for the

(simply connected) universal cover of Gad
l . Then G0

l is unramified for all l ∈ L
a set of rational primes of Dirichlet density 1 (see [LP92, Prop.8.9]). Also over

Ql, we see that Gad
l is contained in PGL

[M :Q]
2 and surjects onto each factor.

The following facts are either well known or easy to check in the order

indicated:

(1) The only morphisms PGL2 → PGL2 over Ql are the trivial map and

conjugation by an element of PGL2(Ql).

(2) The only morphisms PGLr2 → PGL2 over Ql are the trivial map and

projection onto one factor composed with conjugation by an element

of PGL2(Ql).

(3) If I and J are finite sets then, up to conjugation by an element of

PGL2(Ql)
J , the only morphisms PGLI2 → PGLJ2 over Ql are induced

by a pair (J0, φ) where J0 ⊂ J and φ : J0 → I.

(4) If I is a finite set then the automorphism group of PGLI2 is PGLI2⋊SI ,

where SI is the group of permutations of I.

(5) If J is a finite set and G is a connected algebraic subgroup of PGLJ2
over Ql which surjects onto PGL2 via each projection, then G ∼= PGLI2
and the inclusion PGLI2 →֒ PGLJ2 corresponds, up to conjugation by

an element of PGL2(Ql)
I to a map φ : J ։ I. (Use induction on #J

and Goursat’s lemma.)

(6) IfM/Ql is a finite extension, then (ResMQl
PGL2)×Ql

Ql
∼= PGL

HomQl
(M,Ql)

2

and the action of GQl
is via the map GQl

→ SHomQl
(M,Ql)

where GQl

acts by left translation.

(7) Forms of PGLr2 are classified by the middle term of the (split) exact

sequence of pointed sets

H1(Ql,PGLr2/Ql)→ H1(Ql,Aut(PGLr2/Ql))→ H1(Ql, Sr)

In order to split over an unramified extension, the image inH1(Ql, Sr) =

Hom(GQl
, Sr) must be unramified and hence land in H1(Fl, Sr). Every

class in H1(Fl, Sr) comes from the image of a group of the form G =∏
iRes

Ni
Ql

PGL2, where Ni/Ql are unramified extensions. On the other

hand, the fibres of [G] ∈ H1(Ql, Sr) are inner forms of G, and there
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is a unique quasi-split form amongst all inner forms. Since G is quasi-

split, the only forms of PGLr2 which are unramified (= quasi-split and

split over an unramified extension) are thus given by
∏
iRes

Ni
Ql

PGL2

for unramified Ni.

(8) Suppose that, for j ∈ J a finite set,Mj/Ql is a finite extension, and that

G ⊂∏j∈J Res
Mj

Ql
PGL2 is an unramified connected algebraic subgroup

over Ql such that, after base change to Ql, the projection of G onto

each factor of
∏
j∈J(Res

Mj

Ql
PGL2) ×Ql

Ql
∼= PGL

∐
j HomQl

(Mj ,Ql)

2 is

surjective. Then there are unramified extensions Ni/Ql for i in some

finite set I such that G ∼=
∏
i∈I Res

Ni
Ql

PGL2. Moreover for each j ∈ J
and each τ :Mj →֒ Ql the projection of the base change of G to Ql to

the (j, τ) factor of
∏
j∈J(Res

Mj

Ql
PGL2) ×Ql

Ql
∼= PGL

∐
j HomQl

(Mj ,Ql)

2

is conjugate by an element of PGL2(Ql) to projection onto one of the

factors of
∏
i∈I(Res

Ni
Ql

PGL2)×Ql
Ql
∼= PGL

∐
i HomQl

(Ni,Ql)

2 .

Thus for l ∈ L there are finite unramified extensions Nl,i/Ql for i in some

finite index set Il such that Gad
l
∼=
∏
i∈Il

Res
Nl,i

Ql
PGL2. Moreover for any

prime λ of M there is an index i ∈ Il and an embedding τ : Nl,i →֒ Mλ such

that the projection of Gad
l ×Ql

Mλ to PGL2/Mλ is conjugate by an element

of PGL2(Mλ) to to the projection onto the (i, τ) factor of Gad
l ×Ql

Mλ
∼=

PGL

∐
i∈Il

HomQl
(Nl,i,Mλ)

2 .

Let Γl denote the image of sl, let Γ
◦
l = Γl ∩G◦, let Γad denote the image

of Γ0
l in Gad

l . By [Lar95, Theorem 3.17], after replacing L by a smaller set of

Dirichlet density 1, we may suppose that for l ∈ L the group Γad
l contains a

conjugate of
∏
i∈Il

SL2(ONi)/{±12}. Thus, for l ∈ L and λ|l, we may suppose

that the image of rλ(GF ) in PGL2(Mλ) contains SL2(Zl)/{±12} and the image

rλ(GF ) in PGL2(OM/λ) contains SL2(Fl)/{±12}.
Now we may suppose that l ∈ L implies that l > 3 so that SL2(Fl) is

perfect. Suppose λ|l ∈ L. For every g ∈ SL2(Fl) the image of rλ contains

an element z(g)g where z(g) ∈ (OM/λ)× and is well defined modulo Z =

(OM/λ)× ∩ im r. Then z defines a homomorphism SL2(Fl) → (OM/λ)×/Z
which must be identically 1. Thus SL2(Fl) is contained in the image of rλ.

Finally if we remove finitely many primes from L we may suppose that

PSL2(Fl) is not a subquotient of Gal(‹F/F ) from which the last assertion fol-

lows. �

We now prove some further preliminary lemmas concerning enormous and

decomposed generic representations.

Lemma 7.1.4. If n ≥ 2 and l > 2n + 1 and H is a finite subgroup of

GL2(Fl) containing SL2(Fl), then Symmn−1H ⊂ GL2(Fl) is enormous.
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Proof. The image of H in PGL2(Fl) must be conjugate to PSL2(k) or

PGL2(k) for some finite extension k/Fl. (See for instance [DDT97, Thm.

2.47(b)].) Thus

F
×
l Symmn−1GL2(k) ⊃ H ⊃ Symmn−1 SL2(k),

and the lemma follows from [GN22, Lem. 3.2.5]. �

Lemma 7.1.5. Suppose that L is a number field, that k is a finite field

of characteristic l and that r : GL → GLn(k) is a continuous representation.

Let M denote the normal closure over Q of F
ker ad r

. If M does not contain a

primitive lth root of unity, then r is decomposed generic.

Proof. If a rational prime p splits completely inM , but not inM(ζl), then

p is decomposed generic for r. �

Lemma 7.1.6. Suppose that F/Q is a finite extension with normal closure
‹F/Q and that m ∈ Z>0. Suppose also that l > 2m+3 is a rational prime and

that r : GF −→ GL2(Fl) is a continuous representation such that r(G‹F ) ⊃
SL2(Fl). Finally suppose that F ′/F is a finite extension which is linearly

disjoint from F
ker r

over F .

(1) If l is unramified in F ′/Q then ζl 6∈ F ker ad Symmm r
F ′.

(2) (Symmm r)(GF ′(ζl)) is enormous.

(3) Let ‹F ′ denote the normal closure of F ′ over Q. Suppose that ad r(G‹F ′) ⊃
PSL2(Fl), then Symmm r|GF ′ is decomposed generic.

(4) Suppose that F ′/Q is unramified at l and that no quotient of im ad r

is unramified at all primes above l, then Symmm r|GF ′ is decomposed

generic.

(5) If l > [‹F : F ], then Symmm r is decomposed generic.

Proof. The image rλ(GF ) in PGL2(Fl) must be conjugate to PSL2(k)

or PGL2(k) for some finite extension k/Fl. (See for instance [DDT97, Thm.

2.47(b)].)

For assertion (1), it suffices to treat the casem = 1, in which case the asser-

tion follows because Gal(F ′(ζl)/F
′) ∼= (Z/lZ)×, while (ad r)(GF ′) = (ad r)(GF )

does not surject onto (Z/lZ)×.

For assertion (2), note that r(GF ′) = r(GF ) ⊃ SL2(Fl) and so, because

SL2(Fl) is perfect, we have that r(GF ′(ζl)) ⊃ SL2(Fl). The assertion now

follows from Lemma 7.1.4.

For assertion (3), it suffices to prove that Symmm r|GF ′ is decomposed

generic after replacing F ′ with some finite extension. We first replace F ′

by ‹F ′(ζl), which we can do as PSL2(Fl) is perfect. Then, as above, (up
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to conjugacy) the image of (ad r)(GF ′) is PSL2(k) or PGL2(k) for some fi-

nite extension k/Fl. Perhaps making a further extension, we may assume

that ad r(GF ′) = PSL2(k) for some finite extension k/Fl, while maintaining

the fact that F ′/Q is Galois. Let H/F ′ denote the finite Galois extension with

Galois group PSL2(k) cut out by this projective representation; and let H ′

denote its normal closure over Q. Using the simplicity of PSL2(k), we deduce,

from Goursat’s Lemma, that Gal(H ′/F ′) = PSL2(k)
n for some n. Moreover

the conjugation action of any σ ∈ Gal(H ′/Q) on Gal(H ′/F ′) ∼= PSL2(k)
n is via

an element of Aut(PSL2(k)
n) ∼= (PGL2(k)⋊Gal(k/Fl))

n⋊Sn. (To see this note

two things. Firstly PSL2(k) has automorphism group PGL2(k) ⋊ Gal(k/Fl) -

see for instance [Die51]. Secondly the only normal subgroups of PSL2(k)
n are

PSL2(k)
I for I ⊂ {1, ..., n}, as can be seen by induction on n, and so any

automorphism of PSL2(k)
n permutes the n factors of this product.)

There exists an element A ∈ PSL2(Fl) ⊂ PSL2(k) such that a preimage in

SL2(Fl) has two distinct Fl-rational eigenvalues with ratio α satisfying α±i 6= 1

for 1 ≤ i ≤ m. By the Cebotarev density theorem, there exists a rational

prime p such that 〈Frobp〉 in Gal(H ′/Q) is (the conjugacy class of) the el-

ement (A, . . . , A) in PSL2(k)
n = Gal(H ′/F ′). The image of this element is

trivial in the quotient Gal(F ′/Q), and thus, in addition, we see that p splits

completely in F ′ and (hence) that p ≡ 1 mod l. By construction, the ratio

of any two roots of the characteristic polynomial of Frobenius of any prime

above p in Symmm r is given by α±i for i = 1, . . . ,m. In particular, these ratios

are not equal to p ≡ 1 mod l. Hence Symmm r|GF ′ is decomposed generic.

Assertion (4) follows from assertion (3), because ‹F ′ is unramified above l

so that (‹F ′ ∩ F ker ad r
)/F is unramified above l and hence ‹F ′ ∩ F ker ad r

= F

and ‹F ′ is linearly disjoint from F
ker ad r

over F .

For assertion (5), note that [‹F ∩ F ker ad r
: F

ker ad r
] < l, so that we have

(ad r)(G‹F∩F ker ad r) ⊃ PSL2(Fl). However, being Galois extensions of F , the

fields ‹F and F
ker ad r

are linearly disjoint over ‹F ∩ F ker ad r
, so that again the

result follows from assertion (3). �

Lemma 7.1.7. Suppose that r : GF → GLn(Fl) is decomposed generic and

absolutely irreducible. Let E/Q be a Galois extension which is linearly disjoint

from the Galois closure of F
ker r

(ζl) over Q. Then r|GFE
is decomposed generic

and absolutely irreducible.

Proof. The irreducibility claim is clear. Write H for the Galois closure

of F
ker r

(ζl) over Q. As in the proof of Lemma 4.3.2, there exists a conjugacy

class of elements σ ∈ Gal(H/Q) such that any rational prime unramified in H

whose Frobenius element corresponds to σ is decomposed generic for r. By

assumption, Gal(HE/Q) = Gal(H/Q) × Gal(E/Q), and now any rational
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prime whose conjugacy class in Gal(HE/Q) is of the form (σ, 1) ∈ Gal(H/Q)×
Gal(E/Q) will be decomposed generic for r|GFE

. �

Lemma 7.1.8.

(1) Suppose that K/Ql is an unramified extension and that r : GK →
GL2(Zl) is a crystalline representation with Hodge–Tate numbers {0, 1}
for each embedding K →֒ Ql. Either r|ssIl ∼= 1⊕ ǫ−1l or r|Il ∼= ω−1l,2 ⊕ω−ll,2.

(2) Suppose that K is a number field in which l is unramified and that

r : GK → GL2(Zl) is a crystalline representation with Hodge–Tate

numbers {0, 1} for each embedding K →֒ Ql. If the image of r con-

tains SL2(Fl), then the only subextension of K
ker r

/K unramified at all

primes above l is K itself.

Proof. The first part is presumably well known, but for lack of a reference

we give a proof. (Note the slight subtlety that the result would be false if we

replaced the coefficients Zl with the ring of integers in an arbitrary extension

of Ql, which is one obstacle to finding a suitable reference.) Recall that r∨

arises from the Tate module of a height 2 l-divisible group G over OK (see

[Bre00] and [Kis06].) Moreover G 6= G0 6= (0), as otherwise we would have

Hodge–Tate numbers {1, 1} or {0, 0}. Thus there is a finite flat group schemeH

over the ring of integers of the completion of the maximal unramified extension

of K of order l2 killed by l giving rise to r∨. Moreover H 6= H0 6= (0).

By [Ray74, Prop. 3.2.1, Thm. 3.4.3], either r|ssIl ∼= 1⊕ ǫ−1l or r|Il ∼= ω−1l,2 ⊕ ω−ll,2
or r|ssIl ∼= 1 ⊕ 1 or r|ssIl ∼= ǫ−1l ⊕ ǫ−1l . If l = 2 then 1 = ǫ−1l and we are done, so

suppose that l > 2. Then since det r is a crystalline character with all Hodge–

Tate weights equal to 1, we have det r|Il = ǫ−1l , so the last two possibilities

cannot occur, and the first part follows.

Consider the now the second part. It follows from the first part that the

image under det r of any inertia group above l is F×l , and so im r = GL2(Fl).

Let ∆ denote the subgroup of GL2(Fl) generated by the images of all inertia

groups above l. It is a normal subgroup of GL2(Fl) which surjects under

the determinant map onto F×l . But any normal subgroup of GL2(Fl) either

contains SL2(Fl) or is central, and so ∆ = GL2(Fl) and the second part follows.

�

A very (or extremely) weakly compatible system R is defined to be pure

of weight w if

• for each v 6∈ S, each root α of Qv(X) in M and each ı : M →֒ C we

have

|ıα|2 = qwv ;
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• and for each τ : F →֒M and each complex conjugation c in Gal(M/Q)

we have

Hcτ = {w − h : h ∈ Hτ}.
If R is rank one then it is automatically pure. (See [Ser98].) The same is true

if R is induced from an extremely weakly compatible system of characters over

a finite extension of F , or if R is Artin up to twist.

If R is pure of weight w and if ı : M →֒ C, then the partial L-function

LS(ıR, s) is defined as an analytic function in ℜs > 1 +w/2. If R is pure and

regular and if v is an infinite place of F , then the Euler factor Lv(ıR, s) can

be defined (see [BLGGT14, §5.1]).

The very (or extremely) weakly compatible system R is defined to be

automorphic if there is a regular algebraic, cuspidal automorphic representation

π of GLn(AF ) and an embedding ı : M →֒ C, such that if v 6∈ S, then

πv is unramified and rec(πv |det |(1−n)/2v )(Frobv) has characteristic polynomial

ı(Qv(X)). Note that if R is automorphic, then LS(ıR, s) defines an analytic

function in ℜs ≫ 0 which, for n > 1, has analytic continuation to the whole

complex plane. It follows from [Clo90, Thm. 3.13] that if R is automorphic,

then for any embedding ı′ : M →֒ C there is a regular algebraic, cuspidal

automorphic representation πı′ of GLn(AF ) such that if v 6∈ S, then πı′,v

is unramified and rec(πı′,v|det |(1−n)/2v )(Frobv) has characteristic polynomial

ı′(Qv(X)).

Suppose that F is a CM field and π is a regular algebraic cuspidal auto-

morphic representation on GLn(AF ) of weight (aτ,i). From the main theorems

of [HLTT16] and [Var14] we may associate to π an extremely weakly compati-

ble system

Rπ = (Mπ, Sπ, {Qπ,v(X)}, {rπ,λ}, {Hπ,τ}),
where

• Mπ ⊂ C is the fixed field of {σ ∈ Aut(C) : σπ∞ ∼= π∞};
• Sπ is the set of primes of F with πv ramified;

• Qπ,v(X) is the characteristic polynomial of rec(πv|det |(1−n)/2v )(Frobv);

• Hπ,τ = {aτ,1 + n− 1, . . . , aτ,n}.
We now note that this can be upgraded to a very weakly compatible system

under some hypotheses.

Lemma 7.1.9. Let F be a CM field and let π be a regular algebraic cuspidal

automorphic representation on GLn(AF ) of weight ξ = (aτ,i). Suppose that the

following hypothesis holds :

(DGI) (decomposed generic and absolutely irreducible) For a set of primes l

of Dirichlet density one, the representations

rπ,λ : GF → GLn(OM/λ)
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are decomposed generic and absolutely irreducible for all λ | l.

Then Rπ is a very weakly compatible system.

Proof. The lemma follows from Theorem 4.5.1 (taking p there to be our l).

Indeed, the assumption that m is not Eisenstein is implied (for a set l of density

one) by hypothesis (DGI). Conditions (3), (4), and (5) hold automatically for

large enough l. Similarly, l will be unramified in F for large enough l. Con-

ditions (1), (2), and (6), can always be satisfied after after making a solvable

Galois base change F ′/F (using [AC89]) which is disjoint over F from the

Galois closure of F
ker r

over Q and in which all primes dividing either S or l

are unramified. (We are free to make a different such base change for each

prime l.) In particular, one can take the compositum of F with a Galois exten-

sion E/Q that is the compositum of various imaginary quadratic fields in which

all primes dividing S or l split completely for (1), (2), and the compositum

with a large totally real cyclic extension E/Q in which l splits completely for

condition (6), where E may be easily be chosen to be linearly disjoint over Q

from F
ker rπ,λ(ζl). By Lemma 7.1.7, hypothesis (DGI) is preserved under such

base extensions. Condition (8a) holds by the existence of π, and finally, condi-

tion (7) holds for l for a set of l of density one, by hypothesis (DGI). �

Lemma 7.1.10. Let F be a CM field and let π be a regular algebraic

cuspidal automorphic representation on GL2(AF ) of weight ξ = (aτ,i). Then

the extremely weakly compatible system Rπ is irreducible. Moreover hypothesis

(DGI) of Lemma 7.1.9 holds and Rπ is a very weakly compatible system.

Proof. If Rπ were reducible then, by Lemma 7.1.1 and the automorphy of

all weakly compatible systems of rank 1, we see that there would be grossen-

characters χ1 and χ2 of A×F /F
× such that πv ∼= χ1,v ⊞ χ2,v for all but finitely

many v. By [JS81a], this would contradict the cuspidality of π. Thus Rπ is

irreducible.

By Lemma 7.1.9 it only remains to verify hypothesis (DGI). The absolute

irreducibility condition follows from Lemma 7.1.3. For the decomposed generic

condition, we treat the three possibilities of Lemma 7.1.2 separately.

Suppose first that Rπ is strongly irreducible. By Lemma 7.1.3 and part (5)

of Lemma 7.1.6, we deduce that hypothesis (DGI) holds and so Rπ is very

weakly compatible.

Suppose second that Rπ ∼= IndGF
GE
X for some quadratic extension E/F

and some very weakly compatible system of characters X of GE . Let ‹F (resp.
‹E) denote the normal closure of F (resp. E) over Q, so that Gal(‹E/‹F ) is an
elementary abelian 2-group. Let 1 6= τ ∈ Gal(E/F ). Then Gal(E/F ) acts

on Gal(E
kerχλ/χ

τ
λ/E) via the non-trivial character Gal(E/F )→ {±1}. If L(λ)
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denotes the normal closure of E
kerχλ/χ

τ
λ over Q, then L(λ)/‹E is the compositum

of abelian Galois extensions on which some subgroup of Gal(‹E/Q) acts by a

non-trivial character of order 2.

Suppose that a rational prime l is unramified in ‹E. Then ǫl(Gal(L(λ)/‹E))

can have order at most 2 (as any subgroup of Gal(‹E/Q) will act trivially on

it). Thus, if l > 3 then ζl 6∈ L(λ) for any λ. It follows from Lemma 7.1.5 that

if λ lies above a rational prime l > 3 which is unramified in ‹E, then rπ,λ is

decomposed generic.

Finally suppose thatRπ is Artin up to twist, i.e. there exists an irreducible

Artin representation ρ : GF → GL2(Mπ) such that for all λ the representation

rπ,λ is the twist of ρ by some character. In particular F
ker ad rπ,λ ⊂ F

ker ad ρ
.

Let L denote the normal closure of F
ker ad ρ

over Q. If l > 2 is unramified in

L, then ζl 6∈ L and by Lemma 7.1.5 we see that rπ,λ is decomposed generic for

all λ|l. �

If ı0 is the canonical embeddingMπ →֒ C, then LS(ı0Rπ, s) = LS(π, s). If

moreover Rπ is pure, and hypothesis (DGI) of Lemma 7.1.9 holds, then for each

infinite place v of F we have Lv(ı0Rπ, s) = Lv(π, s). (This follows from the

definition of Lv(ı0Rπ, s) in [BLGGT14, §5.1] together with the determination

of the Hodge–Tate weights of Rπ in Lemma 7.1.9, and, in the case that F is

totally real, the main result of [CLH16].)

The following is our main theorem.

Theorem 7.1.11. Suppose that F/F0 is a finite Galois extension of CM

fields. Suppose also that F avoid
0 is a finite Galois extension of F and that L0 is

a finite set of rational primes. Suppose moreover that I is a finite set and that

for i ∈ I we are given mi ∈ Z>0 and a strongly irreducible rank 2 very weakly

compatible system of l-adic representations of GF

Ri = (Mi, Si, {Qi,v(X)}, {ri,λ}, {{0, 1}})

with Si disjoint from L0.
Then there is a finite set L ⊃ L0 of rational primes ; a finite CM Ga-

lois extension F suffices/F unramified above L, such that F suffices is Galois over

F0; and a finite Galois extension F avoid/F containing F avoid
0 , which is linearly

disjoint from F suffices over F ; with the following property : For any finite CM

extension F ′/F containing F suffices which is unramified above L and linearly

disjoint from F avoid over F , the representations Symmmi Ri|GF ′ are all auto-

morphic, and each arises from an automorphic representation unramified above

L0.
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We have phrased this in a rather technical way in the hope that it will

be helpful for applications. However let us record a simpler immediate conse-

quence.

Corollary 7.1.12. Suppose that F is a CM field and that the 5-tuple

R = (M,S, {Qv(X)}, {rλ}, {{0, 1}}) is a strongly irreducible rank 2 very weakly

compatible system of l-adic representations of GF . If m is a non-negative

integer, then there exists a finite Galois CM extension F ′/F such that the

weakly compatible system SymmmR|GF ′ is automorphic.

Before proving Theorem 7.1.11 in the next section, we record some conse-

quences.

Corollary 7.1.13 (Potential modularity and purity for rank two compat-

ible systems over CM fields of weight zero and their symmetric powers). Sup-

pose that F is a CM field and that the 5-tuple R = (M,S, {Qv(X)}, {rλ}, {Hτ})
is an irreducible rank 2 very weakly compatible system of l-adic representations

of GF such that Hτ = {0, 1} for all τ . Suppose further that m is a non-negative

integer. Then :

(1) R is pure of weight 1.

(2) The partial L-functions LS(ıSymmmR, s) have meromorphic continu-

ation to the entire complex plane.

(3) For v ∈ S there are Euler factors Lv(ıSymmmR, s) = Pm,ı,v(q
−s
v )−1,

where Pm,ı,v is a polynomial of degree at most m+1 and qv is the order

of the residue field of v, such that

Λ(ıSymmmR, s) = LS(ıSymmmR, s)
∏

v|∞

Lv(ıSymmmR, s)
∏

v∈S

Lv(ıSymmmR, s)

satisfies a functional equation of the form

Λ(ıSymmmR, s) = ABsΛ(ıSymmmR∨, 1 − s).

Suppose further that R is strongly irreducible and that m > 0. Then

Ls(ıSymmmR, s) is holomorphic and non-vanishing for Re(s) ≥ m/2+1, and

in particular has neither a pole nor a zero at s = m/2 + 1.

Proof. If R is not strongly irreducible, then by Lemma 7.1.2 there is a

quadratic extension F ′/F and a weakly compatible system X of characters of

GF ′ such that R = IndGF
GF ′
X . In this case X is pure, necessarily of weight 1,

and automorphic. The corollary follows easily.

So suppose that R is strongly irreducible. Then for any positive integer m

we see from Theorem 7.1.11 that there is a finite Galois CM extension Fm/F

and, for any embedding ı : M →֒ C, a cuspidal automorphic representation

πı,m of GLm+1(AFm), such that for each w|v 6∈ S the roots of the characteristic
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polynomial of rec(πı,m,w|det |−m/2w )(Frobw) are the images under ı of the roots

of QSymmmR|GFm
,w(X).

For the first part of the corollary we combine the ‘Deligne–Langlands

method’ with our theorem: because detR is pure of weight 2, it suffices to

show that for every v 6∈ S, for every root α of QR,v(X), and every ı :M →֒ C,

we have

|ıα| ≤ q1/2v .

It even suffices to show that for every m > 0, for every v 6∈ S, for every root β

of QSymmmR,v(X) and every ı :M →֒ C we have

|ıβ| ≤ q(m+1)/2
v .

(For then |ıα| ≤ q
1/2+1/(2m)
v .) Equivalently, it suffices to show that for every

m > 0, for every w|v 6∈ S, for every root γ of QSymmmR|GFm
,w(X), and every

ı :M →֒ C, we have

|ıγ| ≤ q(m+1)/2
w .

If χπı,m denotes the central character of πı,m, then we see that det SymmmR|GFm

is equivalent to Rχ
πı,m|| det ||−m/2

and so

|χπı,m(x)| = 1

for all x ∈ A×Fm
. Thus πı,m is unitary and, applying the bound of [JS81b,

Cor. 2.5] (which applies since each local factor of πı,m is generic, by the final

Corollary of [Sha74]), we see that the image under ı of all the roots of the char-

acteristic polynomial of rec(πı,m,w)(Frobw) have absolute value ≤ q
1/2
w . Thus

the absolute value of the image under ı of any root of QSymmmR|GFm
,w(X) is

≤ q(m+1)/2
w . The first part of the corollary follows.

The rest of the corollary follows on using the usual Brauer’s theorem

argument (together with known non-vanishing properties of automorphic L-

functions as in [JS77]) as in [HSBT10, Thm. 4.2]. �

Corollary 7.1.14 (Sato–Tate for Elliptic curves over CM fields). Sup-

pose that F is a CM field and that E/F is a non-CM elliptic curve. Then the

numbers

(1 + #k(v)−#E(k(v)))/2
»

#k(v)

are equidistributed in [−1, 1] with respect to the measure (2/π)
√
1− t2 dt.

Proof. This follows from Corollary 7.1.13 and the corollary to [Ser98, Thm.

2], as explained on page I-26 of [Ser98]. �

Corollary 7.1.15 (Ramanujan conjecture for weight 0 automorphic rep-

resentations for GL(2) over CM fields). Suppose that F is a CM field and that
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π is a regular algebraic cuspidal automorphic representation of GL2(AF ) of

weight (0)τ,i. Then, for all primes v of F , the representation πv is tempered.

Proof. The result is immediate for all primes v such that πv is a twist of

the Steinberg representation. At the remaining places, since πv is not a twist

of the Steinberg representation, it follows from the main theorems of [HLTT16]

and [Var14], together with [TY07, Lem. 1.4 (3)], that it suffices to prove that

if v ∤ l, then the restriction to GFv of any of the l-adic Galois representations

associated to π is pure in the sense of [TY07, §1]. By [TY07, Lem. 1.4 (2)] and

solvable base change, we can reduce to the case that πv is unramified, in which

case the result follows from Corollary 7.1.13 (1), after noting by Lemma 7.1.10

that the compatible system R associated to π is very weakly compatible of the

expected Hodge–Tate weights. �

Corollary 7.1.16. Suppose that F is a CM field and that the 5-tuples

R = (M,S, {Qv(X)}, {rλ}, {{0, 1}}) and R′ = (M ′, S′, {Q′v(X)}, {r′λ}, {{0, 1}})
are a pair of strongly irreducible rank 2 very weakly compatible systems of l-adic

representations of GF . Suppose further that m and m′ are non-negative inte-

gers, and that R and R′ are not twists of each other. Then LS(ıSymmmR⊗
Symmm′ R′, s) is meromorphic for s ∈ C, has no zeroes or poles for Re(s) ≥
1 +m/2 +m′/2, and satisfies a functional equation relating LS(ıSymmmR⊗
Symmm′ R′, s) and LS(ıSymmmR∨ ⊗ Symmm′

(R′)∨, 1 +m+m′ − s).
Proof. This follows from Theorem 7.1.11 by the same argument as [Har09]

(for example Theorem 5.3 of ibid). (As usual, this argument involves the

known non-vanishing results of Rankin–Selberg convolutions as established in

Theorem 5.2 of [Sha81]). �

7.2. Proof of the main potential automorphy theorem.

7.2.1. Preliminaries. Before turning to the proof of Theorem 7.1.11, we

record some preliminaries.

If L/Ql is a finite extension and χ (resp. χ) is an unramified character of

GL valued in F×l (resp. Z×l ), we will writeH
1
f (GL,Fl(ǫlχ)) (resp.H

1
f (GL,Zl(ǫlχ)))

for the kernel of the composite

H1(GL,Fl(ǫlχ)) −→ H1(GLnr ,Fl(ǫl)) ∼= Lnr,×/(Lnr,×)l −→ Z/lZ

(resp.

H1(GL,Zl(ǫlχ)) −→ H1(GLnr ,Zl(ǫl)) ∼= lim
←r

Lnr,×/(Lnr,×)l
r −→ Zl),

where the latter maps are induced by the valuation map. Note that if χ (resp.

χ) is non-trivial, then

H1
f (GL,Fl(ǫlχ)) = H1(GL,Fl(ǫlχ))
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(resp.

H1
f (GL,Zl(ǫlχ)) = H1(GL,Zl(ǫlχ))).

Also note that

H1(GL,Fl(ǫl))/H
1
f (GL,Fl(ǫl))

∼= Fl.

Lemma 7.2.2. The map

H1
f (GL,Zl(ǫlχ)) −→ H1

f (GL,Fl(ǫlχ))

is always surjective.

Proof. We will consider three cases. If the reduction of χ is non-trivial,

we may suppress the f and the cokernel is simply H2(GL,Zl(ǫlχ))[l]. Because

H0(GL,Ql/Zl(χ
−1)) = (0), Tate duality shows that this cokernel is zero.

Suppose now that χ is non-trivial but that χ is trivial. Using duality as

above, we have an exact sequence

H1(GL,Zl(ǫlχ)) −→ H1(GL,Fl(ǫl)) −→ Fl −→ (0).

The image of H1(GL,Zl(ǫlχ)) = H1
f (GL,Zl(ǫlχ)) in H1(GL,Fl(ǫl)) is con-

tained in H1
f (GL,Fl(ǫl)). As H

1(GL,Fl(ǫl))/H
1
f (GL,Fl(ǫl))

∼= Fl, we conclude

that this image equals H1
f (GL,Fl(ǫl)), as desired.

Suppose finally that χ = 1. In this case the assertion of the lemma is just

the surjectivity of

lim
←r
O×L /(O×L )l

r
։ O×L /(O×L )l. �

We will need a slight strengthening of [BLGGT14, Thm. 3.1.2], which we

now state. We will use the notation and definitions from [BLGGT14]. The

proof of this theorem given in [BLGGT14] immediately proves this variant

also.

Proposition 7.2.3. Suppose that :

• F/F0 is a finite, Galois extension of totally real fields,

• I is a finite set,

• for each i ∈ I , ni is a positive even integer, li is an odd rational prime,

and ıi : Qli
∼−→ C,

• F avoid/F is a finite Galois extension,

• L is a finite set of rational primes which are unramified in F and not

equal to li for any i ∈ I , and
• r̄i : GF → GSpni

(Fli) is a mod li Galois representation with open

kernel and multiplier ǫ1−ni
li

, which is unramified above L.
Then we can find finite Galois extensions F suffices/F0 and F avoid

1 /Q, such that

• F suffices contains F and is linearly disjoint from F avoidF avoid
1 over F ,

• F avoid
1 and F avoid are linearly disjoint over Q, and
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• F suffices is totally real and unramified above L;
and which has the following property : For each finite totally real extension

F1/F
suffices which is linearly disjoint from F avoidF avoid

1 over F and for each i ∈
I , there is a regular algebraic, cuspidal, polarized automorphic representation

(πi, χi) of GLni(AF1) such that

(1) (rli,ıi(πi), rli,ıi(χi)ǫ
1−ni
li

) ∼= (ri|GF1
, ǫ1−ni
li

);

(2) πi is ıi-ordinary of weight 0.

(In the notation of the proof of [BLGGT14, Thm. 3.1.2] one must choose

N not divisible by any prime in L;Mi/Q unramified at primes in L and primes

dividing N ; q unramified in F avoid(ζ4N ) and not in L; φi unramified above L
and all rational primes that ramify in F avoid; and l′ 6∈ L and not ramified in

F avoid. We set F avoid
1 = Q

ker
∏

i r
′
i(ζl′). It is linearly disjoint from F avoid over Q

because no rational prime ramifies in both these fields. We choose F ′/F (ζN )
+

to be linearly disjoint from F avoidF avoid
1 F (ζN )

+ over F (ζN )
+ with F ′/F (ζN )

+

unramified above L. The last choice is possible because ri and r′i are unramified

above L, so that ri becomes isomorphic to Vni [λi]((N − 1 − ni)/2)0 and r′i
becomes isomorphic to Vni [λ

′]((N−1−ni)/2)0 over some unramified extension

of F (ζN )
+
v for any prime v above L. We take F suffices to be the field F ′. The

fields F suffices and F avoidF avoid
1 are linearly disjoint over F because F avoidF avoid

1

and F (ζN )
+ are linearly disjoint over F , because, in turn, all primes dividing

N are unramified in F avoidF avoid
1 . The point P ∈ T̃ (F ′) also provides a point

of T̃ (F1). Moreover r′i(GF1(ζl′ )
) is adequate because F1 is linearly disjoint from

F
ker ri(ζl′) over F .)

Corollary 7.2.4. Suppose that M is a finite set of positive integers,

that E/Q is a non-CM elliptic curve, and that L is a finite set of rational

primes at which E has good reduction. Suppose also that F avoid/Q is a finite

extension.

Then we can find

• a finite Galois extension F avoid
2 /Q linearly disjoint from F avoid over Q,

and

• a finite totally real Galois extension F suffices/Q unramified above L such

that F suffices is linearly disjoint from F avoidF avoid
2 over Q;

which have the following property :

For any finite totally real extension F ′/F suffices, which is linearly disjoint

from F avoid
2 over Q, and for any m ∈ M, there is a regular algebraic, cuspidal,

polarizable automorphic representation π of GLm+1(AF ′) of weight (0)τ,i such

that for some, and hence every, rational prime l and any ı : Ql
∼= C we have

Symmm rE,l|∨GF ′
∼= rl,ı(π).
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Moreover, π is unramified above any prime where E has good reduction.

Proof. We may, and will, suppose that F avoid/Q is Galois. Choose a

rational prime l ≥ maxm∈M 2(m+2) such that E has good ordinary reduction

at l, rE,l has image GL2(Fl), l 6∈ L, and l is unramified in F avoid. (By [Ser81,

Thm. 20], the condition that E is ordinary at l excludes a set of primes of

Dirichlet density 0. By the main result of [Ser72], each of the other conditions

excludes a finite number of primes.) Note that Q
ker rE,l contains ζl and, by

part 2 of Lemma 7.1.8, is linearly disjoint from F avoid over Q.

Choose an imaginary quadratic field L which is unramified at all primes

in L, at all primes where E has bad reduction, and all primes which ramify in

F avoid, and in which l splits. Also choose a rational prime q 6∈ L ∪ {l} which
splits as vqv

′
q in L, which is unramified in F avoid and at which E has good

reduction.

If m ∈M is even also choose a character

ψm : GL −→ Q
×
l

such that

• ψm is crystalline above l with Hodge–Tate numbers 0 at one place

above l and m+ 1 at the other.

• q|#(ψm/ψ
c
m)(GF nr

vq
).

• ψm is unramified above L and all primes which ramify in F avoid and

all primes at which E has bad reduction.

• ψmψcm = ǫ
−(m+1)
l .

([BLGGT14, Lem. A.2.5] tells us that this is possible.) The representation

Ind
GQ

GL
ψm has determinant ǫ

−(m+1)
l . (This is true on GL by the construction

of ψm and true on complex conjugation because m is even.)

Let L2 denote the compositum of the Q
ker Ind

GL
GQ

ψm for m ∈ M even.

Let L1 denote the maximal sub-extension of L2 ramified only at l and let T

denote the set of primes other than l that ramify in L2. Then L2 ∩Qker rE,l =

L1 ∩Q
ker rE,l . Let L3 = L2Q

ker rE,l . We will now show that F avoid is linearly

disjoint from L3 over Q; the argument is somewhat involved, and the reader

may find it helpful to refer to the diagram of field extensions below.

LetM1 denote the maximal subfield of L3 in which the primes of T are all

unramified. Then M1 ⊃ Q
ker rE,l (because rE,l can only be ramified at l and

places where E has bad reduction), and M1 ∩ L2 = L1 and M1 = L1Q
ker rE,l .

Thus

Gal(M1/(L1 ∩Q
ker rE,l)) ∼= Gal(Q

ker rE,l/(L1 ∩Q
ker rE,l))×Gal(L1/(L1 ∩Q

ker rE,l))
∼= Gal(M1/L1)×Gal(M1/Q

ker rE,l).
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As Gal(L1/Q) is soluble, we see that L1∩Qker rE,l ⊂ Q(ζl) and that Gal(M1/Q
ker rE,l)

is soluble and hence that Gal(M1/(L1 ∩Q
ker rE,l)) contains a unique copy of

SL2(Fl) (because this latter group is perfect, and in particular admits no solv-

able quotient) and this copy is therefore normal in Gal(M1/Q). Its fixed field

is L1(ζl).

Let H be the subgroup of Gal(M1/Q) generated by the inertia groups

above l. The group H maps surjectively to Gal(Q
ker rE,l/Q) (because H is

normal, and the only subfield of Q
ker rE,l unramified at l is Q itself, by Lemma

7.1.8) and so must contain the unique copy of SL2(Fl). Thus the maximal sub-

extensionM0 of L3 in which l and all elements of T are unramified is contained

in L1(ζl). This latter field is only ramified above l and so M0 = Q. Finally

we deduce that F avoid is linearly disjoint from L3 over Q (using that all of the

primes in T ∪ {l} are unramified in F avoid).

Q

L1 ∩Q
ker rE,l

Q(ζl) L1

Q
ker rE,l L1(ζl)

M1

L2

L3

SL2(Fl)

H

If m ∈M is odd, set

rm = Symmm r∨E,l : GQ −→ GSpm+1(Ql).

It has multiplier ǫ−ml , is unramified above L, and is crystalline and ordinary

at l with Hodge–Tate numbers {0, 1, ...,m}. If m ∈ M is even, set

rm = (Symmm r∨E,l)⊗ Ind
GQ

GF
ψm.

As the representation (Symmm r∨E,l) is orthogonal with multiplier ǫ−ml , we see

that

rm : GQ −→ GSp2(m+1)(Ql)
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with multiplier ǫ
−(2m+1)
l . It is unramified above L and it is crystalline and

ordinary at l with Hodge–Tate numbers {0, 1, ..., 2m + 1}.
We apply Proposition 7.2.3 to F = F0 = Q, {rm : m ∈ M}, L and F avoidL3,

producing fields F avoid
1 and F suffices. Set F avoid

2 = F avoid
1 L3. Then F avoid

2

is linearly disjoint from F avoid over Q, and F suffices is linearly disjoint from

F avoidF avoid
2 over Q.

Suppose that F ′/F suffices is a finite totally real extension linearly disjoint

from F avoid
2 over Q. Then Symmm SL2(Fl) ⊂ Symmm r∨E,l(GLF ′(ζl)), and so for

m ∈ M the tautological representation of the subgroup of Symmm r∨E,l(GLF ′(ζl))

generated by its elements of l-power order is absolutely irreducible. If m ∈ M
is even, then rm|GLF ′(ζl)

is the direct sum of two absolutely irreducible con-

stituents. The group Gal(L3F
′/Q

ker rE,lLF ′) acts by different characters on

these two constituents, and Gal(Q
ker rE,lLF ′/Q

ker rE,lF ′) interchanges these

two characters (consider the action of inertia above q). Thus rm|GF ′(ζl)
is ab-

solutely irreducible. It follows from [BLGGT14, Prop. 2.1.2] that, for m ∈ M
odd or even, rm(GF ′(ζl)) is adequate.

Combining Proposition 7.2.3 with [BLGGT14, Thm. 2.4.1], we deduce

that rm is automorphic for m ∈ M. It follows (using, in the case that m is

even, [BLGGT14, Lem. 2.2.4] and the argument of [CHT08, Lem. 4.2.2]) that

Symmm r∨E,l|GF ′ is automorphic. This finishes the proof of the corollary. �

7.2.5. The main proof. Finally we turn to the proof of Theorem 7.1.11.

Proof of Theorem 7.1.11. Choose a non-CM elliptic curve E/Q with good

reduction above L0. Choose distinct rational primes l1 and l2 and a prime λi|l2
of Mi for each i ∈ I such that:

Assumption 7.2.6.

(1) l2 splits completely in each Mi.

(2) The image of GF on E[l1] contains SL2(Fl1), and ri,λi(GF ) contains

SL2(Fl2) for each i ∈ I.
(3) l1 and l2 are unramified in F .

(4) E has good reduction above l1 and l2.

(5) l1 and l2 lie under no prime of any Si.

(6) l1, l2 > 2mi + 3 for all i.

This is possible because all the conditions are satisfied for a set of primes

of Dirichlet density 1 (using Lemma 7.1.3), except for the first condition for l2,

which is satisfied for a set of primes of positive Dirichlet density.

Set L = L0 ∪ {l1, l2}. The weakly compatible system of characters

(Mi, Si, li, {q−1v Qi,v(0)}, {ǫl det ri,λ}, {{0}})
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has all Hodge–Tate numbers 0 and so there is a character ψi : GF →M×i with

open kernel unramified outside Si such that det ri,λ = ψiǫ
−1
l for all λ (a prime

of Mi with residue characteristic l). There is a sequence

Hom(GF ,M
×
i )

2−→ Hom(GF ,M
×
i )

∂−→ H2(GF , {±1}) = BrF [2] →֒ ⊕vBrFv [2],

which is exact at the second term. The element ∂ψi is non-trivial only at

places v ∈ Si. We can find a soluble Galois totally real extension F+
1 /Q,

unramified above L and linearly disjoint over Q from the normal closure F avoid
1

of F avoid
0 F

ker(rE,l1
×
∏

i ri,λi) over Q, such that for each v ∈ ⋃i∈I Si, the rational

prime pv below v has inertia degree in F+
1 divisible by 2[Fv : Qpv ]. (See for

instance [CHT08, Lem. 4.1.2].) Then we see that, for each i ∈ I, ∂ψi|G
FF+

1

is

trivial so that there is a continuous homomorphism

φi : GFF+
1
−→M

×
i

such that φ2i = ψi|G
FF+

1

. For v|l ∈ L we see that φi|2I
FF+

1
,v

= 1. By the

Grunwald–Wang theorem (see Theorem 5 of Chapter X of [AT09]), we can

find a continuous character δi : GFF+
1
→ {±1} such that φiδi is unramified at

all places above L. Replacing φi by φiδi we may suppose that φi is unramified

at all places above L. Set
R′i = R|GFF+

1

⊗ φ−1i
with S′i = Si.

We apply Corollary 7.2.4 to {mi : i ∈ I}, E, L and F avoid
1 F+

1 . We obtain

a finite Galois extension F avoid
2 /Q linearly disjoint from F avoid

1 F+
1 over Q and

a finite totally real Galois extension F+,suffices/Q, which is unramified above

L and linearly disjoint from F avoid
1 F avoid

2 F+
1 over Q. Set F avoid = F avoid

1 F avoid
2 .

It is Galois over Q, and certainly contains F
ker(rE,l1

×
∏

i ri,λi) ⊂ F avoid
1 by defini-

tion. Moreover it is linearly disjoint from F+
1 F

+,suffices over Q (see the diagram

of field extensions later in this proof).

Let Vr′i,λi
denote the vector space underlying r′i,λi and give it a non-

degenerate symplectic pairing, which r′i,λi will then preserve up to multiplier

ǫ−1l2 . Let Yi/FF
+
1 denote the moduli space of elliptic curves D along with

isomorphisms α1 : E[l1]
∼−→ D[l1] and α2 : V ∨r′i,λi

∼−→ D[l2], which preserve

symplectic pairings. Let Xi/F
+F+

1 denote the restriction of scalars of Yi.

If v is an infinite place of F+F+
1 , then a point of Xi((F

+F+
1 )v) is the same

as an (FF+
1 )v-point of Yi and hence Xi((F

+F+
1 )v) 6= ∅.

Suppose that w is a place of F+
1 F above L0 ∪ {l1}. Then we can find a

positive integer f such that r′i,λi(Frobw)
−f ∼ rE,l2(Frobw)f . Thus E gives rise

to a point of Yi over the unramified extension of degree f of (F+
1 F )w. Hence
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Xi has a point over an unramified extension of (F+
1 F

+)v for every place v

above L0 ∪ {l1}. Moreover this point corresponds to an elliptic curve with

good reduction.

Now suppose that v is a place of F+
1 F

+ above l2. We will show that Xi

has a rational point over an unramified extension of (F+
1 F

+)v corresponding

to an elliptic curve with good reduction. It suffices to show that Yi has a point

over an unramified extension of (F+
1 F )w for every prime w of F+

1 F over v and

that this point corresponds to an elliptic curve with good reduction. Because

Ql2
∼= Mi,λi , part 1 of Lemma 7.1.8 implies that the restriction r′i,λi |G(F+

1
F )w

must have one of the following two forms:

(1) The induction from the unramified quadratic extension of (F+
1 F )w of

ω−1l2,2δ, where δ is the unramified quadratic character.

(2)

Ç
χ ∗
0 χ−1ǫ−1l2

å
where χ is unramified and where the extension class

is peu ramifié in the sense that it lies in

H1
f (G(F+

1 F )w
,Fl2(ǫl2χ

2)) ⊂ H1(G(F+
1 F )w

,Fl2(ǫl2χ
2)).

(While the statement of Lemma 7.1.8 does not prescribe the direction of the

extension in the second possibility, nor specify that it is peu ramifié, these follow

easily from the connected–étale sequence for the finite flat group scheme H

considered in the proof of Lemma 7.1.8.) In the first case, let D/(F+
1 F )w be

an elliptic curve with good supersingular reduction. Choose a positive integer

f such that rE,l1(Frobv)
2f = (−l2)f mod l1. Then D provides a point of Yi

over the unramified extension of (F+
1 F )w of degree 2f .

In the second case, let D/k(w) be an ordinary elliptic curve and let ψ :

Gk(w) → Z×l2 denote the character by which Gk(w) acts on the Tate module

Tl2D. If L/Fw is a finite extension then, by Serre–Tate theory, liftings of D to

OL are parametrized by H1(GL,Zl2(ǫl2ψ
−2)) = H1

f (GL,Zl2(ǫl2ψ
−2)), and we

shall write De for the lifting corresponding to a class e. (Note that ψ−2 always

has infinite order.) Then

rDe,l2
∼=
Ç
ǫl2ψ

−1 ∗
0 ψ

å

and the extension class is the image of e in H1
f (GL,Fl2(ǫl2ψ

−2
)). Choose a

positive integer f such that χf = 1 and ψf ≡ 1 mod l2 and rE,l1(Frobl2)
f = 1

and Frobfw = 1 on D[l1](k(w)). Let L/Fw denote the unramified extension

of degree f , and let e ∈ H1
f (GL,Zl2(ǫl2ψ

−2)) lift the negative of the class

of r′i,λi |GL
in H1

f (GL, k(w)(ǫl2χ
2)) (the existence of such an e follows from

Lemma 7.2.2). Then De/L has De[l1] ∼= E[l1] and rDe,l2
∼= (r′i,λi)

∨.
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It follows (for instance, by [BLGGT14, Prop. 3.1.1]) that there is a finite

extension F+
2 /F

+
1 F

+ such that:

• F+
2 is Galois over F+

0 .

• F+
2 is totally real.

• All primes above L are unramified in F+
2 /F

+, and Di has good reduc-

tion at all primes in L.
• F+

2 is linearly disjoint over F+
1 F

+ from F avoidF+,sufficesF+
1 .

• ∏iXi has an F
+
2 -rational point, i.e. there exist elliptic curvesDi over F2

such that Di[l1] ∼= E[l1]|GF2
and Di[l2] ∼= r′i,λi |

∨
GF2

.

Set F suffices = F+,sufficesF+
2 F , a CM extension of F which is unrami-

fied above L and Galois over F0. We now show that this is linearly disjoint

from F avoid over F ; the reader may find it helpful to consult the diagram of

field extensions below. As F+,suffices is linearly disjoint from F+
1 F

avoid over Q,

we see that F+F+
1 F

+,suffices is linearly disjoint from F+
1 F

avoid over F+F+
1 , and

so F+
2 F

+,suffices is linearly disjoint from F+
1 F

avoid over F+F+
1 . Thus F suffices

is linearly disjoint from F+
1 F

avoid over FF+
1 . On the other hand F+

1 is lin-

early disjoint from F avoid over Q and so F avoid is linearly disjoint from FF+
1

over F . We conclude that F suffices is linearly disjoint from F avoid over F .

QF+,suffices

F+F+
1 F

+,suffices F+F+
1 F

F+,sufficesF+
2 F+

2 FF+
1 F avoid

F suffices F+
1 F

avoid

Suppose that F ′/F is a finite CM extension containing F suffices and which

is unramified above L and linearly disjoint from F avoid over F . By Corol-

lary 7.2.4, there are regular algebraic, cuspidal, polarizable automorphic rep-

resentations πi of GL1+mi(AF ′) unramified above L and of weight (0)τ,i such

that for any ı : Ql1
∼= C we have

Symmmi rE,l1 |∨GF ′
∼= rl1,ı(πi).

Applying Theorem 6.1.1 (the conditions on the residual representations are

satisfied by parts (1), (2) and (4) of Lemma 7.1.6 and Lemma 7.1.8), we see
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that there are regular algebraic, cuspidal automorphic representations π′i of

GL1+mi(AF ′) unramified above L and of weight (0)τ and ı : Ql1
∼= C such

that

Symmmi rDi,l1 |∨GF ′
∼= rl1,ı(π

′
i),

and so, for some ı : Ql2
∼= C, we have

Symmmi rDi,l2 |∨GF ′
∼= rl2,ı(π

′
i).

Applying Theorem 6.1.1 again (the conditions on the residual representations

again being satisfied by parts (1), (2) and (4) of Lemma 7.1.6 and Lemma 7.1.8)

we see that there is are regular algebraic, cuspidal automorphic representations

π′′i of GL1+mi(AF ′) unramified above L and of weight (0)τ,i, and ı : Ql2
∼= C

such that

Symmmi r′i,λi |GF ′
∼= rl2,ı(π

′′
i ).

Untwisting completes the proof of Theorem 7.1.11. �
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[Gou01] Fernando Q. Gouvêa,Deformations of Galois representations, Arithmetic

algebraic geometry (Park City, UT, 1999), IAS/Park City Math. Ser.,

vol. 9, Amer. Math. Soc., Providence, RI, 2001, Appendix 1 by Mark

Dickinson, Appendix 2 by Tom Weston and Appendix 3 by Matthew

Emerton, pp. 233–406.

[Har09] Michael Harris, Potential automorphy of odd-dimensional symmetric pow-

ers of elliptic curves and applications, Algebra, arithmetic, and geome-

try: in honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser
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[JS81a] Hervé Jacquet and Joseph A. Shalika, On Euler products and the clas-

sification of automorphic forms. II, Amer. J. Math. 103 (1981), no. 4,

777–815.

[JS81b] , On Euler products and the classification of automorphic repre-

sentations. I, Amer. J. Math. 103 (1981), no. 3, 499–558.

[JS77] , A non-vanishing theorem for zeta functions of GLn, Invent.

Math. 38 (1976/77), no. 1, 1–16.

[Kis06] Mark Kisin, Crystalline representations and F -crystals, Algebraic ge-

ometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston,
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