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ABSTRACT. We construct moduli stacks of two-dimensional mod p represen-

tations of the absolute Galois group of a p-adic local field, and relate their
geometry to the weight part of Serre’s conjecture for GLo.
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1. INTRODUCTION

1.1. Moduli of Galois representations. Let K/Q, be a finite extension, let K
be an algebraic closure of K, and let 7 : Gal(K/K) — GL4(F,) be a continuous
representation. The theory of deformations of 7 — that is, liftings of 7 to continuous
representations r : Gal(K/K) — GL4(A), where A is a complete local ring with
residue field F, — is extremely important in the Langlands program, and in
particular is crucial for proving automorphy lifting theorems via the Taylor-Wiles
method. Proving such theorems often comes down to studying the moduli spaces of
those deformations which satisfy various p-adic Hodge-theoretic conditions.

From the point of view of algebraic geometry, it seems unnatural to study only
formal deformations of this kind, and Kisin observed about fifteen years ago that
results on the reduction modulo p of two-dimensional crystalline representations
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suggested that there should be moduli spaces of p-adic representations in which the
residual representations 7 should be allowed to vary. In particular, the special fibres
of these moduli spaces would be would be moduli spaces of mod p representations
of Gal(K/K).

In this paper we construct such a space (or rather stack) Z of mod p representa-
tions in the case d = 2, and describe its geometry. In particular, we show that their
irreducible components are naturally labelled by Serre weights, and that our spaces
give a geometrisation of the weight part of Serre’s conjecture. More precisely, we
prove the following theorem (see Proposition 3.10.19 and Theorem 5.2.2; we explain
the definition of a Serre weight, and see Section 1.3 below for the notion of a Serre
weight associated to a Galois representation).

Theorem 1.1.1. The stack Z is an algebraic stack of finite type over F,, and is
equidimensional of dimension [K : Q,]. The irreducible components of Z are labelled
by the Serre weights @, in such a way that the Fp—pomts of the component Z(7)
labelled by T are precisely the representations T : Gx — GL2(F,) having G as a
Serre weight.

We also show that generic points of the irreducible components admit a simple
description (they are extensions of characters whose restrictions to inertia are
determined by the corresponding Serre weight).

In the course of proving Theorem 1.1.1, we study a partial resolution of the
moduli spaces inspired by a construction of Kisin [Kis09] in the setting of formal
deformations, and show that its irreducible components are also naturally labelled by
Serre weights. We use this resolution to show that our moduli spaces are generically
reduced, and as an illustration of the utility of our constructions, we use this to prove
the corresponding result for the special fibres of tamely potentially Barsotti—Tate
deformation rings (see Proposition 5.1.1). It seems hard to prove this result purely
in the setting of formal deformations, and we anticipate that it will have applications
to the theory of mod p Hilbert modular forms.

1.2. The construction. The reason that we restrict to the case of two-dimensional
representations is that in this case one knows that most mod p representations are
“tamely potentially finite flat”; that is, after restriction to a finite tamely ramified
extension, they come from the generic fibres of finite flat group schemes. Indeed, the
only representations not of this form are the so-called tres ramifiée representations,
which are twists of extensions of the trivial character by the mod p cyclotomic
character, and can be described explicitly in terms of Kummer theory. (This is a
local Galois-theoretic analogue of the well-known fact that, up to twist, modular
forms of any weight and level I'; (N), with N prime to p, are congruent modulo p to
modular forms of weight two and level I'; (Np); the corresponding modular curves
acquire semistable reduction over a tamely ramified extension of Q,,.)

These Galois representations, and the corresponding finite flat group schemes, can
be described in terms of semilinear algebra data. Such descriptions also exist for more
general p-adic Hodge theoretic conditions (such as being crystalline of prescribed
Hodge—Tate weights), although they are more complicated, and can be used to
construct analogues, for higher dimensional representations, of the moduli stacks
we construct here; this construction is the subject of the forthcoming paper [EG].

The semilinear algebra data that we use in the present paper are Breuil-Kisin
modules and étale p-modules. A Breuil-Kisin module is a module with Frobenius
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over a power series ring, satisfying a condition on the cokernel of the Frobenius
which depends on a fixed integer, called the height of the Breuil-Kisin module.
Inverting the formal variable in the power series ring gives a functor from the
category of Breuil-Kisin modules to the category of étale p-modules. By Fontaine’s
theory [Fon90], these étale p-modules correspond to representations of Gal(K /Ky),
where K, is an infinite non-Galois extension of K obtained by extracting p-power
roots of a uniformiser. By work of Breuil and Kisin (in particular [Kis09]), for
étale p-modules that arise from a Breuil-Kisin module of height at most 1 the
corresponding representations admit a natural extension to Gal(K/K), and in this
way one obtains precisely the finite flat representations. This is the case that we will
consider throughout this paper, extended slightly to incorporate descent data from
a finite tamely ramified extension K’/K and thereby allowing us to study tamely
potentially finite flat representations.

Following Pappas and Rapoport [PR09], we then consider the moduli stack C
of rank two projective Breuil-Kisin modules, and the moduli stack R of étale
w-modules, together with the natural map C — R. We deduce from the results
of [PR09] that the stack C is algebraic (that is, it is an Artin stack); however R is
not algebraic, and indeed is infinite-dimensional. (In fact, we consider versions of
these stacks with p-adic coefficients, in which case C is a p-adic formal algebraic
stack, but we suppress this for the purpose of this introduction.) The analogous
construction without tame descent data was considered in [EG19], where it was
shown that one can define a notion of the “scheme-theoretic image” of the morphism
C — R, and that the scheme-theoretic image is algebraic. Using similar arguments,
we define our moduli stack Z of two-dimensional Galois representations to be the
scheme-theoretic image of the morphism C — R.

By construction, we know that the closed points of Z are in bijection with the
(non-trés ramifiée) representations Gal(K/K) — GLa(F,), and by using standard
results on the corresponding formal deformation problems, we know that Z is
equidimensional of dimension [K : Q,]. The closed points of C correspond to
potentially finite flat models of these Galois representations, and we are able to
deduce that C is also equidimensional of dimension [K : Q,] (at least morally, this
is by Tate’s theorem on the uniqueness of prolongations of p-divisible groups).

These constructions are relatively formal. To go further, we combine results from
the theory of local models of Shimura varieties and Taylor-Wiles patching with an
explicit construction of families of extensions of characters. We begin by describing
the last of these.

Intuitively, a natural source of “families” of representations p : Gal(K/K) —

GLy(F,) is given by the extensions of two fixed characters. Indeed, given two

characters x1,x2 : Gal(K/K) — F;, the F,-vector space EXtéal(?/K)(X%Xl) is

usually [K : Qp]-dimensional, and a back of the envelope calculation suggests that
this should give a ([K : Q,]—2)-dimensional substack of Z (the difference between an
extension and a representation counts for a —1, as does the G, of endomorphisms).
Twisting x1, x2 independently by unramified characters gives a candidate for a
[K : Qp]-dimensional family; since Z is equidimensional of dimension [K : Q,], the
closure of such a family should be an irreducible component of Z.

Since there are only finitely many possibilities for the restrictions of the x;
to the inertia subgroup I(K/K), this gives a finite list of maximal-dimensional
families. On the other hand, there are up to unramified twist only finitely many
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irreducible two-dimensional representations of Gal(K /K ), which suggests that the
irreducible representations should correspond to 0-dimensional substacks. Together
these considerations suggest that the irreducible components of our moduli stack
should be given by the closures of the families of extensions considered in the
previous paragraph, and in particular that the irreducible representations should
arise as limits of reducible representations. This could not literally be the case for
families of Galois representations, rather than families of étale ¢-modules, and may
seem surprising at first glance, but it is indeed what happens.

1.3. Serre weights. In the body of the paper we make this analysis rigorous, and
we show that the different families that we have constructed exhaust the irreducible
components. We can therefore label the irreducible components of Z as follows. Let k
be the residue field of K; a Serre weight is then an irreducible F-representation of
GLa(k) (or rather an isomorphism class thereof). Such a representation is specified

by its highest weight, which can be thought of as a pair of characters k* — pr ,

which via local class field theory corresponds to a pair of characters I(K/K) — F; ,
and thus to an irreducible component of Z (in fact, we need to make a shift in this
dictionary, corresponding to half the sum of the positive roots of GLa(k), but we
ignore this for the purposes of this introduction).

This might seem artificial, but in fact it is completely natural, for the following
reason. Following the pioneering work of Serre [Ser87] and Buzzard-Diamond-—
Jarvis [BDJ10] (as extended in [Sch08] and [Geell]), we now know how to associate
a set W (T) of Serre weights to each continuous representation 7 : G — GLa(F,),
with the property that if F is a totally real field and p : Gp — GL2(F,) is an
irreducible representation coming from a Hilbert modular form, then the possible
weights of Hilbert modular forms giving rise to p are precisely determined by the
sets W (pl|ay, ) for places v|p of F' (see for example [BLGG13, GK14, GLS15]).

Going back to our labelling of irreducible components above, we have associated
a Serre weight @ to each irreducible component of Z. One of our main theorems is
that the representations 7 on the irreducible component labelled by & are precisely
the representations with & € W(7),

We emphasise that the existence of such a geometric interpretation of the sets W (7)
is far from obvious, and indeed we know of no direct proof using any of the explicit
descriptions of W (7) in the literature; it seems hard to understand in any explicit
way which Galois representations arise as the limits of a family of extensions of given
characters, and the description of the sets W (7) is very complicated (for example,
the description in [BDJ10] relies on certain Ext groups of crystalline characters).
Our proof is indirect, and ultimately makes use of a description of W (7) given
in [GK14], which is in terms of potentially Barsotti-Tate deformation rings of 7
and is motivated by the Taylor—Wiles method. We interpret this description in the
geometric language of [EG14], which we in turn interpret as the formal completion
of a “geometric Breuil-Mézard conjecture” for our stacks.

We also study the irreducible components of the stack C. This stack admits a
decomposition as a disjoint union of substacks C”, indexed by the tame inertial
types 7 (the substack C™ is the moduli of those Breuil-Kisin modules which have
descent data given by 7). The inertial local Langlands correspondence assigns a
finite set of Serre weights JH(7 (7)) to 7 (the Jordan—-Hélder factors of the reduction
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mod p of the representation o(7) of GL2(Ok) corresponding to 7), and we show
that the scheme-theoretic image of the morphism C™ — Z is 27 = Ugcns(r)) Z(7)-

The set JH(7 (7)) can be identified with a subset of the power set S of the set of
embeddings k — fp. For generic choices of 7, it is equal to S, and in this case we
show that the morphism C™ — Z7 is a generic isomorphism on the source. We are
able to show (using the theory of Dieudonné modules) that for any non-scalar type 7,
the irreducible components of C” can be identified with S, and those irreducible
components not corresponding to elements of JH(7 (7)) have image in Z7 of positive
codimension. (In the case of scalar types, both C™ and Z7 are irreducible.) It follows
from the results described that Z7 is generically reduced, which is not at all obvious
from its definition.

An important tool in our proofs is that C has rather mild singularities, and in
particular is Cohen—-Macaulay and reduced. We show this by relating the singularities
of the various C to the local models at Iwahori level of Shimura varieties of GLa-type;
such a relationship was first found in [Kis09] (in the context of formal deformation
spaces, with no descent data) and [PR09] (in the context of the stacks C, although
again without descent data) and developed further by the first author and Levin
in [CL18].

1.4. An outline of the paper. In Section 2 we recall the theory of Breuil-Kisin
modules and étale p-modules, and explain how it extends to the setting of tame
descent data. In Section 3 we define the stacks C, R and Z, and prove some of their
basic properties following [EG19]. We relate the singularities of C to those of local
models, define the Dieudonné stack, and explain how the morphism from C to the
Dieudonné stack can be thought of in terms of effective Cartier divisors.

In Section 4 we build our families of reducible Galois representations, and show
that they are dense in Z. We begin with a thorough study of spaces of extensions
of Breuil-Kisin modules, before considering their scheme-theoretic images in R.
After some general considerations we specialise to the case of extensions of rank one
Breuil-Kisin modules, where we explicitly calculate the dimensions of the extension
groups. We also show that the Kisin variety corresponding to an irreducible Galois
representation has “small” dimension, by using a base change argument, and proving
an upper bound on the Kisin variety for reducible representations via an explicit
calculation.

In Section 5 we prove our main results, by combining the hands-on study of C
and Z of Section 4 with the results on the weight part of Serre’s conjecture and the
Breuil-Mézard conjecture from [GK14].

We finish with several appendices, summarising results that we use earlier in the
paper. Appendix A recalls some properties of formal algebraic stacks from [Eme],
and proves a technical result that we use in Section 5. Appendix B recalls some
standard facts about Serre weights and the inertial local Langlands correspondence,
and finally Appendix C combines the results of [GK14] and [EG14] to prove a
geometric Breuil-Mézard result for tamely potentially Barsotti-Tate deformation
rings, which we use in Section 5.

1.5. Final comments. As explained above, our construction excludes the tres
ramifiée representations, which are twists of certain extensions of the trivial character
by the mod p cyclotomic character. From the point of view of the weight part of
Serre’s conjecture, they are precisely the representations which admit a twist of
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the Steinberg representation as their only Serre weight. In accordance with the
picture described above, this means that the full moduli stack of 2-dimensional
representations of Gal(K/K) can be obtained from our stack by adding in the
irreducible components consisting of the trés ramifiée representations. This is
carried out in [EG], and the geometrisation of the weight part of Serre’s conjecture
described above is extended to this moduli stack, using the results of this paper as
an input.

We assume that p > 2 in much of the paper; while we expect that our results
should also hold if p = 2, there are several reasons to exclude this case. We
are frequently able to considerably simplify our arguments by assuming that the
extension K'/K is not just tamely ramified, but in fact of degree prime to p; this is
problematic when p = 2, as the consideration of cuspidal types involves a quadratic
unramified extension. We also use results on the Breuil-Mézard conjecture which
ultimately depend on automorphy lifting theorems that are not available in the case
p = 2 at present (although it is plausible that the methods of [Thol7] could be used
to prove them).

1.6. Acknowledgements. We would like to thank Ulrich Gortz, Wansu Kim and
Brandon Levin for helpful conversations and correspondence.

1.7. Notation and conventions.

Topological groups. If M is an abelian topological group with a linear topology,
then as in [Stal3, Tag 07TE7] we say that M is complete if the natural morphism
M — lim M /U; is an isomorphism, where {U;};cs is some (equivalently any)
fundamental system of neighbourhoods of 0 consisting of subgroups. Note that in
some other references this would be referred to as being complete and separated. In
particular, any p-adically complete ring A is by definition p-adically separated.

Galois theory and local class field theory. If M is a field, we let Gp; denote its
absolute Galois group. If M is a global field and v is a place of M, let M, denote
the completion of M at v. If M is a local field, we write I, for the inertia subgroup
of GM

Let p be a prime number. Fix a finite extension K/Q,, with ring of integers
Ok and residue field k. Let e and f be the ramification and inertial degrees of
K, respectively, and write #k = pf for the cardinality of k. Let K’/K be a finite
tamely ramified Galois extension. Let k' be the residue field of K’, and let ¢’, f/ be
the ramification and inertial degrees of K’ respectively.

Our representations of G i will have coefficients in Qp, a fixed algebraic closure of
Q,, whose residue field we denote by Fp. Let E be a finite extension of Q, contained
in Qp and containing the image of every embedding of K’ into Qp. Let O be the
ring of integers in E, with uniformiser w and residue field F C F,,.

Fix an embedding oy : k¥’ — F, and recursively define o; : ¥’ < F for alli € Z
so that afH = oy; of course, we have 0,4 = o; for all i. We let e; € K ®@r, F
denote the idempotent satisfying (z ® 1)e; = (1 ® o;(x))e; for all & € k’; note
that ¢(e;) = e;+1. We also denote by e; the natural lift of e; to an idempotent in
W(k') ®z, O. If M is an W (k') ®z, O-module, then we write M; for e; M.

We write Artg: K* — W2P for the isomorphism of local class field theory,
normalised so that uniformisers correspond to geometric Frobenius elements.


https://stacks.math.columbia.edu/tag/07E7
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Lemma 1.7.1. Let 7 be any uniformiser of Ok. The composite Ix — O — k™,
where the map Ix — O is induced by the restriction of Arty, sends an element
g € Ik to the image in k* of g(wl/(pf_l))/wl/(pf_l),

Proof. This follows (for example) from the construction in [Yos08, Prop. 4.4(iii),
Prop. 4.7(ii), Cor. 4.9, Def. 4.10]. O

For each o € Hom(k, F,) we define the fundamental character w, to o to be the
composite

o =X

F,,

Ix o} I

where the map Ix — Oy is induced by the restriction of Arti_{l. Let € denote
the p-adic cyclotomic character and € the mod p cyclotomic character, so that

ngHom(k’fP) wé = €. We will often identify characters Ix — F: with characters

kX — F; via the Artin map, and similarly for their Teichmiiller lifts.

Inertial local Langlands. A two-dimensional tame inertial type is (the isomorphism
class of) a tamely ramified representation 7 : Iy — GL2(Z,) that extends to a
representation of G and whose kernel is open. Such a representation is of the
form 7 ~ n ® ', and we say that 7 is a tame principal series type if n,n’ both
extend to characters of Gx. Otherwise, ' = 7%, and 7 extends to a character of G,
where L/K is a quadratic unramified extension. In this case we say that 7 is a tame
cuspidal type.

Henniart’s appendix to [BMO02] associates a finite dimensional irreducible E-
representation o(7) of GL2(Ok) to each inertial type 7; we refer to this association
as the inertial local Langlands correspondence. Since we are only working with tame
inertial types, this correspondence can be made very explicit as follows.

If 7 ~ n®n’ is a tame principal series type, then we also write n, 7’ : k™ — O* for
the multiplicative characters determined by 7 o Art K|OIX( ,1 o Art K|le< respectively.

If n = 7/, then we set o(7) = n o det. Otherwise, we write I for the Iwahori
subgroup of GLy(Ok) consisting of matrices which are upper triangular modulo a
uniformiser wg of K, and write x =7 ®@n: I — O* for the character
a b Fi (T
(e 0) = @@,
Then o(7) := Ind?LQ(OK) X-
If 7 = n®n9 is a tame cuspidal type, then as above we write L/K for a quadratic

unramified extension, and [ for the residue field of Oy. We write n : [* — O* for
the multiplicative character determined by 1 o Arty,| 0% then o(7) is the inflation

to GL2(Ofk) of the cuspidal representation of GLa(k) denoted by ©(n) in [Dia07].

p-adic Hodge theory. We normalise Hodge-Tate weights so that all Hodge-Tate
weights of the cyclotomic character are equal to —1. We say that a potentially
crystalline representation p : Gxg — GLso (Qp) has Hodge type 0, or is potentially
Barsotti—Tate, if for each ¢ : K — Qp, the Hodge-Tate weights of p with respect
to ¢ are 0 and 1. (Note that this is a more restrictive definition of potentially
Barsotti-Tate than is sometimes used; however, we will have no reason to deal with

representations with non-regular Hodge-Tate weights, and so we exclude them from
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consideration. Note also that it is more usual in the literature to say that p is
potentially Barsotti-Tate if it is potentially crystalline, and p¥ has Hodge  type 0.)

We say that a potentially crystalline representation p : Gx — GL2(Q,) has
inertial type 7 if the traces of elements of Ix acting on 7 and on

DpcriS(p) = h%m (Beris ¥Q, VP)GK,
K'/K

are equal (here V, is the underlying vector space of V). A representation 7 : Gg —

GL3(F,) has a potentially Barsotti-Tate lift of type T if and only if 7 admits a lift

to a representation r : Gxg — GL2(Z,) of Hodge type 0 and inertial type 7.

Serre weights. By definition, a Serre weight is an irreducible F-representation of
GLy(k). Concretely, such a representation is of the form

Opzi= ®§:_S (det’ Sym® k?) ®k,0, F,

where 0 < s;,%; < p—1 and not all ¢; are equal to p— 1. We say that a Serre weight
is Steinberg if s; = p — 1 for all j, and non-Steinberg otherwise.

A remark on normalisations. Given a continuous representation 7 : G — GLa(F,),
there is an associated (nonempty) set of Serre weights W (7) whose precise definition
we will recall in Appendix B. There are in fact several different definitions of W (7) in
the literature; as a result of the papers [BLGG13, GK14, GLS15], these definitions
are known to be equivalent up to normalisation.

However, the normalisations of Hodge—Tate weights and of inertial local Langlands
used in [GK14, GLS15, EGS15] are not all the same, and so for clarity we lay out
how they differ, and how they compare to the normalisations of this paper.

Our conventions for Hodge-Tate weights and inertial types agree with those
of [GK14, EGS15], but our representation o (7) is the representation o(7") of [GK14,
EGS15] (where 7V = n~1 @ (') ~1); to see this, note the dual in the definition of o(7)
in [GK14, Thm. 2.1.3] and the discussion in §1.9 of [EGS15].!

In all cases one chooses to normalise the set of Serre weights so that the condition
of Lemma B.5(1) holds. Consequently, our set of weights W (7) is the set of duals
of the weights W (7) considered in [GK14]. In turn, the paper [GLS15] has the
opposite convention for the signs of Hodge—Tate weights to our convention (and
to the convention of [GK14]), so we find that our set of weights W (7) is the set of
duals of the weights W (7") considered in [GLS15].

Stacks. We follow the terminology of [Stal3]; in particular, we write “algebraic stack”
rather than “Artin stack”. More precisely, an algebraic stack is a stack in groupoids
in the fppf topology, whose diagonal is representable by algebraic spaces, which
admits a smooth surjection from a scheme. See [Stal3, Tag 026N] for a discussion
of how this definition relates to others in the literature, and [Stal3, Tag 04XB] for
key properties of morphisms representable by algebraic spaces.

For a commutative ring A, an fppf stack over A (or fppf A-stack) is a stack fibred
in groupoids over the big fppf site of Spec A.

1However7 this dual is erroneously omitted when the inertial local Langlands correspondence is
made explicit at the end of [EGS15, §3.1]. See Remark B.1.
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Scheme-theoretic images. We briefly remind the reader of some definitions from [EG19,
§3.2]. Let X — F be a proper morphism of stacks over a locally Noetherian base-

scheme S, where X is an algebraic stack which is locally of finite presentation over S,

and the diagonal of F is representable by algebraic spaces and locally of finite

presentation.

We refer to [EG19, Defn. 3.2.8] for the definition of the scheme-theoretic image Z
of the proper morphism & — F. By definition, it is a full subcategory in groupoids
of F, and in fact by [EG19, Lem. 3.2.9] it is a Zariski substack of F. By [EG19,
Lem. 3.2.14], the finite type points of Z are precisely the finite type points of F for
which the corresponding fibre of X' is nonzero.

The results of [EG19, §3.2] give criteria for Z to be an algebraic stack, and prove
a number of associated results (such as universal properties of the morphism Z — F,
and a description of versal deformation rings for Z); rather than recalling these
results in detail here, we will refer to them as needed in the body of the paper.

2. INTEGRAL p-ADIC HODGE THEORY WITH TAME DESCENT DATA

In this section we introduce various objects in semilinear algebra which arise in
the study of potentially Barsotti—Tate Galois representations with tame descent
data. Much of this material is standard, and none of it will surprise an expert, but
we do not know of a treatment in the literature in the level of generality that we
require; in particular, we are not aware of a treatment of the theory of tame descent
data for Breuil-Kisin modules. However, the arguments are almost identical to
those for strongly divisible modules and Breuil modules, so we will be brief.

The various equivalences of categories between the objects we consider and finite
flat group schemes or p-divisible groups will not be relevant to our main arguments,
except at a motivational level, so we largely ignore them.

2.1. Breuil-Kisin modules and ¢p-modules with descent data. Recall that
we have a finite tamely ramified Galois extension K’/K. Suppose further that there
exists a uniformiser 7’ of Ok, such that m := (7/)**'/K) is an element of K, where
e(K'/K) is the ramification index of K'/K. Recall that k' is the residue field of K,
while ¢/, f/ are the ramification and inertial degrees of K’ respectively. Let F(u) be
the minimal polynomial of 7/ over W (k')[1/p].

Let ¢ denote the arithmetic Frobenius automorphism of &/, which lifts uniquely
to an automorphism of W (k') that we also denote by ¢. Define & := W (k')[[u]],

and extend ¢ to & by

14 (Z aiui) = ng(ai)um.
By our assumptions that (7/)(5'/K) ¢ K and that K'/K is Galois, for each
g € Gal(K'/K) we can write g(7')/n" = h(g) with h(g) € pe(xr /i) (K') C W(K'),
and we let Gal(K'/K) act on & via

g (D awt) =3 glah(g)u',
Let A be a p-adically complete Z,-algebra, set &4 := (W (k') ®z, A)[[u]], and

extend the actions of ¢ and Gal(K’/K) on & to actions on &4 in the obvious
(A-linear) fashion.

Lemma 2.1.1. An & 4-module is projective if and only if it is projective as an
Al[u]]-module.
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Proof. Suppose that 9 is an & 4-module that is projective as an A[[u]]-module.
Certainly W (k') ®z, 9 is projective over & 4, and we claim that it has 9 as an
& 4-module direct summand. Indeed, this follows by rewriting 9t as W (k") @y () 9N
and noting that W (k') is a W (k’)-module direct summand of W (k') ®z, W (k). O

The actions of ¢ and Gal(K'/K) on G4 extend to actions on G4[l/u] =
(W(K') ®z, A)((u)) in the obvious way. It will sometimes be necessary to con-
sider the subring &% := (W (k) ®z, A)[[v]] of G4 consisting of power series in
v = utK'/K) on which Gal(K'/K) acts trivially.

Definition 2.1.2. Fix a p-adically complete Zy-algebra A. A weak Breuil-Kisin
module with A-coefficients and descent data from K' to K is a triple (9, won, {9} geqai(k’/K))
consisting of a & 4-module 91 and a p-semilinear map @gn : M — M such that:
e the G 4-module M is finitely generated and wu-torsion free, and
e the induced map P9n = 1 ® o @ @*M — M is an isomorphism after
inverting E(u) (here as usual we write p*M = G4 Qy.&, M),
together with additive bijections g : 9t — 9N, satisfying the further properties that
the maps § commute with ooy, satisfy ¢) o go = g1 0 g2, and have g(sm) = g(s)g(m)
for all s € G4, m € 9. We say that 91 is has height at most h if the cokernel of
Doy is killed by E(u)".

If 9% as above is projective as an & 4-module (equivalently, if the condition that
the 91 is u-torsion free is replaced with the condition that 9t is projective) then we
say that 9 is a Breuil-Kisin module with A-coefficients and descent data from K’
to K, or even simply that 9 is a Breuil-Kisin module.

The Breuil-Kisin module 971 is said to be of rank d if the underlying finitely
generated projective G 4-module has constant rank d. It is said to be free if the
underlying & 4-module is free.

A morphism of (weak) Breuil-Kisin modules with descent data is a morphism
of & 4-modules that commutes with ¢ and with the §. In the case that K’ = K
the data of the § is trivial, so it can be forgotten, giving the category of (weak)
Brewil-Kisin modules with A-coefficients. In this case it will sometimes be convenient
to elide the difference between a Breuil-Kisin module with trivial descent data, and
a Breuil-Kisin module without descent data, in order to avoid making separate
definitions in the case of Breuil-Kisin modules without descent data; the same
convention will apply to the étale ¢-modules considered below.

Lemma 2.1.3. Suppose either that A is a Z/p®Z-algebra for some a > 1, or that A
is p-adically separated and M is projective. Then in Definition 2.1.2 the condition
that ®on is an isomorphism after inverting E(u) may equivalently be replaced with
the condition that ®on is injective and its cokernel is killed by a power of E(u).

Proof. If A is a Z/p®Z-algebra for some a > 0, then E(u)" divides «*(@+"=1) in & 4
(see [EG19, Lem. 5.2.6] and its proof), so that 91 /u] is étale in the sense that the
induced map
Don[1/u] : @™ M[1/u] — M1 /u]

is an isomorphism. The injectivity of ®9np now follows because 9, and therefore
@*IM, is u-torsion free.

If instead A is p-adically complete, then no Eisenstein polynomial over W (k') is a
zero divisor in & 4: this is plainly true if p is nilpotent in A, from which one deduces
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the same for p-adically complete A. Assuming that 9 is projective, it follows that
the maps 9 — M[1/E(u)] and o*M — (¢*M)[1/E(u)] are injective, and we are
done. (]

Remark 2.1.4. We refer the reader to [EG19, §5.1] for a discussion of foundational
results concerning finitely generated modules over the power series ring A[[u]]. In
particular (using Lemma 2.1.1) we note the following.

(1) An & 4-module 9 is finitely generated and projective if and only if it is
u-torsion free and wu-adically complete, and 90t/ut is a finitely generated
projective A-module ([EG19, Prop. 5.1.8]).

(2) If the & 4-module 9 is projective of rank d, then it is Zariski locally free of
rank d in the sense that there is a cover of Spec A by affine opens Spec B;
such that each of the base-changed modules M ®e , Sp, is free of rank d
([EG19, Prop. 5.1.9]).

(3) If A is coherent (so in particular, if A is Noetherian), then A[[u]] is faithfully
flat over A, and so & 4 is faithfully flat over A, but this need not hold if A
is not coherent.

Definition 2.1.5. If ) is any (not necessarily finitely generated) A-module, and 9t
is an A[[u]]-module, then we let M & 4Q denote the u-adic completion of M ® 4 Q.

Lemma 2.1.6. If M is a Breuil-Kisin module and B is an A-algebra, then the
base change M 4B is a Breuil-Kisin module.

Proof. We claim that M ®4B = M Af[u]) B[[u]] for any finitely generated projective
A[[u]]-module; the lemma then follows immediately from Definition 2.1.2.

To check the claim, we must see that the finitely generated Bl[u]]-module IM® 41y
Bl[u]] is u-adically complete. But 9 is a direct summand of a free A[[u]]-module of
finite rank, in which case M ® ay,) Bl[u]] is a direct summand of a free B[[u]]-module
of finite rank and hence is u-adically complete. O

Remark 2.1.7. If I C A is a finitely generated ideal then A[[u]] ®4 A/I = (A/I)[[u]],
and M @4 A/T =M@ 4 (A/1)[[u]] =2 ME4A/I; so in this case M @4 A/ itself
is a Breuil-Kisin module.

Note that the base change (in the sense of Definition 2.1.5) of a weak Breuil-Kisin
module may not be a weak Breuil-Kisin module, because the property of being
u-torsion free is not always preserved by base change.

We make the following two further remarks concerning base change.

Remark 2.1.8. (1) If A is Noetherian, if @ is finitely generated over A, and if 9N
is finitely generated over A[[u]], then M ® 4 Q is finitely generated over A[[u]], and
hence (by the Artin—Rees lemma) is automatically u-adically complete. Thus in
this case the natural morphism M®4 Q — N®4Q is an isomorphism.

(2) Note that A[[u]] ®4Q = Q[[u]] (the A[[u]]-module consisting of power series
with coefficients in the A-module @), and so if 91 is Zariski locally free on Spec A,
then M®4Q is Zariski locally isomorphic to a direct sum of copies of Q[[u]], and

hence is u-torsion free (as well as being u-adically complete). In particular, by
Remark 2.1.4(2), this holds if 91 is projective.

Definition 2.1.9. Let A be a Z/p®Z-algebra for some a > 1. A weak étale p-
module with A-coefficients and descent data from K’ to K is a triple (M, oar, {g})
consisting of:
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e a finitely generated & 4[1/u]-module M;
e a p-semilinear map s : M — M with the property that the induced map

Py =1Q0¢prn:¢"M := GA[I/U] Rp,& 411/l M—-M
is an isomorphism,

together with additive bijections § : M — M for g € Gal(K'/K), satisfying the
further properties that the maps § commute with ¢y, satisfy ¢ o g» = g1 o g, and
have g(sm) = g(s)g(m) for all s € S 4[1/u], m € M.

If M as above is projective as an & 4[1/u]-module then we say simply that M is
an étale p-module. The étale p-module M is said to be of rank d if the underlying
finitely generated projective & 4[1/u]-module has constant rank d.

Remark 2.1.10. We could also consider étale ¢-modules for general p-adically
complete Z,-algebras A, but we would need to replace S4[1/u] by its p-adic
completion. As we will not need to consider these modules in this paper, we do not
do so here, but we refer the interested reader to [EG].

A morphism of weak étale p-modules with A-coefficients and descent data from
K’ to K is a morphism of & 4[1/u]-modules that commutes with ¢ and with the
§. Again, in the case K’ = K the descent data is trivial, and we obtain the usual
category of étale p-modules with A-coefficients.

Note that if A is a Z/p*Z-algebra, and 91 is a Breuil-Kisin module (resp., weak
Breuil-Kisin module) with descent data, then 9t[1/u] naturally has the structure of
an étale p-module (resp., weak étale p-module) with descent data.

Suppose that A is an O-algebra (where O is as in Section 1.7). In making
calculations, it is often convenient to use the idempotents e; (again as in Section 1.7).
In particular if 90t is a Breuil-Kisin module, then writing as usual 9; := ¢;90, we
write @on ; : @ (Mi—1) — M, for the morphism induced by Pgy. Similarly if M is
an étale p-module then we write M, := e; M, and we write ®as; : ¢*(M;—1) = M;
for the morphism induced by ®,,.

2.2. Dieudonné modules. Let A be a Z,-algebra. We define a Dieudonné module
of rank d with A-coefficients and descent data from K’ to K to be a finitely generated
projective W (k') ®z, A-module D of constant rank d on Spec A, together with:

e A-linear endomorphisms F,V satisfying F'V = VF = p such that F is
p-semilinear and V is ¢~ !-semilinear for the action of W (k’), and

e a W(k') ®z, A-semilinear action of Gal(K’/K) which commutes with F'
and V.

Definition 2.2.1. If 901 is a Breuil-Kisin module of height at most 1 and rank d
with descent data, then there is a corresponding Dieudonné module D = D(9)
of rank d defined as follows. We set D := 9M/udM with the induced action of
Gal(K'/K), and F given by the induced action of ¢. The endomorphism V is
determined as follows. Write E(0) = cp, so that we have p = ¢ 'E(u) (mod u).
The condition that the cokernel of *9t — M is killed by E(u) allows us to factor
the multiplication-by-E(u) map on 9 uniquely as U o ¢, and V is defined to be
¢~ 1% modulo u.

2.3. Galois representations. The theory of fields of norms [FW79] was used
in [Fon90] to relate étale ¢-modules with descent data to representations of a certain
absolute Galois group; not the group G, but rather the group Gx_, where K, is
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a certain infinite extension of K (whose definition is recalled below). Breuil-Kisin
modules of height h < 1 are closely related to finite flat group schemes (defined
over Ok, but with descent data to K on their generic fibre). Passage from a
Breuil-Kisin module to its associated étale ¢-module can morally be interpreted as
the passage from a finite flat group scheme (with descent data) to its corresponding
Galois representation (restricted to Gk__). Since the generic fibre of a finite flat
group scheme over Ok, when equipped with descent data to K, in fact gives rise
to a representation of Gk, in the case h = 1 we may relate Breuil-Kisin modules
with descent data (or, more precisely, their associated étale p-modules), not only to
representations of Gk _ , but to representations of G-

In this subsection, we recall some results coming from this connection, and draw
some conclusions for Galois deformation rings.

2.3.1. From étale p-modules to Gk -representations. We begin by recalling from
[Kis09] some constructions arising in p-adic Hodge theory and the theory of fields of
norms, which go back to [Fon90]. Following Fontaine, we write R :=lim Ok /p.
Fix a compatible system (7/7 ),>0 of p"th roots of 7 in K (compatible in the
obvious sense that (»"*y/7 )" = »\/7), and let Ko := U, K (7y/7), and also K/ :=
Up K’ ( »y/m). Since (e(K'/K), p) = 1, the compatible system (*v/7 ), >0 determines a
unique compatible system ("v/7' ),>o of pth roots of 7’ such that (*v/x )e(<'/5K) =
ry/m. Write 1/ = ( "V/7") >0 € R, and [1'] € W (R) for its Teichmiiller representative.
We have a Frobenius-equivariant inclusion & < W(R) by sending u — [z']. We can
naturally identify Gal(K. /K ) with Gal(K’/K), and doing this we see that the
action of g € Gx_ on u is via g(u) = h(g)u.

We let Og denote the p-adic completion of G[1/u], and let £ be the field of fractions
of Og¢. The inclusion & — W(R) extends to an inclusion & — W (Frac(R))[1/p].
Let €™ be the maximal unramified extension of £ in W (Frac(R))[1/p], and let
Ogn: C W(Frac(R)) denote its ring of integers. Let Oz be the p-adic completion

Enr

of Ognr. Note that Og; is stable under the action of G, .

Definition 2.3.2. Suppose that A is a Z/p®Z-algebra for some a > 1. If M
is a weak étale p-module with A-coefficients and descent data, set T4(M) :=
((’)g,; ®s[1/u] M) ¢=1, an A-module with a Gk __-action (via the diagonal action on
Oz and M, the latter given by the §). If 9 is a weak Breuil-Kisin module with

gnr
A-coefficients and descent data, set Ty (M) := Ta (M1 /u]).

Lemma 2.3.3. Suppose that A is a local Z,-algebra and that |A| < co. Then Tx
induces an equivalence of categories from the category of weak étale p-modules with
A-coefficients and descent data to the category of continuous representations of
Gk, on finite A-modules. If A — A’ is finite, then there is a natural isomorphism

Tay(M)@a A" — Tar(M @4 A"). A weak étale p-module with A-coefficients and
descent data M is free of rank d if and only if Ta(M) is a free A-module of rank d.

Proof. This is due to Fontaine [Fon90], and can be proved in exactly the same way
as [Kis09, Lem. 1.2.7]. O

We will frequently simply write T for T4. Note that if we let M’ be the étale
p-module obtained from M by forgetting the descent data, then by definition we
have T(M') =T (M)

|Grer -
Ko
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2.3.4. Relationships between G -representations and G -representations. We will
later need to study deformation rings for representations of G in terms of the
deformation rings for the restrictions of these representations to Gx_ . Note that
the representations of Gx_ coming from Breuil-Kisin modules of height at most 1
admit canonical extensions to G by [Kis09, Prop. 1.1.13].

Lemma 2.3.5. If 7,7 : Gk — GLa(F,) are continuous representations, both of
which arise as the reduction mod p of potentially Barsotti—Tate representations of
tame inertial type, and there is an isomorphism T|q, = 7|g,_, then T = 7.

Proof. The extension K./K is totally wildly ramified. Since the irreducible
F,-representations of G are induced from tamely ramified characters, we see
that 7|q,__ is irreducible if and only if 7 is irreducible, and if 7 or 7 is irreducible
then we are done. In the reducible case, we see that 7 and 7 are extensions of
the same characters, and the result then follows from [GLS15, Lem. 5.4.2] and
Lemma B.5 (2). O

Let 7 : Gk — GL2(F) be a continuous representation, let Ry denote the universal
framed deformation O-algebra for 7, and let R[FO " be the quotient with the property
that if A is an Artinian local O-algebra with residue field F', then a local O-morphism
Rz — A factors through Rg) A if and only if the corresponding G g-module (ignoring
the A-action) admits a G g-equivariant surjection from a potentially crystalline
O-representation all of whose Hodge—Tate weights are equal to 0 or 1, and whose
restriction to G g is crystalline. (The existence of this quotient follows as in [Kim11,

§2.1].)
Let Rr),,  be the universal framed deformation O-algebra for Tlag.. , and let
R=! denote the quotient with the property that if A is an Artinian local O-

T‘GK(x)

algebra with residue field F', then a morphism Rz — A factors through B?Sﬁ;
K

if and only if the corresponding Gk _ -module is isomorphic to T'(91) for some
weak Breuil-Kisin module 97 of height at most one with A-coefficients and descent
data from K’ to K. (The existence of this quotient follows exactly as for [Kim11,
Thm. 1.3].)

‘GKoo

Proposition 2.3.6. The natural map induced by restriction from Gi to Gk
induces an isomorphism Spec Rg)’u — Spec R%:;
Koo

Proof. This can be proved in exactly the same way as [Kim11, Cor. 2.2.1] (which is
the case that F = Q, and K’ = K). O

3. MODULI STACKS OF BREUIL-KISIN MODULES AND (-MODULES WITH DESCENT
DATA

In this section we define moduli stacks of Breuil-Kisin modules with tame descent
data, following [PR09, EG19] (which consider the case without descent data). In
particular, we define various stacks Z in Section 3.9, as scheme-theoretic images of
morphisms from moduli stacks of Breuil-Kisin modules to moduli stacks of étale
p-modules; these stacks are the main objects of interest in the rest of the paper. In
the rest of the section, we use the theories of local models of Shimura varieties and
Dieudonné modules to begin our study of the geometry of these stacks.
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3.1. Moduli stacks of Breuil-Kisin modules. We begin by defining the moduli
stacks of Breuil-Kisin modules, with and without descent data. We will make use
of the notion of a w-adic formal algebraic stack, which is recalled in Appendix A.

Definition 3.1.1. For each integer a > 1, we let Cidh’flK, be the fppf stack over O/w®

which associates to any O/w-algebra A the groupoid CgC;L’aK/(A) of rank d Breuil-
Kisin modules of height at most h with A-coefficients and descent data from K’ to
K

By [Stal3, Tag 04WV], we may also regard each of the stacks C;fih’flK, as an fppf

stack over O, and we then write CgiK/ = liga ngh’aK,; this is again an fppf stack

over O.

We will frequently omit any (or all) of the subscripts d, h, K’ from this notation
when doing so will not cause confusion. In the case that K = K’, we write C* for
Cdde and C for €44,

The natural morphism C%4 — Spec O factors through Spf O, and by construction,
there is an isomorphism C4%¢ = Cddxg ¢ nSpec O /w?, for each a > 1; in particular,
each of the morphisms C44:@ — Cdd:a+1 jg 4 thickening (in the sense that its pullback
under any test morphism Spec A — C44:2+1 becomes a thickening of schemes, as
defined in [Stal3, Tag 04EX]?). In Corollary 3.1.7 below we show that for each
integer a > 1, C99%¢ is in fact an algebraic stack of finite type over Spec O/w?, and
that C44 (which is then a priori an Ind-algebraic stack, endowed with a morphism to
Spf O which is representable by algebraic stacks) is in fact a w-adic formal algebraic
stack, in the sense of Definition A.2.

Our approach will be to deduce the statements in the case with descent data
from the corresponding statements in the case with no descent data, which follow
from the methods of Pappas and Rapoport [PR09]. More precisely, in that reference
it is proved that each C® is an algebraic stack over O/w® [PR09, Thm. 0.1 (i)], and
thus that C := lim C* is a w-adic Ind-algebraic stack (in the sense that it is an
Ind-algebraic stack with a morphism to Spf O that is representable by algebraic
stacks). (In [PRO9] the stack C is described as being a p-adic formal algebraic stack.
However, in that reference, this term is used synonomously with our notion of a
p-adic Ind-algebraic stack; the question of the existence of a smooth cover of C by a
p-adic formal algebraic space is not discussed. As we will see, though, the existence
of such a cover is easily deduced from the set-up of [PR09].)

We thank Brandon Levin for pointing out the following result to us. The proof is
essentially (but somewhat implicitly) contained in the proof of [CL18, Thm. 3.5],
but we take the opportunity to make it explicit. Note that it could also be directly
deduced from the results of [PR09] using Lemma A.3, but the proof that we give
has the advantage of giving an explicit cover by a formal algebraic space.

Proposition 3.1.2. For any choice of d,h, C is a w-adic formal algebraic stack of
finite type over Spf O with affine diagonal.

Proof. We begin by recalling some results from [PR09, §3.b] (which is where the
proof that each C® is an algebraic stack of finite type over O/w? is given). If A is

2Note that for morphisms of algebraic stacks — and we will see below that C44:¢ and ¢dd.e+1
are algebraic stacks — this notion of thickening coincides with the notion defined in [Stal3, Tag
0BPP], by [Stal3, Tag 0CJ7].


http://stacks.math.columbia.edu/tag/04WV
http://stacks.math.columbia.edu/tag/04EX
http://stacks.math.columbia.edu/tag/0BPP
http://stacks.math.columbia.edu/tag/0BPP
http://stacks.math.columbia.edu/tag/0CJ7
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an O/w%algebra for some a > 1, then we set
L+G(A) = GLy(Sa),

LGP (A) = {X € My(64) | X' € B(u) " My(&.4)},
and let g € LTG(A) act on the right on LG"X'(A) by ¢-conjugation as g=1- X - ¢(g).
Then we may write
¢ =I[LG"K ), L*a).
For each n > 1 we have the principal congruence subgroup U,, of LTG given by
Un(A) =14 u"- Mg(S4). As in [PR09, §3.b.2], for any integer n(a) > eah/(p — 1)
we have a natural identification

(3.1.3) (LG K Jy U)o jme = [LGM X JU )]0 /0

where the U, (,)-action on the right hand side is by left translation by the inverse;

’

moreover this quotient stack is represented by a finite type scheme (Xg(f) )0 /e s
and we find that
@~ h,K’
C* = (X0 Josme /o (Gn(a)) 0z,
where (Gy(a))0/me = (LYG/Up(a)) 0/ is a smooth finite type group scheme over
O/w".

Now define Y, := [(Xs(ff) Jowa /¢ (Un1))o/wa]. If @ > b, then there is a natural
isomorphism (Y,)p/r = Yp. Thus we may form the w-adic Ind-algebraic stack
Y :=lim Y,. Since Y7 := (X:LL({(),)F is a scheme, each Yy is in fact a scheme [Stal3,
Tag 0BPW], and thus Y is a w-adic formal scheme. (In fact, it is easy to check
directly that U, () acts freely on Xg(f) , and thus to see that Y, is an algebraic

space.) The natural morphism Y — C is then representable by algebraic spaces;
indeed, any morphism from an affine scheme to C factors through some C%, and
representability by algebraic spaces then follows from the representability by algebraic
spaces of Y, — C%, and the Cartesianness of the diagram

Y, —Y

| |

c*——¢C
Similarly, the morphism Y — C is smooth and surjective, and so witnesses the claim
that C is a w-adic formal algebraic stack.
To check that C has affine diagonal, it suffices to check that each C® has affine

diagonal, which follows from the fact that (G, (4))0/we is in fact an affine group
scheme over O/w® (indeed, as in [PR09, §2.b.1], it is a Weil restriction of GLg). O

We next introduce the moduli stack of étale p-modules, again both with and
without descent data.

Definition 3.1.4. For each integer a > 1, we let iji[’(a, be the fppf O/w*-stack

which associates to any O/w-algebra A the groupoid Rid]’(a, (A) of rank d étale
p-modules with A-coefficients and descent data from K’ to K.

By [Stal3, Tag 04WV], we may also regard each of the stacks RS?I}'I, as an fppf
O-stack, and we then write R4 := lim RI4e which is again an fppf O-stack.


http://stacks.math.columbia.edu/tag/0BPW
http://stacks.math.columbia.edu/tag/04WV
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We will omit d, K’ from the notation wherever doing so will not cause confusion,
and when K’ = K, we write R for R4,

Just as in the case of C44, the morphism R4 — Spec O factors through Spf O,
and for each a > 1, there is a natural isomorphism R3¢ = Rdd Xspf 0 Spec O/w®.
Thus each of the morphisms RI%e — RAde+1 ig a thickening.

There is a natural morphism Cgf}h o — R44, defined via

(M, 0, {9} gecai(x'/K)) = (M[1/u], 0,{9} gecalx'/K))>

and natural morphisms C44 — C and R94 — R given by forgetting the descent data.
In the optic of Section 2.3, the stack ’Rgd may morally be thought of as a moduli
of Gk -representations, and the morphisms C39, ., — Ry" correspond to passage
from a Breuil-Kisin module to its underlying Galois representation.

Proposition 3.1.5. For each a > 1, the natural morphism RI4® — R is repre-
sentable by algebraic spaces, affine, and of finite presentation.

Proof. To see this, consider the pullback along some morphism Spec A — R* (where
A is a O/w?-algebra); we must show that given an étale ¢-module M of rank d
without descent data, the data of giving additive bijections § : M — M, satisfying
the further property that:

e the maps § commute with ¢, satisfy ¢ o go = g1 o g2, and we have j(sm) =

g(s)g(m) for all s € S4[1/u]l, me M

is represented by an affine algebraic space (i.e. an affine scheme!) of finite presentation
over A.

To see this, note first that such maps g are by definition &9[1/v]-linear. The
data of giving an &9%[1/v]-linear automorphism of M which commutes with ¢ is
representable by an affine scheme of finite presentation over A by [EG19, Prop.
5.4.8] and so the data of a finite collection of automorphisms is also representable by
a finitely presented affine scheme over A. The further commutation and composition
conditions on the § cut out a closed subscheme, as does the condition of & 4[1/u]-
semi-linearity, so the result follows. [

Corollary 3.1.6. The diagonal of R is representable by algebraic spaces, affine,
and of finite presentation.

Proof. Since R4 = @a Rdda = @a R xgpro Spec O/w?, and since the
transition morphisms are closed immersions (and hence monomorphisms), we have
a Cartesian diagram

Rdd,a N Rdd,a xO/wa Rdd,a

| |

Rdd Rdd X O Rdd

for each @ > 1, and the diagonal morphism of R4 is the inductive limit of the
diagonal morphisms of the various R44:¢, Any morphism from an affine scheme T
to RI4 x o R4 thus factors through one of the RI%:@ X0 /e RAde and the fibre
product R X gaay gaa T may be identified with R X pad.aygada.a T. It is thus
equivalent to prove that each of the diagonal morphisms R44¢ — Rdd.a x Jwa Rdda
is representable by algebraic spaces, affine, and of finite presentation.
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The diagonal of R44:% may be obtained by composing the pullback over R4 x
RIde of the diagonal R® — R® x o R® with the relative diagonal of the morphism
RIde 5 Re. The first of these morphisms is representable by algebraic spaces,
affine, and of finite presentation, by [EG19, Thm. 5.4.11 (2)], and the second is also
representable by algebraic spaces, affine, and of finite presentation, since it is the
relative diagonal of a morphism which has these properties, by Proposition 3.1.5. [

Corollary 3.1.7. (1) For each a > 1, Ci%% is an algebraic stack of finite
presentation over Spec O/w?, with affine diagonal.
(2) The Ind-algebraic stack Ci4 := @a Cdda s furthermore a w-adic formal
algebraic stack.
(3) The morphism ng — R s representable by algebraic spaces and proper.

Proof. By Proposition 3.1.2, C* is an algebraic stack of finite type over Spec O/w*®
with affine diagonal. In particular it has quasi-compact diagonal, and so is quasi-
separated. Since O/w?® is Noetherian, it follows from [Stal3, Tag 0DQJ] that C* is
in fact of finite presentation over Spec O/w®.

By Proposition 3.1.5, the morphism R4 xz. C* — C® is representable by
algebraic spaces and of finite presentation, so it follows from [Stal3, Tag 05UM]
that RI4:% xza C* is an algebraic stack of finite presentation over Spec O/w?. In
order to show that C4¢ is an algebraic stack of finite presentation over Spec O/w?,
it therefore suffices to show that the natural monomorphism

(3.1.8) cdda _y gdda o o, CO

is representable by algebraic spaces and of finite presentation. We will in fact show
that it is a closed immersion (in the sense that its pull-back under any morphism
from a scheme to its target becomes a closed immersion of schemes); since the target
is locally Noetherian, and closed immersions are automatically of finite type and
quasi-separated, it follows from [Stal3, Tag 0DQJ] that this closed immersion is of
finite presentation, as required.

By [Stal3, Tag 0420], the property of being a closed immersion can be checked
after pulling back to an affine scheme, and then working fpgc-locally. The claim then
follows easily from the proof of [EG19, Prop. 5.4.8], as fpgc-locally the condition
that a lattice in an étale p-module of rank d with descent data is preserved by the
action of the § is determined by the vanishing of the coefficients of negative powers
of u in a matrix.

To complete the proof of (1), it suffices to show that the diagonal of C49:¢ is
affine. Since (as we have shown) the morphism (3.1.8) is a closed immersion, and
thus a monomorphism, it is equivalent to show that the diagonal of RI% x pa C* is
affine. To ease notation, we denote this fibre product by . We may then factor
the diagonal of ) as the composite of the pull-back over YV X/« Y of the diagonal
morphism C* — C% Xp/gma C* and the relative diagonal } — ) xca . The former
morphism is affine, by [EG19, Thm. 5.4.9 (1)], and the latter morphism is also
affine, since it is the pullback via C* — R® of the relative diagonal morphism
Ridda 5 Rdda ypo RIS which is affine (as already observed in the proof of
Corollary 3.1.6).

To prove (2), consider the morphism C44 — C. This is a morphism of w-adic
Ind-algebraic stacks, and by what we have already proved, it is representable by
algebraic spaces. Since the target is a w-adic formal algebraic stack, it follows


http://stacks.math.columbia.edu/tag/0DQJ
http://stacks.math.columbia.edu/tag/05UM
http://stacks.math.columbia.edu/tag/0DQJ
http://stacks.math.columbia.edu/tag/0420
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from [Eme, Lem. 7.9] that the source is also a w-adic formal algebraic stack, as
required.

To prove (3), since each of C44® and R4 is obtained from C4 and R via
pull-back over O/w*?, it suffices to prove that each of the morphisms €44 — Rdde
is representable by algebraic spaces and proper. Each of these morphisms factors as

3.1.8 i
Cdd,a ( )Rdd,a X Ra ce proj Rdd,a.

We have already shown that the first of these morphisms is a closed immersion,
and hence representable by algebraic spaces and proper. The second morphism is
also representable by algebraic spaces and proper, since it is a base-change of the
morphism C* — R®, which has these properties by [EG19, Thm. 5.4.11 (1)]. O

The next lemma gives a concrete interpretation of the points of Cc4 over w-
adically complete O-algebras, extending the tautological interpretation of the points
of each €44 prescribed by Definition 3.1.1.

Lemma 3.1.9. If A is a w-adically complete O-algebra then the Spf(A)-points of
C are the Breuil-Kisin modules of rank d and height h with A-coefficients and
descent data.

Proof. Let 9 be a Breuil-Kisin module of rank d and height h with A-coefficients
and descent data. Then the sequence {9/ },>; defines a Spf(A)-point of €44
(¢f. Remark 2.1.7), and since 9 is w-adically complete it is recoverable from the
sequence {M/w*M},>1.

In the other direction, suppose that {9,} is a Spf(A)-point of C44, so that
M, € Ci9(A/w?). Define M = im 9M,, and similarly define pon and {3} as
inverse limits. Observe that ¢*9 = lgla ©*M, (since ¢ : G4 — G4 makes Sy
into a free & 4-module). Since each ®qy, is injective with cokernel killed by E(u)"
the same holds for ®gy.

Since the required properties of the descent data are immediate, to complete
the proof it remains to check that 9 is a projective & 4-module (necessarily of
rank d, since its rank will equal that of 91y ), which is a consequence of [GD71, Prop.
0.7.2.10(ii)]. O

We now temporarily reintroduce h to the notation.

Definition 3.1.10. For each h > 0, write R}, for the scheme-theoretic image of
C¢ — R“ in the sense of [EG19, Defn. 3.2.8]; then by [EG19, Thms. 5.4.19, 5.4.20],
R is an algebraic stack of finite presentation over Spec O/w®, the morphism
Cyp — R factors through Rj, and we may write R* = 1i N i as an inductive limit
of closed substacks, the natural transition morphisms being closed immersions.

We similarly write Rid’a for the scheme-theoretic image of the morphism ng’a —
RIde in the sense of [ECG19, Defn. 3.2.8].

Theorem 3.1.11. For each a > 1, R%% is an Ind-algebraic stack. Indeed, we can
write RI%¢ = 1i N Xy, as an inductive limit of algebraic stacks of finite presentation
over Spec O/w?®, the transition morphisms being closed immersions.

Proof. As we have just recalled, by [EG19, Thm. 5.4.20] we can write R* = lim, Rj,
s0 that if we set X}V = R 50 R, then RID® = lim A1?, and the transition
morphisms are closed immersions. Since R{ is of finite presentation over Spec O/w?,
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and a composite of morphisms of finite presentation is of finite presentation, it
follows from Proposition 3.1.5 and [Stal3, Tag 05UM] that X,fd’a is an algebraic
stack of finite presentation over Spec O/w?®, as required. O

Theorem 3.1.12. Rid’a is an algebraic stack of finite presentation over Spec O/w®.
It is a closed substack of R, and the morphism ng’a — R factors through

a morphism ng’“ — Rid’a which is representable by algebraic spaces, scheme-
theoretically dominant, and proper.

Proof. As in the proof of Theorem 3.1.11, if we set X;}d’“ = R xpa RE,
then X,f 49 s an algebraic stack of finite presentation over Spec O/w®, and the nat-
ural morphism X,fd’a — R4 g a closed immersion. The morphism ng’a — Rdda
factors through X;f da (because the morphism Cjf — R* factors through its scheme-
theoretic image RY), so by [EG19, Prop. 3.2.31], Rid’a is the scheme-theoretic
image of the morphism of algebraic stacks C,(Zld’a — X,;i 4a The required properties
now follow from [EG19, Lem. 3.2.29] (using representability by algebraic spaces
and properness of the morphism ng’a — R4da " as proved in Corollary 3.1.7 (3), to
see that the induced morphism ng’“ — Rid’a is representable by algebraic spaces
and proper, along with [Stal3, Tag 0DQJ], and the fact that X,fd’a is of finite
presentation over Spec O/w?, to see that Rid’a is of finite presentation). O

3.2. Representations of tame groups. Let G be a finite group.

Definition 3.2.1. We let Rep,(G) denote the algebraic stack classifying d-dimensional
representations of G over O: if X is any O-scheme, then Rep,;(G)(X) is the groupoid
consisting of locally free sheaves of rank d over X endowed with an Ox-linear ac-
tion of G (rank d locally free G-sheaves, for short); morphisms are G-equivariant
isomorphisms of vector bundles.

We now suppose that G is tame, i.e. that it has prime-to-p order. In this case
(taking into account the fact that F has characteristic p, and that O is Henselian),
the isomorphism classes of d-dimensional G-representations of GG over E and over F
are in natural bijection. Indeed, any finite-dimensional representation 7 of G' over
E contains a G-invariant O-lattice 7°, and the associated representation of G over
F is given by forming 7 := F ®o 7°.

Lemma 3.2.2. Suppose that G is tame, and that E is chosen large enough so that
each irreducible representation of G over E is absolutely irreducible (or, equivalently,
so that each irreducible representation of G over F is absolutely irreducible), and so
that each irreducible representation of G over Qp is defined over E (equivalently, so

that each irreducible representation of G over Fp is defined over F).

(1) Repy(G) is the disjoint union of irreducible components Repy(G),, where T
ranges over the finite set of isomorphism classes of d-dimensional represen-
tations of G over E.

(2) A morphism X — Repy(G) factors through Rep,(G), if and only if the
associated locally free G-sheaf on X is Zariski locally isomorphic to T°®oOx .

(3) If we write G, := Autp(q)(7°), then G is a smooth (indeed reductive)
group scheme over O, and Rep,(G), is isomorphic to the classifying space

[Spec O/G].
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Proof. Since G has order prime to p, the representation P := @,0° is a projective
generator of the category of O[G]-modules, where o runs over a set of representatives
for the isomorphism classes of irreducible E-representations of G. (Indeed, each o° is
projective, because the fact that G has order prime to p means that all of the Ext's
against ¢° vanish. To see that ®,0° is a generator, we need to show that every
O|G]-module admits a non-zero map from some o°. We can reduce to the case of
a finitely generated module M, and it is then enough (by projectivity) to prove
that M ®o F admits such a map, which is clear.) Our assumption that each o is
absolutely irreducible furthermore shows that Endg(0°) = O for each o, so that
Endg(P) =], O.

Standard Morita theory then shows that the functor M — Homeg (P, M) induces
an equivalence between the category of O[G]-modules and the category of [] O-
modules. Of course, a [, O-module is just given by a tuple (N, ), of O-modules,
and in this optic, the functor Homg (P, ) can be written as M (Hom(;(a", M))U7
with a quasi-inverse functor being given by (N, ) — @, 0° ®o N, It is easily seen
(just using the fact that Homg (P, —) induces an equivalence of categories) that M is
a finitely generated projective A-module, for some O-algebra A, if and only if each
Homg(0°, M) is a finitely generated projective A-module.

The preceding discussion shows that giving a rank d representation of G over
an O-algebra A amounts to giving a tuple (N,), of projective A-modules, of
ranks n,, such that > _n, dimo = d. For each such tuple of ranks (n), we obtain
a corresponding moduli stack Rep(nn)(G) classifying rank d representations of G
which decompose in this manner, and Rep,(G) is isomorphic to the disjoint union
of the various stacks Repy,_)(G).

If we write 7 = ©,0"7, then we may relabel Rep,_)(G) as Rep.(G); state-
ments (1) and (2) are then proved. By construction, there is an isomorphism

Rep, (G) = Repy,, ,(G) — H[Spec 0/ GL,,].

Noting that G, := Aut(r) = [[, GL,, /0, we find that statement (3) follows as
well. (|

For each 7, it follows from the identification of Rep,(G), with [Spec O/G,]
that there is a natural map Rep,(G), — Spec O. We let my(Rep,(G)) denote the
disjoint union of copies of Spec O, one for each isomorphism class 7; then there
is a natural map Rep,(G) — mo(Repy(G)). While we do not want to develop a
general theory of the étale my groups of algebraic stacks, we note that it is natural
to regard mo(Rep,(G)) as the étale mo of Repy(G).

3.3. Tame inertial types. Write I(K'/K) for the inertia subgroup of Gal(K'/K).
Since we are assuming that F is large enough that it contains the image of every
embedding K’ — Qp? it follows in particular that every Qp—character of I(K'/K)
is defined over E.

Recall from Subsection 1.7 that if A is an O-algebra, and 9 is a Breuil-Kisin
module with A-coefficients, then we write 9; for ;9. Since I(K'/K) acts trivially
on W(K'), the g for g € I(K'/K) stabilise each 9;, inducing an action of I(K'/K)
on M; /udn,;.
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Write
r-1
Repg 1k /iy = H Rep,(I(K'/K)),
i=0
the fibre product being taken over O. If {7;} is an f’-tuple of isomorphism classes
of d-dimensional representations of I(K'/K), we write

-1
Repy 1k /ky {my = H Repd(I(K’/K))Ti.
i=0
Lemma 3.2.2 shows that we may write

Repy 1k /i) = H Repy 1k /1) r; -
{ri}

Note that since K’/K is tamely ramified, I(K'/K) is abelian of prime-to-p or-
der, and each 7; is just a sum of characters. If all of the 7; are equal to some
fixed 7, then we write Repy j(k//k),+ for Repy (kK ¢r,3- We have corresponding
stacks mo(Repy 1k /k))s To(RePy 1k /i), {r1) and mo(Repy 1k k)~ ), defined in
the obvious way.

If M is a Breuil-Kisin module of rank d with descent data and A-coefficients,
then IM; /udN; is projective A-module of rank d, endowed with an A-linear action
of I(K'/K), and so is an A-valued point of Rep,(I(K’/K)). Thus we obtain a

morphism
(331) C;lld — Repd,I(K,/K),
defined via M +— (Mo /uMo, ..., Mpr—1 /uMpr_q).

Definition 3.3.2. Let A be an O-algebra, and let 9t be a Breuil-Kisin module of
rank d with A-coefficients. We say that 9t has mized type (;); if the composite
Spec A — C34 — Repy 1(k7 /i) (the first arrow being the morphism that classifies 9,
and the second arrow being (3.3.1)) factors through Repy r(x//k), (r,}- Concretely,
this is equivalent to requiring that, Zariski locally on Spec A, there is an I(K'/K)-
equivariant isomorphism 9; /ud; =2 A @ 77 for each i.

If each 7; = 7 for some fixed 7, then we say that the type of 9t is unmixed, or
simply that 99t has type 7.

Remark 3.3.3. If A = O then a Breuil-Kisin module necessarily has some (un-
mixed) type 7, since after inverting E(u) and reducing modulo u the map Poy ;
gives an I(K'/K)-equivariant E-vector space isomorphism cp*(fmi,l/uimi,l)[%] 5
(m; /um)[%] However if A = F there are Breuil-Kisin modules which have a
genuinely mixed type; indeed, it is easy to write down examples of free Breuil-Kisin
modules of rank one of any mixed type (see also [CL18, Rem. 3.7]), which neces-
sarily cannot lift to characteristic zero. This shows that C$¢ is not flat over Z,. In
the following sections, when d = 2 and h = 1 we define a closed substack Ccdld’BT
of C44 which is flat over Z,, and can be thought of as taking the Zariski closure of

Q,-valued Galois representations that become Barsotti-Tate over K " and such that
all pairs of labeled Hodge-Tate weights are {0,1} (see Remark 3.5.8 below).

Definition 3.3.4. Let C(gn) be the étale substack of C§¢ which associates to each
O-algebra A the subgroupoid C[;Ti)(A) of C$4(A) consisting of those Breuil-Kisin
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modules which are of mixed type (7;). If each 7, = 7 for some fixed 7, we write C]
for Cc(lﬁ).

Proposition 3.3.5. Fach C((ifi) is an open and closed substack of ng, and C:}d s

the disjoint union of its substacks Cr(fi).

Proof. By Lemma 3.2.2, Repg 1k /K 1s the disjoint union of its open and closed

substacks Repy r(x//K),{r,}- By definition Cc(l”) is the preimage of Repy 1k /k),{r,}
under the morphism (3.3.1); the lemma follows.

3.4. Local models: generalities. Throughout this section we allow d to be ar-
bitrary; in Section 3.5 we specialise to the case d = 2, where we relate the local
models considered in this section to the local models considered in the theory of
Shimura varieties. We will usually omit d from our notation, writing for example C
for Cq4, without any further comment. We begin with the following lemma, for which
we allow h to be arbitrary.

Lemma 3.4.1. Let MM be a rank d Brewil-Kisin module of height h with descent
data over an O-algebra A. Assume further either that A is p™-torsion for some n,
or that A is Noetherian and p-adically complete. Then im ®on /E(u)"M is a finite
projective A-module, and is a direct summand of M/ E(u)"M as an A-module.

Proof. We follow the proof of [Kis09, Lem. 1.2.2]. We have a short exact sequence
0 — im ®op/E(u)" M — M/ E(u)" DM — M/ im Sgp — 0

in which the second term is a finite projective A-module (since it is a finite projective
Ok ®z, A-module), so it is enough to show that the third term is a projective
A-module. It is therefore enough to show that the finitely generated A-module
M/ im Pgy is finitely presented and flat.

To see that it is finitely presented, note that we have the equality

M/ im Pop = (M/E(w)")/(im Pon/E(u)"),

and the right hand side admits a presentation by finitely generated projective
A-modules

¢ (M/E(u)") — M/B(w)" — (M/E(u)")/(im @ax/E(u)") — 0.
To see that it is flat, it is enough to show that for every finitely generated ideal I
of A, the map

is injective. It follows easily (for example, from the snake lemma) that it is enough
to check that the complex

0— "M — M — M/ im Pyyy — 0,

which is exact by Lemma 2.1.3, remains exact after tensoring with A/I. Since [ is
finitely generated we have M @4 A/T = M D4A/I by Remark 2.1.7, and the desired
exactness amounts to the injectivity of ®gpz 4 /1 for the Breuil-Kisin module
W{@AA/I. This follows immediately from Lemma 2.1.3 in the case that A is killed
by p", and otherwise follows from the same lemma once we check that A/l is
p-adically complete, which follows from the Artin—Rees lemma (as A is assumed
Noetherian and p-adically complete). [
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We assume from now on that & = 1, but we continue to allow arbitrary d. We
allow K'/K to be any Galois extension such that [K’ : K] is prime to p (so in
particular K'/K is tame).

Definition 3.4.2. We let ./\/lfg;/K’a be the algebraic stack of finite presentation

over Spec O/w® defined as follows: if A is an O/w®-algebra, then Mﬁ;/K(A) is the
groupoid of tuples (£, £1), where:
e £is arank d projective Ogs ®z, A-module, with a Gal(K’/K)-semilinear,
A-linear action of Gal(K'/K);
o £%is an Ok’ ®z, A-submodule of £, which is locally on Spec A a direct

summand of £ as an A-module (or equivalently, for which £/£% is projective
as an A-module), and is preserved by Gal(K’/K).

We set /\/lfs;/K = @a /\/ll};;/K’a, so that Mﬁ;/K is a w-adic formal algebraic stack,
of finite presentation over Spf O (indeed, it is easily seen to be the w-adic completion

of an algebraic stack of finite presentation over Spec O).

Definition 3.4.3. By Lemma 3.4.1, we have a natural morphism ¥ : Cfg(, —
MK// K, which takes a Breuil-Kisin module with descent data 2t of height 1 to the

loc
pair
(M E(u)M, im oy / E(u) ).

Remark 3.4.4. The definition of the stack MII;;/ K2 does not include any condition

that mirrors the commutativity between the Frobenius and the descent data on a
Breuil-Kisin module, and so in general the morphism W4 : C‘l{dK,(A) — MIIEC/K(A)
cannot be essentially surjective.

It will be convenient to consider the twisted group rings & 4 [Gal(K'/K)] and (O ®z,
A)[Gal(K'/K)], in which the elements g € Gal(K'/K) obey the following commu-
tation relation with elements s € G4 (resp. s € Ok ):

g-s=g9(s)g.
(In the literature these twisted group rings are more often written as G 4 xGal(K'/K),
(Okr ®z, A) x Gal(K'/K), in order to distinguish them from the usual (untwisted)
group rings, but as we will only use the twisted versions in this paper, we prefer to
use this notation for them.)

By definition, endowing a finitely generated & 4-module P with a semilinear
Gal(K'/K)-action is equivalent to giving it the structure of a left & 4[Gal(K’/K)]-
module. If P is projective as an G 4-module, then it is also projective as an
S 4[Gal(K'/K)]-module. Indeed, G4 is a direct summand of & 4[Gal(K'/K)] as a
G 4[Gal(K'/K)]-module, given by the central idempotent m 2 geGal(K'/K) I
so P is a direct summand of the projective module & 4[Gal(K’/K)] ®g, P. Similar
remarks apply to the case of (Oxs ®z, A)[Gal(K’/K)]-modules.

Theorem 3.4.5. The morphism ¥ : C?f}(, — Mfs;/K is representable by algebraic
spaces and smooth.

Proof. We first show that the morphism W is formally smooth, in the sense that it
satisfies the infinitesimal lifting criterion for nilpotent thickenings of affine test objects
[EG19, Defn. 2.4.2]. For this, we follow the proof of [Kis09, Prop. 2.2.11] (see also
the proof of [CL18, Thm. 4.9]). Let A be an O/w®-algebra and I C A be a nilpotent
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ideal. Suppose that we are given M, € C%, (A/I) and (L4, £h) e Mﬁ;/K(A)
together with an isomorphism

U(Masr) — (L4, L3) @a A/T = (La/1. L4 )-

We must show that there exists M4 € Cff}(, (A) together with an isomorphism
U(M4) — (L4, L) lifting the given isomorphism.

As explained above, we can and do think of M 4/ as a finite projective & 4, ;[Gal(K'/K)]-
module, and £4 as a finite projective (Oxs ®z, A)[Gal(K’/K)]-module. Since the
closed 2-sided ideal of & 4[Gal(K'/K)] generated by I consists of nilpotent elements,
we may lift 94,7 to a finite projective &4[Gal(K’/K)]-module 4. (This is
presumably standard, but for lack of a reference we indicate a proof. In fact the
proof of [Stal3, Tag 0D47] goes over unchanged to our setting. Writing 914,; as a
direct summand of a finite free & 4/;[Gal(K’/K)]-module F, it is enough to lift the
corresponding idempotent in Ende , ,; (cal(x7/K)] (F), which is possible by [Stal3,
Tag 05BUJ; see also [Lam91, Thm. 21.28] for another proof of the existence of lifts
of idempotents in this generality.) Note that since 9t ,,; is of rank d as a projective
& 4/r-module, M4 is of rank d as a projective & 4-module.

Since M4 /E(u)M 4 is a projective (Okr ®z, A)[Gal(K'/K)]-module, we may lift
the composite

‘).’TIA/E(u)E)JtA —» mA/]/E(u)DﬁA/[ L> EA/]
to a morphism 6 : M4 /E(u)Ma — L£4. Since the composite of 6 with £4 — £4,7
is surjective, it follows by Nakayama’s lemma that 6 is surjective. But a surjective
map of projective modules of the same rank is an isomorphism, and so 6 is an
isomorphism lifting the given isomorphism 94,/ E(u)M 4,1 = Layr-

We let SDTX denote the preimage in M4 of 0‘1(2X). The image of the induced
map f : imj C Mg — My @AA/I = My, is precisely im Pyy , ,, , since the same
is true modulo E(u) and because MM}, im Pon,,, contain E(u)Ma, E(u)Mar
respectively. Observing that

Ma /MY 22 (Ma/E(w)Ma)/ (05 /E(u)Ma) = L4/
we deduce that 94/ Dﬁjg is projective as an A-module, whence i)ﬁf4 is an A-module
direct summand of M 4. By the same argument im @9y, ,, is an A-module direct
summand of M 4 /7, and we conclude that the map E)ﬁj @AA/I — im ®gy , , induced
by f is an isomorphism.

Finally, we have the diagram

©*Ma mh

L

go*mA/] HimfpgﬁA/I

where the horizontal arrow is given by ®on, ,,, and the right hand vertical arrow is f.
Since p*M 4 is a projective & 4[Gal(K'/K)]-module, we may find a morphism of
G 4[Gal(K'/K)]-modules ¢*9 4 — 9} which fills in the commutative square. Since
the composite p*M4 — M} — im Pop,,, = M} @aA/I is surjective, it follows
by Nakayama’s lemma that "4 — zmjg is also surjective, and the composite
©* My — M C My gives a map Pox,. Since Poy, [1/E(u)] is a surjective map of
projective modules of the same rank, it is an isomorphism, and we see that 974
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together with ®gy , is our required lifting to a Breuil-Kisin module of rank d with
descent data.

Since the source and target of U are of finite presentation over Spf O, and w-adic,
we see that U is representable by algebraic spaces (by [Eme, Lem. 7.10]) and locally
of finite presentation (by [EG19, Cor. 2.1.8] and [Stal3, Tag 06CX]). Thus ¥ is in
fact smooth (being formally smooth and locally of finite presentation). O

We now show that the inertial type of a Breuil-Kisin module is visible on the
local model.

Lemma 3.4.6. There is a natural morphism Mﬁé/K — mo(Repy(kr /)

Proaf The morphism ./\/lloc — 7o(Rep(k/k)) is defined by sending (£, £F)
£/7". More precisely, £/7" is a rank d projective '@z, A-module with a linear action

of I(K'/K), so determines an A/p-point of mo(Rep;(x//x)) = Hfigl mo(Repy (I(K'/K))).
Since the target is a disjoint union of copies of Spec O, the morphism Spec A/p —
mo(Repr(k/ /i) lifts uniquely to a morphism Spec A — mo(Rep;(x/ k), as re-
quired.

Definition 3.4.7. We let

(ri) . p KK
Mloc . Mloc ®7T0(R€PI(K//K)) 7TO(Repl(}[(//K),{n})'

K'/K
loc

If each 7; = 7 for some fixed 7, we write M|, for M(T‘ By Lemma 3.2.2, M

ocC

is the disjoint union of the open and closed substacks /\/llOC .

loc .

Lemma 3.4.8. We have C(Ti) = ¢dd X KK M

loc

Proof. This is immediate from the definitions. ([
In particular, C(™) is a closed substack of C99.

3.5. Local models: determinant conditions. Write N = K - W(k')[1/p], so
that K'/N is totally ramified. Since I(K'/K) is cyclic of order prime to p and acts
trivially on Oy, we may write

(3.5.1) (£, 8%) = e (e, £F)

where the sum is over all characters ¢ : I(K'/K) — O, and £¢ (resp. Sg) is the
On ® A-submodule of £ (resp. of £1) on which I(K'/K) acts through &.
Definition 3.5.2. We say that an object (£, £T) of MﬁC/K( ) satisfies the strong

determinant condition if Zariski locally on Spec A the following condition holds: for
all a € Oy and all £, we have

(3.5.3) deta(aled) = [ vl(a
$: N E
as polynomial functions on Oy in the sense of [Kot92, §5].
Remark 3.5.4. An explicit version of this determinant condition is stated, in this

generality, in [Kis09, §2.2], specifically in the proof of [Kis09, Prop. 2.2.5]. We recall
this here, with our notation. We have a direct sum decomposition

On Xz, AS @ On QW (k)05 A

ok’ —F
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Recall that e; € Oy ®z, O denotes the idempotent that identifies e;- Oy ®z, A with
the summand Oy ®w ()0, A- For j =0,1,...,e —1, let X;,, be an indeterminate.
Then the strong determinant condition on (£, £%) is that for all &, we have

(3.5.5) det 4 Zem o HZ Y(em?) X;, al) ,
7,05 Y 5,0
where j runs over 0,1,...,e—1, 0; over embeddings ¥’ — F, and 1) over embeddings

On — O. Note that ¥(e;) = 1 if 9|y () lifts 0; and is equal to 0 otherwise.

Definition 3.5.6. We write MX /%BT for the substack of MX /K given by

loc loc
those (£, £%) which satisfy the strong determinant condition. For each (possi-
bly mixed) type (7;), we write MTIBT . p(7) KK ME /BT,
loc

loc loc loc
Suppose for the remainder of this section that d = 2 and h = 1, so that ¢4
consists of Breuil-Kisin modules of rank two and height at most 1. We then

set C4d.BT .— cdd XM{;;/K M{éc/K’BT, and C(7).BT .= ¢(7) XM" ) Ml(g’c) BT

A Breuil-Kisin module 9t € C49(A) is said to satisfy the strong determinant
K'[K (4
loc

condition if and only if its image ¥ (M) € M
n Cdd.BT

(A) does, i.e. if and only if it lies

Proposition 3.5.7. C(7):BT (resp. CIVBT) is ¢ closed substack of C(7) (resp. CI9);
in particular, it is a w-adic formal algebraic stack of finite presentation over O.

Proof. This is immediate from Corollary 3.1.7 and the definition of the strong
determinant condition as an equality of polynomial functions. O

Remark 3.5.8. The motivation for imposing the strong determinant condition is as
follows. One can take the flat part (in the sense of [Eme, Ex. 9.11]) of the w-adic
formal stack C99, and on this flat part, one can impose the condition that the
corresponding Galois representations have all pairs of labelled Hodge—Tate weights
equal to {0, 1}; that is, we can consider the substack of C44 corresponding to the
Zariski closure of the these Galois representations.

We will soon see that C14BT is flat (Corollary 3.8.3). By Lemma 3.5.16 below,
it follows that the substack of the previous paragraph is equal to Ci4BT: so we
may think of the strong determinant condition as being precisely the condition
which imposes this condition on the labelled Hodge—Tate weights, and results in
a formal stack which is flat over Spf O. Since the inertial types of p-adic Galois
representations are unmixed, it is natural from this perspective to expect that C44.BT
should be the disjoint union of the stacks C™BT for unmized types, and indeed this
will be proved shortly at Corollary 3.5.13.

To compare the strong determinant condition to the condition that the type of a
Breuil-Kisin module is unmixed, we make some observations about these conditions
in the case of finite field coefficients.

Lemma 3.5.9. Let ¥/ /F be a finite extension, and let (£, £1) be an object ofMII;;/K (F).
Then (£,£7) satisfies the strong determinant condition if and only if the following
property holds: for each i and for each € : [(K'/K) — O* we have dimg/ (£ )¢ = e.
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Proof. This is proved in a similar way to [Kis09, Lemma 2.5.1], using the explicit
formulation of the strong determinant condition from Remark 3.5.4. In the notation
of that remark, we see that the strong determinant condition holds at £ if and only
if for each embedding o; : ¥ — F we have

e | = T[> WY Xj0.)
P j

where the product runs over the embeddings ¥ : Oy — O with the property
that 9|y () lifts o;. Since 7 induces a nilpotent endomorphism of (£1)¢ the left-

; +
hand side of (3.5.10) evaluates to Xg;:z”'(si )¢ \while the right-hand side, which can

be viewed as a norm from Oy ®z, F’ down to W (k') ®z, F', is equal to X§ .. O

(3.5.10) deta | Y 7 X;o,
J

Lemma 3.5.11. Let F'/F be a finite extension, and let MM be a Breuil-Kisin module
of rank 2 and height at most one with F'-coefficients and descent data.

(1) M satisfies the strong determinant condition if and only if the follow-
ing property holds: for each i and for each & : I(K'/K) — O* we have
dimF/ (1m q)gm’Z/E(’U,)ml)g = €.

(2) If M satisfies the strong determinant condition, then the determinant of ®oy ;
with respect to some choice of basis has u-adic valuation €.

Proof. The first part is immediate from Lemma 3.5.9. For the second part, let

®on ;¢ be the restriction of ®oy ; to ¢*(M;—1)e. We think of M; and ¢* (M;_1) as

free F'[v]-modules of rank 2¢(K’/K), where v = u*K'/%) We have
detpr (o) (Pan 1) = (detp oy (Pan.)) .

Since ®gn ; commutes with the descent datum, we also have

detF/ [v] ((I)sm,l) = H detF/[[U]] (@9}’{71"5),
3
where & runs over the e(K’/K) characters I(K'/K) — O*.

The proof of the second part of [Kis09, Lemma 2.5.1] implies that, for each &,
detp [ (Pon,ie) is v° = u® times a unit. Indeed, each 9, ¢ is a free F' [v]-module of
rank 2. It admits a basis {e1 ¢, €2} such that im Pon ;¢ = (vieq ¢, v7ea¢) for some
non-negative integers ¢, j. The strong determinant condition on (im ®ox ¢ /v°M; ¢)
implies that i + j = 2e — e = e, and this is precisely the v-adic valuation of
detp [u)(Pon,ie). We deduce that the u-adic valuation of (detp [y (CIng,i))e(K )
e(K'/K) - ¢, which implies the second part of the lemma. O

By contrast, we have the following criterion for the type of a Breuil-Kisin module
to be unmixed.

Proposition 3.5.12. Let F'/F be a finite extension, and let M be a Breuil-Kisin
module of rank 2 and height at most one with F'-coefficients and descent data. Then
the type of M is unmized if and only if dimg (im @op ;/E(u)IMN;)¢ is independent of
& for each fized i. In particular, if 9 satisfies the strong determinant condition,
then the type of M is unmized.

Proof. We begin the proof of the first part with the following observation. Let A
be a rank two free F’[[u]]-module with an action of I(K’/K) that is F’-linear and
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u-semilinear with respect to a character x (i.e., such that g(ul) = x(g)ug(A) for
A € A). In particular I(K'/K) acts on A/ul through a pair of characters which we
call n and 7'. Let A’ C A be a rank two I(K'/K)-sublattice. We claim that there
are integers m, m’ > 0 such that the multiset of characters of I(K’/K) occurring in
A/A’ has the shape

{x*:0<i<m}u{nx':0<j<m’}
and the multiset of characters occurring in A’ /ul’ is {nx™, n'x™ }.

To check the claim we proceed by induction on dimgs A/A’, the case A = A’ being
trivial. Suppose dimgs A/A” = 1, so that A’ lies between A and uA. Consider the
chain of containments A D A’ D uA D ul’. If without loss of generality I(K'/K)
acts on A/A’ via 7, then it acts on A’/uA by o’ and uA/uA’ by xn, proving the
claim with m = 1 and m’ = 0. The general case follows by iterated application of
the case dimy A/A’ = 1, noting that since I(K’/K) is abelian the quotient A/A’
has a filtration by I(K/K')-submodules whose graded pieces have dimension 1.

Now return to the statement of the proposition. Let (7;) be the mixed type of
M and write 7,_1 = n & n’. We apply the preceding observation with A = im ®gy ;
and A’ = E(u)9M; = u' 9M;. Note that x is a generator of the cyclic group I(K’/K)
of order ¢’/e. Since @9y commutes with descent data, the group I(K’'/K) acts on
A/uA via n and 1. Then the the multiset

x*:0<i<myu{n'x':0<j<m}
contains each character of I(K'/K) with equal multiplicity if and only if one of 7, 7’
is the successor to nx™ ! in the list 7, nx, 7x?, ..., and the other is the successor to
n'x™ =t in the list 7/, 7'x, 7'x2, . . ., i.e., if and only if {nx™, n'x™ } = {n,7’}. Since
M, /ud; = ue,imi/ue,“imi = A’/ul’, this occurs if and only if that 7, = 7_1.
Finally, the last part of the proposition follows immediately from the first part
and Lemma 3.5.11. (]

Corollary 3.5.13. CI4BT s the disjoint union of its closed substacks CT-BT.

Proof. This follows from Propositions 3.3.5 and 3.5.12. Indeed, from Proposi-
tion 3.3.5, it suffices to show that if (7;) is a mixed type, and C("):BT is nonzero,
then (7;) is in fact an unmixed type. Indeed, note that if C("):BT is nonzero, then
it contains a dense set of finite type points, so in particular contains an F’-point
for some finite extension F//F. It follows from Proposition 3.5.12 that the type is
unmixed, as required. [
Remark 3.5.14. Since our primary interest is in Breuil-Kisin modules, we will have
no further need to consider the stacks Ml(gé)’BT or C(7)BT for types that are not
unmixed.

Let 7 be a tame type; since I(K'/K) is cyclic, we can write 7 = n @ n’ for
(possibly equal) characters n,n’ : I(K'/K) — O*. Let (£,£%) be an object of

o (A). Suppose that £ # n,n’. Then elements of £¢ are divisible by 7’ in £, and
so multiplication by 7’ induces an isomorphism of projective e;(On ® A)-modules
of equal rank

Dig - 6,‘2/5)(;1 ;> 61',85
where x; : I(K'/K) — O* is the character sending g — o;(h(g)). The induced map
p:‘s : eis;xfl — eiﬁg'
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is in particular an injection. The following lemma will be useful for checking the
strong determinant condition when comparing various different stacks of local model
stacks.

Lemma 3.5.15. Let (£,£%) be an object of M],.(A). Then (£,£") is an object
of MTPT(A) if and only if both

(1) the condition (3.5.3) holds for & =n,n, and

(2) the injections p;{'g : eiﬁz'Xi_l N 6122_ are isomorphisms for all € # n,n’ and

for all 7.
The second condition is equivalent to
(2') we have (L1/7'L7)e =0 for all € # n, 7.

Proof. The equivalence between (2) and (2') is straightforward. Suppose now that
€ #mn,1n. Locally on Spec A the module eiSfol is by definition a direct summand

of eigéxfl' Since p; ¢ is an isomorphism, the image of p;fg is locally on Spec A a
direct summand of eiSZ. Under the assumption that (3.5.10) holds for ¢ and in_lv

the condition (3.5.10) for ¢ and ¢ is therefore equivalent to the surjectivity of p;fg.
The lemma follows upon noting that y; is a generator of the group of characters
I(K'/K) — O*. d

To conclude this section we describe the Og/-points of CI4BT for E'/E a finite
extension; recall that our convention is that a two-dimensional Galois representation
is Barsotti-Tate if all its labelled pairs of Hodge-Tate weights are equal to {0, 1}
(and not just that all of the labelled Hodge—Tate weights are equal to 0 or 1).

Lemma 3.5.16. Let E'/E be a finite extension. Then the Spf(Opg/)-points of
CIUBT correspond precisely to the potentially Barsotti-Tate Galois representations
Gx — GL2(Og/) which become Barsotti-Tate over K'; and the Spf(Og/)-points of
C™BT correspond to those representations which are potentially Barsotti-Tate of

type T.

Proof. In light of Lemma 3.1.9 and the first sentence of Remark 3.3.3, we are reduced
to checking that a Breuil-Kisin module of rank 2 and height 1 with Og/-coefficients
and descent data corresponds to a potentially Barsotti-Tate representation if and
only if it satisfies the strong determinant condition, as well as checking that the
descent data on the Breuil-Kisin module matches the type of the corresponding
Galois representation.

Let Mo, € CIBT(Spf(Op)). Plainly Mo, satisfies the strong determinant
condition if and only if 90 := Mo, [1/p] satisfies the strong determinant condition
(with the latter having the obvious meaning). Consider the filtration

Fil' (" () := {m € " (M) | Pox.i41(m) € E(u)Miy1} C @™ M;
inducing
Fil; C ¢"(M)/E(u)¢" (M)
Note that ©*(90;)/E(u)e*(9M;) is isomorphic to a free K’ @y (1/),,, £'-module of
rank 2. Then 97 corresponds to a Barsotti—Tate Galois representation
GK/ — GLQ(EI)

if and only, if for every 4, Fil} is isomorphic to K’ Ow (k'),0; B’ as a K’ @w ()0, E'-
submodule of @*M;/E(u)p*M;. This follows, for example, by specialising the
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proof of [KisO8, Cor. 2.6.2] to the Barsotti—Tate case (taking care to note that
the conventions of loc. cit. for Hodge-Tate weights and for Galois representations

associated to Breuil-Kisin modules are both dual to ours).
Let £: I(K'/K) — O* be a character. Consider the filtration

Fﬂll’g C (p*(mi)g/E(u)(p*(mi)g ~ N? ®W(k’),ai E’

induced by Fil}. The strong determinant condition on (im ®gy ;11 /E(u)M41)e
holds if and only if Fﬂ%’g is isomorphic to N @w (ir),s, £’'. By [CL18, Lemma 5.10],
we have an isomorphism of K’ @y (1/),s, £’'-modules

Fil; ~ K’ @y Fil; .

This, together with the previous paragraph, allows us to conclude. Note that, since
u acts invertibly when working with E’-coefficients and after quotienting by E(u),
the argument is independent of the choice of character &.

For the statement about types, let Sk; be Breuil’s period ring (see e.g. [Bre00,
§5.1]) endowed with the evident action of Gal(K'/K) compatible with the embedding
& — Sky. Here Kj is the maximal unramified extension in K’. Recall that by
[Liu08, Cor. 3.2.3] there is a canonical (¢, N)-module isomorphism

(3.5.17) SK(') R, M = SK(’) DK Dpcris(T(gﬁ))'

One sees from its construction that the isomorphism (3.5.17) is in fact equivariant
for the action of I(K'/K), and the claim follows by reducing modulo u and all its
divided powers. O

3.6. Change of extensions. We now discuss the behaviour of various of our
constructions under change of K'. Let L' /K’ be a tame extension such that L'/ K is
Galois. We suppose that we have fixed a uniformiser 7"’ of L’ such that (7" )6(L// K') =
7. Let &y := (W(l')®z, A)[[u]], where I’ is the residue field of L', and let Gal(L'/K)
and ¢ act on &, via the prescription of Section 2.1 (with 7" in place of 7’).

There is a natural injective ring homomorphism Ok ®z, A — Op ®z, A,
which is equivariant for the action of Gal(L’/K) (acting on the source via the
natural surjection Gal(L'/K) — Gal(K'/K)). There is also an obvious injective
ring homomorphism &4 — &', sending u — uE'/K") which is equivariant for
the actions of ¢ and Gal(L'/K); we have (&',)G(EF'/K') — & . If 7 is an inertial
type for I(K'/K), we write 7/ for the corresponding type for I(L'/K), obtained by
inflation.

For any (£,£%) € METE e define (&, gt e METE 1y

loc loc
(2/, (£/)+) = Op, ®OK’ (S, 2+),

with the diagonal action of Gal(L’/K). Similarly, for any 9 € C44(A), we let M’ :=
&) ®s, M, with ¢ and Gal(L’'/K) again acting diagonally.

Proposition 3.6.1.

(1) The assignments (£,£1) — (£/,(£)") and M — M’ induce compatible

K'[K gL' /K

loc e and Cdd — cdd j.e., as functors they

monomorphisms M
are fully faithful.
(2) The monomorphism C‘;ﬁ — C%‘,i induces an isomorphism C™ — CT/, as well

- dd,BT dd,BT ) . /
as a monomorphism Crey~" — C;,"" " and an isomorphism cTBT — 7 BT,
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Proof. (1) One checks easily that the assignments (£, £7) — (£, (£)") and M —
M’ are compatible. For the rest of the claim, we consider the case of the functor
M — NM'; the arguments for the local models case are similar but slightly easier,
and we leave them to the reader. Let A be a w-adically complete O-algebra. If 91 is
a rank d Breuil-Kisin module with descent data from L’ to K, consider the Galois
invariants MG /K - Since (GQ)Gal(L//Kl) = G4, these invariants are naturally
a G 4-module, and moreover they naturally carry a Frobenius and descent data
satisfying the conditions required of a Breuil-Kisin module of height at most h. In
general the invariants need not be projective of rank d, and so need not be rank d
Breuil-Kisin module with descent data from K’ to K. However, in the case 91 = 9
we have

(m/)Gal(L'/K’) _ (624 e, mt)Gal(L//K') _ (Gh)Gal(L//K/) e, M =M.

Here the second equality holds e.g. because Gal(L’/K') has order prime to p, so
that taking Gal(L’'/K')-invariants is exact, and indeed is given by multiplication
by an idempotent ¢ € &', (use the decomposition &'y =i&’, & (1 —i)&’; and note
that ¢ kills the latter summand). It follows immediately that the functor 9t — 9V
is fully faithful, so C?(d,’a — Cg,d’a is a monomorphism.

(2) Suppose now that 91 has type 7’. In view of what we have proven so far,
in order to prove that C™ — C7 is an isomorphism, it is enough to show that
NCal(L'/K') i a rank d Breuil-Kisin module of type 7, and that the natural map of

" ,-modules

(3.6.2) " @, MEATED o

is an isomorphism. For the remainder of this proof, for clarity we write ug/, ur/
instead of u for the variables of G4 and &’ respectively. Since the type 7 of 91
is inflated from 7, the action of Gal(L'/K’) on M/u M factors through Gal(l’/k’);
noting that W(l’) has a normal basis for Gal(l'/k’) over W (E'), we obtain an
isomorphism

(3.6.3) W (') @w iy (Mg, M) CAEED X1/,

In particular the W (k') ®z, A-module (N /up,M)GIE/E) s projective of rank d.

Observe however that (9/ugM)GE/K) = (91 /uy,mM)GUE/K) - To see this,
by the exactness of taking Gal(L’/K’) invariants it suffices to check that u},9%/u’}"
has trivial Gal(L’/K’)-invariants for 0 < i < e(L'/K'). Multiplication by u’, gives
an isomorphism 9t/uy N = ML,‘II/ui;,'I7 so that for ¢ in the above range, the inertia
group I(L'/K') acts linearly on u%,M/u’}! through a twist of 7/ by a nontrivial
character; so there are no I(L'/K')-invariants, and thus no Gal(L'/K')-invariants
either.

It follows that the isomorphism (3.6.3) is the map (3.6.2) modulo uz,. By
Nakayama’s lemma it follows that (3.6.2) is surjective. Since 1 is projective, the
surjection (3.6.2) is split, and is therefore an isomorphism, since it is an isomorphism
modulo uy,. This isomorphism exhibits MG E' /K" a5 a direct summand (as an & 4-
module) of the projective module N, so it is also projective; and it is projective of
rank d, since this holds modulo ug-.

Finally, we need to check the compatibility of these maps with the strong
determinant condition. By Corollary 3.5.13, it is enough to prove this for the case
of the morphism C™ — C for some 7; by the compatibility in part (1), this comes
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down to the same for the corresponding map of local model stacks MJ,, — MJ... If
(&, L%) e M[ _, it therefore suffices to show to show that conditions (1) and (2’) of
Lemma 3.5.15 for (£,£7) and (£',(£)%) := Or ®o,, (£,£") are equivalent. This
is immediate for condition (2’), since we have (&)1 /7" ()T 2 ' @y (£1/7'L1) as
I(L'/ K)-representations.

Writing 7 = n ® 1/, it remains to relate the strong determinant conditions on

the n, n’-parts over both K’ and L’. Unwinding the definitions using Remark 3.5.4,
one finds that the condition over L’ is a product of [I’ : k'] copies (with different sets
of variables) of the condition over K’. Thus the strong determinant condition over
K’ implies the condition over L’, while the condition over L’ implies the condition
over K’ up to an [’ : k']th root of unity. Comparing the terms involving only copies
of Xo,5,’s shows that this root of unity must be 1. O
Remark 3.6.4. The morphism of local model stacks M] . — MITO/C is not an iso-
morphism (provided that the extension L’/K’ is nontrivial). The issue is that,
as we observed in the preceding proof, local models (£, (£)") in the image of
the morphism MJ . — MJ. . can have ((£)*/7”(£)%)e # 0 only for characters
¢€:I(L'/K) — O that are inflated from I(K'/K). However, one does obtain an
isomorphism from the substack of MJ . of pairs (£, £1) satisfying condition (2)
of Lemma 3.5.15 to the analogous substack of MITO/C; therefore the induced map
MTBT 5 M7 BT 41l also be an isomorphism. Analogous remarks will apply to
the maps of local model stacks in §3.7.
3.7. Explicit local models. We now explain the connection between the moduli
stacks C™ and local models for Shimura varieties at hyperspecial and Iwahori level.
This idea has been developed in [CL18] for Breuil-Kisin modules of arbitrary rank
with tame principal series descent data, inspired by [Kis09], which analyses the case
without descent data.

The results of [CL18] relate the moduli stacks C7(in the case that 7 is a principal
series type) via a local model diagram to a mixed-characteristic deformation of the
affine flag variety, introduced in this generality by Pappas and Zhu [PZ13]. The
local models in [PZ13, §6] are defined in terms of Schubert cells in the generic
fibre of this mixed-characteristic deformation, by taking the Zariski closure of these
Schubert cells. The disadvantage of this approach is that it does not give a direct
moduli-theoretic interpretation of the special fibre of the local model. Therefore, it is
hard to check directly that our stack C™BT, which has a moduli-theoretic definition,
corresponds to the desired local model under the diagram introduced in [CL18, Cor.
4.11] °.

In our rank 2 setting, the local models admit a much more explicit condition, using
lattice chains and Kottwitz’s determinant condition, and in the cases of nonscalar
types, we will relate our local models to the naive local model at Iwahori level for
the Weil restriction of GLg, in the sense of [PRS13, §2.4].

We begin with the simpler case of scalar inertial types. Suppose that K'/K
is totally ramified, and that 7 is a scalar inertial type, say 7 = n @& n. In this
case we define the local model stack Migcnyp (“hyp” for “hyperspecial”) to be
the fppf stack over Spf O (in fact, a p-adic formal algebraic stack), which to each

30ne should be able to check this by adapting the ideas in [HN02, §2.1] and [PZ13, Prop. 6.2]
to ResK/Qp GL, where K/Qj can be ramified.
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p-adically complete O-algebra A associates the groupoid Mige nyp(A) consisting of
pairs (£, £1), where
e £is arank 2 projective O ®z, A-module, and
e £%is an Ok ®z, A-submodule of £, which is locally on Spec A a direct
summand of £ as an A-module (or equivalently, for which the quotient £/£7"
is projective as an A-module).

We let MPT, = be the substack of pairs (£,£") with the property that for all
a € Ok, we have

(3.7.1) deta(ale™) = [ ¢

YK E

as polynomial functions on O.

Lemma 3.7.2. The functor (£, (£)F) = ((£)y, (£');}) defines a morphism MJ, . —

Mioe,hyp which induces an isomorphism M;CBT — MET hyp- (We remind the reader
that K' /K is assumed totally ramified, and that T is assumed to be a scalar inertial

type associated to the character n.)

Proof. Tf (£, (£')%) is an object of MJ _, the proof that ((£),, (£);}) is indeed an
object of Mg nyp(A) is very similar to the proof of Proposition 3.6.1, and is left to
the reader. Similarly, the reader may verify that the functor

(S, £+) = (£I7 (£/>+) = Ok QoK ('87 £+)7

where the action of Gal(K’/K) is given by the tensor product of the natural action
on Ok with the action on (£, £") given by the character 7, defines a morphism
Mloc,hyp — Mﬂ)c.

The composition Migchyp = MJ,. = Miochyp is evidently the identity. The
composition in the other order is not, in general, naturally equivalent to the identity
morphism, because for (£, £7) € MIOC( ) one cannot necessarily recover £1 from
the projection to its n-isotypic part. However, this will hold if £7 satisfies condition
(2) of Lemma 3.5.15 (and so in particular will hold after imposing the strong
determinant condition).

Indeed, suppose (£,£%) € M7 (A). Then there is a natural Gal(K’'/K)-
equivariant map of projective Ok ®z, A-modules

(373) OK’ ®OK Sn — £

of the same rank (in which Gal(K'/K) acts by n on £,). This map is surjective
because it is surjective on 7-parts and the maps p; ¢ are surjective for all £ # n;
therefore it is an isomorphism. One further has a a natural Gal(K'/K)-equivariant
map of O+ ®z, A-modules

(3.7.4) Ok @0y L5 — £+

that is injective because locally on Spec(A) it is a direct summand of the isomorphism
(3.7.3). If one further assumes that £* satisfies condition (2) of Lemma 3.5.15 then
(3.7.4) is an isomorphism, as claimed.

It remains to check the compatibility of these maps with the strong determinant
condition. If (£,£%) € Miocnyp then certainly condition (2) of Lemma 3.5.15
holds for (£/,(£)7") := O’ ®o, (£,£%) € M], .. By Lemma 3.5.15 the strong
determinant condition holds for (&', (£')") if and only if (3.5.3) holds for £ with £ =
7; but this is exactly the condition (3.7.1) for £, as required. a
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Next, we consider the case of principal series types. We suppose that K'/K
is totally ramified. We begin by defining a p-adic formal algebraic stack Migc 1w
over Spf O (“Iw” for Iwahori). For each complete O-algebra A, we let Mioc 1w (A)
be the groupoid of tuples (£1, £, £a, £5, f1, f2), where

o £, £ are rank 2 projective Ox ®z, A-modules,

o f1:£1 — £y, fo: £ — £ are morphisms of Ox ®z, A-modules, satisfy-
ing fiofo=faofr=m,

e both coker f; and coker f, are rank one projective k ®z, A-modules,

o £F £F are Ok ®z, A-submodules of £1, £o, which are locally on Spec A
direct summands as A-modules (or equivalently, for which the quotients
£;/&F (i = 1,2) are projective A-modules), and moreover for which the
morphisms f1, f2 restrict to morphisms f; : £ — £, fo: £5 — £

We let Mloc v De the substack of tuples with the property that for all a € Og and
i=1,2, we have

(3.7.5) deta(alef) = [ v(a

K E

as polynomial functions on Ok.

Write 7 = n @ n' with n # 1. Recall that the character h : Gal(K'/K) =
I(K'/K) — W (k)* is given by h(g) = g(n’)/7’. Since we are assuming that n # r/,
for each embedding ¢ : k < F (which we also think of as o : W(k) < O) there are
integers 0 < a,, b, < e(K'/K) with the properties that 1/ /n = ooh%  n/n = goh®;
in particular, a, 4+ by, = e(K'/K). Recalling that e, € W (k) ®z, O C O is the
idempotent corresponding to o, we set T = Y. _(7')%e,, T2 =Y. (1) e,; s0 We
have mymy = 7, and m; € (Okr @z, O)I(K//K)zn,/", T € (O @z, (’))I(K//K)Z"/"/.

We define a morphism M = — Mioc 1w as follows. Given a pair (£,£%) €
M (A), we set (£1,£]) = (£, £F), (£2,£5) = (L4, L)), and we let f1, fo be
given by multiplication by 7y, w2 respectively. The only point that is perhaps not
immediately obvious is to check that coker f; and coker fo are rank one projective
k ®z, A-modules. To see this, note that by [Stal3, Tag 05BU], we can lift (£/7'L),,
to a rank one summand U of the projective Ox’ ®z, A-module £. Let U, be the
direct summand of £, obtained by projection of U to the 7-eigenspace £,; then
the projective O ®z, A-module U, has rank one, as can be checked modulo 7.
Similarly we may lift (£/7'£), to a rank one summand V of £, and we let V,» be
the projection to the n’-part.

The natural map

(3.7.6) Ok Qo Uy ® Vi) — £

is an isomorphism, since both sides are projective O+ ®z, A-modules of rank two,
and the given map is an isomorphism modulo 7. It follows immediately from (3.7.6)
that £, = U, ® mV,y and £,y = mU, ® Vjy, so that coker f; and coker fo are
projective of rank one, as claimed.

Proposition 3.7.7. The morphism M[ . = Misc 1w induces an isomorphism
MIBT — MPT 1. (We remind the reader that K'/K is assumed totally ramified,

loc
and that T is assumed to be a principal series inertial type.)
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Proof. We begin by constructing a morphism Mjgc 1w — M., inspired by the
arguments of [RZ96, App. A]. We define an O ®z, A-module £ by

L=, (@?;0_16029) Y ec,il(j)>

where the ,Qgi)’s and ng )’s are copies of £1, £5 respectively.

We can upgrade the O ®z, A-module structure on £ to that of an Ok ®z, A-
module by specifying how 7" acts. If ¢ < a, —1, then we let 7’ : eg£§i) — egﬂgiﬂ) b
the map induced by the identity on £;, and if j < b, — 1, then we let 7’ : eaﬁéj) —
eaﬂéjﬂ) be the map induced by the identity on £5. We let 7’ : egﬂga”fl) — eaﬂéo)
be the map induced by f; : £1 — £2, and we let ' : egﬂgb"*l) — eg£§0> be
the map induced by f; : £5 — £1. That this indeed gives £ the structure of an
Ok’ @z, A-module follows from our assumption that f; o fo = fao fi = 7. We
give £ a semilinear action of Gal(K’/K) = I(K'/K) by letting it act via (oo h)-

on each 602( " and via (0 0h)? -1 on each egﬂé .

We claim that £ is a rank 2 projective Oks ®z, A-module. Since coker f; is
projective by assumption, we can choose a section to the k ®z, A-linear morphism
£1/m — coker fo, with image U,,7 say. Similarly we choose a section to £o/m —
coker f1 with image V. We choose lifts U,, V, of U,, V,, to direct summands of
the O ®z, A- modules 21, £o respectively. There is a map of O+ ®z, A-modules

(3.7.8) XN: Ok @0, (Uy @ Vi) = £

induced by the map identifying U,,, V,» with their copies in 250) and 2&0) respectively.
The map A is surjective modulo 7’ by construction, hence surjective by Nakayama’s
lemma. Regarding A as a map of projective O ®z, A-modules of equal rank
2e(K'/K), we deduce that A is an isomorphism. Since the source of A is a projective
Ok’ ®z, A-module, the claim follows.

We now set

£ =, (Bizg e (&) By eo(25))) C £

It is immediate from the construction that £ is preserved by Gal(K’/K). The
hypothesis that fi, fo and preserve £;,£5 implies that £+ is an O ®z, A-
submodule of £, while the hypothesis that each £;/ SZT" is a projective A-module
implies the same for £/£%. This completes the construction of our morphism
MIOC,IW — Mﬂ)c-

Just as in the proof of Proposition 3.7.2, the morphism Mjo¢ 1y — M7, followed
by our morphism MJ . — Mg 1w is the identity, while the composition in the other
order is not, in general, naturally equivalent to the identity morphism. However,
it follows immediately from Lemma 3.5.15 and the construction of £% that our
morphisms Mige 1w — M, and M . — Migc 1w respect the strong determinant

o . . BT 7,BT 7,BT
condition, and so induce maps Myc;;, — M. and M — Mloc - To
. -r’BT 7,BT
see that the composite M, MIOC w — Mje. is naturally equivalent to

the identity, suppose that (£, £%) € ./\/lloc( ) and observe that there is a natural
Gal(K'/K)-equivariant isomorphism of O ® 4 Z,-modules

(3.7.9) 0o (D825 ot @5 e, 8P) S 2
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induced by the maps ng) SN (7')'L, and S;J,) K (7')7L,/. The commutativity
of the diagram

Py )aré (n')ae—1g
o~ o n

(0)
_
6027]/ ) Bﬂ,gn/

—1) (=’

implies that the map in (3.7.9) is in fact an Ogs ®z, A-module isomorphism. The
map (3.7.9) induces an inclusion

o (@250 (EP)F @l25" e (EY)F) - £+,
If furthermore (£, £+) € M2 then this is an isomorphism because £ satisfies
condition (2) of Lemma 3.5.15. O

Finally, we turn to the case of a cuspidal type. Let L as usual be a quadratic
unramified extension of K, and set K’ = L(7r1/(p2f*1)). The field N continues to
denote the maximal unramified extension of K in K’, so that N = L. Let 7 be a
cuspidal type, so that 7 =n & 7', where n # 7’ but ' = npf.

Proposition 3.7.10. There is a morphism MIT(;CBT — ME}EIW which is representable
by algebraic spaces and smooth. (We remind the reader that T is now assumed to be
a cuspidal inertial type.)

Proof. Let 7' be the type 7, considered as a (principal series) type for the to-
tally ramified extension K'/N. Let ¢ € Gal(K'/K) be the unique element which
fixes 71/(P*’ =1 but acts nontrivially on N. For any map a : X — Y of Oy-modules
we write o for the twist 1 ® a: Oy Roy,c X = On ®oy,e Y.

We may think of an object (£, £+) of M[;"" as an object (£, (£/)T) of MITOI(’;BT
equipped with the additional data of an isomorphism of Ok ®z, A-modules 0 :
Ok’ ®0,,,,c £ — £ which is compatible with (£')", which satisfies 6 0 0 = id, and
which is compatible with the action of Gal(K’/N) = I(K’/N) in the sense that
fo(1®g)=g" ob.

Employing the isomorphism of Proposition 3.7.7, we think of (£',(£')") as a
tuple (£, (£1)1, L5, (£5)T, f1, f2), where the £}, (£))* are Oy ®z, A-modules; by
construction, the map 6 induces isomorphisms 61 : Oy Qoy.c £) = €5, 0y :
ON @0y .c £ — £, which are compatible with (£])*,(€,)" and f1, f2, and
satisfy 6; o 05 = id.

Choose for each embedding o : k < F an extension to an embedding ¢(") : k&’ <
F, set e; = ZU €., and write e = 1 — e;. Then the map 6, induces isomorphisms
011 : e1L] = exf) and fp 1 L] > e L), while 6y induces isomorphisms
021 : e1Lh — exh and 6oy : el — e1£]. The condition that #; o 85 = id
translates to 6o = 07;" and 621 = 015", and compatibility with (£7)*, (€5)" implies
that 611,02, induce isomorphisms e; (£))" = ea(£5)" and e (£5)T = eo(L)) T
respectively.

Furthermore fi, fo induce maps e1f1 : e1£] — e1€l, e1g : e1€y, — e1 L.
It follows that there is a map MTET — Mige 1w, sending (£,£") to the tu-

loc

ple (e1L],e1 (L)), e1Lh,e1(L5) ", e1f1,e1f2). To see that it respects the strong
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determinant condition, one has to check that the conditions on £7, £F imply
those for (L))", ea(L5)™ coincide, and this follows from the definitions (via
Remark 3.5.4). We therefore obtain a map ./\/llTO’?T — MEEIW?

Since this morphism is given by forgetting the data of ex£], e2 £, and the pair
of isomorphisms 6,1, 051, it is evidently formally smooth. It is also a morphism
between w-adic formal algebraic stacks that are locally of finite presentation, and
so is representable by algebraic spaces (by [Eme, Lem. 7.10]) and locally of finite
presentation (by [EG19, Cor. 2.1.8] and [Stal3, Tag 06CX]). Thus this morphism is

in fact smooth. O

3.8. Local models: local geometry. We now deduce our main results on the
local structure of our moduli stacks from results in the literature on local models
for Shimura varieties.

Proposition 3.8.1. We can identify MEEIW with the quotient of (the p-adic formal

completion of ) the naive local model for Resiq, GLa (as defined in [PRS13, §2.4])
by a smooth group scheme over Q.

Proof. Let /K/IVEEIW be the p-adic formal completion of the naive local model for
Resk/q, GL2 corresponding to a standard lattice chain £, as defined in [PRS13,
§2.4]. By [RZ96, Prop. A.4], the automorphisms of the standard lattice chain £
are represented by a smooth group scheme P, over O. (This is in fact a parahoric
subgroup scheme of Resp, /z, GL2, and in particular it is affine.) Also by loc. cit.,

every lattice chain of type (L) is Zariski locally isomorphic to £. By comparing

the two moduli problems, we see that MBT | "is a P,-torsor over MET, for the

Zariski topology and the proposition follows. (Il

The following theorem describes the various regularity properties of local models.
Since we are working in the context of formal algebraic stacks, we use the terminology
developed in [Eme, §8] (see in particular [Eme, Rem. 8.21] and [Eme, Def. 8.35]).

Theorem 3.8.2. Suppose that d = 2 and that T is a tame inertial type. Then

(1) ./\/llTO’CBT is restdually Jacobson and analytically normal, and Cohen—-Macaulay.

(2) The special fibre MITC;?T’l is reduced.
(8) M2 is flat over O.

loc

Proof. For scalar types, this follows from [Kis09, Prop. 2.2.2] by Lemma 3.7.2, and
so we turn to studying the case of a non-scalar type. The properties in question
can be checked smooth locally (see [Eme, §8] for (1), and [Stal3, Tag 04YH] for (2);
for (3), note that morphisms that are representable by algebraic spaces and smooth
are also flat, and take into account the final statement of [Eme, Lem. 8.34]), and so
by Propositions 3.7.7 and 3.7.10 we reduce to checking the assertions of the theorem
for ME’EIW. Proposition 3.8.1 then reduces us to checking these assertions for the
w-adic completion of the naive local model at Iwahori level for Resg/q, GLa.
Since this naive local model is a scheme of finite presentation over O, its special
fibre (i.e. its base-change to F) is Jacobson, and it is excellent; thus its w-adic
completion satisfies the properties of (1) if and only if the naive local model itself is
normal and Cohen—Macaulay. The special fibre of its w-adic completion is of course
just equal to its own special fibre, and so verifying (2) for the first of these special
fibres is equivalent to verifying it for the second. Finally, the w-adic completion
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of an O-flat Noetherian ring is again O-flat, and so the w-adic completion of the
naive local model will be O-flat if the naive local model itself is.

All the properties of the naive local model that are described in the preceding
paragraph, other than the Cohen-Macaulay property, are contained in [PRS13, Thm.
2.17], if we can identify the naive local models at Iwahori level with the vertical
local models at Iwahori level, in the sense of [PR03, §8] (see also the discussion
above loc. cit. in [PRS13]).

The vertical local models are obtained by intersecting the preimages at Iwahori
level of the flat local models at hyperspecial level. Since the naive local models for the
Weil restriction of GLg at hyperspecial level are already flat by a special case of [PR03,
Cor. 4.3], the naive local models at Iwahori level are identified with the vertical
ones and [PRS13, Thm. 2.17] applies to them directly. (To be precise, the results
of [PRO3] apply to restrictions of scalars Resp, g, GL2 with F//Fy totally ramified.
However, thanks to the decomposition O ®z, A = ©o.w ()0 0K Qw(k),s A the
local model for Resg/q, GL2 decomposes as a product of local models for totally
ramified extensions.)

Finally, Cohen-Macaulayness can be proved as in [Gor01, Prop. 4.24] and the
discussion immediately following. We thank U. Gortz for explaining this argument
to us. As in the previous paragraph we reduce to the case of local models at Iwahori
level for Resp, g, GLy with F/Fy totally ramified of degree e. In this setting the
admissible set M for the coweight 1 = (e, 0) has precisely one element of length 0
and two elements of each length between 1 and e. Moreover, for elements x,y € M
we have © < y in the Bruhat order if and only if ¢(z) < £(y). One checks easily
that M is e-Cohen—Macaulay in the sense of [Gor01, Def. 4.23], and we conclude
by [Gor01, Prop. 4.24]. Alternatively, this also follows from the much more general
recent results of Haines—Richarz [HR19]. O

Corollary 3.8.3. Suppose that d = 2 and that 7 is a tame inertial type. Then

(1) CTBT is analytically normal, and Cohen—Macaulay.
(2) The special fibre CTBT1 is reduced.
(8) C™BT is flat over O.

Proof. This follows from Theorems 3.4.5 and 3.8.2, since all of these properties can
be verified smooth locally (as was already noted in the proof of the second of these
theorems). O

Remark 3.8.4. There is another structural result about vertical local models that is
proved in [PR03, §8] but which we haven’t incorporated into our preceding results,
namely, that the irreducible components of the special fibre are normal. Since
the notion of irreducible component is not étale local (and so in particular not
smooth local), this statement does not imply the corresponding statement for the
special fibres of MIT(;?T or C™BT. Rather, it implies the weaker, and somewhat more
technical, statement that each of the analytic branches passing through each closed
point of the special fibre of these w-adic formal algebraic stacks is normal. We
won’t discuss this further here, since we don’t need this result.

3.9. Scheme-theoretic images. We continue to fix d = 2, h = 1, and we set
K = L(Trl/pszl), where L/K is the unramified quadratic extension, and  is a
uniformiser of K. (This is the choice of K’ that we made before in the cuspidal
case, and contains the choice of K’ that we made in the principal series case; since
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the category of Breuil-Kisin modules with descent data for the smaller extension is
by Proposition 3.6.1 naturally a full subcategory of the category of Breuil-Kisin
modules with descent data for the larger extension, we can consider both principal
series and cuspidal types in this setting.)

Definition 3.9.1. For each a > 1 we write 2942 and Z7¢ for the scheme-theoretic
images (in the sense of [EG19, Defn. 3.2.8]) of the morphisms C44BT:a — Rdd.a and
C¢mBT.a _y Rdda regpectively. We write Z, Z for Z1, Z7™1 respectively.

The following theorem records some basic properties of these scheme-theoretic
images. We refer to Appendix B for the notion of representations admitting a
potentially Barsotti-Tate lift of a given type, and for the definition of tres ramifiée
representations.

Theorem 3.9.2. (1) For each a > 1, 29949 js an algebraic stack of finite
presentation over O/w®, and is a closed substack of RV, In turn, each
Z7% 4s a closed substack of Z9%%, and thus in particular is an algebraic
stack of finite presentation over O/w®; and Z42 is the union of the Z™%.

(2) The morphism CIHBT.e — RAda factors through a morphism CI4BTa
Z9da which is representable by algebraic spaces, scheme-theoretically domi-
nant, and proper. Similarly, the morphism CTBT:¢ — RIde factors through
a morphism CTBT:¢ — ZTe which is representable by algebraic spaces,
scheme-theoretically dominant, and proper.

(3) The F,-points of Z are naturally in bijection with the continuous represen-
tations 7 : G — GLa(F)) which are not a twist of a trés ramifiée extension
of the trivial character by the mod p cyclotomic character. Similarly, the Fp—
points offr are naturally in bijection with the continuous representations
7: Gg — GLa(F,) which have a potentially Barsotti-Tate lift of type T.

Proof. Part (1) follows easily from Theorem 3.1.12. Indeed, by [EG19, Prop. 3.2.31]
we may think of 299:¢ as the scheme-theoretic image of the proper morphism of
algebraic stacks C44BT-a Rild’a and similarly for each Z7%. The existence of the
factorisations in (2) is then formal.

By [EG19, Lem. 3.2.14], for each finite extension F'/F, the F’-points of Z
(respectively Z') correspond to the étale p-modules with descent data of the
form 9M[1/u], where 9 is a Breuil-Kisin module of rank 2 with descent data and
F-coefficients which satisfies the strong determinant condition (respectively, which
satisfies the strong determinant condition and is of type 7). By Lemma 3.5.16 and
Corollary 3.8.3, these precisely correspond to the Galois representations 7 : G —
GL2(F) which admit potentially Barsotti-Tate lifts of some tame type (respectively,
of type 7). The result follows from Lemma B.5. O

The thickenings CI4:BT:¢ <y CddBT.a+l apq Rdde y RAdat+l jnduce closed
immersions Z94:@ <y Zddatl Gimilarly, the thickenings C7BT:@ <y CT-BT:a+1 giye
rise to closed immersions Z7¢ < ZTa+1,

Lemma 3.9.3. Fiz a > 1. Then the morphism Z4¢ — Zddatl s o thickening,
and for each tame type T, the morphism Z™% — Z7F1 is q thickening.
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Proof. In each case, the claim of the lemma follows from the following more general
statement: if

X — X

| ]

y—)

is a diagram of morphisms of algebraic stacks in which the upper horizontal arrow is a
thickening, the lower horizontal arrow is a closed immersion, and each of the vertical
arrows is representable by algebraic spaces, quasi-compact, and scheme-theoretically
dominant, then the lower horizontal arrow is also a thickening.

Since the property of being a thickening may be checked smooth locally, and
since scheme-theoretic dominance of quasi-compact morphisms is preserved by flat
base-change, we may show this after pulling the entire diagram back over a smooth
surjective morphism V’/ — Y whose source is a scheme, and thus reduce to the
case in which the lower arrow is a morphism of schemes, and the upper arrow
is a morphism of algebraic spaces. A surjecive étale morphism is also scheme-
theoretically dominant, and so pulling back the top arrow over a surjective étale
morphism U’ — V' Xy, X’ whose source is a scheme, we finally reduce to considering
a diagram of morphisms of schemes

U——U’

||

V—V/

in which the top arrow is a thickening, the vertical arrows are quasi-compact and
scheme-theoretically dominant, and the bottom arrow is a closed immersion.

Pulling back over an affine open subscheme of V', and then pulling back the top
arrow over the disjoint union of the members of a finite affine open cover of the
preimage of this affine open in U’ (note that this preimage is quasi-compact), we
further reduce to the case when all the schemes involved are affine. That is, we have
a diagram of ring morphisms

A—— A
B ——B
in which the vertical arrows are injective, the horizontal arrows are surjective, and

the bottom arrow has nilpotent kernel. One immediately verifies that the top arrow
has nilpotent kernel as well. O

We write C44BT .= ]i . CddBT.a and zdd .= ligrla Zdd.a: we then have evident
morphisms of Ind-algebraic stacks

Cdd,BT N de N Rdd

lying over Spf O, both representable by algebraic spaces, with the first being
furthermore proper and scheme-theoretically dominant in the sense of [Eme, Def.
6.13], and the second being a closed immersion.
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Similarly, for each choice of tame type 7, we set C7BT = lim €7, and Z7 :=
lim Z™% We again have morphisms

—a
CT,BT_>27_>Rdd

of Ind-algebraic stacks over Spf O, both being representable by algebraic spaces, the
first being proper and scheme-theoretically dominant, and the second being a closed
immersion. Note that by Corollary 3.5.13, C44BT is the disjoint union of the C™BT,
so it follows that Z9%BT is the union (but not the disjoint union) of the Z7.

Proposition 3.5.7 shows that C™BT is a w-adic formal algebraic stack of finite
presentation over Spf O. Each Z™® is an algebraic stack of finite presentation
over Spec O/w® by Theorem 3.9.2. Analogous remarks apply in the case of C44-BT
and Zdd,

Proposition 3.9.4. 2, and each Z7, are w-adic formal algebraic stacks, of finite
presentation over Spf O.

Proof. We give the argument for 2494, the argument for Z7 being identical. (Alter-
natively, this latter case follows from the former and the fact that the canonical
morphism Z7 < 294 is a closed immersion.) That 249 is a w-adic formal al-
gebraic stack will follow from Proposition A.6 once we show that the morphism
CILBT 5 zdd fits into the framework of Section A.5. It follows from Lemma A.3
that 299 is a formal algebraic stack, and by construction it is locally Ind-finite type
over Spec O. Furthermore, since each 299:¢ is quasi-compact and quasi-separated
(being of finite presentation over O/w?®), we see that 2494 is quasi-compact and
quasi-separated. Thus Proposition A.6 indeed applies.
The isomorphism 244 = hﬂa 2Zdd.a induces an isomorphism

29 %0 O/w® 5 lim 294 x0 O /=",

for any fixed b > 1. Since 299 is quasi-compact and quasi-separated, so is Z94 x o
O/w®, and thus this isomorphism factors through 244 x , O /" for some a. Thus
the directed system Z9%¢ x» O/’ in a eventually stabilises, and so we see that

24 %0 0)m" =5 29 %0 O/

for sufficiently large values of a. Since Z99:¢ is of finite presentation over O/w?,
we find that Z99 x» O/’ is of finite presentation over O/w’. Consequently, we
conclude that 244 is of finite presentation over Spf O, as claimed. O

Remark 3.9.5. As observed in the general context of Subsection A.5; the thickening
Zdda y Zdd » , O/ need not be an isomorphism a priori, and we have no reason
to expect that it is. Nevertheless, in Subsection 5.1 we will prove that this thickening
is gemerically an isomorphism for every value of @ > 1, and we will furthermore show
that each (Zdd:a) /F is generically reduced; see Proposition 5.1.2 and Remark 5.1.4
below. The proof of this result involves an application of Proposition A.11, and
depends on the detailed analysis of the irreducible components of the algebraic
stacks C™* and Z7“ that we will make in Section 4.

We conclude this subsection by establishing some basic lemmas about the reduced
substacks underlying each of C™BT and Z7.

Lemma 3.9.6. Let X be an algebraic stack over O/w®, and let Xieq be the under-
lying reduced substack of X. Then Xiea is a closed substack of Xjp := X X©/ma F.
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Proof. The structural morphism X — Spec O/w® induces a natural morphism
Xeeda — (Spec O/w)ea = SpecF, so the natural morphism X,eq — X factors
through &/p. Since the morphisms X,eq — X and Xp — & are both closed
immersions, so is the morphism Xieq — X/F. O

Lemma 3.9.7. If f : X — Y is a quasi-compact morphism of algebraic stacks,
and W is the scheme-theoretic image of f, then the scheme-theoretic image of
the induced morphism of underlying reduced substacks freq : Xred — Vred S the
underlying reduced substack Wed-

Proof. Since the definitions of the scheme-theoretic image and of the underlying
reduced substack are both smooth local (in the former case see [EG19, Rem. 3.1.5(3)],
and in the latter case it follows immediately from the construction in [Stal3, Tag
0509]), we immediately reduce to the case of schemes, which follows from [Stal3,
Tag 056B]. O

Lemma 3.9.8. For each a > 1, CI4BTL s the underlying reduced substack
of C44BTa - gnd Z1 s the underlying reduced substack of Z%%; consequently,
CALBTL s the underlying reduced substack of CIVBT | and 2941 is the underlying
reduced substack of Z99. Similarly, for each tame type T, CTBT1 is the underlying
reduced substack of each CTBT®, and of CTBT, while Z™1 is the underlying reduced
substack of each Z™%, and of Z7.

Proof. The statements for the w-adic formal algebraic stacks follow directly from
the corresponding statements for the various algebraic stacks modulo w?®, and so
we focus on proving these latter statements, beginning with the case of C7-BT:@,
Note that ¢7BT:1 = ¢7-BT.e X /we F is reduced by Corollary 3.8.3, so CId.BT.1 —
Cdd,BT.a X /e F is also reduced by Corollary 3.5.13. The claim follows for Cdd,BT.a
and C™BT¢ from Lemma 3.9.6.

The claims for 27 and 294 are then immediate from Lemma 3.9.7, applied to
the morphisms C™-BT:@ — Z7¢ and C44:BT.e _, zdd.a O

3.10. Versal rings and equidimensionality. We now show that Ci4BT and
Z44BT (and their substacks C™BT, Z7) are equidimensional, and compute their
dimensions, by making use of their versal rings. In [EG19, §5] these versal rings were
constructed in a more general setting in terms of liftings of étale ¢p-modules; in our
particular setting, we will find it convenient to interpret them as Galois deformation
rings.

Fix a finite type point = : SpecF/ — Z7% where F'/F is a finite extension; we
also denote the induced finite type point of R1%¢ by z. Let 7 : Gx — GLo(F') be
the Galois representation corresponding to x by Theorem 3.9.2 (3). Let E’ be the
compositum of E and W (F/)[1/p], with ring of integers O+ and residue field F’.

As in Appendix C, we have the universal framed deformation Ogs-algebra RE,
and we let RFD,(LT be the reduced and p-torsion free quotient of R'F:’ whose Qp—points
correspond to the potentially Barsotti—Tate lifts of 7 of type 7. In this section we

will denote REO’T by the more suggestive name R;BT. We recall, for instance from

[BG19, Thm. 3.3.8], that the ring RZ®T[1/p] is regular.
As in Section 2.3, we write Ry for the universal framed deformation Og:-

lok,
algebra for 7|g,__. By Lemma 2.3.3, we have a natural morphism
(3.10.1) Spf Ry, — R


http://stacks.math.columbia.edu/tag/0509
http://stacks.math.columbia.edu/tag/0509
http://stacks.math.columbia.edu/tag/056B

44 A. CARAIANI, M. EMERTON, T. GEE, AND D. SAVITT

Lemma 3.10.2. The morphism (3.10.1) is versal (at x).

Proof. By definition, it suffices to show that if p : Gx_ — GL4(A) is a representation
with A a finite Artinian Opgr-algebra, and if pp : Gk, — GL4(B) is a second
representation, with B a finite Artinian Op/-algebra admitting a surjection onto A,
such that the base change ps of pp to A is isomorphic to p (more concretely, so
that there exists M € GL4(A) with p = MpaM 1), then we may find p' : G —
GLg(B) which lifts p, and is isomorphic to pp. This is straightforward: the natural
morphism GL4(B) — GL4(A) is surjective, and so if M’ is any lift of M to an
element of GL4(B), then we may set o’ = M'pp(M’)~1L. O

Definition 3.10.3. For any pro-Artinian Og/-algebra R with residue field F/ we
let GL2, i denote the completion of (GL2),r along the closed subgroup of its special
fibre given by the centraliser of 7|q,.

Remark 3.10.4. For R as above we have GLQ/R = Spf R xo,, GLQ/OE, In-
deed, if R = hm Aj;, then Spf R X0, GLQ/O , lgql Spec 4; Xo,, GLQ/@E,, and

Spec A; Xo,, GLQ/OE, agrees with the completion of (GL2) /4, because A; is a finite
@ E/—module. -

It follows from this that GLg,r has nice base-change properties more generally: if
R — S is a morphism of pro—Artlnlan Op- algebras each with residue field F/, then
there is an isomorphism GL2 /s = SpfS Xspir GL2 /r- We apply this fact Wlthout
further comment in various arguments below.

, the first being simply

T\c

There is a pair of morphisms GL2 [Bry Spf R

the projection to Spf R , and the second being given by ‘change of framing”.

TG
Composing such changes of framing endows GL2 /R with the structure of a
Koo

groupoid over Spf Rx . Note that the two morphisms

Tlog

3.10.1
( )

GL, [Brg, = SPfRx R4d

T\G

coincide, since changing the framlng does not change the isomorphism class (as
a Galois representation) of a deformation of 7|g,_ . Thus there is an induced

morphism of groupoids over Spf Ry G

X Rdd Spf R-

Tlag,, Tlak.,

(3.10.5) (?LE/R% - Spr
Koo

Lemma 3.10.6. The morphism (3.10.5) is an isomorphism.

Proof. If A is an Artinian Og-algebra, with residue field F’, then a pair of A-valued
points of Spf Ry ¢, ap to the same point of R4 if and only if they give rise to
isomorphic deforma?cclons of p, once we forget the framings. But this precisely means
that the second of them is obtained from the first by changing the framing via an

A-valued point of 6L\2 O

It follows from Lemma 3.10.2 that, for each a > 1, the quotient Ry Gx / w®is a

(non-Noetherian) versal ring for R%¢ at . By [EG19, Lem. 3.2.16], for cach a >1
a versal ring for Z7% at x is given by the scheme-theoretic image of the morphism

(3.10.7) CTPT X Raaa SPf Ry, _[w" = Spf Ry, [w",
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in the sense that we now explain.

In general, the notion of scheme-theoretic image for morphisms of formal algebraic
stacks can be problematic; at the very least it should be handled with care. But
in this particular context, a definition is given in [EG19, Def. 3.2.15]: we write
Ry G /wo® as an inverse limit of Artinian local rings A, form the corresponding
scheme-theoretic images of the induced morphisms C™BT® x a4« Spec A — Spec A,
and then take the inductive limit of these scheme-theoretic images; this is a formal
scheme, which is in fact of the form Spf R™* for some quotient R™* of Rr, G Jw®
(where quotient should be understood in the sense of topological rings), and is by
definition the scheme-theoretic image in question.

The closed immersions C™BT:¢ s C7-BT-a+1 induce corresponding closed immer-
sions

CT,BT,a X dd.a Spf R? CT,BT,a+1

a a+1
‘GKoo /w — X Rdd,a+1 Spf R?choo /w y

and hence closed immersions of scheme-theoretic images Spf R™* — Spf R™%+!,
corresponding to surjections R™%*!1 — R™?.  (Here we are using the fact that an
projective limit of surjections of finite Artin rings is surjective.) Thus we may form
the pro-Artinian ring l'ma R™%. This projective limit is a quotient (again in the sense
of topological rings) of R: , and the closed formal subscheme Spf (@1 R™) of

F\GKOO
Spf Rr, G 18 the scheme-theoretic image (computed in the sense described above)
of the projection
(3108) CT’BT X Rdd Spf RFlGK — Spf RF'GK

(This is a formal consequence of the construction of the Spf R™>* as scheme-theoretic
images, since any discrete Artinian quotient of R is a discrete Artinian quotient

Of R?lGK
argument as in the proof of [EG19, Lem. 4.2.14]) that @RT’Q is a versal ring to

|G Koo
/@, for some a > 1.) It also follows formally (for example, by the same

Z7 at x. Our next aim is to identify this projective limit with R;’BT.
Before we do this, we have to establish some preliminary facts related to the
various objects and morphisms we have just introduced.

Lemma 3.10.9.

(1) Each of the rings R™® is a complete local Noetherian ring, endowed with its
m-adic topology, and the same is true of the inverse limit @a R™®.

(2) For each a > 1, the morphism Spf R™* — Spf R;‘GK induces an isomor-
phism

CcmBTa X Rdd,a Spf R™¢ = ¢mBTa X Rdd,a Spf R?|GK /wa.

(8) For each a > 1, the morphism Spf R™% — R s effective, i.e. may be
promoted (in a unique manner) to a morphism Spec R™% — R4 and the
induced morphism

CT% X gada,a Spec R — Spec R™°

18 proper and scheme-theoretically dominant.
(4) Each transition morphism Spec R™% < Spec R™%*! is a thickening.

Proof. Recall that in Section 2.3.4 we defined a Noetherian quotient R=! of

rlGKoQ
Ry, which is naturally identified with the framed deformation ring Rg) A by
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Proposition 2.3.6. It follows from [EG19, Lem. 5.4.15] (via an argument almost
identical to the one in the proof of [EG19, Prop. 5.4.17]) that the morphism

Spf MRT’“ — Spf R- factors through Spf R?Sli; = Spf Rg) ’1], and indeed

lok.,
that lim R™% is a quotient of Spf Rg)’l]; this proves (1).

It follows by the very construction of the R™® that the morphism (3.10.7) factors
through the closed subscheme Spf R™% of Spf RF\GKOO /w®. The claim of (2) is a
formal consequence of this.

We have already observed that the morphism Spf R™% — R4 factors through
Z™e, This latter stack is algebraic, and of finite type over O/w®. It follows
from [Stal3, Tag 07X8] that the morphism Spf R™* — Z7™¢ is effective. Taking
into account part (1) of the present lemma, we deduce from the theorem on formal
functions that the formal completion of the scheme-theoretic image of the projection

CT% X gada,a Spec R — Spec R™°

at the closed point of Spec R™% coincides with the scheme-theoretic image of the
morphism

C™% X pada,« Spf R™* — Spf R™%.
Taking into account (2), we see that this latter scheme-theoretic image coincides

with Spf R™* itself. This completes the proof of (3).
The claim of (4) follows from a consideration of the diagram

C™% X gad.a Spec RT* ——— CT%F1 X paa.at1 Spec RT4H!

| |

Spec R™¢ Spec R™-+1

just as in the proof of Lemma 3.9.3. |

Lemma 3.10.10.
(1) The projection CTBT x aa Spf Ry — Spf Rr factors through a mor-

TG K oo TGk

phism CTBT x a4 Spf Ry — Spf(@ R™%), which is scheme-theoretically

TG Ko
dominant in the sense that its scheme-theoretic image (computed in the man-
ner described above) is equal to its target.
(2) There is a projective morphism of schemes X7 — Spec(@ R™%), which is
uniquely determined, up to unique isomorphism, by the requirement that its
m-adic completion (where m denotes the mazimal ideal of@RT’“) may be

identified with the morphism CTBT x paa Spf Ry — Spf(@ R™%) of (1).

TIGK o

Proof. Part (1) follows formally from the various constructions and definitions of
the objects involved (just like part (2) of Lemma 3.10.9).
We now consider the morphism

CT,BT

Xas Spf Ry, — Spf(lim R™),

‘GKoc

Once we recall that lim R™® is Noetherian, by Lemma 3.10.9 (1), it follows exactly as
in the proof of [Kis09, Prop. 2.1.10] (which treats the case that 7 is the trivial type),
via an application of formal GAGA [Gro61, Thm. 5.4.5], that this morphism arises as
the formal completion along the maximal ideal of lgl R™“ of a projective morphism
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X7 — Spec(]'gl R™%) (and X7 is unique up to unique isomorphism, by [Gro61, Thm.
5.4.1]). O

We next establish various properties of the scheme X7 constructed in the previous
lemma. To ease notation going forward, we write X7 to denote the fibre product
C™BT x aa Spf Ry, (which is reasonable, since this fibre product is isomorphic

to the formal completion of X7).
Lemma 3.10.11. The scheme X7 is Noetherian, normal, and flat over Op.

Proof. Since X7 is projective over the Noetherian ring l&n R™“ it is Noetherian. The
other claimed properties of X7 will be deduced from the corresponding properties
of C™BT that are proved in Corollary 3.8.3.

To this end, we first note that, since the morphism C™BT — R4 factors
through Z7, it follows (for example as in the proof of [EG19, Lem. 3.2.16]) that we
have isomorphisms

CcTBT x4, Spf(l'gl R™%) CBT x4z, Z7 X gda Spf RF‘GKOO

-~

; CT’BT X Rdd Spf R; =: Xr.

lo k.,
In summary, we may identify X5 with the fibre product C™BT x z- Spf (1&1 R™).

We now show that )?7 is analytically normal. To see this, let Spf B — )A(; be
a morphism whose source is a Noetherian affine formal algebraic space, which is
representable by algebraic spaces and smooth. We must show that the completion
En is normal, for each maximal ideal n of B. In fact, it suffices to verify this for some
collection of such Spf B which cover )A(;, and so without loss of generality we may
choose our B as follows: first, choose a collection of morphisms Spf A — C™BT whose
sources are Noetherian affine formal algebraic spaces, and which are representable
by algebraic spaces and smooth, which, taken together, cover C™BT. Next, for each
such A, choose a collection of morphisms

Spf B — Spf 4 Xcrnr X

whose sources are Noetherian affine formal algebraic spaces, and which are repre-
sentable by algebraic spaces and smooth, which, taken together, cover the fibre
product. Altogether (considering all such B associated to all such A), the composite
morphisms

Spf B — Spf 4 Xerer X5 — X5

are representable by algebraic spaces and smooth, and cover )A(?.

Now, let n be a maximal ideal in one of these rings B, lying over a maximal
ideal m in the corresponding ring A. The extension of residue fields A/m — B/n is
finite, and each of these fields is finite over F’. Enlarging F’ sufficiently, we may
assume that in fact each of these residue fields coincides with F’. (On the level of
rings, this amounts to forming various tensor products of the form — ®yy gy W(F"),
which doesn’t affect the question of normality.) The morphism Spf B, — Spf A,
is then seen to be smooth in the sense of [Stal3, Tag 06HG], i.e., it satisfies the
infinitesimal lifting property for finite Artinian O’-algebras with residue field F’:
this follows from the identification of )?? above as a fibre product, and the fact that
Spf(@l R™%) — Z7 is versal at the closed point x. Thus Spf B, is a formal power
series ring over Spf Ay, by [Stal3, Tag 06HL], and hence Spf B, is indeed normal,
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since Spf Ay, is so, by Corollary 3.8.3. By Lemma 3.10.14 below, this implies that
the algebraization X7 of X# is normal.
We next claim that the morphism

(3.10.12) Spf(lim R™*) — 27

is a flat morphism of formal algebraic stacks, in the sense of [Eme, Def. 8.35].
Given this, we find that the base-changed morphism )/(\'? — C™BT is also flat. Since
Corollary 3.8.3 shows that C™B7T is flat over O/, we conclude that the same is true
of )?;. Again, by Lemma 3.10.14, this implies that the algebraization X7 is also flat
over OE/.

It remains to show the claimed flatness. To this end, we note first that for each
a > 1, the morphism

(3.10.13) Spf R™® — Z7a

is a versal morphism from a complete Noetherian local ring to an algebraic stack
which is locally of finite type over O/w®. We already observed in the proof of
Lemma 3.10.9 (3) that (3.10.13) is effective, i.e. can be promoted to a morphism
Spec R™®* — Z7%. Tt then follows from [Stal3, Tag 0DR2] that this latter morphism
is flat, and thus that (3.10.13) is flat in the sense of [Eme, Def. 8.35]. It follows
easily that the morphism (3.10.12) is also flat: use the fact that a morphism of
w-adically complete local Noetherian O-algebras which becomes flat upon reduction
modulo w?, for each a > 1, is itself flat, which follows from (for example) [Stal3,
Tag 0523]. O

The following lemma is standard, and is presumably well-known. We sketch the
proof, since we don’t know a reference.

Lemma 3.10.14. If S is a complete Noetherian local O-algebra and Y — Spec S is
a proper morphism of schemes, then'Y is flat over Spec O (resp. normal) if and only
Y (the mg-adic completion of Y) is flat over Spf O (resp. is analytically normal).

Proof. The properties of Y that are in question can be tested by considering the
various local rings Oy, as y runs over the points of ¥; namely, we have to consider
whether or not these rings are flat over O, or normal. Since any point y specializes
to a closed point yg of Y, so that Oy, is a localization of Oy, and thus O-flat
(resp. normal) if Oy, is, it suffices to consider the rings Oy, for closed points yq
of Y. Note also that since Y is proper over Spec .S, any closed point of Y lies over
the closed point of Spec S.

Now let Spec A be an affine neighbourhood of a closed point yg of Y; let m be the
corresponding maximal ideal of A. As we noted, m lies over mg, and so gives rise
to a maximal ideal m := mA of g, the mg-adic completion of A; and any maximal
ideal of A contains mS/T, and so arises from a maximal ideal of A in this manner
(since A/mg — g/ms). Write Ay, to denote the m-adic completion of A (which
maps isomorphically to the m-adic completion of E) Then A is faithfully flat over
the localization An = Oy,y,, and hence Ay is flat over O if and only if A\m is.
Consequently we see that Y is flat over O if and only if, for each affine open subset
Spec A of Y, the corresponding mg-adic completion A becomes flat over O after
completing at each of its maximal ideals. Another application of faithful flatness of
completions of Noetherian local rings shows that this holds if and only if each such
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A is flat over O after localizing at each of its maximal ideals, which holds if and only
each such A is flat over ©. This is precisely what it means for Y to be flat over O.

The proof that analytic normality of Y implies that Y is normal is similar.
Indeed, analytic normality by definition means that the completion of A at each of
its maximal ideals is normal. This completion is faithfully flat over the localization
of Spec A at its corresponding maximal ideal, and so [Stal3, Tag 033G] implies that
this localization is also normal. The discussion of the first paragraph then implies
that Y is normal. For the converse direction, we have to deduce normality of the
completions Em from the normality of the corresponding localizations A,,. This
follows from that fact that Y is an excellent scheme (being of finite type over the
complete local ring ), so that each A is an excellent ring [Stal3, Tag 0C23]. O

Proposition 3.10.15. The projective morphism X7 — Spec R[FO’H factors through
a projective and scheme-theoretically dominant morphism

(3.10.16) X — Spec RZBT

T

which becomes an isomorphism after inverting w.

Proof. We begin by showing the existence of (3.10.16), and that it induces a bijection
on closed points after inverting w. Since X7 is O-flat, by Lemma 3.10.11, it suffices
to show that the induced morphism

Spec E X X7 — Spec Rg)’l} [1/w]
factors through a morphism
(3.10.17) Spec E x o Xy — Spec RIPT[1 /],

which induces a bijection on closed points.

This can be proved in exactly the same way as [Kis09, Prop. 2.4.8], which
treats the case that 7 is trivial. Indeed, the computation of the D5 of a Galois
representation in the proof of [Kis09, Prop. 2.4.8] goes over essentially unchanged
to the case of a Galois representation coming from C™BT, and finite type points of
Spec R;’BT[l /@] yield p-divisible groups and thus Breuil-Kisin modules exactly as
in the proof of [Kis09, Prop. 2.4.8] (bearing in mind Lemma 3.5.16 above). The
tame descent data comes along for the ride.

The morphism (3.10.17) is a projective morphism whose target is Jacobson, and
which induces a bijection on closed points. It is thus proper and quasi-finite, and
hence finite. Its source is reduced (being even normal, by Lemma 3.10.11), and its
target is normal (as it is even regular, as we noted above). A finite morphism whose
source is reduced, whose target is normal and Noetherian, and which induces a
bijection on finite type points, is indeed an isomorphism. (The connected components
of a normal scheme are integral, and so base-changing over the connected components
of the target, we may assume that the target is integral. The source is a union of
finitely many irreducible components, each of which has closed image in the target.
Since the morphism is surjective on finite type points, it is surjective, and thus
one of these closed images coincides with the target. The injectivity on finite type
points then shows that the source is also irreducible, and thus integral, as it is
reduced. Tt follows from [Stal3, Tag 0ABI] that the morphism is an isomorphism.)
Thus (3.10.17) is an isomorphism. Finally, since RZBT s also flat over O (by its

T

definition), this implies that (3.10.16) is scheme-theoretically dominant. O
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Corollary 3.10.18. Jim R™* = RZPT: thus REPT is a versal ring to Z7 at .

Proof. The theorem on formal functions shows that if we write the scheme-theoretic
image of (3.10.16) in the form Spec B, for some quotient B of R;lGKw , then the
scheme-theoretic image of the morphism (3.10.8) coincides with Spf B. The corol-
lary then follows from Proposition 3.10.15, which shows that (3.10.16) is scheme-

theoretically dominant. |

Proposition 3.10.19. The algebraic stacks Z9%% and Z7% are equidimensional of
dimension [K : Q).

Proof. Let z be a finite type point of Z™%, defined over some finite extension F’
of F, and corresponding to a Galois representation 7 with coefficients in F/. By
Corollary 3.10.18 the ring R;’BT coincides with the versal ring %iLna R™% at x of the

w-adic formal algebraic stack Z7, and so Spf R™% — Spf R;BT X z+ Z7%. Since
Z7 is a w-adic formal algebraic stack, the natural morphism Z™! — Z7 xgpto F is
a thickening, and thus the same is true of the morphism Spf R™!' — Spf R;’BT/w
obtained by pulling the former morphism back over Spf R;’BT /.

Since R;BT is flat over O+ and equidimensional of dimension 5 + [K : Q,], it
follows that R™! is equidimensional of dimension 4 + [K : Q,]. The same is then
true of each R™?, since these are thickenings of R™!, by Lemma 3.10.9 (4).

We have a versal morphism Spf R™% — Z7™% at the finite type point x of Z7%.
It follows from Lemma 3.10.6 that

GLa, spf gra — Spf R™® X 5.0 Spf R

To find the dimension of Z™¢ it suffices to compute its dimension at finite
type points (cf. [Stal3, Tag 0DRX], recalling the definition of the dimension of an
algebraic stack, [Stal3, Tag 0AFP]). It follows from [EG17, Lem. 2.40] applied to
the presentation [Spf RT’“/G\LQ/Spf Rrra) of 2;"‘, together with Remark 3.10.4, that
27 is equidimensional of dimension [K : Q,]. Since Z99:¢ is the union of the Z7¢
by Theorem 3.9.2, 2944 is also equidimensional of dimension [K : Q,] by [Stal3,
Tag 0DRZ]. O

Proposition 3.10.20. The algebraic stacks CTBT:¢

sion [K : Q).

are equidimensional of dimen-

Proof. Let 2’ be a finite type point of C™BT:¢, defined over some finite extension F’
of F, lying over the finite type point = of Z7%. Let T be the Galois representation
with coefficients in F’ corresponding to z, and recall that X3 denotes a projective
Spec R;’BT—scheme whose pull-back )/(\'7 over Spf Ry, . 18 isomorphic to cmBT
Spf R t

. The point 2’ gives rise to a closed point & of X7 (of which 2’ is the
image under the morphism X7 — C™BT). Let @wa denote the complete local ring

X Rdd
‘GKoo

to X7 at the point Z; then the natural morphism Spf (5)(?,5 — C™BT is versal at 7,
CT,BT,a_

so that @X77i/wa is a versal ring for the point =’ of
The isomorphism (3.10.5) induces (after pulling back over C™BT) an isomorphism
(?L\Q/gT ;> )/(:7 Xc™BT )/(:7,
and thence an isomorphism

GLz/éx?,i — OXT.,i Xcr.BT OXT_@.
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Since R™BT is equidimensional of dimension 5 + [K : Q,], it follows from Propo-
sition 3.10.15 that X7 is equidimensional of dimension 5 + [K : Q,], and thus
(taking into account the flatness statement of Lemma 3.10.11) that @Xﬁ;} Jw® is
equidimensional of dimension 4 + [K : Q,]. As in the proof of Proposition 3.10.19,
an application of [EG17, Lem. 2.40] shows that dim, C7BT+¢ is equal to [K : Q,)].

Since x’ was an arbitrary finite type point, the result follows. ([

3.11. The Dieudonné stack. We now specialise the choice of K’ in the following
way. Choose a tame inertial type 7 = n®n’. Fix a uniformiser 7w of K. If 7 is a tame
principal series type, we take K’ = K(ﬂ'l/(”f_l))7 while if 7 is a tame cuspidal type,
we let L be an unramified quadratic extension of K, and set K’ = L(wl/(pw’l)).
Let N be the maximal unramified extension of K in K'. In either case K'/K is a
Galois extension; in the principal series case, we have ¢/ = (pf — e, f/ = f, and
in the cuspidal case we have ¢/ = (p?/ — 1)e, f' = 2f. We refer to this choice of
extension as the standard choice (for the fixed type 7 and uniformiser 7).

For the rest of this section we assume that n # 7’ (we will not need to consider
Dieudonné modules for scalar types).

Let 991 be a Breuil-Kisin module with A-coefficients and descent data of type 7
and height at most 1, and let D := 9t/u9 be its corresponding Dieudonné module
as in Definition 2.2.1. If we write D; := ¢; D, then this Dieudonné module is given
by rank two projective modules D; over A (j = 0,..., f' — 1) with linear maps
F:Dj— Djy; and V : D;j — D;_y (subscripts understood modulo f’) such that
FV =VF =p.

Now, I(K'/K) is abelian of order prime to p, so we can write D = D,) @& D,,
where D, is the submodule on which I(K’/K) acts via 7. Since 9, is obtained from
the projective & 4-module 9 by applying a projector, each D, ; is an invertible
A-module, and F,V induce linear maps F': Dy, ; = D, j4q1 and V : Dy j41 — Dy 5
such that F'V =V F = p.

We can of course apply the same construction with 5’ in the place of 7, obtaining a
Dieudonné module D,,. We now prove some lemmas relating these various Dieudonné
modules. We will need to make use of a variant of the strong determinant condition,
so we begin by discussing this and its relationship to the strong determinant condition
of Subsection 3.5.

Definition 3.11.1. Let (£,£%) be a pair consisting of a rank two projective
Ok @z, A-module £, and an Ok ®z, A-submodule £+t C £, such that Zariski
locally on Spec A4, £ is a direct summand of £ as an A-module.

Then we say that the pair (£, £%) satisfies the Kottwilz determinant condition
over K' if for all a € O/, we have

deta(alth) = [ v(
P:K'+E
as polynomial functions on Ok in the sense of [Kot92, §5].
There is a finite type stack Mg ey over Spec O, with Mg+ qet (Spec A) being the
groupoid of pairs (£, £7) as above which satisfy the Kottwitz determinant condition

over K'. As we have seen above, by a result of Pappas—Rapoport, this stack is flat
over Spec O (see [Kis09, Prop. 2.2.2]).
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Lemma 3.11.2. If A is an E-algebra, then a pair (£,£7) as in Definition 3.11.1
satisfies the Kottwitz determinant condition over K' if and only if £% is a rank one
projective O @z, A-module.

Proof. We may write O ®z, A = K' ®q, A= [],.f,p A, where the embedding
¢ : K' < FE corresponds to an idempotent ey € K’ ®q, A. Decomposing £t
as @yeyp LT, the left-hand side of the Kottwitz determinant condition becomes
[1, deta(ale,£) = 1, P(a)™kaes " Tt follows that the Kottwitz determinant
condition is satisfied if and only if the projective A-module e, £ has rank one for
all v, which is equivalent to £ being a rank one projective K’ ®q, A-module, as
required. [

Proposition 3.11.3. If M is an object of C7BT(A), then the pair
(I F(u) O, n Do/ B (1))
satisfies the Kottwitz determinant condition for K'.

Proof. Let C™BT be the closed substack of C7 consisting of those 9 for which
the pair (0/E(u)0N, im $op / E(u)N) satisfies the Kottwitz determinant condition
for K’. We need to show that C™BT is a closed substack of C™BT". Since CBT is
flat over Spf O by Corollary 3.8.3, it is enough to show that if A is an E-algebra,
then C™BT(A) = C™BT'(A).

To see this, let 9 be an object of C"(A4). By Lemma 3.11.2, 91 is an object
of C™BT'(A) if and only if im gy /E(u)0MN is a rank one projective K’ ®q, A-module.
Similarly, M is an object of C™BT(A) if and only if for each &, (im ®Pox )¢/ E(u)M¢
is a rank one projective N ®q, A-module. Since

im ‘I)gm/E(u)f)ﬁ = @g(im (I)gm)g/E(’U,)mg,
the equivalence of these two conditions is clear. ([

Lemma 3.11.4. If (£,£") is an object of Mg+ aet(A) (i.e. satisfies the Kottwitz
determinant condition over K'), then the morphism /\?9;(/®z PRI /\?9;(/@)2 AL
P P

induced by the inclusion £T C £ is identically zero.

Remark 3.11.5. Note that, although £% need not be locally free over O ®z, A, its
exterior square is nevertheless defined, so that the statement of the lemma makes
sense.

Proof of Lemma 3.11.4. Since Mg q¢¢ is O-flat, it is enough to treat the case that
A is O-flat. In this case £, and thus also /\2 £, are O-flat. Given this additional
assumption, it suffices to prove that the morphism of the lemma becomes zero
after tensoring with Q,, over Z,. This morphism may naturally be identified with
the morphism Ai{’@sz £t — Ai{’@sz £ induced by the injection Q, ®z, £ —
Qp ®z, £. Locally on Spec A, this is the embedding of a free K’ ®z, A-module of
rank one as a direct summand of a free K’ ®z, A-module of rank two. Thus /\2 of
the source in fact vanishes, and hence so does /\2 of the embedding. ]

Lemma 3.11.6. If M is an object of C7BT(A), then \* ®on : \* ™M — A>M
is exactly divisible by E(u), i.e. can be written as E(u) times an isomorphism of
S 4-modules.
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Proof. Tt follows from Proposition 3.11.3 and Lemma 3.11.4 that the reduction of
A’ ®9n modulo E(u) vanishes, so we can think of A\® gy as a morphism A @*9N —
E(u) \°M. We need to show that the cokernel X of this morphism vanishes.
Since im oy O F(u)MM, X is a finitely generated A-module, so that in order to
prove that it vanishes, it is enough to prove that X/pX = 0.

Since the formation of cokernels is compatible with base change, this means that
we can (and do) assume that A is an F-algebra. Since the special fibre C™BT is
of finite type over F, we can and do assume that A is furthermore of finite type
over F. The special fibre of C™BT is reduced by Corollary 3.8.3, so we may assume
that A is reduced, and it is therefore enough to prove that X vanishes modulo each
maximal ideal of A. Since the residue fields at such maximal ideals are finite, we
are reduced to the case that A is a finite field, when the result follows from [Kis09,
Lem. 2.5.1]. O

Lemma 3.11.7. There is a canonical isomorphism
{F@F)/p”: Dy;®a Dy j —> Dy jy1 @a Dy j11,
characterised by the fact that it is compatible with change of scalars, and that

p- YFQF)/p”=F®F.

CBT is flat over O, we see that in the universal case, the formula

P FoF)/) =FaF

uniquely determines the isomorphism “(F' ® F)/p” (if it exists). Since any Breuil-
Kisin module with descent data is obtained from the universal case by change of
scalars, we see that the isomorphism “(F ® F')/p” is indeed characterised by the
properties stated in the lemma, provided that it exists.

To check that the isomorphism exists, we can again consider the universal case,
and hence assume that A is a flat O-algebra. In this case, it suffices to check that
the morphism F® F': Dy, ; ®4 Dy j — Dy, j11 ®a Dy j11 is divisible by p, and that
the formula (F' ® F')/p is indeed an isomorphism. Noting that the direct sum over
j=0,...,f —1 of these morphisms may be identified with the reduction modulo u
of the morphism A ®gy : A” @* M — A?9M, this follows from Lemma 3.11.6. [

Proof. Since

The isomorphism “(F ® F)/p” of the preceding lemma may be rewritten as an
isomorphism of invertible A-modules

(3118) HomA(ij, D’?vj""l) ; HomA(Dn’,j—i-ly DU'J)'
Lemma 3.11.9. The isomorphism (3.11.8) takes F to V.

Proof. The claim of the lemma is equivalent to showing that the composite

4oy “(FOF)/p"

Dy j ®a Dy ji1 — Dy ®a Dy j Dy j+1®a Dy j11

coincides with the morphism F' ® id. It suffices to check this in the universal case,
and thus we may assume that p is a non-zero divisor in A, and hence verify the
required identity of morphisms after multiplying each of them by p. The identity to
be verified then becomes

(F® F)o (ideV) = p(F ®id),
which follows immediately from the formula F'V = p. (]
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We now consider the moduli stacks classifying the Dieudonné modules with
the properties we have just established, and the maps from the moduli stacks of
Breuil-Kisin modules to these stacks.

Suppose first that we are in the principal series case. Then there is a moduli
stack classifying the data of the D, ; together with the ' and V, namely the stack

D, = [(Spec W (k)[Xo, Yo, - Xy—1, Y1)/ (X;Y) = D)j=o,..s—1)) /Gh]
where the f copies of G,, act as follows:
(w0, -y up—1) - (X5, Y5) = (wjug X, ujaug 'Y5).
To see this, recall that the stack
[point/Gy)

classifies line bundles, so the f copies of G, in D,, correspond to f line bundles,
which are the line bundles D, ; (j =0,..., f —1). If we locally trivialise these line
bundles, then the maps F': D, ; — Dy, ;11 and V : D, ;41 — D, ; act by scalars,
which we denote by X; and Y; respectively. The f copies of G, are then encoding
possible changes of trivialisation, by units u;, which induce the indicated changes
on the X;’s and Y}’s.
There is then a natural map
C™ = Dy,

classifying the Dieudonné modules underlying the Breuil-Kisin modules with descent
data.

There is a more geometric way to think about what D, classifies. To begin
with, we just rephrase what we’ve already indicated: it represents the functor
which associates to a W(k)-scheme the groupoid whose objects are f-tuples of
line bundles (D, ;);=o,...,f—1 equipped with morphisms X; : D, ; — D, j;1 and
Y; : Dy j+1 — D, ; such that Y;X; = p. (Morphisms in the groupoid are just
isomorphisms between collections of such data.) Equivalently, we can think of this
as giving the line bundle D, o, and then the f line bundles D; := D, j11 ® D;’;7
equipped with sections X; € D; and Y; € D;l whose product in D; ® D;l =0
(the trivial line bundle) is equal to the element p. Note that it superficially looks
like we are remembering f + 1 line bundles, rather than f, but this is illusory, since
in fact Dy ® - - ® Dy_y is trivial; indeed, the isomorphism Dy ® --- ® Dy =0
is part of the data we should remember.

It will be helpful to introduce another stack, the stack G, of n-gauges. This
classifies f-tuples of line bundles D; (j = 0,..., f — 1) equipped with sections
X;€Djand Y € Dj_l. Explicitly, it can be written as the quotient stack

gﬂ = {(SpecW(k)[Xo, Yo, ... ,Xf—l, Yf—l]/(Xij - p)j:o,...,f_1))/GTfn],
where the f copies of G, act as follows:

(V05 -+ s vp-1) - (X5, Y5) = (0;X5, 057 1Y),

There is a natural morphism of stacks D,, — G,, given by forgetting forgetting Dy and
the isomorphism Dy @ D1 ® --- @ Dy_y 5 O. In terms of the explicit descriptions
via quotient stacks, we have a morphism G{, — G/, given by (u;)j—o.. -1
(Ujuj'_jl)j:07,__,f_1, which is compatible with the actions of these two groups on
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Spec W (k)[(X;,Y;)=o0,....;-1]/(X;Y; —p)j=0,....f—1, and we are just considering the
map from the quotient by the first G/, to the quotient by the second G, .

Composing our morphism C™ — D,, with the forgetful morphism D, — G,,, we
obtain a morphism C™ — G,,.

We now turn to the case that 7 is a cuspidal type. In this case our Dieudonné
modules have unramified as well as inertial descent data; accordingly, we let of
denote the element of Gal(K’/K) which acts trivially on 7'/ (P*’=1) and non-trivially
on L. Then the descent data of ¢/ induces isomorphisms D; — Dj s, which are
compatible with the F,V, and which identify D,, ; with D,/ ¢, ;.

If we choose local trivialisations of the line bundles D, o, ..., D, ¢, then the maps
F:Dy;— DyjrrandV Dy — D,y for 0 <j < f—1 are given by scalars X
and Y; respectively. The identification of D, ; and D, r4; given by ©f identifies
D, ; ® D;’}Jrl with Dy r45 ® D;,}fﬂ.+1, which via the isomorphsim (3.11.8) is
identified with Dy, r1j11 ® D;}H. It follows that for 0 < j < f — 2 the data of
Dy, Dy jt1 and Dy i recursively determines Dy ¢y 41. From Lemma 3.11.9
we see, again recursively for 0 < j < f — 2, that there are unique trivialisations
of Dy ¢y1,...,Dpof_q such that F' : Dy ¢y — Dy i1 is given by Y;, and
Vi Dy s+j+1 — Dy pyj is given by X;. Furthermore, there is some unit o such
that F' : Dy op_1 — Dy is given by aYy_i, and V' : Dy o — Dy op_1 is given
by a~!'X;_;. Note that the map F21 . Dy, o — D, ¢ is precisely pla.

Consequently, we see that the data of the D, ; (together with the F, V') is classified
by the stack

Dy = |(Spec W(R)[Xo, Yo, .- Xp 1, Yy 1/ (XY = D)j=o,...5-1) X Gun) /G,
where the f + 1 copies of G, act as follows:
(uoy - up—1,up) - ((X5,Y5), @) = ((ujuyy X, uiau; 'Y;), a).
We again define
Gy = [(Spec W (k)[ X0, Yo, » Xy—1,Yy-1]/(X;Y) = D)j=o,....5-1)) /Gl
where the f copies of G, act as
(Vo -y vp-1) - (X5, Y5) = (0, X5, 057 1Y5).
There are again natural morphisms of stacks C™ — D, — G,,, where the second
morphism is given in terms of the explicit descriptions via quotient stacks as follows:
we have a morphism G/+' — G/ given by (uj)j=o,....f (ujujjl)j:o,mf,l, and
the morphism D,, — G, is the obvious one which forgets the factor of G,, coming
from a.

For our analysis of the irreducible components of the stacks C"BT!1 at the end
of Section 4, it will be useful to have a more directly geometric interpretation
of a morphism S — G,, in the case that the source is a flat W (k)-scheme, or,
more generally, a flat p-adic formal algebraic stack over Spf W (k). In order to
do this we will need some basic material on effective Cartier divisors for (formal)
algebraic stacks; while it is presumably possible to develop this theory in considerable
generality, we only need a very special case, and we limit ourselves to this setting.

The property of a closed subscheme being an effective Cartier divisor is not
preserved under arbitrary pull-back, but it is preserved under flat pull-back. More
precisely, we have the following result.
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Lemma 3.11.10. If X is a scheme, and Z is a closed subscheme of X, then the
following are equivalent:

(1) Z is an effective Cartier divisor on X.

(2) For any flat morphism of schemes U — X, the pull-back Z xx U is an
effective Cartier divisor on U.

(8) For some fpgc covering {X; — X} of X, each of the pull-backs Z X x X; is
an effective Cartier divisor on X;.

Proof. Since Z is an effective Cartier divisor if and only if its ideal sheaf Tz is
an invertible sheaf on X, this follows from the fact that the invertibility of a
quasi-coherent sheaf is a local property in the fpgc topology. O

Lemma 3.11.11. If A is a Noetherian adic topological ring, then pull-back under the
natural morphism Spf A — Spec A induces a bijection between the closed subschemes
of Spec A and the closed subspaces of Spf A.

Proof. Tt follows from [Stal3, Tag 0ANQ)] that closed immersions Z — Spf A are
necessarily of the form Spf B — Spf A, and correspond to continuous morphisms
A — B, for some complete linearly topologized ring B, which are taut (in the
sense of [Stal3, Tag 0AMX]), have closed kernel, and dense image. Since A is
adic, it admits a countable basis of neighbourhoods of the origin, and so it follows
from [Stal3, Tag OAPT] (recalling also [Stal3, Tag 0AMV]) that A — B is surjective.
Because any ideal of definition I of A is finitely generated, it follows from [Stal3, Tag
0APU] that B is endowed with the I-adic topology. Finally, since A is Noetherian,
any ideal in A is [-adically closed. Thus closed immersions Spf B — Spf A are
determined by giving the kernel of the corresponding morphism A — B, which can
be arbitrary. The same is true of closed immersions Spec B — Spec A, and so the
lemma follows. (I

Definition 3.11.12. If A is a Noetherian adic topological ring, then we say that a
closed subspace of Spf A is an effective Cartier divisor on Spf A if the corresponding
closed subscheme of Spec A is an effective Cartier divisor on Spec A.

Lemma 3.11.13. Let Spf B — Spf A be a flat adic morphism of Noetherian affine
formal algebraic spaces. If Z — Spt A is a Cartier divisor, then Z xgpr 4 Spf B —
Spf B is a Cartier divisor. Conversely, if Spf B — Spf A is furthermore surjective,
and if Z — Spf A is a closed subspace for which the base-change Z Xgps o Spf B —
Spf B is a Cartier divisor, then Z is a Cartier divisor on Spf A.

Proof. The morphism Spf B — Spf A corresponds to an adic flat morphism A — B
([Stal3, Tag 0ANO] and [Eme, Lem. 8.18]) and hence is induced by a flat morphism
Spec B — Spec A, which is furthermore faithfully flat if and only if Spf B — Spf A
is surjective (again by [Eme, Lem. 8.18]). The present lemma thus follows from
Lemma 3.11.10. (]

The preceding lemma justifies the following definition.

Definition 3.11.14. We say that a closed substack Z of a locally Noetherian
formal algebraic stack X' is an effective Cartier divisor on X if for any morphism
U — X whose source is a Noetherian affine formal algebraic space, and which is
representable by algebraic spaces and flat, the pull-back Z xx U is an effective
Cartier divisor on U.
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We consider the W (k)-scheme Spec W (k)[X,Y]/(XY — p), which we endow with
a Gp-action via u - (X,Y) := (uX,u~'Y). There is an obvious morphism

Spec W (k)[X, Y]/(XY — p) — Spec W (k)[X] = Al

given by (X,Y) — X, which is G,,-equivariant (for the action of G,, on A! given
by u- X :=uX), and so induces a morphism

(3.11.15) [(Spec W (k) [X, Y]/(XY = p))/Gi] = [A /G-

Lemma 3.11.16. If X is a locally Noetherian p-adic formal algebraic stack which
is furthermore flat over Spf W (k), then the groupoid of morphisms

X = [Spec W(R)[X, Y]/(XY ~ p)/G]

is in fact a setoid, and is equivalent to the set of effective Cartier divisors on X that
are contained in the effective Cartier divisor (Speck) Xgprw (k) X on X.

Proof. Essentially by definition (and taking into account [Eme, Lem. 8.18]), it
suffices to prove this in the case when X' = Spf B, where B is a flat Noetherian adic
W (k)-algebra admitting (p) as an ideal of definition. In this case, the restriction
map

[Spec W (k)[X, Y]/(XY —p)/Gm](Spec B) — [Spec W (K)[X, Y]/(XY —p)/Gn](Spf B)

is an equivalence of groupoids. Indeed, the essential surjectivity follows from the
(standard and easily verified) fact that if {M;} is a compatible family of locally free
B/p'B-modules of rank one, then M := @Ml is a locally free B-module of rank
one, for which each of the natural morphisms M /p‘M — M; is an isomorphism.
The full faithfulness follows from the fact that a locally free B-module of rank one is
p-adically complete, and so is recovered as the inverse limit of its compatible family
of quotients {M /p*M}.

We are therefore reduced to the same statement with X = Spec B. The com-
posite morphism Spec B — [Al/G,,] induced by (3.11.15) corresponds to giving a
pair (D, X) where D is a line bundle on Spec B, and X is a global section of D~1.
Indeed, giving a morphism Spec B — [A!/G,,] is equivalent to giving a G,,-torsor
P — Spec B, together with a G,,-equivariant morphism P — A'. Giving a G,-
torsor P over Spec B is equivalent to giving an invertible sheaf D on Spec B (the
associated G,,-torsor is then obtained by deleting the zero section from the line bun-
dle D — X corresponding to D), and giving a G,-equivariant morphism P — A!
is equivalent to giving a global section of D1,

It follows that giving a morphism Spec B — [Spec W (k)[X,Y]/(XY — p)/G]
corresponds to giving a line bundle D and sections X € D', Y € D satisfying
XY = p. Tosay that B is flat over W (k) is just to say that p is a regular element on B,
and so we see that X (resp. Y) is a regular section of D~ (resp. D). Again, since p is
a regular element on B, we see that Y is uniquely determined by X and the equation
XY = p, and so giving a morphism Spec B — [Spec W (k)[X,Y]/(XY — p)/G]
is equivalent to giving a line bundle D and a regular section X of D!, such that
pB C X ®pD C D !®pD -+ B; this last condition guarantees the existence of
the (then uniquely determined) Y.

Now giving a line bundle D on Spec B and a regular section X € D~ is the same
as giving the zero locus D of X, which is a Cartier divisor on Spec B. (There is a
canonical isomorphism (D, X) = (Zp, 1), where Zp denotes the ideal sheaf of D.)
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The condition that pB C X ®p D is equivalent to the condition that p € Zp, i.e.
that D be contained in Spec B/pB, and we are done. (]

Lemma 3.11.17. If S is a locally Noetherian p-adic formal algebraic stack which
is flat over W (k), then giving a morphism S — G, over W (k) is equivalent to giving
a collection of effective Cartier divisors D; on' S (j =0,...,f — 1), with each D;
contained in the Cartier divisor S cut out by the equation p =0 on S (i.e. the special
fibre of S).

Proof. This follows immediately from Lemma 3.11.16, by the definition of G,. [

4. EXTENSIONS OF RANK ONE BREUIL-KISIN MODULES WITH DESCENT DATA

The goal of this section is to construct certain universal families of extensions
of rank one Breuil-Kisin modules over F with descent data, and to use these to
describe the generic behaviour of the various irreducible components of the special
fibres of C™BT and Z7.

In Subsection 4.1 we present some generalities on extensions of Breuil-Kisin
modules. In Subsection 4.3 we explain how to construct our desired families of
extensions. In Subsection 4.4 we recall the fundamental computations related to
extensions of rank one Breuil-Kisin modules from [DS15], to which the results of
Subsection 4.3 will be applied.

We assume throughout this section that [K’ : K] is not divisible by p; since we
are assuming throughout the paper that K’/K is tamely ramified, this is equivalent
to assuming that K’ does not contain an unramified extension of K of degree p. In
our final applications K’/K will contain unramified extensions of degree at most 2,
and p will be odd, so this assumption will be satisfied. (In fact, we specialize to
such a context begining in Subsection 4.7.)

4.1. Extensions of Breuil-Kisin modules with descent data. When dis-
cussing the general theory of extensions of Breuil-Kisin modules, it is convenient to
embed the category of Breuil-Kisin modules in a larger category which is abelian,
contains enough injectives and projectives, and is closed under passing to arbitrary
limits and colimits. The simplest way to obtain such a category is as the category
of modules over some ring, and so we briefly recall how a Breuil-Kisin module
with A-coefficients and descent data can be interpreted as a module over a certain
A-algebra.

Let & 4[F] denote the twisted polynomial ring over & 4, in which the variable F'
obeys the following commutation relation with respect to elements s € & 4:

F-s=y(s)-F.

Let G 4[F,Gal(K'/K)] denote the twisted group ring over G 4[F], in which the
elements g € Gal(K’/K) commute with F, and obey the following commutation
relations with elements s € & 4:

g-s=g(s)-g.
One immediately confirms that giving a left & 4[F, Gal(K'/K)]-module 9 is equiva-
lent to equipping the underlying & 4-module 9 with a ¢-linear morphism ¢ : 9 —
M and a semi-linear action of Gal(K”’/K) which commutes with ¢.
In particular, if we let C(A) denote the category of left G4[F, Gal(K'/K)]-
modules, then a Breuil-Kisin module with descent data from K’ to K may naturally
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be regarded as an object of K(A). In the following lemma, we record the fact
that extensions of Breuil-Kisin modules with descent data may be computed as
extensions in the category KC(A).

Lemma 4.1.1. If 0 — MM — M — M’ — 0 is a short exact sequence in K(A),
such that MM (resp. M) is a Breuil-Kisin module with descent data of rank d' and
height at most h' (resp. of rank d” and height at most h'""), then MM is a Breuil-Kisin
module with descent data of rank d' + d"” and height at most h' + h'".

More generally, if E(u)" € Anng , (coker gy ) Anng , (coker @y ), then M is a
Breuil-Kisin module with descent data of height at most h.

Proof. Note that since ®gn/[1/E(u)] and ®on[1/FE(u)] are both isomorphisms by
assumption, it follows from the snake lemma that ®on[1/FE(u)] is isomorphism.
Similarly we have a short exact sequence of & 4-modules

0 — coker ®oyr — coker Poy — coker oy — 0.
The claims about the height and rank of 9t follow immediately. O

We now turn to giving an explicit description of the functors Ext’(9)t, ) for a
Breuil-Kisin module with descent data 1.

Definition 4.1.2. Let 9t be a Breuil-Kisin module with A-coefficients and descent
data (of some height). If 9 is any object of K(A), then we let Cgy;(91) denote the
complex

Homg , jqai(k7 /1)) (I, N) — Home , jGai(x7 /5] (07, N),
with differential being given by

a— Py o a— ao dgy.

Also let @3, denote the map Ciy (M) — Cay(N) given by o — o o Poy. When M
is clear from the context we will usually suppress it from the notation and write
simply C* ().

Each C*(M) is naturally an &%-module. The formation of C'*(N) is evidently
functorial in 9, and is also exact in 91, since M, and hence also p*IM, is projective
over G 4, and since Gal(K'/K) has prime-to-p order. Thus the cohomology functors
H°(C*(-)) and H'(C*(-)) form a é-functor on K(A).

Lemma 4.1.3. There is a natural isomorphism
Homyc(4) (M, ) = H*(C*(-)).
Proof. This is immediate. (I

It follows from this lemma and a standard dimension shifting argument (or,
equivalently, the theory of §-functors) that there is an embedding of functors

(4.1.4) Exty(a) (9, ) = H'(C*(-)).

Lemma 4.1.5. The embedding of functors (4.1.4) is an isomorphism.

Proof. We first describe the embedding (4.1.4) explicitly. Suppose that
0—=-N—=C—=M—=0

is an extension in IC(A). Since M is projective over &4, and since Gal(K'/K) is
of prime-to-p order, we split this short exact sequence over the twisted group ring
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G4[Gal(K'/K)], say via some element o € Home , [cai(x”/x)) (9N, €). This splitting
is well-defined up to the addition of an element a € Homg , [qai(x7/ &) (I, N).
This splitting is a homomorphism in I(A) if and only if the element
q)@ o SD*O' — 0 O (bgﬁ S HomGA[Gal(K’/K)](@*m’ 9’1)
vanishes. If we replace o by o + «, then this element is replaced by
(Pg o o — 00 Pgy) + (P op a— aodoy).
Thus the coset of ®¢ 0 p*o — 0 0 Py in H'(C*(MN)) is well-defined, independent of
the choice of o, and this coset is the image of the class of the extension & under the
embedding
(4.1.6) Exty(4)(9,0N) < H' (C*(MN))

(up to a possible overall sign, which we ignore, since it doesn’t affect the claim of
the lemma).

Now, given any element v € Homg ,[gai(k’ k) ("M, N), we may give the
G 4[Gal(K'/K)]-module & := 9N @& M the structure of a & 4[F, Gal(K'/K)]-module
as follows: we need to define a ¢-linear morphism & — €&, or equivalently a linear
morphism ®¢ : p*¢& — & We do this by setting

L @m 14
vem (B0 )
Then € is an extension of M by N, and if we let o denote the obvious embedding of
M into &, then one computes that
v==®g oy o — 0o Poy.

This shows that (4.1.6) is an isomorphism, as claimed. O

Another dimension shifting argument, taking into account the preceding lemma,
shows that Ext,ZC(A)(EJJT, ~) embeds into H?(C*®(-)). Since the target of this embed-

ding vanishes, we find that the same is true of the source. This yields the following
corollary.

Corollary 4.1.7. If 9 is a Breuil-Kisin module with A-coefficients and descent
data, then Extz,C(A) (om,-) =0.

We summarise the above discussion in the following corollary.

Corollary 4.1.8. If 9 is a Breuil-Kisin module with A-coefficients and descent
data, and M is an object of K(A), then we have a natural short exact sequence

0 — Homyc(4) (M, N) — CO(N) — CH(N) = Extie 4y (M, N) — 0.

The following lemma records the behaviour of these complexes with respect to
base change.

Lemma 4.1.9. Suppose that M, N are Breuil-Kisin modules with descent data
and A-coefficients, that B is an A-algebra, and that Q is a B-module. Then the
complezes Cyp (N @AQ) and Cgﬁ @AB(‘)’I @AQ) coincide, the former complex formed
with respect to K(A) and the latter with respect to K(B).
Proof. Indeed, there is a natural isomorphism

Homg , (Gal(x7,/ 1)) (D, ND4Q) = Home , (Gai(r/5)) (M BB, NBAQ),

and similarly with ¢*9 in place of 9. (]
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The following slightly technical lemma is crucial for establishing finiteness prop-
erties, and also base-change properties, of Exts of Breuil-Kisin modules.

Lemma 4.1.10. Let A be a O/w®-algebra for some a > 1, suppose that M is a
Breuil-Kisin module with descent data and A-coefficients, of height at most h, and
suppose that N is a u-adically complete, u-torsion free object of K(A).

Let C* be the complex defined in Definition 4.1.2, and write § for its differential.
Suppose that Q is an A-module with the property that C* @4 Q is v-torsion free for
1=0,1 and v-adically separated for i = 0.

Then:

(1) For any integer M > (eah +1)/(p — 1), ker(§ ® idg) NvMC% ®4 Q = 0.
(2) For any integer N > (peah +1)/(p — 1), 6 ® idg induces an isomorphism

(@3) (0N CT ®4 Q) 0N (CT ®A Q).
Consequently, for N as in (2) the natural morphism of complexes of A-modules

(C024Q "=F C194Q) - [("2aQ/ (@) (N C'24Q)) "F C124Q v C'@4Q)
18 a quasi-isomorphism.

Since we are assuming that the C? ® 4 Q are v-torsion free, the expression
v"C (M)® 4Q may be interpreted as denoting either v™ (C*(M)®4Q) or (v"CH(N))®4
@, the two being naturally isomorphic.

Remark 4.1.11. Before giving the proof of Lemma 4.1.10, we observe that the
hypotheses on the C? ® 4 @) are satisfied if either Q) = A, or else 91 is a projective
G 4-module and @ is a finitely generated B-module for some finitely generated
A-algebra B. (Indeed C!' ®4 Q is v-adically separated as well in these cases.)

(1) Since 9 is projective of finite rank over A[[u]], and since N is u-adically
complete and u-torsion free, each C? is v-adically separated and v-torsion free. In
particular the hypothesis on @ is always satisfied by @ = A. (In fact since N is
u-adically complete it also follows that the C? are v-adically complete. Here we
use that Gal(K’/K) has order prime to p to see that C° is an &%-module direct
summand of Homg , (90,91), and similarly for C*.)

(2) Suppose N is a projective & 4-module. Then the C* are projective &%-modules,
again using that Gal(K’/K) has order prime to p. Since each C*(0M)/vC* (M) is
A-flat, it follows that C*(M) ®4 Q is v-torsion free. If furthermore B is a finitely
generated A-algebra, and @ is a finitely generated B-module, then the C*(9) ®4 Q
are v-adically separated (being finitely generated modules over the ring A[[v]] @4 B,
which is a finitely generated algebra over the Noetherian ring A[[v]], and hence is
itself Noetherian).

Proof of Lemma 4.1.10. Since p® = 0 in A, there exists H(u) € &4 with ue'th =
E(u)"H(u) in &4. Thus the image of ®gy contains u 9 = v*"M, and there
exists a map T : 9 — ©*M such that $gp o T is multiplication by v,

We begin with (1). Suppose that f € ker(§ ®idg) Nv™C° @4 Q. Since C° ®4 Q
is v-adically separated, it is enough, applying induction on M, to show that f €
MO @4 Q. Since f € ker(§ ® idg), we have f o ®gy = Py 0 p*f. Since
fevMC®®4 Q, we have fo ®gp = Py o @ f € vPMC! @4 Q. Precomposing
with T gives v°*" f € vPM (00 ® 4 Q. Since C° ® 4 Q is v-torsion free, it follows that
fevpM—eah00 g Q CuMH1CO @4 Q, as required.
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We now move on to (2). Set M = N — eah. By precomposing with T we see
that oo ®gy € VNVNC! @4 Q implies a € vYMC? ® 4 Q; from this, together with the
inequality pM > N, it is straightforward to check that

(@3) (N CT @4 Q) = (0 ®@idg) (N C ®4 Q) NvMC @4 Q.

Note that M satisfies the condition in (1). To complete the proof we will show that
for any M as in (1) and any N > M + eah the map ¢ induces an isomorphism

(6 ®ido) N C @4 Q)NMC% @4 Q T vV O @4 Q.
By (1), § ® idg induces an injection (§ ® idg) *(vVC! @4 Q) NVMCO @4 Q —

vNCT @4 Q, so it is enough to show that (6 ® idg)(vMC° ®4 Q) 2 vNC! @4 Q.
Equivalently, we need to show that
WNC' @4 Q = (C'®4Q)/(6®idg) (v C?®4 Q)
is identically zero. Since the formation of cokernels is compatible with tensor
products, we see that this morphism is obtained by tensoring the corresponding
morphism
oNCt — /S5 (0MCY)

with @ over A, so we are reduced to the case @ = A. (Recall from Remark 4.1.11(1)
that the hypotheses of the Lemma are satisfied in this case, and that C! is v-adically
separated.)

We claim that for any g € vNC?!, we can find an f € vV ~¢*"CY such that §(f) —
g € vP(N=eah) 01 - Admitting the claim, given any g € v™VC?', we may find h € v C°
with 6(h) = g by successive approximation in the following way: Set hg = f for f as
in the claim; then hy € vV =¢?"C% C vM (0, and 6(hg) —g € vPIN—eah)C1 C N+ 1,
Applying the claim again with N replaced by N + 1, and g replaced by g — d(hg), we
find f € pN+1—eah 0 C oM+1LO0 with §(f) *g‘l*(S(ho) c vp(NJrlfeah)Cl C oN+1OoT,
Setting hy = hg + f, and proceeding inductively, we obtain a Cauchy sequence
converging (in the v-adically complete A[[v]]-module C°) to the required element h.

It remains to prove the claim. Since §(f) = Py 0 *f — f o Pgy, and since if
f e vV=eahCO0 then ®y 0 p* f € vP(N—€ah)C1 it is enough to show that we can find
an f € vV 7¢O with f o ®gy = —g. Since Pgy is injective, the map Y o Pgy is also
multiplication by v°%", and so it suffices to take f with v°®"f = —go T € vNCY. O

Corollary 4.1.12. Let A be a Noetherian O/w®-algebra, and let M, N be Breuil-

Kisin modules with descent data and A-coefficients. If B is a finitely generated

A-algebra, and Q is a finitely generated B-module, then the natural morphism of

complexes of B-modules

s®id ~ s ~
[COM) @4 Q"= C1 (M ®4 Q] = [COMBAQ) — C'(NB4Q)]
18 a quasi-isomorphism.
Proof. By Remarks 4.1.11 and 2.1.8(2) we can apply Lemma 4.1.10 to both C*(M &4 Q)

and C*(M) ®4 Q, and we see that it is enough to show that the natural morphism
of complexes

[(COM) @4 Q) /(i @) (WVCH (M) @4 Q) — (CLM) @4 Q)/(WNCH(N) @4 Q)]

!

[COMEAQ)/ (Bl) LN CI M BAQ)) > CLNBAQ) /N C N BAQ)]
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is a quasi-isomorphism. In fact, it is even an isomorphism. O

Proposition 4.1.13. Let A be a O/w®-algebra for some a > 1, and let M, N be
Breuil-Kisin modules with descent data and A-coefficients. Then Ext,IC(A) (o, N)

and Ext,lc(A) (9, 0/u'N) fori > 1 are finitely presented A-modules.

If furthermore A is Noetherian, then Homyc()(9M, M) and Homy(a) (M, DN/u'MN)
for i >1 are also finitely presented (equivalently, finitely generated) A-modules.

Proof. The statements for 9t/u'M follow easily from those for M, by considering
the short exact sequence 0 — w9 — N — N/u'N — 0 in K£(A) and applying
Corollary 4.1.7. By Corollary 4.1.8, it is enough to consider the cohomology of the
complex C*®. By Lemma 4.1.10 with @) = A, the cohomology of C*® agrees with the
cohomology of the induced complex
CO/((@3n) (N CY)) = Ot N O,

for an appropriately chosen value of N. It follows that for an appropriately chosen
value of NV, Ext,lc( A) (9, N) can be computed as the cokernel of the induced morphism
COJoNC0 — ¢t /N O,

Under our hypothesis on 91, C°/vNC? and C'/v™NC! are finitely generated
projective A-modules, and thus finitely presented. It follows that Ext,lq 4) (M, N) is
finitely presented.

In the case that A is furthermore assumed to be Noetherian, it is enough to note
that since vNCY C (®3;) "1 (vNC1), the quotient CO/((Pg,) (v C1)) is a finitely
generated A-module. O

Proposition 4.1.14. Let A be a O/w®-algebra for some a > 1, and let M and N
be Breuil-Kisin modules with descent data and A-coefficients. Let B be an A-
algebra, and let fz : MRsB — NR4B be a morphism of Breuil-Kisin modules
with B-coefficients.

Then there is a finite type A-subalgebra B’ of B and a morphism of Breuil-Kisin
modules fpr : MR B' — N@4B' such that fp is the base change of fz.

Proof. By Lemmas 4.1.3 and 4.1.9 (the latter applied with @ = B) we can and do
think of fp as being an element of the kernel of § : CO(N®4B) — C*(MD4B), the
complex C'* here and throughout this proof denoting Cg;; as usual.

Fix N as in Lemma 4.1.10, and write fp for the corresponding element of
COM@4B) /v = (C°(MN)/v™N)® 4 B (this equality following easily from the assump-
tion that 90t and 9t are projective & 4-modules of finite rank). Since C°(N) /v is a
projective A-module of finite rank, it follows that for some finite type A-subalgebra
B’ of B, there is an element f 5, € (CO(N)/vN)@4 B’ = CO(M@4B’)/v" such that
fp ®p B = fg. Denote also by fp, the induced element of

COM@aB)/(P3y) (0N CHMEBAB)).
By Lemma 4.1.10 (and Lemma 4.1.3) we have a commutative diagram with exact
rows

0—— HY(C*(M®aB)) —— CON&4B")/((®3) (0N CL (N ®4B))) — 2 L CYMBAB) N

| J J

0 —— HY(C*(M@aB)) —— CONBaB)/ ((93) L (WNCHNB4B))) —2— CHN@aB) /N
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in which the vertical arrows are induced by ® g/ B. By a diagram chase we only need
to show that 6(f /) = 0. Since §(fg) = 0, it is enough to show that the right hand
vertical arrow is an injection. This arrow can be rewritten as the tensor product
of the injection of A-algebras B’ — B with the flat (even projective of finite rank)
A-module C*(MN)/v™, so the result follows. O

We have the following key base-change result for Ext!’s of Breuil-Kisin modules
with descent data.

Proposition 4.1.15. Suppose that M and N are Breuil-Kisin modules with de-
scent data and coefficients in a O/w*-algebra A. Then for any A-algebra B, and
for any B-module Q, there are natural isomorphisms Ext,lc(A)(Em, N @4 Q —

Extic(p)(M@aB,N®4B) @p Q — Exticp)(MDaB,N®4Q).

Proof. We first prove the lemma in the case of an A-module Q. It follows from
Lemmas 4.1.5 and 4.1.10 that we may compute Ext,lc(A) (9, M) as the cokernel of
the morphism

COM) [N COI) 5 OO /0N O (W),
for some sufficiently large value of N (not depending on 91), and hence that we may
compute Ext,lc( 4)(M,N) ®4 Q as the cokernel of the morphism

(COM) /N COM)) @4 Q —> (CH(M) /N C (M) @4 Q.

We may similarly compute Ext,lc( A)(Sﬁ, M ®4Q) as the cokernel of the morphism

COMBAQ) [oNCOMBAQ) —> CHNBAQ) /0N CH M BAQ).

(Remark 2.1.8 (2) shows that 0 & 4 Q satisfies the necessary hypotheses for Lemma 4.1.10
to apply.) Once we note that the natural morphism

(CHOM) [N CH M) @4 Q = C'(MNBAQ) /0N C' (M B AQ)

is an isomorphism for ¢ = 0 and 1 (because 9 is a finitely generated projective
& 4-module), we obtain the desired isomorphism

EXtIIC(A) <m7 m) ®a Q L> EthlC(A) <m7 N @AQ)

If B is an A-algebra, and @ is a B-module, then by Lemma 4.1.9 there is a
natural isomorphism

Extic 4y (M, ND4Q) — Exticp) (MB4B,ND4Q);

combined with the preceding base-change result, this yields one of our claimed
isomorphisms, namely

Extic 4y (M, M) ®4 Q — Extypy (MDaB, NDAQ).
Taking @ to be B itself, we then obtain an isomorphism
Extic 4y (9, N) ®4 B — Ext ) (M4 B, N&B).
This allows us to identify Ext,lc( 4) (M, 9N) ®4 Q, which is naturally isomorphic to

(Extic 4y (M, N) ®4 B) @p Q, with Extyp (M&aB,N©AB) @p Q, yielding the
second claimed isomorphism. [
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In contrast to the situation for extensions (cf. Proposition 4.1.15), the formation
of homomorphisms between Breuil-Kisin modules is in general not compatible with
arbitrary base-change, as the following example shows.

Ezample 4.1.16. Take A = (Z/pZ)[z*',y*!], and let M, be the free Breuil-
Kisin module of rank one and A-coefficients with p(e) = ze for some genera-
tor e of 9M,. Similarly define M, with p(e¢’) = ye’ for some generator e’ of
9M,. Then Homy(g)(M,,M,) = 0. On the other hand, if B = A/(z — y)
then M, @ 4B and m, ®4 B are isomorphic, so that Homy(p) (M, ®B, m, ®B) %
HOHl}C(A) (mw,my) ®a B.

However, it is possible to establish such a compatibility in some settings. Corol-
lary 4.1.18, which gives a criterion for the vanishing of Homy gy (9 ®4B,M®4B)
for any A-algebra B, is a first example of a result in this direction. Lemma 4.1.20
deals with flat base change, and Lemma 4.1.21, which will be important in Sec-
tion 4.3, proves that formation of homomorphisms is compatible with base-change
over a dense open subscheme of Spec A.

Proposition 4.1.17. Suppose that A is a Noetherian O/w®-algebra, and that MM
and M are objects of K(A) that are finitely generated over & 4 (or, equivalently, over
Al[u]]). Consider the following conditions:

(1) HomK(B)(ED?QA@AB,UI@AB) = 0 for any finite type A-algebra B.
(2) Homy(s(m)) (M @4 (M), N @4 £(m)) =0 for each mazimal ideal m of A.
(3) Homg(ay(M,N®4 Q) =0 for any finitely generated A-module Q.
Then we have (1) = (2) < (3). If A is furthermore Jacobson, then all three
conditions are equivalent.

Proof. If m is a maximal ideal of A, then x(m) is certainly a finite type A-algebra,
and so evidently (1) implies (2). It is even a finitely generated A-module, and so
also (2) follows from (3).

We next prove that (2) implies (3). To this end, recall that if A is any ring,
and M is any A-module, then M injects into the product of its localizations at all
maximal ideals. If A is Noetherian, and M is finitely generated, then, by combining
this fact with the Artin—Rees Lemma, we see that M embeds into the product of
its completions at all maximal ideals. Another way to express this is that, if I runs
over all cofinite length ideals in A (i.e. all ideals for which A/T is finite length), then
M embeds into the projective limit of the quotients M/IM (the point being that
this projective limit is the same as the product over all m-adic completions). We
are going to apply this observation with A replaced by & 4, and with M taken to
be M ®4 @ for some finitely generated A-module Q.

In Al[u]], one sees that w lies in the Jacobson radical (because 1+ fu is invertible
in Al[u]] for every f € A[[u]]), and thus in every maximal ideal, and so the maximal
ideals of A[[u]] are of the form (m,u), where m runs over the maximal ideals of A.
Thus the ideals of the form (I, u™), where [ is a cofinite length ideal in A, are cofinal
in all cofinite length ideals in A[[u]]. Since &4 is finite over A[[u]], we see that the
ideals (I,u™) in & 4 are also cofinal in all cofinite length ideals in A[[u]]. Since A[[u]],
and hence G4, is furthermore Noetherian when A is, we see that if ) is a finitely
generated A-module, and 91 is a finitely generated & 4-module, then M @4 (Q/I1Q)
is w-adically complete, for any cofinite length ideal I in A, and hence equal to the
limit over n of M®4 Q/(I,u™). Putting this together with the observation of the
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preceding paragraph, we see that the natural morphism

N®sQ — lgl‘ﬁ&q (Q/1Q)
I

(where I runs over all cofinite length ideals of A) is an embedding. The induced
morphism

Homye(4) (M, N @4 Q) — Lim Homp(4) (M, N®4 (Q/1Q))
I

is then evidently also an embedding.

Thus, to conclude that Homyc(4)(9M, N @4 Q) vanishes, it suffices to show that
Homyc( 4y (MM, N ®4 (Q/1Q)) vanishes for each cofinite length ideal I in A. An easy
induction on the length of A/I reduces this to showing that Homyc( 4 (9%, N® 4k (m)),
or, equivalently, Homy (,(m)) (93”( ®4 kM), N R4 ﬂ(m)), vanishes for each maximal
ideal m. Since this is the hypothesis of (2), we see that indeed (2) implies (3).

It remains to show that (3) implies (1) when A is Jacobson. Applying the result
“(2) implies (3)” (with A replaced by B, and taking @ in (3) to be B itself as a
B-module) to M4 B and N4 B, we see that it suffices to prove the vanishing of

Homy(p) (M @aB) @5 k(n), M&4B) @p £(n)) = Homya) (M, NDak(n))

for each maximal ideal n of B. Since A is Jacobson, the field x(n) is in fact a finitely
generated A-module, hence M@k(n) = N @4 r(n), and so the desired vanishing is a
special case of (3). O

Corollary 4.1.18. If A is a Noetherian and Jacobson O /w®-algebra, and if M and
N are Breuil-Kisin modules with descent data and A-coefficients, then the following
three conditions are equivalent:

(1) Hom(py(M&aB,N®aB) = 0 for any A-algebra B.

(2) Homyc(s(m)) (M @4 £(m), N @4 k(m)) =0 for each mazimal ideal m of A.

(8) Hom(ay(M, N®a Q) =0 for any finitely generated A-module Q.

Proof. By Proposition 4.1.17, we need only prove that if Homyp) (9 @AB,MN®4B)
vanishes for all finitely generated A-algebras B, then it vanishes for all A-algebras B.
This is immediate from Proposition 4.1.14. O

Corollary 4.1.19. Suppose that 9 and N are Breuil-Kisin modules with de-
scent data and coefficients in a Noetherian O/w®-algebra A, and that furthermore
Homyc(4) (M @4 (M), N @4 £(m)) vanishes for each mazimal ideal m of A. Then

the A-module Ext,lc(A)(fm, M) is projective of finite rank.

Proof. By Proposition 4.1.13, in order to prove that Ext,lc(A) (M, M) is projective
of finite rank over A, it suffices to prove that it is flat over A. For this, it suffices
to show that Q — Ext,lc( 4) (M, M) ®4 Q is exact when applied to finitely generated
A-modules Q. Proposition 4.1.15 (together with Remark 2.1.8 (1)) allows us to
identify this functor with the functor @ — Ext}C(A)(Sm,‘ﬁ ®4 Q). Note that the
functor @ — M R4 Q is an exact functor of @, since G4 is a flat A-module (as A is
Noetherian; see Remark 2.1.4(3)). Thus, taking into account Corollary 4.1.7, we see
that it suffices to show that Homy(4) (9, M ®4 Q) = 0 for each finitely generated A-
module @, under the hypothesis that Homy(a) (93”(@,4 K(m), N4 /{(m)) = 0 for each
maximal ideal m of A. This is the implication (2) = (3) of Proposition 4.1.17. O
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Lemma 4.1.20. Suppose that MM is a Breuil-Kisin modules with descent data and
coefficients in a Noetherian O /w®-algebra A. Suppose that N is either a Breuil-Kisin
module with A-coefficients, or that M = N /uNN', where M’ a Brewil-Kisin module
with A-coefficients and N > 1. Then, if B is a finitely generated flat A-algebra, we
have a natural isomorphism

Homyc(py(M @48, N4 B) — Hompc(a) (M, N) @4 B.
Proof. By Corollary 4.1.8 and the flatness of B, we have a left exact sequence
0 — Homyge(a)(M, M) @4 B = C°(M) @4 B — C' (M) ®4 B
and therefore (applying Corollary 4.1.12 to treat the case that 91 is projective) a
left exact sequence
0 — Homy(4)(M, N) @4 B — CON®4B) — CH(MNB4B).
The result follows from Corollary 4.1.8 and Lemma 4.1.9. O

Lemma 4.1.21. Suppose that M is a Breuil-Kisin module with descent data and
coefficients in a Noetherian O /w®-algebra A which is furthermore a domain. Suppose
also that N is either a Breuil-Kisin module with A-coefficients, or that t = N’ JuN W,
where N is a Breuil-Kisin module with A-coefficients and N > 1. Then there is
some nonzero f € A with the following property: writing M4, = DJT@AAf and
Na, = ‘ﬁ@AAf, then for any finitely generated Ag-algebra B, and any finitely
generated B-module Q, there are natural isomorphisms

Homyc(a,)(Ma,, Na,) ®a, Q — Homy(p)(Ma, @4, B,Na, ®a,B) ®p Q
= Homye(p)(Ma, ®a,B,Ma, ®a,Q).
Proof of Lemma /.1.21. Note that since A is Noetherian, by Remark 2.1.4(3) we
see that 91 is A-flat. By Corollary 4.1.8 we have an exact sequence
0 — Homyc(4) (MM, N) — CO(N) — CH(N) = Extic 4y (M, N) — 0.

Since by assumption 901 is a projective & 4-module, and 9 is a flat A-module, the
C*(M) are also flat A-modules.

By Proposition 4.1.13, Ext,lc(A) (M, M) is a finitely generated A-module, so by
the generic freeness theorem [Stal3, Tag 051R] there is some nonzero f € A such
that Ext,IC(A)(Em, M)y is free over Ay.

Since localisation is exact, we obtain an exact sequence

0 — Homyc(a,) (M, M) s — CO(N) s — CH (M) — Extie 4y (M, M) s — 0
and therefore (applying Corollary 4.1.12 to treat the case that 9 is a Breuil-Kisin
module) an exact sequence
0 — Homyc(a,)(Ma,, Na,) = CO(Na,) = C'(MNa,) — Exty4) (M, N)5 — 0.

Since the last three terms are flat over Ay, this sequence remains exact upon
tensoring over Ay with ). Applying Corollary 4.1.12 again to treat the case that 91
is a Breuil-Kisin module, we see that in particular we have a left exact sequence

0 — Homy(a,)(Ma,, MNa,) @4, Q@ = CO(MNa, ®4,Q) = C' (M4, ®4,Q),

and Corollary 4.1.8 together with Lemma 4.1.9 yield one of the desired isomorphisms,
namely

Hom;C(Af)(f)ﬁAf,mAf) ®Af Q L) HomK(B)(S)JTAf @AfB,‘ﬁAf @AfQ).
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If we consider the case when Q = B, we obtain an isomorphism
Hom,C(Af)(S))tAf7‘ﬁA_f) ®Af B = HomK(B)(mAf @)A_fB, mAf @)AfB).
Rewriting the tensor product —®a, @ as —®a, B ®p @, we then find that
Homyc(py(Ma, ®a, B, N4, @4, B) ®p Q — Homy(p)(Ma, ®a,B,MNa, @a4,Q),
which gives the second desired isomorphism. O

Variants on the preceding result may be proved using other versions of the generic
freeness theorem.

Ezample 4.1.22. Returning to the setting of Example 4.1.16, one can check using
Corollary 4.1.18 that the conclusion of Lemma 4.1.21 (for 9t = 9, and 91 =9M,)
holds with f = 2 —y. In this case all of the resulting Hom groups vanish (c¢f. also the
proof of Lemma 4.3.7). It then follows from Corollary 4.1.19 that Extllc(A)(i)ﬁ, N) ¢
is projective over Ay, so that the proof of Lemma 4.1.21 even goes through with
this choice of f.

As well as considering homomorphisms and extensions of Breuil-Kisin modules,
we need to consider the homomorphisms and extensions of their associated étale ¢-
modules; recall that the passage to associated étale p-modules amounts to inverting
u, and so we briefly discuss this process in the general context of the category K(A).

We let KC(A)[1/u] denote the full subcategory of C(A) consisting of objects on
which multiplication by wu is invertible. We may equally well regard it as the
category of left & 4[1/u][F, Gal(K'/K)]-modules (this notation being interpreted in
the evident manner). There are natural isomorphisms (of bi-modules)

(4.1.23) Sall/u] @, S alF, Cal(K'/K)] = & 4[1/u][F, Gal(K' /K)]
and
(4.1.24) GAlF, Gal(K'/K)] ®s, ©a[l/u] — Sa[l/u][F,Gal(K'/K)].

Thus (since G4 — S 4[1/u] is a flat morphism of commutative rings) the morphism
of rings G4[F, Gal(K'/K)] — S 4[1/u][F, Gal(K'/K)] is both left and right flat.

If 991 is an object of K(A), then we see from (4.1.23) that M[1/u] := S4[l/u|Res ,
M = Sal/u][F, Gal(K'/K)]|®g ,[F,Gai(k" /)2 is naturally an object of K(A)[1/u].
Our preceding remarks about flatness show that 9T — 91[1/u] is an exact functor

K(A) — K(A)[1/u].
Lemma 4.1.25. (1) If M and N are objects of K(A)[1/u], then there is a
natural isomorphism
(2) If M is an object of K(A) and N is an object of K(A)[1/u], then there is a
natural isomorphism
Extic 4y (M, N) = Extic 4y (M[1/u], N),
for alli > 0.
Proof. The morphism of (1) can be understood in various ways; for example, by
thinking in terms of Yoneda Exts, and recalling that K(A)[1/u] is a full subcate-

gory of K(A). If instead we think in terms of projective resolutions, we can begin
with a projective resolution P* — M in K(A), and then consider the induced
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projective resolution B*[1/u] of M[1/u]. Noting that M[1/u] —+ M for any object
M of K(A)[1/u], we then find (via tensor adjunction) that Homy a)(B*, N) —
Homyc(ayp1 /) (B*[1/u], N), which induces the desired isomorphism of Ext’s by pass-
ing to cohomology.

Taking into account the isomorphism of (1), the claim of (2) is a general fact
about tensoring over a flat ring map (as can again be seen by considering projective
resolutions). O

Remark 4.1.26. The preceding lemma is fact an automatic consequence of the
abstract categorical properties of our situation: the functor 9 — 9M[1/u] is left
adjoint to the inclusion K(A)[1/u] C K(A), and restricts to (a functor naturally
equivalent to) the identity functor on KC(A)[1/u].

The following lemma expresses the Hom between étale p-modules arising from
Breuil-Kisin modules in terms of a certain direct limit.

Lemma 4.1.27. Suppose that M is a Breuil-Kisin module with descent data in
a Noetherian O/w®-algebra A, and that M is an object of K(A) which is finitely
generated and u-torsion free as an & g-module. Then there is a natural isomorphism

li%InHOInlc(A) (uzi)ﬁ, ‘ﬁ) = Hom}C(A)[l/u] (m[l/u]a m[l/u])7

where the transition maps are induced by the inclusions w19 C u'IN.

Remark 4.1.28. Note that since 91 is u-torsion free, the transition maps in the
colimit are injections, so the colimit is just an increasing union.

Proof. There are compatible injections Homy(a) (w90, 0) — Homyc (a1 /o (M1 /u], N[1/u]),
taking f/ € Homy( ) (u'O,N) to f € Homyc 4y (M, N[1/u]) where f(m) = u~" f'(u'm).
Conversely, given f € Homyc(4) (9, 91[1/u]), there is some i such that f(90) C u™"N,
as required. O
We have the following analogue of Proposition 4.1.17.

Corollary 4.1.29. Suppose that M and N are Breuil-Kisin modules with descent
data in a Noetherian O/w®-algebra A. Consider the following conditions:

(1) Hom,c(B)[l/u]((W@AB)[l/u],(m@AB)[l/u]) = 0 for any finite type A-

algebra B.

(2) Homyc (s(m))(1/u) (M@ 4 s(m))[1/u], (M@ k(m))[1/u]) =0 for each mazimal
ideal m of A.

(3) Homy(ay1/u) (M[1/u],( M @4 Q)[1/u]) = 0 for any finitely generated A-
module Q.

Then we have (1) = (2) <= (3). If A is furthermore Jacobson, then all three
conditions are equivalent.

Proof. By Lemma 4.1.27, the three conditions are respectively equivalent to the
following conditions.
(1') Homyp) (ul(im ®aB), m@AB) = 0 for any finite type A-algebra B and all
7> 0.
(2") Homy(s(m)) (u' (M ®4 £(m)), N ®4 £(m)) = 0 for each maximal ideal m of
A and all 7 > 0.
(3") Homy(y (uifm, M4 Q) = 0 for any finitely generated A-module @ and all
> 0.
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Since 9 is projective, the first two conditions are in turn equivalent to
(1") Homyp) ((u’i)ﬁ) ®4B, ‘II@AB) = 0 for any finite type A-algebra B and all
© > 0.
(2") Homy(x(my) (') @4 £(m), N @4 r(m)) = 0 for each maximal ideal m of
A and all 7 > 0.

The result then follows from Proposition 4.1.17. O

Definition 4.1.30. If 9t and I are objects of K(A), then we define
ker—Ext,lc(A) (Mm,M) := ker(Ext,lc(A)(E)ﬁ, N) — Ext,lc(A)(fm[l/u], N[1/ul)).

The point of this definition is to capture, in the setting of Lemma 2.3.3, the
non-split extensions of Breuil-Kisin modules whose underlying extension of Galois
representations is split.

Suppose now that 9 is a Breuil-Kisin module. The exact sequence in K(A)
0—=N—N1L/ul - N[L/ul/M—0
gives an exact sequence of complexes

0 —— CO(M) —— COMN[1/u]) —— CO(MN[1/u]/N) ——0

J |

( I
0 —— C1(M) —— C*N[1/u]) —— C*N[1/u]/N) —— 0.

It follows from Corollary 4.1.8, Lemma 4.1.25(2), and the snake lemma that we have
an exact sequence

0 — Homyc(ay (90T, 91) — Homye(4) (9%, N[1/u])

4.1.31
( ) — Homy () (M, N[1/u] /N) — ker-Extyc 4) (M, N) — 0.

Lemma 4.1.32. If M, N are Brewil-Kisin modules with descent data and coeffi-
cients in a Noetherian O/w®-algebra A, and M has height at most h, then f(9M) is
killed by u* for any f € Homy(ay(9M, N[1/u]/N) and any i > |¢'ah/(p —1)].

Proof. Suppose that f is an element of Homy4) (9, N[1/u]/M). Then f(IM) is a
finitely generated submodule of M[1/u]/N, and it therefore killed by u® for some
i > 0. Choosing ¢ to be the exponent of f() (that is, choosing i to be minimal), it
follows that (¢* f)(p*M) has exponent precisely ip. (From the choice of i, we see
that u'~! f(90) is nonzero but killed by u, i.e., it is just a W (k') ® A-module, and
so its pullback by ¢ : &4 — &4 has exponent precisely p. Then by the flatness
of p : G4 — G4 we have uP~1(p* f)(@*M) = uP~Lo* (=1 f(M)) # 0.)

We claim that uf+¢'an(¢o* f)(o*9N) = 0; admitting this, we deduce that i+ e’'ah >
ip, as required. To see the claim, take z € ¢*M, so that Oy ((uie*f)(x))
ul f(®on(x)) = 0. It is therefore enough to show that the kernel of

Doy 0 ™" N[1/u] /™ N — N[L/u]/N
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is killed by u®*": but this follows immediately from an application of the snake
lemma to the commutative diagram

0 <p’fi N1 /u] —— ™ N[1/u]/*N——0
0 N N1/ u] ——— N1/ u] /N ——0

together with the assumption that 91 has height at most h and an argument as in
the first line of the proof of Lemma 4.1.10. |

Lemma 4.1.33. If 9, N are Breuil-Kisin modules with descent data and coeffi-
cients in a Noetherian O/w®-algebra A, and N has height at most h, then for any
i > |e'ah/(p —1)] we have an exact sequence

0 — Homye(4) (u' M, u'DN) — Homye(a) (u'MN, N)
— Homye ) (a9, N/u'MN) — ker-Exti ) (M, N) — 0.

Proof. Comparing Lemma 4.1.32 with the proof of Lemma 4.1.27, we see that
the direct limit in that proof has stabilised at i, and we obtain an isomorphism
Homye 4y (M, N[1/u]) = Homye(a)(u'M,N) sending a map f to f': u'm — u’f(m).
The same formula evidently identifies Homy(a)(9,0) with Homye ) (u’9, u'DN)
and Homyc(a) (9N, N[1/u]/M) with Homy(a) (w9, N[1/u]/u’N). But any map in
the latter group has image contained in 9t/u*M (by Lemma 4.1.32 applied to
Homye(4) (9, N[1/u]/N), together with the identification in the previous sentence),
so that Homy(a (w9, N[1/u] /u'IN) = Homyc(a) (u' MM, N/u'N). O
Proposition 4.1.34. Let M and N be Breuil-Kisin modules with descent data and
coefficients in a Noetherian O/w®-domain A. Then there is some nonzero f € A
with the following property: if we write Ma, = m@AAf and Na, = m@AAf, then
if B is any finitely generated Ay-algebra, and if Q is any finitely generated B-module,
we have natural isomorphisms

ker-Extic 4, (9, M) @4, Q@ — ker-Extic 4 (M4, ®a, B, N®4, B) @5 Q
— ker-Exty(a,)(Ma, ®a,B,ND4,Q).
Proof. In view of Lemma 4.1.33, this follows from Lemma 4.1.21, with 97 there
being our u!M, and N being each of N, N/u*IN in turn. O

The following result will be crucial in our investigation of the decomposition of
Cd41 and R4 into irreducible components.

Proposition 4.1.35. Suppose that M and N are Breuil-Kisin modules with de-
scent data and coefficients in a Noetherian O/w®-algebra A which is further-
more a domain, and suppose that Homyx) (zm ®4 k(M), N Q4 Ii(m)) vanishes
for each maximal ideal m of A. Then there is some nonzero f € A with the
following property: if we write M4, = sm@Af and Na, = ‘.TI@AAf, then for
any finitely generated Ay-algebra B, each of ker—Ext,lc(B)(imAf @AfB, Ny, @AfB),
Extic(p)(Ma, @®a,B,Na, ®a,B), and

Exty ) (Ma, ®a,B,Na, @, B)/ ker-Extie(a,)(Ma, ©a,B,Na, ®a,B)

s a finitely generated projective B-module.
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Proof. Choose f as in Proposition 4.1.34, let B be a finitely generated A-algebra,
and let @ be a finitely generated B-module. By Propositions 4.1.15 and 4.1.34, the
morphism

ker-Exti gy (Ma, ®a, B, Na, ®a,B)@pQ — Extpy(Ma, @a,B,Na, ®a,B)0pQ
is naturally identified with the morphism

ker—Ext,lC(B)(imAf @AfB,mAf @AfQ) — Ext,lc(B)(DﬁAf @AfB7‘ﬁAf @AfQ);
in particular, it is injective. By Proposition 4.1.15 and Corollary 4.1.19 we see that

Ext,lc(B)(i))?Af @AfB, Na, @Af B) is a finitely generated projective B-module; hence
it is also flat. Combining this with the injectivity just proved, we find that

Torp (Q, Exti)(M&@a, B, Na, ®a,B)/ ker-Extic p)(Ma, ®a, B, Na, ®4,B)) =0
for every finitely generated B-module @), and thus that

Extic gy (Ma, ©a, B, MNa, ®a,B)/ ker-Exty ) (Ma, ®a,B,Na, @a,B)
is a finitely generated flat, and therefore finitely generated projective, B-module.
Thus ker—Ext,lc(B)(imAf @AJ,B, Na, @)AfB) is a direct summand of the finitely gen-

erated projective B-module Ext,lc(B) (M4, @AfB,‘ﬂAf @AfB), and so is itself a
finitely generated projective B-module. O

4.2. Families of extensions. Let 2 and 91 be Breuil-Kisin modules with descent
data and A-coefficients, so that Ext,lc(A) (M, M) is an A-module. Suppose that
vV o= Ext,lc( 4)(M,N) is a homomorphism of A-modules whose source is a
projective A-module of finite rank. Then we may regard 1) as an element of

Exth(a) (9, M) ©4 V'V = Exthe4) (0, N w4 VY),
and in this way 1 corresponds to an extension
(4.2.1) 0N VY = = M0,

which we refer to as the family of extensions of 9 by 9 parametrised by V' (or
by v, if we want to emphasise our choice of homomorphism). We let &, denote
the pushforward of € under the morphism 91 ®4 VYV — N given by evaluation on
v € V. In the special case that Ext,lC(A) (M, M) itself is a projective A-module of
finite rank, we can let V' be Ext,lc(A) (91, 91) and take ¢ be the identity map; in this
case we refer to (4.2.1) as the universal extension of 9 by M. The reason for this
terminology is as follows: if v € Ext,lc( 4)(M,N), then €, is the extension of M by
N corresponding to the element v.

Let B := A[V"V] denote the symmetric algebra over A generated by VV. The
short exact sequence (4.2.1) is a short exact sequence of Breuil-Kisin modules with
descent data, and so forming its u-adically completed tensor product with B over
A, we obtain a short exact sequence

0 =NV R4B = ER4B = MR4B — 0

of Breuil-Kisin modules with descent data over B (see Lemma 2.1.6). Pushing this
short exact sequence forward under the natural map

VWeaB=VV®4sB— B
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induced by the inclusion of V¥ in B and the multiplication map B ® 4 B — B, we
obtain a short exact sequence

(4.2.2) 0= NDAB—E—MI4B =0

of Breuil-Kisin modules with descent data over B, which we call the family of
extensions of M by N parametrised by Spec B (which we note is (the total space of)
the vector bundle over Spec A corresponding to the projective A-module V).

If o, : B — A is the morphism induced by the evaluation map V'V — A given by
some element v € V, then base-changing (4.2.2) by «,,, we recover the short exact
sequence

0—-N—€¢,—>M—0.

More generally, suppose that A is a O/w®-algebra for some a > 1, and let C be any
A-algebra. Suppose that az : B — C is the morphism induced by the evaluation map
VY — C corresponding to some element © € C ®4 V. Then base-changing (4.2.2)
by a; yields a short exact sequence

0= ND4C = ED5C — M4C — 0,

whose associated extension class corresponds to the image of © under the natural
morphism C ®4 V — C ®4 Extic(4)(M,MN) = Extic(o)(MB4C, N @4 C), the
first arrow being induced by v and the second arrow being the isomorphism of
Proposition 4.1.15.

4.2.3. The functor represented by a universal family. We now suppose that the
ring A and the Breuil-Kisin modules 9t and 9% have the following properties:

Assumption 4.2.4. Let A be a Noetherian and Jacobson O/w®-algebra for some
a > 1, and assume that for each maximal ideal m of A, we have that

Hom (1 (m)) (93? R4 k(m), N4 n(m)) = Homy (s (m)) (‘)”( ®a k(mM), MR 4 n(m)) =0.

By Corollary 4.1.19, this assumption implies in particular that V := Ext,lc( A) (M, )
is projective of finite rank, and so we may form Spec B := Spec A[V"V], which
parametrised the universal family of extensions. We are then able to give the
following precise description of the functor represented by Spec B.

Proposition 4.2.5. The scheme Spec B represents the functor which, to any O /w®-
algebra C, associates the set of isomorphism classes of tuples (o, €, 1, ), where a is
a morphism « : Spec C' — Spec A, € is a Breuil-Kisin module with descent data and
coefficients in C, and v and m are morphisms a*IN — € and € — a*M respectively,
with the property that 0 — o*N = € 5 o*M — 0 is short ezact.

Proof. We have already seen that giving a morphism Spec C' — Spec B is equivalent
to giving the composite morphism « : Spec C' — Spec B — Spec A, together with
an extension class [€] € Ext,lc(c)(a*im, a*91). Thus to prove the proposition, we
just have to show that any automorphism of & which restricts to the identity on
o™ and induces the identity on o901 is itself the identity on €. This follows from
Corollary 4.1.18, together with Assumption 4.2.4. (]

Fix an integer A > 0 so that E(u)" € Anng , (coker ®gn) Anng , (coker ®gy), s0
that by Lemma 4.1.1, every Breuil-Kisin module parametrised by Spec B has height
at most h. There is a natural action of G,, X » G,,, on Spec B, given by rescaling each
of + and 7. There is also an evident forgetful morphism Spec B — Spec A x ¢ CI4:@,
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given by forgetting ¢ and 7, which is evidently invariant under the G,,, x o G,,,-action.
(Here and below, C44 denotes the moduli stack defined in Section 3.9 for our fixed
choice of h and for d equal to the sum of the ranks of 2t and 9.) We thus obtain a
morphism

(4.2.6) Spec B X0 Gy X0 G — Spec B Xgpec Ax o cdd.a Spec B.

Corollary 4.2.7. Suppose that Auti(cy(a*M) = Autgcy(a™N) = C* for any
morphism « : Spec C — Spec A. Then the morphism (4.2.6) is an isomorphism, and
consequently the induced morphism

[Spec B/G, X0 Gin] — Spec A xo cdde
s a finite type monomorphism.
Proof. By Proposition 4.2.5, a morphism

Spec C' — Spec B Xgpec Ax ocdd.a Spec B

corresponds to an isomorphism class of tuples (o, 8: € — & ¢,/ 7, 7"), where
e « is a morphism « : Spec C' — Spec A,
e B: ¢ — ¢ is an isomorphism of Breuil-Kisin modules with descent data
and coefficients in C,
o 1:a" N — € and 7: € — oM are morphisms with the property that

0—saNSeEeS ™ M—0
is short exact,
o /:a*N — & and 7’ : ¢ — oM are morphisms with the property that

0= a5 ¢ S a'm—0
is short exact.
Assumption 4.2.4 and Corollary 4.1.18 together show that Homyc(c) (a0, o) = 0.

It follows that the composite a*0 = & ﬁ) ¢’ factors through ¢/, and the induced
endomorphism of a*91 is injective. Reversing the roles of & and &', we see that it is
in fact an automorphism of a*I1, and it follows easily that 8 also induces an auto-
morphism of a*9. Again, Assumption 4.2.4 and Proposition 4.1.18 together show
that Homy oy (a9, a*MN) = 0, from which it follows easily that 3 is determined by
the automorphisms of o*9t and a*T that it induces.

Since Auti(cy(a*M) = Auty(c)(a*N) = C* by assumption, we see that §o ¢,/
and 7,7’ o § differ only by the action of G,, Xxp G,,, so the first claim of the
corollary follows. The claim regarding the monomorphism is immediate from
Lemma 4.2.8 below. Finally, note that [Spec B/G,, X0 G,,] is of finite type
over Spec A, while C49:¢ has finite type diagonal. It follows that the morphism
[Spec B/G, xo G| — Spec A x o C44:@ is of finite type, as required. O

Lemma 4.2.8. Let X be a scheme over a base scheme S, let G be a smooth affine
group scheme over S, and let p: X Xg G — X be a (right) action of G on X. Let
X — Y be a G-equivariant morphism, whose target is an algebraic stack over S on
which G acts trivially. Then the induced morphism

(X/Gl =Y
is a monomorphism if and only if the natural morphism
XXxsG—= X xyX
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(induced by the morphisms pry,p: X xg G — X) is an isomorphism.
Proof. We have a Cartesian diagram as follows.

XXSG—>XX3;X

| J

[(X/G] —— [X/G] xy [X/G]

The morphism [X/G] — Y is a monomorphism if and only if the bottom horizontal
morphism of this square is an isomorphism; since the right hand vertical arrow is a
smooth surjection, this is the case if and only if the top horizontal morphism is an
isomorphism, as required. O

4.3. Families of extensions of rank one Breuil-Kisin modules. In this sec-
tion we construct universal families of extensions of rank one Breuil-Kisin modules.
We will use these rank two families to study our moduli spaces of Breuil-Kisin mod-
ules, and the corresponding spaces of étale p-modules. We show how to compute the
dimensions of these universal families; in the subsequent sections, we will combine
these results with explicit calculations to determine the irreducible components of
our moduli spaces. In particular, we will show that each irreducible component has
a dense open substack given by a family of extensions.

4.3.1. Universal unramified twists. Fix a free Breuil-Kisin module with descent data
M over F, and write @; for Pox ; : ©*(M;—1) — M. (Here we are using the notation
of Section 2.1, so that 9; = ¢;7M is cut out by the idempotent e; of Section 1.7.)
We will construct the “universal unramified twist” of 91.

Definition 4.3.2. If A is an F-algebra, and if A € A*, then we define My »
to be the free Breuil-Kisin module with descent data and A-coefficients whose
underlying &, [Gal(K'/K)]-module is equal to 9t @pA (so the usual base change
of M to A), and for which Poy, , : P*DMax — My » is defined via the f'-tuple
(APg, ®1,...,Ps_1). We refer to VS)TA)\ as the unramified twist of 9t by A over A.

If M is a free étale p-module with descent data, then we define My » in the
analogous fashion. If we write X = Spec A, then we will sometimes write 9 x »
(resp. Mx ) for Ma n (resp. Mp z).

As usual, we write G,, := SpecF[z,z7!]. We may then form the rank one
Breuil-Kisin module with descent data Mg, », which is the universal instance of an
unramified twist: given A € A, there is a corresponding morphism Spec A — G,,
determined by the requirement that = € T'(G,,, Oém) pulls-back to A, and Mx » is
obtained by pulling back Me,, , under this morphism (that is, by base changing
under the corresponding ring homomorphism Flx, z71] — A).

Lemma 4.3.3. If My is a Breuil-Kisin module of rank one with A-coefficients,
then Endipy (M) = A. Similarly, if My is a étale p-module of rank one with
A-coefficients, then Endycpy(Ma) = A.

Proof. We give the proof for My, the argument for 9T, being essentially identical.
One reduces easily to the case where M) is free. Since an endomorphism ¥ of My is
in particular an endomorphism of the underlying G [1/u]-module, we see that there
is some A € G[1/u] such that v is given by multiplication by A. The commutation
relation with @), means that we must have p(A) = A, so that certainly (considering



76 A. CARAIANI, M. EMERTON, T. GEE, AND D. SAVITT

the powers of u in A of lowest negative and positive degrees) A\ € W(k') ®z, A,
and in fact A € A. Conversely, multiplication by any element of A is evidently an
endomorphism of My, as required. O

Lemma 4.3.4. Let k be a field of characteristic p, and let My, N,; be étale -
modules of rank one with k-coefficients and descent data. Then any nonzero element
of Homyc () (My, Ni) is an isomorphism.

Proof. Since k((u)) is a field, it is enough to show that if one of the induced maps
M, ; = Ny is nonzero, then they all are; but this follows from the commutation
relation with ¢. (]

Lemma 4.3.5. If \, N € AX and My » = Ma v (as Breuil-Kisin modules with
descent data over A), then A = X. Similarly, if Ma x = Ma x, then A = X.

Proof. Again, we give the proof for M, the argument for 9t being essentially identical.
Write M; = F((u))m,;, and write ®;(1 ® m;_1) = 6;m;, where 6; # 0. There are
wi € Al[u]][1/u] such that the given isomorphism My x & My y takes m; to p;m;.
The commutation relation between the given isomorphism and ®,; imposes the
condition
Aipifimi = Njp(pi—1)0im;

where A; (resp. A;) equals 1 unless ¢ = 0, when it equals A (resp. \).

Thus we have p; = (X;/\)@(ii—1), so that in particular po = (N /A)e! (o).
Considering the powers of u in g of lowest negative and positive degrees we conclude
that o € W(K') ® A; but then po = ¢/ (110), so that X' = X, as required. O

Remark 4.3.6. If 9 has height at most h, and we let C (temporarily) denote the
moduli stack of rank one Breuil-Kisin modules of height at most h with F-coefficients
and descent data then Lemma 4.3.5 can be interpreted as saying that the morphism
G,, — C that classifies Mgq,, » is a monomorphism, i.e. the diagonal morphism
G, — G, X¢ Gy, is an isomorphism. Similarly, the morphism G,, — R (where
we temporarily let R denote the moduli stack of rank one étale ¢p-modules with
F-coefficients and descent data) that classifies Mg, » is a monomorphism.

Now choose another rank one Breuil-Kisin module with descent data 9t over F'.
Let (x,y) denote the standard coordinates on G, Xg Gy, and consider the rank
one Breuil-Kisin modules with descent data Mg, xrG.,.z and Ng,, xxG.,,y OVer
Gm X Gm.

Lemma 4.3.7. There is a non-empty irreducible affine open subset Spec ANt of
G, xr Gy, whose finite type points are exactly the mazimal ideals m of G, Xg Gy
such that

Home (s(m)) (M(m) 21/ ], M) 5[1/0]) = 0
(where we have written T and § to denote the images of x and y in k(m)*).
Furthermore, if R is any finite-type AYSt-algebra, and if m is any mazimal ideal
of R, then
Homye (o (m)) (M m) 25 Mee(m),5) = HOM (e (m)) (M m) 2 [1/1)s Mye(my 5 [1/u]) = 0,

and also

Homyc (s (m)) (M (m).0 M(m).z) = HOM s m)) (M m) 7 [1/1], M my 2[1/0]) = 0.
In particular, Assumption 4.2.4 is satisfied by M gaise 5 and N gaise .
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Proof. 1f Hom (M, () z[1/u], Mys(m) 5[1/u]) = 0 for all maximal ideals m of Flz,y, 1, y =],
then we are done: Spec AVt = G,,, x G,,. Otherwise, we see that for some finite
extension F'/F and some a,a’ € F’, we have a non-zero morphism Mg/ ,[1/u] —
Mg/ o [1/u]. By Lemma 4.3.4, this morphism must in fact be an isomorphism. Since
MM and N are both defined over F, we furthermore see that the ratio a’/a lies in F.
We then let Spec A4t be the affine open subset of G,,, xg G, where a’z # ay; the
claimed property of Spec A4t then follows easily from Lemma 4.3.5.

For the remaining statements of the lemma, note that if m is a maximal ideal in
a finite type A4t-algebra, then its pull-back to A4S is again a maximal ideal m’ of
Adist (since A4St is Jacobson), and the vanishing of

Homyc (e m) (Mrc(m) o [1/2], Mism) 51/l
follows from the corresponding statement for x(m’), together with Lemma 4.1.20.
Inverting u induces an embedding

Homy (s (m)) (Mo (m), 2 Mie(m),5) < Hompeoim)) (M), [1/6], Mo(m),511/4])

and so certainly the vanishing of the target implies the vanishing of the source.

The statements in which the roles of 97t and 91 are reversed follow from Lemma 4.3.4.
O

Define T := EXtIlC(GmeGm) (Me,, x2Gmzs MG x5 Gy ); it follows from Propo-
sition 4.1.13 that T is finitely generated over F[z,r~!,y,y~!], while Proposi-
tion 4.1.15 shows that Tpaie 1= T Qp[p+1 4+1) AYt is naturally isomorphic to
Ext,lc(Adist) (mAdist’x, mAdist,y). (Here and elsewhere we abuse notation by writing z,
y for x| gaist, Y| gaise.) Corollary 4.1.19 and Lemma 4.3.7 show that T yaise is in fact
a finitely generated projective A4St-module. If, for any A4t-algebra B, we write
Tp := T gaiste ® gaise B =T QF[z*1,y*1] B, then Proposition 4.1.15 again shows that
Tg = Ethlc(B) (DﬁBJ, 9137y).

By Propositions 4.1.34 and 4.1.35, together with Lemma 4.3.7, there is a nonempty
(so dense) affine open subset Spec A¥¢¢ of Spec A%t with the properties that

UAk-free = ker—Ethlc(Akffrcc) (mAk-free Ty mAk—free 7y)

and

T pxtree /U gretree
AN Ethlc(Ak-free) (mAk—free’I, mAk-free’y)/ ker—EXt,lc(Ak,frcc) (gi)lthl‘-free@7 mlqk—free’y)

are finitely generated and projective over A%fr¢¢ and furthermore so that for all
finitely generated Afrec_algebras B, the formation of ker—Ext,lc( B)(zm Bz, NBy) and
Ext,lc(B)(EmB,w,‘ﬁgw)/ker—Ext,lc(B)(EmB,I,