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Abstract

We study the étale cohomology of Hilbert modular varieties, building on the methods
introduced by Caraiani–Scholze for unitary Shimura varieties. We obtain the analogous
vanishing theorem: in the “generic” case, the cohomology with torsion coefficients is
concentrated in the middle degree. We also probe the structure of the cohomology
beyond the generic case, obtaining bounds on the range of degrees where cohomology
with torsion coefficients can be non-zero. The proof is based on the geometric
Jacquet–Langlands functoriality established by Tian–Xiao and avoids trace formula
computations for the cohomology of Igusa varieties.

As an application, we show that, when p splits completely in the totally real field
and under certain technical assumptions, the p-adic local Langlands correspondence for
GL2(Qp) occurs in the completed homology of Hilbert modular varieties.
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1. Introduction

1.1 Statement of results

In this paper, we study the étale cohomology of Hilbert modular varieties, building on the
methods introduced for unitary Shimura varieties in [CS17, CS19].

Let us first discuss a general vanishing conjecture for the cohomology of locally symmetric
spaces. Let G/Q be a connected reductive group and let X be the symmetric space for G(R),
in the sense of [BS73]. For a neat compact open subgroup K ⊂ G(Af ), we can consider the

2020 Mathematics Subject Classification 11F41, 14G35, 14G45
Keywords: Hodge–Tate period map, Igusa varieties, quaternionic Shimura varieties

http://www.ams.org/msc/


Ana Caraiani and Matteo Tamiozzo

associated locally symmetric space XK(G). Also define the invariants

l0 := rk(G(R))− rk(K∞)− rk(A∞) and q0 :=
1

2
(dimRX − l0)1.

A folklore conjecture predicts that the cohomology of the locally symmetric spaceXK(G) with Zℓ-
coefficients vanishes, after imposing an appropriate non-degeneracy condition, outside the range
of degrees [q0, q0 + l0] (which is symmetric about 1

2 dimRX). See, for example, the discussion
around [Eme14, Conjecture 3.3] and also [CG18, Conjecture B]. As these references explain, this
conjecture has important consequences for automorphy lifting theorems and the p-adic Langlands
programme.

When F is a totally real field and G := ResF/QGL2, the corresponding locally symmetric
spaces are closely related to Hilbert modular varieties, which are (non-compact) Shimura varieties
of abelian type. When working with Shimura varieties rather than with locally symmetric spaces,
it is more natural to consider l0(G

ad), which is equal to 0 by the second axiom in the definition of
a Shimura datum. In this case, the conjecture mentioned above predicts that the non-degenerate
part of the cohomology is concentrated in the middle degree.

To make this more precise, let K ⊂ G(Af ) be a neat compact open subgroup and let ShK(G)
be the corresponding Hilbert modular variety. This is a smooth, quasi-projective scheme over Q,
of dimension g := [F : Q]. Its complex points can be described as

ShK(G)(C) = G(Q)\(C∖ R)g ×G(Af )/K.

Let ℓ be a prime number; we have a spherical Hecke algebra T defined in § 2.1.2, generated by
the standard Hecke operators Tv, S

±1
v for v not belonging to a suitable finite set S of places of

F . The algebra T acts on the étale cohomology groups H i
(c)(ShK(G),Fℓ)2. Take a maximal ideal

m ⊂ T in the support of H i
(c)(ShK(G),Fℓ). It follows from Scholze’s work, at least when ℓ > 2,

cf. Theorem 2.2.1, that there exists a unique continuous, semisimple Galois representation

ρ̄m : ΓF → GL2(F̄ℓ),

where ΓF denotes the absolute Galois group of F , which is characterised as follows: for every
v ̸∈ S, ρ̄m is unramified at v and the characteristic polynomial of ρ̄m(Frobv) is equal to X2 −
TvX + SvN(v) (mod m).

We say that m is non-Eisenstein if ρ̄m is absolutely irreducible. The most optimistic vanishing
conjecture predicts that the localisation H i

(c)(ShK(G),Fℓ)m should be concentrated in the middle
degree i = g if m is non-Eisenstein. We make significant progress towards this.

A Theorem. (see Theorem 7.1.1) Let ℓ > 2 be a prime and let m ⊂ T be a maximal ideal in
the support of H i

c(ShK(G),Fℓ) or H i(ShK(G),Fℓ). Assume that the image of ρ̄m is not solvable.
Then H i(ShK(G),Fℓ)m = H i

c(ShK(G),Fℓ)m is non-zero only for i = g.

1.1.1 Remark.

(i) By Dickson’s theorem, cf. [DDT97, Theorem 2.47 (b)], the projective image of ρ̄m is either
conjugate to a subgroup of the upper triangular matrices, or to PGL2(Fℓk) or PSL2(Fℓk),
for some k ⩾ 1, or it is isomorphic to one of D2n, for some n ∈ Z>1 prime to ℓ, A4, S4, or
A5. The image of ρ̄m is not solvable if and only if the following condition is satisfied:

1Here, K∞ ⊂ G(R) is a maximal compact subgroup and A∞ is the group of R-points of the maximal Q-split torus
in the centre of G.
2This denotes the étale cohomology (with compact support) of the variety base changed to Q̄, but we suppress Q̄
to simplify the notation.
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(a) if ℓ = 3, the projective image of ρ̄m is isomorphic to A5 or contains a conjugate of
PSL2(F9);

(b) if ℓ > 3, the projective image of ρ̄m is isomorphic to A5 or contains a conjugate of
PSL2(Fℓ).

(ii) If m is non-Eisenstein, then H i(ShK(G),C)m is concentrated in the middle degree. This
follows from the explicit description of the cohomology with complex coefficients of Hilbert
modular varieties (see [Fre13, Chapter III]).

(iii) Previously, Dimitrov had obtained a vanishing theorem for the cohomology of Hilbert
modular varieties with torsion coefficients in [Dim09, Theorem 2.3] (see also [Dim05]),
under stronger assumptions. More precisely, Dimitrov proves a theorem for cohomology with
coefficients in certain local systems on ShK(G). In addition to a large image assumption on
ρ̄m, he also requires that the level is prime to ℓ and that ℓ is large compared to the weight
giving rise to the local system. Since we make no assumption on the level at ℓ, a standard
argument using the Hochschild–Serre spectral sequence allows us to upgrade Theorem A to
also apply to cohomology with twisted coefficients.

Let p ̸= ℓ be a prime which splits completely in F and such that ρ̄m is unramified at every
place of F above p. If v is such a place, we say that ρ̄m is generic at v if the eigenvalues of
ρ̄m(Frobv) have ratio different from p±1. If the projective image of ρ̄m satisfies the condition
in Remark 1.1.1(1), then the Chebotarev density theorem implies, cf. Lemma 7.1.8, that there
exists a prime p as above such that ρ̄m is generic at every v | p.3 As in [CS17, CS19], Theorem A
relies on the study of the cohomology of (perfectoid) Igusa varieties and on the geometry of the
Hodge–Tate period map at the auxiliary prime p.

The key new idea in our situation is to establish a geometric Jacquet–Langlands transfer
comparing the cohomology of Igusa varieties attached to different quaternionic Shimura varieties.
This replaces the direct computation of the cohomology of Igusa varieties via the trace formula
carried out in [CS17]. We also exploit the relation between Igusa varieties and fibres of the
Hodge–Tate period map for compact quaternionic Shimura varieties. We explain this idea more
in § 1.2.

Furthermore, Theorem A is obtained as a special case of the following more precise result,
that probes the structure of the cohomology beyond the generic case. Given a prime p which
splits completely in F and such that ρ̄m is unramified at every place of F above p, denote by
δp(m) ∈ [0, g] the number of places above p where ρ̄m is not generic.

B Theorem. (see Theorem 7.1.6) Let ℓ > 2 be a prime. Let p ̸= ℓ be an odd prime which splits
completely in F and such that K = KpKp with Kp hyperspecial. Let m ⊂ T be a non-Eisenstein
maximal ideal. Then

H i
c(ShK(G),Fℓ)m

∼→ H i(ShK(G),Fℓ)m
vanishes outside i ∈ [g − δp(m), g + δp(m)].

Theorem B is inspired by Arthur’s conjectures [Art96], describing the interplay between the Hecke
action and the Lefschetz structure on the cohomology of Shimura varieties with C-coefficients.
Our result is consistent with the existence of such a structure on the cohomology with Fℓ-
coefficients as well.

3Note, however, that Frank Calegari has produced an example of an absolutely irreducible mod ℓ Galois
representation with projective image D4 ≃ (Z/2Z)2 for which no such prime p exists.
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In the case of Harris–Taylor unitary Shimura varieties, Boyer established the analogue of
Theorem B in [Boy19] (see also the discussion around [Kos20, Theorem 1.3]). Our argument is
partly inspired by Boyer’s, but it is different: we rely on the ingredients mentioned above, as well
as on the affineness and smoothness of Newton strata. This allows us to apply Artin vanishing
at a crucial step in the proof, followed by Poincaré duality.

1.1.2 Remark.

(i) If δp(m) = 0, we expect thatH i
c(ShK(G),Fℓ)m = 0 for i > g (and, dually,H i(ShK(G),Fℓ)m =

0 for i < g) even without the non-Eisenstein assumption on m. This is the analogue
of [CS19, Theorem 1.1] in our context. To establish this, one may need the semi-perversity
result [CS19, Theorem 4.6.1] in our setting, which relies on a detailed understanding of
toroidal compactifications of Igusa varieties.

(ii) Using the same method based on geometric Jacquet–Langlands, we also obtain analogues of
Theorems A and B for compact quaternionic Shimura varieties, without the non-Eisenstein
assumption: see Theorem 7.5.2.

As a quick application of Theorem A, we show that the p-adic local Langlands correspondence
occurs in the completed homology of Hilbert modular varieties. More precisely, fix a prime p > 3
which splits completely in F ; in the following discussion, the prime p will play the role of the
prime denoted by ℓ above. Fix a large enough finite extension L/Qp with ring of integers O. Under
suitable assumptions (e.g. hypothesis (3) in Theorem C below) we can attach to the restriction
of ρ̄m to places v | p a universal local deformation ring Rloc

p := ⊗̂v|p,ORdef
v and an Rloc

p -module
P := ⊗̂v|p,OPv. The latter represents a large part of the p-adic local Langlands correspondence
in this setting, cf. [Paš13]. (See § 8 for more details on the notation.)

C Theorem. Let p > 3 be a prime which splits completely in F . Assume that the following
assertions hold true.

(i) The projective image of the Galois representation ρ̄m attached to m contains a conjugate of
PSL2(Fp) or is isomorphic to A5.

(ii) If ρ̄m is ramified at some place v not lying above p, then v is not a vexing prime.

(iii) For each place v | p, the restriction of ρ̄m to ΓFv is absolutely irreducible.

Then the completed homology H̃g(K̄1(N(ρ̄m))
p,O)m, as a module over T(K̄1(N(ρ̄m))

p)m[Ḡ(Qp)],
can be described as

H̃g(K̄1(N(ρ̄m))
p,O)m ≃ T(K̄1(N(ρ̄m))

p)m⊗̂Rloc
p
P⊕m

for some m ⩾ 1.

Theorem C points towards an extension of Emerton’s landmark local-global compatibility theorem
for modular curves [Eme] to the case of Hilbert modular varieties. Here, we apply the axiomatic
approach via patching developed in [CEG+18, GN22] in order to obtain an unconditional “proof
of concept”. We note that, for this application, it is crucial to know that completed homology is
a projective object in an appropriate category of

∏
v|p PGL2(Zp)-modules. This relies on knowing

Theorem A with twisted coefficients coming from arbitrary Serre weights, something that is not
available from the earlier results of [Dim09]. In Remark 8.2.3, we also sketch how to obtain a
version of compatibility with the p-adic local Langlands correspondence without any assumptions
on the tame level.
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Theorem A should have numerous other applications to the p-adic Langlands programme for
GL2 over a totally real field F , including in the case when p ramifies in F . Once cohomology
is concentrated in one degree, one can combine the Taylor–Wiles–Kisin patching method with
purely local techniques, as in [EGS15, BHS19] (for example). Traditionally, these methods have
been used for Shimura sets attached to definite unitary groups or for Shimura curves. The
advantage of Hilbert modular varieties is that their (co)homology may be more suitable to
studying low-weight forms, such as Hilbert modular forms of parallel weight 1.

1.2 The method of proof

As we mentioned above, the proof of Theorems A and B uses the geometry of the Hodge–Tate
period morphism at an auxiliary prime p ̸= ℓ for quaternionic Shimura varieties, particularly
the relation between fibres of this morphism and perfectoid Igusa varieties. The key new idea in
the proof, inspired by the work of Tian–Xiao on the Goren–Oort stratification on quaternionic
Shimura varieties [TX16], is to establish instances of geometric Jacquet–Langlands functoriality
for Igusa varieties. This idea, which was not present in either of [CS17, CS19], allows us to handle
the cohomology of Igusa varieties. We exploit this (and further ingredients mentioned below) to
transfer systems of Hecke eigenvalues in the cohomology of non-ordinary strata from Hilbert
modular varieties to (perfectoid) compact quaternionic Shimura varieties. Using this we show
that, in the setting of Theorem A, cohomology localised at m must be supported on the ordinary
locus; it is then relatively easy to prove that the cohomology is concentrated in one degree.

We illustrate a version of the key new idea mentioned above first using the toy model of
the modular curve, the Shimura variety for G := GL2 /Q. Let Kp ⊂ G(Af ) be a sufficiently
small compact open subgroup. By [Sch15, §3], we have the Hodge–Tate period morphism πHT :
ShKp(G)→ P1,ad and the Hodge–Tate period domain admits the Newton stratification

P1,ad = P1(Qp)
⊔

Ω2.

Here, P1(Qp) is the closed stratum corresponding to the ordinary locus and Ω2, the Drinfeld upper
half plane, is the open stratum corresponding to the supersingular locus. For every geometric
point x : Spa(C,OC) → Ω2, the fibre π−1

HT(x) is a perfectoid version of a supersingular Igusa
variety. In view of [How22, Corollary 3.7.4] (which originates in an observation of Serre [Ser96]),
this can, in turn, be identified with the double coset D×\D×(Af )/Kp, where D/Q is the
quaternion algebra that is ramified precisely at p and ∞. If m ⊂ T is a non-Eisenstein maximal
ideal such that (RπHT∗Fℓ)m is supported on Ω2, then m is also in the support of the module
H0(D×\D×(Af )/Kp,Qℓ). This means that there exists a cuspidal automorphic representation
of D× whose associated Galois representation is a characteristic 0 lift of ρ̄m.

However, if we choose p such that ρ̄m|ΓQp
is generic, then any characteristic 0 lift corresponds,

under the classical local Langlands correspondence, to a generic principal series representation
of GL2(Qp). Such a representation cannot be the local component at p of the global Jacquet–
Langlands transfer of a cuspidal automorphic representation of D×. Therefore, if ρ̄m is generic
at p, then the complex of sheaves (RπHT∗Fℓ)m is supported only on the ordinary locus P1(Qp).

Morally, the Hilbert case for a totally real field F of degree g behaves like a product of g
copies of the modular curve case. In this setting, Tian–Xiao establish geometric instances of the
Jacquet–Langlands correspondence in [TX16]. Inspired by their result in the case when p splits
completely in F , we express the geometric Jacquet–Langlands relation as a Hecke-equivariant
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isomorphism between Igusa varieties attached to different Shimura varieties, cf. Theorem 4.2.44.
In Theorem 6.3.3, we obtain a clean geometric description of the µ-ordinary locus at infinite
level on quaternionic Shimura varieties. This relies on (a perfectoid version of) the Mantovan
product formula [Man05], established in § 5, and on the induced structure of the corresponding
Rapoport–Zink spaces, cf. [Han21, GI16]. Theorems 4.2.4 and 6.3.3 allow us to transfer systems
of mod ℓ Hecke eigenvalues between different Shimura varieties, which forms the basis for an
inductive argument to prove Theorem B.

Some technical difficulties we encounter are that Hilbert modular varieties are Shimura
varieties of abelian type and that they are non-compact. However, the non-compactness does
not impose serious difficulties. The only Newton stratum that intersects the boundary of Hilbert
modular varieties is the ordinary one. This, together with the geometric Jacquet–Langlands
relation on the level of interior Igusa varieties, makes the analysis of interior Newton strata
similar to the one in [CS17]. Because we are localising at a non-Eisenstein maximal ideal, we avoid
employing partial minimal and toroidal compactifications of Igusa varieties or semi-perversity;
in particular, our argument is independent of [CS19], and only relies on the (easier) study of the
geometry of the Hodge–Tate period map in the compact setting of [CS17].

Recently, Koshikawa [Kos21] gave a new strategy for proving the vanishing theorems of [CS17,
CS19], removing most technical assumptions from these results. This strategy relies on [FS21]
together with the geometry of the Hodge–Tate period morphism. The idea is to show that
only the cohomology of the ordinary locus contributes to the generic part of the cohomology of
Shimura varieties, by proving a local vanishing theorem for the generic part of the cohomology
of Rapoport–Zink spaces. After reducing to the ordinary locus, [Kos21] uses the semi-perversity
result mentioned above to control the range of degrees of cohomology. Koshikawa’s arguments
could be applied in the Hilbert setting as well, though this would require some version of our
results in § 5 and semi-perversity. One advantage of our method is that it gives information about
the complexes of sheaves (RπHT∗Fℓ)m rather that just the cohomology groups H∗(ShK(G),Fℓ)m.

Acknowledgements

We are grateful to David Hansen for asking us to consider the cohomology of Hilbert modular
varieties with torsion coefficients. A.C. would like to thank Xinwen Zhu for the invitation to a
2019 AIM workshop on geometric instances of the Jacquet–Langlands correspondences, which
inspired our method. We are grateful to Frank Calegari, Toby Gee, James Newton, Vytautas
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1.3 Notation

We use the following notation throughout the paper, unless otherwise stated.

The cardinality of a set T is denoted by |T |.

4To make sense of Igusa varieties, we want an integral model with a nice moduli interpretation. This is not
directly available for quaternionic Shimura varieties. For this reason, in the body of the paper, we work with
certain auxiliary unitary Shimura varieties that are closely related to Hilbert and quaternionic Shimura varieties;
we ignore this point throughout the introduction.
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The symbol ⊗ stands for ⊗Z. If A is an abelian group, we let Â = A⊗ Ẑ and Â(p) = A⊗ Ẑ(p).

We also set Af = Q̂, the finite adeles of Q, and A(p)
f = Q̂(p), the finite adeles of Q away from p.

If L is a perfect field, we denote by L̄ an algebraic closure of L, and by ΓL the absolute Galois
group Gal(L̄/L). Assume now that L is a number field. If v is a finite place of L, we denote
by Lv the completion of L at v, and by Ov the ring of integers of Lv. We will denote by ϖv a
uniformiser of Ov, and by N(v) the cardinality of the residue field Ov/(ϖv). We denote by Frobv
the geometric Frobenius at v. We let AL,f = L̂, the ring of finite adeles of L.

If A→ B is a ring morphism and S → SpecA is a scheme, we denote by SB the base change
S ×SpecA SpecB. We use a similar notation for adic spaces. If S, T are two schemes over Q, we
denote by S × T the fibre product S ×SpecQ T .

If L is a field and S is a variety or adic space over L, the symbols H i(S,Fℓ), H i(S,Zℓ) and
H i(S,Qℓ) denote the étale (resp. ℓ-adic étale) cohomology of SL̄.

2. Hilbert modular varieties and Galois representations

In this section, we establish some preliminary results about Hilbert modular varieties. In particular,
we construct Galois representations attached to systems of Hecke eigenvalues occurring in their
cohomology with Fℓ-coefficients, using [Sch15].

2.1 Shimura varieties and locally symmetric spaces for ResF/QGL2

Fix a totally real number field F of degree [F : Q] =: g, and let OF be the ring of integers
of F . Totally positive elements in F (resp. OF ) will be denoted by F+ (resp. O+

F ). Let Σ∞ :=
{τ1, . . . , τg} be the set of real embeddings of F ; let G := ResF/QGL2 with centre Z ≃ ResF/QGm.

2.1.1 Let S := ResC/RGm be the Deligne torus, and let h : S → GR ≃
∏g
i=1GL2,R be the

morphism which on R-points is given by

z = a+ ib ∈ S(R) 7→
(
a b
−b a

)g ∈ G(R).
LetK◦

∞ :=
∏g
i=1 SO2(R) ⊂ G(R) (a maximal compact connected subgroup). TheG(R)-conjugacy

class of h, denoted by X, is identified with G(R)/Z(R)K◦
∞ ≃ (C∖R)g, and the couple (G,X) is

a Shimura datum with reflex field Q. For every compact open subgroup K ⊂ G(Af ) the Shimura
variety ShK(G) is a quasi-projective variety with a canonical model over the reflex field Q, with
complex analytic uniformisation

ShK(G)(C) = G(Q)\X ×G(Af )/K.

The Shimura varieties ShK(G) are called Hilbert modular varieties. If K ⊂ G(Af ) is neat (which
we will always assume in what follows) then ShK(G) is smooth; moreover, if K ′ ⊂ K is a normal
compact open subgroup then the map ShK′(G)→ ShK(G) is a finite étale Galois cover.

We have a map

ShK(G)(C)→ F×\{±1}g × A×
F,f/ det(K) ≃ F×,+\A×

F,f/ det(K) (2.1.1.1)

induced by the map sending (x∞, xf ) ∈ G(R)×G(Af ) to (sgn detx∞, detxf ). An element in F×

acts on {±1}g by multiplying by the sign of the image via each real embedding. Fibres of the
map in (2.1.1.1) are connected components of the source.
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2.1.2 Hecke action We have the Hecke algebra TK(G) := Z [K\G(Af )/K] of compactly
supported, K-bi-invariant functions on G(Af ), with multiplication given by convolution. Every
element of TK(G) gives rise to a correspondence on ShK(G) as follows: given g ∈ G(Af ), let
Kg := K ∩ gKg−1; we have a correspondence [KgK] on ShK(G) given by the following diagram

ShKg(G) ShKg−1 (G)

ShK(G) ShK(G),
[KgK]

where the vertical maps are the canonical projections and the upper horizontal map on complex
points is induced by right multiplication by g on G(Af ). Therefore we obtain an action of TK(G)
on the cohomology groups H i(ShK(G),Fℓ) as well as on the cohomology groups with compact
support H i

c(ShK(G),Fℓ), where ℓ is a prime number. In the rest of the paper we will rather work
with a smaller Hecke algebra, defined as follows: fix a finite set S of places of F containing all
the infinite places, all the places v | ℓ, and all the finite places v such that Kv is not conjugate
to GL2(Ov), where Ov is the ring of integers in the completion Fv of F at v. Let

T :=
⊗
v ̸∈S

′ Z[GL2(Ov)\GL2(Fv)/GL2(Ov)]

denote the abstract spherical Hecke algebra away from S. For every v ̸∈ S, choose a uniformiser
ϖv of Ov. We denote by Tv the double coset GL2(Ov)

(
ϖv 0
0 1

)
GL2(Ov) and by Sv the double

coset GL2(Ov)
(
ϖv 0
0 ϖv

)
GL2(Ov), seen as elements of T. The algebra T is commutative and is

generated by the operators Tv, S
±1
v for v ̸∈ S. The inversion map on G induces a map ι : T→ T;

for a maximal ideal m ⊂ T we denote by m∨ its image via ι.

2.1.3 Locally symmetric spaces We have the locally symmetric space XK(G) attached to G
and K, defined as follows:

XK(G) := G(Q)\G(R)×G(Af )/(R>0K
◦
∞)K.

Letting ZK := Z(Q) ∩K, the quotient TK := Z(R)/{±1}gR>0ZK is a torus of dimension g − 1
by Dirichlet’s unit theorem, and the projection XK(G) → ShK(G) is a TK-bundle (see [Gra16,
Lemma 3.1.2]). Let us define K∞ :=

∏g
i=1O2(R), and let us consider the space

X̄K(G) := G(Q)\G(R)×G(Af )/(R>0K∞)K.

In other words, we are quotienting by a maximal compact subgroup at infinity instead of its
connected component of the identity. This is the space used in [Sch15] (see the introduction of
loc. cit.). The matrix

(−1 0
0 1

)
normalises SO2(R); hence we get a right action of C := (Z/2Z)g on

XK(G), and we have X̄K(G) = XK(G)/C. The recipe given above endows the (Betti) cohomology
of XK(G) and X̄K(G) with an action of T, which commutes with the action of C. Furthermore,
if we make C act on F×\{±1}g × A×

F,f/ det(K) by switching signs at archimedean places, then
the map in (2.1.1.1) is C-equivariant.

Let Ĉ be the set of characters of C with values in F×
ℓ . The following lemma relates the

cohomology of the spaces ShK(G), XK(G) and X̄K(G).

2.1.4 Lemma. Let ℓ be an odd prime.

(i) Assume that det(K) = K∩Z(Af ). Then for every i ⩾ 0 the pullback mapH i(ShK(G),Fℓ)→
H i(XK(G),Fℓ) is injective.
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(ii) Assume that det(K)∩F× only consists of totally positive elements. Then there is a Hecke-
equivariant decomposition

H∗(XK(G),Fℓ) = ⊕χ∈ĈH
∗(XK(G),Fℓ)χ

and pullback induces an isomorphism H∗(X̄K(G),Fℓ) ≃ H∗(XK(G),Fℓ)Id.

Proof.

(i) Under the assumption that det(K) = K ∩ Z(Af ), [Gra16, Proposition 3.3.9] constructs
cohomology classes in H∗(XK(G),Fℓ) whose restrictions to each fibre of the map XK(G)→
ShK(G) give a basis of its cohomology; the statement hence follows from the Leray–Hirsch
theorem.

(ii) Since det(K)∩F× consists of totally positive elements by assumption, an explicit computation
shows that C acts freely on F×\{±1}g × A×

F,f/ det(K). In other words, the group C acts

on XK(G) freely permuting connected components. This implies that H∗(X̄K(G),Fℓ) ≃
H∗(XK(G),Fℓ)Id. The Hecke-equivariance of the direct sum decomposition in the statement
follows from the fact that the action of C commutes with the Hecke action.

2.2 Construction of Galois representations

The aim of this section is to prove the following result.

2.2.1 Theorem. Let ℓ be an odd prime and K ⊂ G(Af ) a neat compact open subgroup. Let
m ⊂ T be a maximal ideal in the support of H i(ShK(G),Fℓ) or H i

c(ShK(G),Fℓ) for some i ⩾ 0.
There is a unique continuous, semisimple, totally odd Galois representation

ρ̄m : ΓF → GL2(Fℓ)

such that, for all but finitely many places v of F , ρ̄m is unramified at v and the characteristic
polynomial of ρ̄m(Frobv) is equal to X

2 − TvX + SvN(v) (mod m).

2.2.2 Remark. One could prove the above result by adapting the arguments in Chapter IV
of [Sch15]. The main technical point one needs to deal with is the construction of ad hoc
compactifications of Hilbert modular varieties5. For the sake of brevity, we will instead explain
below how to deduce the theorem from (a special case of) the main result of [Sch15]; however,
at the time of writing, the totally real case of the latter is conditional on Arthur’s work [Art13].

Proof. Uniqueness of ρ̄m follows from the Chebotarev density theorem and the Brauer–Nesbitt
theorem; to prove existence of ρ̄m it suffices to consider the cohomology groups H∗(ShK(G),Fℓ)
(by Poincaré duality and the discussion in [CS19, p. 35]). Furthermore, if K ′ ⊂ K is a normal
compact open subgroup, then there is a Hecke-equivariant Hochschild–Serre spectral sequence
relating cohomology of ShK′(G) and ShK(G). Therefore, at the cost of possibly enlarging the set
S in § 2.1.2, we may replace K by a normal compact open subgroup. In particular we may take
K = K(N) for N large enough, where K(N) := {M ∈ GL2(ÔF ) | M ≡ ( 1 0

0 1 ) (mod N)}. This
ensures that the assumption in the first point of Lemma 2.1.4 is satisfied. Furthermore Chevalley’s
theorem on units guarantees that we may choose N in such a way that the hypothesis in the
second point of Lemma 2.1.4 is satisfied as well. We fix such an integer N from now on. By

5This is slightly subtle because Hilbert modular varieties are Shimura varieties of abelian type and do not directly
embed into Siegel modular varieties. However, one can handle this issue by carefully choosing the tame level.
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assumption there is i ⩾ 0 such that H i(ShK(G),Fℓ)m ̸= 0. By Lemma 2.1.4 we deduce that
H i(XK(G),Fℓ)m ̸= 0, hence H i(XK(G),Fℓ)χm ̸= 0 for some χ ∈ Ĉ. If χ is the trivial character
then by Lemma 2.1.4 we have H i(X̄K(G),Fℓ)m ̸= 0, and by [Sch15, Theorem 1.3] and [CL16,
Theorem 1.2] we can attach to m a Galois representation as in the statement of the theorem.

Let us now suppose that χ is not the trivial character. The map {±1}g → F×\{±1}g ×
A×
F,f/ det(K) sending ε to the equivalence class of (ε, 1) is injective. We may extend χ : {±1}g →

F×
ℓ to a character ψ : F×\{±1}g × A×

F,f/ det(K) → k× for a large enough finite extension k of

Fℓ. The function ψ gives rise to a cohomology class cψ ∈ H0(XK(G), k). Let fψ : T → T the
map sending the operator Tg attached to the double coset of g ∈ G(Af ) to ψ(det(g)−1)Tg. Cup
product with cψ induces a map H i(XK(G), k)→ H i(XK(G), k) which is Hecke-equivariant if we
endow the source (resp. target) with the usual Hecke action (resp. the composite of the usual
Hecke action and fψ). This is proved in great generality in [ACC+23, Proposition 2.2.22], and it
can be checked in our situation by a direct computation.

Furthermore the above map sends H i(XK(G), k)χ to H i(XK(G), k)Id. Indeed, for ε ∈ C we
have ε∗(cψ) = χ(ε)cψ hence, for every c ∈ H i(XK(G), k)χ:

ε∗(cψ ∪ c) = ε∗cψ ∪ ε∗c = χ(ε)cψ ∪ χ(ε)c = cψ ∪ c.

The outcome of our discussion is that, letting m(ψ) := fψ(m), we have the equivalence

H i(XK(G), k)χm ̸= 0⇔ H i(XK(G), k)Idm(ψ) ̸= 0.

We deduce that H i(X̄K(G), k)m(ψ) ̸= 0, hence we have a Galois representation ρ̄m(ψ) attached to
m(ψ) by [Sch15, Theorem 1.3]. We can finally take ρ̄m to be the twist of ρ̄m(ψ) by the character
of ΓF corresponding to ψ via global class field theory.

2.3 Cohomology of the boundary

Recall that a maximal ideal m ⊂ T in the support of H∗(ShK(G),Fℓ) is said to be non-Eisenstein
if the associated Galois representation ρ̄m is absolutely irreducible.

2.3.1 Lemma. Let ℓ > 2 be a prime and assume that m is non-Eisenstein. Then:

(i) for every integer i, the natural map from compactly supported cohomology to cohomology
induces an isomorphism H i

c(ShK(G),Fℓ)m ≃ H i(ShK(G),Fℓ)m;
(ii) take δ ⩾ 0 and assume that H i

c(ShK(G),Fℓ)m = H i
c(ShK(G),Fℓ)m∨ = 0 for each i < g − δ.

Then H i(ShK(G),Fℓ)m = 0 if i is outside the interval [g − δ, g + δ].

Proof. Consider the Borel–Serre compactification ShK(G)BS of ShK(G), constructed in [Har87],
with boundary ∂. Recall that the cohomology of ShK(G)BS agrees with that of ShK(G), as
the two spaces are homotopy equivalent, and the compactly supported cohomology of ShK(G)
coincides with the cohomology of ShK(G)BS relative to the boundary. Hence we have a T-
equivariant long exact sequence

. . . H i
c(ShK(G),Fℓ)→ H i(ShK(G),Fℓ)→ H i(∂,Fℓ)→ H i+1

c (ShK(G),Fℓ) . . . .

We claim that if m is non-Eisenstein then cohomology of the boundary vanishes after localising
at m; this implies the first point. The second follows using Poincaré duality (which interchanges
m and m∨, as in [CS19, p. 35]). It remains to justify our claim. By [Har87, p. 46] we have
H∗(∂,Fℓ) ≃ H∗(P (Q)\(C∖R)g ×G(Af )/K,Fℓ), where P ⊂ G is the standard upper parabolic.
To prove our claim we may replace K by a normal compact open subgroup, so that the condition
det(K) = K ∩ Z(Af ) is satisfied. We will assume that this is the case in the rest of the proof.
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The space P (Q)\(C∖R)g ×G(Af )/K is a disjoint union of quotients P (Q)∩ giKg−1
i \(C∖R)g,

where gi runs over a set of representatives of P (Q)\G(Af )/K.

On the other hand we have the locally symmetric space XK(G). The boundary of its Borel–
Serre compactification is homotopy equivalent to the space P (Q)\G(R) × G(Af )/(R>0K

◦
∞)K

(see [Gra16, p. 94]). The latter is a disjoint union of quotients P (Q) ∩ giKg−1
i \G(R)/(R>0K

◦
∞)

with gi as above. The action of Z(R) on G(R)/(R>0K
◦
∞) induces an action on P (Q)\G(R) ×

G(Af )/(R>0K
◦
∞)K. This action preserves the fibres of the projection map

P (Q)\G(R)×G(Af )/(R>0K
◦
∞)K → P (Q)\(C∖ R)g ×G(Af )/K, (2.3.1.1)

and factors through an action of the torus TK = Z(R)/{±1}gR>0ZK . The argument in the proof
of [Gra16, Lemma 3.1.2] shows that each projection map P (Q) ∩ giKg−1

i \G(R)/(R>0K
◦
∞) →

P (Q) ∩ giKg−1
i \(C ∖ R)g is a TK-bundle. Hence the same is true for the map in (2.3.1.1).

Furthermore we have a commutative diagram

P (Q)\G(R)×G(Af )/(R>0K
◦
∞)K G(Q)\G(R)×G(Af )/(R>0K

◦
∞)K

P (Q)\(C∖ R)g ×G(Af )/K G(Q)\(C∖ R)g ×G(Af )/K.

As we already mentioned above, by [Gra16, Lemma 3.1.2] the right vertical map is a TK-
bundle, and [Gra16, Proposition 3.3.9] constructs cohomology classes in H∗(XK(G),Fℓ) whose
restrictions to each fibre of the right vertical map give a basis of its cohomology. Pulling back
via the upper horizontal map we obtain classes in H∗(P (Q)\G(R) × G(Af )/(R>0K

◦
∞)K,Fℓ)

enjoying the same property. In particular by Leray–Hirsch the pullback map in cohomology
induced by the left vertical map is injective. Now assume that H∗(∂,Fℓ)m = H∗(P (Q)\(C∖R)g×
G(Af )/K,Fℓ)m ̸= 0. We deduce that the cohomology H∗(P (Q)\G(R)×G(Af )/(R>0K

◦
∞)K,Fℓ)m

of the boundary of XK(G) is non-zero. Finally the argument in [NT16, Section 4] shows that m
must be Eisenstein.

3. Quaternionic and unitary Shimura varieties

In this section, we introduce quaternionic Shimura varieties as well as certain closely related
unitary Shimura varieties that admit nice integral models.

3.1 Quaternionic Shimura data and the associated unitary Shimura data

3.1.1 Quaternionic Shimura data As in the previous section we denote G := ResF/QGL2;
we also let TF := ResF/QGm. Let K ⊂ G(Af ) be a neat compact open subgroup. Fix a prime
p > 2 which is totally split in F and such that K = KpKp with Kp = GL2(OF ⊗ Zp).

Recall that Σ∞ denotes the set of real places of F . We will denote by Σp the set of embeddings
of F into Q̄p, which we identify with the set of prime ideals p ⊂ OF lying above p. We fix an
isomorphism ιp : Q̄p

∼→ C, inducing a bijection ιp,∞ : Σp
∼→ Σ∞. For every subset T ⊂ Σp we set

T∞ := ιp,∞(T ) and we denote by BT the quaternion algebra over F ramified precisely at T
∐
T∞.

We let GT := ResF/QB
×
T , and we fix an isomorphism GT (A

(p)
f ) ≃ G(A(p)

f ). The group GT,R is

isomorphic to
∏
τ∈T∞ H× ×

∏
τ∈Σ∞∖T∞ GL2,R where H is the algebra of Hamilton quaternions.

Let XT be the GT (R)-conjugacy class of the morphism hT : S → GT,R sending an R-point
z = a + ib ∈ S(R) to (zτ )τ∈Σ∞ , where zτ = 1 for τ ∈ T∞ and zτ =

(
a b
−b a

)
if τ ∈ Σ∞ ∖ T∞.
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The couple (GT , XT ) is a weak Shimura datum (in the sense of [TX16, Section 2.2]) whose reflex
field FT can be described as follows: the group Aut(C/Q) acts on Σ∞ by post-composition. Let
ΓT ⊂ Aut(C/Q) be the subgroup preserving T∞; then FT = CΓT ⊂ C.

Let KT = KT,pK
p ⊂ GT (Af ) be the compact open subgroup such that Kp ⊂ GT (A

(p)
f ) ≃

G(A(p)
f ) is the subgroup chosen above and KT,p =

∏
p|pKT,p is of the following type: if p ∈ Σp∖T

then we fix an isomorphism ρp : BT (Fp)
× → GL2(Fp) and we take KT,p := ρ−1

p (GL2(Op)). If
p ∈ T then we take KT,p to be the group of units in the unique maximal order in the division
quaternion algebra BT ⊗F Fp.

3.1.2 The auxiliary CM extension Choose a CM extension E/F such that every place
p ∈ Σp is inert in E; in particular BT ⊗F E is isomorphic to the matrix algebra M2(E). Let
c ∈ Gal(E/F ) be the non trivial element and let ΣE,∞ be the set of complex embeddings of E: it
comes with a restriction map ΣE,∞ → Σ∞ whose fibres are the orbits for the action of Gal(E/F )
sending an embedding τ̃ ∈ ΣE,∞ to τ̃ c := τ̃ ◦ c. Choose a set T̃ ⊂ ΣE,∞ containing exactly one
lift of each τ ∈ T∞. For every τ̃ ∈ ΣE,∞, define an integer sτ̃ ∈ {0, 1, 2} as follows:

– if τ̃|F ̸∈ T∞ then sτ̃ = 1;

– if τ̃ ∈ T̃ then sτ̃ = 0;

– if τ̃ c ∈ T̃ then sτ̃ = 2.

For each τ ∈ T∞ (resp. τ ∈ Σ∞ ∖ T∞) we choose the isomorphism E ⊗F,τ R ≃ C induced
by the embedding τ̃ ∈ ΣE,∞ ∖ T̃ lifting τ (resp. an arbitrary lift of τ). Let TE := ResE/QGm;
via the previous choices we obtain an isomorphism TE(R) =

∏
τ∈Σ∞

(E ⊗F,τ R)× ≃
∏
τ∈Σ∞

C×.
Let hT,E : S → TE,R be the morphism which on R-points sends z = a + ib ∈ S(R) to (zτ )τ∈Σ∞ ,
where zτ = z (resp. zτ = 1) if τ ∈ T∞ (resp. τ ∈ Σ∞ ∖ T∞). The reflex field ET ⊃ FT of the
TE(R)−conjugacy class of hT,E is the subfield of C fixed by the stabiliser in Aut(C/Q) of T̃ .

3.1.3 Unitary Shimura data We denote by HT the algebraic group fitting in the exact
sequence

0→ TF → GT × TE → HT → 0,

where the map TF → GT × TE is given by a 7→ (a, a−1). Notice that, because of Hilbert’s
theorem 90, the map GT ×TE → HT induces surjections on Q-points and Af -points. The (GT ×
TE)(R)−conjugacy class of the map hT ×hT,E : S→ (GT ×TE)R and the HT (R)-conjugacy class
of the induced map hHT

: S→ HT,R can both be identified with XT ≃
∏
τ∈Σ∞∖T∞(C ∖ R), and

they give rise to weak Shimura data (GT × TE , XT ) and (HT , XT ) with reflex field ET . We let
X+
T :=

∏
τ∈Σ∞∖T∞(C∖ R)+, where (C∖ R)+ ⊂ (C∖ R) is the upper half-plane.

Let us denote by DT the tensor product BT ⊗F E and by (·) : DT → DT the tensor product
of the main involution on BT and complex conjugation on E. For every Q−algebra R we have a
canonical isomorphism

(BT ⊗Q R)⊗F⊗QR (E ⊗Q R) ≃ (BT ⊗F E)⊗Q R

hence we get a map GT (R)× TE(R)→ (DT ⊗Q R)
×. This yields an identification

HT (R) = {g ∈ DT ⊗Q R | gḡ ∈ (F ⊗Q R)
×}.

The latter description allows to see HT as a unitary group as follows: given an element σ ∈ DT

such that σ̄ = −σ the map sending g ∈ DT to g∗ = σ−1ḡσ is an involution of DT . Let us denote

12
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by VT the Q-vector space underlying DT , together with its natural structure of left DT -module,
so that EndDT

(VT ) = Dop
T . Consider the skew-Hermitian pairing

ψT : VT × VT → E

(v, w) 7→ TrDT /E(vσw
∗);

for every g ∈ DT and v, w ∈ VT we have

ψT (vg, wg) = TrDT /E(vgσ(wg)
∗) = TrDT /E(vgḡσw

∗) = gḡψT (v, w)

hence, for every Q-algebra R,

HT (R) = {(g, c(g)) ∈ EndDT⊗QR(VT ⊗Q R)× (F ⊗Q R)
× | ψT (vg, wg) = c(g)ψ(v, w)}.

3.2 Relation between quaternionic and unitary Shimura varieties

3.2.1 Fix a subset T ⊂ Σp; the reduced norm on BT gives rise to a map Nm : GT → TF .
Let THT

:= (TF × TE)/TF , where the embedding of TF in TF × TE is given by a 7→ (a2, a−1).
Letting NHT

: HT → THT
be the map induced by Nm × Id : GT × TE → TF × TE , we obtain a

commutative diagram

GT × TE HT

TF × TE THT

Nm×Id NHT

where the top arrow is compatible with the Deligne homomorphisms. Recall that we have fixed a
compact open subgroupKT ⊂ GT (Af ). Take a compact open subgroupKE = KE,pK

p
E ⊂ TE(Af )

and a compact open subgroup UT ⊂ HT (Af ) containing the image of KT ×KE . Let

CKT
:= F×,+\A×

F,f/Nm(KT ), CKE
:= E×\A×

E,f/KE

CKT×KE
:= CKT

× CKE
, CUT

:= THT
(Q)+\THT

(Af )/NHT
(UT ),

where THT
(Q)+ := (F×,+ × E×)/F×. We have maps CKT

→ CKT
× CKE

→ CUT
, where the

first map sends CKT
to (the equivalence class of) 1 on the second component. Letting GT (Q)+ ⊂

GT (Q) be the subgroup of elements with totally positive norm, and HT (Q)+ := (GT (Q)+ ×
TE(Q))/TF (Q), we obtain the following commutative diagram:

GT (Q)+\X+
T ×GT (Af )/KT GT (Q)+\X+

T ×GT (Af )/KT × CKE
HT (Q)+\X+

T ×HT (Af )/UT

CKT
CKT

× CKE
CUT

.

(3.2.1.1)
If T ̸= Σp (so that the spaces in the top row are positive dimensional), the fibres of the vertical
maps are connected components of the complex analytic spaces in the first row. The upper left
(resp. upper right) space is identified with the complex points of ShKT

(GT ) (resp. ShUT
(HT )).

If T = Σp then we take this as a definition of (the complex points of) ShKT
(GT ) and ShUT

(HT ).

Following [DKS23], we will study the relation between the top left and the top right space of
the above diagram. To do so, we introduce the following notion, borrowed from [DKS23, § 2.3.1].

3.2.2 Definition. We say that KE is sufficiently small with respect to KT if the following
conditions are satisfied:

(i) E× ∩ { yyc | y ∈ KE} = {1};

13
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(ii) KE ∩ TF (Af ) ⊂ KT ;

(iii) NE/F (KE) ⊂ Nm(KT ).

3.2.3 Given KT , it is always possible to choose KE sufficiently small with respect to KT , cf.
[DKS23, § 2.3.1]. The main point is that the norm map O×

E → O
×
F has finite kernel, hence we can

choose KE satisfying the first condition. Notice that this can be done independently of KT ; given
KT , we can then shrink KE so that it satisfies the second and third conditions. Furthermore we
may choose KE of the form (OE ⊗ Zp)×Kp

E (if KT is as in § 3.1.1).

3.2.4 Hecke algebras Let u : GT → HT be the composite of the inclusion GT → GT × TE
(whose second component is the composition of the structure map and the identity section) and
the projection GT × TE → HT . If UT ⊂ HT (Af ) contains the image of KT ×KE then u induces
a map KT \GT (Af )/KT → UT \HT (Af )/UT , which in turn induces a (set theoretic) pullback
map r : TUT

(HT ) → TKT
(GT ). On the other hand the inclusion GT → GT × TE gives rise to a

morphism of Hecke algebras i : TKT
(GT ) → TUT

(HT ) sending the characteristic function of a
double coset KT gKT to that of UT (g, 1)UT .

3.2.5 Lemma. Assume that KE is sufficiently small with respect to KT and that UT is the image
of KT ×KE . Then the composite r ◦ i : TKT

(GT )→ TKT
(GT ) is the identity.

Proof. Let us see GT as a subgroup of GT × TE and denote by q : (GT × TE)(Af ) → HT (Af )
the quotient map. Given g ∈ GT (Af ), we need to prove that

q−1(UT (g, 1)UT ) ∩GT (Af ) = KT gKT .

Take x belonging to the set on the left hand side above. Then there exist (k1, e1), (k2, e2) ∈
KT ×KE and a ∈ TF (Af ) such that

x = (a, a−1)(k1, e1)(g, 1)(k2, e2).

As x ∈ GT (Af ) we must have a−1e1e2 = 1 hence e1e2 = a ∈ TF (Af ) ∩KE ⊂ KT . It follows that

x = (ak1gk2, 1) ∈ KT gKT .

3.2.6 The above lemma implies in particular that the map i : TKT
(GT ) → TUT

(HT ) is
injective. In what follows we will use this map to identify TKT

(GT ) with a sub-algebra of
TUT

(HT ). We will work with the Hecke algebra T = ⊗′
vZ[GL2(Ov)\GL2(Fv)/GL2(Ov)] as in

§ 2.1.2, where the product runs over the set of places of F lying above a rational prime different
from p and such that the component of KT at v is hyperspecial.

The statements in the next lemma are established, in a slightly different setting, in the proof
of [DKS23, Lemma 2.3.1].

3.2.7 Lemma. Assume that KE is sufficiently small with respect to KT and that UT is the image
of KT ×KE . Then the following assertions hold true.

(i) The map CKT
→ CUT

obtained composing the bottom arrows in (3.2.1.1) is injective.

(ii) The map j : ShKT
(GT )(C)→ ShUT

(HT )(C) obtained composing the top arrows in (3.2.1.1)
restricts to an isomorphism between each connected component of ShKT

(GT )(C) and a
connected component of the target.
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Proof. For the reader’s convenience, let us briefly explain how the main points of the argument
in the proof of [DKS23, Lemma 2.3.1] adapt to our situation.

(i) This follows from the fact that the inclusion TF → THT
sending a to (a, 1) is split by the

map (a, b) 7→ aNE/F (b), which induces splittings

THT
(Q)+ = (F×,+ × E×)/F× → F×,+, NHT

(UT )→ Nm(KT )

(a, b) 7→ aNE/F (b) (Nm(k), l) 7→ Nm(k)NE/F (l)

(notice that the last formula gives a well defined map NHT
(UT )→ Nm(KT ) because of the

assumptions that UT is the image of KT ×KE and NE/F (KE) ⊂ Nm(KT )) of the inclusions

F×,+ → THT
(Q)+ = (F×,+ × E×)/F×, Nm(KT )→ NHT

(UT )

a 7→ (a, 1) Nm(k) 7→ (Nm(k), 1).

(ii) If T = Σp there is nothing to prove. Assume that T ̸= Σp. Then the claim follows from the
equality, valid for every g ∈ GT (Af ):

GT (Q)+ ∩ gKT g
−1 = HT (Q)+ ∩ gUT g−1.

Clearly the group on the left hand side is contained in the one on the right hand side.
Conversely, let h ∈ HT (Q)+ ∩ gUT g−1. On the one hand we can write (the equivalence
class of) h as h = a · e for some a ∈ GT (Q)+, e ∈ E×; on the other hand h = g(k · y)g−1

for some k ∈ KT , y ∈ KE . It follows that ae = g(ky)g−1, which implies that e · c(e)−1 =
y · c(y)−1 ∈ E× ∩ { yyc | y ∈ KE} = {1}. Therefore y ∈ KE ∩ TF (Af ) ⊂ KT . This yields

h ∈ GT (Q)+ ∩ gKT g
−1.

3.2.8 Keeping the notations and assumptions of the previous lemma, we set I := CUT
/CKT

.
For each α ∈ I, let ShαUT

(HT )(C) ⊂ ShUT
(HT )(C) be the subspace consisting of connected

components mapping to the CKT
-coset inside CUT

given by α. We obtain a decomposition

ShUT
(HT )(C) =

∐
α∈I

ShαUT
(HT )(C)

into open and closed subspaces; the subspace corresponding to the coset containing the identity
is identified with ShKT

(GT )(C) (if Σp = T , cf. the argument in the second part of the proof of
[DKS23, Lemma 2.3.1]).

3.2.9 Corollary. Assume that KE is sufficiently small with respect to KT and that UT is the
image of KT ×KE . Let m ⊂ T be a maximal ideal and i ⩾ 0 an integer. Then:

(i) H i(ShKT
(GT ),Fℓ)m ̸= 0 if and only if H i(ShUT

(HT ),Fℓ)m ̸= 0, and the same assertion is
true for the cohomology with Qℓ-coefficients;

(ii) the natural map H i
c(ShUT

(HT ),Fℓ)m → H i(ShUT
(HT ),Fℓ)m is an isomorphism if and only

if the same is true for the map H i
c(ShKT

(GT ),Fℓ)m → H i(ShKT
(GT ),Fℓ)m.

Proof. We will work over the complex numbers throughout this proof, and omit this from the
notation for simplicity. The decomposition ShUT

(HT ) =
∐
α∈I Sh

α
UT

(HT ) introduced above yields
a direct sum decomposition

H i(ShUT
(HT ),Fℓ) = ⊕α∈IH i(ShαUT

(HT ),Fℓ) (3.2.9.1)
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and each summand on the right hand side is preserved by the action of T. Indeed, the Hecke
algebra T is spanned by characteristic functions of double cosets KT gKT , whose component

at a place v is of the form GL2(Ov)
(
ϖav

v 0

0 ϖbv
v

)
GL2(Ov), for some uniformiser ϖv of Ov and

av, bv ∈ Z. The group KE is sufficiently small with respect to KT,g := KT ∩ gKT g
−1; letting

UT,g ⊂ HT (Af ) be the image of KT,g ×KE (which coincides with the group UT ∩ gUT g−1), the
Hecke correspondence

ShUT,g
(HT )

ShUT
(HT ) ShUT

(HT )

restricts to a correspondence on each ShαUT
(HT ). Indeed the map ShUT,g

(HT ) → ShUT,g−1 (HT )

induced by right multiplication by (g, 1) ∈ HT (Af ) preserves each ShαUT,g
(HT ), as NHT

((g, 1)) ∈
A×
F,f ⊂ THT

(Af ). Hence each summand in (3.2.9.1) is preserved by the action of T.
On the other hand we have an action of TE(Af ) on ShUT

(HT ): the action of e ∈ TE(Af ) sends
each ShαUT

(HT ) to SheαUT
(HT ). In particular TE(Af ) acts transitively on the set of subvarieties

ShαUT
(HT ), inducing isomorphisms, for every α ∈ I:

H i(ShαUT
(HT ),Fℓ) ≃ H i(Sh1UT

(HT ),Fℓ) = H i(ShKT
(GT ),Fℓ).

Finally, the action on cohomology induced by the TE(Af )-action on ShUT
(HT ) commutes with

the action of T. It follows that the above isomorphism induces an isomorphism

H i(ShUT
(HT ),Fℓ)m ≃ ⊕α∈IH i(ShKT

(GT ),Fℓ)m. (3.2.9.2)

The isomorphism (3.2.9.2) (which also holds with Qℓ-coefficients) implies (1). Furthermore the
previous argument also applies to compactly supported cohomology, yielding a direct sum decomposition
of H i

c(ShUT
(HT ),Fℓ)m as in (3.2.9.2). Hence we obtain a similar decomposition for the kernel

and cokernel of the map H i
c(ShUT

(HT ),Fℓ)m → H i(ShUT
(HT ),Fℓ)m, from which (2) follows.

3.3 Integral models of unitary Shimura varieties

3.3.1 Fix a totally negative element d ∈ OF coprime to p; choose isomorphisms θT :
M2(E) = D∅

∼→ DT for every non-empty subset T ⊂ Σp. For every such T choose an element
δT ∈ DT as in [TX16, Lemma 3.8], and let σT =

√
dδT . Via the construction in § 3.1.3, such

a choice gives an involution ∗T on each DT . By [TX16, Lemma 5.4] we may, and will, choose
the elements δT in such a way that these involutions are respected by the isomorphisms θT . Let
OD∅ =M2(OE) ⊂ D∅ and ODT

= θT (OD∅) for every non-empty subset T ⊂ Σp.

Take KT ⊂ GT (Af ) as in § 3.1.1, KE = (OE ⊗ Zp)×Kp
E ⊂ TE(Af ) sufficiently small with

respect to KT and let UT ⊂ HT (Af ) be the image of KT × KE . The inverse of the chosen

isomorphism ιp : Q̄p
∼→ C determines a distinguished p-adic place ℘ of the reflex field ET ⊂ C.

Let E℘ ⊂ Q̄p be the completion of ET at ℘, and O℘ its ring of integers. Following [DKS23,
Section 2] and [TX16, Section 3], an integral model of ShUT

(HT ) over O℘ can be constructed as
follows: consider the functor sending an O℘-scheme S to the set of isomorphism classes of tuples
(A, ι, λ, η) where:

(i) A/S is an abelian scheme of dimension 4g.

(ii) ι : ODT
→ EndS(A) is an embedding.
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(iii) λ : A → A∨ is a Z×
(p)-polarisation whose attached Rosati involution coincides with ∗T on

ODT
.

(iv) η is a UT -level structure, in the sense of [DKS23, Section 2.2.2].

Furthermore the above data are required to satisfy the following conditions:

(a) For every b ∈ OE , the characteristic polynomial of ι(b) acting on Lie(A/S) equals∏
τ̃∈ΣE,∞

(X − τ̃(b))2sτ̃ ,

where the integers sτ̃ were defined in § 3.1.2.

(b) ker(λ[p∞]) : A[p∞] → A∨[p∞] is a finite flat subgroup scheme contained in
∏

p∈T A[p] and

such that for each p ∈ T the rank of ker(λ[p∞]) ∩A[p] is p4.
(c) The cokernel of λ∗ : H

dR
1 (A/S)→ HdR

1 (A∨/S) is locally free of rank two over ⊕p∈TOS ⊗Zp

(OE ⊗OF
OF /p) (here HdR

1 (A/S) denotes the de Rham homology sheaf of A/S).

This functor is represented by a scheme YUT
(HT ) which is an infinite disjoint union of smooth,

quasi-projective (resp. projective if T is non-empty) O℘-schemes. The group O×,+
F,(p) acts on this

scheme as follows: an element u ∈ O×,+
F,(p) sends (A, ι, λ, η) to (A, ι, uλ, η). This action factors

through the group O×,+
F,(p)/NE/F (UT ∩E×), and the resulting quotient is a smooth quasi-projective

scheme giving the desired integral model of ShUT
(HT ).

3.3.2 Remark.

(i) More precisely, the above description of the moduli problem, using the level structure as
in [DKS23, Section 2.2.2], is valid for locally noetherian schemes S. We will need later on
to work with non locally noetherian schemes as well; in this case one can use a different
definition of the level structure, adapting [Lan18, Definition 1.3.7.6].

(ii) For any field extension L of ET , one can define schemes YUT
(HT )L over Spec L for arbitrary

UT = UpTUT,p representing a moduli problem as above, including UT,p-level structure.

3.3.3 Remark. Notice that, if S is the spectrum of a ring where p is nilpotent, then conditions
(a), (b), (c) in the definition of the above moduli problem can be stated in terms of the p-divisible
group (with OE-action) of the abelian scheme A. Indeed, by [Mes72, p. 164] the Lie algebra of
A/S (resp. of the universal vector extension of A/S) is isomorphic to the Lie algebra of A[p∞]
(resp. of the universal vector extension of A[p∞]). Hence the first condition is the Kottwitz
condition on A[p∞]; the second condition manifestly only depends on A[p∞], and the same is
true for the third, as the first de Rham cohomology of A/S is identified with the Lie algebra of
the universal vector extension of the dual of A by [MM06, Chapter 1, § 4].

4. Comparison of unitary Igusa varieties

In this section, we establish an isomorphism between Igusa varieties that are a priori attached to
different unitary Shimura varieties. This relies on a reinterpretation of (some of) the arguments
in [TX16] in the case of a totally split prime.

4.1 Kottwitz sets

We keep the notation introduced in the previous section. In particular we fixed in § 3.1.1 a
prime p which splits completely in F ; hence we can write DT ⊗QQp =

∏
p∈Σp

DT,p and HT,Qp :=

17
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HT ×Q Qp =
∏

p∈Σp
HT,p, where DT,p := DT ⊗F Fp and, for every Fp−algebra R,

HT,p(R) = {g ∈ DT,p ⊗Fp R | gḡ ∈ R×}.
According to [TX16, Lemma 3.8], the subgroup defined by

H1
T,p(R) := {g ∈ HT,p(R) | gḡ = 1}

is an unramified (resp. non quasi-split) group over Fp if p ∈ Σp ∖ T (resp. p ∈ T ). Furthermore
the natural maps GT ← GT × TE → HT are compatible with the Deligne homomorphisms and
induce isomorphisms of derived and adjoint groups. Denoting by µT the cocharacter of HT,Q̄p

induced by (HT , XT ) and by the isomorphism ιp, we have the Kottwitz set B(HT,Qp , µT ). We can
write B(HT,Qp , µT ) =

∏
p∈Σp

B(HT,p, µT,p), where µT,p is the p-component of µT , and it follows

from [Kot97, (6.5.1), (6.5.2)] that B(HT,p, µT,p) can be described as follows:

(i) it contains two elements - the basic one and the µ-ordinary one - if p ∈ Σp ∖ T ;

(ii) it is a singleton if p ∈ T .
Let b = (bp)p∈Σp ∈ B(HT,Qp , µT ) and let B ⊂ Σp ∖ T be the set of places such that bp is

basic. Let T ′ := T
∐
B and b′ ∈ B(HT ′,Qp , µT ′) be the element which is µ-ordinary at every place

p ∈ Σp ∖ T ′. We call b′ the element in B(HT ′,Qp , µT ′) associated with b.

4.2 Igusa varieties

Every b ∈ B(HT,Qp , µT ) corresponds to a Newton stratum in the special fibre of YUT
(HT ), hence

to a Newton stratum in the special fibre of ShUT
(HT ). Let (XbT , ιbT , λbT ) be a p-divisible group with

extra structure attached to an F̄p-point in such a stratum. Notice that, as p splits completely in
F , this datum is equivalent to the datum of a collection of p-divisible groups with extra structure
(XbpT , ι

bp
T , λ

bp
T ), for each p ∈ Σp. Similarly, if (G, ιG , λG) is a p-divisible group with extra structure

then an isomorphism (or, more generally, a quasi-isogeny) ϕ : XbT → G commuting with the
ODT

-action splits as a sum of isomorphisms (or quasi-isogenies) ϕp indexed by places p ∈ Σp.
We will write ϕ = (ϕp)p∈Σp .

4.2.1 Let Ig
b
T be the scheme representing the functor that sends a ring R of characteristic

p to the set of isomorphism classes of data (r,A, ι, λ, η, ϕ) defined as follows:

(i) r : F̄p → R is a ring morphism.

(ii) (A, ι, λ, η)/Spec R is a datum as in the definition of the integral model of ShUT
(HT ),

satisfying conditions (a), (b), (c) in § 3.3.

(iii) ϕ = (ϕp)p∈Σp : A[p∞]
∼→ XbT ×F̄p,rR is an isomorphism commuting with the ODT

-action and

such that each ϕp respects the polarisation up to a Z×
p -factor.

Two tuples (r,A, ι, λ, η, ϕ), (r′, A′, ι′, λ′, η′, ϕ′) are said to be isomorphic if r = r′ and there is an
isomorphism of abelian schemes over Spec R between A and A′ commuting with all the additional
data.

Forgetting everything but the structure map r we see that Ig
b
T is fibred over F̄p; in what

follows, if there is no danger of confusion, we will abusively denote its points with values in

an F̄p-algebra (R, r) just by (A, ι, λ, η, ϕ) ∈ Ig
b
T (R). The functor defining Ig

b
T is representable:

indeed, Ig
b
T → YUT

(HT )F̄p
relatively represents the moduli problem parametrising isomorphisms

ϕ : A[p∞]
∼→ XbT×F̄p,rR as above. By definition, such an isomorphisms is a compatible sequence of

18



On the cohomology of Hilbert modular varieties

isomorphisms ϕk : A[p
k]

∼→ XbT [pk]×F̄p,rR for k ⩾ 0. Hence Ig
b
T is the inverse limit of the schemes

Ig
b
T,k → YUT

(HT )F̄p
parametrising isomorphisms ϕk as above; each of these moduli problems is

relatively representable (cf. [CS17, Proposition 4.3.3]) and the transition maps are finite.

Recall that we have an action of O×,+
F,(p) on YUT

(HT )F̄p
. For each k ⩾ 0, consider the quotient

∆k := O×
F,(p)/{NE/F (u), u ∈ UT ∩ O×

E , u ≡ 1 (mod pk)}; set ∆ := lim←−k∆k. The action of O×,+
F,(p)

on Ig
b
T,k lifting the action on YUT

(HT )F̄p
factors through ∆k, hence we get an action of ∆ on Ig

b
T .

We define IgbT := Ig
b
T /∆.

For each p ∈ Σp fix an element xp ∈ O+
F with p-adic valuation one, and with p′-adic valuation

zero for every p′ ∈ Σp ∖ {p}. The following lemma gives a description of the functor of points of

Ig
b
T in terms of abelian schemes up to p-quasi-isogeny; see also [CS17, Lemma 4.3.4].

4.2.2 Lemma. Let R be a ring of characteristic p. There is a bijection, functorial in R, between

Ig
b
T (R) and the set of isomorphism classes of data (r,A, ι, λ, η, ρ) defined as follows:

(i) r : F̄p → R is a ring morphism.

(ii) A is an abelian scheme of dimension 4g over Spec R.

(iii) ι : ODT
→ EndR(A) is an embedding.

(iv) λ : A → A∨ is a Z×
(p)-polarisation such that the attached Rosati involution coincides with

∗T on ODT
.

(v) η is a level structure, defined as in § 3.3.

(vi) ρ = (ρp)p∈Σp : A[p∞]→ XbT ×F̄p,rR is a quasi-isogeny commuting with ODT
-action and such

that each ρp respects the polarisation up to a Q×
p -factor.

Two tuples (r,A, ι, λ, η, ρ), (r′, A′, ι′, λ′, η′, ρ′) are regarded as isomorphic if r = r′ and there is a
p-quasi-isogeny from A to A′ commuting with ODT

-action, level structure and the quasi-isogenies
ρ, ρ′, and respecting polarisations up to a product of integral powers of the elements xp.

4.2.3 Remark. Before proving the lemma, let us comment on its content. The first point is that
the datum (A, ι, λ, η) is not a priori required to satisfy the conditions (a), (b), (c) in § 3.3; the
second point is that the isomorphism ϕ in the definition of the moduli problem represented by

Ig
b
T is replaced by a quasi-isogeny ρ (at the price of changing the notion of isomorphism of the

data we are parametrising). Both points will be crucial in the next theorem.

Proof. Let R be an F̄p-algebra. An isomorphism class of data (A, ι, λ, η, ϕ) corresponding to an

R-point of Ig
b
T gives rise to a tuple as in the statement of the lemma. Conversely, let (A, ι, λ, η, ρ)

be a datum as in the statement of the lemma; multiplying ρ by suitable powers of the elements
xp we obtain an isogeny, abusively still denoted by the same symbol, ρ : A[p∞] → XbT ×F̄p

R,

commuting with ODT
-action and polarisation (the latter up to a Q×

p -factor on each component).

Letting B = A/ ker(ρ), the map ρ induces an isomorphism ρ̄ : B[p∞]
∼−→ XbT ×F̄p

R, and this
property characterises uniquely B among abelian schemes in the p-power isogeny class of A. In
order to complete the proof we need to endow B with extra structures ιB, λB, ηB, ϕ in such a

way that (B, ιB, λB, ηB, ϕ) is a point of Ig
b
T , and the quotient map q : A→ B respects the extra

structures as in the statement of the lemma.

Let us start by defining the ODT
-action on B. Given o ∈ ODT

we consider the self-quasi-
isogeny ιB(o) := q ◦ ι(o) ◦ q−1 of B. Let us look at the diagram
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A[p∞] B[p∞] XbT ×F̄p
R

A[p∞] B[p∞] XbT ×F̄p
R.

q

ι(o)

ρ̄

ιB(o) ιbT (o)

q ρ̄

By assumption the largest square and the left square in the diagram commute; it follows that
the right square also commutes. We deduce that ιB(o) : B → B is a morphism (and not just a
quasi-isogeny) as the same is true for ιbT (o) : XbT ×F̄p

R → XbT ×F̄p
R. Hence the map sending

o to ιB(o) endows B with an ODT
-action, which commutes with the quotient map A → B by

construction.

Let us now define the polarisation λB. We consider the quasi-isogeny λ′B := (q∨)−1 ◦λ ◦ q−1 :
B → B∨. It fits in the diagram

A[p∞] B[p∞] XbT ×F̄p
R

A∨[p∞] B∨[p∞] Xb,∨T ×F̄p
R.

q

λ

ρ̄

λ′B
λXb

T

q∨ ρ̄∨

By assumption the map ρ = ρ̄ ◦ q can be written as ρ = (ρp)p∈Σp where each ρp respects
polarisations on the p-component of the relevant p-divisible groups up to a factor cp ∈ Q×

p ,
i. e. we have (ρ∨p )

−1 ◦ λp ◦ (ρp)−1 = cpλXbp
T

. For each p let vp be the valuation of cp, and set

λB := (
∏

p∈Σp
x
−vp
p )λ′B; then the isomorphism ρ̄ commutes with the polarisations λB and λXb

T

up to a Z×
p -factor on each component.

Let ηB be the (prime to p) level structure on B induced by η and q. Let the isomorphism ϕ
be given by ρ̄. Notice that changing the polarisation on A by a product of powers of the elements
xp does not affect the polarisation λB, hence the isomorphism class of (B, ιB, λB, ηB, ϕ) only
depends on the isomorphism class of (A, ι, λ, η, ρ) (in the sense of the lemma).

Furthermore by construction the map q commutes with polarisations up to a product of
powers of the elements xp, and respects all the other additional structures; therefore the data
(A, ι, λ, η, ρ) and (B, ιB, λB, ηB, ϕ) are isomorphic in the sense of the lemma.

Finally, the datum (B, ιB, λB, ηB) satisfies conditions (a), (b), (c) in § 3.3, hence is a point of

Ig
b
T . This follows from Remark 3.3.3 and from the fact that the p-divisible group XbT comes from

an abelian variety with extra structure satisfying the same conditions.

4.2.4 Theorem. Let b ∈ B(HT,Qp , µT ) and let B ⊂ Σp ∖ T be the subset of places p such that
bp is basic. Let T ′ = T

∐
B and let b′ ∈ B(HT ′,Qp , µT ′) be the element associated with b. Then

there is an isomorphism

IgbT ≃ Igb
′
T ′

whose induced map in cohomology is equivariant with respect to the action of the Hecke operators
outside p.

Proof. It suffices to produce an isomorphism Ig
b
T ≃ Ig

b′

T ′ which satisfies the requirements in the
theorem and is in addition O×,+

F,(p)-equivariant. Recall that in § 3.3 we have chosen isomorphisms

(D∅, ∗∅,OD∅) ≃ (DT , ∗T ,ODT
),
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i.e. isomorphisms θT : D∅
∼→ DT respecting orders and involutions; we use these isomorphisms

to identify the above data, and we denote them by (D, ∗,OD) in this proof. With this notation,

Lemma 4.2.2 tells us that, for every T ⊂ Σp and every F̄p-algebra R, the set Ig
b
T (R) is the set of

isomorphism classes of data (A, ι, λ, η, ρ) where

(i) A/Spec R is an abelian scheme of dimension 4g.

(ii) ι : OD → EndR(A) is an embedding.

(iii) λ : A→ A∨ is a Z×
(p) polarisation whose attached Rosati involution coincides with ∗ on OD.

(iv) η is a level structure, defined as in § 3.3.

(v) ρ : A[p∞]→ XbT ×F̄p
R is a quasi-isogeny commuting with OD-action and polarisation (the

latter up to a constant).

In particular, the only datum in the description of the functor of points of Ig
b
T which depends on

T is the quasi-isogeny ρ : A[p∞]→ XbT ×F̄p
R. Hence, in order to complete the proof it suffices to

show that, if b is associated with b′, then there is a quasi-isogeny ρT,T ′ : XbT → Xb′T ′ commuting
with the extra structure. The functor sending (A, ι, λ, η, ρ) to (A, ι, λ, η, ρT,T ′ ◦ ρ) will then give

the desired isomorphism Ig
b
T ≃ Ig

b′

T ′ ; as O×,+
F,(p) only acts modifying polarisations by prime to p

quasi-isogenies, this isomorphism is O×,+
F,(p)-equivariant. The existence of a quasi-isogeny ρT,T ′ as

above follows from the construction in the proof of [TX16, Lemma 5.18]. Indeed, letting DT be
the Dieudonné module of XbT , the argument in [TX16, proof of Lemma 5.18, p. 2185] produces
a Dieudonné module pDT ⊂ N ⊂ DT , giving rise to a closed finite subgroup scheme Z ⊂ XbT [p];
moreover XbT /Z is isomorphic to Xb′T ′ , and the construction in loc. cit. endows the quotient XbT /Z
with extra structures respected by the isogeny XbT /Z → XbT whose composite with the quotient
map is multiplication by p.

4.2.5 Remark.

(i) The argument in [TX16, p. 47] mentioned above constructs N starting from the unitary
Dieudonné module of XbT and using the Frobenius operator; a key point is that this results
in a change of signature. The reader may find it helpful to check directly this phenomenon
in the explicit examples given in [BW06, (3.2)].

(ii) With the notation as in the above theorem, the main result of [TX16] implies that the
Newton strata indexed by b and b′ in the special fibres of the Shimura varieties attached
to HT and HT ′ are isomorphic. The above result shows that the same is true for the
corresponding Igusa varieties. This is natural to expect, in view of Lemma 4.2.2 and of
the fact that the isomorphism in [TX16] is obtained from a quasi-isogeny on the level of
p-divisible groups. The existence of such isomorphisms between Igusa varieties is established
much more systematically in the function field setting in Sempliner’s PhD thesis.

5. The geometry of the Hodge–Tate period morphism

The goal of this section is to establish the infinite-level Mantovan product formula for our abelian-
type unitary Shimura varieties. As a consequence, we can compute the fibers of the Hodge–Tate
period morphism in terms of Igusa varieties.
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5.1 The product formula

Take p as in the previous section and choose a subset T ⊂ Σp; in order to simplify the notation,
unless otherwise stated we will keep T fixed throughout this section, and omit it from the
notation. Fix an element b = (bp)p∈Σp ∈ B(HQp , µ), and let (Xb, ιb, λb) be a p-divisible group
with extra structure attached to b, giving rise to a collection of p-divisible groups with extra
structure (Xbp , ιbp , λbp), for p ∈ Σp, as in the previous section.

5.1.1 Let Ŏ℘ be the ring of integers of the completion of the maximal unramified extension
of E℘, and let NilpŎ℘

be the category of Ŏ℘-algebras in which p is nilpotent. Following [CS17,

Definition 4.3.11] we consider the functor Xb : NilpŎ℘
→ Sets sending R to the set of isomorphism

classes of data (A, ι, λ, η, φ), where

(i) (A, ι, λ, η)/Spec R is a datum as in § 3.3.

(ii)

φ = ⊕p∈Σpφp : A[p
∞]×R R/p = ⊕p∈ΣpA[p

∞]×R R/p→ ⊕p∈ΣpXbp ×F̄p
R/p

is a quasi-isogeny commuting with the OD-action, and such that each φp respects the
polarisation up to a Q×

p -factor.

We will now decompose Xb as a product of Rapoport–Zink spaces and a formal lift of an
Igusa variety we introduced before, as in [CS17, Lemma 4.3.12]. The existence of such lifts is a
consequence of the next lemma, which is analogous to [CS17, Corollary 4.3.5].

5.1.2 Lemma. The scheme Ig
b
is perfect.

Proof. We have to show that, for every ring R, the absolute Frobenius Fr : Ig
b → Ig

b
induces a

bijection on R-points. We will use the description of the functor of points of Ig
b
given in Lemma

4.2.2. As the map Fr is not a morphism of F̄p-schemes, in this proof we need to take the F̄p-algebra
structure on R into account. Let (r,A, ι, λ, η, ρ) be an R-point of Ig

b
; its image via Frobenius is

the R-point (r(p), A(p), ι(p), λ(p), η(p), ρ(p)) where:

(i) r(p) is the composite of r and the Frobenius on F̄p.
(ii) A(p) := A×R,FrR R.
(iii) (ι(p), λ(p), η(p)) are induced from (ι, λ, η) by functoriality.

(iv) ρ(p) := ρ× Id : A[p∞]×R,FrR R→ (Xb ×Fp,r
R)×R,FrR R = Xb ×Fp,r(p)

R.

Let FA : A→ A(p) be the relative Frobenius morphism. Then FA commutes with ι, ι(p) (as well
as with the level structures) by functoriality. Furthermore we have

(FA)
∨ ◦ λ(p) ◦ FA = (FA)

∨ ◦ FA∨ ◦ λ = pλ

where the first equality holds true by functoriality of relative Frobenius and the second follows
from the fact that (FA)

∨ is the Verschiebung on A∨, and the composite of Verschiebung and
Frobenius is multiplication by p. Finally, we have

ρ(p) ◦ FA = FXb ◦ ρ

where FXb : Xb ×Fp,r
R → Xb ×Fp,r(p)

R is the relative Frobenius. Writing
∏

p∈Σp
xp = pt with

t ∈ O×,+
F,(p), we deduce that the R-point (r(p), A(p), ι(p), λ(p), η(p), ρ(p)) coincides with the R-point(

r(p), A, ι,
1

t
λ, η, FXb ◦ ρ

)
.
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Let us denote by r(−p) the composition of r and the inverse of Frobenius on Fp; we have the

Verschiebung map VXb : Xb ×F̄p,r R→ Xb ×F̄p,r(−p) R, and the map Ig
b → Ig

b
which on R-points

is given by

(r,A, ι, λ, η, ρ) 7→
(
r(−p), A, ι, tλ, η,

1

p
VXb ◦ ρ

)
is the inverse of the map induced by Fr : Ig

b → Ig
b
.

5.1.3 The formal Igusa variety Since the Igusa variety Ig
b
is perfect, it lifts canonically to

a flat p-adic formal scheme Ig
b
: NilpŎ℘

→ Sets described as follows (see [CS17, p. 719]): fix a

lift (up to quasi-isogeny) X̂b/Ŏ℘ of Xb with extra structure. For R ∈ NilpŎ℘
, the R-points of

Ig
b
are isomorphism classes of data (A, ι, λ, η, ϕ) as in § 4.2.1, except that the target of ϕ is

X̂bR := X̂b ×Ŏ℘
R.

The group ∆ defined in § 4.2 acts on Ig
b
, and we set Igb := Ig

b
/∆.

5.1.4 Rapoport–Zink spaces For every p ∈ Σp we have the Rapoport–Zink spaceMbp which is
the formal scheme NilpŎ℘

→ Sets sending R to the set of isomorphism classes of data (G, ι, λ, ρ),
where:

(i) G is a p-divisible group over R.

(ii) ι : OD,p → EndR(G) is an action of OD,p := OD ⊗OF
OFp .

(iii) λ is a polarisation compatible with the involution on OD,p induced by ∗ and such that the
Kottwitz condition is satisfied.

(iv) ρ : G ×R R/p → Xbp ×F̄p
R/p is a quasi-isogeny commuting with the OD,p-action, and

respecting polarisations up to a Q×
p -factor.

Furthermore we require λ to be principal if p ̸∈ T . If p ∈ T , we ask the cokernel of the map
induced by λ on Lie algebras of the universal vector extensions of the relevant p-divisible groups
to be locally free of rank two over R⊗Zp OE/pOE .

Two tuples (G, ι, λ, ρ) and (G′, ι′, λ′, ρ′) are regarded as isomorphic if there exists an isomorphism
G → G′ commuting with ι, ι′, ρ and ρ′, and respecting polarisations up to a Z×

p -factor. Let

Mb :=
∏

p∈Σp
Mbp .

5.1.5 We will now define a map α : Ig
b ×Ŏ℘

Mb → Xb. We will denote the object to which
some extra structure is attached by a subscript.

Fix R ∈ NilpŎ℘
and take

(A, ιA, λA, ηA, ϕA) ∈ Ig
b
(R) and (Gp, ιGp , λGp , ρGp)p∈Σp ∈Mb(R).

Let G = ⊕p∈ΣpGp and let ρG : G → X̂bR be the quasi-isogeny lifting ⊕p∈ΣpρGp ; we get a quasi-

isogeny ρ−1
G ◦ ϕA : A[p∞] → G which commutes with the action of OD and such that each

component respects polarisations up to aQ×
p -factor. We need to construct a point (B, ιB, λB, ηB, φB) ∈

Xb(R).

Let B be the unique abelian scheme in the p-isogeny class of A such that ρ−1
G ◦ ϕA induces

an isomorphism γ = (γp)p∈Σp : B[p∞]
∼→ G. We endow B with an action ιB : OD → EndR(B)
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and with a level structure ηB defined as in the proof of Lemma 4.2.2. To define the polarisation
λB, look at the diagram

A[p∞] B[p∞] G

A∨[p∞] B∨[p∞] G∨.

q

λA

γ

λG

q∨ γ∨

As in the proof of Lemma 4.2.2 we may rescale the quasi-isogeny (q∨)−1 ◦ λA ◦ q−1 and get a
polarisation λB on B such that γ interchanges it with λG up to a Z×

p -factor on each component.
Finally, let γ̄ be the reduction of γ modulo p and

φB := (⊕p∈ΣpρGp) ◦ γ̄ : B[p∞]×R R/p→ Xb ×F̄p
R/p.

Notice that by construction the polarisation λB is unchanged if G is replaced by a p-divisible group
G′ endowed with an isomorphism to G respecting the extra structures, the polarisation being

respected up to a Z×
p -factor on each component. Therefore, the resulting map α : Ig

b×Ŏ℘
Mb →

Xb is well-defined.

5.1.6 Lemma. The map α : Ig
b ×Ŏ℘

Mb → Xb is an isomorphism.

Proof. We will construct an inverse β : Xb → Ig
b×Ŏ℘

Mb of the map α. Take (B, ιB, λB, ηB, φB) ∈
Xb(R) and let G := B[p∞], endowed with the additional structures coming from B, and with
the trivialisation ρG := φB. This gives an R-point of Mb. Finally, define (A, ιA, λA, ηA, ϕA) as
follows: the abelian scheme A is the unique one in the p-isogeny class of B such that the lift of
φB induces an isomorphism ϕA : A[p∞] → X̂bR, and the additional structures are obtained from
those on B as in the discussion before the statement of the lemma.

With the notations introduced in the construction of the map α, the composite β ◦ α sends

(G, ιG , λG ,⊕p∈ΣpρGp), (A, ιA, λA, ηA, ϕA)

to

(B[p∞], ιB[p
∞], λB[p

∞],⊕p∈ΣpρGp ◦ γ̄), (A, ιA, λA, ηA, ϕA).
The map γ gives an isomorphism, respecting polarisations up to Z×

p on each factor, between
(B[p∞], ιB[p

∞], λB[p
∞],⊕p∈ΣpρGp ◦ γ̄) and (G, ιG , λG ,⊕p∈ΣpρGp), hence β ◦α is the identity map.

Similarly one checks that α ◦ β is the identity.

5.2 The product formula at infinite level and the Hodge–Tate period map

We now wish to establish an analogue in our situation of [CS17, Lemma 4.3.20].

5.2.1 Generic fibres of formal schemes We will need to work with the adic generic fibres of
the formal schemes introduced in the previous section. Recall that to a formal scheme M over
Ŏ℘ (locally admitting a finitely generated ideal of definition) one can attach an adic space Mad

as in [SW13, Proposition 2.2.1] over Spa(Ŏ℘, Ŏ℘); one can then take the adic generic fibre

M := Mad ×Spa(Ŏ℘,Ŏ℘)
Spa(Ĕ℘, Ŏ℘)

where Ĕ℘ is the fraction field of Ŏ℘. With this notation, the product formula in Lemma 5.1.6
becomes, on the generic fibre:

Igb ×Spa(Ĕ℘,Ŏ℘)
Mb ∼−→ X b. (5.2.1.1)

24



On the cohomology of Hilbert modular varieties

The functors of points on complete affinoid (Ĕ℘, Ŏ℘)-algebras of the adic spaces in the previous
formula can be described using [SW13, Proposition 2.2.2]. It is easier, and sufficient for our
purposes, to give such a description restricted to the category PerfĔ℘

of perfectoid Huber pairs

(R,R+) over (Ĕ℘, Ŏ℘). For example, the functor of points of X b is the sheafification in the
analytic topology of the functor

PerfĔ℘
→ Sets

(R,R+) 7→ lim←−
n

Xb(R+/pn).

In other words, up to sheafification, an (R,R+)-point of X b is a compatible collection of data
(An, ιn, λn, ηn, φn) over R+/pn as defined in § 5.1. Notice that giving a compatible sequence of
quasi-isogenies φn just amounts to giving φ1; on the other hand we may see the compatible
sequence (An, ιn, λn, ηn) as a formal scheme with extra structure over Spf R+, which as above
can be regarded as an adic space; we will denote it by (A, ι, λ, η). Hence the compatible sequence
of data (An, ιn, λn, ηn, φn) uniquely corresponds to a datum of the form (A, ι, λ, η, φ).

A similar description can be given of the functor of points of the other objects appearing in
(5.2.1.1), as well as of the good reduction locus YU (H)◦ inside the analytification YU (H) of the
space YU (H)E℘ ; the space YU (H)◦ is defined as the generic fibre of the completion along the
special fibre of YU,O℘(H). In particular [SW13, Lemma 2.2.2] applies and yields a description
of the functor of points of YU (H)◦ similar to the one discussed above for X b. Notice that the
inclusion YU (H)◦ ⊂ YU (H) is an equality if T is non-empty, but it is strict if T is empty.

We will now introduce versions with infinite level at p of the spaces considered so far.

5.2.2 The spaceMb
∞ We will first define the Rapoport–Zink space at infinite levelMb

∞ :=∏
p∈Σp

Mbp
∞. Each Mbp

∞ is a pro-étale cover of the generic fibre Mbp of the adic space attached

to the formal scheme Mbp .

Fix p ∈ Σp; as recalled above, the functor of points PerfĔ℘
→ Sets ofMbp is the sheafification

of the functor sending (R,R+) to lim←−nM
bp(R+/pn). Giving such a compatible system of (R+/pn)-

points amounts to giving a compatible collection of p-divisible groups with extra structure
(Gn, ιn, λn) as in § 5.1.4 and a quasi-isogeny (respecting extra structures) ρ : G1 → Xbp×F̄p

R+/p.
Now, by [Mes72, Lemma (4.16)], giving a compatible sequence of p-divisible groups with extra-
structure (Gn, ιn, λn) is equivalent to giving a p-divisible group with extra structure (G, ι, λ) over
R+. For every n ⩾ 1, the Tate module functor T (Gn) from R+/pn-algebras to sets sending S to
lim←−k Gn[p

k](S) is represented by an affine scheme, flat over Spec(R+/pn), by [SW13, Proposition
3.3.1]. Taking the limit over n and passing to the adic generic fibre we obtain an adic space which
we denote by T (G).

The spaceMbp
∞ parametrises trivialisations of the local system onMbp given by T (G). More

precisely, let Λp =
(OEp OEp

OEp OEp

)
if p ∈ Σp ∖ T and Λp =

(
pOEp OEp

pOEp OEp

)
if p ∈ T (as in [TX16, p.

2154]). Following [SW13, Definition 6.5.3] we define

Mbp
∞ : PerfĔ℘

→ Sets

as the sheafification of the functor sending (R,R+) to the set of isomorphism classes of data
(G, ι, λ, ρ, α), where (G, ι, λ, ρ) is a datum as above, and

α : Λp → T (G)(R,R+)
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is an OD,p-linear map. We require that there is a compatible choice of p-power roots of unity in
R+, yielding a map ε : Zp → T (µp∞)(R,R+), such that the pairing Tr(ψ) : Λp×Λp → Zp and the
pairing T G(R,R+) × T G(R,R+) → T (µp∞)(R,R+) induced by the polarisation are identified
via the maps α and ε. Furthermore we ask that for every map x : Spa(K,K+) → Spa(R,R+)
with K a perfectoid field, the induced map Λp → T (G)(K,K+) is an isomorphism.

5.2.3 The space YUp(H)◦ Let YUp(H)/Ĕ℘ be the inverse limit of the diamonds attached to
the analytifications of the varieties YUpUp(H)Ĕ℘

, as the compact open subgroup Up ⊂ H(Qp)

varies (cf. Remark 3.3.2). We denote by YUp(H)◦ ⊂ YUp(H) the preimage of YU (H)◦
Ĕ℘

via the

natural projection map. The same argument used in § 5.2.1 shows that YU (H)◦ : PerfĔp
→

Sets is the sheafification of the functor sending (R,R+) to the set of isomorphism classes of
data (A, ι, λ, η)/Spf R+. On the other hand YUp(H) is the inverse limit of the analytifications
of schemes over YU (H)Ĕ℘

relatively representing trivialisations (respecting extra structure) of

the pn-torsion in the universal abelian scheme. It follows that YUp(H)◦ : PerfĔ℘
→ Sets is

the sheafification of the functor sending (R,R+) to the set of isomorphism classes of data
(A, ι, λ, η, α), where α : Λp = ⊕p∈ΣpΛp → T (A[p∞])(R,R+) is a trivialisation in the sense of
§ 5.2.2.

There is a continuous specialisation map YU (H)◦ → YU (H) ×Ŏ℘
F̄p; define YUp(H)b ⊂

YUp(H)◦ to be the preimage of the Newton stratum in YU (H) ×Ŏ℘
F̄p corresponding to b ∈

B(HQp , µ) via the composition of the specialisation map and the projection map YUp(H)◦ →
YU (H)◦

Ĕ℘
. Hence YUp(H)b is a locally closed subspace of (the topological space underlying)

YUp(H)◦.

5.2.4 The space X b∞ Finally, we will need the infinite level version of the space X b. This is the
sheafification of the functor sending (R,R+) ∈ PerfĔ℘

to the set of isomorphism classes of data

(A, ι, λ, η, φ, α) where (A, ι, λ, η, φ) is as in § 5.2.1, and α is a trivialisation of T (A[p∞])(R,R+)
in the sense defined above.

5.2.5 From now on, unless otherwise stated we will regard all our objects as diamonds over
Spd(Ĕ℘, Ŏ℘); in particular, to define maps between them it suffices to give natural transformations
between the functors on PerfĔ℘

described above. We have a map X b∞ →Mb
∞, obtained sending

an abelian scheme with extra structure to the associated p-divisible group with extra structure.
This fits into a cartesian diagram

X b∞ Mb
∞

X b Mb.

Indeed, the above diagram is clearly cartesian on the non-sheafified functors of points, and
sheafification commutes with finite limits. It follows that X b∞ is representable by an adic space.
Furthermore, the product formula (5.2.1.1) is still true at infinite level, as

X b∞ ≃ Igb ×Spd(Ĕ℘,Ŏ℘)
Mb

∞. (5.2.5.1)

The diamond X b∞ maps to YUp(H)◦ forgetting the quasi-isogeny φ; the underlying map of
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topological spaces factors through a map

q : X b∞ → YUp(H)b.

We warn the reader that the subset YUp(H)b ⊂ YUp(H) is not necessarily generalising, hence it
may not be the underlying topological space of a subdiamond of YUp(H). For (R,R+) ∈ PerfĔ℘

,

we will denote by YUp(H)b(R,R+) the set of maps from Spa(R,R+) to YUp(H) whose image is
contained in YUp(H)b.

Finally, we have global and local Hodge–Tate period maps

π◦HT : YUp(H)◦ → F ℓHQp ,µ
−1

πbHT :Mb
∞ → F ℓHQp ,µ

−1 .

We can now state and prove an analogue of [CS17, Lemma 4.3.20].

5.2.6 Proposition. The following diagram (of functors on PerfĔ℘
) is cartesian.

X b∞ Mb
∞

YUp(H)b F ℓHQp ,µ
−1 .

q πb
HT

π◦
HT

Proof. As sheafification commutes with finite limits, it is enough to prove the statement at the
level of non-sheafified functors of points.

(i) First we show that the diagram commutes. It is enough to prove this for Spa(K,K+)-points
with K a complete algebraically closed field and K+ ⊂ K an open bounded valuation
subring, and replacing YUp(H)b with YUp(H). Because F ℓHQp ,µ

−1 is separated (it is even

proper), we are reduced to prove commutativity on Spa(K,OK)-points. In this case it follows
from the compatibility of the Hodge–Tate filtration for an abelian variety and the associated
p-divisible group [Sch13, Proposition 4.15].

(ii) It remains to prove that the diagram is cartesian. Let (R,R+) ∈ PerfĔ℘
and take two points

x = (G, ιG , λG , ρG , αG) ∈Mb
∞(R,R+),

y = (A, ιA, λA, ηA, αA) ∈ YUp(H)b(R,R+)

mapping to the same (R,R+)-point of the flag variety. The map αG ◦α−1
A : Tp(A)(R,R+)→

Tp(G)(R,R+) becomes an isomorphism when pulled back to any geometric rank one point
Spa(K,OK), and it is induced by an isomorphism ϕ : A[p∞]R

∼→ GR respecting the extra
structures. Furthermore, as x and y map to the same point in the flag variety, the map
αG ◦ α−1

A respects the Hodge–Tate filtrations (on Tate modules tensored by K). Finally,
since the image of y is contained in YUp(H)b, the Newton polygon of A[p∞] ×R+ R+/p
is constant. Hence, by [SW13, Theorem B] and [CS17, Lemma 4.2.15], the isomorphism ϕ
extends to an isomorphism, abusively denoted by the same symbol, ϕ : A[p∞]

∼→ G. We get
a (unique) (R,R+)-point (A, ιA, λA, ηA, αA, ρG ◦ ϕ) of X b∞ mapping to x and y.

5.2.7 We have a natural map from YUp(H) = lim←−Up
YUpUp to the inverse limit ShUp(H)

of the analytifications ShUpUp(H) of the Shimura varieties with level UpUp; this map is a torsor
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for the group ∆ = lim←−k∆k defined in § 4.2. We let ShUpUp(H)◦ = Y◦
UpUp

/∆ and ShUp(H)◦ =

Y◦
Up(H)/∆, so that ShUp(H)◦/Up ≃ ShUpUp(H)◦. Similarly we set ShUp(H)b = YUp(H)b/∆ for

b ∈ B(HQp , µ).

5.3 Fibres of the Hodge–Tate period map

Recall that we have fixed a subset T ⊂ Σp; we have a Hodge–Tate period map

π◦HT : ShUp(H)◦ → F ℓHQp ,µ
−1

induced by the map (abusively denoted with the same symbol) π◦HT : YUp(H)◦ → F ℓHQp ,µ
−1

introduced above, which is equivariant with respect to the ∆-action (trivial on the target). Take
an element b ∈ B(HQp , µ), and fix a p-divisible group Xb (with extra structure) corresponding to
it.

5.3.1 Proposition. For every geometric point x̃ of F ℓbHQp ,µ
−1 and every i ⩾ 0 there is a

Hecke-equivariant isomorphism

(Riπ◦HT,∗Fℓ)x̃ ≃ H i(Igb,Fℓ).

Proof. This follows from Proposition 5.2.6 with the same argument as in [CS17, Section 4.4].
More precisely, we may assume that x̃ = Spa(C,OC) is a rank one point; any rank one point in the
preimage of x̃ in YUp(H)◦ is contained in YUp(H)b. The cartesian diagram in Proposition 5.2.6,
[CS17, Lemma 4.2.18] and the product formula for X b∞ (5.2.5.1) imply that the fibre of π◦HT :

YUp(H)b → F ℓbHQp ,µ
−1 at x̃ is isomorphic to Igb(C,OC), hence the fibre of π◦HT : ShUp(H)b →

F ℓbHQp ,µ
−1 is isomorphic to Igb(C,OC). The result now follows as in [CS17, pp. 728, 729].

6. The structure of the µ-ordinary stratum at infinite level

In this section, we show that the µ-ordinary locus at infinite level is parabolically induced from
the corresponding perfectoid Igusa variety.

6.1 Setup

Fix a prime p and a subset T ⊊ Σp as in the previous section; we will mostly omit T from
our notations: for example, we denote HT by H. As explained in § 4.1 we have B(HQp , µ) =∏

p∈Σp
B(Hp, µp), where B(Hp, µp) is a singleton if p ∈ T and has two elements - the basic one

and the µp-ordinary one - if p ∈ Σp ∖ T . Consider the µ-ordinary element bord = (bp)p∈Σp where
bp is the non-basic element for every p ∈ Σp∖T . Our aim is to study the structure of the stratum

ShUp(H)b
ord

, proving that it is parabolically induced from the corresponding perfectoid Igusa
variety. This rests on the product formula

X bord∞ ≃ Igbord ×Mbord

∞

we proved in the previous section and on the fact that the relevant Rapoport–Zink spaces are
parabolically induced.

6.1.1 The group J bord Let J bord =
∏

p∈Σp
J bp be the group of self-quasi-isogenies (respecting

extra structure) of Xbord , seen as a functor PerfĔ℘
→ Sets sending (R,R+) to the set of self-quasi-

isogenies of Xbord ×F̄p
R+/p. If p ∈ T then J bp is just the constant group diamond attached to
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Hp(Qp), which will be denoted by Hp(Qp). If p ∈ Σp ∖ T then we can write J bp = Lp(Qp)⋉J Up
where Lp ⊂ Hp is a Levi and J Up is a (positive dimensional) group diamond (cf. [CS17, Proposition

4.2.11]). On the other hand we can attach to Xbord anHQp-bundle Eb
ord

(R,R+) on the Fargues–Fontaine

curve X(R♭,R♭,+) for each (R,R+) ∈ PerfĔ℘
, and look at the corresponding automorphism group

functor Aut(Ebord) : PerfĔ℘
→ Sets.

We claim that Aut(Ebord) ≃ J bord . Indeed, for p ∈ Σp∖T , [FS21, Proposition III.5.1] describes
Aut(Ebp) in terms of Lp(Qp) and of Banach–Colmez spaces. On the other hand, the computation

in the proof of [CS17, Proposition 4.2.11] gives a similar description of J bp , with the universal
cover of suitable p-divisible groups in place of Banach–Colmez spaces. The desired isomorphism
follows from the identification between these two objects, cf. [SW20, § 15.2].

6.1.2 The description of the Igusa variety in Lemma 4.2.2 implies that J bord acts on the

left on Igb
ord

, changing the trivialisation ρ. For the same reason, J bord acts on the left onMbord
∞

and X bord∞ . The stratum YUp(H)b
ord ⊂ YUp(H)◦ is open and contained in the preimage via π◦HT

of the µ-ordinary stratum in the flag variety. As the latter is a diamond, the same is true for
YUp(H)b

ord
. The map X bord∞ → YUp(H)b

ord
is invariant with respect to the action of J bord on the

source.

6.1.3 Lemma.

(i) The map J bord\X bord∞ → YUp(H)b
ord

is an isomorphism.

(ii) The induced map J bord\(Igbord ×Mbord
∞ )→ ShUp(H)b

ord
is an isomorphism.

Proof. The second point follows from the first and the product formula: indeed, as the map
in (5.2.1.1) (as well as its counterpart at infinite level (5.2.5.1)) is J bord-equivariant, we get an
isomorphism

J bord\(Igbord ×Mbord

∞ )→ YUp(H)b
ord
.

The above isomorphism is equivariant with respect to the ∆-action on Igbord and on YUp(H)b
ord

;
hence quotienting by this action we obtain the desired isomorphism.

To prove the first point, we need to show that the map (of pro-étale sheaves) X bord∞ →
YUp(H)b

ord
is surjective. Let (R,R+) ∈ PerfĔ℘

and let G/R+ be the p-divisible group with

extra structure attached to an (R,R+)-point of the target. Then, after base change to any
geometric point of Spa(R,R+), we have a quasi-isogeny respecting extra structures between

G ×R+ R+/p and Xbord ×F̄p
R+/p. Therefore the isocrystal attached to the p-divisible group with

extra structure G×R+R+/p gives rise to anH-bundle EG on the Fargues–Fontaine curveX(R♭,R♭,+)

which is geometrically fibrewise isomorphic to theH-bundle Ebord corresponding to bord. By [FS21,

Proposition III.5.3] there is, pro-étale locally on Spa(R♭, R+,♭), an isomorphism EG ≃ Eb
ord

,
yielding, pro-étale locally, a quasi-isogeny respecting extra-structures between G ×R+ R+/p and

Xbord ×F̄p
R+/p.

6.2 The structure of µ-ordinary Rapoport–Zink spaces

6.2.1 Moduli spaces of shtukas Given p ∈ Σp, we can attach to (Hp, bp, µp) a diamond
Sht∞(Hp, bp, µp) over Spd(Ĕ℘, Ŏ℘) parametrising Hp-shtukas with infinite level structure, as
in [SW20, §23]. More precisely, the functor Sht∞(Hp, bp, µp) : Perf F̄p

→ Sets sends (R,R+) to
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the set of isomorphism classes of data of the form (S♯, E , E ′, ϕ, ρ, ρ∞), where

(i) S♯/Spa(Ĕ℘, Ŏ℘) is an untilt of S := Spa(R,R+).

(ii) E , E ′ are Hp-bundles over the relative Fargues-Fontaine curve XS .

(iii) ϕ is an isomorphism between E and E ′ outside S♯, which is a modification of type µp at S♯.

(iv) ρ : E ′ → Ebp is an isomorphism, where Ebp is the Hp-bundle on XS coming from (the
isocrystal attached to) Xbp .

(v) ρ∞ : E1 → E is an isomorphism, where E1 is the trivial Hp-bundle on XS .

By [SW20, Corollary 24.3.5], the diamond Sht∞(Hp, bp, µp) is isomorphic toMbp
∞.

We have a left (resp. right) action of J bp = Aut(Ebp) (resp. Hp(Qp) = Aut(E1)) on the space

Sht∞(Hp, bp, µp), changing the trivialisation ρ (resp. ρ∞). The former corresponds to the action

of J bp onMbp
∞ recalled above.

6.2.2 The space Mbp
∞ for p ∈ T If p ∈ T then the cocharacter µp is central, hence the

flag variety F ℓHp,µp is a point. By [SW20, Proposition 19.4.2] and [SW20, proof of Proposition

23.3.3] the diamondMbp
∞ is isomorphic to the diamond Hp(Qp) attached to the locally profinite

set Hp(Qp). Hence the productMT,∞ :=
∏

p∈TM
bp
∞ is isomorphic to

∏
p∈T Hp(Qp).

6.2.3 The spaceMbp
∞ for p ∈ Σp ∖ T Now fix p ∈ Σp ∖ T and let bp ∈ B(Hp, µp) be the µp-

ordinary element. The structure of Sht∞(Hp, bp, µp) is studied in [GI16] (generalising [Han21]),
whose main result we now recall in the situation of interest to us - we warn the reader that our
notation differs from the one in [GI16]. We have a forgetful map from Sht∞(Hp, bp, µp) to the
Hecke stack Hecke(Hp, bp, µp) which parametrises data (S♯, E , E ′, ϕ) as above, such that E ′ (resp.
E) is fibrewise isomorphic to Ebp (resp. E1). The Grassmannian Gr(Hp, bp, µp) is the Hp(Qp)-

torsor over Hecke(Hp, bp, µp) parametrising trivialisations ρ∞ : E1 → E . Consider the subfunctor
C(Hp, bp, µp) ⊂ Gr(Hp, bp, µp) obtained imposing the condition that ρ∞ and ϕ are compatible with
the filtrations, in the sense of [GI16, p. 9]. The right action of Hp(Qp) on Gr(Hp, bp, µp) induces a

right action of a parabolic Pp(Qp) ⊃ Lp(Qp) on the subspace C(Hp, bp, µp) ⊂ Gr(Hp, bp, µp). The

natural map C(Hp, bp, µp)×Hp(Qp)→ Gr(Hp, bp, µp) is invariant with respect to the left action

of Pp(Qp) on the source given by the product of the inverse of the right action on C(Hp, bp, µp)

and the left action by multiplication on Hp(Qp). By [GI16, Proposition 4.13] the induced map

Pp(Qp)\
(
C(Hp, bp, µp)×Spd(Ĕ℘,Ŏ℘)

Hp(Qp)
)
→ Gr(Hp, bp, µp) (6.2.3.1)

is an isomorphism.

Let us now consider the moduli space of shtukas ShtPp(Hp, bp, µp) with “parabolic level
structure”, defined as the fibre product

ShtPp(Hp, bp, µp) Sht∞(Hp, bp, µp)

C(Hp, bp, µp) Gr(Hp, bp, µp).

The isomorphism (6.2.3.1) yields an isomorphism

Pp(Qp)\
(
ShtPp(Hp, bp, µp)×Spd(Ĕ℘,Ŏ℘)

Hp(Qp)
)
→ Sht∞(Hp, bp, µp). (6.2.3.2)
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6.2.4 The structure of ShtPp(Hp, bp, µp) The data bp, µp are induced by analogous data for
the Levi Lp, which we will abusively denote by the same symbol. In other words, our data are
HN-reducible in the sense of [GI16, Definition 4.5] (notice that only one of the elements b, b′

considered in loc. cit. is non-trivial in our case). We can consider the corresponding moduli
space of shtukas Sht∞(Lp, bp, µp); in fact, as Lp is abelian, the same argument used above shows
that Sht∞(Lp, bp, µp) is just the diamond attached to the locally profinite set Lp(Qp). Inducing
bundles from Lp to Hp we obtain a map Sht∞(Lp, bp, µp)→ ShtPp(Hp, bp, µp). Finally, the group
object J Up acts on the left on ShtPp(Hp, bp, µp), hence we obtain a map

Sht∞(Lp, bp, µp)×Spd(Ĕ℘,Ŏ℘)
J Up → ShtPp(Hp, bp, µp).

By [GI16, Proposition 4.21] the above map is an isomorphism. Joining this with (6.2.3.2) we
obtain the following isomorphism, where fibre products are taken over Spd(Ĕ℘, Ŏ℘), which is
omitted from the notation:

Sht∞(Hp, bp, µp) ≃ Pp(Qp)\
((
Sht∞(Lp, bp, µp)× J Up

)
×Hp(Qp)

)
.

Define Sht∞(LT , bT , µT ) :=
∏

p∈Σp∖T Sht∞(Lp, bp, µp); similarly, we denote by P T (Qp),J U,T

and HT (Qp) the product of the objects Pp(Qp),J Up and Hp(Qp) for p ∈ Σp ∖ T . With this

notation, the spaceMbord∞ can be written as

Mbord
∞ =MT,∞ × P T (Qp)\

((
Sht∞(LT , bT , µT )× J U,T

)
×HT (Qp)

)
.

6.3 The almost product formula on the µ-ordinary stratum

6.3.1 We can now join Lemma 6.1.3 and the above description of Mbord∞ . Let J T :=∏
p∈Σp∖T J

bp . Since for p ∈ T we haveMbp
∞ ≃ J bp ≃ Hp(Qp) we obtain the following description

of the ordinary stratum ShUp(H)b
ord

:

ShUp(H)b
ord

= J T \
(
Igbord × P T (Qp)\

((
Sht∞(LT , bT , µT )× J U,T

)
×HT (Qp)

))
.

We will now show that the space on the right hand side is isomorphic to

P T (Qp)\
(
Igbord ×HT (Qp)

)
, (6.3.1.1)

where P T (Qp) acts on the left on Igbord via the natural inclusion in J T and on HT (Qp) via left
multiplication.

Sending (the equivalence class of) a point (i, g) to (the equivalence class of) (i, ((1, 1), g)) gives

a well-defined map from the space in (6.3.1.1) to ShUp(H)b
ord

. This map is surjective because
J T acts transitively on Sht∞(LT , bT , µT )× J U,T ; injectivity can be checked directly. Hence we
obtain an isomorphism

ShUp(H)b
ord ≃ P T (Qp)\

(
Igbord ×HT (Qp)

)
which is equivariant with respect to the right action of H(Qp) on the source and the target (here

HT (Qp) acts on the target via right multiplication on itself).

6.3.2 Notation. In the next theorem and its proof we will use the following notation. We set
P (Qp) :=

∏
p∈T Hp(Qp) ×

∏
p∈Σp∖T Pp(Qp) ⊂ H(Qp); similarly, let P (Zp) :=

∏
p∈T Hp(Zp) ×∏

p∈Σp∖T Pp(Zp) ⊂ H(Zp). We will denote by Ind smooth induction.

6.3.3 Theorem.
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(i) There is an H(Qp)-equivariant isomorphism

ShUp(H)b
ord ≃ P T (Qp)\

(
Igbord ×HT (Qp)

)
.

(ii) Let us turn the left action of P (Qp) on Igb
ord

into a right action taking the inverse. Then

the cohomology of Igbord (resp. ShUp(H)b
ord

) carries a left action of P (Qp) (resp. H(Qp)).
For each i ⩾ 0, we have an isomorphism of smooth H(Qp)-representations

H i(ShUp(H)b
ord
,Fℓ) ≃ Ind

H(Qp)
P (Qp)

(
H i(Igbord ,Fℓ)

)
.

Proof. The first point was established before the statement of the theorem; let us prove the
second point. Fix i ⩾ 0 and let I := Igbord and V := H i(I,Fℓ). The subgroup P (Zp) ⊂ P (Qp)

acts freely on Igbord . On the other hand, for u ∈ O×
E ∩ Up, the action of NE/F (u) (changing

polarisation) on Igbord agrees with the action of u−1 ∈ P (Zp). The induced action of P (Zp) on I
hence factors through a free action of P (Zp)/C, where C := lim←−k(O

×
E ∩Up/{u ∈ O

×
E ∩Up | u ≡ 1

(mod pk)}).
The action of P (Qp) on I induces a map ρ : P (Qp)→ Aut(V ). The map ι : I → P (Qp)\I ×

H(Qp) sending x to (x, 1) is equivariant with respect to the right P (Qp)-action on source and

target, hence it induces a P (Qp)-equivariant map

ι∗ : H i(P (Qp)\I ×H(Qp),Fℓ)→ V.

We therefore have an H(Qp)-equivariant map

aι∗ : H i(P (Qp)\I ×H(Qp),Fℓ)→ Ind
H(Qp)
P (Qp)

(V )

induced by ι∗ via Frobenius reciprocity, which sends a cohomology class c to the function
H(Qp) → V sending h to ι∗ ◦ h∗(c). For every compact open subgroup K ⊂ H(Qp) we have

the space IK := P (Qp)\
(
I ×H(Qp)/K

)
and the natural map qK : P (Qp)\

(
I ×H(Qp)

)
→ IK .

On the other hand let

SK := {f : H(Qp)→ V | ∀p ∈ P (Qp), h ∈ H(Qp), k ∈ K, f(ph) = ρ(p)f(h), f(hk) = f(h)},

so that Ind
H(Qp)
P (Qp)

(ρ) = lim−→K
SK . We may, and will, restrict to pro-p compact open subgroups K ⊂

H(Zp); to complete the proof, we will show that the composite aι∗ ◦ q∗K induces an isomorphism
H i(IK ,Fℓ) ≃ SK .

Choose a set of representatives R = {h1, . . . , hr} of the (finite) double coset P (Qp)\H(Qp)/K
such that each hj belongs to H(Zp) (this is possible because of the Iwasawa decomposition of
H(Qp)). Evaluation at elements of R yields an injection SK ↪→ V R; an explicit computation
shows that the image is ⊕RV Γj , where Γj := P (Qp) ∩ hjKh−1

j . Consider the composite of the

map aι∗ ◦ q∗K and of the injection SK ↪→ V R, and let ϕj be its hj-th component. Then ϕj sends
c ∈ H i(IK ,Fℓ) to ι∗ ◦ h∗j ◦ q∗K(c).

We can write

IK =
∐
R

P (Qp)\(I × P (Qp)hjK/K) ≃
∐
R

Γj\I. (6.3.3.1)

The isomorphism is induced on the hj-th component by the composite of the map

P (Qp)\(I × P (Qp)hjKh
−1
j /hjKh

−1
j )→ P (Qp)\(I × P (Qp)hjK/K)

32



On the cohomology of Hilbert modular varieties

given by right multiplication by hj and the map

Γj\I → P (Qp)\(I × P (Qp)hjKh
−1
j /hjKh

−1
j )

sending everything to the identity on the second component. Therefore, via the isomorphism in
(6.3.3.1), the map ϕj is identified with the pullback H i(Γj\I,Fℓ)→ H i(I,Fℓ).

It remains to show that each of the pullback maps above induces an isomorphismH i(Γj\I,Fℓ)
∼−→

V Γj . Each group Γj is contained in P (Zp), hence the action of Γj/(Γj∩C) on I is free. Therefore,
as K is a pro-p group and p ̸= ℓ, the desired isomorphism follows from [Wei17, Proposition 4.3.2]
and [CGH+20, Theorem 2.2.7].

7. The structure of the cohomology in the non-Eisenstein case

The aim of this section is to prove our main results on the cohomology of Hilbert modular varieties
after localisation at a non-Eisenstein maximal ideal. These are Theorems 7.1.1 and 7.1.6 stated
below. We also establish analogous results for quaternionic Shimura varieties: see Theorem 7.5.2.

7.1 Main results: statements

7.1.1 Theorem. Let ℓ > 2 be a prime, K ⊂ G(Af ) a neat compact open and m ⊂ T a
maximal ideal in the support of H i(ShK(G),Fℓ). Let ρ̄m be the Galois representation attached
to m by Theorem 2.2.1. Assume that the image of ρ̄m is not solvable. Then H i(ShK(G),Fℓ)m =
H i
c(ShK(G),Fℓ)m is non-zero only for i = g.

7.1.2 Corollary. With the same notations and assumptions as in Theorem 7.1.1, we have
H i(ShK(G),Zℓ)m ̸= 0 if and only if i = g, and Hg(ShK(G),Zℓ)m is torsion-free. The same is
true for compactly supported cohomology.

Proof. Looking at the long exact sequence in Betti cohomology coming from the short exact
sequence 0→ Zℓ → Zℓ → Fℓ → 0 we see that multiplication by ℓ is surjective onH i(ShK(G),Zℓ)m
if i ̸= g, hence H i(ShK(G),Zℓ)m = 0 for i ̸= g. On the other hand, we have

. . . Hg−1(ShK(G),Fℓ)m → Hg(ShK(G),Zℓ)m → Hg(ShK(G),Zℓ)m . . . ;

as the first term vanishes, we deduce thatHg(ShK(G),Zℓ)m is torsion-free, hence free. Finally, the
cokernel of the mapHg(ShK(G),Zℓ)m → Hg(ShK(G),Fℓ)m injects intoHg+1(ShK(G),Zℓ)m = 0,
hence Hg(ShK(G),Zℓ)m ̸= 0. The result for H∗

c (ShK(G),Zℓ)m follows as in Lemma 2.3.1.

To proceed, we make the following definition.

7.1.3 Definition.

(i) Let v be a place of F above a prime p ̸= ℓ which splits completely in F . We say that ρ̄m is
generic at v if it is unramified at v and the eigenvalues of Frobenius at v have ratio different
from p±1.

(ii) Let p ̸= ℓ be a prime. We say that p is a decomposed generic prime for ρ̄m if p splits
completely in F and ρ̄m is generic at v for every place v of F above p.

(iii) We say that ρ̄m is decomposed generic if there exists a prime p ̸= ℓ which is decomposed
generic for ρ̄m.
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7.1.4 Assume that ρ̄m is generic at some place v of F . Then any characteristic zero lift of
the restriction of ρ̄m to ΓFv cannot be associated via the local Langlands correspondence to an
irreducible smooth representation of GL2(Fv) which transfers to the non-split quaternion algebra
over Fv.

7.1.5 Notation. Let p ̸= ℓ be a prime which splits completely in F and such that ρ̄m is unramified
at every place of F above p. We will denote by δp(m) the number of places above p at which ρ̄m
is not generic.

7.1.6 Theorem. Let ℓ > 2 be a prime. Let p ̸= ℓ be an odd prime which splits completely in F
and such that K = KpKp with Kp hyperspecial. Let m ⊂ T be a non-Eisenstein maximal ideal.
Then H∗

c (ShK(G),Fℓ)m = H∗(ShK(G),Fℓ)m vanishes outside the interval [g− δp(m), g+ δp(m)].

7.1.7 Remark. For a maximal ideal m ⊂ T in the support of H i(ShK(G),Fℓ), the projective
image I of the Galois representation ρ̄m is a finite subgroup of PGL2(F̄ℓ). By Dickson’s theorem,
cf. [DDT97, Theorem 2.47 (b)], the group I is either conjugate to a subgroup of the upper
triangular matrices, or to PGL2(Fℓk) or PSL2(Fℓk), for some k ⩾ 1, or it is isomorphic to one of
D2n, for some n ∈ Z>1 prime to ℓ, A4, S4, or A5. It follows that the image of ρ̄m is not solvable
if and only if the following holds:

(i) if ℓ = 3 then I is isomorphic to A5 or it contains a conjugate of PSL2(F9);

(ii) if ℓ > 3 then I is isomorphic to A5 or it contains a conjugate of PSL2(Fℓ).

Theorem 7.1.1 follows from Theorem 7.1.6 in view of the following lemma (more precisely, observe
that the proof of the lemma allows to produce p as in Definition 7.1.3(3) satisfying the conditions
of Theorem 7.1.6).

7.1.8 Lemma. Assume that ℓ > 2 and that the image of ρ̄m is not solvable. Then ρ̄m is
decomposed generic in the sense of Definition 7.1.3.

Proof. This is a variation of [AN20, Lemma 2.3]; following loc. cit., we prove that there are
infinitely many primes p ≡ 1 (mod ℓ), totally split in F , and such that ρ̄m is generic at every
place above p. This is deduced from our large image assumption using the Chebotarev density
theorem.

We first make some preliminary reductions. Let F̃ be the normal closure of F in C; notice
that F̃ is also a totally real field. Let pr : GL2(F̄ℓ) → PGL2(F̄ℓ) be the projection map. As
observed before the statement of the theorem, the image I of

pr ◦ ρ̄m : ΓF → PGL2(F̄ℓ)

is isomorphic to A5, or conjugate to one of PGL2(Fℓk) or PSL2(Fℓk), where k ⩾ 2 if ℓ = 3 and
k ⩾ 1 if ℓ > 3. We claim that the same is true for the image Ĩ of pr ◦ ρ̄m|ΓF̃

: ΓF̃ → PGL2(F̄ℓ).
Since F̃ /F is Galois, the group Ĩ is a normal subgroup of I.

(i) Assume first that the group I is isomorphic to A5. Since A5 is simple and Ĩ is a normal
subgroup of I, it is enough to show that Ĩ is non-trivial. This is true because Ĩ contains the
image under pr ◦ ρ̄m|ΓF̃

of any complex conjugation in ΓF̃ , which is conjugate to the matrix(
1 0
0 −1

)
because ρ̄m is totally odd.

(ii) Assume now that the group I is conjugate to PGL2(Fℓk) or PSL2(Fℓk). We conjugate
everything so that I is identified with PGL2(Fℓk) or PSL2(Fℓk) inside PGL2(F̄ℓ). It is enough
to prove that Ĩ ⊇ PSL2(Fℓk). As the representation ρ̄m is totally odd, the image via ρ̄m|ΓF̃

of
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any complex conjugation c ∈ ΓF̃ is a non-scalar semisimple element. As a normal subgroup

of I, the group Ĩ contains the projective image of every SL2(Fℓk)-conjugate of ρ̄m(c). In
particular, Ĩ ∩ PSL2(Fℓk) contains the ratio of any two distinct such conjugates and is,
therefore, a non-trivial normal subgroup of PSL2(Fℓk). Finally, the groups PSL2(Fℓk), with
k ⩾ 2 if ℓ = 3 and k ⩾ 1 if ℓ > 3, are simple. Therefore, Ĩ ⊇ PSL2(Fℓk).

This proves the claim. Up to replacing F̃ by a finite abelian extension F ′ and conjugating ρ̄m,
we may ensure that the image I ′ of pr ◦ ρ̄m|ΓF ′ equals either A5 or PSL2(Fℓk), with k ⩾ 2 if ℓ = 3
and k ⩾ 1 if ℓ > 3. As A5 and PSL2(Fℓk) are both simple, I ′ is unchanged if we replace F ′ by its
normal closure. For the same reason we may adjoin ζℓ to F

′ without changing I ′.

Let Γ denote either one of the finite simple groups A5 or PSL2(Fℓk). Let L be the normal
closure of the extension of F ′ cut out by I ′. Since Γ is simple, Goursat’s lemma implies that
Gal(L/F ′) ≃ Γt for some t ⩾ 1. We claim that we can choose an element 1 ̸= g ∈ Γ which is
semisimple when viewed as an element of PGL2(F̄ℓ). In the case Γ = PSL2(Fℓk), this is clear. In
the case Γ = A5, choose any element of order 2; since ℓ ̸= 2, such an element must be semisimple.
The Chebotarev density theorem ensures the existence of a place p of F ′ with residue field Fp
with p ̸= ℓ unramified in F and such that Frob

L/F ′

p is conjugate to (g, g, . . . , g). Since F ′/Q
is Galois, p is totally split in F ′. We claim that, for every place p′ of F ′ above p, the element
ρ̄m(Frobp′) is semisimple and different from the identity in PGL2(F̄ℓ). In the case Γ = PSL2(Fℓk),
this follows as in [AN20, Lemma 2.3]. In the case Γ = A5, the argument in loc. cit. shows that
each such element has order 2 in PGL2(F̄ℓ), which implies that it must also be semisimple and
different from the identity. As ζℓ ∈ F ′ we have p ≡ 1 (mod ℓ), hence the eigenvalues of each
ρ̄m(Frobp′) cannot have ratio p±1.

7.2 Proof of Theorem 7.1.6

7.2.1 Step 1: setup and choice of the auxiliary data Notice that the quantity δp(m) = δp(m
∨).

By Lemma 2.3.1 it suffices to show the following implication:

i < g − δp(m)⇒ H i
c(ShK(G),Fℓ)m = 0. (7.2.1.1)

Choose an auxiliary CM extension E of F such that every p ∈ Σp is inert in E, and choose
KE = (OE ⊗ Zp)×Kp

E ⊂ TE(Af ) sufficiently small with respect to K. With the notation of
§ 3.1.3, consider the unitary group H := H∅ and let U ⊂ H(Af ) be the image of K ×KE . Recall
that the Hecke algebra T (defined in § 3.2.6) acts on the cohomology of ShU (H), and Corollary
3.2.9 ensures that, for i ⩾ 0,

H i(ShK(G),Fℓ)m ̸= 0⇔ H i(ShU (H),Fℓ)m ̸= 0.

Therefore, for the sake of proving Theorem 7.1.6, we may (and will) work with ShU (H). Let
ShU (H) be the base change to F̄p of its integral model. We have isomorphisms, for i ⩾ 0,

H i
c(ShU (H),Fℓ) ≃ H i

c(ShU (H), RΨFℓ) ≃ H i
c(ShU (H),Fℓ).

The first is obtained as in [LS18, Corollary 5.20]; the second follows from the fact that the
complex of nearby cycles RΨFℓ is quasi-isomorphic to the constant sheaf Fℓ as the integral
model is smooth. Hence it suffices to show the implication

i < g − δp(m)⇒ H i
c(ShU (H),Fℓ)m = 0. (7.2.1.2)

7.2.2 Step 2: the Newton stratification We have a Newton stratification on ShU (H) indexed
by elements b = (b1, . . . , bg) with bj ∈ B(Hpj , µpj ). Recall that each B(Hpj , µpj ) consists of one
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µ-ordinary and one basic element. We denote by ShU (H)b ⊂ ShU (H) the stratum corresponding
to b. More generally, for each 0 ⩽ k ⩽ g and every c ∈

∏
j⩽k B(Hpj , µpj ) we let ShU (H)c ⊂

ShU (H) be the union of the Newton strata corresponding to elements b = (b1, . . . , bg) such that
(b1, . . . , bk) = c. In particular for k = 0 we obtain ShU (H) and for k = g we recover Newton
strata.

As we are excluding from T the Hecke operators at places above p, the Hecke algebra acts
on the cohomology of each stratum. The first (elementary) observation is that it suffices to show
(7.2.1.2) for each Newton stratum.

7.2.3 Lemma. Assume that H i
c(ShU (H)b,Fℓ)m = 0 for every i < g − δp(m) and every b ∈

B(HQp , µ). Then H
i
c(ShU (H),Fℓ)m = 0 for i < g − δp(m).

Proof. This follows from additivity of compactly supported cohomology. To be precise, we show
by descending induction on 0 ⩽ k ⩽ g that

∀ c ∈
∏
j⩽k

B(Hpj , µpj ), ∀ i < g − δp(m), H i
c(ShU (H)c,Fℓ)m = 0.

By hypothesis the statement is true for k = g. Now take k < g and assume that the statement is
true for k + 1. Take c ∈

∏
j⩽k B(Hpj , µpj ). Let o (resp. b) be the non-basic (resp. basic) element

in B(Hpk+1
, µpk+1

) and consider (c, o), (c, b) ∈
∏
j⩽k+1B(Hpj , µpj ). We have

ShU (H)(c,o) ⊂ ShU (H)c ⊃ ShU (H)(c,b);

furthermore ShU (H)(c,o) is open in ShU (H)c and ShU (H)(c,b) is the closed complement. By
induction we know that H i

c(ShU (H)(c,o),Fℓ)m = H i
c(ShU (H)(c,b),Fℓ)m = 0 for i < g− δp(m). The

exact sequence

. . . H i
c(ShU (H)(c,o),Fℓ)m → H i

c(ShU (H)c,Fℓ)m → H i
c(ShU (H)(c,b),Fℓ)m . . .

implies that H i
c(ShU (H)c,Fℓ)m = 0 for i < g − δp(m).

We need to show that the assumption of the lemma holds true in our situation. The first key
ingredient is the following.

7.2.4 Lemma. Let b ∈ B(HQp , µ).

(i) If b is not the µ-ordinary element then the stratum ShU (H)b is smooth, affine and of
dimension the number of non-basic coordinates of b.

(ii) If b is the µ-ordinary element then ShU (H)b is smooth of dimension g, and the partial
minimal compactification of ShU (H)b (i. e. the union of ShU (H)b and the cusps in the
minimal compactification of ShU (H)) is affine.

Proof. Dimension of strata can be obtained from [TX16, Proposition 4.7]. As p splits completely
in F Newton strata coincide with Ekedahl–Oort strata. Each of them is smooth by [SZ22,
Theorem 3.4.7]. Furthermore, recall that ShU (H) is a finite union of quotients of connected
components of integral models of Hodge-type Shimura varieties by finite groups. Each Ekedahl–
Oort stratum in ShU (H) decomposes accordingly, hence its partial minimal compactification is
affine by [GK19, Proposition 6.3.1] (see also [Box15]). Finally, the µ-ordinary stratum is the only
one intersecting the boundary, hence the lemma follows.

7.2.5 Corollary. Let b ∈ B(HQp , µ) be such that dimShU (H)b ⩾ g − δp(m). Then for every

i < g − δp(m) we have H i
c(ShU (H)b,Fℓ)m = 0.
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Proof. Let us first assume that b is not the µ-ordinary element and let us set db := dimShU (H)b.
By Artin vanishing H i(ShU (H)b,Fℓ) = 0 for i > db, and by Poincaré duality H i

c(ShU (H)b,Fℓ) =
0 for i < db. In particular H i

c(ShU (H)b,Fℓ)m = 0 for i < g − δp(m).

Now let us consider the ordinary stratum ShU (H)b and its partial minimal compactification
ShU (H)b,∗, with boundary ∂. Let jb : ShU (H)b → ShU (H)b,∗ and ib : ∂ → ShU (H)b,∗ be
the inclusions. By Artin vanishing H i(ShU (H)b,∗, jb! Fℓ) = 0 for i > g, and by Verdier duality
H i
c(ShU (H)b,∗, Rjb∗Fℓ) = 0 for i < g. Finally, we have an exact sequence

. . .→ H i
c(ShU (H)b,Fℓ)→ H i

c(ShU (H)b,∗, Rjb∗Fℓ)→ H i
c(∂, i

b,∗Rjb∗Fℓ)→ . . . .

To end the proof it suffices to show that H∗
c (∂, i

b,∗Rjb∗Fℓ)m = 0. Denoting by j : ShU (H) →
ShU (H)∗ and i : ∂ → ShU (H)∗ the inclusions we have ib,∗Rjb∗Fℓ ≃ i∗Rj∗Fℓ. It follows that it
suffices to prove that, after localisation at m, the maps H∗

c (ShU (H),Fℓ)→ H∗
c (ShU (H)∗, Rj∗Fℓ)

are bijective. In other words we have to show that the natural maps

H∗
c (ShU (H),Fℓ)m → H∗(ShU (H),Fℓ)m

are isomorphisms. Using [LS18, Corollary 5.20] we see that we can replace ShU (H) by ShU (H);
since m is non-Eisenstein, the conclusion then follows from Lemma 2.3.1 and Corollary 3.2.9.

To show Theorem 7.1.6 it remains to prove the following result.

7.2.6 Proposition. Let b ∈ B(HQp , µ) and let m ⊂ T be a non-Eisenstein maximal ideal. If

dimShU (H)b < g − δp(m) then for every i ⩾ 0 we have H i(ShU (H)b,Fℓ)m = 0.

Indeed, applying the above proposition to m∨ and using Corollary 7.2.5 we obtain that
H i
c(ShU (H)b,Fℓ)m = 0 for i < g − δp(m) and for every b ∈ B(HQp , µ). By Lemma 7.2.3 we

conclude that H i
c(ShU (H),Fℓ)m = 0 for i < g − δp(m).

Finally, we will deduce Proposition 7.2.6 from the following result, whose proof will be given
below.

7.2.7 Proposition. If dimShU (H)b < g − δp(m) then H i(Igb,Fℓ)m = 0 for every i.

7.2.8 Assuming Proposition 7.2.7, let us prove Proposition 7.2.6. Observe that the stratum
ShU (H)b consists of a unique leaf; let Xb be the p-divisible group attached to a geometric point

in the leaf, and Γb the automorphism group of Xb (respecting extra structures). Let YU (H)b,perfF̄p

be the perfection of YU (H)bF̄p
; the forgetful map Ig

b → YU (H)bF̄p
factors through a map Ig

b →
YU (H)b,perfF̄p

, which is a Γb-torsor (cf. [CS19, Proposition 2.2.6]). For u ∈ O×
E ∩ Up, the action of

NE/F (u) on Ig
b
changing the polarisation agrees with the action of u−1 on Ig

b
via the inclusion

O×
E ↪→ Γb. Hence the induced map Igb → ShU (H)b,perf is a torsor for the group Γb/ lim←−k(O

×
E ∩

U/{u ∈ O×
E ∩ U | u ≡ 1 (mod pk)}). Therefore there is a Hecke-equivariant Hochschild–Serre

spectral sequence relating the cohomology of Igb and the cohomology of ShU (H)b,perf . The latter
agrees with étale cohomology of ShU (H)b by topological invariance of the étale site; hence if
H i(Igb,Fℓ)m = 0 for every i then the same is true for H i(ShU (H)b,Fℓ)m.

7.3 The excision triangle for diamonds

In the proof of Proposition 7.2.7, given in the next section, we will make use of the long exact
sequence relating, under suitable assumptions, sheaves on a diamond to their restriction to an
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open subdiamond and its closed complement. The existence of such an exact sequence is well-
known; for the reader’s convenience, we will briefly explain how to obtain it.

7.3.1 Fix a locally spatial diamond X; let Xét be the étale site of X, defined in [Sch17,
Definition 14.1], and |X| the underlying topological space of X, defined in [Sch17, Definition
11.14]. One can attach to each x ∈ |X| a quasi-pro-étale map x̄ = Spa(C(x), C(x)+)→ X, with
C(x) an algebraically closed perfectoid field, mapping the closed point of Spa(C(x), C(x)+) to x
(see [Sch17, Proposition 14.3] and [CGH+20, Lemma 2.2.2]). We call x̄ a geometric point of X
(with the important caveat that as a set x̄ may not be a singleton), and we denote by Fx̄ the
stalk of a sheaf F at x̄. By [Sch17, Proposition 14.3] we may check if a sequence of étale sheaves
on X is exact looking at stalks at each geometric point.

7.3.2 Fix an open subspace of |X|, corresponding, by [Sch17, Proposition 11.15], to a
subdiamond j : U → X; assume that the closed complement |X| ∖ |U | is generalising, so that,
by [AGLR22, Lemma 2.7] and [Sch17, Proposition 11.20], it is the underlying topological space
of a canonical locally spatial subdiamond i : Z → X.6 Since |Z| is generalising, geometric points
of X are a disjoint union of geometric points of U and of Z. We have the extension by zero
functor j! : Ab(Uét) → Ab(Xét), defined as for schemes (cf. the discussion before [CGH+20,
Lemma 2.2.6]), which is exact and left-adjoint to j∗. The stalk of j!F at x ∈ |U | (resp. x ∈ |Z|)
is isomorphic to Fx̄ (resp. is zero).

7.3.3 Lemma. Let x ∈ |X| and let x̄ be the associated geometric point; let F be an étale sheaf
(of abelian groups) on Z. If x ̸∈ |Z| then (i∗F )x̄ = 0; if x ∈ |Z| then (i∗F )x̄ = Fx̄.

Proof. If x ̸∈ |Z| then x ∈ |U | hence there is a cofinal systems of étale neighbourhoods V → X
of x factoring through U ; therefore i∗F (V ) = 0 and (i∗F )x̄ = 0. Now take x ∈ |Z|; then
(i∗F )x̄ = lim−→V

F (V ×X Z), where V runs over the objects V → X ∈ Xét through which x̄
factors. We may restrict to V spatial and such that V → X factors through a fixed spatial open
subdiamond of X. Using [Sch17, Proposition 14.9], the description of x̄ before [CGH+20, Lemma
2.2.2], and the fact that x̄→ X factors through Z, we have

lim−→
V

F (V ×X Z) = H0(lim←−
V

(V ×X Z), F ) = H0(x̄×X Z,F ) = Fx̄.

7.3.4 Proposition. Let X be a locally spatial diamond, and j : U → X an open subdiamond
with generalising closed complement underlying a subdiamond i : Z → X. For every étale sheaf
F of abelian groups on X the sequence

0→ j!j
∗F → F → i∗i

∗F → 0

is exact.

Proof. It suffices to check this on stalks at each geometric point x̄ → X. If x̄ factors through

U we get 0 → Fx̄
Id−→ Fx̄ → 0 → 0. If it factors through Z then (j!j

∗F )x̄ = 0. On the other
hand setting G = i∗F we have (i∗G)x̄ = Gx̄ by the previous lemma, and Gx̄ = Fx̄. Hence we get

0→ 0→ Fx̄
Id−→ Fx̄ → 0.

6Recall that, unlike for schemes, it is not always the case that a closed subset of |X| underlies a subdiamond of
X, the issue being that maps of analytic adic spaces are generalising.
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7.4 Proof of Proposition 7.2.7

7.4.1 Let b = (bp)p∈Σp ∈ B(HQp , µ) be an element such that RΓ(Igb,Fℓ)m is non-trivial and

such that the dimension dmin of ShU (H)b is as small as possible. Let ε be the cardinality of the
set T ⊂ Σp consisting of places p such that bp is basic. Then dmin = g − ε, so we need to prove
that

ε ⩽ δp(m).

If ε = 0 there is nothing to prove; hence let us assume ε > 0, so that T is non-empty. Let HT be
the unitary group attached to T , defined in § 3.1.3, and IgordT the associated µT -ordinary Igusa
variety. Consider the Hodge–Tate period map

πTHT : ShUp(HT )→ F ℓHT ,µ
−1
T
.

Our assumption and Theorem 4.2.4 imply thatRΓ(IgordT ,Fℓ)m is non-trivial. Because of Proposition
5.3.1 we deduce that (RπTHT,∗Fℓ)m has non-trivial cohomology on the µT -ordinary stratum.
Better, we have:

7.4.2 Lemma. The µT -ordinary stratum is the only one where (RπTHT,∗Fℓ)m has non-zero cohomology.

Proof. Assume the contrary. Then using Proposition 5.3.1 we find that there is a non-ordinary

element b′T ∈ B(HT,Qp , µT ) such that H∗(Ig
b′T
T ,Fℓ)m is non-zero. Consider the element b′ ∈

B(HQp , µ) which is basic precisely at places in T and at places outside T where b′T is basic. By

Theorem 4.2.4 the cohomology H∗(Igb
′
,Fℓ)m is not identically zero; however the dimension of

ShU (H)b
′
is strictly smaller than the dimension of ShU (H)b, hence we obtain a contradiction.

7.4.3 We now come back to the proof of Proposition 7.2.7. Perversity of the complex
RπTHT,∗Fℓ[g − ε] and the fact that it is concentrated on one stratum after localisation at m

imply that H i(IgordT ,Fℓ)m is non-zero only in middle degree g − ε (cf. [CS17, Corollary 6.1.4]).
Theorem 6.3.3 (together with the fact that smooth parabolic induction of a non-zero representation
is non-zero) implies that

H i(ShUp(HT )
bord ,Fℓ)m ̸= 0⇔ i = g − ε. (7.4.3.1)

Let Z ⊂ F ℓHT ,µ
−1
T

be the µT -ordinary locus, and V := F ℓHT ,µ
−1
T

∖ Z. We have an inclusion

ShUp(HT )
bord ⊂ (πTHT)

−1(Z) (7.4.3.2)

which induces a bijection on rank one points. The ordinary locus ShUp(HT )
bord is open and

quasicompact, as it is the preimage of a quasicompact open subspace in the special fibre via the
specialisation map, which is continuous and spectral. By [CS17, Lemma 4.4.2] the map induced
in cohomology by (7.4.3.2) is an isomorphism, hence the equivalence in (7.4.3.1) holds true for
the cohomology of (πTHT)

−1(Z) as well. Let iZ : Z → F ℓHT ,µ
−1
T

and iV : V → F ℓHT ,µ
−1
T

be the

inclusion maps. The assumptions of Proposition 7.3.4 are satisfied, hence for every j ⩾ 0 we have
an exact sequence

0→ iV,!i
∗
V (R

jπTHT,∗Fℓ)→ RjπTHT,∗Fℓ → iZ,∗i
∗
Z(R

jπTHT,∗Fℓ)→ 0.

Lemma 7.4.2 ensures that the first term vanishes after localisation at m; therefore, we deduce
that H i(F ℓHT ,µ

−1
T
, RjπTHT,∗Fℓ)m = H i(Z,RjπTHT,∗Fℓ)m. The outcome of our discussion is that

cohomology of ShUp(HT ) coincides with cohomology of its ordinary locus, after localisation at
m; hence H i(ShUp(HT ),Fℓ)m ̸= 0 if and only if i = g − ε.
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Now ShUp(HT ) is the inverse limit (as a diamond) of the spaces ShUpUT,p
(HT ) for UT,p ⊂

HT (Qp) running over compact open subgroups. There is a cofinal system of subgroups UT,p which
are images in HT (Qp) of subgroups of the form KT,p ×KE,p ⊂ GT (Qp)× TE(Qp), where KE,p is
such that KE,pK

p
E is sufficiently small with respect to KT,pK

p, in the sense of Definition 3.2.2.
For UT,p of this form and small enough, we must have

H i(ShUpUT,p
(HT ),Fℓ)m = 0 for i ̸= g − ε, Hg−ε(ShUpUT,p

(HT ),Fℓ)m ̸= 0,

where the first equality holds because a small enough subgroup UT,p is a pro-p group, hence the
map from the cohomology of ShUpUT,p

(HT ) to the cohomology of ShUp(HT ) is injective. The
argument in the proof of Corollary 7.1.2 shows that Hg−ε(ShUpUT,p

(HT ),Zℓ)m is non-zero and
torsion free, therefore we deduce that

Hg−ε(ShUpUT,p
(HT ),Qℓ)m ̸= 0.

Applying Corollary 3.2.9 once more we obtain that Hg−ε(ShKpKT,p
(GT ),Qℓ)m ̸= 0. We claim

that this implies that ρ̄m cannot be generic at places in T ; this yields the desired inequality
ε ⩽ δp(m) and ends the proof of Proposition 7.2.7.

To justify our claim, recall that Hg−ε(ShKpKT,p
(GT ), Q̄ℓ) can be described in terms of

automorphic representations of GT as in [Nek18, (5.9)-(5.11)]. The Hecke algebra acts on the
universal part of cohomology (corresponding to one-dimensional automorphic representations,
and called case (A) in loc. cit.) via the degree character. Hence this part of cohomology vanishes
after localisation at m, since m is non-Eisenstein. Therefore, as in [Nek18, (5.11)(B)], there is
an automorphic representation πT of GT which transfers to an automorphic representation π of
GL2,F attached to a (holomorphic) cuspidal Hilbert newform f such that almost all the Hecke
eigenvalues of f modulo ℓ are given by the image of the map T → T/m. Letting ρπ : ΓF →
GL2(Q̄ℓ) be the Galois representation attached to π, we deduce that the reduction modulo ℓ
of (a lattice in) ρπ is isomorphic to ρ̄m. Let v be a place in T ; by [Car86, Theorem A] the
Galois representation attached to πv lifts ρ̄m|ΓFv

. As πv is the Jacquet–Langlands transfer of a
representation of the non-split quaternion algebra over Fv, we deduce using § 7.1.4 that ρ̄m is
not generic at v.

7.4.4 Remark. In the above proof, we used the parabolically induced structure of the ordinary
locus to deduce that H∗(ShUp(HT )

bord ,Fℓ)m is non-zero and concentrated in one degree from
the analogous properties of cohomology of the Igusa variety. One could also argue computing
cohomology of ShUp(HT )

bord via the Leray spectral sequence, and using the fact that the ordinary
locus in the flag variety is a profinite set (hence a sheaf on it with a non-zero stalk has non-zero
global sections and vanishing higher cohomology).

7.5 Cohomology of quaternionic Shimura varieties

7.5.1 Let ℓ be a prime number. In this section we explain how the arguments used in this
paper can be extended to study the cohomology with Fℓ-coefficients of quaternionic Shimura
varieties attached to non-split quaternion algebras. In a nutshell, the strategy we used for Hilbert
modular varieties can be applied in this generality, with the difference that we do not need to
restrict to non-Eisenstein maximal ideals, as Shimura varieties attached to non-split quaternion
algebras have no boundary. The construction of Galois representations is also simpler in this
case, therefore some results also apply to the case ℓ = 2.

We fix a non-split quaternion algebra B over a totally real number field F of degree g. Let R
(resp. R∞) be the set of places (resp. infinite places) of F where B is ramified. In this section we
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will denote by G the group ResF/QB
×; we fix a neat compact open subgroup K ⊂ G(Af ) and we

denote by ShK(G) the corresponding Shimura variety, of dimension d := g− |R∞|. Let T be the
Hecke algebra generated by operators at places of residue characteristic different from ℓ where
B is unramified and K is hyperspecial. Given a prime p totally split in F , fix an isomorphism
Q̄p ≃ C, inducing a bijection between the set Σ∞ of infinite places and the set Σp of p-adic places
of F . We denote by Rp the set of p-adic places corresponding to R∞. The cocharacter of GQ̄p

induced by the cocharacter coming from the Shimura datum attached to G is central at places
in Rp. In the rest of the section we will discuss the proof of the following result.

7.5.2 Theorem. Let ℓ be a prime number and m ⊂ T a maximal ideal in the support of
H∗(ShK(G),Fℓ).

(i) There exists a unique Galois representation ρ̄m : ΓF → GL2(F̄ℓ) attached to m, in the sense
of Theorem 2.2.1.

(ii) Let p ̸= ℓ be an odd prime number which splits completely in F and such that B is
unramified at every place above p and K = KpKp with Kp ⊂ G(Qp) hyperspecial. Let
δp(m) be the cardinality of the set of places v ∈ Σp ∖ Rp such that ρ̄m is not generic at v.
Then

i ̸∈ [d− δp(m), d+ δp(m)]⇒ H i(ShK(G),Fℓ)m = 0.

(iii) If ℓ > 2 and the image of ρ̄m is not solvable, then

i ̸= d⇒ H i(ShK(G),Fℓ)m = 0.

7.5.3 Take a prime p as in point (2) of the theorem. We choose an auxiliary CM extension
E/F such that every finite place in R is inert in E, and a place of F above p is split (resp. inert)
in E if it belongs (resp. does not belong) to Rp. We consider the auxiliary unitary group H∅
constructed as in § 3.1.3; we will denote H∅ by H for simplicity. We can write the Kottwitz set
B(HQp , µ) as a product B(HQp , µ) =

∏
Σp
B(Hp, µp), where B(Hp, µp) has one element (resp.

two elements, the basic and the µp-ordinary element) if p ∈ Rp (resp. if p ∈ Σp ∖ Rp). We fix a
compact open subgroup KE = (OE ⊗ Zp)×Kp

E sufficiently small with respect to K, and we let
U ⊂ H(Af ) be the image of KE×K. Given b = (bp)p∈Σp ∈ B(HQp , µ) we have the corresponding

Newton stratum Sh
b
U (H) which is affine and smooth, of dimension d− εb, where εb denotes the

number of places p ∈ Σp ∖Rp such that bp is basic.

Given a set T ⊂ Σp ∖ Rp, let BT be the quaternion algebra over F ramified at places in
R as well as at places in T and at the corresponding infinite places. We let GT := ResF/QB

×
T ;

fix an isomorphism G(A(p)
f ) ≃ GT (A

(p)
f ), allowing us to see Kp as a subgroup of GT (A

(p)
f ). The

arguments in § 3.2 and § 3.3 go through in this setting; in particular one can define moduli
problems giving rise to integral models of the Shimura varieties attached to the groups H and
HT ; this makes it possible to define Igusa varieties, and Theorem 4.2.4 has an analogue in this
setting. Similarly, we have a description of the fibres of the relevant Hodge–Tate period maps
in terms of Igusa varieties, and of the µ-ordinary locus at infinite level as being parabolically
induced from the corresponding Igusa variety.

Theorem 7.5.2 will follow from the following proposition.

7.5.4 Proposition. Take b = (bp)p∈Σp ∈ B(HQp , µ) corresponding to a Newton stratum with

smallest possible dimension such that H∗(Sh
b
U (H),Fℓ)m ̸= 0. Let T ⊂ Σp ∖ Rp be the set of
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places p such that bp is basic. Then there is a compact open subgroup KT,p ⊂ GT (Qp) such that

H∗(ShKpKT,p
(GT ),Qℓ)m ̸= 0.

Proof. As H∗(Sh
b
U (H),Fℓ)m ̸= 0 we deduce that H∗(Igb,Fℓ)m ̸= 0, hence by Theorem 4.2.4 we

get H∗(IgordT ,Fℓ)m ̸= 0. Denoting by πTHT the Hodge–Tate period map for ShUp(HT ), we deduce
as in Lemma 7.4.2 that (RπTHT,∗Fℓ)m is supported only on the µT -ordinary locus. Perversity

(up to shift) of RπTHT,∗Fℓ implies that H∗(IgordT ,Fℓ)m is non-zero only in middle degree; the
same argument as in § 7.4.3 then shows that H∗(ShUp(HT ),Fℓ)m is concentrated in middle
degree. We can finally descend to an appropriate finite level and apply Corollary 3.2.9 to deduce
that H∗(ShKpKT,p

(GT ),Fℓ)m is concentrated in middle degree, hence H∗(ShKpKT,p
(GT ),Qℓ)m ̸=

0.

7.5.5 Proof of Theorem 7.5.2 The existence of ρ̄m follows combining Proposition 7.5.4, the
description of the cohomology of ShKpKT,p

(GT ) with characteristic zero coefficients in terms
of automorphic forms and the existence of Galois representations attached to quaternionic
automorphic forms. The second point is proved adapting the argument in § 7.2 and § 7.4.3.
The third point follows from the second and from Lemma 7.1.8.

8. Compatibility with the p-adic local Langlands correspondence

Fix a prime p throughout this section, which will play the role of the prime denoted by ℓ above.
The aim of this section is to relate the completed homology of Hilbert modular varieties and the
p-adic Langlands correspondence, building on [GN22].

8.1 Completed homology

8.1.1 Following [GN22] we work with locally symmetric spaces attached to PGL2,F rather
than GL2,F . Let G := ResF/QGL2 and Ḡ := ResF/Q PGL2. Given a compact open subgroup
K̄ ⊂ Ḡ(Af ) we have the locally symmetric space

XK̄(Ḡ) := Ḡ(Q)\(C∖ R)g × Ḡ(Af )/K̄.

Fix a compact open subgroup K̄pK̄0 which is good in the sense of [GN22, Section 2.1], with
K̄0 =

∏
v|p PGL2(OFv). Consider the completed homology groups

H̃∗(K̄
p,Zp) := lim←−̄

Kp

H∗(XK̄pK̄p ,Zp).

Let T(K̄p) be the big Hecke algebra defined in [GN22, Definition 2.1.11] (beware that our notation
differs from the one in loc. cit.). It maps to the Hecke algebra T(K̄pK̄p,Z/psZ) acting on homology
with Z/psZ-coefficients of the locally symmetric space of level K̄pK̄p for each K̄p and each s ⩾ 1.
Completed homology H̃∗(K̄

p,Zp) carries an action of T(K̄p) as well as of Ḡ(Qp); we fix a maximal
ideal m ⊂ T(K̄p). For K̄p small enough, the ideal m is the preimage of a maximal ideal in
T(K̄pK̄p,Z/pZ), which we will abusively denote by the same symbol (in fact any pro-p group
K̄p does the job, cf. the proof of [GN22, Lemma 2.1.14]). Hence, setting K̄ = K̄pK̄p, we have
H∗(XK̄(Ḡ),Fp)m ≃ H∗(XK̄(Ḡ),Fp)m ̸= 0.

8.1.2 Let us now assume that p > 3; we take K̄ as above, and assume in addition that
it is the image of a compact open subgroup K ⊂ G(Af ). The natural map ShK(G) → XK̄(Ḡ)
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is a finite étale Galois cover, hence H∗(ShK(G),Fp)m ̸= 0. By Theorem 2.2.1 there is a Galois
representation ρ̄m : ΓF → GL2(F̄p) attached to m. Let us suppose that the projective image of
ρ̄m contains a conjugate of PSL2(Fp) or is isomorphic to A5; then Theorem 7.1.1 implies that,
for every K ′

p ⊂ Kp, we have

H i(ShKpK′
p
(G),Fp)m = H i

c(ShKpK′
p
(G),Fp)m = 0

for i < g; the Hochschild–Serre spectral sequence attached to the Galois cover ShKpK′
p
(G) →

XKpK′
p
(Ḡ) implies that the same property holds true for the cohomology of XKpK′

p
(Ḡ), hence

H∗(XKpK′
p
(Ḡ),Fp)m ≃ H∗(XKpK′

p
(Ḡ),Fp)m is concentrated in degree g. Therefore assumptions

(a), (b) of [GN22, Proposition 4.2.1] are satisfied (notice that assumption (b) trivially holds since,
with the notation of loc. cit., we have l0 = 0 in our situation). Thanks to [GN22, Proposition
4.2.1] we obtain that H̃i(K̄

p,Zp)m = 0 if i ̸= g and H̃g(K̄
p,Zp)m is a projective, p-torsion-free

Zp[[K̄0]]-module. Furthermore, there is a Galois representation

ρm : ΓF → GL2(T(K̄p)m)

lifting ρ̄m, as in [GN22, Conjecture 3.3.3(2)]. It can be constructed as in [Sch18, § 5]: the argument
in loc. cit., glueing representations valued in Hecke algebras at increasing finite level, can be
applied in our situation as (co)homology with Zp-coefficients is concentrated in one degree and
torsion-free after localisation atm, and cohomology withQp-coefficients localised atm is described
in terms of Hilbert cusp forms.

8.2 p-adic local Langlands

Assume from now on that p is totally split in F . We want to describe the relation between
completed homology of Hilbert modular varieties and the p-adic Langlands correspondence for
GL2(Qp), using the machinery of [GN22]. As remarked in [GN22, § 5.4], assumption (a) of [GN22,
Proposition 4.2.1], which we established above, is the key input needed to apply the results in
loc. cit..

8.2.1 We first need to introduce some notation. We replace Zp by the ring of integers O of a
finite extension of Qp, with residue field k, so that ρ̄m takes values in GL2(k). Furthermore, up to
further extending O, we may, and will, assume that k contains all the eigenvalues of the elements
in the image of ρ̄m (as in [GN22, § 3.2]). We denote by L the fraction field of O. For a place v | p,
under suitable assumptions on ρ̄m|ΓFv

(for example, if it is absolutely irreducible) we have the

universal local deformation ring Rdef
v of ρ̄m|ΓFv

. We denote by πv the k-representation of PGL2(Fv)
attached to ρ̄m|ΓFv

, and we let Pv be the projective envelope of π∨v in the Pontryagin dual of the

category of locally admissible O-representations of PGL2(Fv). We set Rloc
p := ⊗̂v|p,ORdef

v ; then

P := ⊗̂v|p,OPv has an Rloc
p -module structure, cf. [Paš13, Proposition 6.3, Corollary 8.7] (see also

[GN22, § 5.1]). Finally, the representation ρm gives rise to a map Rloc
p → T(K̄p)m. Let N(ρ̄m) be

the prime-to-p-conductor of ρ̄m and let K̄1(N(ρ̄m)) be the image of {M ∈ GL2(ÔF ) |M ≡ ( ∗ ∗
0 1 )

(mod N(ρ̄m))} (more precisely, if this group is not good, we make it smaller at places where ρ̄m
admits no ramified deformations).

8.2.2 Theorem. Let p > 3 be a prime which splits completely in F . Assume that the following
assertions hold true.

(i) The projective image of the Galois representation ρ̄m attached to m contains a conjugate of
PSL2(Fp) or is isomorphic to A5.
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(ii) If ρ̄m is ramified at some place v not lying above p, then v is not a vexing prime.

(iii) For each place v | p, the restriction of ρ̄m to ΓFv is absolutely irreducible.

Then there is an isomorphism of T(K̄1(N(ρ̄m))
p)m[Ḡ(Qp)]-modules

H̃g(K̄1(N(ρ̄m))
p,O)m ≃ T(K̄1(N(ρ̄m))

p)m⊗̂Rloc
p
P⊕m

for some m ⩾ 1.

Proof. This is [GN22, Proposition 5.1.4], which follows from [GN22, Conjecture 5.1.2]. Let us
explain why this and other conjectures formulated in loc. cit. hold true in our setting, and the
various assumptions made in loc. cit. are satisfied.

(i) In [GN22, § 4.1] the authors assume that the image of restriction of ρ̄m to ΓF (ζp) is enormous.
This is needed for the construction of Taylor–Wiles data, as in [GN22, Lemma 3.3.1].
Our large image assumption and [GN22, Lemma 3.2.3] imply that the group ρ̄m(ΓF (ζp)) is
enormous if p > 5. If p = 5, our assumption does not guarantee that ρ̄m(ΓF (ζp)) is enormous.
However, in this case, one can work under the assumption [Sch18, Hypothesis 9.1], which
originates in [Kis09, Theorem 3.5.5] and which is satisfied in our situation. Indeed, if the
image of pr ◦ ρ̄m : ΓF → PGL2(F̄5) is conjugate to PGL2(F5) and its kernel fixes F (ζ5) then
[F (ζ5) : F ] = 2, which cannot happen if p = 5 is unramified in F .

(ii) The assumption that ρ̄m ̸= ρ̄m ⊗ ϵ̄, where ϵ̄ is the mod p cyclotomic character (see [GN22,
p. 18]) holds. Indeed because p is unramified F , the fields F and Q(ζp) are linearly disjoint
over Q; hence ϵ̄ : ΓF → (Z/pZ)× is surjective. In particular there is γ ∈ ΓF such that
ϵ̄(γ)2 ̸= 1, hence det ρ̄m(γ) ̸= det(ϵ̄ ⊗ ρ̄m)(γ). For the same reason the first assumption in
[GN22, Hypothesis 4.1.3] is satisfied.

(iii) [GN22, Conjecture 3.3.7] holds: the representation denoted by ρm,Q in loc. cit. can be
constructed as explained before the statement of the theorem, and the desired local-global
compatibility follows from the analogous statement for Hilbert modular forms.

(iv) The second assumption in [GN22, Hypothesis 4.1.3] holds in view of the hypothesis that
there are no vexing primes.

The upshot of the above discussion is that all the assumptions made at the beginning of [GN22,
§ 5] are verified. Therefore, by [GN22, Corollary 5.3.2], Conjecture 5.1.2 follows from Conjecture
5.1.12 in loc. cit..

It remains to justify why Conjecture 5.1.12 holds. Let Q be a set of Taylor–Wiles primes and
σ = (σv)v|p an irreducible L-representation of K̄0, with K̄0-stable O lattice σ◦ as in [GN22, p.
34]. Let XK̄1(Q)(Ḡ) be the space with level K̄0 at p and K̄1(Q)v at each place v ∈ Q. We need to

show that the action of Rloc
p on H∗(XK̄1(Q)(Ḡ), σ

◦)mQ,1 factors through Rloc
p (σ), where the ideal

mQ,1 is defined in [GN22, Proposition 3.3.6]. Let T(K̄1(Q), σ)mQ,1 be the image of the Hecke
algebra in the endomorphism ring of Hg(XK̄1(Q)(Ḡ), σ

◦)mQ,1 . By assumption (1) the homology

H∗(XK̄1(Q)(Ḡ), σ
◦)mQ,1 is concentrated in middle degree, and Hg(XK̄1(Q)(Ḡ), σ

◦)mQ,1 is torsion-

free; furthermore T(K̄1(Q), σ)mQ,1 is reduced. As in the proof of the first part of [CEG+16,
Lemma 4.17], it suffices to show that, for any Q̄p-point of T(K̄1(Q), σ)mQ,1 , the restriction to ΓFv

(for v | p) of the associated Galois representation with Q̄p-coefficients is crystalline of type σv.
The space H∗(XK̄1(Q)(Ḡ), σ)mQ,1 can be described in terms of Hilbert cusp forms with algebraic
weight, hence the desired result follows from local-global compatibility at places above p [Kis08,
Theorem 4.3]. This establishes the first assertion in [GN22, Conjecture 5.1.12]; the second one can
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be proved similarly, following the strategy in the second part of the proof of [CEG+16, Lemma
4.17].

8.2.3 Remark. In fact, one should be able to prove a version of compatibility with the p-adic local
Langlands correspondence without any assumptions on the tame level, for example the analogue
to this setting of [Pan22b, Corollary 6.3.6]. That this would follow from Theorem A and the
machinery developed by Paškūnas is more or less known to experts. We sketch the argument in
this remark.

One can consider the completed cohomology of a Hilbert modular variety with Zp-coefficients.
After localisation at a maximal ideal m whose associated residual Galois representation is non-
solvable, Theorem A implies that this is concentrated in one degree. As in [Pan22b, Corollary
6.3.6], the key point is to prove the analogue of [Pan22b, Theorem 6.3.5] that compares two
actions of the local pseudo-deformation ring with fixed determinant on completed cohomology
localised at m. (See [Pan22a, Theorem 3.5.5] for the statement in the case when there are multiple
split places above p, which relies on [Pan22a, Corollary 3.4.12].)

The comparison of the two pseudo-deformation ring actions can be done using the method
of [Paš22, Cor. 5.6]. The key facts that would need checking are: density of those locally algebraic
vectors for which the smooth part is a specific principal series representation, and semi-simplicity
of the usual Hecke action on the non-Eisenstein cohomology of Hilbert modular varieties. The
latter can be deduced from the Eichler–Shimura isomorphism and the existence of the Petersson
inner product on Hilbert cusp forms. Density of locally algebraic vectors follows from [DPS20,
Corollary 7.8] and the fact that completed cohomology localised at m with fixed central character
is a direct summand of a space of continuous functions with fixed central character as in the
proof of [DPS20, Theorem 9.24]. Finally, the latter fact follows from projectivity of completed
homology localised at m (cf. [DPS20, Lemma 9.16(i)]). As in § 8.1.2, to establish this last property
one crucially uses Theorem A.
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