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Abstract. In this survey, I discuss some recent developments at the cross-

roads of arithmetic geometry and the Langlands programme. The emphasis

is on recent progress on the Ramanujan–Petersson and Sato–Tate conjectures.
This relies on new results about Shimura varieties and torsion in the cohomol-

ogy of locally symmetric spaces.

1. Introduction

The Langlands programme is a “grand unified theory” of mathematics: a vast
network of conjectures that connect number theory to other areas of pure mathe-
matics, such as representation theory, algebraic geometry, and harmonic analysis.

One of the fundamental principles underlying the Langlands conjectures is reci-
procity, which can be thought of as a magical bridge that connects different math-
ematical worlds. This principle goes back centuries to the foundational work of
Euler, Legendre and Gauss on the law of quadratic reciprocity. A celebrated mod-
ern instance of reciprocity is the correspondence between modular forms and ra-
tional elliptic curves, which played a key role in Wiles’s proof of Fermat’s Last
Theorem [Wil95] and which relied on the famous Taylor–Wiles method for proving
modularity [TW95]. Recently, the search for new reciprocity laws has begun to
expand the scope of the Langlands programme.

The Ramanujan–Petersson conjecture is an important consequence of the Lang-
lands programme, which goes back to a prediction Ramanujan made a century
ago about the size of the Fourier coefficients of a certain modular form ∆, a highly
symmetric function on the upper half plane. The Sato–Tate conjecture is an equidis-
tribution result about the number of points of a given elliptic curve modulo varying
primes, formulated half a century ago. It is also a consequence of the Langlands
programme. In § 2, I survey progress on these conjectures in two fundamentally
different settings: one setting in which there is a direct connection to algebraic
geometry (modular curves) and one setting in which such a connection is missing
(arithmetic hyperbolic 3-manifolds, or Bianchi manifolds).

Shimura varieties are certain highly symmetric algebraic varieties that generalise
modular curves and that provide, in many cases, a geometric realisation of Lang-
lands reciprocity. In § 3, I explain a new tool for understanding Shimura varieties
called the Hodge–Tate period morphism. This was introduced by Scholze in [Sch15]
and refined in my joint work with Scholze [CS17]. I then discuss vanishing the-
orems for the cohomology of Shimura varieties proved using the geometry of the
Hodge–Tate period morphism [CS17, CS19].

The Calegari–Geraghty method [CG18] vastly extends the scope of the Taylor–
Wiles method, though it is conjectural on an extension of the Langlands programme
to incorporate torsion in the cohomology of locally symmetric spaces. In § 4,

1



2 ANA CARAIANI

I discuss joint work with Allen, Calegari, Gee, Helm, Le Hung, Newton, Scholze,
Taylor, and Thorne [ACC+18], where we implement the Calegari–Geraghty method
unconditionally over CM fields, an important class of number fields that contains
imaginary quadratic fields as well as cyclotomic fields. This work relies crucially
on one of the vanishing theorems mentioned above [CS19], and has applications to
both the Ramanujan–Petersson and the Sato–Tate conjectures over CM fields.

Remark 1.1. The Langlands programme is a beautiful, but technical subject, with
roots in many different areas of mathematics. For a general mathematician, § 2
is the most accessible, as it highlights two concrete consequences of the Langlands
conjectures. The later sections § 3 and § 4 assume more background in algebraic
geometry and number theory.

I have prioritised references to well-written surveys above references to the orig-
inal papers. I particularly recommend [Eme20] for a historical account of Lang-
lands reciprocity, [Tay04] for more background on the Langlands correspondence,
and [Sch18] for a cutting-edge account of the deep connections between arithmetic
geometry and the Langlands programme.

1.2. Acknowledgements. This article was written in relation to my being awarded
one of the 2020 Prizes of the European Mathematical Society. I wish to dedicate
this article to my father, Cornel Caraiani (1954–2020), who inspired my love of
mathematics.

I have been lucky to have many wonderful mentors and collaborators and I am
grateful to all of them for the mathematics they have taught me. In addition,
I especially want to thank Matthew Emerton, Toby Gee, Sophie Morel, James
Newton, Peter Scholze, and Richard Taylor for generously sharing their ideas with
me over the years, and for their substantial moral and professional support.

I am also grateful to Toby Gee, James Newton, Steven Sivek, and Matteo
Tamiozzo for comments on an earlier version of this article.

2. The Ramanujan and Sato–Tate conjectures

2.1. Modular curves and Bianchi manifolds. The goal of this section is to
discuss two fundamental examples of locally symmetric spaces: modular curves,
which have an algebraic structure, and Bianchi manifolds, which do not. This
dichotomy underlies the fundamental difference between reciprocity laws over the
field of rational numbers Q (and over real quadratic fields such as Q(

√
5)), and

reciprocity laws over imaginary quadratic fields such as Q(i).
Let G be a connected reductive group defined over Q, for example SLn, GLn or

Sp2n. We can then consider an associated symmetric space X, endowed with an
action of the real points G(R). This is roughly identified with G(R)/K∞, where
K∞ ⊂ G(R) is a maximal compact subgroup. We then want to consider the action
of certain arithmetic groups on X: more precisely we want to restrict to finite index
subgroups Γ ⊂ G(Z) cut out by congruence conditions. If Γ is sufficiently small, we
can form the quotient Γ\X and obtain a smooth orientable Riemannian manifold,
which is a locally symmetric space for G.

Example 2.2. If G = SL2/Q, the corresponding symmetric space is the upper-half
plane

SL2(R)/SO2(R) ' H2 := {z ∈ C | Im z > 0}
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endowed with the hyperbolic metric. The action of SL2(R) on H2 is by Möbius
transformations:

z 7→ az + b

cz + d
for

(
a b
c d

)
∈ SL2(R).

For Γ ⊂ SL2(Z) a finite index congruence subgroup (that is assumed sufficiently
small), the quotients Γ\H2 are Riemann surfaces. These Riemann surfaces come
from algebraic curves XΓ defined over Q (or over finite extensions of Q) called
modular curves. A fundamental domain for a proper subgroup Γ ⊂ SL2(Z) acting
on H2 is a finite union of translates of the fundamental domain in Figure 1.

Figure 1. A fundamental domain for SL2(Z) acting on H2

Example 2.3. If G = SL2/F , where F is an imaginary quadratic field1, the cor-
responding symmetric space is 3-dimensional hyperbolic space

SL2(C)/SU2(R) ' H3

and the locally symmetric spaces are called Bianchi manifolds. These are arithmetic
hyperbolic 3-manifolds and, since their real dimension is odd, they do not admit a
complex or algebraic structure.

The locally symmetric spaces for a groupG are important in what follows because
they give a way to access automorphic representations of G, the central objects of
study in the Langlands programme. This is explained more in § 3. For example,
modular forms2, which are holomorphic functions on H2 that satisfy a transforma-
tion relation under some Γ, contribute to the first Betti cohomology of modular
curves (with possibly twisted coefficients).

Some locally symmetric spaces have an algebraic structure. If this happens,
they in fact come from smooth, quasi-projective varieties XΓ defined over number
fields, which are called Shimura varieties. The geometry of Shimura varieties is a
rich and fascinating subject in itself, that we discuss more in § 3. On the other
hand, the Langlands programme is much more mysterious beyond the setting of
Shimura varieties, because there is no obvious connection to algebraic geometry or
arithmetic. We discuss this more in § 4.

1This can be viewed as a connected reductive group over Q using a technical notion called the

Weil restriction of scalars.
2These give rise to automorphic representations for the group SL2 /Q.



4 ANA CARAIANI

2.4. The Ramanujan conjecture. A famous example of a modular form is Ra-
manujan’s ∆ function. If z is the variable on the upper-half plane H2 and q = e2πiz,
∆ is given by the Fourier series expansion

∆(z) = q

∞∏
n=1

(1− qn)24 =
∑
n>0

τ(n)qn.

In 1916, Ramanujan made three predictions about the behaviour of the Fourier
coefficients τ(n). The first two of these were immediately proved by Mordell by
studying the action on ∆ of certain Hecke operators, that we come back to discuss
in § 3. The Ramanujan conjecture, which resisted attempts at proof for much longer,
bounds the absolute value of the Fourier coefficients: it states that |τ(p)| ≤ 2p

11
2

for all primes p.
Deligne finally established this bound in the early 1970’s, and this was one of the

reasons for which he was awarded a Fields Medal in 1978. While the bound on the
Fourier coefficients is purely a statement within harmonic analysis, the proof used
the bridge of Langlands reciprocity and was ultimately obtained from a statement in
arithmetic geometry. More precisely, Deligne’s proof of the Ramanujan conjecture
went via the étale cohomology of modular curves, obtaining the desired bound as
a consequence of his proof of the Weil conjectures for smooth projective varieties
over finite fields.

The generalised Ramanujan–Petersson conjecture is a vast extension of the above
statement, with numerous applications across mathematics and computer science.
See, for example, the survey [Li20] for its applications to extremal combinatorial
objects called Ramanujan graphs. This more general conjecture, which is part
of Arthur’s conjectures on the automorphic spectrum of GLn (see also the sur-
vey [Sar05]), predicts that the local components at finite places of cuspidal auto-
morphic representations of GLn are tempered.

Temperedness means roughly that the the matrix coefficients of the representa-
tion are in L2+ε for all ε > 0. This singles out the building blocks of the category
of irreducible admissible representations of p-adic groups, such as GLn(Qp), in the
sense that everything else can be constructed from tempered representations of
smaller groups. Tempered representations also play an important role in the local
Langlands conjecture, which relates them to arithmetic objects, essentially repre-
sentations of local Galois groups. For the group GLn, local Langlands is a theorem,
proved by Harris–Taylor and Henniart in the early 2000’s, and later reproved by
Scholze.

For certain cuspidal automorphic representations of GLn, which are global ob-
jects built from the irreducible admissible representations mentioned above, one
can try to follow Deligne’s approach to the Ramanujan conjecture using the étale
cohomology of higher-dimensional Shimura varieties. When these varieties have sin-
gular reduction, the arithmetic counterpart of the Ramanujan–Petersson conjecture
is Deligne’s weight-monodromy conjecture. This goes beyond the Weil conjectures
to predict that the étale cohomology of smooth projective varieties over p-adic fields
has a remarkably elegant shape, even in the case of singular reduction.

In [Car12], building on [Clo13, Shi11, TY07] and [HT01], I follow Deligne’s
approach and complete the proof of the following result.
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Theorem 2.5. Let F be a CM field and let π be a regular algebraic, self-dual
cuspidal automorphic representation of GLn /F . Then π satisfies the generalised
Ramanujan–Petersson conjecture.

The global Langlands correspondence relates automorphic representations to
global Galois representations. The direction from automorphic to Galois is best
understood in the setting of Theorem 2.5, which is the so-called “self-dual case”.
This has been a milestone achievement in the field: it required the combined effort of
many people over several decades, including Kottwitz, Clozel, Harris, Taylor, Shin,
and Chenevier, and was built on fundamental contributions by Arthur, Laumon,
Ngô and Waldspurger. In [Car12, Car14], I also complete the proof that the asso-
ciated Galois representations are compatible with local Langlands3, by establishing
new instances of the weight-monodromy conjecture for Shimura varieties.

More recently, in joint work with Allen, Calegari, Gee, Helm, Le Hung, Newton,
Scholze, Taylor, and Thorne, I obtained an application to the Ramanujan–Petersson
conjecture beyond the self-dual case. This is the first instance where this conjecture
is not deduced from the Weil conjectures, but rather by an approximation of the
very different strategy outlined by Langlands in [Lan70].

Theorem 2.6. ([ACC+18]) Let F be a CM field and π be a cuspidal automor-
phic representation of GL2/F of parallel weight 2. Then π satisfies the generalised
Ramanujan–Petersson conjecture.

The condition on the weight means that π contributes to the Betti cohomology
with constant coefficients of the relevant locally symmetric space, which is for ex-
ample a Bianchi manifold. These locally symmetric spaces do not have an algebraic
structure, so one cannot appeal directly to arithmetic geometry. We come back to
discuss the strategy for the proof of Theorem 2.6 in § 4.

2.7. The Sato–Tate conjecture. An elliptic curve is a smooth, projective curve
of genus one together with a specified point. If F is a number field, an elliptic curve
defined over F can be described as a plane curve, given by (the homogenisation of)
a cubic equation of the form y2 = x3 + ax+ b with a, b ∈ F .

Such an elliptic curve E/F , if it does not have complex multiplication, is expected
to satisfy the Sato–Tate conjecture. When p is a prime of F over which E has good
reduction, the number

1 + qp −#E(k(p))

2
√
qp

(where k(p) denotes the residue field at p, of cardinality qp) is contained in the
interval [−1, 1] by a result of Hasse; this is also a special case of Deligne’s result on
the Weil conjectures. The Sato–Tate conjecture, formulated in the 1960’s, states
that, as p runs over all the primes of F over which E has good reduction, these
numbers become equidistributed in [−1, 1] with respect to the semicircle probability

measure 2
π

√
1− x2dx.

Remark 2.8. The condition for an elliptic curve to have complex multiplication
is very special, and in that case the probability distribution is different and well-
understood. See [Sut19] for a survey on Sato–Tate-type conjectures, which explains

3Local-global compatibility is a crucial property one expects from the Langlands correspon-
dence, which generalises the compatibility between local and global class field theory.
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the expected distributions, and [KS99] for the more general conceptual framework
that underlies this conjecture.

According to the Langlands reciprocity conjecture, any elliptic curve E/F is
also expected to come from an automorphic representation of GL2 over F . If this
is the case, we say that E is automorphic. The precise relationship between elliptic
curves and automorphic representations can be expressed as an equality of the
two L-functions associated to them. L-functions are complex analytic functions
that generalise the Riemann zeta function and that remember deep arithmetic
information about the original objects.

For example, the L-functions of all elliptic curves defined over Q are known to
come from modular forms, by work of Breuil–Conrad–Diamond–Taylor [BCDT01]
building on [Wil95] and [TW95]. The analogous result for elliptic curves defined
over real quadratic fields was later proved by Freitas–Le Hung–Siksek [FLHS15].
The L-functions of elliptic curves over imaginary quadratic fields are expected to
come from classes in the cohomology of Bianchi manifolds, but this case has his-
torically been much more mysterious.

Soon after the Sato–Tate conjecture was formulated, Serre and Tate discovered
that the correct distribution would follow from the expected analytic properties of
the symmetric power L-functions of E. In turn, these analytic properties would fol-
low if one knew the automorphy of E and all its symmetric powers. This argument
is explained in [Ser68] and uses Tauberian theorems in analytic number theory: the
techniques are essentially those that led to the proof of the prime number theorem.
In fact, to establish the correct distribution, it suffices to know that E and its sym-
metric powers are potentially automorphic: this means they become automorphic
after base change to some Galois field extension F ′ of F .

The Sato–Tate conjecture for elliptic curves defined over totally real fields was
proved in most cases by Clozel, Harris, Shepherd-Barron, and Taylor [CHT08,
HSBT10, Tay08], and completed in work of Barnet-Lamb–Geraghty–Harris–Taylor
around 2010 [BLGHT11]. This relied on the potential automorphy of symmetric
powers, which could be established in the self-dual setting using a generalisation
of the Taylor–Wiles method. However, the method broke down for elliptic curves
defined over imaginary quadratic fields or more general CM fields. In § 4, we explain
how to overcome the barrier to treating elliptic curves defined over CM fields and
obtain the following result.

Theorem 2.9. ([ACC+18]) Let F be a CM field and E/F be an elliptic curve
that does not have complex multiplication. Then E is potentially automorphic and
satisfies the Sato–Tate conjecture.

Remark 2.10. Both Theorems 2.6 and 2.9 rely crucially on the vanishing theorem
for Shimura varieties proved in [CS19], which is discussed in § 3.

Remark 2.11. The beautiful work of Boxer–Calegari–Gee–Pilloni [BCGP18], com-
pleted at the same time as [ACC+18], proves the potential automorphy of elliptic
curves in Theorem 2.9 independently, and they are even able to show the potential
automorphy of abelian surfaces over totally real fields. Moreover, in the recent pa-
per [AKT19], Allen–Khare–Thorne establish actual automorphy of elliptic curves
in certain cases (rather than potential automorphy). All of this is hopefully only
the beginning of a fascinating story over CM fields!
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3. Vanishing theorems for Shimura varieties with torsion
coefficients

3.1. Shimura varieties. Recall that, if the locally symmetric spaces for a group
G/Q have an algebraic structure, they in fact come from smooth, quasi-projective
varieties XΓ defined over number fields, which are called Shimura varieties.

The pair (G,X) must satisfy certain axioms in order for the corresponding lo-
cally symmetric spaces to come from Shimura varieties. The key point is for the
symmetric space X to be a Hermitian symmetric domain (or a finite disjoint union
thereof). There is a complete classification of groups G for which this holds. For
example, the symplectic group Sp2n and the unitary group U(n, n) give rise to
Shimura varieties, which can be described in terms of moduli spaces of abelian
varieties equipped with additional structures.

Remark 3.2. Some locally symmetric spaces that are not Shimura varieties can still
be studied by relating them to Shimura varieties. For example, Bianchi manifolds
can be realised in the boundary of certain compactifications of Shimura varieties
attached to the unitary group U(2, 2). We come back to this in § 4.

Recall also that the locally symmetric spaces for a group G give a way to access
automorphic representations of G. More precisely, as the congruence subgroup
Γ ⊂ G(Z) varies, we have a tower of locally symmetric spaces. The symmetries
of this tower induce correspondences on each individual space Γ\X called Hecke
operators 4. Keeping track of the various Hecke operators, we obtain an action of
a commutative Hecke algebra T on the Betti cohomology Hi(Γ\X,C). The work
of Matsushima, Franke and others shows that the systems of eigenvalues of T that
occur in Hi(Γ\X,C) come from certain automorphic representations of G.

In addition to the Hecke symmetry, the cohomology of Shimura varieties also
has a Galois symmetry, because Shimura varieties are defined over number fields.
Because of these two kinds of symmetries, Shimura varieties give, in many cases, a
geometric realisation of the global Langlands correspondence between automorphic
and Galois representations.

One can ask a more precise question, about the range of degrees of cohomology
to which any particular automorphic representation can contribute. Assume, for
simplicity, that XΓ(C) is a compact Shimura variety. Then Borel–Wallach [BW00]
show that, if π is an automorphic representation whose component at ∞ is a tem-
pered representation of G(R), then π can only contribute to Hi(XΓ(C),C) in the
middle degree i = dimCXΓ. This result, like the Ramanujan–Petersson conjecture,
also fits within the framework of Arthur’s conjectures [Art89].

Question 3.3. The upshot of the Borel–Wallach result is that the cohomology of a
Shimura variety XΓ with C-coefficients is somehow degenerate outside the middle
degree. Can we extend this to torsion coefficients, such as Hi(XΓ(C),F`)?

More precise versions of this question are formulated as conjectures in [CG18]
and [Eme14]. These are motivated by the Calegari–Geraghty method, which is
discussed in § 4, and by the search for a mod ` analogue of Arthur’s conjectures.

4To discuss Hecke operators rigorously, we should use the adelic perspective on locally sym-
metric spaces and Shimura varieties. The resulting spaces would be disjoint unions of finitely

many copies of Γ\X. We ignore this subtlety here and later on in the text.
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In the next two subsections, we explain a new tool that can be used to compute
Hi(XΓ(C),F`) and discuss our results towards Question 3.3.

3.4. The Hodge–Tate period morphism. This morphism was introduced by
Scholze in his breakthrough paper [Sch15] and gives a completely new way to access
the geometry and cohomology of Shimura varieties.

In the case of the modular curve, the Hodge–Tate period morphism is a p-
adic analogue of the following complex picture, where the map on the right is the
standard holomorphic embedding of the upper-half plane H2 into the Riemann
sphere P1(C):

H2

||

� q

πdR, SL2(R)−equivariant

""

XΓ(C) Γ\H2 P1(C).

This picture has the following moduli interpretation. First, XΓ is a moduli space
of elliptic curves equipped with some additional structures (determined by Γ). The
upper-half plane H2 is the universal cover of XΓ(C) = Γ\H2; it parametrises (posi-
tive) complex structures one can put on a two-dimensional real vector space. This
amounts to parameterising Hodge structures of elliptic curves, i.e. direct sum de-
compositions:

C2 = H1(E(C),C) ' H0(E,Ω1
E)⊕H1(E,OE)

with H1(E,OE) = H0(E,Ω1
E). The morphism πdR sends the Hodge decomposition

to the associated Hodge filtration

H0(E,Ω1
E) ⊂ H1(E(C),C) = C2.

This is an example of a period morphism. One can construct such a diagram for
higher-dimensional Shimura varieties as well, and this has played an important role
in studying automorphic forms on Shimura varieties from a geometric point of view.

The Hodge–Tate period morphism is based on the Hodge–Tate filtration on étale
cohomology, tracing back to foundational work in p-adic Hodge theory by Tate and
Faltings. Let p be a prime and let C be the p-adic completion of an algebraic closure
of Qp, which will play a role analogous to that of C in what follows. If E/C is an
elliptic curve, its étale cohomology admits a Hodge–Tate filtration:

0→ H1(E,OE)→ H1
ét(E,Zp)⊗Zp

C → H0(E,Ω1
E)(−1)→ 0.

See Bhatt’s article in [BCKW19] for an excellent survey on p-adic Hodge theory
and more details on the Hodge–Tate filtration. Instead of viewing the curve XΓ as
a Riemann surface, we view it as an adic space XΓ, a kind of p-adic analytic space
introduced by Huber. Then there exists a diagram

XΓ(p∞)

||

πHT, SL2(Qp)−equivariant

##

XΓ P1,ad
Qp

,

where XΓ(p∞), which is roughly the inverse limit of modular curves XΓ(pn) with
increasing level at p, is a perfectoid space. Over a point of XΓ(p∞) corresponding
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to an elliptic curve E/C, we have a trivialisation of H1
ét(E,Zp) ' Z2

p. This point
gets sent under πHT to the line

H1(E,OE) ⊂ H1
ét(E,Zp)⊗Zp

C ' C2.

For higher-dimensional Shimura varieties, the following result describes the ge-
ometry of the Hodge–Tate period morphism in detail. While the statement of
Theorem 3.5 involves much non-trivial arithmetic geometry, it has applications to
Theorems 3.10 and 3.11 below, whose statements are substantially more elementary.

Theorem 3.5. ([Sch15, CS17]) Let XΓ be a Shimura variety of Hodge type as-
sociated to a connected reductive group G. Let µ denote the conjugacy class of
Hodge cocharacters and let F `G,µ := G/Pµ denote the corresponding flag variety,
considered as an adic space over a p-adic completion of the reflex field.

(1) There exists a unique perfectoid space XΓ(p∞) which can be identified with

the inverse limit of the adic spaces
(
XΓ(pn)

)
n

.

(2) There exists a Hodge–Tate period morphism

πHT : XΓ(p∞) → F `G,µ,

which is G(Qp)-equivariant.
(3) There exists a Newton stratification

F `G,µ =
⊔

b∈B(G,µ)

F `bG,µ

into locally closed strata.
(4) If XΓ is compact and of PEL type, and x̄ is a geometric point of the Newton

stratum F `bG,µ, we identify the fiber π−1
HT(x̄) with a “perfectoid” version of

an Igusa variety Igb.

Remark 3.6. The first two parts of Theorem 3.5 are due to Scholze5 and play the
lead role in his breakthrough construction of Galois representations for torsion in
the cohomology of locally symmetric spaces. There are many surveys of this result;
see for example [Mor16] or [Wei16]. For more details on the Hodge–Tate period
morphism, see also the last article in [BCKW19]

Remark 3.7. Igusa varieties were introduced by Harris–Taylor as part of their proof
of local Langlands for GLn, and generalised by Mantovan. Rapoport–Zink spaces
are local analogues of Shimura varieties, which provide a geometric realisation of
the local Langlands correspondence. The computation of the fibers of πHT suffices
for applications to Theorems 3.10 and 3.11 below, but in [CS17], we go further and
prove a conceptually cleaner version of Mantovan’s product formula [Man05], which
relates Shimura varieties, Igusa varieties and Rapoport–Zink spaces.

Remark 3.8. In [CS19] we extend part (4) of Theorem 3.5 to U(n, n)-Shimura
varieties, which are non-compact. We compute the fibers of πHT for both the
minimal and toroidal compactifications of these Shimura varieties, and relate them
to partial minimal and toroidal compactifications of Igusa varieties.

5Up to the precise identification of the target of the Hodge–Tate period morphism as the flag
variety F `G,µ in all cases, which is done in [CS17].
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3.9. Vanishing theorems. In order to address Question 3.3, we would like to
compute the localisation H∗(XΓ,F`)m, where the maximal ideal m ⊂ T is equivalent
to a mod ` system of Hecke eigenvalues. Using the Hodge–Tate period morphism
at an auxiliary prime p 6= `6, we obtain an action of T on the complex of sheaves
RπHT∗F` living over F `G,µ, and we are reduced to understanding the localisation
(RπHT∗F`)m. By the properties of πHT, this behaves similarly to a perverse sheaf,
which is the key to controlling the degrees in which (RπHT∗F`)m can have non-zero
cohomology. We make these ideas rigorous in [CS17, CS19] for unitary Shimura
varieties, under some mild technical assumptions.

Let F = F+ · E be a CM field, with maximal totally real field F+ 6= Q and E
imaginary quadratic. Let G be a unitary group preserving a skew-Hermitian form
on Fm. Assume that G is quasi-split at all finite places. Let m ⊂ T be a system of
Hecke eigenvalues that occurs in Hi(XΓ,F`). Assume m is generic at an auxiliary
prime p 6= `7. This condition guarantees that all lifts of m to characteristic 0 are
as simple as possible at p, from a representation-theoretic point of view: they are
generic principal series representations of G(Qp).

Theorem 3.10. ([CS17]) If XΓ is compact and m is generic, then Hi(XΓ(C),F`)m
is concentrated in the middle degree i = dimCXΓ.

In the non-compact case, genericity, which is a local condition at an auxiliary
prime p 6= `, is not enough. We also need a global condition to control the bound-
ary of the Shimura variety. To formulate the global condition, we consider the
semi-simple Galois representation ρ̄m associated to the system of eigenvalues m
by [Sch15]; the existence of ρ̄m is an instance of the global Langlands correspon-
dence in the torsion setting. We want to assume that ρ̄m is not too degenerate; this
amounts to bounding the number of its absolutely irreducible factors.

Theorem 3.11. ([CS19]) If XΓ is a U(n, n)-Shimura variety (so m is even and G
is quasi-split at the infinite places as well), m is generic, and ρ̄m has at most two
absolutely irreducible factors, then:

(1) Hi
c(XΓ(C),F`)m is concentrated in degrees i ≤ dimCXΓ, and

(2) Hi(XΓ(C),F`)m is concentrated in degrees i ≥ dimCXΓ.

Remark 3.12. There are previous results in this direction, due to Dimitrov, Shin,
Emerton–Gee, and especially Lan–Suh [LS12, LS13]. Compared to previous work,
our result is sharper and better adapted to applications. There is also intriguing
ongoing work of Boyer [Boy19], which proves a stronger result in the special case
of Harris–Taylor Shimura varieties: he goes beyond genericity and investigates the
distribution of non-generic systems of Hecke eigenvalues.

Remark 3.13. The idea of the proof in the compact case is the following: start with a
top-dimensional Newton stratum F `bG,µ ⊂ F `G,µ in the support of (RπHT,∗F`)m.

Since the complex (RπHT,∗F`)m behaves like a perverse sheaf, its restriction to
F `bG,µ is concentrated in one degree. Therefore, (RπHT,∗Q`)m is also concentrated

in one degree over F `bG,µ. On the other hand, we can compute the alternating sum

of cohomology groups of Igb with Q`-coefficients, using the trace formula and work

6Here, we assume that the Hecke operators in T are all supported at primes different from p.
7See [CS19, Theorem 1.1] for the precise condition, which is technical, but explicit. This

condition should be thought of as a mod ` analogue of temperedness.
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of Shin [Shi10]. In the end, the genericity condition is contradicted unless b corre-
sponds to the zero-dimensional ordinary stratum. The upshot is that (RπHT,∗F`)m
is concentrated in one degree over a zero-dimensional stratum!

Remark 3.14. In parallel to Question 3.3, one can also study the cohomology of lo-
cally symmetric spaces with torsion coefficients and with increasing level at p. The
resulting structure is called completed cohomology and was introduced by Emerton
as a general framework for studying congruences modulo pk between automorphic
forms. Motivated by heuristics coming from the p-adic Langlands programme,
Calegari–Emerton [CE12] formulated a vanishing conjecture for completed coho-
mology. For most Shimura varieties, the Calegari–Emerton conjecture is now a
theorem due to Scholze and Hansen–Johansson.

In [CGH+20, CGJ19], we prove a vanishing result for the compactly supported
cohomology of Shimura varieties of Hodge type with unipotent level at p. The only
assumption is that the group G giving rise to the Shimura variety is split over Qp.
This result is stronger than what Calegari–Emerton conjectured, and it also points
towards analogues of Theorems 3.10 and 3.11 for ` = p, with generic replaced by
ordinary in the sense of Hida.

4. Potential automorphy over CM fields

Theorem 2.6 on the Ramanujan–Petersson conjecture and Theorem 2.9 on the
Sato–Tate conjecture would follow if we knew that all the symmetric powers of the
associated Galois representations were automorphic, or even just potentially auto-
morphic. The original method developed by Taylor–Wiles is a powerful technique
for proving automorphy, but it is restricted to settings where a certain numerical
criterion holds: these are roughly the settings where the objects on the automorphic
side arise from the middle degree cohomology of a Shimura variety.

When F is a number field, the locally symmetric spaces for GLn /F , such as
the Bianchi manifolds discussed in Example 2.3, do not have an algebraic struc-
ture (outside very special cases). Calegari–Geraghty [CG18] proposed an extension
of the Taylor–Wiles method to general number fields F , conjectural on a precise
understanding of the cohomology of locally symmetric spaces for GLn /F . Part of
their insight was to realise the central role played by torsion classes in the coho-
mology of these locally symmetric spaces, which should be thought of as modulo pk

versions of automorphic forms and treated on equal footing with their character-
istic 0 counterparts. Another part of their insight was to reinterpret the failure of
the Taylor–Wiles numerical criterion in terms of certain non-negative integers q0,
l0 seen on the automorphic side.

The Calegari–Geraghty method gives an automorphy lifting result for GLn /F
as long as the following prerequisites are in place:

(1) The construction of Galois representations associated to classes in the co-
homology with Zp-coefficients of the locally symmetric spaces for GLn /F .

(2) Local-global compatibility for these Galois representations at all primes of
F , including at primes above p.

(3) A vanishing conjecture for the cohomology with Zp-coefficients outside the
range of degrees [q0, q0+l0], under an appropriate non-degeneracy condition.

Remark 4.1. For Shimura varieties, the third problem is closely related to Theo-
rems 3.10 and 3.11, since in that case q0 is the middle degree of cohomology and
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l0 = 0. For 3-dimensional Bianchi manifolds, the third problem says that the
non-degenerate part of cohomology is concentrated in degrees 1 and 2; this can
be checked by hand. For general locally symmetric spaces that do not have an
algebraic structure, this problem most likely lies deeper than the first two.

When F is a CM field, the first problem was solved by Scholze in [Sch15],
strenghtening previous results of Harris–Lan–Taylor–Thorne [HLTT16] for char-
acteristic 0 coefficients. After completing [CS17], it became clear to Scholze and
me that a non-compact version of Theorem 3.10 would give a strategy to attack the
second (rather than the third!) problem over CM fields. In joint work with Scholze,
I set out to prove Theorem 3.11 and, in November 2016, I co-organised with Taylor
an “emerging topics” working group at the IAS, whose goal was to explore this
strategy and its consequences. The working group was a resounding success and
it led to the paper [ACC+18], where we implement the Calegari–Geraghty method
in arbitrary dimension for the first time and obtain as consequences Theorems 2.6
and 2.9.

The solution to the first problem above, i.e. the construction of Galois rep-
resentations, is much more subtle than in the self-dual case, because one cannot
directly use the étale cohomology of Shimura varieties. Instead, the starting point
for both [HLTT16] and [Sch15] is to realise the locally symmetric spaces for GLn /F
in the boundary of the Borel–Serre compactification of U(n, n)-Shimura varieties.
The Borel–Serre compactification is a real manifold with corners, which is homotopy
equivalent to the original U(n, n)-Shimura variety. In the torsion setting, Scholze
constructs the desired Galois representations by congruences, using the Hodge–
Tate period morphism for the U(n, n)-Shimura variety. This increases the level at
primes of F dividing p, and makes the second problem, local-global compatibility,
particularly tricky at these primes.

In [ACC+18], we begin to solve the second problem, by establishing the first
instances of local-global compatibility at primes of F dividing p. We need a del-
icate argument to understand the boundary of the Borel–Serre compactification,
which combines algebraic topology and modular representation theory. In addi-
tion, Theorem 3.11 is the crucial new ingredient: in the middle degree, it implies
that classes from the boundary lift to the cohomology of a U(n, n)-Shimura vari-
ety with Qp-coefficients, while remembering the level and weight at primes of F
dividing p.

The proofs of Theorems 2.6 and 2.9 use the Calegari–Geraghty method, together
with solutions to the first two problems discussed above. The third problem was
not solved with Zp-coefficients. By an insight of Khare–Thorne [KT17], this prob-
lem could be replaced by its Qp-coefficient analogue in certain settings. One of the
main challenges in [ACC+18] was to make this insight compatible with other tech-
niques in automorphy lifting, which rely on reduction modulo p. We resolve this
challenge by considering reduction modulo p from a derived perspective. Outside
low-dimensional cases, such as Bianchi manifolds, or Shimura varieties, the third
problem remains open for Zp-coefficients.
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