
ar
X

iv
:1

51
1.

02
41

8v
1 

 [
m

at
h.

N
T

] 
 8

 N
ov

 2
01

5

ON THE GENERIC PART OF THE COHOMOLOGY OF

COMPACT UNITARY SHIMURA VARIETIES

ANA CARAIANI AND PETER SCHOLZE

Abstract. The goal of this paper is to show that the cohomology of compact
unitary Shimura varieties is concentrated in the middle degree and torsion-free,
after localizing at a maximal ideal of the Hecke algebra satisfying a suitable
genericity assumption. Along the way, we establish various foundational results
on the geometry of the Hodge-Tate period map. In particular, we compare the
fibres of the Hodge-Tate period map with Igusa varieties.
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1. Introduction

Let G/Q be a reductive group. The real group G(R) acts on its associated
symmetric domain X = G(R)/K∞, where K∞ ⊂ G(R) is a maximal compact
subgroup. For any congruence subgroup Γ ⊂ G(Q), one can form the locally
symmetric space

XΓ = Γ\X .

We assume that XΓ is compact, and that Γ is torsion-free. Then Matsushima’s
formula, [Mat67], expresses the cohomology groups Hi(XΓ,C) with complex co-
efficients in terms of automorphic forms π on G, and the (g,K∞)-cohomology of
their archimedean component π∞.1 A computation of (g,K∞)-cohomology then
shows that the part of cohomology to which tempered representations contribute
is concentrated in the middle range q0 ≤ i ≤ q0 + l0, cf. [BW80, Theorem III.5.1];
here l0 = rk G− rk K∞, and q0 = 1

2 (dimX − l0).
In particular, if l0 = 0, then tempered representations occur only in the middle

degree q0. This happens when the XΓ are complex algebraic varieties, e.g. when G
gives rise to a Shimura variety.

The motivating question of this paper is to establish a similar result for the
cohomology groups Hi(XΓ,Fℓ) with torsion coefficients. In this context, it is diffi-
cult to formulate the analogue of the temperedness condition, which is an analytic
one. We learnt the following formulation from M. Emerton. Recall that for any
system m of Hecke eigenvalues appearing in Hi(XΓ,Fℓ), one expects to have a mod
ℓ Galois representation ρm (with values in the Langlands dual group). One may
then put the condition that ρm is irreducible, and ask whether this implies that
q0 ≤ i ≤ q0 + l0. In particular, a result of this type for G = GLn (where l0 > 0) is
important for automorphy lifting theorems in the non-self dual case as in work of
Calegari-Geraghty, [CG, Conjecture B].

In the present paper, we deal with this question in the case where XΓ is a
Shimura variety (so that l0 = 0). More precisely, we will consider the case where G
is an anisotropic unitary similitude group of dimension n, for some CM field F with
totally real subfield F+ ⊂ F . We assume that F contains an imaginary-quadratic
field. Assume moreover that G is associated with a division algebra over F , i.e., it
is one of Kottwitz’ simple Shimura varieties, [Kot92a].2 Our main theorem is the
following.

Theorem 1.1. Let m be a system of Hecke eigenvalues appearing in Hi(XΓ,Fℓ).
Then there is an associated Galois representation

ρm : Gal(F/F )→ GLn(F̄ℓ) .

Assume that there is a rational prime p such that F is completely decomposed
above p, and

ρm is unramified and decomposed generic

at all places of F above p. Then i = q0 is the middle degree.

Remark 1.2. The first part of the theorem can be deduced from [Sch15b], but we
give a different proof in this paper. We will make use of the Hodge-Tate period

1In the non-compact case, this is still true, and a theorem of Franke, [Fra98].
2We also allow the complementary case where G is quasisplit at all finite places, under a small

extra assumption (cf. Section 5.1), so that our main result also covers cases where nontrivial
endoscopy occurs.
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map again, but this time in a p-adic context with p 6= ℓ (whereas [Sch15b] worked
in the situation p = ℓ). We note that this should make it possible to understand
the behaviour of ρm at places above ℓ.

Remark 1.3. It is a formal consequence that the Zℓ-cohomology localized at m is
concentrated in degree q0, and torsion-free, if the conclusion of the theorem holds
true.

Remark 1.4. The condition that ρm is decomposed generic is defined below. It
follows from a suitable “big image” assumption. However, note that if ρm is a
generic sum of characters, there will still be a prime p as in the theorem, so that
our result also applies to many reducible representations.

Remark 1.5. We prove the result under a slightly weaker assumption depending on
the precise signature of G. In particular, if the signature of G is (0, n) at all except
for one infinite place, e.g. in the Harris-Taylor case, we only need the existence of
one finite prime v of F at which ρm is unramified and decomposed generic.

Remark 1.6. In the Harris-Taylor case (i.e., G is of signature (1, n − 1) at one
infinite place, and (0, n) at the other places), there has been previous work on this
question, notably by Shin, [Shi15], restricting attention to the cohomology that
is supercuspidal modulo ℓ at some finite prime p, by Emerton and Gee, [EG15],
making suitable assumptions on ρm at ℓ-adic places, and by Boyer, [Boy15], under
a condition very closely related to our condition.

Remark 1.7. Lan and Suh, [LS12], prove that if the level is hyperspecial at ℓ and
one takes cohomology with coefficients in the local system Lξ corresponding to a
suitably generic algebraic representation ξ of G, then the whole ℓ-adic cohomology
groups Hi(XΓ,Lξ) for i 6= q0 vanish. This behaviour cannot be expected in our
situation, as at least all even cohomology groups H2i(XΓ,Fℓ) are nonzero, so it is
necessary to localize at some maximal ideal of the Hecke algebra.

Remark 1.7.1. An argument involving the Hochschild-Serre spectral sequence and
Poincaré duality shows that the theorem also holds when Fℓ is replaced by a non-
trivial (Hecke-equivariant) coefficient system.

Remark 1.8. Let F be a CM field and Π be a conjugate self-dual regular alge-
braic cuspidal automorphic representation of GLn(AF ). Then Π will be obtained
by base change from an automorphic representation π on a unitary group, which
contributes to the cohomology of a compact unitary Shimura variety (see, for ex-
ample, [HT01, Shi11, Car12]). In this situation, π contributes only to the middle
degree cohomology, and the proof relies on genericity rather than temperedness. In
fact, concentration in middle degree is proved simultaneously with the Ramanujan-
Petersson conjecture (at finite places) for Π as above, using the template of [HT01]
rather than appealing to [BW80]. These results rely on the fact that the local
components of cuspidal automorphic representations of GLn are generic, and fol-
low by combining the classification of unitary generic representations of GLn due
to Tadic (and the bounds of Jacquet-Shalika) with the Weil conjectures. While
temperedness is an analytic condition, genericity can be formulated modulo ℓ.

Let us define the critical notion of being decomposed generic.

Definition 1.9. Let L be a p-adic field with residue field Fq, ℓ 6= p. An unramified
representation

ρ : Gal(L/L)→ GLn(F̄ℓ)
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is decomposed generic if the eigenvalues {λ1, . . . , λn} of ρ(Frob), where Frob ∈
Gal(L/L) is an arithmetic Frobenius, satisfy λi/λj 6∈ {1, q} for all i 6= j.

The main consequence of this definition is that any characteristic 0 lift of ρ is
a direct sum of characters (i.e., “decomposed”), and the associated representation
of GLn(L) under the local Langlands correspondence is a generic3 principal series
representation, cf. Lemma 6.2.2.

The rough idea. Let us now explain the idea of our proof. In very rough
terms, the idea is to work at a fixed prime p 6= ℓ, and look at the projection from
the Shimura variety S, which is a moduli space of abelian varieties (with extra
structures), to the corresponding moduli space M of p-divisible groups (with extra
structures),

π : S →M .4

One could then analyze the cohomology of the Shimura variety in terms of a Leray
spectral sequence. Note that the fibres of π should be a moduli space of abelian
varieties with a trivialization of their p-divisible group, which are essentially the
Igusa varieties of [Man05], cf. also [HT01]. This means that one can compute the
fibres of Rπ∗Zℓ in terms of the cohomology of Igusa varieties. The alternating sum
of the Q̄ℓ-cohomology groups has been analyzed in depth by Sug Woo Shin, [Shi09],
[Shi10].

An important property of the situation is that the Hecke operators away from p
act trivially on M , so the passage to the localization at m can already be done on
the sheaf Rπ∗Fℓ. This makes it possible to use geometry on M . More specifically,
in the actual setup considered below, (the localization at m of) Rπ∗Fℓ will turn
out to be perverse (up to shift), and thus is concentrated in one degree on the
largest stratum where it is nonzero. In that case, (the localization at m of) Rπ∗Zℓ

will be concentrated in one degree and flat. Thus, not much information is lost by
passing to the alternating sum of the Q̄ℓ-cohomology groups. Specifically, we will
use this argument inductively to show that (Rπ∗Zℓ)m is trivial on all strata except
the 0-dimensional stratum, which will then give the desired bound.

Unfortunately, the moduli space M of p-divisible groups does not really exist,
or at the very least has horrible properties. This makes it hard to execute this
strategy in a naive way. In April 2011, [Sch11], one of us realized (in the Harris-
Taylor case) that there should be a Hodge-Tate period map, which would make a
good substitute for π.5 The idea here is that if C/Qp is a complete algebraically
closed nonarchimedean field with ring of integers OC , then by [SW13, Theorem B],
p-divisible groups over OC are classified by pairs (T,W ), where T is a finite free
Zp-module, and W ⊂ T ⊗Zp C is a subvectorspace, the Hodge-Tate filtration. In
particular, p-divisible groups with a trivialization of their Tate module are classified
by a Grassmannian, at least on (C,OC)-valued points. Now, even if the moduli
space of p-divisible groups is not a nice object, one can replace it by this Grassman-
nian, which is manifestly a nice object. It turns out that with this modification,
the argument outlined above works.

The precise ideas. Let us now be more precise. We work adèlically, so for any
compact open subgroup K ⊂ G(Af ), we have the Shimura variety SK , which is a

3Recall that a generic representation is one which admits a Whittaker model - see, for example
Section 2.3 of [Kud94].

4This idea is also behind [Sch13b], and was also mentioned to one of us (P.S.) by R. Kottwitz.
5We learnt that L. Fargues had also been aware of the Hodge-Tate period map in some form.
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quasiprojective scheme over the reflex field E. For the moment, we allow an arbi-
trary Shimura variety. Recall that these are associated with Shimura data, which
consist of a reductive group G/Q and a G(R)-conjugacy class X of homomomor-
phisms h : ResC/RGm → GR, subject to the usual axioms. Then

SK(C) = G(Q)\(X ×G(Af )/K) .

Associated with any h, one has a minuscule cocharacter µ = µh : Gm → GC.
The reflex field E ⊂ C is the field of definition of the conjugacy class of µ. With any
cocharacter µ, one can associate two opposite parabolics Pµ and P std

µ , and there are

two corresponding flag varieties FlG,µ and FlstdG,µ over E, parametrizing parabolic

subgroups in the given conjugacy class. The association h 7→ µh 7→ P std
µh

defines the

(holomorphic) Borel embedding X →֒ FlstdG,µ(C). There is also an antiholomorphic
embedding X →֒ FlG,µ(C) defined using Pµh

.
Fix any prime p, and p|p a place of the reflex field E. Denote by SK the rigid-

analytic variety, or rather the adic space, corresponding to SK⊗EEp, and similarly
for FℓG,µ. Our first main result refines the theory behind the Hodge-Tate period
map from [Sch15b], which can be regarded as a p-adic version of the (antiholomor-
phic) Borel embedding.

Theorem 1.10. Assume that the Shimura datum is of Hodge type. Then for any
sufficiently small compact open subgroup Kp ⊂ G(Ap

f ), there is a perfectoid space
SKp over Ep such that

SKp ∼ lim
←−
Kp

SKpKp .

Moreover, there is a Hodge-Tate period map

πHT : SKp → FℓG,µ ,

which agrees with the Hodge-Tate period map constructed in [Sch15b] for the Siegel
case, and is functorial in the Shimura datum.

Moreover, we prove a result saying that all semisimple automorphic vector bun-
dles come via pullback along πHT .

The idea here is to chase Hodge tensors through all constructions, which is
possible by using Deligne’s results that they are absolute Hodge, [Del82], (and also
satisfy a compatibility under the p-adic comparison isomorphism, [Bla94]), and the
results on relative p-adic Hodge theory of [Sch13c]. The details appear in Section 2.
As stated above, one should think of FℓG,µ as a (substitute for the) moduli space
of p-divisible groups with extra structure and trivialized Tate module.

Next, we want to identify the fibres of πHT with Igusa varieties. First, we have
to define a natural stratification on FℓG,µ, which correspondends under πHT to
the Newton stratification (pulled back from the special fibre through the special-
ization map). Recall that the Newton strata are parametrized by the finite subset
B(G,µ−1) ⊂ B(G) of Kottwitz’ set B(G) of isocrystals with G-structure.

Theorem 1.11. Let G be a reductive group over Qp, and µ a conjugacy class of
minuscule cocharacters. There is a natural decomposition

FℓG,µ =
⊔

b∈B(G,µ−1)

FℓbG,µ
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into locally closed subsets FℓbG,µ. The union

⊔

b�b′

Fℓb
′

G,µ

is closed for all b ∈ B(G,µ−1); in particular, FℓbG,µ is open when b is the basic

element of B(G,µ−1).

Thus, the closure relations are exactly the opposite of the closure relations of
the Newton stratification on the Shimura variety;6 this change of closure relations
is related to a subtle behaviour of πHT on certain higher-rank points of the adic
space.

To give an idea of what the stratification looks like, we recall the example of the
modular curve. In that case, the flag variety is just P1. The whole ordinary locus
of the modular curve is contracted to P1(Qp), and the Hodge-Tate period map just
measures the position of the canonical subgroup on this locus. The supersingular
locus is mapped onto Drinfeld’s upper half-plane Ω2 = P1 \ P1(Qp) in a way best
understood using the isomorphism between the Lubin-Tate and Drinfeld towers.
Thus, in this case the relevant stratification of P1 is simply the stratification into
P1(Qp) and Ω2. We caution the reader that in general, the strata FℓbG,µ are quite
amorphous, and it happens that some nonempty strata have no classical points.
The reason is that if b is basic, FℓbG,µ agrees with the admissible locus in the sense

of [RZ96], which does not admit a nice description, but whose classical points agree
with the explicit weakly admissible locus. If G is a non-split inner form of GL5 and
µ corresponds to (1, 1, 0, 0, 0), one can verify that all classical points of FℓG,µ are
contained in the basic locus, while there are many other nonempty strata.

The proof of this theorem relies on certain recent advances in p-adic Hodge the-
ory. First, to define the stratification on points, we make use of the classification of
G-bundles on the Fargues-Fontaine curve; by a recent result of L. Fargues, [Far15a],
they are classified up to isomorphism by B(G). Here, we construct a G-bundle on
the Fargues-Fontaine curve by starting with the trivial G-bundle and modifying it
at the infinite point of the Fargues-Fontaine curve. To construct the modification,
we have to relate the flag variety FℓG,µ to a Schubert cell in a B+

dR-affine Grass-
mannian as studied in [Wei14]; however, for our applications, the theory of [Wei14]
is not necessary.

Finally, to check the closure relations, we use recent results of Kedlaya and Liu,
[KL15], on the semicontinuity of the Newton polygon for families of ϕ-modules over
the Robba ring.

Now we can relate the fibres of πHT to Igusa varieties. From now on, we assume
that the Shimura variety is of PEL type (of type A or C), and compact, with
good reduction at p. Pick any b ∈ B(G,µ−1). Corresponding to b, we can find
a p-divisible group Xb over F̄p equipped with certain extra endomorphism and
polarization structures. We consider the following kind of Igusa varieties.

Proposition 1.12. There is a perfect scheme Igb over F̄p which parametrizes
abelian varieties A with extra structures, equipped with an isomorphism ρ : A[p∞] ∼=
Xb.

6We note that we do not prove that the closure of a stratum is a union of strata, so the term
“closure relations” is meant in a loose sense.
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One can identify Igb with the perfection of the tower I b
Mant = lim

←−m
I b

Mant,m of

Igusa varieties constructed by Mantovan, [Man05].

In particular, the étale cohomology of Igb agrees with the étale cohomology of
Igusa varieties.

Let us also mention the following proposition. Here, S b
K ⊂ SK ⊗ F̄p, b ∈

B(G,µ−1) denotes a Newton stratum of the natural integral model SK of the
Shimura variety SK at hyperspecial level.

Proposition 1.13. Fix a geometric base point x̄ ∈ S b
K . There is a natural map

πproét
1 (S b

K , x̄)→ Jb(Qp) ,

corresponding to a Jb(Qp)-torsor over S b
K which above any geometric point para-

metrizes quasi-isogenies between A[p∞] and Xb respecting the extra structures.

Remark 1.14. Here, πproét
1 is the pro-étale fundamental group introduced in [BS15a].

For normal schemes, it agrees with the usual profinite étale fundamental group of
SGA1. However, Newton strata are usually not normal, and in fact the homomor-
phism to Jb(Qp) often has noncompact image. For example, if b is basic, then the
image is a discrete cocompact subgroup of Jb(Qp), related to the p-adic uniformiza-

tion of the basic locus as in [RZ96]. Thus, the formalism of πproét
1 is crucial for this

statement.
Restricted to the leaf Cb ⊂ S b

K (the set of points where A[p∞] ∼= Xb), the
map π1(Cb, x̄) → Jb(Qp) takes values in a compact open subgroup of Jb(Qp), and
then corresponds to the tower of finite étale covers I b

Mant,m → Cb considered by
Mantovan.

There is a close relation between the fibres of πHT over points in FℓbG,µ and the

perfect schemes Igb; note however that the former are of characteristic 0 while the
latter are of characteristic p. Roughly, one is the canonical lift of the other, except
for issues of higher rank points. In any case, one gets the following cohomological
consequence.

Theorem 1.15. Let x be any geometric point of FℓbG,µ ⊂ FℓG,µ. For any ℓ 6= p,
there is an isomorphism

(RπHT∗Z/ℓ
nZ)x ∼= RΓ(Igb,Z/ℓnZ)

compatible with the Hecke action of G(Ap
f ).

We recall that the alternating sum of the Q̄ℓ-cohomology of Igusa varieties has
been computed by Sug Woo Shin, [Shi09], [Shi10]. His results are presented in
Section 5 and combined with the (twisted) trace formula.

The final ingredient necessary for the argument as outlined above is thatRπHT∗Fℓ

is perverse. Obviously, RπHT∗Fℓ should be constructible with respect to the strat-
ification

FℓG,µ =
⊔

b∈B(G,µ−1)

FℓbG,µ .

However, as the strata are amorphous, it is technically difficult to define a notion
of perverse sheaf in this setup. We content ourselves here with proving just what
is necessary for us to conclude. Specifically, we will prove that the Kp-invariants of



8 A. CARAIANI AND P. SCHOLZE

the nearby cycles of RπHT∗Fℓ are perverse, for any formal model of FℓG,µ and suf-
ficiently small compact open subgroup Kp ⊂ G(Qp). Choosing these formal models
correctly will then make it possible to deduce that the cohomology is concentrated
in one degree on the largest stratum where it is nonzero.

Remark 1.16. Heuristically, the reason that RπHT∗Fℓ is perverse is that πHT is
simultaneously affine and partially proper (i.e., satisfies the valuative criterion of
properness). In classical algebraic geometry, this would mean that πHT is finite,
and pushforward along finite morphisms preserves perversity. In general, partially
proper implies that RπHT∗ = RπHT !, so assuming that there is a Verdier duality
which exchanges these two functors, one has to prove only one of the two support
inequalities defining a perverse sheaf. This inequality is precisely Artin’s bound on
the cohomological dimension of affine morphisms.

Remark 1.17. The fact that the closure relations are reversed on the flag variety is
critical to our strategy. Namely, our assumption on ρm ensures that the cohomology
should be “maximally ordinary”, and this makes it reasonable to hope that every-
thing comes from the µ-ordinary locus. In our setup, the µ-ordinary locus inside
the flag variety is the closed stratum, and 0-dimensional. In the naive moduli space
of p-divisible groups, the µ-ordinary locus would be open and dense (cf. [Wed99]),
and the inductive argument outlined above would stop at the first step.

Remark 1.18. Recently, L. Fargues, [Far], has conjectured that to any local L-
parameter, there is a corresponding perverse sheaf on the stack BunG of G-bundles
on the Fargues-Fontaine curve, thus realizing the local Langlands correspondence as
a geometric Langlands correspondence on the Fargues-Fontaine curve. We conjec-
ture that the perverse sheaves RπHT∗Q̄ℓ on FℓG,µ are related to these conjectural
perverse sheaves on BunG via pullback along the natural map FℓG,µ → BunG, by
some form of local-global compatibility. In the Harris-Taylor case, one can be more
explicit, and this was the subject of [Sch11].

Acknowledgments. First, we wish to thank J.-F. Dat for many discussions
on the “geometrization” of the results of [Sch13b] using perverse sheaves on the
moduli space of p-divisible groups. The rough strategy of this argument was first
explained during a workshop on Barbados in May 2014, and we want to thank
the organizers for the chance to present these ideas there. Moreover, we want
to thank F. Calegari, L. Fargues, K. Kedlaya and S. W. Shin for many helpful
discussions, and C.-L. Chai for sending us a preliminary version of his work with
F. Oort on the “internal Hom p-divisible group”. Part of this work was completed
while both authors attended the special program on “New geometric methods in
number theory” at MSRI in Fall 2014; we thank the institute and the organizers for
the excellent working atmosphere. During that time, P. Scholze held a Chancellor’s
Professorship at UC Berkeley. This work was done while P. Scholze was a Clay
Research Fellow.

Notation and conventions. A nonarchimedean field K is a topological field
whose topology is induced by a continuous rank 1 valuation (which is necessarily
uniquely determined, up to equivalence). We denote by OK ⊂ K the subring of
powerbounded elements, which is the set of element of absolute value ≤ 1 under
the rank 1 valuation. If, in the context of adic spaces, K is equipped with a higher
rank valuation, we denote by K+ ⊂ OK the open and bounded valuation subring
of elements which are ≤ 1 for this higher rank valuation.
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We have tried our best to make our signs internally consistent, although the
reader may often feel the presence of unnecessarily many minus signs. As regards
slopes, we observe the following. We use covariant Dieudonné theory. Usually,
this sends Qp/Zp to (Zp, F = p) and µp∞ to (Zp, F = 1); this is, however, not
compatible with passage to higher tensors. The underlying reason is that in the
duality between covariant and contravariant Dieudonné theory, there is an extra
Tate twist; for this reason, we divide the usual Frobenius by p, which gets rid of
this Tate twist. Thus, the covariant Dieudonné module for µp∞ is (Zp, F = p−1) in
our setup, and one sees that the Frobenius operator does not preserve the lattice; in
general, the associated Dieudonné module will have slopes in [−1, 0]. However, in
the passage from isocrystals to vector bundles on the Fargues-Fontaine curve, the
isocrystal (Qp, F = p−1) is sent to the ample line bundle O(1), so the slope changes
sign once more, and in the end the usual slope of a p-divisible group agrees with the
slope of the associated vector bundle on the Fargues-Fontaine curve. We feel that
any confusion about signs on this part of the story is inherent to the mathematics
involved.

As regards cocharacters (and associated filtrations), we have adopted what we
think is the standard definition of the cocharacter µ = µh corresponding to a
Shimura datum {h}; for example, in the case of the modular curve, µ(t) = diag(t, 1)
as a map Gm → GL2. This has the advantage of being “positive”, but the disad-
vantage that virtually everywhere we have to consider µ−1 instead; e.g., with this
normalization, it is the set B(G,µ−1) which parametrizes the Newton strata. We
feel that on this side of the story, it might be a good idea to exchange µ by µ−1,
but we have stuck with the standard choice.
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2. Refining the Hodge-Tate period map

In this section, we work with a general Shimura variety of Hodge type and we
prove that the Hodge-Tate period map from the corresponding perfectoid Shimura
variety factors through the expected flag variety.

2.1. Recollections on the Hodge-Tate period map. Let (G,X) be a Shimura
datum, where X is a G(R)-conjugacy class of homomorphisms

h : ResC/RGm → GR.

Recall that (G,X) is a Shimura datum if it satisfies the following three conditions:

(1) Let g denote the Lie algebra of G(R). For any choice of h ∈ X , its compo-
sition with the adjoint action of G(R) on g determines a Hodge structure
of type (−1, 1), (0, 0), (1,−1) on g;7

(2) h(i) is a Cartan involution of Gad(R);
(3) Gad has no factor defined over Q whose real points form a compact group.

The second condition implies that the stabilizer of any h is compact modulo its
center.

A choice of cocharacter h determines, via base change to C and restriction to
the first Gm factor, a Hodge cocharacter µ : Gm → GC. This allows us to define
two opposite parabolic subgroups:

P std
µ := {g ∈ G| lim

t→∞
ad(µ(t))g exists}, and

Pµ := {g ∈ G| lim
t→0

ad(µ(t))g exists}.

The Hodge cocharacter µ defines a filtration on the category RepC(G) of finite-
dimensional representations of G on C-vector spaces. Indeed, the action of Gm

on RepC(G) via µ induces a grading on RepC(G) and we take Fil•(µ) to be the
descending filtration on RepC(G) associated with this grading. Concretely, Filp(µ)
is the direct sum of all subspaces of type (p′, q′) with p′ ≥ p. The parabolic
P std
µ can equivalently be defined as the subgroup of G stabilizing Fil•(µ). The

opposite parabolic Pµ can be defined as the stabilizer of the opposite, ascending
filtration Fil•(µ), where Filp(µ) is the direct sum of all subspaces of type (p′, q′)
with p′ ≤ p. Both conjugacy classes of parabolics are defined over the reflex field
E of the Shimura datum, which is the minimal field of definition of the conjugacy
class {µ}. Note that

Mµ := CentG(µ)

is the Levi component of both parabolics.
The two parabolics determine two flag varieties FlstdG,µ and FlG,µ overE parametriz-

ing parabolics in the given conjugacy class. The choice of a base point h allows us
to identify FlstdG,µ(C) ≃ G(C)/P

std
µ (C). There is an embedding

β : X →֒ FlstdG,µ(C),

called the Borel embedding, defined by h 7→ Fil•(µh). It is easy to see that the
Borel embedding is holomorphic. (There is also an embedding

X →֒ FlG,µ(C),

7Here, an action of C∗ on a C-vector space is said to be of type {(pi, qi)} if the vector space
decomposes as a direct sum of subspaces, on which the action is through the cocharacters z 7→
z−piz−qi .
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which is antiholomorphic, defined in the natural way from the opposite filtration
Fil•(µ).)

Let K ⊂ G(Af ) be a compact open subgroup. Let

SK(C) := G(Q)\(X ×G(Af )/K) .

When K is neat (so, when K is small enough), SK(C) has the structure of an
algebraic variety over C (by a theorem of Baily-Borel) and has a model SK over
the reflex field E [Mil90].

Example 2.1.1. Let g ≥ 1 and let

(V, ψ) = (Q2g, ψ((ai), (bi)) =

g∑

i=1

(aibg+i − ag+ibi))

be the split symplectic space of dimension 2g over Q. Let G̃ := GSp(V, ψ). The

hermitian symmetric domain X̃ is the Siegel double space. Fix the self-dual lattice
Λ = Z2g in V . For every h ∈ X̃, the Hodge structure induced by µh on V has type
(−1, 0), (0,−1) and V (−1,0)/Λ is an abelian variety over C of dimension g.

For K̃ ⊂ G̃(Af ) a neat compact open subgroup, the corresponding Shimura va-

riety S̃K̃ is the moduli space of principally polarized g-dimensional abelian varieties

with level-K̃-structure. It has a model over the reflex field Q. It carries a universal
abelian variety A and a natural ample line bundle ω given by the determinant of
the sheaf of invariant differentials on A. The flag variety FlG̃,µ̃ parametrizes totally
isotropic subspaces W ⊂ V .

We say that a Shimura datum is of Hodge type if it admits a closed embedding
(G,X) →֒ (G̃, X̃), for some choice of Siegel data (G̃, X̃). A consequence of this is
that the associated Shimura variety SK (for some neat level K) carries a universal

abelian variety, which is the restriction of the universal abelian variety over S̃K̃ .
One can regard SK as a moduli space for abelian varieties equipped with certain
Hodge tensors, cf. below.

Let (G,X) be a Shimura datum of Hodge type and let (G̃, X̃) be a choice of

Siegel data, for which there exists an embedding (G,X) →֒ (G̃, X̃). Fixing such an

embedding gives rise to closed embeddings Fl
(std)
G,µ →֒ Fl

(std)

G̃,µ̃
. By [Del71, Proposition

1.15], there exists some compact open subgroup K̃ ⊂ G̃(Af ) with K = K̃ ∩G(Af )
such that there is a closed embedding of the corresponding Shimura varieties over
E,

SK →֒ S̃K̃ ⊗Q E.

Let p be a prime number. We will consider compact open subgroups of the forms
K = Kp×Kp ⊂ G(A

p
f )×G(Qp), where K

p and Kp are compact open. Fix a place
p of E above p. Let FℓG,µ be the adic space associated with FlG,µ ⊗E Ep. The
following is part of Theorem IV.1.1 of [Sch15b].8

Theorem 2.1.2. (1) For any sufficiently small tame level Kp ⊂ G(Ap
f ), there

exists a perfectoid space SKp over Ep, such that

SKp ∼ lim
←−
Kp

(SKpKp ⊗E Ep)
ad.

8The setup is slightly different, but the proof works verbatim.
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(2) There exists a G(Qp)-equivariant Hodge-Tate period map

πHT : SKp → FℓG̃,µ̃.

(3) The map πHT is equivariant with respect to the natural Hecke action of
G(Ap

f ) on the inverse system of SKp and the trivial action of G(Ap
f ) on

FℓG̃,µ̃.

Recall that the Hodge-Tate period map [Sch15b, SW13] has the following de-
scription on points: for A/C an abelian variety of dimension g, the Tate module of
A admits the Hodge-Tate decomposition:

0→ (Lie A)(1)→ TpA⊗Zp C → (Lie A∨)∨ → 0.

A point x ∈ SG,Kp(C,C+) corresponding to A/C together with a symplectic iso-

morphism TpA
∼
→ Z2g

p (and extra structures) is mapped to the point πHT (x) ∈

FℓG̃,µ̃(C,C
+) corresponding to the Hodge-Tate filtration Lie(A) ⊂ C2g.

We note that one can think of the Hodge-Tate period map as a p-adic analogue
of the Borel embedding. The goal of this section is to prove the following theorem.

Theorem 2.1.3. (1) The Hodge-Tate period map for SKp factors through FℓG,µ

and the resulting map

πHT : SKp → FℓG,µ

is independent of the choice of embedding of Shimura data.
(2) Fix some µ in the given conjugacy class, defined over a finite extension of

E. The tensor functor from Rep Mµ to G(Qp)-equivariant vector bundles
on SKp given as the composition

fp : Rep Mµ →֒ Rep Pµ −→ {G(Qp)−equivariant vector bundles on FℓG,µ}

π∗
HT−→ {G(Qp)−equivariant vector bundles on SKp}

is isomorphic to the tensor functor

f∞ : Rep Mµ →֒ Rep P std
µ −→ {automorphic vector bundles on SK}

−→ {G(Qp)−equivariant vector bundles on SKp} .

The isomorphism is independent of the choice of Siegel embedding, and
equivariant for the Hecke action of G(Ap

f ).

Remark 2.1.4. One may avoid choosing µ by replacing Rep Mµ with the category
of G-equivariant vector bundles on the space of cocharacters in the conjugacy class
of µ. Note that after fixing any µ, this space identifies with G/Mµ, and so G-
equivariant vector bundles are identified with representations of Mµ. We leave it
as an exercise to the reader to reformulate the theorem and its proof in this more
canonical language.

Let us first recall how the tensor functor f∞ is defined: any representation
ξ of Mµ determines a representation of P std

µ by making the unipotent radical act

trivially. Now, starting with a representation of P std
µ , we can define an automorphic

vector bundle on SK as in Section III of [Mil90], provided that the level K is
sufficiently small: first, there is an equivalence of categories

ξ 7→ W(ξ)
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between RepC(P
std
µ ) and the category of GC-equivariant vector bundles on FlstdG,µ

(the functor in one direction is taking the stalk of the vector bundle above the point
corresponding to µ). Then restriction along the image of the Borel embedding gives
a G(R)-equivariant vector bundle on X . Passing to the double quotient defining
the Shimura variety

SK(C) = G(Q) \ (X ×G(Af )/K)

over C defines the automorphic vector bundle

V(ξ) := G(Q) \ (W(ξ)×G(Af )/K).

The automorphic vector bundles V(ξ) are algebraic and, when the representation ξ
is defined over a finite extension E′ of E, V(ξ) is also defined over E′.

Remark 2.1.5. Proving that the automorphic vector bundles descend to the reflex
field makes use of an intermediate algebraic object between SK and FlstdG,µ, called
the standard principal bundle (see Section IV of [Mil90]), which is a G-torsor over
SK . See the proof of Lemma 2.3.5 for more details.

In particular, fp is defined in an analogous way to f∞, except that it uses the
Hodge-Tate period map in place of the Borel embedding. The appearance of the
opposite parabolic Pµ in this picture forces one to look only at representations
inflated from the common Levi Mµ.

2.2. The p-adic-de Rham comparison isomorphism. For an abelian variety
over C, its image under the Hodge-Tate period map is determined by the Hodge-
Tate filtration on H1

ét(A,Qp)⊗Qp C. The Hodge-Tate period map as a map of adic
spaces SKp → FℓG̃,µ̃ is defined via a relative version of the Hodge-Tate filtration,
which is a filtration on the local system given by the p-adic étale cohomology of the
universal abelian variety over SK , tensored with the completed structure sheaf of
the base. In fact, the Hodge-Tate filtration is defined more generally: see Section
3 of [Sch12b] for a construction of the Hodge-Tate filtration for a proper smooth
rigid-analytic variety over a geometric point.

As we will need to work with higher tensors in our analysis of Hodge type Shimura
varieties, our goal in this section is to give a construction of the relative Hodge-Tate
filtration in the case of a proper smooth morphism π : X → S of smooth adic spaces
over Spa(K,OK), where K is a complete discretely valued field of characteristic 0
with perfect residue field k of characteristic p. This will be done in a way that also
clarifies its relationship to the relative p-adic-de Rham comparison isomorphism.

The following sheaves on Xproét are defined in [Sch13c]: the completed structure

sheaf ÔX , the tilted completed structure sheaf ÔX♭ , the relative period sheaves
B+
dR,X and BdR,X as well as the structural de Rham sheaves OB+

dR,X and OBdR,X .

We recall some of their definitions: the tilted integral structure sheaf Ô+
X♭ is the

(inverse) perfection of Ô+
X/p (i.e., the inverse limit of Ô+

X/p with respect to the
Frobenius morphism).

Definition 2.2.1. (1) The relative period sheaf B+
dR,X is the completion of

W (Ô+
X♭)[1/p] along the kernel of the natural map θ :W (Ô+

X♭)[1/p]→ ÔX .

(2) The relative period sheaf BdR,X is B+
dR,X [ξ−1], where ξ is any element that

generates the kernel of θ.



14 A. CARAIANI AND P. SCHOLZE

Lemma 6.3 of [Sch13c] shows that ξ exists proétale locally on X , is not a zero
divisor and is unique up to a unit. Therefore, the sheaf BdR,X is well-defined. When
X = Spa(C,OC), we recover Fontaine’s period ring BdR,C from this construction.
By construction, the relative period sheaf BdR,X is equipped with a natural filtration

FiliBdR,X = ξiB+
dR,X , with gr0BdR,X = ÔX .

Recall that k is the residue field of K. Then OX ⊗W (k) W (ÔX♭) also admits a

map θ : OX ⊗W (k) W (ÔX♭) → ÔX . Then OB+
dR is defined as the completion of

OX ⊗W (k) W (ÔX♭) along ker θ and OBdR := OB+
dR[ξ

−1] as above. The structural

de Rham sheaves OB(+)
dR are equipped with filtrations and connections

∇ : OB(+)
dR,X → OB

(+)
dR,X ⊗OX Ω1

X .

We have an identification (OB(+)
dR )∇=0 = B(+)

dR .
We now recall the relative p-adic-de Rham comparison isomorphism for a proper

smooth morphism π : X → S of smooth adic spaces over K.

Theorem 2.2.2 ([Sch13c, Theorem 8.8]). Assume that Riπ∗Fp is locally free on

Sproét for all i ≥ 0.9 Then, for all i ≥ 0, Riπ∗Ẑp is de Rham in the sense of
[Sch13c, Definition 7.5], with associated filtered module with integrable connection
given by RiπdR∗OX (with its Hodge filtration, and Gauss-Manin connection). In
particular, there is an isomorphism

Riπ∗Ẑp,X ⊗Ẑp,S
OBdR,S ≃ R

iπdR∗OX ⊗OS OBdR,S

of sheaves on Sproét, compatible with filtrations and connections.

Moreover, we need to recall the two different B+
dR-local systems associated with

Riπ∗Ẑp. The first one, which is closely related to étale cohomology, is given by

M = Riπ∗Ẑp,X ⊗Ẑp,S
B+
dR,S

∼= Riπ∗B
+
dR,X .

The other one, which is closely related to de Rham cohomology, is given by

M0 = (RiπdR∗OX ⊗OS OB
+
dR,S)

∇=0 .

Note that the definition ofM0 did not make use of the Hodge filtration. The relation
between these two lattices is given by the following proposition, which reformulates
the condition of being associated.

Proposition 2.2.3 ([Sch13c, Proposition 7.9]). There is a canonical isomorphism

M⊗
B
+
dR,S

BdR,S
∼= M0 ⊗B

+
dR,S

BdR,S .

Moreover, for any j ∈ Z, one has an identification

(M ∩ FiljM0)/(M ∩ Filj+1M0) = (Fil−jRiπdR∗OX)⊗OS ÔS(j)

⊂ grjM0 = RiπdR∗OX ⊗OS ÔS(j) .

In particular, M0 ⊂M.

9This condition is verified if π is algebraizable, and has been announced in general by Gabber.
Another proof will appear in a forthcoming version of [Wei14]; the idea is to use (the new version
of) pro-étale descent to reduce to the case where S is w-strictly local, in which case one can redo
the finiteness argument over a geometric point. With Qp-coefficients, it has also been announced

by Kedlaya-Liu.
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In particular, we get an ascending filtration on

gr0M = Riπ∗Ẑp,X ⊗Ẑp,S
ÔS

given by

Fil−j(R
iπ∗Ẑp,X ⊗Ẑp,S

ÔS) = (M ∩ FiljM0)/(Fil
1M ∩ FiljM0) .

Here, Fil−1 = 0, and Fili is everything. We call this filtration the relative Hodge-
Tate filtration.

Corollary 2.2.4. For all j ≥ 0, there are canonical isomorphisms

grj(R
iπ∗Ẑp,X ⊗Ẑp,S

ÔS) ∼= (grjRiπdR∗OX)⊗OS ÔS(−j) .

Proof. This is immediate from Proposition 2.2.3 by passing to gradeds. �

In particular, one sees that

Fil0(R
iπ∗Ẑp,X ⊗Ẑp,S

ÔS) = Riπ∗OX ⊗OS ÔS .

This map can be identified.

Proposition 2.2.5. The first filtration step Fil0 of the relative Hodge-Tate filtration
is given by the natural map

Riπ∗OX ⊗OS ÔS → Riπ∗ÔX
∼= Riπ∗Ẑp,X ⊗Ẑp,S

ÔS ,

which is injective.

We note that in [Sch15b], only the first step of the Hodge-Tate filtration was
used (for i = 1), and it was defined as the natural map

Riπ∗OX ⊗OS ÔS → Riπ∗ÔX .

Proof. We have to identify the image of M0 → gr0M. This can be done after
⊗

B
+
dR,S
OB+

dR,S , as this operation preserves gr0. Now note that

M0 ⊗B
+
dR,S
OB+

dR,S = RiπdR∗OX ⊗OS OB
+
dR,S ,

and

M⊗
B
+
dR,S
OB+

dR,S = RiπdR∗OB
+
dR,X ,

by the relative Poincaré lemma. The map M0 → M is induced by the natural
inclusion OX → OB

+
dR,X , which commutes with the natural connections.

Passing to gr0 on the side of M replaces the relative de Rham complex of OB+
dR,X

with just ÔX , as the differentials sit in positive degrees. We note that the composite
OX → OB

+
dR,X → ÔX is the natural inclusion, as

ÔX = gr0OB+
dR,X = (OX ⊗W (k) W (Ô+

X♭))/(ker θ) ,

using the map θ : OX ⊗W (k) W (Ô+
X♭) → ÔX , which is OX -linear. It follows that

the map

M0 ⊗B
+
dR,S
OB+

dR,S → gr0M

agrees with the map

RifdR∗OX ⊗OS OB
+
dR,S → Rif∗ÔX
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which projects RifdR∗OX → Rif∗OX → Rif∗ÔX , and then extends OB+
dR,S-

linearly. Thus, its image is given by the image of Rif∗OX ⊗OS ÔS → Rif∗ÔX .
By the identification of the graded pieces of the relative Hodge-Tate filtration, this
map has to be injective, giving the result. �

2.3. Hodge cycles and torsors. Let

(G,X) →֒ (G̃, X̃)

be an embedding of Shimura data, as in the previous section, where G̃ = GSp(V, ψ).
Let

V ⊗ :=
⊕

r,s∈N

V ⊗r ⊗ (V ∨)⊗s.

By Proposition 3.1 of [Del82], the subgroup G of G̃ is the pointwise stabilizer of a
finite collection of tensors (sα) ⊂ V

⊗.
As above, the embedding of Shimura data determines an embedding of Shimura

varieties defined over E:
SK →֒ S̃K̃ ⊗Q E.

Let A be the abelian scheme over SK obtained by pulling back the universal abelian
scheme over the Siegel moduli space. Let π : A → SK be the projection. The first
relative Betti homology of A, i.e. the dual of R1πan

∗ Q, defines a local system of
Q-vector spaces VB on SK(C). Since the Betti cohomology of an abelian variety
parametrized by X × G(Af )/K gets identified with V , VB can be identified with
the local system of Q-vector spaces over SK(C) given by the G(Q)-representation
V and the G(Q)-torsor

X ×G(Af )/K → G(Q)\(X ×G(Af )/K) = SK(C) .

Corresponding to the G(Q)-invariant tensors (sα), we get global sections (sα,B) ⊂

V⊗
B . Moreover, these are Hodge tensors for the Hodge structure on Betti homology,

since they are G-invariant, and in particular invariant under the action of any
h ∈ X .

Lemma 2.3.1. The G(Q)-torsor

X ×G(Af )/K → G(Q)\(X ×G(Af )/K) = SK(C)

can be identified with the G(Q)-torsor sending any U ⊂ SK(C) to

{β : V × U ∼= VB|U | β(sα) = sα,B} .

Proof. This follows from the fact that G ⊂ GL(V ) is the closed subgroup which is
the stabilizer of the sα. �

Now assume that (G,X) →֒ (G̃′, X̃ ′) is a second symplectic embedding, where

G̃′ = GSp(V ′, ψ′). Like for any representation of G, there is a G-invariant idempo-
tent e ∈ V ⊗ such that V ′ = eV ⊗. Using e, any G-invariant tensor s′α ∈ (V ′)⊗ can
be transferred to a G-invariant tensor in V ⊗. Moreover, one also has an identifica-
tion

V ′
B = eV⊗

B ,

compatibly with their natural Hodge structures. We will generally assume that e
belongs to the family sα, by adjoining it if necessary.

Let VdR := (R1πdR∗OA)
∨ be the first relative de Rham homology of A. This is a

vector bundle over SK equipped with an integrable connection ∇. The base change
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to C can be defined directly: We have to specify an analytic vector bundle Van
dR,C over

SK(C), which corresponds to the algebraic vector bundle VdR,C. (Here, we make
use of the equivalence of categories between algebraic vector bundles equipped with
a flat connection with regular singular points and analytic vector bundles equipped
with a flat connection [Del70].) Then the relative de Rham comparison isomorphism
over C gives rise to an isomorphism

Van
dR,C

∼= VB ⊗Q OSK(C) ,

compatible with the connection.
In particular, the global sections (sα,B) ⊂ V

⊗
B give rise to horizontal global

sections (sα,dR) ⊂ (Van
dR,C)

⊗, which are necessarily algebraic, i.e.

(sα,dR) ⊂ V
⊗
dR,C .

The following lemma appears in work of Kisin [Kis10], based on Deligne’s result
that Hodge cycles on abelian varieties are absolute Hodge, [Del82].

Lemma 2.3.2. The tensors sα,dR in V⊗
dR,C are defined over E.

Proof. We sketch Kisin’s proof here. We work with each connected component of
SK individually. Let x be the generic point of one such component, with function
field κ (containing E) and choose a complex embedding of its algebraic closure
κ̄ →֒ C. Let Ax be the corresponding abelian variety over κ. Let sα,B,x be the
fiber of sα,B over x. Let sα,dR,x ∈ H

1
dR(Ax)

⊗ ⊗κ C be the image of sα,B,x under
the de Rham comparison isomorphism (this is also the fiber of sα,dR over x.) Let
sα,p,x ∈ H

1
ét(Ax,κ̄,Qp)

⊗ be the image of sα,B,x under the comparison between Betti
and p-adic étale cohomology.

Note that by definition (sα,dR,x, sα,p,x) is a Hodge cycle. By Deligne [Del82], it
is an absolute Hodge cycle. This means that sα,dR,x is defined over κ̄ and it remains
to show that the action of Gal(κ̄/κ) on it is trivial. For this, it is enough to check
that the Gal(κ̄/κ)-action on sα,p,x is trivial, since a Hodge cycle is determined by
either its de Rham or étale component.

For this latter statement, consider the K̃p-torsor over Siegel moduli space given

by lim
←−K̃′

p

S̃K̃pK̃′
p
, where K̃ ′

p runs over open compact subgroups of K̃p. Fixing a

κ̄-point x̃ of this tower above x, the Gal(κ̄/κ)-action on H1
ét(Ax,κ̄,Qp) is induced

by the map Gal(κ̄/κ) → K̃p describing the action on x̃. There is an analogous
Kp-torsor over SK defined by lim

←−K′
p

SKpK′
p
. This fits into a commutative, Kp-

equivariant diagram

SKp

��

// S̃K̃p

��

SK
// S̃K̃

.

Taking for x̃ a lift to SKp , we see that the action of Gal(κ̄/κ) on H1
ét(Ax,κ̄,Qp)

factors through a map

Gal(κ̄/κ)→ Kp ⊂ G(Qp).

Since the tensors sα,p,x are G(Qp)-invariant, the Galois action on these tensors is
trivial as well. �
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Remark 2.3.3. If (G,X) →֒ (G̃′, X̃ ′) is a second symplectic embedding with G̃′ =
GSp(V ′, ψ′), and e ∈ V ⊗ is an idempotent with V ′ = eV ⊗, as above, then applying
Lemma 2.3.2 to the embedding G →֒ GSp(V ⊕ V ′, ψ ⊕ ψ′), one sees that the
isomorphism

V ′
dR,C

∼= edRV
⊗
dR,C

is defined over E.

There is also a Qp-local system Vp over SK defined by restricting to SK the first
relative p-adic étale homology of the family A. There are families of Hodge tensors
(sα,p) ⊂ V

⊗
p coming from the comparison between Betti and p-adic étale homology

(over C). By the argument in Lemma 2.3.2, the sα,p are also defined over the reflex
field E.

Choose a cocharacter µ in the conjugacy class X , which is defined over some
finite extension E′/E. We will base change everything to E′ from now on, but
drop E′ from our notation. Recall that P std

µ can be identified with the parabolic
subgroup of G which stabilizes the descending filtration induced by µ on a faithful
representation V of G. We can define a P std

µ -torsor PdR over SK as the torsor of
frames on the vector bundle VdR which respect the Hodge filtration. More precisely,
for any U ⊂ SK , we have:

PdR(U) = {β : VdR|U
∼
→ V ⊗Q OU | β(sα,dR) = sα ⊗ 1, β(Fil•) = Fil•µ} ,

where Fil• on VdR is the Hodge filtration and Fil•µ on V is the descending filtration
defined by µ. The existence of one such isomorphism β follows from the fact that the
comparison between Betti and de Rham cohomology respects the Hodge filtrations
and matches the Hodge cycles sα with sα,dR.

Lemma 2.3.4. The P std
µ -torsor PdR over SK is independent of the choice of sym-

plectic embedding G →֒ GSp(V, ψ).

Proof. Considering a second symplectic embedding G →֒ GSp(V ′, ψ′), there is a G-
invariant idempotent e ∈ V ⊗ such that V ′ = eV ⊗. This determines a Hodge tensor
eB in V⊗

B , and by Lemma 2.3.2 a tensor edR in V⊗
dR. This defines an isomorphism

of vector bundles V ′
dR ≃ edRV

⊗
dR by Remark 2.3.3, which respects all the Hodge

tensors sα,dR and which respects the Hodge filtration on the two vector bundles
(because edR is a Hodge tensor). This gives a map of P std

µ -torsors PdR → P
′
dR and

any such map is an isomorphism. �

From the above P std
µ -torsor PdR and from the projection Pµ ։ Mµ, we get an

Mµ-torsorMdR over SK via pushout:

MdR = PdR ×P std
µ

Mµ .

Since PdR is independent of the choice of symplectic embedding, so isMdR. This
Mµ-torsor corresponds to trivializing the graded pieces of the Hodge filtration on
VdR individually. By the Tannakian formalism, MdR is equivalent to a functor
from finite-dimensional representations of the Levi subgroup Mµ to vector bundles
on SK .

Lemma 2.3.5. The Mµ-torsor MdR encodes the tensor functor

f∞ : Rep Mµ → {automorphic vector bundles on SK}

in the statement of Theorem 2.1.3.
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Proof. By construction, the tensor functor corresponding toMdR factors through
the inflation map Rep Mµ → Rep P std

µ .

It remains to see that the functor corresponding to P std
µ maps a representation

of P std
µ to the associated automorphic vector bundle on SK . This is essentially

the definition of automorphic vector bundles, as given by [Mil90]. For this, note
that PdR and the map P std

µ → G define by pushout a G-torsor GdR over SK ,
which parametrizes frames of VdR respecting the Hodge tensors sα,dR (but not
necessarily respecting the Hodge filtration). This is what Milne calls the standard
principal bundle. Since it was constructed from a P std

µ -torsor, GdR is equipped with

a canonical map to the flag variety FlstdG,µ ≃ G/Pµ. We have a diagram

SK GdRoo // FlstdG,µ .

Proposition 3.5 of [Mil90] proves that automorphic vector bundles are obtained by
pullback from FlG,µ to GdR followed by descent to SK . We note that Theorems
4.1 and 4.3 of [Mil90] show that the diagram is algebraic and has a model over the
reflex field E. �

We now work with the local system Vp determined by the relative p-adic étale
cohomology of A. This is a local system of Qp-vector spaces over SK . After pulling

it back to the adic space SK , we can think of it as a locally free Q̂p-module on
(SK)proét.

Regard Pµ as a group object in the pro-étale site of SK by sending U to

Pµ(ÔSK (U)); we emphasize that we are using the completed structure sheaf in
this definition. We can now define a Pµ-quasitorsor Pp on the pro-étale site of SK
from the Hodge-Tate filtration on Vp ⊗Q̂p

ÔSK as follows. For U in (SK)proét, set

Pp(U) = {β : Vp⊗Q̂p
ÔSK |U

∼
→ V⊗QÔSK |U | β(sα,p⊗1) = sα⊗1, β(Fil•) = Fil•(µ)} ,

where Fil• on Vp ⊗ ÔSK is the relative Hodge-Tate filtration and Fil•(µ) is the
ascending filtration determined by µ on V .

Lemma 2.3.6. The object Pp over SK is a Pµ-torsor.

Proof. Similarly to Pp, one can define a G-quasitorsor Gp over the pro-étale site of

SK , by removing the condition on filtrations. The latter is the pushout of a G(Q̂p)-
torsor on the pro-étale site of SK given by looking at isomorphisms between Vp and

V ⊗Qp Q̂p respecting all tensors. This is a torsor, since, for example, it admits a
global section over the perfectoid Shimura variety SKp . In order to prove that Pp

is a torsor, we note that the type of the Hodge-Tate filtration on Vp ⊗Q̂p
ÔSK is a

discrete invariant, so it is constant on each connected component of SK . Therefore,
it suffices to check the statement above classical points.

Thus, let x ∈ SK(L,OL) be a point defined over a finite extension L of Ep with
completed algebraic closure C. We may pick a point of MdR(C) above x, which
amounts to trivializing all Hodge cohomology groups (compatibly with the tensors).
Then the Hodge-Tate decomposition reads

Vp,x ⊗Qp C
∼=
⊕

j

Vj ⊗ C(−j) ∼= V ⊗ C ,
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where V =
⊕

j Vj is the weight decomposition according to the action of µ, and we
are using any fixed choice of p-power roots of unity in C in the second isomorphism.
Under this isomorphism, the Hodge-Tate filtration on the left-hand side is taken to
Fil•(µ), as desired.

The fact that sα,p can be identified with sα under the Hodge-Tate isomorphism
is proved in [Bla94]. �

As before, this torsor is independent of the choice of symplectic embedding.

Lemma 2.3.7. The Pµ-torsor Pp is independent of the choice of symplectic em-
bedding.

Proof. This uses the same idea as the proof of Lemma 2.3.4. Let (V, ψ) be a
symplectic embedding ofG, which defines the Pµ-torsor Pp. For another symplectic
embedding G →֒ GSp(V ′, ψ′), we define a Pµ-torsor P ′

p analogously. We can
relate the two symplectic embeddings given by (V, ψ) and (V ′, ψ′) via a G-invariant
idempotent e ∈ V ⊗, with p-adic realization ep ∈ V

⊗
p . The tensor ep defines an

isomorphism of vector bundles

V ′
p ⊗ ÔSK ≃ ep(V

⊗
p ⊗ ÔSK ),

which matches the tensors s′α,p ∈ V
′⊗
p with tensors in V⊗

p .
Moreover, ep respects the Hodge-Tate filtration on the two vector bundles. In-

deed, ep is the image of edR under the p-adic-de Rham comparison isomorphism.
At points of SK corresponding to abelian varieties defined over number fields, this
follows from [Bla94]. Since both ep and edR are horizontal sections, the result ex-
tends over all of SK after checking it at such a point in every connected component
of SK . The definition of the relative Hodge-Tate filtration in terms of the p-adic-de
Rham comparison isomorphisms then ensures that ep respects the Hodge-Tate fil-
tration, and the isomorphism induced by ep gives a map of Pµ-torsors Pp → P ′

p,
which has to be an isomorphism. �

The Pµ-torsor Pp defines a G-torsor Gp by inflation along the map Pµ → G. For
any U ∈ (SK)proét,

Gp(U) = {β : Vp ⊗Q̂p
ÔSK |U

∼
→ V ⊗Q ÔSK |U | β(sα,p ⊗ 1) = sα ⊗ 1} .

The perfectoid Shimura variety SKp can be regarded as a Kp-torsor in (SK)proét.
From the moduli description of SKp , we see that Gp(SKp) has a canonical section,
given by the trivialization of the p-adic Tate module of the universal abelian variety
A over SKp , which by definition respects the tensors (sα,p).

The map Pµ ։Mµ defines an Mµ-torsor Mp by pushout. This can be described
as a sheaf on (SK)proét as follows:

Mp(U) = {β : gr•(Vp ⊗ ÔSK )|U
∼
→ gr•(µ)(V ⊗Qp ÔSK )|U | β(sα,p ⊗ 1) = sα ⊗ 1} .

As in the complex case, the existence of Pp determines a map Gp → FℓG,µ,
which is independent of the choice of symplectic embedding G →֒ GSp(V, ψ) by
Lemma 2.3.7. Here, we abuse notation by writing FℓG,µ for the sheaf on (SK)proét
sending U to FℓG,µ(U). This and the given section of Gp(SKp) define an element
of FℓG,µ(SKp), i.e. a map of adic spaces

πHT : SKp → FℓG,µ .
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By functoriality of this construction (for G and for G̃ := GSp(V, ψ)), we have the
commutative diagram of adic spaces

SKp

��

// S̃K̃p

��

FℓG,µ
// FℓG̃,µ̃.

Therefore, the Hodge-Tate period map for SKp factors through this canonical map
SKp → FℓG,µ. This proves the first part of Theorem 2.1.3.

The second part of Theorem 2.1.3 will follow from the next lemma and from the
comparison isomorphism between de Rham and p-adic étale cohomology.
Lemma 2.3.8. The Mµ-torsor Mp encodes the tensor functor

fp : Rep Mµ → {G(Qp)− equivariant vector bundles on SKp}

in the statement of Theorem 2.1.3.

Proof. This is immediate from the definitions. �

We now compare the two Mµ-torsors,MdR and Mp. For this, we first consider
a P std

µ -torsor PdR over SK , which will be the sheaf on (SK)proét defined by

PdR(U) = {β : VdR⊗OSK
ÔSK |U

∼
→ V⊗QÔSK |U | β(sα,dR⊗1) = sα⊗1, β(Fil

•) = Fil•(µ)},

where Fil• is the Hodge-de Rham filtration on VdR. It is easy to see from the
definitions that PdR is the pullback of PdR from SK (ringed with OSK ) to (SK)proét
(ringed with ÔSK ). We can define MdR by pushout. This is also a sheaf on
(SK)proét, parametrizing isomorphisms

gr•(VdR ⊗ ÔSK )
∼
→ gr•(µ)(V ⊗ ÔSK )

which map the tensors sα,dR to sα. Again, MdR is the pullback ofMdR from SK

to (SK)proét.

Proposition 2.3.9. There is a canonical isomorphism MdR
∼= Mp of Mµ-torsors

on (SK)proét, independent of the choice of symplectic embedding.

Proof. The determinant representationGSp(V, ψ)→ Gm gives rise geometrically to
the Tate motive, and is independent of the choice of symplectic embedding. Using
this, both torsors map to the torsor of trivializations ÔSK (1) ∼= ÔSK . Now, for any
j ∈ Z, there is the isomorphism

grj(VdR ⊗OSK
ÔSK )

∼
→ grj(Vp ⊗Q̂p

ÔSK )(j)

coming from the relative p-adic-de Rham comparison isomorphism, Corollary 2.2.4.
One gets a similar comparison for V⊗

dR and V⊗
p , and we know by [Bla94] that all

tensors sα,dR resp. sα,p are matched at points defined over number fields, and thus
globally.

Using these isomorphisms as well as the trivialization ÔSK (1) ∼= ÔSK , one writes
down the isomorphism MdR

∼= Mp. To check that it is independent of the choice
of symplectic embedding, one argues as before. �
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As mentioned above, Proposition 2.3.9 implies the second part of Theorem 2.1.3,
once we use the Tannakian formalism in Lemmas 2.3.5 and 2.3.8 to reinterpret MdR

and Mp as tensor functors

Rep Mµ → {G(Qp)− equivariant vector bundles on SKp}.
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3. The Newton stratification on the flag variety

We start with some motivation. Assume that the Shimura varieties SK are of
Hodge type and that K = KpKp ⊂ G(Af ) is a compact open subgroup such that
Kp is hyperspecial. This means that G extends to a reductive group over Zp and
that Kp = G(Zp). Then (at least if p > 2) the Shimura variety SK admits an
integral model SK by [Kis10]. Moreover, as in Section 1.4 of [Kis], we can define
a Newton stratification on the special fiber of SK , in terms of the Kottwitz set
B(G,µ−1) (whose definition we recall below). Pulling this stratification back along
the continuous specialization map, we get a stratification on SK , which in turn
can be pulled back to the perfectoid Shimura variety to get a Newton stratification
SKp =

⊔
b∈B(G,µ−1) S

b
Kp . There is a unique closed stratum, corresponding to the

basic locus and a unique open stratum, corresponding to the µ-ordinary locus.
Our goal in this section is to define a stratification on the flag variety

FℓG,µ =
⊔

b∈B(G,µ−1)

FℓbG,µ,

such that the following properties are satisfied:

(1) On points of rank one,

SbKp = π−1
HT (Fℓ

b
G,µ) .

(2) All FℓbG,µ are locally closed subspaces of the adic space FℓG,µ, in the
topological sense.

(3) The basic stratum is open, and the µ-ordinary stratum is closed.

We will define this stratification independently of the one on the Shimura variety,
using relative versions of the Fargues-Fontaine curve [FF14] and a classification
result for vector bundles with G-structure over this curve, due to Fargues, [Far15a].
We will reinterpret vector bundles over the curve as ϕ-modules over the Robba
ring, à la Kedlaya-Liu [KL15], and use their results to conclude that the strata we
define are locally closed. In Section 4.3, we will see that this is compatible with the
stratification pulled back from the special fiber, in the sense described above, for
compact Shimura varieties of PEL type.

Throughout this section, our notation will be purely local, so fix a prime p and
a connected reductive group G over Qp. Moreover, we fix a conjugacy class of
cocharacters µ : Gm → GQp

, defined over the reflex field E/Qp. Often, we will

assume that µ is minuscule, meaning that in the induced action on the Lie algebra
of G, only the weights −1, 0 and 1 appear. However, for the moment, µ is allowed
to be arbitrary.

3.1. Background on isocrystals with G-structure. We recall here the defini-
tion of the sets B(G) and B(G,µ), originally due to Kottwitz [Kot85]. We start
with B(G). Let L :=W (F̄p)[1/p]. Let σ be the automorphism of L induced by the
pth power Frobenius on F̄p. There is an action of G(L) on itself by σ-conjugation,
defined by g 7→ hgσ(h)−1 for g, h ∈ G(L). Then B(G) is defined to be the set of
σ-conjugacy classes of elements b ∈ G(L). (We note that instead of working with
F̄p here, we could work with any algebraically closed field of characteristic p, as
Kottwitz shows that the definition is independent of this choice.)

One can reinterpret this definition in terms of isocrystals with G-structure. Re-
call the following definition.
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Definition 3.1.1. An isocrystal over F̄p is a pair (V, φ) consisting of a finite-
dimensional L-vector space and a σ-linear automorphism φ of V . The height of an
isocrystal (V, φ) is the dimension of V over L.

An isocrystal with G-structure is an exact tensor functor

RepQp
G→ {Isocrystals/F̄p}.

For G = GLn/Qp, the set B(G) is in bijection with the set of isomorphism classes
of isocrystals of height n over F̄p via b 7→ (Ln, bσ). For general G, this extends to
a bijection between B(G) and isomorphism classes of isocrystals with G-structure.

The Dieudonné-Manin classification shows that B(GLn) is in bijection with a
corresponding set of Newton polygons, via the slope decomposition of the isocrys-
tals. More precisely, any isocrystal (V, φ) over F̄p is isomorphic to a unique isocrystal
of the form

V ∼=
⊕

λ=s/r∈Q

V ⊕nλ

λ ,

where λ = s/r runs through rational numbers written in primitive form with r > 0,
the nλ are nonnegative integers, almost all zero, and

Vλ = (Lr,




1
. . .

1
ps


σ) .

The subspaces V ⊕nλ

λ ⊂ V are uniquely determined, and referred to as the subspace
of slope λ.

For a general reductive group G, an element b ∈ B(G) is determined by a version
of the Newton polygon, and an additional finite datum encoded in the Kottwitz
invariant. In the following, fix a splitting of GQ̄p

and in particular a maximal torus

T ⊂ GQ̄p
, and let X∗(G) := X∗(T ) be the corresponding cocharacter lattice, which

comes with a dominant chamber.
Let us first recall the Newton map

ν : B(G)→ (X∗(G)⊗Q)Γdom .

Here, Γ := Gal(Q̄p/Qp) is the absolute Galois group of Qp, and (X∗(G)⊗Q)dom is
the set of dominant rational cocharacters. If we let D be the (pro-)algebraic torus
with character group Q, the latter set can be identified with the set of conjugacy
classes of Hom(DQ̄p

, GQ̄p
), on which Γ acts naturally.

To construct the Newton map, Kottwitz assigns to any b ∈ G(L) a slope ho-
momorphism νb ∈ Hom(DL, GL). In the case of G = GLn, this gives the slope
decomposition of the corresponding isocrystal; in general, it is defined by the Tan-
nakian formalism. Changing b by a σ-conjugate does not change the conjugacy
class of νb, and (thus) this conjugacy class is invariant under σ.

However, the Newton map is not, in general, injective. In fact, νb is trivial if
and only if b is in the image of the natural injection H1(Qp, G) →֒ B(G). Here, one
can identify the Galois cohomology group H1(Qp, G) with the isomorphism classes
of exact tensor functors

RepQp
G→ {Qp−vector spaces} .
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Such tensor functors embed fully faithfully into the category of isocrystals with G-
structure, via sending a Qp-vector spaceW toW ⊗Qp L with the induced Frobenius
from L.

For this reason, Kottwitz also constructs a map

κ : B(G)→ π1(GQ̄p
)Γ .

For G = GLn, this map is defined by b 7→ κ(b) = valp(det b) ∈ Z. In general,
there is a unique natural transformation B( ) → π1( )Γ of set-valued functors on
the category of connected reductive groups over Qp with this property. (Kottwitz
defines his map in terms of the center of the Langlands dual group. See Section 1.13
of [RR96] for more on the definition using the algebraic fundamental group.) Again,
we abbreviate π1(G) = π1(GQ̄p

). Moreover, according to Theorem 1.15 of [RR96],

the natural transformation B( )→ π1( )Γ fits into a commutative diagram

B(G) //

��

(X∗(G)⊗Q)Γ

��

π1(G)Γ // π1(G)
Γ ⊗Q

,

where the lower horizontal arrow is given by averaging over all Galois conjugates.
Then Kottwitz proves that

(ν, κ) : B(G)→ (X∗(G)⊗Q)Γdom × π1(G)Γ

is injective.
The set (X∗(G)⊗Q)Γdom admits a partial ordering. Under this ordering, we say

that ν � ν′ if ν′−ν is a non-negative Q-linear combination of positive coroots. This
defines a partial ordering on B(G), where we say b � b′ if νb � νb′ and κ(b) = κ(b′).

Now, recall that we have fixed a conjugacy class of cocharacters µ : Gm → GQ̄p
.

The set of conjugacy classes of cocharacters of GQ̄p
is in bijection with the set

X∗(G)dom. There is a natural mapX∗(G)dom → (X∗(G)⊗Q)Γdom given by averaging
over all Galois conjugates:

µ̄ =
1

[E′ : Qp]

∑

γ∈Gal(E′/Qp)

γ(µ)

for E′ large enough. Let µ♭ be the image of µ in π1(G)Γ.

Definition 3.1.2. The subset B(G,µ) ⊂ B(G) of µ-admissible elements is the
subset of elements b for which νb � µ̄ and κ(b) = µ♭.

In fact, we will really be interested in B(G,µ−1), where µ−1 denotes a dominant
representative of the inverse of µ.

3.2. The Fargues-Fontaine curve. The goal of this subsection is to define the
(adic) Fargues-Fontaine curve, and discuss some of its properties. For this, we start
with some background on the curve as in [FF14] and [Wei14], and then compare
with constructions of Kedlaya and Liu [KL15].

Let F be a complete algebraically closed nonarchimedean field of characteristic

p, e.g. F = F̂p((t)). Let OF ⊂ F be its ring of integers, i.e. the subring of
powerbounded elements. Fix ̟ ∈ F with 0 < |̟| < 1; different choices will give
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rise to the same objects. First, we define the Fargues-Fontaine curve as an adic
space. Let

Y(0,∞) = Spa(W (OF ),W (OF )) \ (p[̟] = 0) ,

where W (OF ) is endowed with the (p, [̟])-adic topology. As in [Wei14], this space
admits a natural continuous map

α : Y(0,∞) → (0,∞) ,

sending any point x ∈ Y(0,∞) to

α(x) =
log |[̟](x̃)|

log |p(x̃)|
∈ (0,∞) ,

where x̃ is the maximal generalization of x, which corresponds to a continuous rank-
1-valuation on W (OF ) taking nonzero values on [̟] and p. For any interval I ⊂
(0,∞), we let YI ⊂ Y(0,∞) be the interior of α−1(I). In the following proposition,
we use some terminology from [SW13].

Proposition 3.2.1. For any closed interval I = [s, r] ⊂ (0,∞) with r, s ∈ Q, the
space

YI = Spa(R
[s,r]
F ,R

[s,r],+
F )

is a sheafy affinoid adic space, where R
[s,r],+
F is the p-adic completion of the integral

closure of

W (OF )

[
p

[̟1/r]
,
[̟1/s]

p

]

insideW (OF )
[

p
[̟1/r]

, [̟
1/s]
p

]
[1/p], and R

[s,r]
F = R

[s,r],+
F [1/p]. More precisely, R

[s,r]
F

is preperfectoid in the sense that R
[s,r]
F ⊗̂QpK is a perfectoid K-algebra for any per-

fectoid field K/Qp.
In particular, Y(0,∞) is an honest adic space.

Proof. The identification

YI = Spa(R
[s,r]
F ,R

[s,r],+
F )

follows from the definitions. By [KL15, Theorem 3.7.4], it is enough to show that

R
[s,r]
F is preperfectoid, for which cf. [KL15, Theorem 5.3.9]. One can also argue

as follows. Let K/Qp be any perfectoid field. We can consider the auxiliary space
Z = Spa(W (OF )[1/p],W (OF )), where we endowW (OF ) with the p-adic topology.
As on Y(0,∞), p is topologically nilpotent, one gets a map Y(0,∞) → Z, which is an
open embedding, and one can thus consider YI as a rational subset of Z. As the
base change of Z to K is perfectoid, or more precisely W (OF )⊗̂ZpK is a perfectoid
K-algebra, and the property of being a perfectoid K-algebra passes to rational

subsets, one finds that also R
[s,r]
F ⊗̂QpK is a perfectoid K-algebra. �

The space Y(0,∞) has an action of ϕ, defined by taking the lift of the Frobenius
on OF . This ϕ-action is properly discontinuous, as can be seen by observing that α
is equivariant with respect to the ϕ-action if one lets ϕ act through multiplication
by p on (0,∞). Therefore, the following definition is sensible.

Definition 3.2.2. The adic Fargues-Fontaine curve is given by XF = Y(0,∞)/ϕ
Z.
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After defining the scheme version of the curve, we will discuss more precisely in
which sense this is a curve.

Often, we will be in the situation where we start with a complete algebraically
closed nonarchimedean field C over Qp, and take F = C♭, the tilt of C. In that
case, there is a natural map θ : W (OF ) → OC , which induces a natural (C,OC)-
point of Y(0,∞), and thus of XF , which we denote by ∞ ∈ XF (C,OC). In fact, ∞
is a closed point of XF with residue field C. We will denote the inclusion

i∞ : Spa(C,OC)→ XF .

The completed local ring of XF at ∞ can be identified with the ring of periods
B+

dR,C , which is the ker θ-adic completion of W (OF )[1/p], cf. also Definition 2.2.1.

Note that B+
dR,C is a complete discrete valuation ring, as expected for the completed

local ring of a curve.
There is a close relationship between vector bundles on XF and isocrystals. Re-

call that L was defined as W (F̄p)[1/p]. A choice of an embedding F̄p → OF gives a
structure map Y(0,∞) → Spa(L,OL). If (V, ϕV ) is an isocrystal, one can thus pull
it back to a vector bundle on Y(0,∞) with a ϕ-linear automorphism; by descent, this
gives a vector bundle on XF . We denote the resulting functor by V 7→ E(V ).

Theorem 3.2.3 ([FF14]). The above composition of functors induces a bijection
between isomorphism classes of isocrystals, and isomorphism classes of vector bun-
dles on XF .

Remark 3.2.4. In fact, Fargues-Fontaine prove this result for the scheme version
of their curve, which we introduce below. However, by a GAGA result proved
in [KL15] and [Far15b], this is equivalent to the stated result for the adic curve.

It is important to note that this functor from isocrystals to vector bundles is
not an equivalence of categories; there are nonzero maps between vector bundles of
different slope, in general.

To define a scheme version of the curve, we define a natural line bundle OXF (1)
on XF , which we regard as ample.

Definition 3.2.5. For any d ∈ Z, let OXF (d) be the line bundle corresponding to
the isocrystal (L, p−dσ).

Remark 3.2.6. This construction induces a map Z → Pic XF . It follows from
Theorem 3.2.3 that this is an isomorphism. Using this identification, one can define
the degree of any vector bundle on XF by looking at the determinant line bundle.
This gives rise to a notion of slopes of vector bundles, and a Harder-Narasimhan
filtration. We warn the reader that if an isocrystal V is sent to the vector bundle
E(V ), then the slopes of V and E(V ) differ by a sign.

Now we define a scheme

XF = Proj
(
⊕d≥0H

0 (XF ,OXF (d))
)
.

There is a natural map of locally ringed topological spaces XF → XF . In particular,
there is a natural functor from vector bundles on XF to vector bundles on XF .
This functor is an equivalence of categories, cf. [KL15] and [Far15b]. The following
theorem summarizes some of the properties of XF .

Theorem 3.2.7 ([FF14]). The scheme XF is a regular, noetherian scheme of Krull
dimension 1 with field of constants Qp. All residue fields of XF at closed points
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are algebraically closed complete extensions C of Qp with C♭ ∼= F . For any closed
point x ∈ XF , XF \ {x} is the spectrum of a principal ideal domain.

Fargues, [Far15a], has recently extended the classification of vector bundles to a
classification of G-bundles for any reductive group G over Qp. As it is technically
easiest for us to do so, we define G-bundles on XF (or XF ) using the Tannakian
perspective.

Definition 3.2.8. A G-bundle on XF (or XF ) is an exact tensor functor

RepQp
G→ BunXF

∼= BunXF .

Using the functor from isocrystals over F̄p to vector bundles on the Fargues-
Fontaine curve, we get a natural functor from isocrystals with G-structure to G-
bundles on XF . We denote this functor by b 7→ Eb.

Theorem 3.2.9 ([Far15a]). The functor from isocrystals with G-structure to G-
bundles on XF induces a bijection on isomorphism classes.

In other words, any G-bundle on XF is isomorphic to Eb for a unique b ∈ B(G).
Next, we discuss the relationship between vector bundles on the Fargues-Fontaine

curve and ϕ-modules over the Robba ring. The Robba ring is the ring of functions
defined on a small unspecified annulus Y(0,r):

Definition 3.2.10. The Robba ring is the direct limit

R̃F = lim
−→
r

H0(Y(0,r],OY(0,r]
) .

One can make this more explicit, cf. [KL15, Definition 4.2.2]. The space of global

sections R̃r
F = H0(Y(0,r],OY) can be identified with the inverse limit of the Banach

algebras R̃
[s,r]
F as s runs over (0, r], and thus acquires a structure of Fréchet algebra.

Let

W (OF )

〈
p

[̟]1/r

〉
=




∑

n≥0

[cn]p
n | cn ∈ ̟

−n/rOF , cn̟
n/r → 0



 .

Then R̃r
F can also be described as the Fréchet completion of

W (OF )

〈
p

[̟]1/r

〉[
1

p

]
=

{ ∑

n>−∞

[cn]p
n | cn ∈ F, cn̟

n/r → 0

}

along the norms maxn{|cn̟
n/s|} for s ∈ (0, r]. When r′ < r, there is a natural

inclusion map R̃r
F →֒ R̃

r′

F coming from restriction of global sections. The ϕ-action
on Y(0,∞) sends Y[s,r] isomorphically to Y[ps,pr] and Y(0,r] isomorphically to Y(0,pr].

Therefore, ϕ induces isomorphisms R̃
[s,r]
F

∼
→ R̃

[s/p,r/p]
F and R̃r

F
∼
→ R̃

r/p
F , and thus

an automorphism of R̃F .
We note that the Robba ring is the ring of functions defined on some small punc-

tured disc of unspecified radius around the point Spa(F,OF ) of Spa(W (OF ),W (OF )).

Definition 3.2.11. A ϕ-module over R̃F is a finite projective R̃F -module M
equipped with a ϕ-linear automorphism.

Remark 3.2.12. As R̃F is a Bézout domain, cf. [KL15, Lemma 4.2.6], any ϕ-module

M is finite free as R̃F -module.
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Theorem 3.2.13 ([KL15, Theorem 6.3.12]). There is an equivalence of categories

{Vector bundles on XF } ≃
{
ϕ−modules over R̃F

}
.

The proof is based on the observation that any ϕ-module over R̃F is defined
over R̃r

F for r small enough. This can be turned into a ϕ-module over Y(0,r], and
then be spread to a ϕ-module over all of Y(0,∞) via pullback under Frobenius. By
descent, this gives a vector bundle over XF .

3.3. The relative Fargues-Fontaine curve. In this subsection, we extend the
constructions to the relative setting. Here, our basic input will be a perfectoid
affinoid algebra (R,R+) of characteristic p.10 Let ̟ be a pseudouniformizer of R.
Define

Y(0,∞)(R,R
+) = Spa(W (R+),W (R+)) \ (p[̟] = 0) .

Many constructions carry over to this relative situation. In particular, there is still
a continuous map

α : Y(0,∞)(R,R
+)→ (0,∞)

defined in the same way. Again, we let YI(R,R
+) ⊂ Y(0,∞)(R,R

+) denote the

interior of the preimage α−1(I), for any interval I ⊂ (0,∞). Proposition 3.2.1
extends to the relative setting.

Proposition 3.3.1. For any closed interval I = [s, r] ⊂ (0,∞) with r, s ∈ Q, the
space

YI(R,R
+) = Spa(R

[s,r]
R ,R

[s,r],+
R,R+ )

is a sheafy affinoid adic space, where R
[s,r],+
R,R+ is the p-adic completion of the integral

closure of

W (R+)

[
p

[̟1/r]
,
[̟1/s]

p

]

inside W (R+)
[

p
[̟1/r]

, [̟
1/s]
p

]
[1/p], and R

[s,r]
R = R

[s,r],+
R,R+ [1/p].11 More precisely,

R
[s,r]
R is preperfectoid in the sense that R

[s,r]
R ⊗̂QpK is a perfectoid K-algebra for

any perfectoid field K/Qp.
In particular, Y(0,∞)(R,R

+) =
⋃

I YI(R,R
+) is an honest adic space.

Proof. The same arguments as for Proposition 3.2.1 apply. �

Again, there is a totally discontinuous action ϕ of Frobenius.

Definition 3.3.2. The relative Fargues-Fontaine curve X (R,R+) is the quotient
Y(0,∞)(R,R

+)/ϕZ.

As before, there is a line bundle OX (R,R+)(d) for any d ∈ Z, and one can form
the scheme

X(R) = Proj
(
⊕d≥0H

0
(
X (R,R+),OX (R,R+)(d)

))
.12

This comes with a map of locally ringed topological spaces X (R,R+)→ X(R), and
one has a relative GAGA result.

10We will not fix a perfectoid base field inside R, although one can always find one.
11One can check that R

[s,r]
R depends only on R, and not on R+.

12As notation suggests, this does not depend on R+.
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Theorem 3.3.3 ([KL15, Theorem 8.7.7]). The pullback functor from vector bundles
on X(R) to vector bundles on X (R,R+) is an equivalence of categories.

Moreover, we can define R̃r
R as the inverse limit of the Banach algebras R̃

[s,r]
R

as s runs over (0, r] and the relative Robba ring R̃R as the direct limit of the

Fréchet algebras R̃r
R over r > 0. Again, a ϕ-module over R̃R is a finite projective

R̃R-module M equipped with a ϕ-linear automorphism.

Theorem 3.3.4 ([KL15, Theorems 6.3.12, 8.7.7]). There is an equivalence of cat-
egories {

Vector bundles on X (R,R+)
}
≃
{
ϕ−modules over R̃R

}
.

3.4. The mixed characteristic affine Grassmannian. Our goal in this section
is to construct an isomorphism between the flag variety FℓG,µ and the Schubert cell
corresponding to µ in the B+

dR-Grassmannian for G, assuming that µ is minuscule.
This is an analogue of a classical statement about the usual affine Grassmannian.

Throughout this section, G is a connected reductive group over Qp. First, we
define the version of the affine Grassmannian that we will consider. Let (R,R+)
a perfectoid affinoid algebra over Qp, in the sense of [KL15, Definition 3.6.1].13

One has the surjective map θ : W (R♭+) → R+, whose kernel is generated by a
non-zerodivisor ξ ∈ W (R+). Then B+

dR,R is defined as the ξ-adic completion of

W (R♭+)[1/p], and BdR,R = B+
dR,R[ξ

−1]. We note that, as notation suggests, these

rings are independent of the choice of R+.

Definition 3.4.1. Let Gr
B+

dR

G be the functor associating to any perfectoid affi-

noid Qp-algebra (R,R+) the set of G-torsors over Spec B+
dR,R trivialized over

Spec BdR,R, up to isomorphism.

We refer to [Wei14] for a more thorough discussion of this object, in the case
G = GLn.

If (R,R+) = (K,K+) where K is a perfectoid field, then B+
dR,K is a complete

discrete valuation ring, abstractly isomorphic to K[[ξ]]. In that case, one sees that

Gr
B+

dR

G (K,K+) = G(BdR,K)/G(B+
dR,K) .

In particular, assume that K = C is algebraically closed, and fix an embedding
Q̄p → C. Then, using the Cartan decomposition

G(BdR,C) =
⊔

µ∈X∗(G)dom

G(B+
dR,C)µ(ξ)

−1G(B+
dR,C)

(where the induced embedding Q̄p →֒ B+
dR,C is used to define µ(ξ) for a cocharacter

µ : Gm → GQ̄p
), we can associate an element of µ(x) ∈ X∗(G)dom to any point of

x ∈ Gr
B+

dR

G (C,OC). This is the decomposition into Schubert cells.14

Now, we fix a conjugacy class µ of cocharacters Gm → GQ̄p
, defined over E.

In the following, we assume that R is an E-algebra. Any choice of representative
µ : Gm → GQ̄p

in this conjugacy class determines an ascending filtration Fil•(µ)

on RepQ̄p
G, where Film(µ) is the direct sum of all subspaces where µ acts through

13If R contains a perfectoid field, this agrees with the definition of [Sch12a], and this case
would suffice for our discussion here.

14We have inserted a slightly nonstandard sign in µ(ξ)−1.
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weights m′ ≥ −m.15 Let FℓG,µ/E be the rigid-analytic flag variety parametrizing
all such filtrations. The choice of µ identifies FℓG,µ = G/Pµ, where Pµ ⊂ G is the
stabilizer of Fil•(µ).

Definition 3.4.2. Let Gr
B+

dR

G,µ ⊂ Gr
B+

dR

G ⊗QpE be the subfunctor sending a perfectoid

affinoid E-algebra (R,R+) to the set of those G-torsors over Spec B+
dR,R trivialized

over Spec BdR,R whose relative position µ(x) is given by µ, for all x ∈ Spa(R,R+).

Proposition 3.4.3. There is a natural Bialynicki-Birula map

πG,µ : Gr
B+

dR

G,µ → FℓG,µ ,

where we regard FℓG,µ as a functor on perfectoid affinoid E-algebras.

Proof. By the Tannakian formalism, it is enough to prove this result in the case
G = GLn. In that case, write µ = (k1, . . . , kn) as a tuple of n integers, k1 ≥ k2 ≥

. . . ≥ kn. The functor Gr
B+

dR

GLn
parametrizes B+

dR,R-lattices Λ ⊂ Bn
dR,R, i.e. finite

projective submodules such that Λ[1/ξ] = Bn
dR,R. Any such lattice gives rise to a

filtration on Rn by setting

FilmR
n = ((B+

dR,R)
n ∩ ξ−mΛ)/((ξB+

dR,R)
n ∩ ξ−mΛ) .

Using the fact that a finitely generatedR-moduleM for which dimC(x)M⊗RC(x) is

the same for all x = Spa(C(x),OC(x))→ Spa(R,R+) is finite projective, cf. [KL15,
Proposition 2.8.4], one verifies that Rn/FilmR

n is a finite projective R-module for
any m.

Note that Fil•R
n is an increasing filtration, where the rank of FilmR

n is given
by the largest i such that ki ≥ −m. The same type of filtrations is parametrized
by FℓG,µ, as desired. �

Lemma 3.4.4. Assume that µ is minuscule, and that (R,R+) = (K,K+), where
K/E is a perfectoid field. Then

πG,µ : Gr
B+

dR

G,µ (K,K
+)→ FℓG,µ(K,K

+)

is a bijection.

Proof. Recall that B+
dR,K is a complete discrete valuation ring with residue field K.

By the Cohen structure theorem, we may choose an isomorphism B+
dR,K

∼= K[[ξ]].
This identifies

Gr
B+

dR

G,µ (K,K
+) = G(K((ξ)))/G(K[[ξ]]) ,

and the Bialynicki-Birula morphism becomes the Bialynicki-Birula morphism for
the usual affine Grassmannian for G/Qp. This is known to be an isomorphism,
cf. e.g. [NP01, Lemme 6.2]. �

Theorem 3.4.5. Assume that µ is minuscule. Then the Bialynicki-Birula mor-
phism

πG,µ : Gr
B+

dR

G,µ → FℓG,µ

is an isomorphism.

15One reason the minus sign appears here is for consistenty with the global definitions, where
type (p, q) refers to characters z 7→ z−pz−q.
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Proof. In the proof, we will use the Tannakian formalism. This interprets Gr
B+

dR

G as
the associations mapping any V ∈ Rep G to a lattice ΛV ⊂ V ⊗ BdR, compatibly
with tensor products and short exact sequences.

First, let us check injectivity of πG,µ. Thus, take two (R,R+)-valued points

x, y ∈ Gr
B+

dR

G,µ (R,R
+) which are sent to the same point of FℓG,µ. We have to show

that the corresponding lattices ΛV,x, ΛV,y agree for all V ∈ Rep G. But at any
point z ∈ Spa(R,R+) with completed residue field K(z), Lemma 3.4.4 implies that

ΛV,x ⊗B
+
dR,R

B+
dR,K(z) = ΛV,y ⊗B

+
dR,R

B+
dR,K(z) .

One concludes that ΛV,x = ΛV,y by applying the following lemma to all elements
of ΛV,x, and ΛV,y.

Lemma 3.4.6. Let Λ be a finite projective B+
dR,R-module, and a ∈ Λ⊗

B
+
dR,R

BdR,R

any element. Assume that for all z ∈ Spa(R,R+) with completed residue field K(z),
a ∈ Λ⊗

B
+
dR,R

B+
dR,K(z). Then a ∈ Λ.

Proof. We may choose m ≥ 0 minimal such that a ∈ ξ−mΛ, and assume m > 0
for contradiction. Then a induces a nonzero element ā of the finite projective R-
module ξ−mΛ/ξ−m+1Λ. By assumption, the specialization of ā to K(z) vanishes
for all z ∈ Spa(R,R+). But an element of R vanishing at all points of Spa(R,R+)
is trivial, as R is reduced. �

Now, to prove surjectivity, we first observe that Gr
B+

dR

G is in fact a sheaf for
the pro-étale topology used in [Sch13c].16 More precisely, we allow covers Y =
Spa(S, S+)→ X = Spa(R,R+) which can be written as a composite Y → Y0 → X ,
where Y → Y0 is an inverse limit of finite étale surjective maps, and Y0 → X is
étale. This pro-étale topology of perfectoid spaces is defined in [KL15, §9.2]. The
descent result we need is [KL15, Theorem 9.2.15]. Indeed, using the Tannakian
formalism, it is enough to prove that one can glue finite projective B+

dR,R-modules

in the pro-étale topology. As B+
dR,R is ξ-adically complete with ξ a non-zerodivisor

and B+
dR,R/ξ = R, a standard argument reduces us to gluing finite projective R-

modules, which is precisely [KL15, Theorem 9.2.15].
Thus, we see that it is enough to construct, for any representation V of G, a B+

dR-
local system MV ⊂ V ⊗BdR on the pro-étale site of FℓG,µ, compatibly with tensor
products and short exact sequences, which maps to the correct filtration under the
Bialynicki-Birula morphism. Indeed, by pullback, this will induce a similar B+

dR-
local system on the pro-étale site of Spa(R,R+) for any (R,R+)-valued point of

FℓG,µ, which by the descent result above gives an (R,R+)-point of Gr
B+

dR

G,µ .
Now note that any representation V of G gives rise to a filtered module with inte-

grable connection (V ⊗OFℓG,µ , id⊗∇,Fil−•), where Fil• is the universal ascending
filtration parametrized by FℓG,µ (so that Fil−• is a descending filtration). Because
µ is minuscule, this filtered module with integrable connection satisfies Griffiths
transversality (with the same proof as in the complex case, cf. [Del79, Proposi-
tion 1.1.14]). Now [Sch13c, Proposition 7.9] constructs a corresponding B+

dR-local
system MV ⊂ V ⊗ BdR on the pro-étale site of FℓG,µ, and this construction is
compatible with tensor products and short exact sequences. One verifies that the
induced filtration is correct, finishing the proof. �

16It is also a sheaf for stronger topologies as used in [Wei14], but we do not need this here.
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3.5. Vector bundles over X and the Newton stratification. The goal of
this subsection is to define the Newton stratification on FℓG,µ, where G/Qp is a
reductive group, and µ is a conjugacy class of minuscule cocharacters, defined over

the reflex field E. The idea is that, given a (C,OC)-point of FℓG,µ
∼= Gr

B+
dR

G,µ , one
can modify the trivial G-bundle over XC♭ along ∞ to obtain a new G-bundle over
XC♭ , and therefore (by Fargues’ theorem) an element of B(G).

Fix any perfectoid affinoid (R,R+) over Qp. We recall how to construct a vector

bundle over X (R♭, R♭+) from a B+
dR,R-lattice in Bn

dR,R. First note that, by GAGA

for the curve, it is enough to define a vector bundle on a scheme version X(R♭) of
X (R♭, R♭+). Let Z be the image of the canonical closed immersion

i∞ : Spec R→ X(R♭) .

Then Spec B+
dR,R is the completion of X(R♭) along Z. Moreover, Spec BdR,R can

be identified with the fiber product of Spec B+
dR,R and the complement of Z over

X(R♭).

Theorem 3.5.1 ([KL15, Theorem 8.9.6]). There is an equivalence between the
category of vector bundles over X(R♭) (or over X (R♭, R♭+)) and the category of
triples (M1,M2, ι), whereM1 is a vector bundle on X(R♭)\Z, M2 is a vector bundle
over Spec B+

dR,R, and ι is an isomorphism betweenM1|Spec BdR,R
andM2|Spec BdR,R

.
This equivalence is compatible with tensor products and short exact sequences.

In particular, one gets a functor from B+
dR,R-lattices in Bn

dR,R by gluing it to the

trivial rank n vector bundle on X(R♭) \ Z.

Corollary 3.5.2. For any perfectoid affinoid Qp-algebra (R,R+), there is a natural
map

E : Gr
B+

dR

G (R,R+)→ {G−bundles over X (R♭, R♭+)} .

Proof. If G = GLn, this follows from the discussion above. In general, it follows
from the Tannakian formalism. �

In particular, consider the case where (R,R+) = (C,OC), with C/Qp complete
and algebraically closed, and OC ⊂ C its ring of integers; moreover, fix an embed-
ding Q̄p →֒ C. Using Fargues’ classification of G-bundles, Theorem 3.2.9, one gets
a composite map

b(·) : Gr
B+

dR

G (C,OC)→ B(G) : x 7→ b(E(x))

classifying the isomorphism class of the associated G-bundle E(x). We will need to
know the following compatibility between µ and b.

Proposition 3.5.3. Let G be any reductive group over Qp, and µ any conjugacy

class of cocharacters (not necessarily minuscule). For any x ∈ Gr
B+

dR

G,µ (C,OC) with

b = b(E(x)), one has b ∈ B(G,µ−1).

Proof. Unraveling the definition of B(G,µ−1), we have to prove two separate state-

ments. The first statement is νb � µ−1 as elements of (X∗(G) ⊗ Q)Γdom. This
reduces to the case of G = GLn by [RR96, Lemma 2.2]. In that case, the statement
is the following.
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Lemma 3.5.4. Let E be a vector bundle of rank n over XC♭, together with a
trivialization outside the point ∞. Its relative position from the trivial bundle on
XC♭ is measured by a cocharacter µ(E) of GLn. Let νE ∈ (X∗(GLn)⊗Q)dom be the
Newton polygon of E, with slopes {λi | E ∼=

⊕
iOX

C♭
(λi)}. One has the inequality

νE � µ(E) ,

i.e. “The Newton polygon of E lies above its Hodge polygon”.17

Proof. We adapt the original argument in [Kat79]. By considering exterior powers
of vector bundles, it suffices to check that

(1) the Newton and Hodge slopes match for the top exterior power of E , and
(2) the first slope of the Newton polygon of E always lies above the first slope

of the Hodge polygon of E .

The fact that the Hodge and Newton slopes match in the case of line bundles
on XFF,C is a direct verification: The modification E is given by the lattice E ⊗O

X♭

B+
dR,C = ξ−dBdR,C for a unique d ∈ Z, and in fact µ(E) = d ∈ X∗(GL1) = Z in our

normalization. The resulting line bundle is given by OX♭(d), which is of slope d, as
desired.

For the second part, up to twisting, we may assume that the first slope of the
Hodge polygon is 0, in particular all Hodge slopes are nonnegative. This implies
that

(B+
dR,C)

n ⊆ E ⊗OX
C♭

B+
dR,C .

This, in turn, implies that the trivialization of E away from ∞ extends to an
injection On

X
C♭
→֒ E . We have to show that all slopes of E are nonnegative, so

assume for contradiction that there is a quotient E → OX
C♭
(λ) with λ < 0. This

induces a nonzero map On
X

C♭
→ OX

C♭
(λ). On the other hand, there are no nonzero

maps OX
C♭
→ OX

C♭
(λ) by [FF14]. �

The other part of the condition b ∈ B(G,µ−1) concerns the Kottwitz map, and
is given by the following lemma.

Lemma 3.5.5. The composition Gr
B+

dR

G,µ (C,OC) → B(G)
κ
−→ π1(G)Γ is constant,

and equal to −µ♭.

Proof. We note that the map in question is functorial in (G,µ). We first reduce to
the case where G has simply connected derived group by making a central extension
G̃→ G (cf. [Kot85, 5.6]); picking any lift µ̃ of µ, the resulting map

Gr
B+

dR

G̃,µ̃
(C,OC)→ Gr

B+
dR

G,µ (C,OC)

is surjective, as follows from the Cartan decomposition, so it is enough to prove the
result for (G̃, µ̃).

Now if G has simply connected derived group Gder, then T = G/Gder is a torus
for which π1(G)Γ → π1(T )Γ is an isomorphism; thus, we are reduced to the case of
a torus.

17We remind the reader that the correspondence between isocrystals and vector bundles on
XC♭ reverses slopes, so that this statement translates into b(E)−1 ∈ B(GLn, µ(E)), which is

equivalent to b(E) ∈ B(GLn, µ(E)−1).
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If G = T is a torus, we may find a surjection T̃ → T , where T̃ is a product of
induced tori ResK/Qp

Gm. Arguing as before, we are reduced to the case of T̃ , and

then to the case T̃ = ResK/Qp
Gm. In that case, π1(T̃ )Γ = Z (cf. [Kot85, Lemma

2.2]), which is torsion-free, so it is enough to identify the image in π1(Gm) = Z
under the norm map NormK/Qp

: T̃ → Gm. Finally, we are reduced to the case
G = Gm, which is part of Lemma 3.5.4. �

�

Now fix a minuscule µ as above, defined over E. The inverse of the isomorphism
πG,µ in Theorem 3.4.5 gives rise to a composition

E : FℓG,µ(R,R
+)→ Gr

B+
dR

G,µ (R,R
+)→ {G−bundles over X (R♭, R♭+)} .

Definition 3.5.6. The map

|FℓG,µ| → B(G)

sends any (C,C+)-valued point x ∈ FℓG,µ(C,C
+), where C is a complete alge-

braically closed extension of E and C+ ⊂ C is an open and bounded valuation
subring, to the isomorphism class of the associated G-bundle E(x), which by Theo-
rem 3.2.9 is given by an element of B(G).

For any b ∈ B(G), we let FℓbG,µ ⊂ FℓG,µ be the subset of all points with image
b.

One easily checks that this map is well-defined as a map on |FℓG,µ|, i.e. is
independent of the choice of complete algebraically closed extension of the residue
field at any point. We remark that by definition a higher rank point has the same
image as its maximal, rank 1, generalization, and therefore the map factors over the
maximal hausdorff quotient of |FℓG,µ|, which can be identified with the topological
space FℓBerk

G,µ underlying the corresponding Berkovich space.

Proposition 3.5.7. (1) The map b(·) : |FℓG,µ| → B(G) is lower semicontin-
uous.

(2) The image of the map b(·) : |FℓG,µ| → B(G) is contained in the set of
µ−1-admissible elements B(G,µ−1).

Remark 3.5.8. In [Rap15, Proposition A.9], based on the discussion here, it is
proved that in fact the image of |FℓG,µ| → B(G,µ−1) is all of B(G,µ−1).

Proof. The second part follows from Proposition 3.5.3 above. For the first part,
by the definition of the partial ordering on B(G), and the fact that the Kottwitz
map is constant by the second part, it remains to prove semicontinuity of the
Newton map. We may pick an affinoid perfectoid space Spa(R,R+) with a map
to FℓG,µ which is a topological quotient map, by using a pro-étale cover. It is
then enough to show that the composite map |Spa(R,R+)| → |FℓG,µ| → B(G) is
lower semicontinuous. But semicontinuity of the Newton map can be checked on
representations of G (cf. [RR96, Lemma 2.2]), so pick a representation of G. We
get a corresponding vector bundle over X (R♭, R♭+). Now, the result follows from
Theorem 7.4.5 of [KL15], using Corollary 3.3.4. �
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Corollary 3.5.9. The strata FℓbG,µ are locally closed in FℓG,µ. More precisely,
the stratum corresponding to the basic element is open in FℓG,µ, and the strata

Fℓ�b
G,µ :=

⊔

b�b′

Fℓb
′

G,µ

are closed.

Proof. This follows immediately from Proposition 3.5.7. �
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4. The geometry of Newton strata and Igusa varieties

In this section, we will return to the global setup, but will in addition assume
that the Shimura datum (G,X) is of PEL type, and has good reduction at p. This
means that they will admit smooth integral models which are moduli spaces of
abelian varieties equipped with polarizations, endomorphisms and level structure.
Our goal is to understand the fibers of the Hodge-Tate period map

πHT : SKp → FℓG,µ

defined in Theorem 2.1.3 in terms of the Igusa varieties introduced by Manto-
van, [Man05].

We start with some preliminaries on p-divisible groups, which recall material
from [SW13] as well as a construction of Chai and Oort. We then express the
Newton strata in SKp in terms of Rapoport-Zink spaces and Igusa varieties, in the
spirit of [Man05].

4.1. Preliminaries on p-divisible groups. We recall the notions of Tate module
and universal cover of a p-divisible group as used in [SW13], together with some of
their properties. Let Nilp be the category of Zp-algebras on which p is nilpotent.
If R is a p-adically complete Zp-algebra, let NilpopR be the opposite category to
the category of R-algebras on which p is nilpotent. A p-divisible group G can be
thought of as an fpqc sheaf on NilpopR sending an R-algebra S to lim

−→
G[pn](S).

Definition 4.1.1. (1) The fpqc sheaf Tp(G)(S) = lim
←−n

G[pn](S) on NilpopR is

called the (integral) Tate module of G.

(2) The fpqc sheaf G̃(S) = lim
←−p:G→G

G(S) on Nilpop
R is called the universal cover

of G.

We note that Tp(G) is a sheaf of Zp-modules, while G̃ = Tp(G)[1/p] is a sheaf of
Qp-vector spaces. We can canonically identify

TpG = H om(Qp/Zp,G), G̃ = H om(Qp/Zp,G)[1/p].

Proposition 4.1.2. (1) If G is connected, then it is representable by an affine
formal scheme with finitely generated ideal of definition. If Lie G is free of
dimension r then

G ≃ Spf R[[x1, . . . , xr]].

(2) If ρ : G1 → G2 is an isogeny, then the induced morphism ρ̃ : G̃1 → G̃2 is an
isomorphism.

(3) If R is perfect of characteristic p, G is connected and Lie G is free of di-
mension r then

G̃ ≃ Spf R[[x
1/p∞

1 , . . . , x1/p
∞

r ]].

(4) If R is perfect of characteristic p, G is connected and Lie G is free of di-
mension r then

TpG ≃ Spec R[[x
1/p∞

1 , . . . , x1/p
∞

r ]]/(x1, . . . , xr).

Proof. The first part is proved in [Mes72]. The remaining results are proved
in [SW13]: the second and third parts in Proposition 3.1.3 and the fourth part
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follows from the first part, the third part and the short exact sequence of sheaves
on NilpopR given by

0→ TpG → G̃ → G → 0.

(This short exact sequence is a restatement of Proposition 3.3.1 of [SW13] in the

case when G is connected: the Tate module is the closed subfunctor of G̃ given by
pullback along the natural map G̃ → G - projection onto the last coordinate - from
the zero section in G.) �

The universal vector extension EG of G is a crystal on the nilpotent crystalline
site of R defined in [Mes72]. Its Lie algebra Lie EG can be made into a crystal on
the crystalline site of R by [BBM82], which we will denote by M(G).

If G is a p-divisible group over F̄p, the Dieudonné module D(G) is obtained by
evaluating the crystal M(G) on the PD thickening W (F̄p)→ F̄p. Then D(G)[1/p] is
an isocrystal over L, as defined in Section 4. Here, the Frobenius ϕG on D(G)[1/p]
satisfies

D(G) ⊂ ϕG(D(G)) ⊂ p−1D(G) ,

and pϕG is the Frobenius usually considered.18 We will call a p-divisible group G
over F̄p isoclinic if the corresponding isocrystal has only one slope. If this slope is
given by −λ, we say that G is isoclinic of slope λ, so that µp∞ is isoclinic of slope
1.

Given a p-divisible group G over F̄p, we can use the isocrystal D(G)[1/p] to con-
struct a vector bundle E(G) over the Fargues-Fontaine curve XF , for any complete
algebraically closed nonarchimedean field F ⊃ F̄p.

Example 4.1.3. If G = Qp/Zp, then D(G) = L with ϕG = σ, and E(G) = OXF . If
G = µp∞ , then D(G) = L with ϕG = p−1σ, and E(G) = OXF (1).

On the other hand, one can use the schematic version of the Fargues-Fontaine
curve to build a vector bundle corresponding to a p-divisible group over OC/p,
where C is any complete algebraically closed extension of Qp with ring of integers
OC/p. Define Acris to be the p-adic completion of the PD envelope of the surjection
W (O♭

C) ։ OC/p and B+
cris := Acris[1/p]. If G is a p-divisible group over the

semiperfect ringOC/p, then its Dieudonné module is a finite projectiveAcris-module
M(G) obtained by evaluating M(G) on the PD thickening Acris → OC/p. Then
M(G)[1/p] is a B+

cris-module equipped with a Frobenius-semilinear map ϕG . Recall,
cf. [FF14], that the schematic Fargues-Fontaine curve can also be defined as

XC♭ = Proj

(
⊕d≥0

(
B+

cris

)ϕ=pd
)
.

We associate to G the vector bundle E(G) on XC♭ corresponding to the graded
module

⊕d≥0 (M(G)[1/p])
ϕ=pd

.

Theorem 4.1.4. (1) For any p-divisible group G over OC/p, there exists a
p-divisible group H over F̄p and a quasi-isogeny

ρ : H×F̄p
OC/p→ G

18If one uses the usual Frobenius on contravariant Dieudonné theory, then our convention
corresponds to defining covariant Dieudonné theory as the literal dual of contravariant Dieudonné
theory, i.e. without a Tate twist.
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(2) The functor G 7→ E(G) from p-divisible groups over OC/p up to isogeny
to vector bundles on XC♭ is fully faithful, with essential image the vector
bundles whose slopes are all between 0 and 1.

(3) Let G be a p-divisible group over F̄p. Then GAGA for the curve identifies
E(G) with E(G).

Proof. The first two parts are Theorem 5.1.4 of [SW13]. The last part is clear. �

We now specialize to p-divisible groups over a perfect field k. (Since every
p-divisible group over OC/p is quasi-isogenous to one defined over F̄p, if we are
interested in understanding quasi-self-isogenies, it is enough to restrict to this case.)
Let G,G′ be two isoclinic p-divisible groups over k. Our goal is to define an “internal
Hom” p-divisible group HG,G′ over k satisfying the following two properties:

(1) The Tate module Tp(HG,G′) can be identified with the sheaf H om(G,G′).
(2) The Dieudonné module D(HG,G′)[1/p] is equal to

Hom(D(G)[1/p], D(G′)[1/p])≤0,

where the latter denotes the internal homomorphism in Dieudonné modules,
and we are taking the slope ≤ 0-part.

In a talk of C.-L. Chai at the Faltings conference 2014, we learnt that a p-divisible
group satisfying these properties has been defined by Chai and Oort. We explain
their construction below.

We define HG,G′ as an inductive system of finite group schemes. For each n ≥ 1
consider the commutative group schemes of finite type over k defined as

Hn := H om(G[pn],G′[pn]).

For m ≥ n, there are natural restriction maps

rm,n : Hm → Hn

which restrict a homomorphism G[pm] → G′[pm] to G[pn] ⊂ G[pm]. The kernel
ker rm,n ⊂ Hm is a closed subgroup scheme. As we are working over a field, one

can form the qoutient H
(m)
n = Hm/ker rm,n, which is a subgroup scheme of Hn.

As m increases, they form a descending chain.

Lemma 4.1.5. The subgroup scheme H
(m)
n stabilizes for m ≫ 0; let H′

n = H
(m)
n

for m sufficiently large. Then H′
n is a finite group scheme over k.

Proof. We may assume that k is algebraically closed. First, we claim that H
(m)
n is

a finite group scheme for m ≫ 0. It is enough to see that H
(m)
n (k) is finite. By

Dieudonné theory, one sees that Hom(G,G′) is a finite free Zp-module, independent
of the algebraically closed field k. In particular, the image Hn(k)∞ ⊂ Hn(k) of

Hom(G,G′)→ Hn(k)

is finite, and independent of k. Now the sequence of Hm×Hn (Hn \Hn(k)∞) forms
a cofiltered system of quasicompact schemes with affine transition maps and with
empty inverse limit. It follows that one of the schemes is already empty, showing
that the image of Hm(k)→ Hn(k) agrees with the finite set Hn(k)∞.

Now, the H
(m)
n form a decreasing sequence of finite group schemes over k. As

such, they are eventually constant, e.g. by looking at their order. �
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We define ιn : Hn → Hn+1 to be the map given by pre-composition with the
multiplication by pmap G[pn+1]→ G[pn] followed by composition with the inclusion
G′[pn] →֒ G′[pn+1].

Lemma 4.1.6. The maps ιn : Hn → Hn+1 send H′
n into H′

n+1. The colimit

H = HG,G′ = lim
−→
ιn

H′
n

is a p-divisible group over k with H[pn] = H′
n.

Proof. From the commutation between ιn and rm,n, one infers that ιn sends H′
n

into H′
n+1. First, we check that ιn : H′

n → H
′
n+1 is injective with image H′

n+1[p
n].

Let S be any k-scheme. If f : G[pn]S → G
′[pn]S induces the trivial map

G[pn+1]S
p
−→ G[pn]S

f
−→ G′[pn]S →֒ G

′[pn+1]S ,

then f = 0 as the first map is surjective, and the last injective; this proves injectivity
of ιn. Now let f : G[pn+1]S → G

′[pn+1]S be a map killed by pn, which for anym ≥ n
lifts fppf locally to a map fm : G[pm+1]S → G

′[pm+1]S . It follows that f factors
uniquely as

G[pn+1]S
p
−→ G[pn]S

g
−→ G′[pn]S →֒ G

′[pn+1]S ,

for some g : G[pn]→ G′[pn], as f has image in the pn-torsion, and kills pnG[pn+1] =
G[p]. Similarly, any lift fm : G[pm+1]S → G

′[pm+1]S of f is killed by pm, which
implies that fm factors uniquely through a map gm : G[pm]→ G′[pm], which neces-
sarily lifts g. This shows that H′

n = H′
n+1[p

n].
Moreover, we need to see that p : H′

n+1 → H
′
n+1 has image H′

n; by the above, it
follows that the image is contained in H′

n; the resulting map H′
n+1 → H

′
n is in fact

the map rn+1,n. By construction of the H′
n, the map rn+1,n is indeed surjective,

finishing the proof. �

Lemma 4.1.7. The Tate module TpHG,G′ can be identified with the sheaf H om(G,G′).

Proof. The Tate module TpHG,G′ is the inverse limit ofHG,G′ [pn] ≃ H′
n with respect

to the rn+1,n maps. This, by definition is the same as the inverse limit of the
projective system of Hn’s with respect to the rn+1,n maps, which is the sheaf
H om(G,G′). �

Lemma 4.1.8. The Dieudonné module D(HG,G′ )[1/p] is equal to

Hom(D(G)[1/p], D(G′)[1/p])≤0,

where Hom(D(G)[1/p], D(G′)[1/p]) is the internal homomorphism in Dieudonné
modules, and we are taking the slope ≤ 0-part.

Remark 4.1.9. Note that the statement only depends on G and G′ up to quasi-
isogeny. Chai and Oort prove Lemma 4.1.8 by directly computing the relative
Frobenius on HG,G′ in terms of the relative Frobenius on conveniently chosen G and
G′. We give a different proof below. Also, Chai-Oort give an integral version of
Lemma 4.1.8.

Proof. Let HD be a p-divisible group over k with rational Dieudonné module

Hom(D(G)[1/p], D(G′)[1/p])≤0 .

First, we construct a natural map

H̃D → H̃G,G′ = H om(G,G′)[1/p] .
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In order to construct such a map, it is enough to construct a functorial map on
R-valued points, where R is f-semiperfect in the sense of [SW13, Definition 4.1.2],

as H̃G,G′ , like the universal cover of any p-divisible group, is represented by a formal
scheme which is locally of the form Spf S, where S is an inverse limit of f-semiperfect
rings.

Thus, let R be f-semiperfect, with associated B+
cris(R). Then by [SW13, Theorem

A], we have

H̃G,G′(R) = HomR(G,G
′)[1/p] = HomB+

cris(R),ϕ(D(G)⊗B+
cris(R), D(G′)⊗B+

cris(R))

= (Hom(D(G)[1/p], D(G′)[1/p])⊗B+
cris(R))

ϕ=1 ,

and

H̃D(R) = HomR(Qp/Zp,HD)[1/p] = (D(HD)⊗B+
cris(R))

ϕ=1

= (Hom(D(G)[1/p], D(G′)[1/p])≤0 ⊗B+
cris(R))

ϕ=1 .

Now the obvious inclusion

Hom(D(G)[1/p], D(G′)[1/p])≤0 ⊂ Hom(D(G)[1/p], D(G′)[1/p])

induces the desired map H̃D → H̃G,G′ .
To check that this is an isomorphism, it suffices by the same argument to check

on R-valued points, where R is f-semiperfect. Thus, it remains to see that

(Hom(D(G)[1/p], D(G′)[1/p])⊗B+
cris(R))

ϕ=1 = (Hom(D(G)[1/p], D(G′)[1/p])≤0⊗B+
cris(R))

ϕ=1 .

For this, it suffices to see that for any Dieudonné module D with only positive
slopes,

(D ⊗B+
cris(R))

ϕ=1 = 0 .

For this, using the Dieudonné-Manin classification, we have to see that there are
no elements x ∈ Acris(R) with paϕb(x) = x, where a, b > 0 are positive integers.
Note that ϕ preserves the p-adically complete ring Acris(R); on the other hand, the
equation on x implies x = pmaϕmb(x) for any m ≥ 1, so that x is infinitely divisible
by p, which implies x = 0. �

Corollary 4.1.10. Assume that G and G′ are isoclinic.

(1) If the slope of G is strictly greater than the slope of G′, then HG,G′ vanishes.
(2) If the slopes of G and G′ are equal, then HG,G′ is an étale p-divisible group.
(3) If the slope of G is strictly less than the slope of G′, then HG,G′ is a connected

p-divisible group.

Corollary 4.1.11. If G and G′ are isoclinic and the slope of G is strictly less
than the slope of G′ and HG,G′ has dimension r, then the sheaf H om(G,G′) is
representable by the scheme

Spec k[[x
1/p∞

1 , . . . , x1/p
∞

r ]]/(x1, . . . , xr).

Proof. This follows from Proposition 4.1.2 and Corollary 4.1.10. �
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4.2. Rapoport-Zink spaces of PEL type. In this section, we introduce the
Rapoport-Zink spaces of PEL type that we will consider, and recall some of the
results we will need. In close analogy to the EL case treated in [SW13], we de-
fine a local avatar of the Hodge-Tate period morphism, mapping the infinite-level
Rapoport-Zink space to FℓG,µ.

We first introduce PEL structures, as in [RZ96], with several simplifying as-
sumptions that will be verified in the global case that we want to consider. Fix a
finite-dimensional, semisimple algebra B over Qp, endowed with an anti-involution
∗, and a finite left B-module V equipped with an alternating bilinear form

(·, ·) : V ⊗Qp V → Qp

such that (bv, w) = (v, b∗w) for all v, w ∈ V , b ∈ B. The data so far define an
algebraic group G over Qp, whose values over a Qp-algebra R are

G(R) = {(g, c) ∈ GLB⊗R(V ⊗R)×R
× | (gv, gw) = c(v, w)} .

We refer to c : G → Gm as the multiplier character of G. We make the gen-
eral assumption that G is connected, which amounts to excluding type D in the
classification.

Moreover, we assume that the data are unramified. More precisely, we assume
that B is a product of matrix algebras over unramified extensions of Qp, and admits
a ∗-stable maximal Zp-orderOB ⊂ B, which we fix. Moreover, we assume that there
is an OB-stable lattice Λ ⊂ V , which is self-dual under (·, ·); again, we fix such a
lattice Λ. These data define a reductive group GZp over Zp via

G(R) = {(g, λ) ∈ GLOB⊗R(Λ ⊗R)×R
× | (gv, gw) = λ(v, w)} .

Now also fix a conjugacy class of cocharacters µ : Gm → GQ̄p
such that in the

induced weight decomposition of VQ̄p
, only weights 0 and 1 appear,

VQ̄p
= V0 ⊕ V1 ,

and λ◦µ : Gm → Gm is the identity morphism. This implies, in particular, that the
subspaces V0 and V1 are totally isotropic. We let E/Qp be the field of definition of
µ. Finally, we fix an element b ∈ G(L), satisfying the compatibility b ∈ B(G,µ−1).

Set Ĕ := E · L.
Note that the condition b ∈ B(G,µ−1) together with the condition on the weights

of µ on V imply that the slopes of b on V are in [−1, 0]. In particular, in our (non-
standard) normalization of the covariant Dieudonné module, there is a p-divisible
group Xb over F̄p whose rational Dieudonné module is given by

(
V ⊗Qp L, b(id⊗ σ)

)
;

then Xb is uniquely determined up to isogeny, and its universal cover X̃b is uniquely

determined. By functoriality, Xb is equipped with an action ι : B → End(X̃b) and
with a symmetric polarization (i.e. an anti-symmetric quasi-isogeny to its dual),
with induced Rosati involution being compatible with ∗ on B.

WriteD = (B, ∗, V, (·, ·), b, µ) for the rational data andDint = (OB, ∗,Λ, (·, ·), b, µ)
for the integral data.

Definition 4.2.1. The Rapoport-Zink space MDint of PEL type associated to Dint is
the functor on NilpopOĔ

sending an OĔ0
-algebra R to the set of isomorphism classes

of pairs (G, ρ), where G is a p-divisible group over R equipped with an action of
OB and a principal polarization whose induced Rosati involution is compatible with
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∗ on OB, such that the OB-action satisfies the determinant condition (see 3.23
in [RZ96] for a precise formulation), and

ρ : Xb ×F̄p
R/p→ G ×R R/p

is a quasi-isogeny compatible with the OB-action and the polarization, up to an
automorphism of µ̃p∞,R/p.

The following combines Theorem 3.25 and §3.82 of [RZ96]. In our unramified
situation, and excluding type D, we may allow p = 2.

Theorem 4.2.2. The functor MDint is representable by a formal scheme which
locally admits a finitely generated ideal of definition. Moreover, MDint is formally
smooth.

We let MDint := (MDint)adη be the adic generic fiber associated to the formal
scheme (representing) MDint . The adic generic fiber is taken in the sense of Section
2 of [SW13]: Proposition 2.2.1 of loc. cit. gives a fully faithful functor

M 7→Mad

from formal schemes over OĔ which locally admit a finitely generated ideal of
definition to adic spaces over Spa(OĔ ,OĔ), and

Mad
η := Mad ×Spa(OĔ,OĔ) Spa(Ĕ,OĔ).

Then MDint agrees with the adic space corresponding to the usual rigid-analytic
generic fibre of MDint .

For each n ≥ 1, one can define a coverMDint,n ofMDint which parametrizes full
level n structures. More precisely, define the compact open subgroups

K0 := {g ∈ G(Qp) | gΛ = Λ}

and

Kn := {g ∈ K0 | g ≡ 1 (mod pn)}.

LetMDint,n be the functor on complete affinoid (Ĕ(ζpn),OĔ(ζpn ))-algebras parametriz-

ing OB-linear maps

Λ/pn → G[pn]adη (R,R+),

which match the pairing (·, ·) on Λ with the one induced by the polarization on
G[pn]. Here, note that the second pairing takes values in µpn , but using the fixed
primitive pn-th root of unity ζpn ∈ E(ζpn), we can identify µpn ∼= Z/pn. Then by
Lemma 5.33 of [RZ96], theMDint,n are finite étale covers ofMDint .

We can also define an infinite-level version of these Rapoport-Zink spaces.

Definition 4.2.3. LetMDint,∞ be the functor on complete affinoid (Ĕ(ζp∞),OĔ(ζp∞))-

algebras sending (R,R+) to the set of triples (G, ρ, α), where (G, ρ) ∈MDint(R,R+)
and

α : Λ→ TpG
ad
η (R,R+)

is a morphism of OB-modules such that the following conditions are satisfied.
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(1) The pairing (·, ·) on Λ matches the pairing on TpG induced by the polariza-
tion. More precisely, the diagram

Λ ⊗Zp Λ
α⊗α

//

(·,·)

��

TpG
ad
η (R,R+)⊗Zp TpG

ad
η (R,R+)

��

Zp
(1,ζp,ζp2 ,...)

// (Tpµp∞)adη (R,R+)

commutes, where the right vertical map is the pairing induced from the
polarization, and the lower map is defined using the fixed p-power roots of
unity in the base field E(ζp∞).

(2) The induced maps

Λ→ TpG
ad
η (C,C+),

are isomorphisms, for all geometric points Spa(C,C+) of Spa(R,R+).

Recall that we have the quasi-logarithm map defined in Section 3 of [SW13], which

induces a map of sheaves on complete affinoid (Ĕ,OĔ)-algebras (R,R
+):

qlogXb
: (X̃b)

ad
η (R,R+)→ D(Xb)[1/p]⊗L R.

If (R,R+) = (C,C+) is a geometric point, then the image of TpG
ad
η (C,C+)⊗Zp C

under qlogXb
can be identified with (Lie G∨)∨ ⊗ C.

The arguments in Section 6 of [SW13] give the following theorem. (The case
of Rapoport-Zink spaces of EL type is Theorem 6.5.4 of [SW13]. We remark that
[SW13] follows the conventions on b and µ in [RZ96], which differ from our conven-
tions here.)

Theorem 4.2.4. The functor MDint,∞ is representable by an adic space over

Spa(Ĕ(ζp∞),OĔ(ζp∞)). The spaceMDint,∞ is preperfectoid, and

MDint,∞ ∼ lim
←−
n

MDint,n.

Moreover, there is the following alternate description ofMDint,∞, which depends
only on the rational data D. The sheafMDint,∞ is the sheafification of the functor

on complete affinoid (Ĕ(ζp∞ ,OĔ(ζp∞ ))-algebras sending (R,R+) to the set of B-

linear maps

V → (X̃b)
ad
η (R,R+)

which match the pairing (·, ·) on V with the polarization on (X̃b)
ad
η (up to the fixed

choice of p-power roots of unity, as above) and which in addition satisfy:

(1) The image of V ⊗Qp R in D(Xb)[1/p] ⊗L R is totally isotropic under the
pairing (·, ·) induced by the identification D(Xb)[1/p] ≃ V ⊗Qp L.

(2) The quotient W of D(Xb)[1/p] ⊗L R by the image of V ⊗Qp R is a finite
projective R-module, which locally on R is isomorphic to V1⊗R as a B⊗Qp

R-module.
(3) For any point Spa(C,C+) of Spa(R,R+), the sequence

0→ V → (X̃b)
ad
η (C,C+)→W ⊗R C → 0

is exact.
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Proof. To see thatMDint,∞ is representable by a preperfectoid space, we will show
that it is a closed subfunctor of the Rapoport-Zink space at infinite levelM∞ for
the p-divisible group Xb, which is defined in Section 6.3 of [SW13]. Recall that the
space M∞ only keeps track of deformations of Xb, without the OB-action or the
polarization. By abuse of notation, let us actually denote byM∞ the base change
of this space to Spa(Ĕ(ζp∞),OĔ(ζp∞ )).

We claim that the natural (forgetful) map MDint,∞ →֒ M∞ is a closed em-
bedding. We follow Theorem 3.25 of [RZ96]. Let G be the universal p-divisible
group over M∞. The conditions that the OB-action and the polarization lift to
quasi-isogenies on G depend only on preserving the Hodge filtration on D(G)[1/p],
by Grothendieck-Messing theory, so these are closed conditions. They correspond
to restricting to a closed subset of the image of the Grothendieck-Messing period
morphism. On the other hand, the condition that a quasi-isogeny be a genuine
isogeny on the adic generic fiber is an open and closed condition. (This follows in
the same way as Proposition 3.3.3 of [SW13], which is the special case of a quasi-
isogeny from the p-divisible group Qp/Zp. In the general case, the key observation
is that {e} →֒ Hom(G1[p

n],G2[p
n])adη is an open and closed embedding when {e}

corresponds to the trivial isogeny and n ∈ Z≥1.) Finally, the condition that the
trivialization α of (TpG)

ad
η be OB-linear and respect the polarization is closed.

The first part of the theorem now follows from Theorem 6.3.4 of [SW13], which
shows that M∞ is preperfectoid and Proposition 2.3.7 of loc. cit., which shows
that a closed subspace of a preperfectoid space is preperfectoid.

For the second part, letMD,∞ be the functor defined by the rational data. There
is a natural map of functors MDint,∞ → MD,∞: For (R,R+) a complete affinoid

algebra over (Ĕ(ζp∞),OĔ(ζp∞)), let (G, ρ, α) ∈ MDint,∞(R,R+). The quasi-isogeny

ρ gives an identification X̃b ≃ G̃. The map from the rational Tate module of G to
its universal cover, precomposed with the trivialization α gives a map

V → (X̃b)
ad
η (R,R+).

By construction, this map will respect the polarization and the B-action. The
first condition is satisfied because the image of V ⊗Qp R in D(Xb)[1/p] ⊗L R can
be identified with (Lie G∨)∨ ⊗ R (see the proof of Proposition 7.1.1 of [SW13]).
The compatibility between the pairing (·, ·) on V and the polarization on G imply
that (Lie G∨)∨⊗R is totally isotropic under (·, ·). The second condition is satisfied
becauseW can be identified with Lie G⊗R. The third condition follows from [SW13,
Proposition 3.4.2 (v)].

We also recall the functor M′
∞ defined in Section 6.3 of [SW13] (which again,

we base change to Spa(Ĕ(ζp∞),OĔ(ζp∞))): this parametrizes maps

V → (X̃b)
ad
η (R,R+)

which satisfy:

(1) the quotient W of D(Xb)[1/p] ⊗L R by the image of V ⊗Qp R is a finite
projective R-module, of the same rank as that of V1.

(2) For any geometric point Spa(C,C+) of Spa(R,R+), the sequence

0→ V → (X̃b)
ad
η (C,C+)→W ⊗R C → 0

is exact.
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Lemma 6.3.6 of [SW13] shows that M∞
∼
→ M′

∞ and we have a commutative
diagram of adic spaces

MDint,∞� _

��

//MD,∞� _

��

M∞
∼

//M′
∞.

The bottom map is an isomorphism and the vertical maps are closed embeddings.
It remains to see that the top map is surjective. For this, note that there is a

p-divisible group G over MD,∞, obtained by restriction from M∞. The integral
Tate module (TpG)

ad
η is identified with the lattice Λ ⊂ V , which is stable under OB

and self-dual under (·, ·). The p-divisible group G is equipped locally onMD,∞ with
a quasi-isogeny on the special fiber to Xb. The first two conditions on the image of
V ⊗QpR ensure that the B-action and the polarization on D(Xb)[1/p]⊗LR preserve
the Hodge filtration of G, so that they define quasi-isogenies on G. The fact that
these quasi-isogenies are genuine isogenies follows from the fact that they preserve
the integral Tate module. �

From now on, we identifyMDint,∞ ≃MD,∞, so the moduli problem only depends
on the rational data D.

Recall that FℓG,µ is the flag variety over Spa(E,OE) parametrizing filtrations on
Rep G of the same type as the ascending filtration corresponding to the cocharacter
µ. On the faithful representation V of G, µ induces the decomposition

VQ̄p
= V0 ⊕ V1 ,

and the ascending filtration is given by

Fil−1,µ(VQ̄p
) := V1 and Fil0,µ(VQ̄p

) := VQ̄p
.

In the case we are considering, we can be more explicit: FℓG,µ parametrizes
B-equivariant quotients W ′ of V ⊗Qp R that are finite projective R-modules such
that

(1) the kernel of the map V ⊗R ։W ′ is totally isotropic under (·, ·) and
(2) locally on R, W ′ is isomorphic to V0 ⊗R as B ⊗Qp R-modules.

Proposition 4.2.5. There is a local Hodge-Tate period map

πHT :MD,∞ → FℓG,µ,

sending an (R,R+)-valued point of MD,∞ given by a map V → (X̃b)
ad
η (R,R+) to

the quotient of V ⊗Qp R given as the image of the map

V ⊗Qp R→ D(Xb)[1/p]⊗L R.

The local Hodge-Tate period map is G(Qp)-equivariant.

Proof. This is proved in exactly the same way as Proposition 7.1.1 of [SW13]. �

Recall that, by Theorem 3.5.9, we have a stratification of FℓG,µ by locally closed
strata indexed by elements of B(G,µ−1) and that we have fixed an element b ∈
B(G,µ−1).

Proposition 4.2.6. The local Hodge-Tate period map factors through

πb
HT :MD,∞ → FℓbG,µ.
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Proof. It suffices to check this on Spa(C,OC)-valued points. Thus, we have a p-
divisible group G/OC with extra structures, equipped with a quasi-isogeny G×OC

OC/p → Xb ×F̄p
OC/p. Moreover, there is a trivialization TpG ⊗Zp Qp = V com-

patible with all extra structures, and we have the Hodge-Tate filtration

0→ Lie G ⊗ C(1)→ TpG ⊗Zp C → (Lie G∨)∨ ⊗ C → 0 ,

where Fil−1 = Lie G ⊗ C(1), and Fil0 = TpG ⊗Zp C.
Let E be the G-bundle on XC♭ corresponding to the image of G under πHT

and the identification FℓG,µ
∼= Gr

B+
dR

G,µ . Let EV be the vector bundle on XC♭ cor-
responding to E and the faithful representation V ; note that µ is still minuscule
as cocharacter into GL(V ). Then EV is constructed from the B+

dR,C-lattice Ξ in
V ⊗Qp BdR,C inducing the above filtration on V ⊗Qp C under the Bialynicki-Birula

map. Explicitly, if ξ ∈ B+
dR,C is a generator of the maximal ideal, then the lattice

Ξx ⊂ V ⊗Qp BdR,C satisfies

V ⊗Qp B
+
dR,C ⊂ Ξ ⊂ V ⊗Qp ξ

−1B+
dR,C

and

Ξ/(V ⊗Qp B
+
dR,C) = Lie G ⊗ C .

Then EV is the modification of the trivial vector bundle V ⊗Qp OX
C♭

at the point
∞ by the lattice Ξ.

In the case of a one-step filtration, one can construct the vector bundle EV
directly: it is the unique vector bundle on XC♭ which fits into the diagram of
coherent sheaves

0 // OX
C♭
⊗Qp V // EV� _

��

// i∞∗(Lie G ⊗ C)� _

��

// 0

0 // OX
C♭
⊗Qp V // OXFF,C (1)⊗Qp V // i∞∗(V ⊗Qp C(−1)) // 0.

But then the proof of Proposition 5.1.6 of [SW13] shows that EV is the vector
bundle attached to the p-divisible group G ×OC OC/p, which is quasi-isogenous to
Xb ×F̄p

OC/p.
By unraveling the Tannakian formalism behind the construction of the G-bundle

E and keeping in mind the fact that Xb together with the B-action and polarization
determine b, we see that E ≃ Eb as G-bundles, as desired. �

Remark 4.2.7. The same proof, without keeping track of the polarization, also works
in the case of Rapoport-Zink spaces of EL type to show that the local Hodge-Tate
period map defined in Proposition 7.1.1 of [SW13] factors through FℓbG,µ.

Remark 4.2.8. We have defined the Hodge-Tate filtration in Section 2 in terms of
the p-adic étale cohomology of a universal family of abelian varieties. If A/OC is
an abelian variety and G = A[p∞], then Proposition 4.15 of [Sch12b] shows that
the Hodge-Tate filtration on TpG ⊗Zp C is compatible with the filtration defined in
Section 2, so the local and global Hodge-Tate period maps are compatible.

Definition 4.2.9. Define the sheaf AutG(X̃b) on Nilpop
W (F̄p)

by

AutG(X̃b)(R) = {α ∈ AutB(X̃b,R), β ∈ Aut(µ̃p∞,R) | α respects the polarization up to β} .
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Lemma 4.2.10. The sheaf AutG(X̃b) is representable by a formal scheme over
Spf W (F̄p), locally of the form Spf W (R) for a perfect ring R.

Proof. Forgetting all extra structures defines a closed embedding, so it is enough

to show representability of Aut(X̃) for any p-divisible group X over F̄p. We may
assume that X is completely slope divisible, i.e. that it is isomorphic to a direct
sum of slope divisible isoclinic p-divisible groups Xi, defined over a finite field, for

i = 1, . . . , r, with non-increasing slopes. Then Aut(X̃) is a closed subfunctor of
the product of two copies of H om(Xi,Xj)[1/p] over i, j ∈ {1, . . . , r} with i ≥ j,
via sending an automorphism to the endomorphism, and its inverse. Each of the
factors can be identified with the universal cover of the p-divisible group HXi,Xj .

Therefore, each of the factors is representable by a formal scheme over Spf W (F̄p),
by Proposition 4.1.2.

For the final statement, it is enough to see that AutG(X̃b)(R) = AutG(X̃b)(R/p),

and that ifR is of characteristic p, then Frobenius induces a bijection of AutG(X̃b)(R).
Both statements follow from the similar properties of universal covers of p-divisible
groups, for which see [SW13, Proposition 3.1.3]. �

In fact, one can give a more precise description of AutG(X̃b). As usual, we denote
by

ρ ∈ X∗(G)dom

the half-sum of the positive roots.

Proposition 4.2.11. Let Jb(Qp) be the locally profinite set Jb(Qp) made into a

formal scheme over W (F̄p), i.e. the sections over U ⊂ Jb(Qp) are continuous maps
U →W (F̄p). There is a natural map

AutG(X̃b)→ Jb(Qp)

all of whose fibres are isomorphic to

SpfW (F̄p)[[x
1/p∞

1 , . . . , x
1/p∞

d ]] ,

where d = 〈2ρ, νb〉.

Remark 4.2.12. Let us illustrate this result in the case Xb = µp∞ ×Qp/Zp, without

extra structures. Then there are no maps µp∞ → Qp/Zp, so AutG(X̃b) has lower
triangular form; more precisely,

Aut(X̃b) =

(
Q×

p 0

µ̃p∞ Q×
p

)
.

In this case, Jb(Qp) = Q×
p ×Q×

p , and the projection

AutG(X̃b)→ Jb(Qp)

is given by the diagonal elements. The fibres are given by the unipotent part
µ̃p∞ ∼= Spf W (F̄p)[[x

1/p∞

]].

Proof. It is enough to prove the results for AutG(X̃b) as a formal scheme over F̄p, as
all structures lift uniquely to W (F̄p) by rigidity of perfect rings. We first consider
the case when Xb has an unramified EL structure. By standard Morita arguments,
one can reduce to the case when the EL structure is given by (F,OF ), with F/Qp

an unramified extension and G = ResF/Qp
GLn. If (B,OB) is an unramified PEL
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datum and B =
∏

iBi is its decomposition into simple factors, then Xb decomposes

as
∏

i Xb,i and AutG(X̃b) =
∏

i AutGi(X̃b,i). Similarly, when B ≃Md(F ) is simple,
the equivalence of categories between p-divisible groups with (B,OB)-EL structure
and p-divisible groups with (F,OF )-structure means that it suffices to compute

AutF (X̃b). See [Ham, Section 4.1] for more details on this reduction step.
If F = Qp, then G = GLn and we are considering quasi-self-isogenies of p-

divisible groups, without any extra compatibilities. Since Xb is completely slope
divisible, we can write it as Xb = ⊕r

i=1Xi, where the Xi are isoclinic p-divisible
groups of strictly decreasing slopes λi ∈ [0, 1]. Using Corollary 4.1.10 (1), we see

that Aut(X̃b) takes the lower triangular form

Aut(X̃b) =




Aut(X̃1)

H̃X2,X1 Aut(X̃2)
...

...
. . .

H̃Xr ,X1 H̃Xr,X2 · · · Aut(X̃r)




.

Moreover, Corollary 4.1.10 (2) implies that Aut(X̃i) = Aut(X̃i)(F̄p); as

Jb(Qp) = Aut(X̃b)(F̄p) =

r∏

i=1

Aut(X̃i)(F̄p) ,

we see that projection to the diagonal defines a map

Aut(X̃b)→ Jb(Qp) .

The structure of the fibres now follows from Corollary 4.1.10 (3) and Proposi-
tion 4.1.2 (3). To check that d = 〈2ρ, νb〉, we count dimensions. More precisely,

for i > j, H̃Xi,Xj is representable by Spf F̄p[[x
1/p∞

1 , . . . , x
1/p∞

di,j
]], where di,j is the

dimension of HXi,Xj . If the height of Xi is mi, then Lemma 4.1.8 implies that the
slope of HXi,Xj is λj − λi and its dimension is di,j = mimj (λj − λi).

On the other hand, by making the root data of GLn explicit, cf. [Ham, Appendix
A], we can compute the contribution of the slopes λi, λj to 〈2ρ, νb〉. The positive
roots of GLn (corresponding to the Borel subgroup given by the upper triangular
matrices) are

R+ = {ek − el|k, l ∈ {1, . . . , n}, k < l}.

We also have

νb = (λ1, . . . , λ1︸ ︷︷ ︸
m1

, . . . , λr, . . . , λr︸ ︷︷ ︸
mr

).

The contribution coming from λi, λj to 〈2ρ, νb〉 is precisely mimj (λj − λi) = di,j .
The case of a general unramified extension F/Qp follows in the same way, by

working in the category of p-divisible groups with OF -action instead. Let d = [F :
Qp]. The theory developed in Section 4.1 can be extended to define an internal
homomorphism in the category of p-divisible groups with OF -action. If G is a p-
divisible group with OF -action, its rational Dieudonné module D(G) decomposes
as D(G) = ⊕τ :OF →֒W (F̄p)D(G)τ . Choose an embedding τ0 : OF →֒ W (F̄p) and let

DF (G) := D(G)τ0 . The analogue of Lemma 4.1.8 holds for DF and homomorphisms
of p-divisible groups with OF -action, with the same proof (but replacing ϕ by
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ϕd and embedding F into B+
cris via τ0).

19 The structure of AutF (X̃b) can now
be deduced in the same way. The dimension computation is also analogous to
the one above. Let Xb = ⊕r

i=1Xi, with the slope of the F -isocrystal attached
to Xi being equal to λi (here, 0 ≤ λi ≤ d, and λi/d is the slope of Xi as a p-
divisible group) and Xi having height mi as a p-divisible group with OF -action,
i.e. height dmi as p-divisible group. The dimension of the p-divisible group with
OF -action corresponding to the OF -linear homomorphisms between Xi and Xj is
di,j = mimj (λj − λi). On the other hand, the positive roots of ResF/Qp

GLn are

R+ = {eτ,k − eτ,l|k, l ∈ {1, . . . , n}, k < l, τ : F →֒ Q̄p}

and,

νb = (
λ1
d
, . . . ,

λ1
d︸ ︷︷ ︸

m1

, . . . ,
λr
d
, . . . ,

λr
d︸ ︷︷ ︸

mr

).

The contribution from slopes λi, λj is again di,j = mimj (λj − λi).
We now consider the case when Xb has an unramified PEL structure. Recall

that we are assuming that the PEL datum is of type (AC). By similar Morita-
theoretic arguments as above, cf. [Ham, Corollary 4.5], we can write (B,OB , ∗) =∏

i(Bi,OBi , ∗) as a product of simple PEL data. On the level of quasi-self-isogenies
we get

AutG(X̃b) =

(∏

i

AutGi(X̃b,i)

)1

→֒
∏

i

AutGi(X̃b,i),

where
(∏

i AutGi(X̃b,i)
)1

is a closed subfunctor of the product, defined by the

condition that the similitude factors on each term are the same. The group G is
defined similarly, as the closed subgroup (

∏
iGi)

1 →֒
∏

iGi. The similitude factor

on AutGi(X̃bi) defines a map

AutGi(X̃bi)→ Q×
p

which will factor as

AutGi(X̃bi)→ Jbi(Qp)→ Q×
p ,

where the latter map is the natural similitude morphism on Jbi . We see that the
result for all Gi implies the result for G, so we can assume that G is simple.

We reduce to one of the following three cases.

(1) Xb is a p-divisible group with (F,OF )-EL structure, where F/Qp is unram-
ified.

(2) Xb is a p-divisible group with (F,OF , ∗)-PEL structure, where ∗ is the
identity on F .

(3) Xb is a p-divisible group with (F,OF , ∗)-PEL structure, with Qp ⊂ F
+ ⊂ F

unramified extensions, ∗ an automorphism of order 2 and F+ = F ∗=1.

19For p-divisible groups with OF -action, there is a more restricted notion of p-divisible OF -

module; the requirement is that the two actions of OF on the Lie algebra agree. This condition
cannot be formulated for p-divisible groups with OF -action up to quasi-isogeny, and in fact for
p-divisible groups with OF -action up to quasi-isogeny, everything works very similarly to the case
of p-divisible OF -modules. For example, note that B(F,GLn) = B(Qp,ResF/Qp

GLn).
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The first case was already dealt with above. The second case corresponds to G =
GSpn/OF with n even, while the third to G = GUn/OF+ .

We explain the computation of AutG(X̃b) in the case of G = GSpn/OF . As
before d = [F : Qp], and we write Xb = ⊕r

i=1Xi, with each Xi isoclinic of slope
λi ∈ [0, d] as p-divisible group with OF -action, and the λi in strictly decreasing
order. The fact that Xb is equipped with a symmetric polarization means that
d − λi is also a slope of Xb, occuring corresponding to the same height mi as λi.

As before, the restriction of an automorphism of X̃b to the graded pieces X̃i of the
slope filtration defines the map

AutG(X̃b)→ Jb(Qp) .

The fibres of this map can be computed at the same time as the dimension, and
we concentrate on the dimension in the following. We can write

νb = (
λ1
d
, . . . ,

λ1
d︸ ︷︷ ︸

m1

, . . . ,
λr
d
, . . . ,

λr
d︸ ︷︷ ︸

mr

),

with λi +λr+1−i = d, mi = mr+1−i. Using the same choices as in [Ham, Appendix
A] and recalling that c : G→ Gm is the multiplier character, the positive roots of
G = GSpn/OF are

R+ = {eτ,k − eτ,l|k < l ∈ {1, . . . , n/2}, τ : F →֒ Q̄p}

∪{eτ,k + eτ,l − c|k 6= l ∈ {1, . . . , n/2}, τ : F →֒ Q̄p}

∪{2eτ,k − c|k ∈ {1, . . . , n/2}, τ : F →֒ Q̄p}.

We compute the contributions coming from slopes λi, λj to both the dimension of

AutG(X̃b) and to 〈2ρ, νb〉 and check that they are the same.

(1) If λj > λi ≥
d
2 , then the contribution to the dimension of AutG(X̃b) is, just

like in the EL case, di,j = mimj(λj − λi) and it matches the contribution

from
λj

d ,
λi

d to 〈2ρ, νb〉 by the same argument. Using the polarization, this

also takes care of all cases with d
2 ≥ λj > λi.

(2) If λj ≥
d
2 ≥ d − λi, with i 6= j, then the contribution to the dimension

of AutG(X̃b) is mimj(λi + λj − d). This is given by the dimension of the
internal Hom OF -module between X∨

i and Xj if j < i, computed as in the
EL case, which by the compatibility with the polarization also pins down
the quasi-isogeny between X∨

j and Xi. This matches the contribution from
λj

d , 1−
λi

d and λi

d , 1−
λj

d to 〈2ρ, νb〉, using the fact that 〈c, νb〉 = 1.

(3) If λi >
d
2 , the contribution to 〈2ρ, νb〉 from

λi

d , 1 −
λi

d is mi(mi+1)
2 (2λi −

d). This is also the dimension of the part of H omOF (X
∨
i ,Xi)[1/p] which

is compatible with the polarization. Indeed, the polarization induces an
involution on H omOF (X

∨
i ,Xi)[1/p] and we can compute the dimension of

the part fixed under the polarization using Lemma 4.1.8: the slope is 2λi

d −1

and the height of the fixed part as a p-divisible OF -module is mi(mi+1)
2 .

The case G = GUn is similar and left as an exercise. �

Remark 4.2.13. In view of the theory developed in Subsection 4.3 and Corol-

lary 4.3.9 in particular, the dimension of AutG(X̃b) should match the dimension
of central leaves inside the Newton stratum corresponding to b on the special fiber
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of a corresponding Shimura variety. This indeed agrees with the dimension of cen-
tral leaves as computed by [Ham, Corollary 7.8].

Note that there is an action of AutG(X̃b) onMDint . We let AutG(X̃b)
ad
η be its adic

generic fiber over Spa(L,OL). Then the action of AutG(X̃b)
ad
η on MDint extends

to an action on MD,∞. The map πb
HT : MD,∞ → FℓbG,µ is equivariant for this

action with respect to the trivial action on the target. We would like to say that

πb
HT : MD,∞ → FℓbG,µ is an AutG(X̃b)

ad
η -torsor. However, we have only defined

the target as a locally closed subspace of FℓG,µ. Also, the condition of being a
torsor includes the condition that the map is surjective locally in some specified
topology. It is probably necessary to use some of the fine topologies from [Wei14]
here. Thus, we content ourselves with some more basic information. Recall that
MD,∞ is preperfectoid and lives over the perfectoid field E(ζp∞)∧; thus, one can

form a perfectoid space M̂D,∞ as in [SW13, Proposition 2.3.6]. The product

M̂D,∞ ×Spa(L,OL) AutG(X̃b)
ad
η

exists in the category of adic spaces, and is still a perfectoid space, by the local
structure of the automorphism scheme. On the other hand, the space

MD,∞ ×FℓG,µMD,∞ ⊂MD,∞ ×Spa(Ĕ,OĔ)MD,∞

is preperfectoid (as this condition passes to closed subsets, cf. [SW13, Proposition
2.3.7]), so again we can pass to a perfectoid space

(MD,∞ ×FℓG,µ MD,∞)∧ .

Proposition 4.2.14. The action map

M̂D,∞ ×Spa(L,OL) AutG(X̃b)
ad
η → (MD,∞ ×FℓG,µ MD,∞)∧

is an isomorphism of perfectoid spaces.

Proof. Let (R,R+) be a perfectoid affinoid algebra over Ĕ.20 We have to construct
an inverse map

(MD,∞ ×FℓG,µMD,∞)(R,R+)→ (MD,∞ ×Spa(L,OL) AutG(X̃b)
ad
η )(R,R+) .

Given an element of the source, we have (after localization on Spa(R,R+)) two p-
divisible groups G1, G2 over R+,21 equipped with quasi-isogenies to Xb over R+/p,
and trivializations of the Tate module on the generic fibre. In particular, we get
an isomorphism of the Zp-local systems given by the Tate modules of G1 and G2
over R, in other words an isomorphism G1,R ∼= G2,R. We need to check that this
isomorphism extends to R+, as one can then compose this isomorphism with the
given quasi-isogenies to Xb over R+/p to get a self-quasi-isogeny of Xb, as desired.
In this regard, we observe the following lemma, which is a non-noetherian version
of a result of Berthelot, [Ber80].

Lemma 4.2.15. Let R+ be a Zp-algebra which is integrally closed in R = R+[1/p].
Let G, H be p-divisible groups over R+. Assume that the Newton polygon of Gs

is independent of s ∈ Spec(R+/p), and that the same holds true for H. Let fR :
GR → HR be a morphism of p-divisible groups over R. Then fR extends, necessarily

20In the proof, we are really only using that R+ ⊂ R is bounded, and that this property passes
to rational subsets.

21Here, we use that R+ ⊂ R is bounded.
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uniquely, to a morphism f : G→ H of p-divisible groups over R+ if and only if for
all geometric rank 1 points Spa(C,OC) of Spa(R,R

+), the base change fC : GC →
HC extends to a map fOC : GOC → HOC .

Proof. For each n ≥ 1, we have to check that the map G[pn]R → H [pn]R extends
to R+. Both schemes G[pn], H [pn] in question are affine, and finite locally free over
R+. Thus, the question whether this morphism extends is the question whether a
matrix with entries in R has entries in R+. As

R+ = {f ∈ R | ∀x ∈ Spa(R,R+) : |f(x)| ≤ 1} ,

we can reduce to the case of a point, i.e. R = K is a complete nonarchimedean
field, and K+ ⊂ K is an open and bounded valuation subring. We may also assume
that K is algebraically closed, and rename C = K, C+ = K+. By assumption, the
map extends to OC . Let mOC ⊂ OC be the maximal ideal; it is also contained in
C+. Then C+/mOC ⊂ OC/mOC is a valuation subring. Finally, we are reduced to
the following lemma. �

Lemma 4.2.16. Let V be a valuation ring of characteristic p with quotient field
K. Let G, H be p-divisible groups over V with constant Newton polygon. Then the
map

Hom(G,H)→ Hom(GK , HK)

is a bijection.

Remark 4.2.17. Using this lemma, one can remove the noetherian hypothesis from
the main result of [Ber80], i.e. the same fully faithfulness result holds true for any
integral domain R in place of V . Indeed, to check whether a homomorphism over
K extends to R, one has to check whether certain matrices over K have entries in
R, which can be checked on valuation rings.

Proof. The map is clearly injective. For surjectivity, we have to check as above that
certain matrices with coefficients in K have entries in V . Thus, we may assume
that K is algebraically closed.

Observe that it is enough to prove the result up to quasi-isogeny. Indeed, if
f : G→ H becomes divisible by p over K, then G[p]K ⊂ GK is killed by f , whence
its flat closure G[p] ⊂ G is killed by f , which shows that f is divisible by p.

Now, e.g. by the Dieudonné-Manin classification, both GK and HK admit a
quasi-isogeny to a completely slope divisible p-divisible group G0, H0 (defined over
F̄p ⊂ V ). We may assume that these quasi-isogenies are genuine isogenies; then
we may take their flat closures over V and divide G, resp. H , by them; thus,
we may assume that GK and HK are completely slope divisible. Then by [OZ02,
Proposition 2.3], G and H are themselves completely slope divisible. As V is
perfect, both G and H decompose as a direct sum of their isoclinic pieces, cf. [OZ02,
Proposition 1.3]; thus G ∼= G0 ×F̄p

V , H ∼= H0 ×F̄p
V .

Finally, we use that the Dieudonné module functor on V is fully faithful, cf. [Ber80].
Thus, as G andH come via base extension from F̄p, it remains to show that if (D,ϕ)
is any isocrystal over F̄p, then

(D ⊗W (F̄p)[1/p] W (V )[1/p])ϕ=1 = (D ⊗W (F̄p)[1/p] W (K)[1/p])ϕ=1 .
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We may assume that D = Dλ is simple of slope λ = s/r. In that case, we have to
prove

W (V )[1/p]ϕ
r=ps

=W (K)[1/p]ϕ
r=ps

.

Clearly, the left-hand side is contained in the right-hand side. If s 6= 0, then
the right-hand is 0, as follows by looking at the p-adic valuation of any nonzero
element. We are left with the case s = 0, where r = 1. But W (K)[1/p]ϕ=1 = Qp ⊂
W (V )[1/p]ϕ=1, finishing the proof. �

Using Lemma 4.2.15, we only have to check the result on geometric rank 1 points.
But now, by [SW13, Theorem B], p-divisible groups over OC are equivalent to pairs
(T,W ), where T is a finite free Zp-module, and W ⊂ T ⊗Zp C is the Hodge-Tate
filtration. Thus, it remains to check that the Hodge-Tate filtration is preserved,
but this is true as we started with an element of the fibre product

(MD,∞ ×FℓG,µ MD,∞)(R,R+) .

�

We also have the following surjectivity result.

Lemma 4.2.18. Let C/Ĕ(ζp∞) be a complete algebraically closed extension with
ring of integers OC . Then the map

πb
HT :MD,∞(C,OC)→ FℓbG,µ(C,OC)

is surjective.

Proof. Given x ∈ FℓbG,µ(C,OC), we get (corresponding to the representation G→

GL(V ), and using [SW13, Theorem B]) a p-divisible group G/OC with trivialized
Tate module, which by functoriality comes equipped with an action of OB and a
principal polarization. To give a point ofMD,∞(C,OC), it remains to construct a
quasi-isogeny ρ over OC/p. For this, note that the proof of Proposition 4.2.6 gives
an identification between the G-bundle EG corresponding to G, and the G-bundle
Ex corresponding to the point x. By assumption, x ∈ FℓbG,µ(C,OC), so there is
an isomorphism of G-bundles Ex ∼= Eb, which gives an isomorphism of G-bundles
EG ∼= Eb. Using Theorem 4.1.4, this gives the desired quasi-isogeny. �

Using these results, we can compute the dimension of the strata FℓbG,µ ⊂ FℓG,µ.
Here, we define the dimension as the Krull dimension, i.e. the length of the longest
chain of specializations.

Proposition 4.2.19. Let K be a complete nonarchimedean field with ring of inte-
gers OK and residue field k. Let X be a partially proper adic space over Spa(K,OK).
Then the dimension of X is equal to the maximal transcendence degree of k(x) for
x ∈ X, where k(x) is the residue field of the ring of integers OK(x) in the completed
residue field K(x) at x.

Remark 4.2.20. Recall that a map f : X → Y of analytic adic spaces is partially
proper if for any complete nonarchimedean field K with ring of integers OK ⊂ K
and open and bounded valuation subring K+ ⊂ K (so K+ ⊂ OK), the map

X(K,K+)→ X(K,OK)×Y (K,OK) Y (K,K+)

is a bijection. This is the analogue of the valuative criterion for properness in this
setup.
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Proof. As X lives over Spa(K,OK), it is analytic, and thus any point generalizes
to a rank 1 point. It is thus enough to prove the more precise assertion that for
any rank 1 point x, the dimension of the closure {x} is equal to the transcendence

degree of k(x). But the closure {x} gets identified with the Zariski-Riemann space
for k(x)/k (using partial properness), whose dimension is equal to the transcendence
degree of k(x)/k. �

Proposition 4.2.21. Let K be a complete nonarchimedean field with ring of in-
tegers OK and residue field k. Let f : X → Y be map of partially proper adic
spaces over Spa(K,OK), and fix a rank 1 point x ∈ X, with image y ∈ Y . Let

Xy = X×Y {y} be the fibre of f over y. Let {x}
X
⊂ X, {y}

Y
⊂ Y and {x}

Xy
⊂ Xy

be the respective closure. Then

dim {x}
X

= dim {y}
Y
+ dim {x}

Xy
.

Proof. Let k(x) and k(y) have the same meaning as in Proposition 4.2.19. Then the
statement translates into the additivity of transcendence degrees for the extensions
k(x)/k(y)/k. �

Proposition 4.2.22. For any complete nonarchimedean field K/OĔ, the space

AutG(X̃b)
ad ×Spa(OĔ ,OĔ) Spa(K,OK)

is partially proper over Spa(K,OK), of dimension 〈2ρ, νb〉.

Proof. The adic generic fiber is partially proper by Lemma 4.2.15. (A quasi-self-
isogeny respecting extra structures over Spa(C,OC) will also respect the extra struc-
tures when it extends to Spa(C,C+) by the injectivity of the map in Lemma 4.2.16.)

For the claim about the dimension of AutG(X̃b)
ad ×Spa(OĔ ,OĔ) Spa(K,OK), it is

enough to consider a connected component, all of which are by Proposition 4.2.11
given by

Spa(OĔ [[x
1/p∞

1 , . . . , x
1/p∞

d ]],OĔ [[x
1/p∞

1 , . . . , x
1/p∞

d ]])×Spa(OĔ,OĔ) Spa(K,OK) .

To compute the dimension, we may assume that K is algebraically closed. Then
K is perfectoid, and by tilting we can assume that K is of characteristic p. In that
case, the space is topologically the same as

Spa(OĔ [[x1, . . . , xd]],OĔ [[x1, . . . , xd]])×Spa(OĔ ,OĔ) Spa(K,OK) .

But this is the d-dimensional open unit disc over K. �

Proposition 4.2.23. The dimension of FℓbG,µ is equal to 〈2ρ, µ〉 − 〈2ρ, νb〉.

Proof. Both FℓG,µ andMD,∞ are partially proper adic spaces over Spa(Ĕ,OĔ) of
dimension 〈2ρ, µ〉. Pick any rank 1 point x ∈ MD,∞ such that the dimension of

{x} is 〈2ρ, µ〉, and let y ∈ FℓbG,µ be its image. Let ȳ be a geometric point above y,

corresponding to a completed algebraic closure C of K(y), and pick a lift of ȳ to
MD,∞, using Lemma 4.2.18. Then Proposition 4.2.21 shows that

〈2ρ, µ〉 ≤ dim {y}+ dimMD,∞,y .

But dimMD,∞,y = dimMD,∞,ȳ, and using Proposition 4.2.14 and the choice of ȳ,
one has

dimMD,∞,ȳ = dimAutG(X̃b)
ad ×Spa(OĔ,OĔ) Spa(C,OC) .
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The latter has been computed in Proposition 4.2.22, showing the inequality

dimFℓbG,µ ≥ dim {y} ≥ 〈2ρ, µ〉 − 〈2ρ, νb〉 .

For the converse, pick any rank 1 point y ∈ FℓG,µ. As before, one sees that
dimMD,∞,y = 〈2ρ, νb〉, so pick a rank 1 point x ∈ MD,∞,y whose closure is of
dimension 〈2ρ, νb〉. Applying Proposition 4.2.21, we see that the dimension of the

closure of x inMD,∞ is at least dim {y}+〈2ρ, νb〉. On the other hand, the dimension
of the closure of x is bounded by dimMD,∞ = 〈2ρ, µ〉. This shows that

dim {y} ≤ 〈2ρ, µ〉 − 〈2ρ, νb〉 ,

which (as y was arbitrary) proves the other inequality. �

4.3. A product formula. We now return to our global setting, where we want to
study the Hodge-Tate period map πHT : SKp → FℓG. Recall that we are restricting
to the case when the Shimura datum (G,X) is of PEL type.

More precisely, we fix global PEL data as follows, cf. [Kot92b, §5]. Let B be a
finite-dimensional simple Q-algebra with center F , and let V be a faithful finitely
generated B-representation. Let ∗ be a positive involution on B, and F+ = F ∗=1.
On V , we fix a nondegenerate Q-valued alternating form (·, ·) such that (bv, w) =
(v, b∗w) for all v, w ∈ V and b ∈ B. Let G/Q be the algebraic group whose R-valued
points are

G(R) = {x ∈ EndB⊗R(V ⊗R) | xx
∗ ∈ R×} .

We assume that G is connected; under the classification of [Kot92b], this amounts
to excluding type D. Finally, we fix a ∗-homomorphism h : C → EndB⊗R(V ⊗ R)
such that the symmetric real-valued bilinear form (v, h(i)w) on V ⊗ R is positive-
definite. Note that h induces a map, denoted in the same way, h : ResC/R → GR,
and in particular a Shimura datum.

We need to assume that these data are “unramified” at p. More precisely, we
assume that BQp is a product of matrix algebras over unramified extensions of Qp,
and fix a maximal Z(p)-order OB ⊂ B; we assume that ∗ preserves OB. Finally,
we assume that there exists a Z(p)-lattice Λ ⊂ V that is self-dual under (·, ·) and
stable under OB , and we fix such a Λ. Using these data, we can define a connected
reductive group GZ(p)

over Z(p) with generic fibre G as

GZ(p)
(R) = {x ∈ EndOB⊗R(Λ⊗R) | xx

∗ ∈ R×} .

We fix the hyperspecial maximal compact open subgroupKp = GZ(p)
(Zp) ⊂ G(Qp).

Let Kp ⊂ G(Ap
f ) be a compact open subgroup, and fix a place p|p of E. As

in [Kot92b], one can define a moduli space of abelian varieties with extra structures
SKpKp over OE,p ⊂ E. In most cases, the generic fibre SKpKp/E of SKpKp is the
Shimura variety corresponding to (G, {h}); in general, however, the Hasse principle
for the group G fails, and it consists of |ker1(Q, G)| copies of this Shimura variety.
Thus, the notation of this section conflicts slightly with the previous notation for
Shimura varieties of Hodge type.

Let Fq be the residue field of OE,p. The special fiber SKpKp ×OE,p Fq admits

a Newton stratification by locally closed strata S b
KpKp indexed by b ∈ B(G,µ−1),

cf. [RR96]: A point x ∈ SKpKp ×OE,p Fq gives rise to a p-divisible group with
extra structure, which can be translated into an isocrystal with G-structure, and
is classified by an element b ∈ B(G). By [RR96], this element actually lies in
B(G,µ−1).
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One of the main results of [Man05] is a decomposition of the Newton stratum

S b
KpKp into the Rapoport-Zink space Mb and the Igusa variety Igb corresponding

to b. Thus, we first recall these two objects. From the last section, we already know
the Rapoport-Zink space:

For b ∈ B(G,µ−1), choose a completely slope divisible p-divisible group Xb over
F̄q with extra structures giving rise to the σ-conjugacy class b, as in [Man05, §3].
Let Dint,b be the integral data corresponding to the base extension of B, V,OB,Λ
to Zp, and (µ, b). Then Dint,b is of PEL type, and we consider the corresponding

Rapoport-Zink spaceMb := MDint,b
, which lives overOĔ , where Ĕ is the completion

of the maximal unramified extension of Ep.
Next, we want to introduce the Igusa variety.

Definition 4.3.1. We let Igb/Spec F̄q be the functor sending an F̄q-algebra R to
the set of isomorphism classes of pairs

{(A, ρ) | A ∈ SKpKp(R) , ρ : A[p∞]
∼
→ Xb ×F̄p

R} ,

where A ∈ SKpKp(R) is an abelian variety equipped with extra structures (and
satisfying the determinant condition) and the isomorphism ρ is compatible with the
extra structures; as usual, it is only supposed to preserve the polarization up to a
scalar, i.e. an automorphism of µp∞,R.

Remark 4.3.2. This definition is different from the Igusa varieties defined in [Man05],
and we will explain their relation below.

Proposition 4.3.3. The functor Igb is representable by a scheme.

Proof. It is enough to prove that the map Igb → SKpKp ×OE,p F̄q is relatively
representable. Let A be the universal abelian variety over SKpKp . Then we are
considering the inverse limit of the schemes parametrizing isomorphisms A[pn] ∼=
Xb[p

n] compatible with extra structures, each of which is representable. �

From the definition of Igb, it is evident that the group of automorphisms of Xb

respecting the extra structures acts on it. However, we give next an alternative

description of Igb which shows that the larger group AutG(X̃b) acts on Igb.

Lemma 4.3.4. For an F̄q-algebra R, Ig
b(R) can be identified with the set of isomor-

phism classes of pairs (A, ρ̃), where A ∈ SKpKp(R) is an abelian variety considered
up to p-power isogeny (respecting the extra structures) and

ρ : A[p∞]
∼
→ Xb ×F̄p

R

is a quasi-isogeny (respecting the extra structures).

Proof. Each element (A, ρ) of Igb(R) determines a pair (A, ρ) as in the statement
of the lemma.

Conversely, given A ∈ SKpKp(R) with a quasi-isogeny

ρ : A[p∞]
∼
→ Xb ×F̄p

R ,

we can find a unique abelian variety A′ with extra structures equipped with a
p-power isogeny to A, such that A[p∞] gets identified with Xb, i.e. the induced
quasi-isogeny

ρ′ : A′[p∞]
∼
→ Xb ×F̄p

R

is an isomorphism. Then (A′, ρ′) defines a point of Igb(R), as desired. �
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Corollary 4.3.5. The formal group scheme AutG(X̃b) acts canonically on Igb.

Moreover, Igb is perfect, i.e. the Frobenius map is an automorphism.

Proof. The first part follows from Lemma 4.3.4 by acting on ρ (noting that quasi-

isogenies of Xb are the same as automorphisms of X̃b).
For the second part, we have to see that for any F̄q-algebra R, the Frobenius

of R induces an automorphism of Igb(R). But pulling back under Frobenius in-
duces an equivalence on the category of abelian varieties up to p-power isogeny
(as Verschiebung gives an inverse up to multiplication by p). Similarly, pull back
under Frobenius induces an equivalence on the category of p-divisible groups up to
quasi-isogeny, showing that the datum of ρ is preserved. �

Now we recall the more classical objects; for more details, see [Man05]. The leaf
C b corresponding to Xb is the subset of the locally closed stratum S b

KpKp ×Fq F̄q

where the fibers of the p-divisible groupA[p∞] at all geometric points are isomorphic
to Xb:

C
b :=

{
x ∈ S

b
K | Ax[p

∞]×κ(x) κ(x) ≃ Xb ×F̄p
κ(x)

}
.

This is a priori defined only as a subset of S b
KpKp ×Fq F̄q, but Proposition 1

of [Man05] shows that C b is a closed subset and defines a smooth subscheme of
S b

KpKp ×Fq F̄q when endowed with the induced reduced structure. We note that

contrary to the objects defined so far, C b depends on the choice of Xb within its
isogeny class.

Recall that

Xb = ⊕
r
i=1Xi,

where the Xi are isoclinic p-divisible groups of strictly decreasing slopes λi ∈ [0, 1].
Let Gb be the p-divisible group of the universal abelian variety A /SKpKp restricted

to C b. Then Gb is completely slope divisible, with slope filtration

0 ⊂ Gb,1 ⊂ · · · ⊂ Gb,r = Gb,

with Gib := Gb,i/Gb,i−1 isoclinic of slope λi. The OB-action on G and the polarization
respect this filtration, so that each Gib is endowed with an OB-action and there are

induced polarizations Gib → (Gjb )
∨ for all i, j with λi + λj = 1.

Definition 4.3.6. The (pro-)Igusa variety is the map

I
b
Mant → C

b

which over a C b-scheme S parametrizes tuples (ρi)
r
i=1 of isomorphisms

ρi : G
i
b ×C b S

∼
→ Xi ×Spec F̄p

S

which are compatible with the OB-actions on Gib and Xi, and commute with the
polarizations on G and Xb, up to an automorphism of µp∞,S.

Remark 4.3.7. A version of these Igusa varieties is considered in [Man05] (see also
Section II of [HT01] for the case of one-dimensional p-divisible groups). Rather
than trivializing the whole isoclinic p-divisible group Gib, one trivializes the Gib[p

m]
for some positive integer m. More precisely, let I b

Mant,m be the moduli space of

isomorphisms on C b-schemes S

ρi,m : Gib[p
m]

∼
→ Xi[p

m]×F̄p
S,
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which (fppf locally) lift to arbitrarym′ ≥ m and which respect the extra structures.
Proposition 4 of [Man05] shows that the underlying reduced subscheme of I b

Mant,m

is a finite étale and Galois cover of C b.
In view of the theory developed in Section 4.1, we can identify the set of endomor-

phisms of Xi[p
m], which lift to arbitrary m′ ≥ m, with the pm-torsion in the étale

p-divisible group HXi,Xi . Now consider the intersection of the scheme-theoretic im-
ages of the automorphisms of Xi[p

m+k] inside the automorphisms of Xi[p
m] (under

the natural restriction map). By Lemma 4.1.5, the images of A ut(Xi[p
m+k]) →֒

A ut(Xi[p
m]) will stabilize for large enough k, giving rise to an open and closed

subscheme of the finite étale scheme HXi,Xi [p
m]. This shows that I b

Mant,m → C b

is a quasitorsor under an étale group scheme. From [Man05, Proposition 4] (which
produces sections over a finite étale cover), it follows that they are actually torsors.
In particular, we see that I b

Mant,m is actually already reduced.
Thus, the scheme

I
b
Mant = lim

←−
m

I
b
Mant,m

is a pro-étale cover of C b.

Note that, as Igb is reduced, the natural map Igb → SKpKp factors over Igb →

C b. Moreover, as any homomorphism between p-divisible groups preserves the
slope filtration by Corollary 4.1.10, we see that any isomorphism Gb ∼= Xb induces
isomorphisms Gib

∼= Xi, and thus there is a natural map Igb → I b
Mant.

Proposition 4.3.8. The perfect scheme Igb is the perfection of I b
Mant, via the

natural map Igb → I b
Mant.

Proof. Let (I b
Mant)

perf be the perfection of I b
Mant. Then we claim that the p-

divisible group Gb over C b becomes canonically isomorphic to Xb when pulled back
to (I b

Mant)
perf . Recall that Gb has a slope filtration

0 ⊂ Gb,1 ⊂ · · · ⊂ Gb,r = Gb,

with Gib := Gb,i/Gb,i−1 isoclinic of slope λi. Moreover, when pulled back along
I b

Mant → C b, each Gib becomes trivialized to Xi.
The existence of the slope filtration on Gb means that we have integers 0 ≤ tr <

· · · < t2 < t1 ≤ s, such that for i = 1, . . . , r:

(1) the slope λi =
ti
s ;

(2) the quasi-isogenies

F s

pti
: Gb,i → (Gb,i)

(ps),

where F is the Frobenius isogeny, are genuine isogenies.
(3) the induced maps

F s

pti
: Gib → (Gib)

(ps)

are isomorphisms.

The inequalities between the ti imply that F s

pti
acts nilpotently on Gb,i−1. Repeated

iterations of
F s

pti
: (Gb,i)

(p−s) → Gb,i

can be used to construct canonical splittings Gib →֒ Gb,i over (I
b
Mant)

perf .
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Thus, G decomposes canonically into G1 × · · · × Gr over (I b
Mant)

perf , and this is
trivialized to X1 × · · · × Xr = Xb, as desired. �

We remark that Jb(Qp) ⊂ AutG(X̃b) acts on Igb. However, only a certain sub-
monoid of Jb(Qp) acts on I b

Mant; Mantovan, [Man05], does however construct a
canonical action of Jb(Qp) on the étale cohomology of I b

Mant. From Proposi-
tion 4.3.8, it follows that the étale cohomology of I b

Mant is also the étale cohomology

of Igb, on which we have a natural action of Jb(Qp). We leave it to the reader to
verify that this is the same action as the one constructed by Mantovan.

Corollary 4.3.9. The map Igb → C b is faithfully flat.

As the map is obviously a quasitorsor under the automorphisms of Xb respecting
the extra structure, this implies that it is in fact a torsor under this group. Note
that C b is smooth, while the scheme of automorphisms of Xb is a highly nonreduced

object like SpecF̄p[[X
1/p∞

1 , . . . , X
1/p∞

d ]]/(X1, . . . , Xd). The fact that a torsor under
this group over something smooth is a perfect scheme forces the smooth directions
of the base to match with the nonreduced directions of the group, so that one can
deduce that the dimension of C b is d = 〈2ρ, νb〉, for example by looking at the
transitivity triangle for the cotangent complex.

Proof. As I b
Mant is a cofiltered limit of smooth schemes along affine transition maps,

its Frobenius morphism is (faithfully) flat, and thus Igb → I b
Mant is faithfully flat.

We have already seen that I b
Mant → C b is faithfully flat, so we get the result. �

As Igb is a perfect scheme, it lifts uniquely to a flat p-adic formal scheme over
W (F̄q) = OĔ , which we denote by IgbOĔ

. As a moduli problem on Nilpop
OĔ

, it

parametrizes abelian varieties up to p-power isogeny in SKpKp , equipped with an

isomorphism of Ã[p∞] with (the canonical lift of) X̃b, respecting all extra structures.

One can also describe this deformation of Igb to mixed characteristic differently.
For this, fix a lift (Xb)OK of Xb up to quasi-isogeny (with its extra structures) to

OK , where OK is the ring of integers of some complete nonarchimedean field K/Ĕ;

in other words, pick a point (Xb)OK ∈Mb(OK). This is possible (with K = Ĕ), as
Mb is formally smooth. One gets the following lemma.

Lemma 4.3.10. The points of the formal scheme IgbOK
= IgbOĔ

×OĔ
OK over

R ∈ Nilpop
OK

are given by the pairs (A, ρ), where A ∈ SKpKp(R) is an abelian
variety with extra structure, and

ρ : A[p∞]
∼
→ (Xb)OK ×OK R

is an isomorphism compatible with the extra structure. �

We will also need a variant of Igusa varieties, where one trivializes A[p∞] only
up to quasi-isogeny.

Definition 4.3.11. Let Xb be the functor sending R ∈ Nilpop
OE,p

to the set of pairs

(A, ρ), where A ∈ SKpKp(R) is an abelian variety with extra structure, and

ρ : A[p∞]×R R/p→ Xb ×F̄q
R/p

is a quasi-isogeny compatible with the OB-action and the polarization, up to an
automorphism of µ̃p∞,R/p.
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Fix a lift (Xb)OK of Xb to OK as above. We define a map of formal schemes over
OK ,

IgbOK
×OĔ

Mb → Xb
OK

.

For R ∈ NilpopOK
, let

(A, ρ), (G, ρ′) ∈ (IgbOK
×Mb)(R) .

Thus, A ∈ SKpKp(R) is an abelian variety with extra structure, equipped with an
isomorphism

ρ : A[p∞] ∼= (Xb)OK ×OK R .

On the other hand, G is a p-divisible group with extra structure over R, equipped
with a quasi-isogeny ρ′ to Xb over R/p, which lifts uniquely to a quasi-isogeny
(denoted in the same way)

ρ′ : G → (Xb)OK ×OK R .

We get the composite quasi-isogeny G → A[p∞]. It follows that there is a unique
quasi-isogeny of p-power order A′ → A such that A′[p∞] → A[p∞] gets identified
with G → A[p∞]. This defines a new point A′ ∈ SKpKp(R), which comes equipped
with a quasi-isogeny

ρ′ : A′[p∞] = G → (Xb)OK ×OK R ,

and in particular a quasi-isogeny to Xb over R/p.

Lemma 4.3.12. The map constructed above induces an isomorphism, and fits into
a commutative diagram

IgbOK
×OĔ

Mb

��

∼=
// Xb

OK

��

Mb Mb.

Here, the first vertical map is projection onto the second factor, and the second
vertical map sends (A, ρ) ∈ Xb to (A[p∞], ρ) ∈Mb.

In particular, choosing K = Ĕ above, Xb is representable by a formal scheme.

Proof. The diagram commutes by construction.
We now define the inverse of the top horizontal map: suppose we are given a

pair (A′, ρ′) ∈ Xb(R). In order to define (G, ρ′) ∈Mb(R) we just take (A′[p∞], ρ′).
From the quasi-isogeny

ρ′ : A′[p∞]→ (Xb)OK ×OK R ,

we find a quasi-isogeny of p-power degree A′ → A such that the induced quasi-
isogeny

ρ : A[p∞]→ (Xb)OK ×OK R

is an isomorphism, so we get (A, ρ) ∈ IgbOK
(R). It is easy to verify that this

construction is inverse to the horizontal map. �

We would like to say that Xb is an AutG(X̃b)-torsor over the completion of SKpKp

along S b
KpKp . It is clear that it is a quasitorsor, and it remains to show that the

map is locally surjective in some topology, the naive choice of course being the fpqc
topology.
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If this were true, then one could take the pushout along AutG(X̃b)→ Jb(Qp) to
get a Jb(Qp)-torsor over S b

KpKp . This Jb(Qp)-torsor can in fact be constructed, as

in the following proposition (which will not be used in the sequel, but is included
as it fits the current discussion).

Proposition 4.3.13. Let S be a scheme over F̄p, and let X be a p-divisible group
with extra structure over S. Assume that there is some b ∈ B(G) such that all fibres
of X are quasi-isogenous to Xb (compatibly with extra structures). Then there is a
natural Jb(Qp)-torsor over S which above any geometric point x̄ ∈ S parametrizes
quasi-isogenies between Xx̄ and Xb (compatible with extra structures).

Remark 4.3.14. The Jb(Qp)-torsor is to be understood as in [BS15a]; more precisely,
there is a sheaf of (abstract) groups on Sproét corresponding to the topological group
Jb(Qp), and we are considering a torsor on Sproét under this sheaf of groups. If S is
connected and locally topologically noetherian and x̄ ∈ S is a geometric base point,
this corresponds to a map

πproét
1 (S, x̄)→ Jb(Qp) .

This map, and the Jb(Qp)-torsor, only depend on X up to isogeny. We remark
that the displayed map may have noncompact image in general, but the image is
compact in case X admits a slope decomposition (or is isogenous to such an X);
this explains [OZ02, Example 4.2], where a p-divisible group over a non-normal
base is constructed which is not isogenous to one admitting a slope filtration. We
remark that most Newton strata, e.g. the basic one, give such examples: For the
basic Newton stratum, the image of the displayed homomorphism is a discrete
cocompact subgroup of Jb(Qp) related to p-adic uniformization.

Proof. We may assume that S is perfect. In that case, we consider the functor
sending any T ∈ Sproét to the set of quasi-isogenies between XT and (Xb)T , re-
specting extra structures. This is a Jb(Qp)-quasitorsor, and we want to prove that
it is a torsor.

First, we check this when S is strictly local, so assume S = Spec R is the
spectrum of a strictly henselian perfect ring R. In that case, we need to show
that there is a quasi-isogeny between X and Xb, compatible with extra structures.
As there is such a quasi-isogeny over the special point, the result follows from the
following lemma.

Lemma 4.3.15. Let R be a strictly henselian perfect ring with residue field k. Then
the functor G 7→ Gk from the category of p-divisible groups over R with constant
Newton polygon, up to isogeny, to p-divisible groups over k up to isogeny is an
equivalence of categories.

Remark 4.3.16. In fact, the proof will show that if G and H are p-divisible groups
with constant Newton polygon over R, then there is a constant c depending only
on the heights of G and H such that for any homomorphism ψk : Gk → Hk over k,
pcψk lifts to a (necessarily unique) homomorphism G→ H . (Cf. [OZ02, Corollary
3.4].)

Proof. Choose an embedding F̄p →֒ R. Assume for the moment that we know
that any p-divisible group G over R with constant Newton polygon is isogenous
to G0,R := G0 ×F̄p

R for some p-divisible group G0 over F̄p. By the Dieudonné-
Manin classification, the functor in the lemma is essentially surjective. To check
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fully faithfulness of the functor, we may restrict to calculating HomR(G,H)[1/p]
where G = G0,R, H = H0,R. By fully faithfulness of the Dieudonné module func-
tor over perfect rings (first deduced by Gabber from results of Berthelot, [Ber80],
cf. also [Lau13, Theorem D]), it is then enough to check that for any isocrystal
(D,ϕ) over F̄p,

(D ⊗W (R)[1/p])ϕ=1 = (D ⊗W (k)[1/p])ϕ=1 .

We may assume that D = Dλ is simple of slope λ; if λ 6= 0, then there are no
ϕ-invariants, and if λ = 0, then both sides are equal to Qp.

It remains to see that any p-divisible group G over R with constant Newton
polygon is isogenous to a constant p-divisible group.22 More precisely, choose a
completely slope divisible G0/F̄p with an isogeny ψk : Gk → G0,k which one can
assume to be of degree bounded only in terms of the height h of G. Then we claim
that there is a (necessarily unique) quasi-isogeny ψ : G → G0,R lifting ψk, and
whose degree is bounded only in terms of h; i.e. there is a constant c = c(h) such
that pcψ : G→ G0,R is an isogeny.

For this, assume first that R is an integral domain, with quotient field K. By
Lemma 4.2.16 (cf. Remark 4.2.17), the functor from p-divisible groups over R to
p-divisible groups over K is fully faithful. We can find an isogeny ψ′

K : GK → G0,K

of degree bounded only in terms of h, which then extends to a map ψ′ : G→ G0,R

of degree bounded only in terms of h. Over k, ψk and ψ′
k differ by a quasi-isogeny

of G0 of bounded degree; correcting ψ′ by this quasi-isogeny gives the desired quasi-
isogeny ψ : G→ G0,R lifting ψk, which is of bounded degree.

In general, let {pi} be the minimal prime ideals of R (which may be infinitely
many);23 then the result holds true over each R/pi, which is still a strictly henselian

perfect ring. Let R̃ ⊂
∏

iR/pi be the subring of those elements f = {fi ∈ R/pi}

for which f̄ := f̄i ∈ k is independent of i. Then R̃ is another strictly henselian
perfect ring, R →֒ R̃, and there is an isogeny

ψR̃ : GR̃ → G0,R̃ .

Indeed, pcψR̃ will be an actual isogeny, and then to write down this isogeny, one

has to write down many matrices with entries in R̃; but one has these matrices
with entries in R/pi for each i, reducing to the same matrix over k. It remains to

see that ψR̃ is defined over R, i.e. that some matrices with coefficients in R̃ have

coefficients in R. For each i, R̃/piR̃ is a strictly henselian perfect ring, so ψR̃/piR̃

is uniquely determined; by uniqueness, it must be given by the base extension of
ψR/pi

, which is already known to exist. Thus, we finish by observing that

R = {f ∈ R̃ | ∀i : f mod pi ∈ R/pi ⊂ R̃/piR̃} .

To verify the displayed equation, we observe that R → R̃ is a v-cover in the sense
of [BS15b], so that by [BS15b, Theorem 4.1 (i)] (applied to E = OX)

R = {f ∈ R̃ | f ⊗ 1 = 1⊗ f ∈ R̃⊗R R̃} .

22Cf. [OZ02, Corollary 3.6] in the case where R is the perfection of a noetherian strictly
henselian ring R′ and G is defined over R′.

23If there are only finitely many, e.g. if S is the perfection of a noetherian scheme, one can
argue as in [OZ02, end of proof of Proposition 3.3].
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As everything is reduced, the latter equality can be checked as a system of equalities
in

(R̃ ⊗R R̃)/pi(R̃⊗R R̃) = R̃/piR̃⊗R/pi
R̃/piR̃ ,

as desired. �

Now we go back to a general perfect base scheme S. We need to find a quasi-
isogeny between X and Xb (compatible with extra structures) locally on Sproét. For
any geometric point x̄ ∈ S, we can find such a quasi-isogeny over Sx̄. Thus, fixing
any n, after replacing S by an étale neighborhood of x̄ and X by a quasi-isogenous
p-divisible group, we can assume that there is an isomorphism X[pn] ∼= Xb[p

n]
compatible with extra structure.

In that case, we can look at the Kb-quasitorsor S̃ → S of isomorphisms XT
∼=

(Xb)T compatible with extra structures on the category of perfect S-schemes T ,
where Kb ⊂ Jb(Qp) is the compact open subgroup of automorphisms of Xb, com-

patible with extra structures. Note that S̃ is representable by a perfect scheme.
We claim that if n was chosen large enough (depending only on Xb), then this

quasitorsor is a torsor, i.e. S̃ → S is faithfully flat. This will then give the desired
quasi-isogeny locally on Sproét (namely over the pro-étale cover S̃ → S).

To show that S̃ is a torsor, we need to see that it is faithfully flat, so we can
assume that S = Spec R is strictly local. We need to show that there is an
isomorphism X ∼= (Xb)R compatible with extra structures, assuming that such an
isomorphism exists on pn-torsion for n big enough.

As before, let k be the residue field of R. Then Xk and Xb have isomorphic pn-
torsion; from [Sch13a, Lemma 4.4] one deduces that there is an isomorphism ψx :
Xb
∼= Xk compatible with extra structures, if n was chosen large enough; moreover,

one can assume that this isomorphism reduces to the given one Xb[p
n] ∼= Xk[p

n]
on pn/2-torsion (say, n = 2m is even). From Lemma 4.3.15 and Remark 4.3.16, we
see that ψx lifts to a quasi-isogeny ψ : (Xb)R → X, such that pcψ : (Xb)R → X
and pcψ−1 : X→ (Xb)R are actual isogenies, where c is a constant depending only
on Xb. Then the kernel G ⊂ (Xb)R of pcψ is contained in the p2c-torsion; thus, it
is the kernel of pcψ : (Xb)R[p

2c] → X[p2c] ∼= (Xb)R[p
2c] (if m ≥ 2c, which we may

assume). By choosing m large enough and using Lemma 4.1.5, we may arrange
that pcψ lies in HXb,Xb

[p2c](R). But as R is strictly henselian perfect,

HXb,Xb
[p2c](R) = HXb,Xb

[p2c](F̄p) .

It follows that G ⊂ (Xb)R is constant, G = G0,R, for G0 ⊂ Xb, with Xb/G0
∼= Xb

compatibly with extra structures (as this is true over k). But then pcψ factors over
an isomorphism

(Xb/G0)R ∼= X ,

where the left-hand side is isomorphic to (Xb)R. This gives the desired isomorphism
X ∼= (Xb)R compatible with extra structures. �

Now we go back to the study of Igusa varieties. Let X b := (Xb)adη be the adic

generic fiber of the formal scheme Xb.

Definition 4.3.17. Let X b
∞ be the functor on complete affinoid (Ĕ(ζp∞),OĔ(ζp∞))-

algebras sending (R,R+) to the set of triples (A, ρ, α), where (A, ρ) ∈ X b(R,R+)
and

α : Λ→ TpA
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is a morphism of OB-modules such that

(1) the pairing (·, ·) on Λ matches the pairing on TpA induced by the polariza-
tion and the fixed choice of p-power roots of unity, and

(2) the induced maps

Λ→ TpA
ad
η (C,C+),

on all geometric points Spa(C,C+) of Spa(R,R+) are isomorphisms.

Remark 4.3.18. There are natural maps Xb → Mb and X b
∞ → M

b
∞, defined by

sending an abelian variety to its p-divisible group. We can check on the level of
moduli problems that X b

∞ fits into the Cartesian diagram

X b
∞

//

��

Mb
∞

��

X b //Mb ,

therefore it is representable by an adic space.

We let (IgbOK
)adη be the generic fiber of the formal scheme IgbOK

.

Corollary 4.3.19. We have an isomorphism

(IgbOK
)adη ×Spa(Ĕ,OĔ)M

b
∞

∼
→ X b

∞,K .

In particular, X b
∞ is preperfectoid.

Proof. The first part follows from the decomposition of Xb in Lemma 4.3.12, and the
cartesian diagram of Remark 4.3.18. The final assertion follows formally from the
facts thatMb

∞ is preperfectoid, and that IgbOK
is locally of the formW (R)⊗OĔ

OK

for a perfect ring R, so that (if K is perfectoid) its generic fibre is a perfectoid
space. �

We let X̂ b
∞ be the perfectoid space associated with X b

∞ as in [SW13, Proposition
2.3.6]. Let SKp be the perfectoid infinite-level Shimura variety over Ep. Let S

b
Kp ⊂

SKp be the locus of those points Spa(K,K+) → SKp over which the universal
abelian variety over K extends to K+, and defines a point of S b

KpKp over the

residue field of K+. This is the preimage under the continuous specialization map
of the locally closed subset S b

KpKp ⊂ SKpKp ×OE,p Fq, and thus SbKp ⊂ SKp is a

locally closed subset.

Lemma 4.3.20. The perfectoid space X̂ b maps to SbKp by forgetting the quasi-
isogeny ρ and toMb

∞ by sending (A, ρ) to (A[p∞], ρ). The induced map

X̂ b
∞ → (Mb

∞ ×FℓG,µ S
b
Kp)∧

is an isomorphism of perfectoid spaces.

In other words,

X b
∞

//

��

Mb
∞

πb
HT

��

SbKp

πHT
// FℓG,µ

becomes a Cartesian diagram when one takes points over a perfectoid space.
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Proof. Note that the diagram commutes by Remark 4.2.8. Therefore, the map in
the lemma is well-defined. We first check the fact that the diagram is Cartesian on
(C,OC)-points, where C/Ĕ(ζp∞) is complete and algebraically closed with ring of
integers OC . A (C,OC)-point of S

b
Kp gives rise to a couple (A, α), where A/OC is

an abelian variety with extra structures and α : Λ→ TpA(C,OC) is an isomorphism
compatible with extra structures. A (C,OC)-point ofM

b
∞ gives us a triple (G, β, ρ),

where G/OC is a p-divisible group with extra structures, β : Λ
∼
→ TpG(C,OC) is

a trivialization of its integral Tate module and G ×OC OC/p → Xb ×F̄p
OC/p is a

quasi-isogeny.
The fact that (A, α) and (G, β, ρ) are mapped to the same point of FℓG,µ under

πHT and πb
HT means that the Hodge-Tate filtrations on TpA ⊗ C and TpG ⊗ C

are identified under the isomorphism β ◦ α−1. Now [SW13, Theorem B] gives an
isomorphism A[p∞] ∼= G extending the given isomorphism on the generic fibre.
Thus, the given data assemble into a point of X b

∞, and one checks that these
constructions are inverse.

Now, if (R,R+) is any perfectoid affinoid Ĕ(ζp∞)-algebra, one gets similar data
(A, α), (G, β, ρ) over R+. One has to check that the isomorphism β ◦ α−1 between
A[p∞]R and GR extends to R+. This follows from Lemma 4.2.15 above. �

Putting together Remark 4.3.18 and Lemma 4.3.20, we get a diagram with Carte-
sian squares (the right one when evaluated on perfectoid spaces)

Xb

��

X b
∞

oo //

��

SbKp

πb
HT

��

Mb Mb
∞

oo
πHT

// FℓG,µ .

4.4. Étale cohomology. Fix a prime ℓ 6= p, and consider the map

πHT : SKp → FℓG,µ .

In this final subsection, we use the geometric results established so far to identify
the fibres of F = RπHT∗Z/ℓnZ with the cohomology of Igusa varieties. In this
section, we make the additional assumption that SKpKp is proper over OE,p. It is
known that this is equivalent to asking that G is anisotropic over Q, cf. [Lan11].

Let C be a complete algebraically closed extension of Ĕ(ζp∞), with an open
and bounded valuation subring C+ ⊂ C, and fix a point x ∈ FℓG,µ(C,C

+); we
assume that C is the completed algebraic closure of the residue field of FℓG,µ at
the underlying (topological) point. We are interested in understanding the stalk
Fx = (RiπHT∗Z/ℓnZ)x. In this respect, we have the following general base change
lemma.

Lemma 4.4.1. Let f : Y → X be a quasicompact and quasiseparated map of
analytic adic spaces, and for definiteness assume that X is either a locally strongly
noetherian adic space or a perfectoid space over Spa(Zp,Zp), and Y is perfectoid.24

Let x ∈ X be a point with residue field K(x) and open and bounded valuation
subring K(x)+. Let C(x̄) be a completed algebraic closure of K(x) with an open and

24We only need to know that they have well-defined étale sites, and that the same holds for all
fibres of f over geometric points. For example, the lemma is also true when one asssumes instead
that both X and Y are perfectoid.
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bounded valuation subring C(x̄)+ ⊂ C(x̄) lifting K(x)+, giving rise to a geometric
point x̄ = Spa(C(x̄), C(x̄)+)→ X. Let

Yx̄ = (Y ×X Spa(C(x̄), C(x̄)+))∧

be the fibre of Y over x̄, which is a perfectoid space over C(x̄). For any sheaf G of
abelian groups on Yét and all i ≥ 0, the natural map

(Rif∗G)x̄ → Hi(Yx̄,G)

is an isomorphism.

Here, and in the following, these statements will also be true for sheaves of groups
and i = 0, 1, and sheaves of sets and i = 0. We will not spell this out.

Proof. Let Uj = Spa(Rj , R
+
j ) → X be a cofinal system of affinoid étale neighbor-

hoods of x̄; then
Spa(C(x), C(x)+) ∼ lim

←−
j

Spa(Rj , R
+
j ) ,

and one has
(Rif∗G)x̄ = lim

−→
j

Hi(Y ×X Spa(Rj , R
+
j ),G) .

It remains to see that

lim
−→
j

Hi(Y ×X Spa(Rj , R
+
j ),G) = Hi(Yx̄,G) .

But this follows from Yx̄ ∼ lim
←−j

Y ×X Spa(Rj , R
+
j ) (cf. [SW13, Proposition 2.4.3]),

where all terms are quasicompact and quasiseparated, and the resulting consequence
for étale cohomology, cf. [Sch12a, Corollary 7.18].25 �

In particular, the fibre

(RiπHT∗Z/ℓ
nZ)x = Hi(SKp,x,Z/ℓ

nZ) .

Next, we reduce to the case of rank 1 points. For this, we use the following lemma.

Lemma 4.4.2. Let X be a quasicompact and quasiseparated analytic adic space,
and for definiteness assume that X is a perfectoid space.26 Let U ⊂ X be a quasi-
compact open subset which contains all rank 1 points of X. Then, for any locally
constant sheaf G of abelian groups on Xét and all i ≥ 0, the natural map

Hi(X,G)→ Hi(U,G)

is an isomorphism.

Proof. Let j : U →֒ X be the inclusion. It is enough to prove that G → Rj∗G is an
isomorphism. This can be checked on geometric points, which, using Lemma 4.4.1,
reduces us to the case X = Spa(C,C+) for some complete algebraically closed field
C with an open and bounded valuation subring C+ ⊂ C. Then U = Spa(C,D+)
for a different open and bounded valuation subring D+ ⊂ C, containing C+. As
X is strictly local, the sheaf G is the constant sheaf associated with some abelian
group G. But as any étale cover of X splits, one has RΓ(X,G) = G, and similarly
for U , giving the result. �

25In the discussion around [Sch12a, Corollary 7.18], the Xi are assumed to be strongly noe-
therian; the discussion is also valid if all Xi are perfectoid.

26Again, the lemma also holds true when X is a strongly noetherian adic space, or whenever
X has a well-behaved étale site.
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Applying Lemma 4.4.2 to the inclusion SKp,x̃ ⊂ SKp,x shows that

(RiπHT∗Z/ℓ
nZ)x = (RiπHT∗Z/ℓ

nZ)x̃ = Hi(SKp,x̃,Z/ℓ
nZ) .

Thus, we will from now on assume that x = x̃ is a rank 1 point, and write C+ = OC .
Now choose b ∈ B(G,µ−1) such that x ∈ FℓbG,µ. If y ∈ SKp,x is any (geometric)

rank 1 point, the argument of Lemma 4.2.18 shows that y ∈ SbKp . Thus, SbKp,x =

SKp,x ×SKp SbKp ⊂ SKp,x is a quasicompact open subset with the same rank 1
points, so applying Lemma 4.4.2 once more, we see that

(RiπHT∗Z/ℓ
nZ)x = Hi(SbKp,x,Z/ℓ

nZ) .

Now we apply Lemma 4.2.18 to lift x ∈ FℓbG,µ(C,OC) to a point z ∈ M
b
∞(C,OC),

giving rise in particular to a p-divisible group (Xb)OC (with extra structures) lifting
Xb. Then Lemma 4.3.20 identifies the fibre SbKp,x with the fibre X b

∞,z . This, in

turn, gets identified with (IgbOC
)adη by Corollary 4.3.19. Combining the discussion

so far, we see that

(RiπHT∗Z/ℓ
nZ)x = Hi((IgbOC

)adη ,Z/ℓ
nZ) .

Next, we pass to the special fibre.

Lemma 4.4.3. Let X/F̄p be a perfect scheme and let C be a complete algebraically
closed nonarchimedean field whose residue field contains F̄p. Let XOC be the flat
formal scheme over Spf OC which is the unique lifting of X ×F̄p

OC/p, and let

XC = (XOC )
ad
η be its generic fibre, which is a perfectoid space. For all i, the

canonical maps

Hi(X,Z/ℓnZ)← Hi(XOC ,Z/ℓ
nZ)→ Hi(XC ,Z/ℓ

nZ)

are isomorphisms.

Proof. The question is local on X , so we can assume that X is affine. Then we
can write X = lim

←−
Xj as a cofiltered inverse limit of affine schemes Xj which are

perfections of schemes of finite type over F̄p. One also gets XC ∼ lim
←−j
Xj,C , so

all cohomology groups in question become a filtered colimit over j; thus, we can
assume that X is the perfection of an affine scheme X0 of finite type. Then the
cohomology of X agrees with the cohomology of X0.

Moreover, the cohomology of XOC is the same as the cohomology of its special
fibre X ×F̄p

k, where k is the residue field of OC , which in turn agrees with the
cohomology of X0 ×F̄p

k. Thus, the first map is an isomorphism by invariance of
étale cohomology under change of algebraically closed base field.

Also, under tilting, the étale cohomology of XC agrees with the étale cohomology
of XC♭ . We may thus assume that C is of characteristic p. In that case, one can
also form X0,OC = X0 ×Spec F̄p

Spf OC and its generic fibre X0,C , which is a rigid-
analytic variety over C, with XC ∼ lim

←−Frob
X0,C . Thus, the cohomology of XC

agrees with the cohomology of X0,C . Finally, we are reduced to proving that the
map

Hi(X0,OC ,Z/ℓ
nZ)→ Hi(X0,C ,Z/ℓ

nZ)

is an isomorphism. The right hand side can be computed, by [Hub96, Corollary
3.5.17], in terms of Hi−j(X0 ×F̄p

k,RjψZ/ℓnZ).

It is enough to see that, if X0 is a scheme of finite type over F̄p, then the complex
of nearby cycles ofX0,C = X0×F̄p

C is quasi-isomorphic to the constant sheaf Z/ℓnZ.
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By [SGA73, XIII 2.1.4], we can compute the stalk of RjψZ/ℓnZ at a geometric
point x̄ as Hj((X0,OC )x̄ × C,Z/ℓnZ), with (X0,OC )x̄ the strict henselization of
X0,OC = X0 ×F̄p

OC at x̄. We conclude, since the map X0,C → Spec OC is the

base change along the map Spec OC → Spec F̄p of the universally locally acyclic
map X0 → F̄p. (For universal local acyclicity, we use the definition of [Del77].
Every scheme of finite type is universally locally acyclic over a point, cf. [Del77,
Th. finitude, Théorème 2.13].) �

Thus, we get
(RiπHT∗Z/ℓ

nZ)x = Hi(Igb,Z/ℓnZ) ,

where Igb/F̄p is the perfect scheme introduced in Definition 4.3.1. Using Proposi-
tion 4.3.8, we finally arrive at the following formula.

Theorem 4.4.4. For any geometric point x̄ of FℓG,µ contained in FℓbG,µ, there is
an isomorphism

(RiπHT∗Z/ℓ
nZ)x̄ = Hi(Igb,Z/ℓnZ) = lim

−→
m

Hi(I b
Mant,m,Z/ℓ

nZ) .

It (only) depends on the choice of a lift of x̄ to Mb
∞, and is compatible with the

Hecke action of G(Ap
f ). �

One can formulate a version of this result where one replaces Z/ℓnZ by the local
system corresponding to an algebraic representation ξ.



70 A. CARAIANI AND P. SCHOLZE

5. The cohomology of Igusa varieties

The goal of this section is to compute the alternating sum of cohomology groups
[H(Igb, Q̄ℓ)] as a virtual representation of G(Ap

f )×Jb(Qp). We will work with (the

Igusa varieties corresponding to) unitary Shimura varieties. Our setup is similar to
that of [SS13] (see Section 5.1 for more detail) and we intend to prove a version of
Theorem 6.1 of [Shi11] in this situation.

By Proposition 4.3.8 and since perfection does not change the étale topos, it is
enough to work with the classical objects I b

Mant. By Poincaré duality, it is enough to
compute the alternating sum of the compactly supported cohomology groups. Sug
Woo Shin has derived a formula for the alternating sum [Hc(I

b
Mant, Q̄ℓ)] as a sum of

stable orbital integrals for G and its elliptic endoscopic groups (see Theorem 5.2.3).
We reinterpret this formula as the geometric side of the twisted trace formula and
compare it to the spectral side.

5.1. Setup. We assume that F = F+·K is the composition of a totally real field F+

and an imaginary quadratic field K. Let c ∈ Gal(F/F+) be the non-trivial element.
Let G/Q be a unitary similitude group preserving an alternating hermitian form
〈 , 〉 on an F -vector space V of dimension n. Let SplF/F+ denote the set of rational

primes v such that every prime of F+ above v splits in F . We make the following
further assumptions on F and G.

(1) F+ 6= Q;
(2) the set of rational primes which are ramified in F is contained in SplF/F+ ;

(3) G is quasi-split at all finite places.

See Section 10 of [SS13] for a discussion of these conditions. The first two are
imposed to avoid issues with L-packets and base change for unitary groups.27 The
third condition implies that endoscopic representations will contribute to [Hc(I

b
Mant, Q̄ℓ)],

and is thus in some sense the hardest case.
Let h : C→ EndF (V )R be an R-algebra homomorphism such that h(zc) = h(z)c

for all z ∈ C and such that the bilinear pairing (v, w) 7→ 〈v, h(i)w〉 is symmetric
and positive definite. Then (F, c, V, 〈 , 〉, h) is a Shimura datum of PEL type. The
fact that c is an involution of the second kind implies that the PEL datum is of
type (A), according to the classification on page 375 of [Kot85].

The R-algebra homomorphism h induces a homomorphism of algebraic groups
h : ResC/RGm → GR. Then (G, {h}) is a Shimura datum as in Section 2.1. For K ⊂
G(Af ) an open compact subgroup, we can define the Shimura variety SK , which has
a model over the reflex field E. Let µ be the Hodge cocharacter corresponding to
h. We follow the slight abuse of notation in denoting by SK not the actual Shimura
variety, but the PEL moduli problem, which is the disjoint union of |ker1(G,Q)|

copies of the actual Shimura variety. This factor |ker1(Q, G)| will thus appear in
many formulas below.

Also assume that the prime p is unramified in F and splits in K (so, in particular,
it lies in SplF/F+).

Let p be a prime in the reflex field E of the Shimura datum above the rational
prime p. Let K ⊂ G(Af ) be a compact open subgroup which is sufficiently small
and has the form KpKp, such that Kp ⊂ G(Qp) is hyperspecial. The fact that p is
unramified in F means that good integral models SK of SK exist over OEp

.

27Actually, (2) implies (1).
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We fix a field isomorphism ιℓ : Q̄ℓ
∼
→ C throughout. If G is a topological group,

such that every neighborhood of the identity contains a compact-open subgroup
and Ω is an algebraically closed field of characteristic 0, we let C∞

c (G) be the space
of smooth, compactly supported, Ω-valued functions on G (usually they will be
C-valued; if they are valued in Q̄ℓ, then by smooth we mean locally-constant). We
let Irr(G) denote the set of isomorphism classes of irreducible admissible repre-
sentations of G over Ω and Groth(G) be the corresponding Grothendieck group.
For all the groups we consider, we choose Haar measures and transfer factors as
in [Shi10, Shi11].

In particular, if G is an unramified group over a non-archimedean field F, we
choose a hyperspecial maximal compact subgroup K and a Haar measure such that
K has volume 1. We let Hur(G(F)) be the subspace of C∞

c (G(F)) consisting of
bi-K-invariant functions, which is an algebra with respect to convolution.

5.2. A stable trace formula. In this section, we recall the main constructions
and results of [Shi10]. For any open compact subgroup K ⊂ G(Af ) which is
hyperspecial at p we have an integral model SK/OEp

. As described in Section 4.3,
the special fiber of SK has a Newton polygon stratification, in terms of elements
b ∈ B(G,µ−1). Fix b and also a p-divisible group with extra structures Xb/F̄p as
in Section 4.3. Recall that Jb(Qp) is the group of quasi-self-isogenies of Xb which
respect all the extra structures.

By the Igusa variety I b
Mant we mean the projective system of F̄p-schemes I b

Mant,Kp,m,

whereKp ⊂ G(Ap
f ) runs over sufficiently small open compact subgroups andm runs

over positive integers. Each of these schemes is a finite Galois cover of the leaf Cb

inside S b
K . Define

[Hc(I
b
Mant, Q̄ℓ)] :=

⊕

k

(−1)k lim
−→
Kp,m

Hk
c (I

b
Mant,Kp,m, Q̄ℓ).

Since each of the summands is an admissible representation of G(Ap
f )× Jb(Qp), we

think of [Hc(I
b
Mant, Q̄ℓ)] as a virtual representation in Groth(G(Ap

f )× Jb(Qp)).
Often, we will fix a finite set S of places of Q including p,∞ and all places at

which F ramifies. If we fix a compact open subgroup KS ⊂ G(AS) which is a
product of hyperspecial maximal compact open subgroups Kq ⊂ G(Qq), we let

[Hc(I
b
Mant, Q̄ℓ)]

Sur

be the summand of [Hc(I
b
Mant, Q̄ℓ)] of those representations which are unramified

outside S. More precisely, any element π ∈ Groth(G(Ap
f )× Jb(Qp)) can be written

as a (possibly infinite) sum

π =
∑

i

niπi ,

where πi runs through the irreducible representations ofG(Ap
f )×Jb(Qp) (all of which

decompose into a tensor product), ni ∈ Z, and for each compact open subgroup
K ⊂ G(Ap

f )× Jb(Qp), there are only finitely many i for which ni 6= 0 and πK
i 6= 0.

Then we define

πSur =
∑

i:πKS
i 6=0

niπi .

Let Groth(G(Ap
f ) × Jb(Qp))

Sur denote the subgroup of Groth(G(Ap
f ) × Jb(Qp))

consisting of those π for which π = πSur. Then there are nondegenerate trace
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pairings
Groth(G(Ap

f )× Jb(Qp))× C
∞
c (G(Ap

f )× Jb(Qp))→ C ,

and

Groth(G(Ap
f )× Jb(Qp))

Sur ×
(
Hur(G(AS))⊗ C∞

c (G(ASfin\{p})× Jb(Qp))
)
→ C .

Let φ ∈ C∞
c (G(Ap

f ) × Jb(Qp)). We say that φ is acceptable if it satisfies the

conditions of Definition 6.2 of [Shi09]. The main condition is that φ is a linear com-
bination of functions of the form φp×φp, where φp is supported on νb-acceptable el-
ements of Jb(Qp). These are those elements δ ∈ Jb(Qp), δ = (δi) ∈

∏r
i=1 A ut0(Xi),

such that any eigenvalues ei of δi satisfy

vp(ei) < vp(ej) whenever λi > λj

(Definition 6.1 of [Shi09]).

Remark 5.2.1. This condition will separate components of Jb(Qp) corresponding to
different slopes in terms of their p-adic valuation, which in turn is needed in order
to transfer functions from Jb(Qp) to G(Qp). See Lemma 3.9 of [Shi10] and Lemma
V.5.2 of [HT01] for more details.

Lemma 6.3 of [Shi09] guarantees that the twist of any φ by a sufficiently high power
of Frobenius is acceptable.

We recall the set Eell(G) of elliptic endoscopic triples forG. In fact, we work more
generally: let F be a local or global field of characteristic 0 and let G be a connected
reductive group over F. An endoscopic triple for G is a triple (H, s, η), where H

is a quasi-split connected reductive group over F, s is an element of Z(Ĥ) and

η : Ĥ→ Ĝ is an embedding of complex Lie groups. The triple has to satisfy certain
conditions, as in 7.4 of [Kot84]. Let Γ := Gal(Q̄/Q). An endoscopic triple is called

elliptic if (Z(Ĥ)Γ)◦ ⊂ Z(G). We will use the notion of isomorphism of endoscopic
triples in Section 2.1 of [Shi10], which is stronger than the one in [Kot84]. We let
Eell(G) be the set of isomorphism classes of elliptic endoscopic triples for G.

Assume that Gder is simply-connected (this will be the case for G := G, our
unitary similitude group). We use Weil groups to construct L-groups; then we can
choose an extension of η to an L-group morphism η̃ : LH → LG by Proposition 1
of [Lan79].

Assume that F is a local field. Given η̃, Langlands and Shelstad (see [LS87])
define a transfer factor

∆ : H(F)ss,(G,H)−reg ×G(F)ss → C,

which is canonical up to a non-zero constant.
The fundamental lemma and the transfer conjecture, which are now theorems

due to Ngo, Waldspurger and others (see [Ngô10, Wal97]), assert that for each
function φ ∈ C∞

c (G(F)), there exists φH ∈ C∞
c (H(F)) satisfying an identity about

the transfer of orbital integrals

SOH(F)
γH

(φH) =
∑

γ∈G(F)ss/∼

∆(γH, γ)e(Gγ)O
G(F)
γ (φ)

(see Theorem 3.1 of [SS13] for an explanation of the notation). If H,G and η̃ are
unramified and if φ ∈ Hur(G(F)), then ∆ can be normalized such that φH can be
taken to be η̃∗(φ), where η̃∗ : Hur(G(F)) → Hur(H(F)) is the morphism of unram-
ified Hecke algebras induced from η̃ via the Satake isomorphism. In particular, if



THE GENERIC PART OF THE COHOMOLOGY OF SHIMURA VARIETIES 73

φ is the idempotent associated to a hyperspecial maximal compact subgroup, then
φH can also be taken to be the idempotent of a hyperspecial maximal compact
subgroup.

Let φ ∈ C∞
c (G(Ap

f )× Jb(Qp)) be an acceptable function of the form

φ =
∏

v 6=∞

φv, with φv ∈ C
∞
c (G(Qv)), v 6= p, φp ∈ C

∞
c (Jb(Qp)).

Let (H, s, η) ∈ Eell(G).

Definition 5.2.2. Let φH := φH,pφHp φ
H
∞ ∈ C

∞
c (H(A)), where:

• φH,p is the Langlands-Shelstad transfer of φp (as described above);
• φH∞ is constructed by Kottwitz in Section 7 of [Kot90], where we take the
trivial algebraic representation of G as an input (this corresponds to the
fact that our local system on I b

Mant is Q̄ℓ.) We give more details in the
case when G is a unitary similitude group below.
• φHp is constructed in Section 6 of [Shi10]. The function φHp is the key
construction of [Shi10]; we give more details in Section 5.4 below.

The following is the main result of [Shi10], Theorem 7.2 of loc. cit.

Theorem 5.2.3. Let φ and φH be as above, with (H, s, η) ∈ Eell(G). Then

tr(φ|ιℓHc(I
b
Mant, Q̄ℓ)) = | ker

1(Q, G)|
∑

(H,s,η)

ι(G,H)STH
e (φH).

Remark 5.2.4. Shin’s result is in fact valid for any PEL Shimura variety of type
(A) or (C). We recall that

ker1(Q, G) := ker

(
H1(Q, G)→

∏

v

H1(Qv, G)

)
,

and that SK is the disjoint union of | ker1(Q, G)| copies of the Shimura variety
for G. Also, ι(G,H) := τ(G)τ(H)−1|Out(H, s, η)|−1. The term STH

e (φH) is a
sum of stable orbital integrals over (representatives of) Q-elliptic semisimple stable
conjugacy classes in H(Q).

In the case of our unitary similitude group G, the set Eell(G) only depends on the
quasi-split inner form Gn of G and in [Shi11], Shin gives a concrete description of
a set of representatives for the isomorphism classes in Eell(Gn). If ~n = (ni)

s
i=1 is a

vector with entries positive integers, one can define a quasi-split group G~n over Q as
in Section 3.1 of [Shi11]. Define GL~n :=

∏s
i=1GLni and let i~n : GL~n → GL(

∑
i ni)

be the natural map. Let

Φ~n := i~n(Φn1 , . . . ,Φns),

where Φn is the matrix in GLn with entries (Φn)ij = (−1)i+1δi,n+1−j . Then G~n is
the algebraic group over Q sending a Q-algebra R to

G~n(R) = {(λ, g) ∈ R
× ×GL~n(F ⊗Q R)|g · Φ~n ·

tgc = λΦ~n}.

Since G is quasi-split at all finite places, we have

G×Q Af ≃ Gn ×Q Af

and we fix such an isomorphism.
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The representatives for Eell(Gn) can be taken to be

{(Gn, sn, ηn)} ∪ {(Gn1,n2 , sn1,n2 , ηn1,n2)|n1 + n2 = n, n1 ≥ n2 ≥ 0} ,

where (n1, n2) may be excluded if both n1 and n2 are odd numbers (see condition

7.4.3 of [Kot84]). Here, sn = 1 ∈ Ĝn, sn1,n2 = (1, (In1 ,−In2)) ∈ Ĝn1,n2 , ηn is

the identity map and ηn1,n2 : Ĝn1,n2 → Ĝn is the natural embedding induced by
GLn1 ×GLn2 →֒ GLn.

If we choose a Hecke character ψ : A×
K/K

× → C× such that ψ|A×/Q× corresponds
via class field theory to the quadratic character associated to K/Q, we can extend
ηn1,n2 to an L-morphism

η̃n1,n2 : LGn1,n2 →
LGn.

(See Section 3.2 of [Shi11] for the precise formula.) By Proposition 7.1 of [Shi11],
ψ can be chosen such that the set of primes where ψ is ramified is contained in
SplF/F+ . As a consequence, we can use the explicit transfer factors described in

Section 3.4 of [Shi11] at all places not equal to p,∞. These are compatible with
the Langlands-Shelstad transfer described above: at unramified places v, we take

η̃∗n1,n2
: Hur(Gn(Qv))→ H

ur(Gn1,n2(Qv)),

making use of the fundamental lemma [Ngô10]. Since we have fixed an isomorphism

G×Q Af
∼
→ Gn ×Q Af , we can also think of this as a transfer from G to Gn1,n2 at

places away from p,∞.
We also describe the explicit transfer at the place ∞. The transfer is as in

Section 7 of [Kot90] and uses Shelstad’s theory of real endoscopy and the Langlands
correspondence for real reductive groups; see also Section 3.5 of [Shi11] for any
unfamiliar notation. Recall that over R, G is an inner form of the quasi-split
unitary similitude group Gn. For any discrete L-parameter ϕG~n

for G~n, with L-
packet Π(ϕG~n

), define

φϕG~n
:=

1

|Π(ϕG~n
)|

∑

π∈Π(ϕG~n
)

φπ,

where φπ is a pseudo-coefficient for π. When ϕG~n
∼ ϕξ corresponds to an L-

packet Πdisc(G~n(R), ξ∨) for some irreducible algebraic representation ξ of G~n, the
function φϕG~n

is called an Euler-Poincaré function; we denote it also by φG~n,ξ.

The desired function φ~n∞ will be a precise linear combination of the Euler-Poincaré
functions for L-parameters ϕG~n

for which η̃◦ϕG~n
corresponds to the trivial algebraic

representation of GC (see 5.11 of [Shi11] for the precise formula).
For further use, we record a version of Theorem 5.2.3 for the group G.

Corollary 5.2.5. If φp · φp ∈ C
∞
c (G(Ap

f )× Jb(Qp)) is acceptable, then

tr(φ|ιℓHc(I
b
Mant, Q̄ℓ)) = | ker

1(Q, G)|
∑

G~n

ι(G,G~n)ST
G~n
e (φ~n),

where G~n runs over the set described above and φ~n is obtained from φ as in Defi-
nition 5.2.2.

Remark 5.2.6. The constants ι(G,G~n) can be computed explicitly:

ι(G,G~n) =

{
1
2τ(G)τ(G~n)

−1 if ~n = (n2 ,
n
2 )

τ(G)τ(G~n)
−1 otherwise.
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5.3. Base change and the twisted trace formula. LetG~n := ResK/Q(G~n×QK).

One can define L-morphisms BC~n : LG~n →
LG~n and ζ̃n1,n2 : LGn1,n2 →

LGn and
there is a commutative diagram of L-morphisms

(5.3.1) LGn1,n2

BCn1,n2

��

η̃
// LGn

BCn

��

LGn1,n2

ζ̃
// LGn

.

In this section, we review the associated base change for the groups G~n and G~n

as well as the twisted trace formula. Let S be a finite set of primes containing
∞, p and all the primes where either the CM field F or the Hecke character ψ are
ramified. Recall that, by the assumptions in Section 5.1, we can and will arrange
that Sfin ⊂ SplF/F+ .

We can define a notion of BC-transfer of functions as in Section 4 of [Shi11]. If
v is a finite place of Q such that v 6∈ S, then the dual map to the L-morphism BC~n

defines the transfer

BC∗
~n : Hur(G~n(Qv))→ H

ur(G~n(Qv)),

(Case 1) of Section 4.2 of [Shi11]. Otherwise, if v ∈ Sfin ⊂ SplF/F+ then Section

4.2 of loc. cit., (Case 2), constructs a BC-transfer φv ∈ C∞
c (G~n(Qv)) of fv ∈

C∞
c (G~n(Qv)). We remark that, if v splits in K (e.g. if v = p), one can check

directly that BC∗
~n is surjective. It is also possible to define a transfer ζ̃∗~n, as in

Section 4 of loc. cit., making the obvious diagram commutative.
At ∞, the transfer is defined in Section 4.3 of loc. cit. Let ξ be an irreducible

algebraic representation of (G~n)C, giving rise to the representation Ξ of (G~n)C which
is just Ξ := ξ⊗ξ. Recall that φG~n,ξ is the Euler-Poincaré function for ξ. Associated
to Ξ, Labesse defined a twisted analogue of the Euler-Poincaré function, a Lefschetz
function fG~n,Ξ [Lab91]. The discussion on page 24 of [Shi11] implies that fG~n,Ξ and
φG~n,ξ are BC-matching functions.

Define the group

G+
~n := (ResK/QGL1 × ResF/QGL~n)⋊ {1, θ},

where θ(λ, g)θ−1 = (λc, λcg♯) and g♯ = Φt
~ng

cΦ−1
~n . If we denote by G◦

~n and G◦
~nθ

the cosets of {1} and {θ} in G+
~n , then G+

~n = G◦
~n ⊔ G◦

~nθ. There is a natural Q-

isomorphism G~n
∼
→ G◦

~n, which extends to an isomorphism

G~n ⋊Gal(K/Q)
∼
→ G+

~n

so that c ∈ Gal(K/Q) maps to θ. Using this isomorphism, we write G~n and G~nθ
for the two cosets.

If f ∈ C∞
c (G~n(A)) (with trivial character on A◦

Gn,∞
), then we define fθ to be

the function on G~nθ(A) obtained via translation by θ. The (invariant) twisted trace
formula (see [Art88a, Art88b]) gives an equality

(5.3.2) IG~nθ
geom(fθ) = IG~nθ

spec(fθ).

The left hand side of the equation is defined in Section 3 of [Art88b], while the
right hand side is defined in Section 4 of loc. cit.

Let fG~n,Ξ and φG~n,ξ be as defined above. The following is Corollary 4.7 of [Shi11].
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Proposition 5.3.1. We have the following equality:

(5.3.3) IG~nθ
geom(fθ) = τ(G~n)

−1STG~n
e (φ),

when φ and f satisfy

φ = φS · φSfin
· φG~n,ξ and f = fS · fSfin

· fG~n,Ξ

with φS a BC-transfer of fS, φSfin
a BC-transfer of fSfin

.

Proof. We sketch the proof here: first, use Theorem 4.3.4 of [Lab99] to rewrite the
sum of stable orbital integrals on the right as the elliptic part of the twisted trace
formula for G~nθ. Then the geometric side of the twisted trace formula for G~nθ
is simplified using similar techniques to those in Chapter 7 of [Art88b]: the key
facts are that the Lefschetz function fG~n,Ξ is cuspidal, so only θ-elliptic elements
contribute, and that [F+ : Q] ≥ 2, so that the only Levi subgroup that contributes
to the geometric side is G~nθ itself. �

We now explain how to construct our test functions, which is exactly as in the
proof of Theorem 6.1 of [Shi11]. We let (fn)S be any function in Hur(Gn(AS))
and fn

Sfin\{p}
be any function in C∞

c (Gn(ASfin\{p}
)). We let φS , φSfin\{p}

be their

BC-transfers, as described above. We take φp ∈ C∞
c (Jb(Qp)) be any acceptable

function and set

φ := φS · φSfin\{p}
· φp.

From these test functions, we construct all the other test functions we will need.
First, for each elliptic endoscopic group G~n we let φ~n be constructed from φ as
in Definition 5.2.2. Let (fn1,n2)S and (fn1,n2)Sfin\{p}

be obtained from (fn)S and

fn
Sfin\{p}

by transfer along the L-morphism ζ̃. We choose f~np so that BC∗
~n(f

~n
p ) =

φ~np (recall that BC∗
~n is surjective at p). We can define f~n∞ explicitly, as a linear

combination of Lefschetz functions for representations Ξ(ϕ~n) of G~n for which η̃ ◦ϕ~n

corresponds to the trivial representation of G (see (6.7) of [Shi11] for the precise
formula). Finally, we set

f~n := (f~n)S · (f~n)Sfin\{p}
· f~np · f

~n
∞.

By the commutative diagram of L-morphisms (5.3.1), we can apply Proposition 5.3.1
to f~n and φ~n. To check the compatibility, see (4.18) of [Shi11] for primes away from
S, (4.19) of loc. cit. for primes in Sfin \ {p} and compare the precise formulas for
φ~n∞ and f~n∞. We mention that the formulas for φ~n∞ and f~n∞ use as input an inner
form G of Gn over R; in loc. cit. this inner form has a specific signature (a group
of so-called Harris-Taylor type), but here we work more generally. In particular,
the integer q(G) appearing there is defined as 1

2dim(G(R)/K∞A
◦
∞).

Theorem 5.3.2. We have an equality

tr(φ|ιℓ[Hc(I
b
Mant, Q̄ℓ)]) = | ker

1(Q, G)|τ(G)
∑

G~n

ǫ~n · I
G~nθ
spec(f

~nθ),

where ǫ~n = 1
2 if ~n = (n2 ,

n
2 ) and ǫ~n = 1 otherwise.

Proof. This follows by combining Corollary 5.2.5, Remark 5.2.6, Proposition 5.3.1
and equation (5.3.2). �
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Fix G~n. We now proceed to simplify the spectral side IG~nθ
spec(f

~nθ). We need the
following notation from [Shi11]: let M0 be a minimal Levi subgroup of G~n. For M
a rational Levi of G~n containing M0, choose a parabolic subgroup Q containing M
as a Levi. The group WG~nθ(aM )reg defined in [Art88b] acts on the set of parabolic

subgroups which have M as a Levi component. The automorphism Φ−1
~n θ of G~n

preservesM and acts onWG~nθ(aM )reg. By combining Proposition 4.8 and Corollary
4.14 of [Shi11], we have the following expression for the summands on the right hand
side of Theorem 5.3.2.

Proposition 5.3.3. There is an equality

IG~nθ
spec(f

~nθ) =
∑

M

|WM |

|WG|
| det(Φ−1

~n θ − 1)
a
G~nθ

M

|−1
∑

ΠM

tr
(
n− IndG~n

Q (ΠM )ξ(f
~n) ◦A′

)

where M runs over the Levi subgroups of G~n containing M0 and ΠM runs over the
irreducible Φ−1

~n θ-stable subrepresentations of the discrete spectrum RM,disc.

Remark 5.3.4. The subscript ξ indicates a possible twist by a character of A◦
G~n,∞

corresponding to an irreducible algebraic representation ξ of G~n and A′ is a nor-
malized intertwiner on n− IndG~n

Q (ΠM )ξ. We do not make this precise, as we will

not need these details. We do note that, as ΠM is Φ−1
~n θ-stable, n− IndG~n

Q (ΠM )ξ is
θ-stable.

5.4. The transfer at p. We recall the construction of the function φ~np , start-
ing from an acceptable function φp ∈ C

∞
c (Jb(Qp)), as well as the representation-

theoretic counterpart to this construction, Redb~n.
The group Jb(Qp) is an inner form of a Levi subgroup Mb(Qp) of G(Qp); for

further reference, we recall their precise definitions, following Chapter 1 of [RZ96].

According to Definition 1.8 of loc. cit., an element b̃ of G(L) is called decent if
there exists a positive integer s such that

(b̃σ)s = sνb̃(p)σ
s,

where sνb̃ factors through a morphism Gm → G. By Section 4.3 of [Kot85], any

σ-conjugacy class b ∈ B(G) admits a decent representative b̃; as G is quasisplit,
one can moreover arrange that νb̃ is defined over Qp, cf. [Kot85, p. 219]. LetMb be
the centralizer of ν in G, which is a Qp-rational Levi subgroup. Then b is a basic
element of Mb, and Jb is an inner form of Mb.

Fix G~n an elliptic endoscopic group for G. The set Eeffp (Jb, G,G~n) is defined
in Section 6.2 of [Shi09]; it consists of certain isomorphism classes (MG~n

, s~n, η~n)
of G~n-endoscopic triples for Jb(Qp). The function φ~np is constructed via transfer
from φp on Jb(Qp) to MG~n

(Qp), followed by a version of transfer fromMG~n
(Qp) to

G~n(Qp). We remark that the latter step makes crucial use of the acceptability of
φp, cf. Lemma 3.9 of [Shi10].

There is a representation-theoretic counterpart to this construction. This is a
group morphism

Redb~n : Groth(G~n(Qp))→ Groth(Jb(Qp)).

Redb~n will be defined as the composition of the following maps:

(1)

Groth(G~n(Qp))→
⊕

(MG~n
,s~n,η~n)

Groth(MG~n
(Qp)),
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where the sum runs over G~n-endoscopic triples in Eeffp (Jb, G,G~n) and the
map on each term is a linear combination of normalized Jacquet functors
(indexed over a finite set of allowed Levi embeddings MG~n

→֒ G~n);
(2)

Groth(MG~n
(Qp))→ Groth(Mb(Qp)),

which is the functorial transfer with respect to the L-morphism η̃~n. Both
MG~n

andMb are (restrictions of scalars of) products of general linear groups
and the transfer ends up being a normalized parabolic induction.

(3)

Groth(Mb(Qp))→ Groth(Jb(Qp)),

which is the Langlands-Jacquetmap on Grothendieck groups, defined by [Bad07].

(See Section 5.5 of [Shi11] for the precise definition of these three maps; even
though the case we are considering is slightly more general, the formulas will be
exact analogues.)

Remark 5.4.1. When ~n = (n), Eeffp (Jb, G,G~n) has only one element, namely (Mb, 1, id).

The morphism Redbn consists of a normalized Jacquet functor followed by the
Langlands-Jacquet map.

We record the relationship between Redb~n and φ~np in the following lemma.

Lemma 5.4.2. For any πp ∈ Groth(G~n(Qp)),

tr πp(φ
~n
p ) = tr

(
Redb~n(πp)

)
(φp).

Proof. The statement follows in the same way as Lemma 5.10 of [Shi11] (see also
Lemmas 6.3 and 6.4 of [Car12] for a unitary group with a slightly different sig-

nature). The idea is that the constructions of both Redb~n and φ~n can be broken
down into the three steps outlined above and the constructions in each of these
steps are dual to each other. One of the key points is that the transfer of φp from
Jb(Qp) to MG~n

(Qp) can be broken down into transfer from Jb(Qp) to the quasi-
split form Mb(Qp) followed by transfer from Mb(Qp) to MG~n

(Qp). The other key
point is the slightly non-standard transfer between MG~n

and G~n, where the desired
compatibility follows from Lemma 3.9 of [Shi10]. �

We note that the whole situation decomposes into a product. Namely, let
p1, . . . , pm be the primes of F+ above p, and fix a decomposition p = uuc in K. We
denote by pi also the place of F lying over pi in F+, and u in K, and by pci the
complex conjugate place of F . With these choices, we get a decomposition

GQp =
∏

i

ResFpi
/Qp

GLn ×Gm .

Here, the projection to the Gm-factor is the unitary similitude factor, and the
projection to the general linear groups is via the projection

V ⊗Q Qp =
⊕

i

(V ⊗F Fpi ⊕ V ⊗F Fpc
i
)→

⊕

i

V ⊗F Fpi .

The resulting constructions above admit similar decompositions. In particular,

b = ((bi)i=1,...,m, b0) ∈ B(G) =

m∏

i=1

B(ResFpi
/Qp

GLn)×B(Gm) ,
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and Jb =
∏m

i=1 Jbi ×Gm. Also, any irreducible representation πp of G(Qp) decom-
poses into a tensor product

πp =

m⊗

i=1

πpi ⊗ π0 ,

where πpi is an irreducible representation of GLn(Fpi), and π0 is a character of Q×
p .

A similar discussion applies to representations of

G~n(Qp) =

m∏

i=1

GL~n(Fpi)×Q×
p .

Lemma 5.4.3. Let π~np ∈ Irr(G~n(Qp)) be decomposed as

π~np =
m⊗

i=1

π~npi
⊗ π~n0 .

Assume that there is some i such that π~npi
transfers to a generic principal series

representation of GLn(Fpi) and Jbi is a non-quasi-split inner form of Mbi . Then

Redb~n(πp) = 0.

Proof. This follows from the explicit description of Redb~n above, which includes
the Langlands-Jacquet map. If π~np satisfies the above condition, then its image
ρ in Groth(Mb(Qp)) will have as Mbi(Fpi)-components only generic principal se-
ries representations. Indeed, to see this, note that by the definition in Section 2
of [Shi10], for a G~n-endoscopic triple, the L-morphism LMG~n

→ LMb is the re-

striction of the L-morphism ζ̃n1,n2 : LGn1,n2 →
LGn. The condition of being a

generic principal series representation can be interpreted on the dual side, and is
then easily deduced from this diagram. But if ρ ∈ Groth(Mb(Qp)) has only generic
principal series representations as Mbi(Fpi)-components, then it lies in the kernel
of the Langlands-Jacquet map whenever Jbi is a non-quasi-split inner form, by the
construction of this map following Theorem 3.1 and Proposition 3.3 of [Bad07]. �

5.5. Generic principal series. Fix test functions fS ∈ Hur(Gn(AS)), fSfin\{p} ∈

C∞
c (Gn(ASfin\{p})) and let φS , φSfin\{p} be their base change transfers to Gn(AS)

and Gn(ASfin\{p}) as defined in Section 5.3.

Lemma 5.5.1. For any test function fp ∈ C
∞
c (G(Qp)), let φp ∈ C

∞
c (G(Qp)) be

its base change transfer. The trace

tr
(
φSφSfin\{p}φp|ιℓ([Hc(I

b
Mant, Q̄ℓ)])

)

can be written as a linear combination of terms of the form

tr
(
(f~n)S | (Π~n)S

)
tr
(
(f~n)Sfin\{p} | (Π

~n)Sfin\{p}

)
tr
(
φp | Red

b
~n(π

~n
p )
)

for π~np ∈ Irr(G~n(Qp)), Π~n satisfying the following condition. The representation

π~np base changes to the component Π~n
p ∈ Irr(G~n(Qp)) at p of a θ-stable isobaric

automorphic representation Π~n of G~n of the form

Π~n = (n− IndG~n

Q ΠM )ξ ,

where ΠM occurs in the (relatively) discrete part of the automorphic spectrum of
the Levi subgroup M of a parabolic Q ⊂ G~n. Moreover, Π~n

∞ is cohomological (with
respect to the trivial algebraic representation).
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Proof. We follow the proof of Proposition 6.1 of [Shi11], in a more general situa-
tion, but without keeping track of endoscopic signs and constants. First, assume
that fp is chosen such that φp is acceptable. Let φ be the product of test func-
tions φSφSfin\{p}φp. By combining Theorem 5.3.2 and Proposition 5.3.3, we can

write tr(φ|ιℓ[Hc(I
b
Mant, Q̄ℓ)]) as a finite linear combination on terms of the form

tr
(
Π~n(f~n) ◦A′

)
, where Π~n is a θ-stable irreducible automorphic representation of

G~n.
Recall that each Π~n is of the form (n− IndG~n

Q ΠM )ξ, where ΠM occurs in the

(relatively) discrete part of the automorphic spectrum of the Levi subgroup M of
G~n. The fact that Π~n is θ-stable follows from Remark 5.3.4 and the irreducibility
of Π~n follows from the fact ΠM is unitary and that, for general linear groups,
any parabolic induction of a unitary representation is irreducible. Moreover, the
representation ΠM must be isobaric, since it contributes to the discrete spectrum of
M . (This follows from the classification of automorphic representations occurring
in the discrete spectrum of general linear groups due to Moeglin and Waldspurger,
[MW89]. See, for example, Theorem 1.3.3 of [Art13] and the discussion below
it.) Now the strong multiplicity one result due to Jacquet and Shalika (the main
result of [JS81], see also Theorem 1.3.2 of [Art13]) implies that the string of Satake
parameters outside the finite set S determines ΠM . The parabolic induction Π~n

is also isobaric, because it is irreducible, and therefore it is determined by (Π~n)S .
To check that Π~n

∞ is cohomological (for the trivial representation), it is enough to
determine the infinitesimal character of Π~n

∞, which can be done using the definition
of the test functions at ∞.

Decompose the intertwiner A′ as (A′)p · A′
p. Using the fact that Π~n is θ-stable

and that the base change map at p is injective (since p splits in the quadratic field
K), we can rewrite tr

(
Π~n

p (f
~n
p ) ◦A

′
p

)
as tr π~np (φ

~n
p ), for some representation π~np in

Irr(G~n(Qp)) (at least up to a sign). Now, using Lemma 5.4.2, we can rewrite the

latter as tr Redb~n(π
~n
p )(φp).

Keeping φp fixed, we have a formula for tr(φ|ιℓ[Hc(I
b
Mant, Q̄ℓ)]) as a finite linear

combination of traces of φp against irreducible representations of Jb(Qp). At this
stage, we can take φp to be any smooth, compactly-supported function on Jb(Qp),
not necessarily an acceptable one. Indeed, recall that the twist of any such φp by
any sufficiently high power of Frobenius is acceptable, so the equality above holds

for φ
(N)
p for sufficiently large N . The argument in the proof of Lemma 6.4 of [Shi09]

now proves that the desired equality holds for every integer N and, in particular,
for N = 0. �

Remark 5.5.2. As a consequence, we see that the Gn(A
p
f )-representation

BCp([Hc(I
b
Mant, Q̄ℓ)]

Sur)

can be written in terms of the transfer to Gn(A
p
f ) of representations (Π

~n)pf , where

the Π~n are θ-stable automorphic representations of G~n as in the statement of the
lemma, which are unramified outside S.

Moreover, recall the existence of Galois representations in the conjugate self-dual
case.
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Theorem 5.5.3. Let Π~n be an isobaric automorphic representation of G~n, unram-
ified outside S, of the form

Π~n = (n− IndG~n

Q ΠM )ξ ,

where ΠM occurs in the (relatively) discrete part of the automorphic spectrum of the
Levi subgroupM of a parabolic Q ⊂ G~n and is Φ−1

~n θ-stable, with Π~n
∞ cohomological.

Then there exists a conjugate self-dual (up to twist) continuous semisimple Galois
representation

rΠ~n,ℓ : Gal(F̄ /F )→ GL~n(Q̄ℓ)

which is unramified outside S ∪{ℓ}, and such that for all primes q 6= ℓ of Q, in the
decomposition

Π~n
q = (

⊗

q|q

Π~n
q )⊗ χq

corresponding to

G~n(Qp) = (
∏

q|q

GL~n(Fq))×K
×
q ,

the representations Π~n
q and rΠ~n,ℓ|Gal(F̄q/Fq) correspond under the local Langlands

correspondence (up to Frobenius semisimplification).28

Proof. Using the classification of the discrete spectrum of general linear groups
due to Moeglin and Waldspurger, [MW89], this follows from the main theorems
of [Shi11], [CH13] and [Car12]. We remark that the conjugate self-dual, regular
algebraic case suffices here because ΠM is Φ−1

~n θ-stable and has regular infinitesimal

character (since Π~n has regular infinitesimal character). �

In the following, we fix a Galois representation

r : Gal(F̄ /F )→ GLn(Q̄ℓ)

which is unramified outside S ∪ {ℓ}, and restrict attention to the summand

BCp([Hc(I
b
Mant, Q̄ℓ)]

Sur)Sur
r of BCS([Hc(I

b
Mant, Q̄ℓ)]

Sur)

coming from representations Π~n as above, with rΠ~n,ℓ
∼= r (under the embedding

GL~n(Q̄ℓ) →֒ GLn(Q̄ℓ)).
The following theorem is the key result of this section. Recall that we have fixed

a prime p|p of the reflex field E, so that we have embeddings E →֒ C, E →֒ Ep →֒
Q̄p. For convenience, let us fix an isomorphism ιp : Q̄p

∼= C compatible with the
embedding of E.

Theorem 5.5.4. For each prime pi of F , let

Si = {τ : F →֒ C|ιp ◦ τ induces pi} .

Assume that for each i, Si contains at most one τ for which pτqτ is nonzero, where
G has signature (pτ , qτ ) at τ : F →֒ C. Moreover, for each i for which Si contains
some τ for which pτqτ is nonzero, assume that

rGal(F̄pi
/Fpi

) = χi,1 ⊕ . . .⊕ χi,n

28For our purposes, it is enough to know the compatibility up to semisimplification, i.e. with-
out identification of the monodromy operator, which is the most subtle part of the local-global-
compatibility.
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decomposes as a direct sum of characters, such that for all a 6= b, χi,aχ
−1
i,b is not

the cyclotomic character.
Then, if b ∈ B(G,µ−1) is not µ-ordinary,29

BCp([Hc(I
b
Mant, Q̄ℓ)]

Sur)r = 0 .

Proof. Assume the contrary. Then there is some θ-stable isobaric automorphic rep-
resentation Π~n ofG~n as above, with rΠ~n,ℓ

∼= r, which contributes to BCS([Hc(I
b
Mant, Q̄ℓ)]

Sur).

The component Π~n
p of Π~n at p comes from a unique representation π~np ∈ Irr(G~n(Qp))

via base change. We may decompose

π~np =
m⊗

i=1

π~npi
⊗ π~n0

according to

G~n(Qp) =
m∏

i=1

GL~n(Fpi)×Q×
p .

By the assumption on r and local-global compatibility, we know that π~npi
trans-

fers to a generic principal series representation of GLn(Fpi) for all i for which Si

contains some τ with pτ qτ 6= 0. By Lemma 5.4.3, Redb~n(π
~n
p ) = 0 as soon as Jbi

is not quasisplit for some such i, so that in this case there is no contribution by
Lemma 5.5.1.

It remains to see that if b ∈ B(G,µ−1) is not µ-ordinary, then there is some i
for which Si contains some τ with pτqτ 6= 0, such that Jbi is not quasisplit.

We can decompose

µ = ((µi)i=1,...,m, µ0) : Gm → GQ̄p
=

m∏

i=1

(
∏

Fpi
→֒Q̄p

GLn,Q̄p
)×Gm,Q̄p

;

let Gi = ResFpi
/Qp

GLn. Then µi is a conjugacy class of minuscule cocharacters of
Gi, and we have a decomposition

B(G,µ−1) =
m∏

i=1

B(Gi, µ
−1
i ) ,

as the Gm factor plays no role here. In each factor GLn,Q̄p
, µ has the form

t 7→ diag(t, . . . , t, 1, . . . , 1)

with t occuring pτ times, and 1 occuring qτ times, where τ : F → Q̄p
∼= C is the

corresponding complex place. In particular, for each i for which Si does not contain
any τ with pτqτ 6= 0, µi is central, which implies that B(Gi, µ

−1
i ) has precisely one

element. If there is exactly one such τ , then denoting by µi,τ the corresponding
component of µi, one sees that

B(Gi, µ
−1
i ) = B(GLn/Fpi , µ

−1
i,τ ) ,

using the relative B(H/L) = B(L,H) for a reductive group H over a p-adic field
L.30 Now the result follows from the next lemma. �

29It might be more accurate to write µ−1-ordinary.
30So far, we were only using the case L = Qp, and did not include this in the notation.
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Lemma 5.5.5. Let L be any p-adic field, and let

µ : Gm → GLn : t 7→ diag(t, . . . , t, 1, . . . , 1)

be a minuscule cocharacter with n− q occurences of t and q occurences of 1. Then
there is exactly one element b ∈ B(GLn/L, µ

−1) for which Jb is quasisplit, namely
the µ-ordinary element represented by diag(̟−1, . . . , ̟−1, 1, . . . , 1), with n− q oc-
curences of the uniformizer ̟ of L, and q occurences of 1.

Proof. By the choice of µ, we know that for any b ∈ B(GLn/L, µ
−1), the slopes

λi satisfy −1 ≤ λi ≤ 0. If some slope λ is nonintegral, then Jb is not quasisplit,
as it contains a factor which is a general linear group over the division algebra of
invariant λ (mod 1) over L. Thus, if Jb is quasisplit, then all slopes are equal to 0 or
−1; from the equality κ(b) = −µ one deduces that slope −1 occurs with multiplicity
n− q, and slope 0 with multiplicity q, which corresponds to the µ-ordinary element
b = diag(̟−1, . . . , ̟−1, 1, . . . , 1). For this b, Jb ∼= GLn−q ×GLq is quasisplit. �

5.6. Simple Shimura varieties. In this section, we sketch how to adapt the ar-
guments above for Kottwitz’ simple Shimura varieties as in [Kot92a]. This includes
the case of Shimura varieties which admit q-adic uniformization, for some rational
prime q distinct from p and ℓ. In that case, our main result is related to level-raising
results, as shown in [Tho14].

Recall that F = F+ · K. Assume that we have a PEL datum of the form
(B, ∗, V, 〈 , 〉, h), where B is a division algebra with center F , V is a simple B-
module, and ∗ is an involution of the second kind. Then the corresponding Shimura
varieties SK are proper and the group G has no endoscopy. Assume that B is split
at all places over p, in which case the constructions and results of Section 5.4
carry over. However, Theorem 5.2.3 simplifies considerably. We follow Section 6
of [Shi12], where it is assumed that p is inert in F+; this assumption is not necessary
for our purposes. As above, let Gn be a quasi-split inner form of G over Q and fix
an isomorphism Gn ≃ G over Qp.

Proposition 5.6.1. Let φ = φpφp ∈ C
∞
c (G(Ap

f ) × Jb(Qp)), with φp an acceptable
function. Then

tr(φ|ιℓHc(I
b
Mant, Q̄ℓ)) = | ker

1(Q, G)|ι(G,Gn)ST
Gn
e (φGn).

Proof. The other terms in the stable trace formula vanish by Lemma 7.1 of [Shi10].
�

We can now combine this with the stable trace formula for the SK , which is
Theorem 6.1 of [Art89] and which is simplified in our situation as in Proposition
6.3 of [Shi12], also making use of Lemma 5.4.2 for Gn(Qp) ≃ G(Qp). We get

Redbn
(
[H(SK , Q̄ℓ)]

)
= ǫG · d(GR) · [Hc(I

b
Mant, Q̄ℓ)] ,

where ǫG, d(GR) are certain non-zero constants. Again, we appeal to Lemma 6.4
of [Shi11] to extend a trace identity from acceptable φp to all φp ∈ C

∞
c (Jb(Qp)). We

combine this with Matsushima’s formula, which gives a description of [ιℓH(SK , Q̄ℓ)]
in terms of automorphic representations of G. We get an analogue of Corollary 6.12
of [Shi12].

Corollary 5.6.2. We have the following equality in Groth(G(Ap
f )× Jb(Qp)):

[ιℓHc(I
b
Mant, Q̄ℓ)] = (−1)q(G)

∑

πf

c(πf )[π
p
f ][Red

b
n(πp)] .
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The sum runs over admissible representations πf of G(Af ) such that πfπ∞ is an
automorphic representation of G, for some representation π∞ of G(R) which is
cohomological for the trivial algebraic representation. The coefficients c(πf ) are
related to the automorphic multiplicity of πfπ∞.

In this case, the existence of Galois representations is also known, as the sta-
ble base change of such π to GLn has been established by Shin in the appendix
to [Gol14]. As before, for a Galois representation

r : Gal(F̄ /F )→ GLn(Q̄ℓ) ,

we restrict attention to the summand [Hc(I
b
Mant, Q̄ℓ)]r of

[Hc(I
b
Mant, Q̄ℓ)]

coming from representations π as above, with rπ,ℓ ∼= r.
We get the following analogue of Theorem 5.5.4, which is proved in the same

way.

Corollary 5.6.3. For each prime pi of F above p, let

Si = {τ : F →֒ C|ιp ◦ τ induces pi} .

Assume that for each i, Si contains at most one τ for which pτqτ is nonzero, where
G has signature (pτ , qτ ) at τ : F →֒ C. Moreover, for each i for which Si contains
some τ for which pτqτ is nonzero, assume that

rGal(F̄pi
/Fpi

) = χi,1 ⊕ . . .⊕ χi,n

decomposes as a direct sum of characters, such that for all a 6= b, χi,aχ
−1
i,b is not

the cyclotomic character.
Then, if b ∈ B(G,µ−1) is not µ-ordinary,

[Hc(I
b
Mant, Q̄ℓ)]r = 0 .
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6. Torsion in the cohomology of unitary Shimura varieties

In this final section, we give a precise formulation and proof of our main result.
We start by formulating and proving the critical perversity result.

6.1. Perverse sheaves on the flag variety. Consider the Hodge-Tate period
map

πHT : SKp → FℓG,µ

for a compact Hodge type Shimura variety. In this section, we would like to make
precise in which sense RπHT∗Fℓ is perverse.

31

Recall the following result on preservation of perversity under nearby cycles.

Theorem 6.1.1 ([Ill94, Corollaire 4.5]). Let K be a complete nonarchimedean field
with ring of integers OK and completed algebraic closure C with OC ⊂ C, and
let ℓ be a prime which is invertible in OK . Let X be a scheme of finite type over
OK . Let XOC be the base-change to OC , with geometric generic fibre j : Xη̄ =
XOK ⊗OK C →֒ XOC and geometric special fibre i : Xs̄ →֒ XOC . Let F be a
perverse Fℓ-sheaf on Xη = X ×OK K. Then RψF = i∗Rj∗F |Xη̄ is a perverse
sheaf on Xs̄.

Moreover, nearby cycles in the scheme setting agree with nearby cycles in the
formal/rigid setting. More precisely, we have the following result.

Theorem 6.1.2 ([Hub96, Theorem 3.5.13]). Let the situation be as in Theo-
rem 6.1.1. Let Xη be the associated rigid-analytic variety over K, considered as
an adic space, with base change Xη̄ to C. There is a natural morphism of sites
λ : Xη̄,ét → (Xs̄)ét, given by lifting an étale map Y → Xs̄ to an étale map of formal
schemes over OC , and then taking the generic fibre.

Let F ad be the pullback of F under Xét → Xét. Then

Rλ∗(F
ad|Xη̄ )

∼= RψF .

In our situation, it is hard to give a direct definition of perversity of RπHT∗Fℓ.
However, the above properties suggest that at least, for every formal model X of
the flag variety FℓG,µ, the nearby cycles RψXRπHT∗Fℓ should be a perverse sheaf
on the special fibre Xs̄ of X . This is still not true, as G(Qp) acts on RπHT∗Fℓ;
one can only hope for the Kp-invariants to be perverse, for any sufficiently small
Kp ⊂ G(Qp). Thus, we work with the equivariant sites introduced in [Sch15a, §2].

First, note that RπHT∗Fℓ is a canonically a complex of sheaves on the equivariant
site (FℓG,µ/G(Qp))ét. More precisely, one has the map of equivariant sites

πHT /G(Qp) : (SKp/G(Qp))ét → (FℓG,µ/G(Qp))ét ,

and one can look at R(πHT /G(Qp))ét∗Fℓ, and this pulls back to RπHT∗Fℓ under
the projection (FℓG,µ)ét → (FℓG,µ/G(Qp))ét. To check the latter statement, note
first that by passing to slice categories, using [Sch15a, Proposition 2.9], one may
replace G(Qp) by any compact open subgroup Kp ⊂ G(Qp), and then one can pass
to the limit using [Sch15a, Proposition 2.8].

Now take any étale U = Spa(A,A◦) → FℓG,µ. By [Sch15a, Corollary 2.5], the
action of Kp extends to a continuous action on U if Kp is sufficiently small. Let

31As we are far from a finite type situation, we avoid talking about Qℓ-sheaves. We could talk
about Z/ℓnZ-sheaves, but in that case the notion of perversity is slightly subtle as Z/ℓnZ is not
a field. For our applications, the Fℓ-case is enough.
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U = Spf(A◦) with special fibre Us = Spec(A◦/p). Then Kp acts trivially on Us

if Kp is sufficiently small, by continuity of the Kp-action and finite generation of
A◦/p. It follows that any étale map to Us lifts to a Kp-equivariant étale map to
UOC (where C = Cp), giving a natural morphism of sites

λU/Kp
: (Uη̄/Kp)ét → Us̄,ét .

Proposition 6.1.3. Let
πHT : SKp → FℓG,µ

be the Hodge-Tate period map for a compact Shimura variety of Hodge type and any
sufficiently small compact open subgroup Kp ⊂ G(Ap

f ). Let x̄ ∈ FℓG,µ be a geo-
metric point. Then there exists a neighborhood basis of affinoid étale neighborhoods
U = Spa(A,A◦) of x in FℓG,µ such that, denoting U = Spf(A◦),

RλU/Kp∗(R(πHT /G(Qp))∗Fℓ)|Uη̄/Kp
[〈2ρ, µ〉]

is a perverse sheaf on Us̄ for any sufficiently small pro-p compact open subgroup
Kp ⊂ G(Qp).

Proof. By [Sch15b, Theorem IV.1.1 (i)], one can find some affinoid étale (in fact,
open) neighborhood U of x such that SKp,U = SKp ×FℓG,µ U is affinoid perfectoid,
and equal to the preimage of an affinoid étale SKpKp,U → SKpKp for any sufficiently
small Kp. These properties will then also be true for any étale V → U that factors
as a composite of finite étale maps and rational embeddings, and such V are cofinal.
Thus, fix any U with the stated properties.

Let
πHT,U : SKp,U → U = Spa(A,A◦)

be the restriction of πHT . As πHT is partially proper, so is πHT,U . If Kp is
sufficiently small, πHT,U is Kp-equivariant, and induces a map

πHT,U/Kp
: SKp,U/Kp → U/Kp .

Also
(R(πHT /G(Qp))∗Fℓ)|U/Kp

= RπHT,U/Kp∗Fℓ ,

and by [Sch15a, Proposition 2.12], there is an equivalence of sites (SKp,U/Kp)ét ∼=
SKpKp,U,ét.

Now any SKpKp,U = Spa(RKpKp,U , R
◦
KpKp,U ) has its natural integral model

SKpKp,U = Spf(R◦
KpKp,U ), with inverse limitSKp,U = Spf(R◦

Kp,U ), where SKp,U =

Spa(RKp,U , R
◦
Kp,U ). We get a map of formal schemes

πHT,U : SKp,U → U .

Modulo p, we get a map of schemes

πHT,Us : SKp,U,s → Us ,

with SKp,U,s = Spec(R◦
Kp,U/p), and Us = Spec(A◦/p). But Us is of finite type over

Fp, and SKp,U,s = lim
←−Kp

SKpKp,U,s in the category of (affine) schemes. It follows

that πHT,Us factors over a map

πHT,Kp,Us : SKpKp,U,s → Us

(of affine schemes of finite type over Fp) for any sufficiently smallKp. We claim that
πHT,Kp,Us satisfies the valuative criterion of properness. If K is an algebraically
closed field with a rank-1-valuation ring V ⊂ K, and we are given a V -point of
Us together with a lift of the corresponding K-valued point to a K-valued point of
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SKpKp,U,s, we need to show that this K-valued point is in fact V -valued. We may
lift the K-valued point of SKpKp,U,s to SKp,U,s (as all transition maps are finite
and surjective). We may then find a complete algebraically closed extension C/Qp

with residue field K and a (C,OC)-valued point of SKp,U specializing to this K-
valued point of SKp,U,s. Let C

+ ⊂ OC be the preimage of V ⊂ K. Then the image
of the (C,OC)-valued point of SKp,U under πHT,U is a (C,OC)-valued point of U
which extends to a (C,C+)-valued point. As πHT,U is partially proper, it follows
that we get a (C,C+)-valued point of SKp,U , which specializes to a V -valued point
of SKp,U,s and thus of SKpKp,U,s, as desired.

Thus, πHT,Kp,Us is a map of affine schemes of finite type over Fp which satisfies

the valuative criterion of properness, i.e., it is finite.32 Now consider the following
diagram, where we have base-changed some spaces and maps to algebraically closed
fields.

(SKp,U,η̄/Kp)ét

∼=

��

πHT,Uη̄/Kp
// (Uη̄/Kp)ét

λU/Kp

��

SKpKp,U,η̄,ét

λSKpKp,U

��

SKpKp,U,s̄,ét πHT,Kp,Us̄

// Us̄,ét

We are interested in the pushforward of Fℓ from the upper left to the lower right cor-
ner, computed via the upper right corner. We may equivalently compute it via the
lower left corner. In that case, the first pushforward is perverse by Theorem 6.1.1
and Theorem 6.1.2, up to the shift 〈2ρ, µ〉 = dimSKpKp,U . But πHT,Kp,Us̄ is finite,
so it also preserves perversity under pushforward. �

We will need the following consequence, which is a statement purely about the
cohomology of Igusa varieties. For the statement, let S be a finite set of primes
such that Kp = Kp

SK
S, where KS ⊂ G(AS

f ) is a product of hyperspecial maximal

compact open subgroups, and Kp
S ⊂ G(A

p
S). Let

TS = Z[G(AS
f )//K

S]

be the abstract (commutative) Hecke algebra of KS-biinvariant compactly sup-
ported functions on G(AS

f ).

Corollary 6.1.4. Fix a maximal ideal m ⊂ TS, and among all b ∈ B(G,µ−1) with
the property that the m-torsion

Hi(Igb,Fℓ)[m] 6= 0

for some i ∈ Z, take some b with d = 〈2ρ, νb〉 minimal. Then Hi(Igb,Fℓ)[m] is
nonzero only for i = d.

The idea is that the sheaf (RπHT∗Fℓ)m is concentrated on a subset of dimen-
sion 〈2ρ, µ〉 − d by assumption. Thus, FℓbG,µ is one of the largest strata where

(RπHT∗Fℓ)m is nonzero. But as this sheaf is (up to shift) perverse, one concludes
by observing that on the largest stratum where a perverse sheaf is nonzero, it is

32Thus, we are in the somewhat curious situation that πHT,Us is ind-finite, but πHT,U has

fibres of positive dimension.
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concentrated in one degree. However, as the notion of perversity is defined via
nearby cycles, we need to rewrite this argument slightly.

Proof. As

Hi(Igb,Fℓ) = lim
−→
m

Hi(I b
Mant,m,Fℓ) ,

where the transition maps are split injective (namely, projections are given by
averaging operators over compact open subgroups of Jb(Qp)), and the terms on the
right are finite-dimensional, we see that the m-torsion is nonzero precisely when the
m-localization is nonzero. Thus, we may work with the localization at m instead.

Now RπHT∗Fℓ (in fact, the G(Qp)-equivariant version R(πHT /G(Qp))étFℓ) is a
sheaf of TS-modules, as the Hecke operators away from p act trivially on FℓG,µ.
We may thus form the localization (RπHT∗Fℓ)m. We claim that (RπHT∗Fℓ)m is

concentrated on the union Fℓ≥d
G,µ of Fℓb

′

G,µ over all b′ with 〈2ρ, νb′〉 ≥ d (which is a

closed subset of FℓG,µ).

Indeed, if y ∈ FℓG,µ does not lie in Fℓ≥d
G,µ, then it lies in Fℓb

′

G,µ for some b′ with

〈2ρ, νb′〉 < d. Now Theorem 4.4.4 computes the fibre of RπHT∗Fℓ at any geometric

point above y as RΓ(Igb
′

,Fℓ). We may pass to localizations at m in this statement,
and thus the assumption of the corollary shows that the localization of (RπHT∗Fℓ)m
at y vanishes.

Next, we claim that for any affinoid étale U → FℓG,µ with formal model U,
equivariant under Kp, with trivial action on Us, the nearby cycles

RλU/Kp∗ ((R(πHT /G(Qp)∗Fℓ)m) |Uη̄/Kp

are supported on a closed subset of Us̄ of dimension 〈2ρ, µ〉 − d. Indeed, the sheaf

is supported on the closure in U of the preimage U≥d ⊂ U of Fℓ≥d
G,µ ⊂ FℓG,µ. But

U≥d ⊂ U is a closed subset of dimension ≤ 〈2ρ, µ〉−d, and then the same is true for
its closure in U: If x ∈ Us is a point whose closure is of dimension e, then the closure
in U of any lift x̃ ∈ U of x will have at least dimension e (as the specialization map
is specializing).

Recall that RλU/Kp∗(R(πHT /G(Qp))∗Fℓ)|Uη̄/Kp
[〈2ρ, µ〉] is perverse. It follows

that the same is true for its localization

(RλU/Kp∗(R(πHT /G(Qp))∗Fℓ)|Uη̄/Kp
[〈2ρ, µ〉])m

=RλU/Kp∗ ((R(πHT /G(Qp))∗Fℓ)m) |Uη̄/Kp
[〈2ρ, µ〉]

at m. This sheaf is supported on a scheme of finite type of dimension 〈2ρ, µ〉 − d.
It follows that the localization

(
RλU/Kp∗ ((R(πHT /G(Qp))∗Fℓ)m) |Uη̄/Kp

)
|x̄

at any geometric point x̄ ∈ Us̄ whose closure is of dimension 〈2ρ, µ〉 − d is concen-
trated in degree d.

Now pick b as in the statement, and choose a rank 1 point y ∈ FℓbG,µ with

dim {y} = 〈2ρ, µ〉 − d, and a geometric point ȳ above y. One has an identification

(RπHT∗Fℓ)m,ȳ = RΓ(Igb,Fℓ)m .

On the other hand, choose a cofinal system of affinoid étale neighborhoods Ui =
Spa(Ri, R

◦
i ) → FℓG,µ of ȳ as in Proposition 6.1.3, with formal models Ui. Let

x̄i ∈ Ui,s be the specialization of ȳ, which is a geometric point of Ui,s. If i is large
enough, the dimension of the closure of x̄i will be equal to 〈2ρ, µ〉 − d: One needs
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to arrange that the image of R◦
i → OK(ȳ) → k(ȳ), where K(ȳ) is the completed

residue field at ȳ, with ring of integers OK(ȳ) and residue field k(ȳ), contains a
transcendence basis. Also, choose compact open subgroups Kp,i ⊂ G(Qp) that act
on Ui and trivially on Ui,s, such that the Kp,i shrink to 1.

In that situation, we know that for all large enough i(
RλUi/Kpi

∗ ((R(πHT /G(Qp))∗Fℓ)m) |Ui,η̄/Kp,i

)
|x̄i

is concentrated in degree d. Finally, we conclude by observing that

(RπHT∗Fℓ)m,ȳ = lim
−→
i

(
RλUi/Kp,i∗ ((R(πHT /G(Qp))∗Fℓ)m) |Ui,η̄/Kp,i

)
|x̄i .

�

6.2. A genericity assumption. In our main theorem, we impose a genericity
assumption at some auxiliary prime. In this section, we briefly study this genericity
condition.

Definition 6.2.1. Let L be a p-adic field, and let

ρ : Gal(L̄/L)→ GLn(F̄ℓ)

be an unramified, continuous representation, with ℓ 6= p. Then ρ is decomposed
generic if the eigenvalues λ1, . . . , λn of ρ(Frob) satisfy λa/λb 6∈ {1, q} for all a 6= b,
where Frob is an arithmetic Frobenius, and q is the cardinality of the residue field
of L.

We note that this condition actually only depends on the semisimplification of
ρ, but also implies that ρ is semisimple. In particular, if

ρ : Gal(L̄/L)→ GLn(Q̄ℓ)

is a continuous representation, the condition that the reduction ρ be decomposed
generic is unambiguous.

Lemma 6.2.2. Assume that

ρ : Gal(L̄/L)→ GLn(Q̄ℓ)

is a continuous representation such that the reduction ρ is decomposed generic.
Then ρ decomposes as a sum ρ =

⊕n
i=1 χi of characters, and χa/χb is not the

cyclotomic character for any a 6= b.

In particular, the representation of GLn(L) corresponding to ρ is a generic prin-
cipal series representation.

Proof. We may conjugate ρ into GLn(OK) for some finite extension K ⊂ Q̄ℓ.
Writing ρ =

⊕n
i=1 χi, we may further conjugate ρ into the matrices in GLn(OK)

which are diagonal modulo a uniformizer ̟ of OK . Now we try to conjugate ρ
into the matrices which are diagonal modulo higher powers of ̟. By standard
calculations in deformation theory, the relevant obstruction groups are given by

H1(Gal(L̄/L), χa/χb)

for a 6= b. But if
χλ : Gal(L̄/L)→ F̄×

ℓ

denotes the unramified character sending Frob to λ, then it is well-known that

H1(Gal(L̄/L), χλ) = 0
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if λ 6∈ {1, q}. By assumption, it follows that all relevant obstruction groups vanish.
The final statement follows because χa/χb is not the cyclotomic character. �

6.3. Conclusion. Finally, we can tie everything together and prove our main the-
orem.

Let us recall the relevant Shimura varieties. We fix a compact Shimura variety
of PEL type, associated with PEL data (B, ∗, V, (·, ·)) of type A satisfying one of
the following assumptions. In both cases, F = F+ · K is a CM field with totally
real subfield F+ containing an imaginary-quadratic field K.

Case 1. Assume that B is a central division algebra over F , and V ∼= B is a
simple B-module.

Case 2. Assume that B = F , F+ 6= Q, the corresponding group G is quasi-split
at all finite places, and if a rational prime q is ramified in F , then F/F+ is split at
all places above q.

In both cases, let SplF/F+ denote the set of rational primes q such that every

place of F+ above q splits in F . Moreover, fix a finite set S of primes such that
F and G are unramified outside S, and pick a sufficiently small compact open
subgroup K = KSK

S ⊂ G(Af ) = G(AS) × G(AS
f ) such that KS is a product

of hyperspecial maximal compact open subgroups Kq ⊂ G(Qq). In Case 2, we
assume that S ⊂ SplF/F+ . Finally, take some rational prime ℓ. We will consider
the following abstract Hecke algebra

TS =
⊗

q∈SplK/Q\(S∪{ℓ})

Z[G(Qq)//Kq] .

Theorem 6.3.1. Let m ⊂ TS be a maximal ideal such that

Hi(SK ,Fℓ)m 6= 0

for some i ∈ Z.

(1) There is a (unique) semisimple continuous Galois representation

ρm : Gal(F/F )→ GLn(F̄ℓ)

unramified outside the places above S ∪ {ℓ}, such that for all finite places v
lying above a prime q ∈ SplK/Q \ (S ∪ {ℓ}), the characteristic polynomial of

ρm(Frobv) is given by the image of

Xn − T1,vX
n−1 ± . . .+ (−1)iqi(i−1)/2

v Ti,vX
n−i + . . .+ (−1)nqn(n−1)/2

v Tn,v

under a fixed embedding TS/m →֒ F̄ℓ, where qv is the cardinality of the
residue field at v, and

Ti,v ∈ Z[G(Qq)//Kq]

is the characteristic function of

GLn(OFv )diag(̟v, . . . , ̟v︸ ︷︷ ︸
i

, 1, . . . , 1)GLn(OFv )×
∏

w 6=v

GLn(OFw )× Z×
p

inside

G(Qq) =
∏

w

GLn(Fw)×Q×
p ,

where w runs over all places of F lying over the same place of K as v.
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(2) Assume that there is some rational prime p ∈ SplK/Q\(S∪{ℓ}), split as p =

uuc in K, and a prime p|p of E such that the following condition involving
the primes pi|u of F , i = 1, . . . ,m, and the sets Si from Theorem 5.5.4
holds true. For any i, there is at most one τ ∈ Si such that pτqτ 6= 0; if
there is such a τ ∈ Si, then ρm is decomposed generic at pi. Then

Hi(SK ,Fℓ)m 6= 0

only for i = dimSK .

Before giving the proof, let us explain in two examples how the condition (2)
can be ensured, thus connecting it with the conditions stated in the introduction.

Remark 6.3.2. Assume that there is a prime p which is completely decomposed in
F and such that ρm is unramified and decomposed generic at all places above p.
Using Chebotarev, there are then many such p, and we can assume that p 6∈ S∪{ℓ}.
In that case, all sets Si in (2) have just one element, and we see that the desired
condition is satisfied.

Remark 6.3.3. Assume that the signature of G is (0, n) at all except for one infinite
place. Moreover, assume that there is some finite prime v of F such that ρm is
unramified and decomposed generic at v. By Chebotarev, there are then many such
v which are moreover decomposed over the rational prime p of Q, with p 6∈ S∪{ℓ}.33

In particular, p needs to be split in K. There is just one τ for which pτqτ 6= 0, and
by choosing the prime p of the reflex field correctly, one can arrange that this τ
appears in Si for pi = v. We see that condition (2) applies.

Proof. We write out the argument in the more involved Case 2.
For part (1), pick any p ∈ SplK/Q \ (S ∪ {ℓ}). Then K = KpK

p is decomposed.
There is a Hochschild-Serre spectral sequence relating

Hi(SKp ,Fℓ)

and Hi(SK ,Fℓ).
34 In particular, it follows that if i is minimal with Hi(SK ,Fℓ)m 6=

0, then

Hi(SKp ,Fℓ)m 6= 0 .

Thus, there is some b ∈ B(G,µ−1) such that

Hi(Igb,Fℓ)m 6= 0

for some i ∈ Z; otherwise we would have

(RπHT∗Fℓ)m = 0 ,

and hence

RΓ(SKp ,Fℓ)m = 0

by the Leray spectral sequence for πHT : SKp → FℓG,µ. Now pick some b ∈
B(G,µ−1) with d = 〈2ρ, νb〉 minimal such that for some i ∈ Z

Hi(Igb,Fℓ)m 6= 0 .

33In Chebotarev’s theorem, only places with residue field Fp contribute to the Dirichlet density.
34Here and in the following, all cohomology groups are étale cohomology groups after base

change to an algebraically closed field.
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In that case, this group is nonzero exactly for i = d by Corollary 6.1.4. Tak-
ing invariants under a pro-p-compact open subgroup of Jb(Qp) (which is an exact
operation), this implies that

Hi(I b
Mant,m,Fℓ)m

is nonzero at most for i = d; if m is large enough, it is nonzero if i = d. It follows
that the cohomology with Zℓ-coefficients is concentrated in the middle degree and
flat, and thus the Q̄ℓ-cohomology

Hi(I b
Mant,m,Zℓ)m ⊗ Q̄ℓ

is nonzero for i = d. By Poincaré duality (and applying the same discussion with
the “dual” set of Hecke eigenvalues), the same holds true for compactly supported
cohomology. We have a decomposition

[Hc(I
b
Mant, Q̄ℓ)]

Sur = [Hc(I
b
Mant, Q̄ℓ)]

Sur
m + [Hc(I

b
Mant, Q̄ℓ)]

Sur,m

according to systems of Hecke eigenvalues lifting m, or a different set of Hecke
eigenvalues modulo ℓ, and by concentration in one degree, the first summand is
nonzero in the Grothendieck group, and its base change BCp is still nonzero. It
follows that there is some Π~n as in Lemma 5.5.1 whose Hecke eigenvalues lift m.
Then Theorem 5.5.3 implies that there is a Galois representation rΠ~n,ℓ, whose
reduction is the desired Galois representation ρm.

Now, we deal with part (2). We choose p and p as guaranteed in the statement.
It is enough to prove that Hi(SK ,Fℓ)m is nonzero only for i ≥ dimSK ; the other
bound follows by Poincaré duality (and the result for the “dual” ideal, which sat-
isfies the same hypothesis). Now a Hochschild-Serre spectral sequence shows that
it is enough to prove that

Hi(SKp ,Fℓ)m = 0

for i < dimSK . As above, we take some b ∈ B(G,µ−1) with d = 〈2ρ, νb〉 minimal
such that

Hi(Igb,Fℓ)m 6= 0

for some i ∈ Z. We get concentration in middle degree in this case, and hence the
argument above shows that there is some Galois representation r lifting ρm with

BCp([Hc(I
b
Mant, Q̄ℓ)]

Sur)r 6= 0 .

But by Lemma 6.2.2 and the assumptions on p, p and ρm, the hypothesis of The-
orem 5.5.4 are satisfied. Thus, if b is not µ-ordinary, we arrive at a contradiction.
It follows that b is µ-ordinary.

In that case, 〈2ρ, µ〉 = 〈2ρ, νb〉 = dimSK , so Corollary 6.1.4 shows that

Hi(Igb,Fℓ)m

vanishes for i < dimSK , for all b ∈ B(G,µ−1). Thus, (RiπHT∗Fℓ)m vanishes for
i < dimSK , and the result follows by applying the Leray spectral sequence for
πHT : SKp → FℓG,µ. �
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