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Abstract

We show that the compactly supported cohomology of certain U(n, n) or Sp(2n)-
Shimura varieties with Γ1(p∞)-level vanishes above the middle degree. The only as-
sumption is that we work over a CM field F in which the prime p splits completely.
We also give an application to Galois representations for torsion in the cohomology
of the locally symmetric spaces for GLn/F . More precisely, we use the vanishing re-
sult for Shimura varieties to eliminate the nilpotent ideal in the construction of these
Galois representations. This strengthens recent results of Scholze [Sch15] and Newton-
Thorne [NT16].
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1. Introduction

1.1 Statement of results
The first goal of this paper is to study the cohomology of certain Shimura varieties with infinite
level at p and prove a vanishing theorem for their compactly supported cohomology above the
middle degree. The second goal of this paper is to give an application to Galois representations
for torsion in the cohomology of locally symmetric spaces.

The first question is motivated by a deep conjecture of Calegari–Emerton on the completed
(co)homology of general locally symmetric spaces [CE12, Conjecture 1.5], which in the case of tori
is equivalent to the Leopoldt conjecture, cf. [Hil10]. This conjecture is motivated by the Langlands
reciprocity conjecture and is expected to play an important role in the development of the
classical and p-adic Langlands programs; see for example [Eme14] and [GN16]. When the locally
symmetric spaces do not admit an algebraic structure, the Calegari–Emerton conjecture seems
out of reach at the moment, outside the case of low-dimensional examples such as arithmetic
hyperbolic 3-manifolds. For Shimura varieties of Hodge type, Scholze [Sch15] recently made
significant progress towards the Calegari–Emerton conjectures.

Let (G,X) be a Shimura datum of Hodge type.1 Let Kp ⊂ G(Apf ) be a sufficiently small
compact open subgroup which we fix; this will denote the tame level and we drop it from the
notation for simplicity. Choose an integral model of G over Zp. For m ∈ Z>1, let

Γ(pm) := {γ ∈ G(Zp) | γ ≡ Id mod pm}

and let XΓ(pm) denote the corresponding Shimura variety of tame level Kp and level Γ(pm) at p.
Below, we consider this Shimura variety as a complex analytic space of dimension d and we let
H i
c denote the compactly supported singular cohomology.

Theorem 1.1.1 (Corollary 4.2.2 of [Sch15]). Let r ∈ Z>1. If i > d, then

lim−→
m

H i
c(XΓ(pm),Z/prZ) = 0.

See [Sch15, Cor. 4.2.3] for the direct connection to the Calegari–Emerton conjecture, which is
phrased in terms of completed homology and completed Borel–Moore homology. We explain this
further in § 1.2; for now, let us mention that Scholze’s theory of perfectoid spaces and his p-adic
Hodge theory for rigid analytic varieties both play a crucial role in the proof of Theorem 1.1.1.

1To avoid complications in the introduction, we allow the non-standard setup of [Sch15, §4] as well as the usual
setup, and will not make any explicit distinction between Shimura data and connected Shimura data.
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In this paper, we prove a stronger version of Scholze’s result, in the particular case of U(n, n)-
and Sp2n-Shimura varieties. More precisely, let F be a CM field in which the prime p splits
completely. Let G/Q be the group defined in § 6: it is either a quasi-split unitary group defined
with respect to the extension F/F+, when F is an imaginary CM field with totally real subfield
F+, or the Weil restriction of scalars from F to Q of a symplectic group, when F is a totally real
field. After choosing an integral model for G, we let Kp ⊂ G(Apf ) be a sufficiently small compact
open subgroup, and we set

Γ1(pm) :=
{
γ = (γp)p ∈ G(Zp) | γp ≡

(
In ∗
0 In

)
(mod pm)

}
for m ∈ Z>1. (Here, p runs through primes of F above p induced by a fixed CM type Ψ of F
when F is imaginary CM, and all primes of F above p when F is totally real.) Let XKp be the
Shimura variety for G with tame level Kp and level Kp at p. We prove the following result.

Theorem 1.1.2 (Theorem 6.1.1). Let r ∈ Z>1. If i > d and Kp,m ⊆ Γ1(pm) is compact open for
all m, then

lim−→
m

H i
c(XKpKp,m(C),Z/pr) = 0.

The key new idea we use to prove Theorem 1.1.2 is to exploit the Bruhat stratification on the
Hodge–Tate period domain associated to these Shimura varieties. As far as we are aware, this is
the first instance where this stratification is considered in the context of Shimura varieties. We
note that our result can be used to recover Scholze’s result at level Γ(p∞), by letting Kp,m :=
Γ(pm). On the other hand, by going down to level Γ1(p∞), our result goes beyond what Calegari–
Emerton have conjectured.

Remark 1.1.3. The question of vanishing of cohomology of Shimura varieties at finite level has
been studied extensively recently, motivated in part by the Calegari–Geraghty program for prov-
ing modularity beyond the Taylor–Wiles setting [CG18]. At finite level, results have been ob-
tained, among other works, in [LS12, LS13, Boy17, CS17]. These are all under various assump-
tions and, except for [LS13], deal with compact Shimura varieties.

For U(n, n)-Shimura varieties, which are non-compact, the strongest currently available result
is joint work of one of us (A.C.) with Scholze [CS19]. There, we prove a vanishing result for
compactly supported cohomology at finite level, after localizing at a system of Hecke eigenvalues
that is sufficiently generic in a precise sense and that also satisfies a version of a non-Eisenstein
condition. (We also need to assume for technical reasons that F is not an imaginary quadratic
field.) The genericity we impose is a representation-theoretic condition, which can be thought
of as a mod p analogue of temperedness, and the method of proof is completely different from
that of Theorem 1.1.2. Unlike at level Γ1(p∞), the result at finite level will not hold true without
some kind of non-degeneracy assumption on the system of Hecke eigenvalues. For example, if
ρ̄m is a non-generic direct sum of characters, one can show that the corresponding system of
Hecke eigenvalues m is in the support of some H0(XK ,F`) and therefore also in the support
of H2d

c (XK ,F`). Moreover, proving the analogue of the main result of [CS19] for Sp2n-Shimura
varieties would require substantially more work involving the trace formula, as would the unitary
case when F is an imaginary quadratic field.

Remark 1.1.4. We expect the argument presented in this paper to naturally go through for Hodge
type Shimura varieties at primes where the group is split, and also in some other cases (e.g. for
Harris–Taylor Shimura varieties at primes which are split in the imaginary quadratic field).
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However, some assumption on the prime p appears to be necessary for our current argument
to work — see Remark 1.2.2 for more details. We intend to leave the question of generalizing
Theorem 1.1.2 (in particular, removing the assumption on p) for future work.

As mentioned above, we also give an application of Theorem 1.1.2. More precisely, we use the
result to eliminate the nilpotent ideal in the construction of Galois representations associated to
torsion in the cohomology of locally symmetric spaces for GLn /F , due to [Sch15] and refined
by [NT16]. We explain this further below; we do not define all the notions here, but they are
made precise in Section 6.

Set M := ResF/Q GLn. For a sufficiently small compact open subgroup KM ⊂ M(Af ), let
XM
KM

be the corresponding locally symmetric space for M . Let S be a finite set of primes of Q,
containing p as well as all the bad primes. We consider the abstract spherical Hecke algebra TSM
away from S. It acts in the usual way on H∗(XM

KM
,Zp) and gives rise to the Hecke algebra

TSM (KM ) := Im
(
TSM → EndZp

(
H∗(XM

KM
,Zp)

))
.

Let m ⊂ TSM (KM ) be a maximal ideal. The following is [Sch15, Cor. 5.4.3] (with slightly different
normalizations, which are consistent with [NT16]). (See § 6.1 for an explanation of any notation
that has not been introduced yet.)

Theorem 1.1.5. There exists a unique continuous semisimple Galois representation

ρ̄m : Gal(F/F )→ GLn(Fp)

such that, for every prime w of F above l 6∈ S, the characteristic polynomial of ρ̄m(Frobw) is
equal to the image of

PM,w(X) = Xn − T1,wX
n−1 + · · ·+ (−1)iqi(i−1)/2

w Ti,wX
n−i + · · ·+ (−1)nqn(n−1)/2

w Tn,w

modulo m.

We continue to assume that p splits completely in F and also assume that ρ̄m is absolutely
irreducible. We replace H∗(XM

KM
,Zp) by the complex RΓ(XM

KM
,Zp), which naturally lives in the

derived category D(Zp) of Zp-modules. Its cohomology recovers H∗(XM
KM

,Zp) and the action of
TSM on H∗(XM

KM
,Zp) lifts to an action on RΓ(XM

KM
,Zp). We consider the Hecke algebra

TSM (KM )der := Im
(
TSM → EndD(Zp)

(
RΓ(XM

KM
,Zp)

))
.

TSM (KM )der is a finitely generated Zp-module; we equip it with the p-adic topology. Moreover,
TSM (KM )der surjects onto TSM (KM ) with kernel a nilpotent ideal. We localize TSM (KM )der at m
(and give the localization the p-adic topology). Using Theorem 1.1.2, we prove the following.

Theorem 1.1.6 (Theorem 6.1.4). There exists a unique continuous Galois representation

ρm : Gal(F/F )→ GLn
(
TSM (KM )der

m

)
such that, for every prime w of F above l 6∈ S, the characteristic polynomial of ρm(Frobw) is
equal to

PM,w(X) = Xn − T1,wX
n−1 + · · ·+ (−1)iqi(i−1)/2

w Ti,wX
n−i + · · ·+ (−1)nqn(n−1)/2

w Tn,w.

Remark 1.1.7.
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(i) Up to a nilpotent ideal I ⊂ TSM (KM )der
m of nilpotence degree 4, this is proved in Theorem

1.3 of [NT16] (see also Corollary 5.4.4 of [Sch15]). We eliminate the nilpotent ideal I and
thus prove a more natural statement about the existence of Galois representations.

(ii) For simplicity, we have chosen to state this result with trivial Zp-coefficients in the intro-
duction. However, in Theorem 6.1.4 we also allow twisted coefficients corresponding to an
irreducible algebraic representation of M .

(iii) Under the assumption that p splits completely in F , this finishes the proof of the first
part of Conjecture B of [CG18]. The nilpotent ideal does not usually cause problems for
applications of Conjecture B to automorphy lifting theorems, since the key point there is to
determine the support of a certain patched module and nilpotents do not affect the support.
However, eliminating the nilpotent ideal is important for some more subtle questions, such as
those concerning Bloch–Kato conjectures for automorphic motives, cf. [CGH], or local-global
compatibility for the p-adic local Langlands correspondence, cf. [GN16]. These potential
applications would also need local-global compatibility at p for the Galois representations
ρm, which is still open.

To deduce Theorem 1.1.6 from Theorem 1.1.2, we use a detailed study of the boundary of
the Borel–Serre compactification of the locally symmetric spaces for G (in particular the strata
relevant to the Levi subgroup M) and the derived Hecke algebra introduced in [NT16]. For a
compact open subgroup K ⊂ G(Af ), we denote by XG

K the corresponding locally symmetric
space for G, with Borel–Serre compactification XG,BS

K and boundary ∂XG,BS
K . After the work of

Newton–Thorne, the unique source of nilpotence was the ambiguity coming from the excision
long exact sequence used in the construction of the Galois representation ρm:

· · · → H i(XG
K ,Z/prZ)→ H i(∂XG,BS

K ,Z/prZ)→ H i+1
c (XG

K ,Z/prZ)→ · · · .

(Recall that this long exact sequence is the excision sequence attached to the decomposition

XG,BS
K = XG

K t ∂X
G,BS
K ,

where we have also used the fact that the open immersion XG
K ↪→ XG,BS

K is a homotopy equiv-
alence.) By showing vanishing of compactly supported cohomology above the middle degree, we
eliminate this ambiguity, at least for the cohomology of the boundary above the middle degree.

We emphasize that we genuinely need to use Theorem 1.1.2 for this argument, and we could
not have made use of Theorem 1.1.1 instead. Very roughly speaking, we want to realize the
completed cohomology on the side of the locally symmetric spaces for M as a direct summand
in the boundary cohomology of the Borel–Serre compactification at some infinite level (for G),
above the middle degree d. This is so that we can make use of the vanishing result to eliminate
the ambiguity mentioned above.

At level Γ(p∞), this is not possible as the cohomology of the relevant part of the boundary
vanishes above degree d. Let P denote the Siegel parabolic of G, with Levi subgroup M . The
relevant part of the boundary can be identified with a union of locally symmetric spaces for P .
The cohomology of the locally symmetric space for M is supported in degrees [0, d− 1], and any
shift to higher degrees comes from the cohomology of a torus (the locally symmetric space for
the unipotent part of P ). At level Γ(p∞), only the degree 0 part of the cohomology of the torus
survives, so the cohomology of M does not contribute above degree d− 1.2

2See [CE12, §1.5] for a more in-depth discussion.
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However, it is possible to realize the completed cohomology of the locally symmetric spaces
for M as a direct summand at level Γ1(p∞) (up to a twist and degree-shift). This is the content
of Theorem 6.6.6, and we remark that this is significantly more subtle at level Γ1(p∞) than at
finite level. At finite level, the connected components of the boundary stratum corresponding
to P are indexed by a certain finite set of double cosets; in order to split off the cohomology
of the locally symmetric space for M , one simply restricts to the identity double coset. At level
Γ1(p∞), the boundary stratum corresponding to P is indexed by a pro-finite set of double cosets,
and restriction to the identity double coset does not give a direct summand. To prove Theorem
6.6.6 we introduce another new idea, namely we apply a P -ordinary projector in the sense of
Hida theory. We then show that we do obtain a direct summand after applying P -ordinary
parts, and that this is precisely the completed cohomology of the locally symmetric spaces for
M (with an appropriate twist and degree-shift). This is inspired by arguments with ordinary
parts developed simultaneously in [ACC+18, §5], but the key difference in this paper is that we
consider P -ordinary parts.

1.2 Strategy
We now give a short sketch of the proof of Theorem 1.1.2. In fact, we think it might be helpful
to the reader to first explain (a modified version of) the proof of Theorem 1.1.1. The perfectoid
Shimura variety, minimally compactified, admits a Hodge–Tate period morphism

πHT : (X ∗Γ(p∞))ét → |F`G,µ|,

where |F`G,µ| is the topological space underlying a certain flag variety of dimension d and we
think of πHT as a morphism of sites. The Hodge–Tate period morphism has the property that
F`G,µ has an affinoid cover such that the preimage under πHT of every member of the cover is an
affinoid perfectoid space, with (strongly) Zariski closed boundary. This implies that the fibers of
πHT over points of rank 1 (a condition that can be formulated on the level of the topological space)
are affinoid perfectoid spaces with (strongly) Zariski closed boundary. To prove Theorem 1.1.1,
it is enough to show that

H i
ét(X ∗Γ(p∞), j!Fp) = 0 for i > d,

where j : XΓ(p∞) ↪→ X ∗Γ(p∞) is the open immersion. The primitive comparison theorem in p-adic
Hodge theory (in the form [Sch13b, Theorem 3.13]; see also [Fal02, §3, Theorem 8]) reduces us
to proving that

H i
ét

(
X ∗Γ(p∞), j!(O

+/p)a
)

= 0 for i > d.

We can compute the latter cohomology groups using the Leray spectral sequence for πHT. Using
the fact that the cohomological dimension of the topological space |F`G,µ| is bounded by d (which
follows from a theorem of Scheiderer), we see that it is enough to prove for every point x ∈ F`G,µ
that

RiπHT,∗j!(O+/p)ax = 0 for i > 0.
We reduce to the case of points of rank 1, where we use the fact that the fibers of πHT are
affinoid perfectoid spaces with (strongly) Zariski closed boundary. In this case, we have the
desired vanishing for the étale cohomology of j!(O+/p)a (see Proposition 5.1.4).

We now explain how to adapt these ideas to prove Theorem 1.1.2, focusing on the case
Kp,m = Γ1(pm) (the argument for the general case is identical). We want to use the Leray
spectral sequence for the Hodge–Tate period morphism at level Γ1(p∞), namely the morphism
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of sites
πHT/N0 : (X ∗Γ1(p∞))ét → |F`G,µ|/N0,

where N0 = ∩m>0Γ1(pm) and we take the quotient |F`G,µ|/N0 on the level of topological spaces.
The sheaves RiπHT/N0,∗j!(O+/p)a will in general not vanish for i > 0. This is related to the fact
that the Shimura variety X ∗Γ1(p∞) is not a perfectoid space; it is best thought of in the category
of diamonds. However, we show that |F`G,µ|/N0 admits a stratification by locally closed strata
|F`wG,µ|/N0, induced from the generalized Bruhat stratification of the algebraic flag variety FlG,µ
by Schubert cells, such that for every x ∈ |F`wG,µ|/N0 we have

RiπHT/N0,∗j!(O
+/p)ax = 0 for i > d− dim F`wG,µ.

This is enough to prove the desired vanishing result for compactly supported cohomology.
In order to control the stalks of RiπHT/N0,∗j!(O+/p)a over different Schubert cells, we use

crucially that certain open strata in the compactified Shimura variety at intermediate infinite
levels are perfectoid. The precise result is Theorem 4.5.3. We prove this theorem by generalizing
Scholze’s theory of the overconvergent anticanonical tower and combining it with an argument
inspired by work of Ludwig [Lud17]. (A technical detail is that in the course of the proof we
replace our connected Shimura varieties with the PEL-type Shimura varieties associated to the
corresponding similitude groups. As we are working over a perfectoid field (C,OC), the difference
is only on the level of connected components.)

Example 1.2.1. In the modular curve case, we have G = GL2/Q and F`G,µ = P1,ad. The Schubert
cells are indexed by theWeyl group of GL2/Qp, which consists of two elements {1, w} with w2 = 1.
The non-canonical locus is the Schubert cell corresponding to 1, which can be identified with
A1,ad and is therefore 1-dimensional. The canonical locus is the Schubert cell corresponding to w,
which can be identified with the point ∞ ∈ P1,ad, and is therefore 0-dimensional. For any rank
one point x ∈ A1,ad, the stalk RπHT/N0,∗j!(O+/p)ax is only supported in degree 0 because the non-
canonical locus is already perfectoid at level Γ1(p∞), cf. [Lud17]. On the other hand, the stalk
RπHT/N0,∗j!(O+/p)a∞ is only supported in degrees 0 and 1. This comes from the cohomological
dimension (for continuous group cohomology) of Zp: the canonical locus is not perfectoid itself,
but it has a “Zp-cover”, in a sense made precise in § 2, which is perfectoid.

Remark 1.2.2. We explain why we need to impose the condition that p splits completely in F .
Roughly, the idea is that the geometry of F`G,µ is controlled by the absolute Weyl group of
GQp , whereas the action of G(Qp) on F`G,µ only gives us access to the relative Weyl group of
GQp . This means that, when GQp is not split, there will be in general “absolute” Schubert cells
in F`G,µ over which we will not have optimal control.

For example, let F = F+ · F0, with F+ real quadratic and F0 imaginary quadratic. Assume
that p splits in F0 but stays inert in F+. Consider a U(1, 1)-Shimura variety defined with respect
to F/F+. Then F`G,µ can be identified with ResF+

p /QpP
1,ad, which over Spa(C,OC) gives the

product of two copies of P1,ad
C . Inside F`G,µ, we have A1,ad

C × A1,ad
C , which is the non-canonical

locus, and ∞ ×∞, which is the canonical locus. We can control both of these loci using the
methods developed in this paper. However, we also have the absolute Schubert cells A1,ad

C ×∞
and ∞×A1,ad

C , over which we cannot optimally bound the degrees in which RπHT,∗j!(O+/p)a is
supported.

Assume that F = F+ · F0, where F+ is a totally real field of degree f . Furthermore, assume
that p splits in F0, but has arbitrary behavior in F+. By embedding a U(n, n)-Shimura variety
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defined with respect to F/F+ into a U(nf, nf)-Shimura variety defined with respect to F0/Q,
we obtain some non-trivial bound such that compactly supported cohomology of the U(n, n)-
Shimura variety at level Γ1(p∞) vanishes for all degrees higher than this bound. Unfortunately,
this bound is usually higher than the middle degree of cohomology. Still, this exercise suggests
that Theorem 1.1.2 is likely to hold more generally.

1.2.3 Organization of the paper In Section 2, we collect some results about diamonds and
their cohomology that will play a key role in the rest of the paper. This includes new results that
may be independently useful such as a Hochschild–Serre spectral sequence for the compactly
supported étale cohomology of diamonds (Theorem 2.2.7). Section 3 is devoted to preliminaries
on Shimura varieties. This essentially consists of extending the results of [Sch15] to our Shimura
varieties (for the corresponding similitude groups). One subtlety is that we need to consider the
anticanonical tower at more general levels. Section 4 discusses the generalized Bruhat decomposi-
tion on the Hodge–Tate period domain and proves that certain open strata in the Shimura variety
at intermediate levels already have a perfectoid structure (Theorem 4.5.3). Section 5 gives a proof
of the main theorem. A key geometric input comes from Proposition 5.2.1, where we study adic
spaces equipped with the action of a profinite group and construct invariant rational neighbor-
hoods. Section 6 introduces the locally symmetric spaces for GLn /F and gives the application
to Galois representations using the derived Hecke algebra introduced by Newton–Thorne.
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2. Diamonds and cohomology

In this section we recall the definition of diamonds and some facts about them and their coho-
mology from [Sch17]. For set-theoretic considerations we refer to [Sch17, §4]; we choose a cardinal
κ as in [Sch17, Lemma 4.1], which allows us to consider countable inverse limits of rigid spaces
over some (fixed) non-archimedean field, and all perfectoid spaces will be tacitly assumed to be
κ-small ([Sch17, Definition 4.3]). We will make no further mention of set-theoretic considerations.
For details and precise definitions of any concept or terminology, we refer to [Sch17]. We will
write “(K,K+) is a perfectoid field” to mean that K is a perfectoid field and K+ is an open and
bounded valuation subring.
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2.1 Generalities
To start, we define some categories of perfectoid spaces. The category of all perfectoid spaces
will be denoted by Pfd and the full subcategory of all perfectoid spaces in characteristic p will
be denoted by Perf. For a fixed perfectoid Huber pair (R,R+), let Pfd(R,R+) denote the slice
category of Pfd of perfectoid spaces over Spa(R,R+). If R+ = R◦, we will simply write PfdR.
The tilting equivalence allows us to identify Pfd(R,R+) with Pfd(R[,R[+), which is a slice of Perf.

The category Pfd carries two important Grothendieck topologies, the pro-étale topology and
the v-topology, defined in [Sch17, Definition 8.1] (and they induce topologies with the same
name on all the other categories defined above). Both topologies are subcanonical, cf. [Sch17,
Corollary 8.6, Theorem 8.7], and we will conflate perfectoid spaces and their corresponding
representable sheaves. A diamond is, by definition, a sheaf on Perf for the pro-étale topology
which can be written as the quotient of a perfectoid space X by a pro-étale equivalence relation
[Sch17, Definitions 11.1, 11.2]. Diamonds turn out to be sheaves for the v-topology as well
[Sch17, Proposition 11.9]. Any diamond X has an underlying topological space, denoted by |X|.
The underlying set of |X| can be described as the set of equivalence classes of maps of diamonds

x : Spa(K,K+)→ X,

where (K,K+) is a perfectoid field of characteristic p, and two maps xi : Spa(Ki,K
+
i ) → X

(i = 1, 2) are equivalent if there is a third perfectoid field (K3,K
+
3 ) (of characteristic p) with

surjections fi : Spa(K3,K
+
3 ) → Spa(Ki,K

+
i ) such that x1 ◦ f1 = x2 ◦ f2 [Sch17, Proposition

11.13].
All diamonds that appear in this paper are (locally) spatial [Sch17, Definition 11.17]. If X is

(locally) spatial, then |X| is a (locally) spectral space, and any quasicompact open subset |U | ⊆
|X| defines an open subfunctor U ⊆ X, which is a (locally) spatial diamond [Sch17, Proposition
11.18, 11.19]. Any locally spatial diamond X has an associated étale site Xét consisting of maps
Y → X of diamonds which are étale (this implies that Y is automatically locally spatial by
[Sch17, Corollary 11.28]); see [Sch17, Definition 14.1]. Following [Sch17, Convention 10.2], we
require all étale maps to be locally separated. We also remark that fiber products of (locally)
spatial diamonds are (locally) spatial [Sch17, Corollary 11.29].

There is a functor Y 7→ Y ♦ from the category of analytic adic spaces over Zp to the category
of diamonds, defined in [Sch17, §15]. Any Y ♦ is locally spatial, and it is spatial if and only if
Y is qcqs. Moreover, |Y | = |Y ♦|. Of particular importance to us is that this functor induces an
equivalence of étale sites Yét ∼= Y ♦ét [Sch17, Lemma 15.6]. In particular, we may compute the étale
cohomology of rigid analytic varieties and perfectoid spaces using the associated diamonds.

Next, we state a general result on inverse limits that we will use many times.

Proposition 2.1.1. Let (Xi)i∈I be a cofiltered inverse system of (locally) spatial diamonds with
qcqs transition maps. Then X = lim←−iXi is a (locally) spatial diamond and the natural map
|X| → lim←−i |Xi| is a homeomorphism.

Proof. This is (a special case of) [Sch17, Lemma 11.22]; we refer to the statement there for precise
set-theoretic conditions, which will always be satisfied in the applications in this paper.

We finish this subsection with some topological considerations. Let X be a spatial diamond
and let S be a spectral space. Assume that we have a surjective spectral map p : |X| → S. Given
s ∈ S, set Gen(s) :=

⋂
V V where V ranges through the quasicompact opens containing s; this is

the set of generalizations of s. We can put a canonical (spatial) diamond structure on p−1(Gen(s)),
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by defining p−1(Gen(s)) = lim←−V p
−1(V ), where p−1(V ) is a spatial diamond as mentioned above,

and using Proposition 2.1.1. Following a common abuse of notation in the theory of adic spaces,
we will simply write p−1(s) for p−1(Gen(s)) and refer to it as the (topological) fiber of p at s.
When S = π0(|X|) and p is the canonical projection, this gives a canonical diamond structure
on each connected component of |X|.

2.2 Some results on cohomology
In this subsection we will record some results on the étale cohomology of diamonds that we will
use in this paper. We start with a result on inverse systems.

Proposition 2.2.1. Let Xi, i ∈ I, be a cofiltered inverse system of spatial diamonds with inverse
limit X. Let i ∈ I and assume that Fi is an abelian sheaf on (Xi)ét, with pullback Fj to Xj for
j > i and pullback F to X. Then the natural map

lim−→
j>i

Hq
ét(Xj ,Fj)→ Hq

ét(X,F)

is an isomorphism for all q.

Proof. This is [Sch17, Proposition 14.9].

Next, we give a generalization of a base change property [CS17, Lemma 4.4.1] to the setting of
diamonds. To state it, we first discuss “geometric points” on Xét, for X a locally spatial diamond.
This discussion is local, so we may assume that X is spatial. For any x ∈ |X|, consider the
cofiltered category Ix of maps f : U → X which are composites of quasicompact open immersions
and finite étale maps and which satisfy x ∈ |f(U)| (note that this condition is stable under fiber
products over X, using [Sch17, Proposition 12.10] to verify the last condition). We may form the
inverse limit

x = lim←−
(U→X)∈Ix

U ;

this is a spatial diamond by Proposition 2.1.1. We call it the geometric point above x.

Lemma 2.2.2. We have x = Spa(C,C+) for some algebraically closed perfectoid field (C,C+),
and the image of the natural map π : x→ X contains x.

Proof. We begin with the last assertion; we claim that π(|x|) = {y ∈ |X| | y ∈ |f(U)| ∀ (f : U →
X) ∈ Ix} = Gen(x). The second equality follows since étale maps are open and Ix contains all
open neighborhoods of x. For the first, note that all |f | : |U | → |X| are spectral maps of spectral
spaces, so we may use the constructible topology. Since the inclusion ⊆ is clear, it remains to
prove the opposite inclusion, which amounts to showing that lim←−f∈Ix |f |

−1(y) is non-empty as
long as all |f |−1(y) are non-empty. The |f |−1(y) are compact Hausdorff spaces, so this is true.

We now prove the first part. We have shown that x 6= ∅, so by [Sch17, Propositions 7.16,
11.26] it suffices to show that x is connected and that every surjective étale map Y → x which
can be written as a composite of quasicompact open immersions and finite étale maps splits. For
connectedness, note that if x = V1 t V2 then this disconnection comes from some disconnection
(f : U = U1 t U2 → X) ∈ Ix. Without loss of generality x ∈ |f(U1)|, but then (U1 → X) ∈ Ix
and so V2, which is the preimage of U2, must be empty, so x is connected. To see that any
Y → x as above splits, we first note that by [Sch17, Proposition 11.23] it must come via pullback
from some V → U , where (U → X) ∈ Ix and V → U is the composite of quasicompact open

10



Shimura varieties at level Γ1(p∞) and Galois representations

immersions and finite étale maps. Since Y → x is surjective, x is in the image of the natural map
|Y | → |X|. Since this map factors via |Y | → |V |, this forces x to be in the image of the natural
map |V | → |X| and hence (V → X) ∈ Ix. Since V → U splits over V → U , this implies that
Y → x splits.

Corollary 2.2.3. Let X be a locally spatial diamond, let x ∈ |X| and let F be an étale sheaf
on X. The assignment F 7→ Fx = lim−→(U→X)∈Ix

F(U) defines a topos-theoretic point of Xét, and
the collection {x | x ∈ |X|} is a conservative family (i.e. F = 0 if and only if Fx = 0 for all x).

Proof. The morphism π : x → X is quasi-pro-étale and maps the closed point of |x| to x (since
|π|(|x|) = Gen(x) by the proof of Lemma 2.2.2). The corollary now follows from [Sch17, Propo-
sition 14.3].

We now come to the base change result, generalizing [CS17, Lemma 4.4.1]. The result is a
special case of [Sch17, Corollary 16.10(ii)] (we thank David Hansen for pointing this out to us),
but we give the (short and simple) proof as the same argument will used in other places.

Proposition 2.2.4. Let f : Y → X be a qcqs map of locally spatial diamonds and let x ∈ |X|
with corresponding geometric point x. Set Yx = Y ×X x and let F be an abelian sheaf on Yét.
Then the natural map

(Rifét,∗F)x → H i
ét(Yx,F)

is an isomorphism for all i (here F also denotes the pullback of F to Yx).

Proof. Without loss of generality, X is spatial. Since x = lim←−(U→X)∈Ix
U (using the notation

above), we have Yx = lim←−(U→X)∈Ix
f−1(U). By Proposition 2.2.1, we have

(Rifét,∗F)x = lim−→
(U→X)∈Ix

H i
ét(f−1(U),F) ∼= H i

ét(Yx,F)

via the natural map, as desired.

We will also require a “topological” version of the base change result.

Proposition 2.2.5. Let X be a spatial diamond and let S be a spectral space. Assume that there
is a spectral map |f | : |X| → S; precomposing with the natural morphism of sites Xét → |X|
gives a morphism of sites f : Xét → S. Let s ∈ S and consider the spatial diamond f−1(s) defined
just before this section. If F is an abelian sheaf on Xét, then the natural map

(Rif∗F)s → H i
ét(f−1(s),F)

is an isomorphism for all i.

Proof. We write Gen(s) =
⋂
s∈U U with U quasicompact open and then proceed as in the proof

of Proposition 2.2.4.

We now move on to a version of the Hochschild–Serre spectral sequence involving the lower
shriek functor. For this, we will need to define the lower shriek functor for open immersions and
the notion of G-torsors for profinite groups G. We start with the lower shriek functor. Since what
we need is rather elementary, we give the definitions instead of appealing to the more abstract
constructions of [Sch17], such as e.g. [Sch17, Definition/Proposition 19.1]. Let j : U → X be an
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étale map of locally spatial diamonds. As usual, we may define an extension by zero functor j!
from sheaves on Uét to sheaves on Xét by sheafifying the presheaf(

V
f→ X ∈ Xét

)
7→

⊔
(V g→U)∈Uét; j◦g=f

F(V g→ U).

One checks that j! is exact and is a left adjoint to j∗. We record the following base change results.

Lemma 2.2.6. Let f : X ′ → X be a map of spatial diamonds and let j : U → X be an étale map
with pullback j′ : U ′ → X ′. Denote the map U ′ → U by g.
(i) Let F be an étale sheaf on U . Then the natural map j′!g∗F → f∗j!F is an isomorphism.
(ii) Assume that j is a partially proper open immersion and that g is an isomorphism; we use it

to identify U ′ and U and think of g as the identity. Let G be an abelian sheaf on Uét. Then
the natural map j!G → Rf∗j

′
!G is an isomorphism.

Proof. We begin with part (1). It suffices to check this on geometric points of X ′, so let z ∈ |X ′|
and let z be the corresponding geometric point. The assertion then reduces to checking that
(f∗j!F)z = 0 if z → X ′ does not factor through U ′ → X ′. As usual, one has (f∗j!F)z ∼= (j!F)

f(z).
If z does not factor through U ′ → X ′, then f(z) does not factor through U → X, so (j!F)

f(z) = 0
and we get the conclusion.

We now prove part (2). As above, it suffices to show that (Rf∗j′!G)x = 0 for any x ∈ |X| \ |U |.
By Proposition 2.2.4, we have

(Rif∗j′!G)x ∼= H i
ét(X ′x, h∗j′!G)

for all i, where h is the map X ′x → X ′. By part (1), the stalk of h∗j′!G is 0 over any geometric
point outside U ×X′X ′x. Since j is partially proper and x ∈ |X| \ |U |, Gen(x)∩|U | = ∅ and hence
U ×X′ X ′x = ∅. Thus, h∗j′!G = 0 and the conclusion follows.

Next, we move on to torsors. Let G be a profinite group. Following [Sch17, Definition 10.12],
we define a v-sheaf G

X 7→ Homcts(|X|, G)
on Perf, and define a (right) G-torsor to be a map f : X̃ → X of locally spatial diamonds with a
right action of G on X̃ over X such that the induced map X̃ ×G→ X̃ ×X X̃ is an isomorphism
(this is equivalent to the definition given in [Sch17, Definition 10.12] by [Sch17, Lemma 10.13]).
We may now state and prove our Hochschild–Serre spectral sequence.

Theorem 2.2.7. Let G be a profinite group and let Σ be a set of open normal subgroups of G
which form a basis of neighborhoods of the identity. Assume also that G ∈ Σ. We let (XN )N∈Σ
be an inverse system of spatial diamonds and we assume that each XN carries a right action of
G/N , and that these actions are compatible. Set X = XG and X̃ = lim←−N∈ΣXN . The spatial
diamond X̃ carries a right G-action and we assume that the natural map π : X̃ → X is surjective
on topological spaces. Assume that there is a partially proper open immersion j : U → X with
pullback jN : UN → XN such that UN → U is a G/N -torsor. If j̃ : Ũ → X̃ is the pullback, then
Ũ → U is a G-torsor. Let F be an abelian sheaf on Uét. Then there is a spectral sequence

Ers2 = Hr
cts(G,Hs

ét(X̃, j̃!F)) =⇒ Hr+s
ét (X, j!F),

where H∗cts(G,−) denotes the continuous group cohomology for G, and H∗ét(X̃, j̃!F) is given the
discrete topology.
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Proof. There will be a lot of abuse of notation in this proof regarding pullbacks and lower shrieks;
these cause no mathematical trouble by Lemma 2.2.6(1). We will use [Sch17, Propositions 14.7,
14.8] repeatedly in this proof, which together imply that étale cohomology of locally spatial
diamonds may be computed on the v-site. Thus, we have H∗ét(X, j!F) = H∗v (X, j!F). The map
π is a v-cover by [Sch17, Lemma 12.11] since it is quasicompact and surjective on topological
spaces. We therefore have a Čech-to-derived functor spectral sequence

Ers2 = Ȟr(U,Hs(j!F)) =⇒ Hr+s
v (X, j!F)

where U is the v-cover (X̃ → X) and Hs denotes the derived functors of the inclusion from
v-sheaves to v-presheaves on X̃. It remains to show that

Ȟr(U,Hs(j!F)) = Hr
cts(G,Hs

ét(X̃, j̃!F)).

The Čech complex computing the left-hand side is

Hs
ét(X̃, j̃!F)→ Hs

ét(X̃ ×X X̃, j̃!F)→ · · · → Hs
ét((X̃/X)n, j̃!F)→ · · · , (∗)

where (X̃/X)n denotes the fiber product X̃ ×X · · · ×X X̃ with n factors, and we have equated
v-cohomology and étale cohomology. There is a morphism

f = (fn)n>1 : (X̃ ×Gn−1)n>1 → ((X̃/X)n)n>1,

fn(x, g1, . . . , gn−1) = (x, xg1, . . . , xgn−1),
of simplicial spatial diamonds. Since Ũ → U is a G-torsor, f restricts to an isomorphism

(Ũ ×Gn−1)n>1 ∼= ((Ũ/U )n)n>1.

By abuse of notation, we also write j̃ for the open immersions Ũ ×Gn−1 → X̃ ×Gn−1 and the
open immersions (Ũ/U )n → (X̃/X)n. The natural map j̃!F → Rfn,∗j̃!F is an isomorphism of
étale sheaves on (X̃/X)n by Lemma 2.2.6(2), since the immersion (Ũ/U )n → (X̃/X)n is partially
proper (this follows from partial properness of U → X because partial properness is stable under
base change). Thus, the complex (∗) is equal to

Hs
ét(X̃, j̃!F)→ Hs

ét(X̃ ×G, j̃!F)→ · · · → Hs
ét(X̃ ×Gn−1, j̃!F)→ · · ·

which in turn is equal to the direct limit over N ∈ Σ of the complexes

Hs
ét(XN , jN,!F)→ Hs

ét(XN ×G/N, jN,!F)→ · · · → Hs
ét(XN ×G/Nn−1, jN,!F)→ · · ·

by Proposition 2.2.1. As these complexes compute H∗(G/N,Hs
ét(XN , jN,!F)), we deduce that

Ȟr(U,Hs(j!F)) = Hr
cts(G,Hs

ét(X̃, j̃!F)), as desired, by taking direct limits.

We finish this section with some facts about spectral spaces that we will need. First, recall
that if S is a spectral space, then it carries a notion of (Krull) dimension dimS, where 1 + dimS
is defined as the supremum of the lengths of finite chains of specializations.

Lemma 2.2.8. Let S be a spectral space with a continuous right action of a profinite group G.
Then S/G is a spectral space, and the natural map S → S/G is spectral, open and generalizing.
Moreover, if dimS is finite, then so is dimS/G and dimS = dimS/G.

Proof. This is [BFH+17, Lemma 3.2.3] (note that openness of the quotient map is automatic for
group quotients).

We will also need the following:
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Lemma 2.2.9. Let S be a spectral space with a continuous right action of a profinite group G.
Let s ∈ S be a point with no proper generalizations and let Gs ⊆ G be the stabilizer of s. Then
Gs is closed and the natural map Gs\G → S given by Gsg 7→ sg is a homeomorphism onto the
orbit of s (with the subspace topology).

Proof. The map is continuous and bijective and Gs\G is quasicompact, so the orbit is quasi-
compact and it suffices to show that it is also Hausdorff. Since G acts by homeomorphisms, all
sg have no proper generalizations. The result now follows since the subspace of points with no
proper generalizations is Hausdorff by [Sta, Tag 0904].

2.3 Structure sheaves
In this section, we fix a perfectoid field (K,K+) and a pseudouniformizer $ ∈ K and work
with diamonds over Spa(K,K+). Let X be a locally spatial diamond over (K,K+). Consider the
quasi-pro-étale site Xqproét which consists of all quasi-pro-étale maps Y → X of locally spatial
diamonds (see [Sch17, Definition 10.1]) with the quasi-pro-étale topology [Sch17, Definition 14.1].
By the definition of diamonds, the perfectoid spaces which are quasi-pro-étale over X form a
basis of Xqproét. Since we are working over (K,K+), we think of these as perfectoid spaces over
(K,K+), using the tilting equivalence. The assignment

Y 7→ O+
Y (Y )

defines a sheaf O+
X (of K+-modules) on perfectoid spaces in Xqproét by [Sch17, Theorem 8.7]

(indeed even for the v-topology). It extends uniquely to a sheaf on Xqproét which we will denote
by O+

X . We also get the quotient sheaf O+
X/$, which is what we will be interested in. Note

that if f : Y → X is a quasi-pro-étale morphism of locally spatial diamonds over (K,K+), then
f∗(O+

X/$) = O+
Y /$ since Yqproét is a slice of Xqproét.

Remark 2.3.1. We emphasize that the sheaf O+
X depends not only on the diamond X, but also

on the structure map X → Spa(K,K+). We have nevertheless chosen not to include (K,K+) in
the notation, in part to keep it simple, and also because all diamonds (and perfectoid spaces) in
this paper will naturally live over a perfectoid field which should be clear from the context. We
hope that this does not cause any confusion.

We thank Peter Scholze for pointing out that the map in the following lemma should be an
isomorphism, and not merely an almost isomorphism (the fact that it is an almost isomorphism
suffices for the applications in this paper).

Lemma 2.3.2. Let X be a locally spatial diamond over (K,K+). Let ν : Xqproét → Xét be the
natural morphism of sites. Then the natural map ν∗ν∗(O+

X/$)→ O+
X/$ is an isomorphism.

Proof. First, we remark that the category of étale sheaves on X embeds fully faithfully into
the category of quasi-pro-étale sheaves on X by [Sch17, Proposition 14.8] via ν∗. Thus, we may
rephrase the Lemma as saying that O+

X/$ is an étale sheaf on X. By [Sch17, Theorem 14.12(ii)],
this may be checked quasi-pro-étale locally on X (indeed v-locally), so we may assume that
X is a strictly totally disconnected perfectoid space. In this case, quasi-pro-étale maps are the
same as pro-étale maps by definition, and the topos of the site Xaff

proét of affinoid pro-étale maps
Y → X is equivalent to the topos of Xqproét, so we may work on Xaff

proét. So, let Y = lim←−i Yi → X

be an affinoid pro-étale map with Y = Spa(A,A+), and with Yi = Spa(Ai, A+
i ) étale over X.

Let F denote the sheaf quotient of O+
X by $ on Xét. Since X has no higher étale cohomology,
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F (Yi) = A+
i /$ for all i. We may then compute

ν∗F (Y ) = lim−→
i

F (Yi) = lim−→
i

A+
i /$ = A+/$.

In particular, ν∗F is equal to the presheaf quotient of O+
X by $ on Xaff

proét. But ν∗F is also a
sheaf, so we must have ν∗F = O+

X/$, which proves the lemma.

Thus, we may think of O+
X/$ as a sheaf on Xét. In this paper we will mostly be interested in

the corresponding almost sheaf (O+
X/$)a. We note that, on Xqproét, (O+

X/$)a can be described
as the almost sheaf given by (

Spa(R,R+)→ X
)
7→ (R+/$)a

on affinoid perfectoid Spa(R,R+)→ X ∈ Xqproét. This follows from [Sch17, Proposition 8.5(iii)],
since Spa(R,R+)qproét and Spa(R,R+)proét (defined as in [Sch17, Definition 8.1(ii)]) define the
same topos. We have the following compatibility with the usual O+

X/$ on rigid spaces.

Lemma 2.3.3. Let Z be a rigid space over (K,OK) and consider the usual sheaf O+
Z /$ on Zét.

Then, under the equivalence Zét ∼= Z♦ét, (O+
Z /$)a = (O+

Z♦
/$)a.

Proof. By [Sch13a, Corollary 3.17] we may compute the values of (O+
Z /$)a on the pro-étale

site Zproét as defined in [Sch13a]; by the equivalence Zét ∼= Z♦ét and Proposition 2.1.1, Zproét is
naturally a subcategory of Z♦qproét, and any cover in Zproét is a cover in Z♦qproét (but we make
no assertion about the converse). By [Sch13a, Lemma 4.10], (O+

Z /$)a(U) = (R+/$)a on any
affinoid perfectoid U = Spa(R,R+)→ Z ∈ Zproét. Since these form a basis for Zproét and are also
affinoid perfectoid as elements of Z♦qproét, the lemma follows from the description of (O+

Z♦
/$)a

given just before this lemma.

Let X be a locally spatial diamond over (K,K+). Since (O+
X/$)a on Xét is preserved under

pullback by quasi-pro-étale maps, it will be convenient for us to record some (perhaps a priori
surprising) examples of quasi-pro-étale maps.

Proposition 2.3.4. Let f : Y → X be a finite map of rigid spaces over (K,OK). Then the
associated map f♦ : Y ♦ → X♦ of diamonds is quasi-pro-étale.

Proof. By [Sch17, Proposition 13.6], we need to check that the pullback of f♦ along every
Spa(C,OC) → X♦, with (C,OC) complete algebraically closed, is pro-étale. By definition of
X♦, such a map corresponds precisely to a map Spa(C],OC])→ X of adic spaces over (K,OK),
where C] is the untilt of C over K. Since the diamondification functor commutes with fiber
products, we are left with checking that if Z → Spa(C],OC]) is finite, then Z♦ → Spa(C],OC])
is pro-étale. But, since Z♦ = (Zred)♦ (by definition and reducedness of perfectoid rings) and Zred

is a finite set of copies of Spa(C],OC]), this is true.

Note that in the case of closed immersions one can be more explicit; see (the argument in)
[Sch17, Remark 7.9].

For our next result, we use the notion of a rank one point, following [BFH+17]. Let X be
a locally spatial diamond (not necessarily over (K,K+)). By definition ([BFH+17, Definition
3.2.1]), x ∈ |X| is a rank one point if it satisfies any of the following equivalent conditions:
(i) x has no proper generalizations in |X|;
(ii) There is a perfectoid field (L,OL) and a map Spa(L,OL)→ X with topological image x;
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(iii) x =
⋂
|U | where |U | ranges over the quasicompact opens of |X| containing x.

Equivalently, one may define the set of rank one points as the image of the “Berkovich space”
|X|B inside |X|; see [Sch17, Definition 13.7]. We then get the following version of [CS17, Lemma
4.4.2].
Lemma 2.3.5. Let X be a locally spatial diamond over (K,K+) and let ι : U → X be a quasi-
compact open immersion such that |U | ⊆ |X| contains all rank one points of |X|. Let j : V → X
be a partially proper open immersion; write j also for the immersion U ∩ V → U . Then, for any
i, the natural map

H i
ét(X, j!(O+

V /$)a)→ H i
ét(U, j!(O+

U∩V /$)a)
is an isomorphism.
Proof. It suffices to prove that the adjunction map j!(O+

V /$)a → Rιét,∗j!(O+
U∩V /$)a is an

isomorphism, which we may check on stalks on geometric points x of X. By Proposition 2.2.4 and
Lemma 2.2.6, this reduces us to proving the special case of the proposition when X = Spa(C,C+)
for some algebraically closed extension (C,C+) of (K,K+). Since U contains all rank one points
of X, we must have U = Spa(C,C++) for some open bounded valuation subring C++ ⊇ C+.
Since j is partially proper, we either have V = X or V = ∅. In the latter case, the lemma is trivial.
In the former case, we are left with checking that C+/$ → C++/$ is an almost isomorphism
(which it is), and that higher cohomology vanishes, which it does since all étale covers of X are
split.

3. Preliminaries on Shimura varieties

The following notation will be used through Section 5. We fix an integer n > 1. Let F be a CM
field with totally real subfield F+; we allow both the totally real case F = F+ and the imaginary
CM case F 6= F+. Let f = [F : Q] and let c denote complex conjugation in Gal(F/F+) (this is
independent of the choice of embedding F ↪→ C); we will also let c denote complex conjugation
on C. Let p be a rational prime that splits completely in F . We fix an algebraically closed and
complete extension C of Qp with ring of integers OC (one may take C = Cp, for example). We
fix a choice of i =

√
−1 ∈ C.

3.1 Groups and Shimura varieties
3.1.1 Symplectic and unitary similitude groups Let Ψn denote the n× n matrix with 1’s on

the anti-diagonal and 0’s elsewhere. We set

Jn =
(

0 Ψn

−Ψn 0

)
.

Consider the free OF -module L := O2n
F of rank 2n. Then Jn determines a non-degenerate alter-

nating pairing
ψ : L× L→ Z, ψ(x, y) := TrOF /Z(xtJnyc),

which is perfect when localized at any rational prime which is unramified in F . We define G to
be the group scheme over Z given on R-points, for R a ring, by

G(R) = {(g, r) ∈ AutOF⊗ZR(L⊗Z R)×R× | ψ(gx, gy) = r · ψ(x, y) for all x, y ∈ L⊗Z R}.
When F is totally real, G is a symplectic similitude group; when F is imaginary CM, G is a
unitary similitude group (in both cases, we note that the similitude factor is required to lie
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in Gm,Z). We remark that in a pair (g, r) ∈ G(R), r is determined uniquely by g and hence
projection onto the first factor defines an injection G → ResOF /Z(GL2n,OF ). We will use this
to represent elements of G by 2 × 2 block n × n matrices, as with Jn above. G is manifestly a
subgroup scheme of the symplectic similitude group G̃/Z, defined on R-points by

G̃(R) = {(g, r) ∈ AutR(L⊗Z R)×R× | ψ(gx, gy) = r · ψ(x, y) for all x, y ∈ L⊗Z R}.

Since ψ is perfect when localized at primes ` unramified in F , we see that G̃Z(`)
∼= GSp2nf,Z(`)

for those `.

3.1.2 Shimura data In this section we recall the integral PEL data attached to G and G̃,
starting with G. In addition to the OF -module L and the pairing ψ, we need an R-algebra
homomorphism

h : C→ EndOF⊗ZR(L⊗Z R)
such that ψ(h(z)x, y) = ψ(x, h(zc)y) and such that (x, y) := ψ(x, h(i)y) is symmetric and positive
definite. We set h(i) = −Jn; this uniquely determines the R-algebra homomorphism h and one
checks by direct calculation that it has the required properties. The triple (L,ψ, h) is then an
integral PEL datum for OF according to [Lan13, Definition 1.2.13] (where this notion is called a
PEL-type OF -lattice). Restricting h to C× gives a homomorphism h : S→ GR of real algebraic
groups, where S = ResC/RGm,C is the Deligne torus. The Shimura datum of G is then (GQ, X),
where X is the G(R)-conjugacy class of h.

To define the integral PEL datum attached to G̃, we simply define h̃ : C→ EndR(L⊗ZR) by
postcomposing h with the natural map EndOF⊗ZR(L⊗ZR)→ EndR(L⊗ZR). (L,ψ, h̃) is then an
integral PEL datum for Z, and the corresponding Shimura datum (G̃Q, X̃) is a Siegel Shimura
datum (here X̃ is the G̃(R)-conjugacy class of h̃).

We end with a short discussion of the Hodge cocharacter. Recall that the Hodge cocharacter
for G is given by the composition

µ′ : Gm,C
z 7→(z,1)−−−−−→ Gm,C ×Gm,C ' SC

hC−→ GC.

Using the definition, one checks (by a calculation entirely analogous to the classical case of GL2,Q)
that µ′ is conjugate over C to the cocharacter µ : Gm,Z → G defined by

µ(z) =
(
zIn 0
0 In

)
,

where In denotes the n × n identity matrix. In particular, the reflex field of (GQ, X) is Q. By

composing µ with G→ G̃, we get a Hodge cocharacter µ̃ for G̃.

3.1.3 Shimura varieties and canonical models Given a neat open compact subgroup K of
G(Af ), the Shimura variety for G with level K is the double quotient

G(Q)\X ×G(Af )/K,

which has the structure of a complex manifold. We will only consider neat K. As is well known,
the above double quotient may be viewed as the complex points of a moduli space parametrizing
abelian varieties with certain extra structures. We briefly recall these moduli spaces over Q (for
general K) and Z(p) (when K = KpG(Zp) with Kp ⊆ G(Apf )), following Deligne and Kottwitz.
We refer to [Kot92, §5] and [Lan13, §1-2] for more detailed information and proofs.
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Over Q, initially consider as test objects the category of connected, locally noetherian Q-
schemes. For any such test object S, one defines a functor S 7→ XK(S) by letting XK(S) be the
set of equivalence classes of quadruples (A, λ, ι, ηK), where

– A is an abelian scheme over S;
– λ : A→ A∨ is a polarization of A (i.e. an isogeny inducing a polarization over each geometric

fiber);
– ι : F ↪→ End0(A) := End(A) ⊗Z Q is a Q-algebra homomorphism satisfying λ ◦ ι(xc) =
ι(x)∨ ◦ λ for all x ∈ F , where −∨ denotes the dual quasi-isogeny;

– For any geometric point s̄ of S, ηK is a πét
1 (S, s̄)-invariant K-orbit of F⊗QAf -isomorphisms

η : L⊗Z Af
∼→ Vf (As̄)

identifying the pairing ψ⊗ZAf with the λs̄-Weil pairing up to an A×f -multiple, where Vf (As̄)
is the rational adelic Tate module of the geometric fiber As̄ at s̄.

The quadruples (A, λ, ι, ηK̃) in this moduli description are further required to satisfy Kot-
twitz’s determinant condition; we refer to [Kot92, §5] for the precise formulation of this. Two
quadruples (A, λ, ι, ηK) and (A′, λ′, ι′, η′K) are equivalent if there is a quasi-isogeny between A
and A′, which is compatible with the polarizations λ and λ′ up to a Q×-multiple, respects the
F -actions induced by ι and ι′, and takes the K-orbit ηK to η′K.

This moduli problem can be extended to locally noetherian Q-schemes S which are not nec-
essarily connected by taking a disjoint union over the sets corresponding to the connected com-
ponents of S, and is then representable by a smooth quasi-projective scheme XK over Q, whose
C-points XK(C) can be canonically identified with the double quotient G(Q)\X × G(Af )/K.3
We recall that there is a right action of G̃(Af ) on the tower (XK)K by precomposition η 7→ η ◦ g
on the level structures, which we will make much use of later. We also note in passing that
our moduli problem uses a “definition by isogeny classes” [Lan13, §1.4.2] whereas, for example,
[Sch15] (which we will compare with later) uses a “definition by isomorphism classes” [Lan13,
§1.4.1] when K ⊆ G(Ẑ). These two formulations are equivalent, as demonstrated in [Lan13,
§1.4.3].

When K = KpG(Zp) with Kp ⊆ G(Apf ), Kottwitz has constructed a smooth quasi-projective
(integral, canonical) model of XK over Z(p), which represents an extension of the above moduli
problem (suitably modified) to locally Noetherian Z(p)-schemes. We refer to [Kot92, §5] for the
details. By abuse of notation, we will also denote this model by XK . Finally, the whole discussion
above holds with G replaced by G̃; in this case the models were constructed by Mumford. We
will use the notation X̃

K̃
for the (models of the) Shimura varieties for G̃, for K̃ ⊆ G̃(Af ) a neat

open compact subgroup. Whenever K ⊆ K̃, we have a natural finite map XK → X̃
K̃
.

3.1.4 Compactifications of canonical models In this paper we will need to consider two types
of compactifications of our Shimura varieties. The first is the minimal (Satake–Baily–Borel)
compactification. We will denote all minimal compactifications by a superscript −∗. For the
varieties XK and X̃

K̃
over Q, the minimal compactifications X∗K and X̃∗

K̃
were constructed by

Pink [Pin90]. Over Z(p), the minimal compactifications were constructed by Faltings–Chai [FC90]

3In our case, since dimF V = 2n is even, the Hasse principle holds and we get a single copy of the double quotient
[Kot92, §7].
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and Lan [Lan13]. They are normal, and projective over the base. The right action of G(Af ) and
G̃(Af ) extends to the tower of minimal compactifications (X∗K)K and (X̃∗

K̃
)
K̃
, respectively, and

when K ⊆ K̃, the finite map XK → X̃
K̃

extends to a finite map X∗K → X̃∗
K̃
.

For the Shimura varieties over G, we will mainly use compactifications that are different
from the minimal compactifications, following [Sch15, §4.1]. In the following discussion, fix K
and assume that K = K̃ ∩ G(Af ). For sufficiently small such K̃, the map XK → X̃

K̃
is a

closed immersion by [Del71, Proposition 1.15], but this need to hold for the maps X∗K → X̃∗
K̃
.

Following Scholze, we define the “ad hoc”-compactification XK of XK to be the universal finite
map X∗K → XK over which all the X∗K → X̃∗

K̃
vanish; as noted by Scholze XK is the scheme-

theoretic image of X∗K → X̃∗
K̃

for sufficiently small K̃. The right action of G(Af ) extends to the
tower of ad hoc compactifications (XK)K .

3.1.5 Parabolic and level subgroups We finish this subsection by defining some subgroups
which we will need throughout the paper. Recall that we can represent elements of G by 2 × 2
block n× n matrices. We define closed subgroup schemes Pµ ⊆ G and N ⊆ G on R-points (R a
ring) by

Pµ(R) :=
{

(g, r) ∈ G(R) | g =
(
∗ ∗
0 ∗

)}
;

N(R) :=
{

(g, r) ∈ G(R) | g =
(
In ∗
0 In

)}
,

where ∗ means arbitrary n × n matrix and we recall that In is the n × n identity matrix.
Equivalently, we may define Pµ ⊆ G as the stabilizer of OnF ⊕0 ⊆ L, and N ⊆ G as the subgroup
which acts trivially on OnF ⊕ 0 and on the quotient L/(OnF ⊕ 0). One may also describe Pµ(C) as

Pµ(C) =
{
g ∈ G(C) | lim

t→0
ad(µ(t))g exists

}
.

In particular, Pµ,C is the parabolic denoted by Pµ (for our choice of µ) in [CS17, §2.1]. When
` is a prime unramified in F , GZ(`) is reductive and Pµ,Z(`) is a parabolic subgroup of G, with
unipotent radical NZ(`) . We then define, for any integer m > 0, some open subgroups of G(Zp)
by

Γ0(pm) :=
{

(g, r) ∈ G(Zp) | g ≡
(
∗ ∗
0 ∗

)
mod pm

}
;

Γ1(pm) :=
{

(g, r) ∈ G(Zp) | g ≡
(
In ∗
0 In

)
mod pm

}
;

Γ(pm) :=
{

(g, r) ∈ G(Zp) | g ≡
(
In 0
0 In

)
mod pm

}
.

Finally, we make similar definitions for G̃ and the analogous statements hold; we define P̃µ ⊆ G̃
as the stabilizer of OnF ⊕ 0 ⊆ L, and Ñ ⊆ G̃ as the subgroup which acts trivially on OnF ⊕ 0 and
on the quotient L/(OnF ⊕0) (we have elected to use the notation P̃µ instead of P̃µ̃ for simplicity).
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We then put

Γ̃0(pm) :=
{

(g, r) ∈ G̃(Zp) | (g mod pm) ∈ P̃µ(Z/pm)
}

;

Γ̃1(pm) :=
{

(g, r) ∈ G̃(Zp) | (g mod pm) ∈ Ñ(Z/pm)
}

;

Γ̃(pm) :=
{

(g, r) ∈ G̃(Zp) | g ≡ I2n mod pm
}
.

3.2 The anticanonical tower
We now focus on the p-adic geometry of our Shimura varieties. Our first goal is to prove some
analogues and partial refinements of results from [Sch15, §3.2] for the Shimura varieties of G.
Throughout most of our arguments, the tame levels Kp and K̃p will be fixed, so for simplicity we
will drop them from the notation unless otherwise noted. We will make the assumption that these
fixed Kp and K̃p are “small” (in the terminology of [NT16]), meaning that they are contained in
the kernel of the reduction modulo N map on G(Ẑp) and G̃(Ẑp), respectively, for some integer
N > 3 coprime to p. This is done to be able to apply the results of [Sch15, §3]; for all other
results it suffices that the tame levels are neat.

3.2.1 Formal and Adic Models Recall that we have fixed a complete non-archimedean alge-
braically closed extension C of Qp. Ultimately, we will work over C in this paper, so to keep the
notation uniform throughout we will stick to working over C in the remainder of this section,
but we remark that we could have chosen to work over any perfectoid extension of Qcycl

p , the
completion of Qp(ζp∞).4 We set X∗ := X∗G(Zp),Zp and we let X∗Zp be the formal completion of X∗
along p = 0. This is a formal scheme over Spf Zp. We let X∗ denote the base change of X∗Zp to
Spf OC and X ∗ denote the generic fiber of X∗, viewed as an adic space. This is a proper adic
space over Spa(C,OC). We define X̃∗, X̃∗Zp , X̃

∗ and X̃ ∗ analogously for G̃.

For any level Kp ⊂ G(Zp), we let XKp and X ∗Kp be the adic spaces corresponding to the
base change to C of the Q-schemes XKp and X∗Kp , respectively.

5 Note that X ∗ = X ∗G(Zp). We
define XKp similarly, as the adic space corresponding to the base change to C of the Q-scheme
XKp . This is not quasicompact, but it is open in XKp . The closed complement is the boundary
ZKp := XKp\XKp . Again, we define X̃ ∗K̃p , X̃K̃p and Z̃K̃p = X̃ ∗

K̃p
\X̃

K̃p
analogously for G̃. Although

we will only need the following result for G̃, we state it in general. For the analogue for schemes
see [Lan13, Cor. 7.2.5.2].

Lemma 3.2.2. For two compact open subgroups K ′ ⊆ K such that K ′ is normal in K̃, X ∗K can
be identified with the quotient of X ∗K′ by the finite group K/K ′. The analogue holds for G̃.

Proof. We adapt the proof in [Lan13, Cor. 7.2.5.2] to the corresponding adic spaces. Note that
both X ∗K and X ∗K′ are normal, since they are analytifications of normal algebraic varieties. Note
also that on the open part, XK′ is a (K/K ′)-torsor over XK . (This holds true for the algebraic
varieties, and the analytification functor preserves torsors for finite groups, as it preserves fiber
products.) The result now follows from Theorem 3.2.3 and Corollary 3.2.4 below.

Theorem 3.2.3 [Bar76, §3]. Let Y be a normal rigid space over C, Z ⊂ Y a nowhere dense
Zariski closed subset, with open complement U . Let j : U ↪→ Y be the open immersion. Then
4We could also work over Qp, as long as some minor adjustments are made to some of the statements.
5If Y is a scheme locally of finite type over Spec C, we take Y ad := Y ×C Spa (C,OC), which is an adic space
locally of finite type over Spa(C,OC), where the fiber product is in the sense of [Hub94, Prop. 3.8].
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O+
Y
∼−→ j∗O+

U and OY
∼−→ (j∗O+

U )[1/p]. In particular, if Y is affinoid and f ∈ OY (U) is bounded,
then f extends uniquely to an element of OY (Y ), so OY (Y ) ∼−→ O+

Y (U)[1/p].

Corollary 3.2.4. Let f : Ỹ → Y be a finite morphism of normal rigid analytic spaces. Assume
that there exists a finite group H acting on Ỹ , acting trivially on Y , and such that f is H-
equivariant. Assume that there exists a Zariski open and dense subset U ⊆ Y such that Ũ :=
f−1(U) is Zariski open and dense in Ỹ and such that f identifies U with the quotient Ũ/H.
Then Y = Ỹ /H.
Proof. By finiteness and the construction of quotients by finite groups, we are reduced to the
case when Y is affinoid, and then we need to prove that OY (Y ) = O

Ỹ
(Ỹ )H . Since U = Ũ/H,

OY (U) =
(
O
Ỹ

(Ũ)
)H

, and from this it follows that ObdY (U) =
(
Obd
Ỹ

(Ũ)
)H

, where ObdY (U) :=
O+
Y (U)[1/p] denotes the sub-presheaf of bounded functions. By Theorem 3.2.3, ObdY (U) = OY (Y )

and Obd
Ỹ

(Ũ) = O
Ỹ

(Ỹ ), and the result follows.
Remark 3.2.5. It is also possible to deduce Lemma 3.2.2 from the case of schemes, using that the
adification functor from schemes to adic spaces preserves quotients by finite groups (this can be
checked with a bit of work from the definitions).

3.2.6 Notation for “infinite level” Shimura varieties Before proceeding, we will set out the
notation for infinite level Shimura varieties. We mostly discuss the case of G; the case of G̃ is
entirely analogous. Recall that we have fixed a prime-to-p-level. Our finite level Shimura varieties
XK are then indexed by the open subgroups K ⊆ G(Zp). Our infinite level Shimura varieties
will arise as limits of towers (XK)K , where the K run through a cofiltered inverse system of
open subgroups. Thus, the resulting limit (if it exists in a suitable sense) will only depend on the
intersection H =

⋂
K, which is a closed subgroup of G(Zp). It therefore makes sense to make

the following general definition:
Definition 3.2.7. Let H ⊆ G(Zp) be a closed subgroup. We define a locally spatial diamond
XH by

XH := lim←−
H⊆K

X ♦K ,

where the limit ranges over the open subgroups K with H ⊆ K ⊆ G(Zp). Note that this exists
by Proposition 2.1.1. We define XH and X ∗H similarly; these are spatial diamonds (again by
Proposition 2.1.1). We also define X̃

H̃
and X̃ ∗

H̃
analogously for G̃, when H̃ ⊆ G̃(Zp) is a closed

subgroup.

We have a natural identification |XH | = lim←−H⊆K |XK | by Proposition 2.1.1, and similarly for
the other infinite level Shimura varieties.
Remark 3.2.8.
(i) When H = K is open, the above definition gives XK := X ♦K . This abuse of notation will

be in place throughout this paper. It can be justified by the fact that the diamondification
functor is fully faithful on normal rigid spaces; see [SW17, Proposition 10.2.4] and [KL16,
Theorem 8.2.3]. Also, it should be clear from the context whether XK is regarded as a rigid
space or a diamond.

(ii) If (Xi)i∈I is an inverse system of rigid spaces with qcqs transition maps, andX is a perfectoid
space with X ∼ lim←−iXi in the sense of [SW13, Definition 2.4.1], then X = lim←−iX

♦
i as

diamonds by [SW13, Proposition 2.4.5].
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With this definition, we may extend the towers (XK)K and (X ∗K)K , for open subgroups K, to
towers (XH)H and (X ∗H)H where we index over all closed subgroups. The right actions of G(Qp)
on (XK)K , (XK)K and (X ∗K)K extend naturally to right actions on (XH)H , (XK)K and (X ∗H)H .
If H ⊆ G(Zp) is normal then G(Zp)/H acts on XH , XH and X ∗H . Note that, for arbitrary H,
if g ∈ G(Qp) and H, g−1Hg ⊆ G(Zp), then right multiplication of g induces an isomorphism
XH

∼−→ Xg−1Hg of diamonds, and similarly for the compactifications.

Next, we establish notation for some closed subgroups that will occur frequently. Recall that
Pµ and N were defined in §3.1.5.

Definition 3.2.9. We let 1 ⊆ G(Zp) denote the trivial subgroup, and define

Pµ,0 := Pµ(Zp) =
⋂
m>0

Γ0(pm), N0 := N(Zp) =
⋂
m>0

Γ1(pm).

We define 1̃, P̃µ,0 and Ñ0 analogously for G̃.

Note that 1 =
⋂
m>0 Γ(pm). We finish by recording some results about group actions. We

begin with a result for open Shimura varieties.

Lemma 3.2.10. Let H1 ⊆ H2 be closed subgroups of G(Zp) and assume that H1 is normal in H2.
Then XH1 → XH2 is a H2/H1-torsor. The analogue for G̃ holds.

Proof. Set Ki,m = HiΓ(pm) for i = 1, 2 and m > 0. Then K1,m is normal in K2,m and hence
XK1,m → XK2,m is a K2,m/K1,m-torsor compatibly in m, i.e. we have compatible isomorphisms

XK2,m ×K2,m/K1,m
∼−→ XK1,m ×XK2,m

XK1,m

(this holds for rigid spaces and follows formally for diamonds, since fiber products are preserved).
Taking the inverse limit over m gives us the isomorphism XH2 × H2/H1

∼−→ XH1 ×XH2
XH1 , so

XH1 → XH2 is a H2/H1-torsor as desired.

We now move on to compactifications, where we will content ourselves with proving state-
ments at the level of topological space. We will only need the first lemma for G̃, but we state it
in general.

Lemma 3.2.11. Let H be a closed subgroup of G(Zp). Then |X ∗H | ∼= |X ∗1 |/H via the natural map
|X ∗1 | → |X ∗H | (and similarly for open Shimura varieties, and for G̃).

Proof. We prove the statement for minimal compactifications; the statement for open Shimura
varieties follows from Lemma 3.2.10. For each m > 0, we have |X ∗HΓ(pm)| = |X ∗Γ(pm)|/H via
the natural map |X ∗Γ(pm)| → |X ∗HΓ(pm)| by Lemma 3.2.2. Taking inverse limits, one obtains
lim←−m>0 |X

∗
HΓ(pm)| ∼=

(
lim←−m>0 |X

∗
Γ(pm)|

)
/H (using that H is compact Hausdorff). We are now

done, using that |X ∗1 | = lim←−m>0 |X
∗
Γ(pm)| and |X

∗
H | = lim←−m>0 |X

∗
HΓ(pm)|.

Our task is now to prove the corresponding statement for ad hoc compactifications. Because
of the way the ad hoc compactifications are defined, it is easiest not to work with a fixed Kp,
so we drop this from now on until the beginning of §3.2.16; we make definitions analogous to
the above for closed subgroups H ⊆ G(Af ). We will break up the proof into a sequence of short
results.
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Proposition 3.2.12. Let K ⊆ G(Af ) be an open compact subgroup (always neat). XK is dense
in XK (in the analytic topology). Moreover, if K̃ ⊆ G̃(Af ) is a sufficiently small compact open
subgroup, in the sense that XK is the scheme-theoretic image of X∗K → X̃∗

K̃
, then |XK | is the

closure of |XK | inside |X̃ ∗
K̃
|.

Proof. The first statement follows since XK is dense X ∗K in the analytic topology and X ∗K → XK
is surjective. The second statement then follows since XK is closed (indeed Zariski closed) in
X̃ ∗
K̃
.

Next, we state a general lemma on diamonds of rigid spaces. If Z is a topological space, there
is a v-sheaf Z defined just before [Sch17, Definition 10.12].

Lemma 3.2.13. Let S → T be a Zariski closed immersion of rigid spaces. Then S♦ = |S|×|T | T♦.

Proof. The map S♦ → T♦ is quasicompact and an injection (at the level of sheaves), since if
Z is a perfectoid space and f, g : Z → S are two maps which are equal after composing with
S → T , then they must already be equal. The statement then follows from [Sch17, Proposition
11.20].

We may then give a convenient description of the diamond of the ad hoc compactification.

Corollary 3.2.14. Let K ⊆ G(Af ) be an open compact subgroup. Then X ♦K is the diamond
attached to the closure of |XK | inside |X̃ ∗K |.

Proof. Let K̃ ⊆ G̃(Af ) be a sufficiently small open compact subgroup throughout this proof,
in the sense of Proposition 3.2.12. Proposition 3.2.12 and Lemma 3.2.13 show that, if S

K̃
is the

closure of |XK | in |X̃ ∗
K̃
|, then X ♦K = S

K̃
×|X̃ ∗

K̃
| X̃
∗,♦
K̃

. Taking inverse limits over K̃ we get

X ♦K = SK ×|X̃ ∗K |
X̃ ∗K

where SK = lim←−K̃ SK̃ , so it suffices to prove that SK is the closure of |XK | in |X̃ ∗K |. By the
definition of the inverse limit topology, a point x ∈ |X̃ ∗K | is in the closure of |XK | if and only
if for every K̃, every open neighborhood of the image of x in |X̃ ∗

K̃
| intersects |XK |, and this is

equivalent to the image of x in each |X̃ ∗
K̃
| being in the closure of |XK |. This finishes the proof.

We now get to the analogue of Lemma 3.2.11.

Proposition 3.2.15. Let H ′ ⊆ H ⊆ G(Af ) be compact subgroups, with H ′ normal in H. Then
|XH | = |XH′ |/(H/H ′).

Proof. It suffices to prove the case when H ′ is open, the general case then follows as in the proof
of Lemma 3.2.11 by taking inverse limits. The map |X̃ ∗H′ | → |X̃ ∗H | is open, so taking closures
commutes with preimages. In particular, it follows that |XH′ | is the preimage of |XH |. Since
|X̃ ∗H | = |X̃ ∗H′ |/(H/H ′) by Lemma 3.2.11, the proposition follows.

3.2.16 The anticanonical tower In this section, we adapt the construction of the anticanon-
ical tower over a neighborhood of the ordinary locus for the Shimura varieties of G̃ as in [Sch15,
Sec. 3] to the Shimura varieties of G. Our strategy is to deduce results for G from those for G̃,
but we will also need some refinements of the results of [Sch15, Sec. 3] for G̃.
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The special fiber of the integral model X∗ admits a Newton stratification – see, for exam-
ple, [LS18, §3.3]. The reflex field of G is Q, so [Wed99, Thm. 1.6.3] (together with [LS18, §3.3] for
the extension to the boundary) implies that there exists an open dense ordinary stratum in X∗Fp .
As usual, one can also recover the ordinary stratum as the complement of the vanishing locus
of the Hasse invariant Ha. Over X∗, we have the Hodge line bundle ω, and the Hasse invariant
Ha is a section of ω⊗(p−1)

Fp
. The above discussion also holds for G̃, and we note that Ha on X∗Fp

is the pullback of the Hasse invariant on X̃∗Fp .

Let us now recall the results from [Sch15, §3] for G̃ that we need (partially to set up notation),
and prove an additional result that will be crucial for us in this paper (Proposition 3.2.19). We
start by recalling the anticanonical tower for G̃. In this discussion, we will work over Qp instead
of C until further notice to simplify referencing to [Sch15], so all Shimura varieties for G̃ (of
finite or infinite level) are considered to be defined over Qp; we will sometimes add a subscript
Qp when we wish to emphasize this. Let 0 6 ε < 1/2. The anticanonical locus X̃ ∗

Γ̃0(p)
(ε)a of level

Γ̃0(p) and radius of overconvergence ε is (essentially) defined in [Sch15, Theorem 3.2.15(iii)]. This
is an open subset of X̃ ∗

Γ̃0(p)
, defined as the image of the map

X̃ ∗(ε)→ X̃ ∗Γ̃0(p),

where X̃ ∗(ε) is the locus where |Ha| > pε (here and elsewhere, this condition is defined in terms
of local (integral) lifts as usual, and independent of the choices of lifts) and the map sends a
principally polarized abelian variety A (with tame level structure) to (A/Can, A[p]/Can) (with
the induced tame level structure), where Can ⊆ A[p] is the canonical subgroup. For any closed
subgroup H̃ ⊆ Γ̃0(p), we define

X̃ ∗
H̃

(ε)a := X̃ ∗Γ̃0(p)(ε)a ×X̃ ∗
Γ̃0(p)

X̃ ∗
H̃
.

When H̃ is open, we primarily view this as a rigid space. By [Sch15, Corollary 3.2.19] (see remark
below), there is a unique affinoid perfectoid space X̃ ∗

P̃µ,0∩G̃der(Zp),Qp
(ε)a such that

X̃ ∗
P̃µ,0∩G̃der(Zp),Qp

(ε)a ∼ lim←−
m

X ∗Γ̃0(pm)′,Qp
(ε)a,

where G̃der ⊆ G̃ is the subgroup where the similitude factor is 1, and Γ̃0(pm)′ is the subgroup of
Γ̃0(pm) given by imposing the condition that the similitude factor is congruent to 1 modulo pm.
Moreover, the boundary

Z̃
P̃µ,0∩G̃der(Zp),Qp

(ε)a ⊆ X̃ ∗P̃µ,0∩G̃der(Zp),Qp
(ε)a

is strongly Zariski closed, in the sense of [Sch15, Definition 2.2.6]6.

Remark 3.2.17. The Γ0(pm)-level structures of [Sch15, Definition 3.1.1] are slightly different to
level structures Γ̃0(pm)′ in this paper; the level structure Γ0(p∞) corresponds to the kernel of the
determinant map on P̃µ,0 in our notation. We assume that this is a typo and that the intention
was to instead let it correspond to the kernel of the similitude map (this is what matches with
the arguments of [Sch15, §3]). We also remark that the spaces constructed in [Sch15, §3] morally
6In fact, the notions of Zariski closed and strongly Zariski closed, as defined in [Sch15, §2], agree by [BS19, Remark
7.5], which has appeared since the first version of our paper was published. We have elected to keep the distinction
in this paper, since the strong Zariski closure statements we need follow easily from those in [Sch15].
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live over Qp, in the sense that they are limits of rigid spaces defined over Qp, but the limit admits
a morphism to Qcycl

p given by the similitude factor, which allows them to be regarded as spaces
over Qcycl

p . This is the reason for working over Qp in the current discussion.

Going further up, by [Sch15, Proposition 3.2.34, Theorem 3.2.36] there are unique affinoid
perfectoid spaces X̃ ∗

Ñ0,Qp
(ε)a and X̃ ∗

1̃,Qp
(ε)a such that

X̃ ∗
Ñ0,Qp

(ε)a ∼ lim←−
m

X̃ ∗Γ̃1(pm),Qp
(ε)a;

X̃ ∗1̃,Qp(ε)a ∼ lim←−
m

X̃ ∗Γ̃(pm),Qp
(ε)a.

Moreover, the boundaries Z̃
Ñ0,Qp

(ε)a ⊆ X̃ ∗
Ñ0,Qp

(ε)a and Z̃1̃,Qp(ε)a ⊆ X̃
∗
1̃,Qp

(ε)a, respectively, are

strongly Zariski closed, and functions on X̃1̃,Qp(ε)a extend uniquely to X̃ ∗
1̃,Qp

(ε)a. It will be essen-
tial for the arguments of this paper to have a slightly more general result. Before we state and
prove this generalization, we recall [Sch15, Lemma 3.2.24(iii)]7 which will be used in the proof.
For all levels H̃, we use X̃ gd

H̃
(ε)a and X̃ gd

H̃
to denote the good reduction loci in X̃

H̃
(ε)a and X̃

H̃

respectively; these are quasicompact open subspaces (or diamonds).

Lemma 3.2.18. [Sch15, Lemma 3.2.24(iii)] Let Y∗m → X̃ ∗Γ̃0(pm)′,Qp
(ε)a be finite, étale away from the

boundary, and assume that Y∗m is normal and that no irreducible component of Y∗m maps to the
boundary of X̃ ∗

Γ̃0(pm)′,Qp
(ε)a. In particular, Ygdm := X̃ gd

Γ̃0(pm)′,Qp
(ε)a×X̃ ∗

Γ̃0(pm)′,Qp
(ε)a
Y∗m is finite étale

over X gd
Γ̃0(pm)′,Qp

(ε)a. For anym′ > m, let Y∗m′ be the normalization of X̃ ∗
Γ̃0(pm′ )′,Qp

(ε)a×X̃ ∗
Γ̃0(pm)′,Qp

(ε)a

Y∗m and let Ygdm′ be the preimage of Ygdm . Let Ygd∞ = Ygdm ×X̃ gd
Γ̃0(pm)′,Qp

(ε)a
X̃ gd
P̃µ,0∩G̃der(Zp),Qp

(ε)a; this

exists as a perfectoid space since Ygdm → X̃
gd

Γ̃0(pm)′,Qp
(ε)a is finite étale. The spaces Y∗m′ are affinoid

form′ sufficiently large, so write Y∗m′ = Spa(Sm′ , S+
m′). Assume further that S∞ := H0(Ygd∞ ,OYgd∞ )

is a perfectoid Qcycl
p -algebra and define Y∗∞ := Spa(S∞, S◦∞). Then Y∗∞ ∼ lim←−m′ Y

∗
m′ .

To simplify notation, we will not write out the subscripts ‘Qp’ for most of the discussion below
until after the proof of Corollary 3.2.20, and we will put P̃ ′µ,0 := P̃µ,0 ∩ G̃der(Zp). Returning
to the situation of the lemma above and keeping in mind these conventions, we recall that
X̃ ∗

Γ̃1(pm)∩P̃ ′µ,0
(ε)a is proved to be perfectoid via Lemma 3.2.18. In particular,

H0(X̃ ∗Γ̃1(pm)∩P̃ ′µ,0
(ε)a,OX̃ ∗

Γ̃1(pm)∩P̃ ′
µ,0

(ε)a
) = H0(X̃ gd

Γ̃1(pm)∩P̃ ′µ,0
(ε)a,OX̃ gd

Γ̃1(pm)∩P̃ ′
µ,0

(ε)a
)

is a perfectoid Qcycl
p -algebra. As X̃ ∗

Γ̃(pm)
(ε)a → X̃ ∗

Γ̃1(pm)
(ε)a is finite étale by [Sch15, Lemma

3.2.35]), one sees that

X̃ ∗Γ̃(pm)∩P̃ ′µ,0
(ε)a = X̃ ∗Γ̃(pm)(ε)a ×X̃ ∗

Γ̃1(pm)
(ε)a
X̃ ∗Γ̃1(pm)∩P̃ ′µ,0

(ε)a

is affinoid perfectoid and a direct calculation using that X̃ ∗
Γ̃(pm)

(ε)a → X̃ ∗Γ̃1(pm)
(ε)a is finite étale

7In part because the notation we use is incompatible with the notation used in [Sch15, Lemma 3.2.24(iii)]
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shows that

H0(X̃ ∗Γ̃(pm)∩P̃ ′µ,0
(ε)a,OX̃ ∗

Γ̃(pm)∩P̃ ′
µ,0

(ε)a
) = H0(X̃ gd

Γ̃(pm)∩P̃ ′µ,0
(ε)a,OX̃ gd

Γ̃(pm)∩P̃ ′
µ,0

(ε)a
),

so the right hand side is perfectoid.
Proposition 3.2.19. We work over Qp. Let K̃ ⊂ G̃(Zp) be a compact open subgroup. There
exists an affinoid perfectoid space

X̃ ∗
K̃∩P̃ ′µ,0

(ε)a ∼ lim←−
m

X̃ ∗
K̃∩Γ̃0(pm)′(ε)a.

Moreover, the boundary Z̃
K̃∩P̃ ′µ,0

(ε)a ⊂ X̃ ∗
K̃∩P̃ ′µ,0

(ε)a is strongly Zariski closed.

Proof. We check that the conditions of Lemma 3.2.18 apply to Y∗m := X̃ ∗
K̃∩Γ̃0(pm)′

(ε)a for any
large enough m. The projection map

X̃ ∗
K̃∩Γ̃0(pm)′ → X̃

∗
Γ̃0(pm)′

is finite étale away from the boundary, X̃ ∗
K̃∩Γ̃0(pm)′

(ε)a is normal, and no irreducible component

of X̃ ∗
K̃∩Γ̃0(pm)′

(ε)a maps into the boundary. Note that the space Ygd∞ := X̃ gd
K̃∩P̃ ′µ,0

(ε)a exists and

is perfectoid, since it is the pullback to the perfectoid space X̃ gd
P̃ ′µ,0

(ε)a of X̃
K̃∩Γ̃0(pm)′(ε)a →

X̃Γ̃0(pm)′(ε)a, which is finite étale. The last thing we need to show is that

S′∞ := H0(X̃ gd
K̃∩P̃ ′µ,0

(ε)a,OX̃ gd
K̃∩P̃ ′

µ,0
(ε)a

)

is a perfectoid Qcycl
p -algebra.

To see this, we argue as follows. There exists an integer t > 1 such that Γ̃(pt) ⊂ K̃; then
the quotient H := K̃/Γ̃(pt) is a finite group. From the discussion preceding this Proposition, we
know that X̃ ∗

Γ̃(pt)∩P̃ ′µ,0
(ε)a is affinoid perfectoid and that

S∞ := H0(X̃ ∗Γ̃(pt)∩P̃ ′µ,0
(ε)a,OX̃ ∗

Γ̃(pt)∩P̃ ′
µ,0

(ε)a
) = H0(X̃ gd

Γ̃(pt)∩P̃ ′µ,0
(ε)a,OX̃ gd

Γ̃(pt)∩P̃ ′
µ,0

(ε)a
).

We now conclude using [KL15, Prop. 3.6.22], since

S′∞ = (S∞)H ,

which follows from the fact that X̃ gd
Γ̃(pt)∩P̃ ′µ,0

(ε)a is an H-torsor over X̃ gd
K̃∩P̃ ′µ,0

(ε)a. This concludes
the proof of the first part of the proposition, using Lemma 3.2.18.

To see that Z̃
K̃∩P̃ ′µ,0

(ε)a ⊂ X̃ ∗
K̃∩P̃ ′µ,0

(ε)a is strongly Zariski closed, we note that Z̃
K̃∩P̃ ′µ,0

(ε)a

is the pullback of Z̃
P̃ ′µ,0

(ε)a ⊂ X̃ ∗
P̃ ′µ,0

(ε)a over the map X̃ ∗
K̃∩P̃ ′µ,0

(ε)a → X̃ ∗
P̃ ′µ,0

(ε)a, and use [Sch15,

Lemma 2.2.9].

We immediately deduce the following generalization.
Corollary 3.2.20. We work over Qp. Let H̃ ⊆ P̃ ′µ,0 be a closed subgroup. Then the diamond
X̃ ∗
H̃

(ε)a is an affinoid perfectoid space, and the boundary Z̃
H̃

(ε)a ⊂ X̃ ∗
H̃

(ε)a is strongly Zariski
closed.
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Proof. Let H̃i ⊆ P̃ ′µ,0, i ∈ I, be a collection of open subgroups of P̃ ′µ,0 containing H̃ such that⋂
i∈I H̃i = H̃. We may assume that each H̃i is equal to P̃ ′µ,0 ∩ K̃i for some open subgroup K̃i ⊆

G̃(Zp). Then each X̃ ∗
H̃i

(ε)a is affinoid perfectoid by Proposition 3.2.19, so X̃ ∗
H̃

(ε)a = lim←−i X̃
∗
H̃i

(ε)a
is affinoid perfectoid. The boundary Z̃

H̃
(ε)a is the pullback of Z̃

P̃ ′µ,0
(ε)a, hence strongly Zariski

closed by [Sch15, Lemma 2.2.9].

We now go back to working over C, and deduce the following result.

Corollary 3.2.21. We work over C. Let H̃ ⊆ P̃µ,0 be a closed subgroup. Then the diamond
X̃ ∗
H̃

(ε)a is an affinoid perfectoid space, and the boundary Z̃
H̃

(ε)a ⊂ X̃ ∗
H̃

(ε)a is strongly Zariski
closed.

Proof. First assume that H̃ ⊆ P̃ ′µ,0. Then

X̃ ∗
H̃

(ε)a =
(
X̃ ∗
H̃,Qp

(ε)a ×Spa(Qp)♦ Spa(Qcycl
p )♦

)
×Spa(Qcycl

p )♦ Spa(C)♦

where the omitted ring of integral elements is the power-bounded elements. The first fiber product
is affinoid perfectoid by Corollary 3.2.20 since it is equal to

lim←−
m

(
X̃ ∗
H̃,Qp

(ε)a ×Spa(Qp)♦ Spa(Qp(ζpm))♦
)

;

the second fiber product is then a fiber product of affinoid perfectoid spaces, hence affinoid
perfectoid. The statement about the boundary follows by pullback, using the map X̃ ∗

H̃
(ε)a →

X̃ ∗
H̃,Qp

(ε)a.

For general H̃ ⊆ P̃µ,0, set H̃ ′ = H̃ ∩ Gder(Zp). Then X̃ ∗
H̃

(ε)a is a closed union of connected
components of X̃ ∗

H̃′
(ε)a, and the result for H̃ follows from that for H̃ ′.

We now return to the Shimura varieties for G, and continue to work over C for the rest of
this paper. For any closed subgroup H ⊆ Γ0(p), set

XH(ε)a := XH ×X̃ ∗
Γ̃0(p)

X̃ ∗Γ̃0(p)(ε)a;

and XH(ε)a = XH(ε)a ∩ XH . These are non-empty since the ordinary locus of the Shimura
varieties of G is non-empty. The following is the main result of this subsection.

Theorem 3.2.22. Let H ⊆ Pµ,0 be a closed subgroup. Then XH(ε)a is an affinoid perfectoid
space over C, and the boundary ZH(ε)a ⊂ XH(ε)a is strongly Zariski closed.

Proof. In this proof we will write out tame levels for the Shimura varieties for G̃ that appear.
Choose a (countable) shrinking set of compact open subgroups Ki ⊆ Γ0(p) such that H =

⋂
iKi,

and choose shrinking sets of tame levels K̃p
i and compact open subgroups K̃i ⊆ Γ̃0(p) such that

XKi ⊆ X̃ ∗K̃p
i K̃i

. Set H̃p =
⋂
i K̃

p
i , H̃ =

⋂
i K̃i and define

X̃ ∗
H̃pH̃

(ε)a := lim←−
i

X̃ ∗
K̃p
i K̃i

(ε)♦a = lim←−
i

X̃ ∗
K̃p
i H̃

(ε)a.

The second equality and Corollary 3.2.21 shows that this is an affinoid perfectoid space with
strongly Zariski closed boundary. We have

XH(ε)a = lim←−
i

XKi(ε)♦a .
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For every i, set
Yi := XKi(ε)a ×X̃ ∗

K̃
p
i
K̃i

(ε)a
X̃ ∗
H̃pH̃

(ε)a.

Since XKi(ε)a ⊆ X̃ ∗K̃p
i K̃i

is Zariski closed, Yi ⊆ X̃ ∗
H̃pH̃

(ε)a is Zariski closed and hence affinoid

perfectoid with strongly Zariski closed boundary. It follows that XH(ε)a =
⋂
i Yi is affinoid

perfectoid with strongly Zariski closed boundary, as desired.

3.3 The Hodge–Tate period morphism
In this subsection we discuss the perfectoid Shimura variety X 1 and the Hodge–Tate period
morphism

πHT : X 1 → F `G,µ.

Recall that, roughly speaking, the Hodge–Tate period morphism measures the relative position
of the Hodge–Tate filtration on the universal abelian variety over the perfectoid Shimura variety.

Recall that we defined subgroup schemes Pµ ⊆ G and P̃µ ⊆ G̃ in §3.1.5, which are parabolic
subgroups at good primes (in particular at p). At the level of schemes, we define flag varieties
over Zp as the quotients FlG,µ := GZp/Pµ,Zp and Fl

G̃,µ
:= G̃Zp/P̃µ,Zp (we could have made these

definitions over Z(p), but we will have no need for that extra generality). Note that they carry
natural left actions of GZp and G̃Zp , respectively, which we will also consider as right actions by
inversion. We have a natural closed immersion FlG,µ → Fl

G̃,µ
, which is equivariant for the action

of GZp . We will mostly be interested in the rigid spaces

F`G,µ := (FlG,µ×SpecZp SpecC)ad, F`
G̃,µ

:= (Fl
G̃,µ
×SpecZp SpecC)ad.

Even though these are rigid spaces over C, we will implicitly remember that they naturally
arise by base change from (FlG,µ×SpecZp SpecQp)ad and (Fl

G̃,µ
×SpecZp SpecQp)ad respectively;

in particular this will allow us to define the Qp-points of F`G,µ and F`
G̃,µ

. Recall that we have
right actions of G(Qp) and G̃(Qp) on X 1 and X̃ ∗

1̃
respectively, and that the natural map X 1 → X̃ ∗1̃

is G(Qp)-equivariant.

Theorem 3.3.1. The spatial diamond X 1 is a perfectoid space, and there is a G(Qp)-equivariant
Hodge–Tate period map X 1 → F`G,µ of adic spaces (for the right action of G(Qp) on F`G,µ).

Proof. The first part is [Sch15, Theorem 4.1.1]. For the second part, the construction proving
[CS17, Theorem 2.1.3] gives a commutative diagram

X1
πHT,G

//

��

F`G,µ

��

X̃ ∗
1̃

π
HT,G̃
// F`

G̃,µ

.

Since X1 is dense in X 1 and F`G,µ ⊆ F`
G̃,µ

is Zariski closed, it follows that πHT,G̃(q(|X 1|)) ⊆
|F`G,µ|, where q : X 1 → X̃ ∗1̃ is the natural map. From this, it follows that πHT,G̃◦q : X 1 → F`

G̃,µ

factors through F`G,µ; this gives our desired extension of πHT,G (one way to see this is via
Lemma 3.2.13). Since X 1 is perfectoid, the morphism X 1 → F`♦G,µ arises by diamondification
from a unique morphism X 1 → F`G,µ of adic spaces by the definition of the diamondification
functor.
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From now on we drop the subscript G and write πHT for πHT,G. Our remaining goal in this
subsection is to establish some facts about the geometry of the Hodge–Tate period map. Recall
from §3.2.16 that notions such as being ordinary (or more generally the valuation of the Hasse
invariant), canonical or anti-canonical are compatible for G and G̃ as they do not depend on the
endomorphism structure. To discuss ordinarity in terms of flag varieties, we will need to define
some subsets of F`G,µ and F`

G̃,µ
. First, we define the “opposites” Pµ and N of Pµ and N ,

respectively, by the functor of points (R a ring)

Pµ(R) :=
{

(g, r) ∈ G(R) | g =
(
∗ 0
∗ ∗

)}
;

N(R) :=
{

(g, r) ∈ G(R) | g =
(
In 0
∗ In

)}
.

At good primes, Pµ is the opposite parabolic of Pµ and N is its unipotent radical. Note that
Pµ = JnPµJ

−1
n and N = JnNJ

−1
n , where we recall that the element Jn was defined in §3.1.1.

We may define P̃µ ⊆ G̃ and Ñ ⊆ G̃ analogously. We have an affine subspace

JnNZpPµ,Zp/Pµ,Zp = Pµ,ZpJnPµ,Zp/Pµ,Zp ⊆ FlG,µ,

and we define F`aG,µ ⊆ F`G,µ to be the rigid generic fiber of the formal completion of JnNOCPµ,OC/Pµ,OC
along p = 0. This is an affinoid subspace. The construction provides us with a natural Qp-
structure, which we will use to talk about Qp-points. One may define F`a

G̃,µ
⊆ F`

G̃,µ
analogously.

It is not hard to see that
F`aG,µ = F`G,µ ∩F`a

G̃,µ
,

and that F`a
G̃,µ

is equal to the locus denoted by F`{g+1,...,2g} in [Sch15, §3.3]. We will need the

following version for G of [Sch15, Lemmas 3.3.19 and 3.3.20] (valid for G̃), which characterizes
ordinarity in terms of πHT. Recall that the notation −(0) denotes ordinary loci.

Proposition 3.3.2. π−1
HT(F`G,µ(Qp)) is the closure of the ordinary locus X 1(0) ⊆ X 1, and

π−1
HT(F`aG,µ(Qp)) is the closure of the anti-canonical ordinary locus X 1(0)a ⊆ X 1.

Proof. The first part follows from [Sch15, Lemma 3.3.19] since F`G,µ(Qp) = F`G,µ ∩F`
G̃,µ

(Qp)
and X 1(0) is the pullback of X̃ ∗

1̃
(0) along X 1 → X̃ ∗1̃ (and moreover closure and pullback commute

along X 1 → X̃ ∗1̃ for quasi-compact open subsets). The second part then follows similarly from
[Sch15, Lemma 3.3.20], since F`aG,µ(Qp) = F`G,µ ∩F`a

G̃,µ
(Qp).

The affinoid F`aG,µ lies inside an affine open subset

F`nc
G,µ := (JnNCPµ,C/Pµ,C)ad ⊆ F`G,µ.

Here, the superscript stands for “non-canonical”, and we will refer to it as the non-canonical
locus.8 To relate F`aG,µ and F`nc

G,µ, we consider the element

γ := µ(p) =
(
pIn 0
0 In

)
∈ G(Qp).

8We have chosen this terminology to distinguish it from the “anti-canonical” spaces appearing, though we are
aware that “anti-canonical” might fit better also for these spaces.
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Proposition 3.3.3. We have
F`nc

G,µ =
⋃

k∈Z>0

F`aG,µ · γk.

Moreover, the sets F`aG,µ · γ−k, k > 0, form a basis of quasicompact open neighborhoods of a
point in F`aG,µ(Qp).

Proof. The right action of γ on JnNZpPµ,Zp/Pµ,Zp is given by

Jn

(
In 0
A In

)
Pµ,Zp · γ = γ−1Jn

(
In 0
A In

)
Pµ,Zp = Jn

(
In 0

p−1A In

)
Pµ,Zp

using that

J−1
n γ−1Jn =

(
In 0
0 p−1In

)
.

The proposition follows directly from this.

To finish this section, we discuss the non-canonical locus on the level of Shimura varieties,
which we define as

X nc
1 := π−1

HT(F`nc
G,µ).

The following result will be key for us in section 4.

Proposition 3.3.4. For any sufficiently small ε > 0, we have

X nc
1 =

⋃
k∈Z>0

X 1(ε)a · γk.

Proof. By Proposition 3.3.2, π−1
HT(F`aG,µ(Qp)) is the closure X 1(0)a of X 1(0)a in X 1. Note that

X 1(0)a =
⋂
ε>0
X 1(ε)a

and that F`aG,µ(Qp) =
⋂
U U , where U runs over the set of quasicompact opens in F`aG,µ con-

taining F`aG,µ(Qp). In particular, we have⋂
ε>0
X 1(ε)a =

⋂
U

π−1
HT(U).

In the constructible topology on X 1 (which is compact and Hausdorff), the sets appearing in
each intersection are both open and compact. By Cantor’s intersection theorem, we may then
find an ε > 0 and a U such that

π−1
HT(U) ⊆ X 1(ε)a ⊆ π−1

HT(F`aG,µ).

As F`aG,µ · γ−m ⊆ U for m large enough by the second part of Proposition 3.3.3, the Proposition
follows from the first part of Proposition 3.3.3 by G(Qp)-equivariance of πHT.

4. A stratification on the flag variety

In this section, we will investigate the orbits of the action of the parabolic subgroup Pµ on the
flag variety F`G,µ (in fact, it turns out to be advantageous to note that Pµ is conjugate to its
opposite Pµ and study Pµ-orbits, see Remark 4.3.3). In the first two subsections, we briefly
review the generalized Bruhat decomposition; see [BT65, §5] for more information. We then
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study the corresponding stratification of F`G,µ, which we refer to as the Bruhat stratification,
and its interaction with a certain collection of standard affine open subsets of F`G,µ. We finish by
proving that various subsets of our Shimura varieties become perfectoid at intermediate infinite
levels. This uses the aforementioned geometry of F`G,µ and the equivariance of the Hodge–Tate
period map to “spread out” Theorem 3.2.22, and is the key geometric input we need to prove
our vanishing results. We remark that our result on the perfectoidness of the non-canonical locus
is generalization of a result of Ludwig [Lud17] in the case of modular curves.

4.1 Algebraic groups and Weyl groups
Let G be a split connected reductive group over Qp, and let T be a maximal split torus of G. Let
B be a Borel subgroup of G, and let B be the opposite Borel. We denote by X∗(T) the group
Hom(T,Gm) of characters of T. Let g = Lie(G) be the Lie algebra of G. For α ∈ X∗(T), we put

gα := {X ∈ g | Ad(t)X = α(t)X,∀t ∈ T}

and we define the relative root system Φ = Φ(G,T) as

Φ := {α ∈ X∗(T) | α 6= 0, gα 6= 0}.

We denote by Φ+ ⊂ Φ the subset of positive roots corresponding to B. The Weyl group W =
W (G,T) of the root system Φ is defined as W = NG(T)/CG(T), where NG(T) and CG(T) are
respectively the normalizer and the centralizer of T in G. We denote by ∆ the set of simple roots
with respect to T 6 B, and denote by S = {sα | α ∈ ∆} ⊂W the set of simple reflections.

For I ⊂ S, let WI be the subgroup of W generated by all si ∈ I and define the parabolic
subgroup PI as

PI = BWIB = ∪w∈WI
BwB.

For instance, P∅ = B and PS = G. The group PI is a closed, connected, self-normalizing
subgroup of G containing B. For I, J ⊆ S, if PI = PJ , then I = J . Groups of this form are called
standard parabolic subgroups, and every parabolic subgroup is conjugate to a unique standard
parabolic subgroup. We let PI = BWIB be the parabolic subgroup opposite to PI . As usual, we
put ∆I = {α ∈ ∆ | sα ∈ I} and ΦI = Φ∩

∑
α∈∆I

Zα; this is the root system of Levi factor PI/NI

(where NI is the unipotent radical of PI , see below) and ∆I are the simple roots with respect to
the Borel subgroup BI/NI .

For α ∈ Φ, denote by Uα the unipotent subgroup of G whose Lie algebra Lie(Uα) is gα. For
I ⊂ S, the standard parabolic subgroup PI admits a Levi decomposition,

PI = LI n NI ,

where NI :=
∏
α∈Φ+−ΦI Uα is the unipotent radical of PI and LI = 〈T,Uα | α ∈ ΦI〉.

4.2 The generalized Bruhat decomposition
Let the notation be as in the previous subsection. We first recall the notion of generalized
Bruhat decomposition. The double cosets PJ\G/PI can be described in terms of certain Weyl
group elements. Recall that S is the set of simple reflections in W corresponding to the set ∆ of
simple roots of T . The elements of S generate W , and we call the length of an element in w ∈W
the smallest number ` such that w can be written as w = si1 · · · si` with si ∈ S. We denote the
length of w by `(w). We let w0 be the longest element of W ; it has order 2.

31



A. Caraiani, D. Gulotta, C. Hsu, C. Johansson, L. Mocz, E. Reinecke, S. Shih

The Bruhat decomposition [BT65, Thm. 5.15] is

G =
∐
w∈W

BwB ,

and there is also a generalized form [BT65, Cor. 5.20]

G =
∐

w∈WJ\W/WI

PJwPI .

4.3 Some results on double cosets
We will now state some general facts about double cosets that we will need. These results are
most naturally stated using an alternative form of the (generalized) Bruhat decomposition

G =
∐
w∈W

BwB,

G =
∐

w∈WJ\W/WI

PJwPI ,

which can be obtained from the decompositions mentioned above using the identities B = w0Bw0,
PJ = w0Pw0Jw0w0 and Ww0Jw0 = w0WJw0. We write NI for the unipotent radical of PI .

Lemma 4.3.1. For any w ∈W ,

BwPI ⊆ wBPI = wPIPI .

In particular, translates of PIPI cover G.

Proof. By [BT65, Thm. 5.15],

BwB = (B ∩ wBw−1)wB ⊆ BwB ∩ wBB ⊆ wBB .

Multiplying on the right by PI gives BwPI ⊆ wBPI . To see that BPI = PIPI , observe that

PIPI = NIMIPI = NIPI ⊆ BPI ⊆ PIPI .

Lemma 4.3.2. For any w ∈W ,

dimwPIw−1 ∩NI = dim PIwPI/PI .

Proof. The intersection wPIw−1 ∩NI is a unipotent group whose set of roots is

w(Φ− ∪ ΦI) ∩ (Φ− \ ΦI) = w(Φ− ∪ ΦI) \ (Φ+ ∪ ΦI) .

We have

dim PIwPI/PI = dim PI − dim(PI ∩ wPIw−1)
= #((Φ− ∪ ΦI) \ w(Φ+ ∪ ΦI))
= #((Φ+ ∪ ΦI) \ w(Φ− ∪ ΦI)) .

Since #(Φ+ ∪ ΦI) = #(w(Φ− ∪ ΦI)),

#
(
w(Φ− ∪ ΦI) \ (Φ+ ∪ ΦI)

)
= #

(
(Φ+ ∪ ΦI) \ w(Φ− ∪ ΦI)

)
.

Remark 4.3.3. There is a further reason for stating our results in this fashion. We think of
FlG,I := G/PI as the flag variety whose associated adic space receives a Hodge–Tate period
morphism from a perfectoid Shimura variety (say, of Hodge type, with group split over Qp). In
this scenario, PI is a parabolic associated with the Hodge–Tate filtration (which determines it up
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to conjugacy). The “anti-canonical” tower of the Shimura variety will live on the Shimura variety
of level structure PI(Zp) (or a conjugate of it), since it is supposed to parametrize complements of
the canonical subgroup, which split the Hodge–Tate filtration. Thus, to study how the perfectoid
structure of the anti-canonical tower spreads out to the whole Shimura variety (either at full
infinite level, or some intermediate levels), one is led to studying the PI -orbits of FlG,I . In the
cases of interest in this paper, PI is conjugate to PI , so one can define the anti-canonical tower
using PI . This is what we have done; it has the advantage of matching with [Sch15].

With this said, we will state the following direct consequences of Lemma 4.3.1 and Lemma
4.3.2.

Corollary 4.3.4. Assume that I is such that w0Iw0 = I and let w ∈ W . Then BwPI ⊆
ww0PIw0PI and dimwPIw−1 ∩NI = dim PIww0PI/PI . In particular, Weyl group translates of
PIw0PI cover G.

Proof. We have
BwPI = w0Bw0wPI ⊆ wPIPI = ww0PIw0PI

by Lemma 4.3.1, proving the first part. For the second part, note that

wPIw−1 ∩NI = w0
(
w0ww0PIw0w

−1w0 ∩NI

)
w0;

PIww0PI/PI = w0
(
PIw0ww0PI/PI

)
,

and use Lemma 4.3.2. The last statement follows from the first and the Bruhat decomposition.

As we alluded to above, the generalized Bruhat decomposition induces a decomposition of
the flag variety FlG,I = G/PI into locally closed subvarieties, which we loosely refer to as (gen-
eralized) Schubert cells. For w ∈WI\W/WI , we define FlwG,I := PIwPI/PI to be the cells of the
decomposition

FlG,I =
⊔

w∈WI\W/WI

FlwG,I .

The cells FlwG,I are locally closed in FlG,I , and Flw0
G,I is open in FlG,I .

4.4 The Bruhat stratification on F `G,µ

We now go back to considering the case of G (over Qp) and its (algebraic and rigid) flag varieties
FlG,µ and F`G,µ from §3. In this case, our parabolic is Pµ,Qp . The longest element w0 of the
Weyl group is represented by the element Jn from §3.1.1. One way to see this is as follows. The
diagonal matrices in GQp form a maximal split torus T , and one checks that Jn normalizes T .
The upper triangular matrices form a Borel B containing T , and its opposite B consists of the
lower triangular matrices. In particular, one checks that B = JnBJ

−1
n , and this characterizes the

longest element in the Weyl group. Since Pµ = JnPµJ
−1
n , this means that the discussion above

(including Corollary 4.3.4) is available to us.

We let I be the subset of simple roots corresponding to Pµ,Qp , where we use B and T above
to define simple roots (the role of I itself will be notational from this point on). Let W and WI

be the Weyl groups as above, specialized to GQp . For any w ∈WI\W/WI , we have a generalized
Schubert cell FlwG,µ, and we let

F`wG,µ := (FlwG,µ×SpecQp SpecC)ad
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denote their analytifications over C. From the definitions, we see that

F`w0
G,µ = F`nc

G,µ,

which links the discussion in §3.3 to our current discussion.

Related to these generalized Schubert cells, we will also consider the open cover of F`G,µ
consisting of translates of the open cell F`w0

G,µ by elements of NG(T ). For w ∈ NG(T ), we set

Uw := F`w0
G,µ · w

−1.

One checks directly that the action factors through the quotient W/WI . These translates cover
F`G,µ by Lemma 4.3.1, and U id = F`w0

G,µ = F`nc
G,µ. The key result that relates this open cover to

the Bruhat stratification is Lemma 4.4.1 below, whose statement involves the natural projection
map δ : W/WI →WI\W/WI and the group N0 from Definition 3.2.9.

Lemma 4.4.1. Let w ∈ WI\W/WI and x ∈ F`wG,µ be a point. Then there exists w′ ∈ δ−1(ww0)
such that x ·N0 ⊂ Uw

′ .

Proof. Note that right multiplication by w0 induces a well defined automorphism of WI\W/WI ,
since w0WIw0 = WI . By partial properness it suffices to prove the lemma for geometric rank 1
points; by base change it then suffices to restrict to the case of (C,OC)-points, so we only need
to consider classical rigid points and hence we can write the proof in terms of algebraic geometry
over C; we then omit notation for change of base fields etc. Since

F`wG,I = PµwPµ/Pµ =
⊔

w1∈δ−1(w)
Bw1Pµ/Pµ,

we can choose a w1 ∈ δ−1(w) such that x ∈ Bw1Pµ/Pµ. We then have

x ·N0 ⊆ Bw1Pµ/Pµ ⊆ w1w0Pµw0Pµ/Pµ = F`w0
G,µ · (w1w0)−1 = Uw1w0

by Corollary 4.3.4. Setting w′ = w1w0 finishes the proof.

Of course, the proof shows that the orbit of x under the entire Borel is contained in Uw′ ; we
have chosen the above formulation since it is the precise statement we will need later.

4.5 Perfectoid strata at intermediate levels
Let w ∈W/WI . For any integer m > 1, define the open subgroups

Γ1,w(pm) := Γ1(pm) ∩ wΓ0(pm)w−1

and the closed subgroup
N0,w =

⋂
m>0

Γ1,w(pm).

In these definitions we represent elements in W by elements in G(Zp) (which we may do since G
is split over Zp); the subgroups above are then independent of the chosen representatives. When
w = id, N0,id = N0. Note that in general, N0,w is a subgroup of N0 and naturally a Zp-submodule
of N0.

Lemma 4.5.1. We have rankZp N0,w = dim F`ww0
G,µ . Moreover, N0,w is a saturated Zp-submodule

of N0, so rankZp N0/N0,w = d − dim F`ww0
G,µ , where d = rankZp N0 is also the dimension of the

Shimura varieties for G.
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Proof. By definition, we have N0,w =
(
N ∩ wPµw−1) (Zp) and N ∩wPµw−1 is product of unipo-

tent subgroups Uα for a certain subset (depending on w) of roots α contained in NZp . This shows
that N0,w is saturated in N0 and that rankZp N0,w = dimNZp ∩ wPµ,Zpw−1. Thus, by Corollary
4.3.4, rankZp N0,w = dim F`ww0

G,µ as desired. The last statement then follows directly from the
first two statements.

Let H ⊆ Pµ,0 be a closed subgroup. The Hodge–Tate period morphism induces the composition

πHT/H : (XH)ét → |XH | ∼= |X 1|/H → |F`G,µ|/H,

which is a morphism of sites; here we use Lemma 3.2.15. Note that the stratification F`G,µ =
tw∈WI\W/WI

F`wG,µ descends to the quotient |F`G,µ|/H since H ⊆ Pµ,0. In particular, the open
Schubert cell F`nc

G,µ descends to an open stratum |F`nc
G,µ|/H in |F`G,µ|/H, and we set

X nc
H := π−1

HT/H

(
|F`nc

G,µ|/H
)
.

We will be most interested in the subgroups N0,w ⊆ Pµ,0. In this case, for any closed subgroup
H ⊆ N0,w, |Uw|/H is an open subset of |F`G,µ|/H. We put

XwH := π−1
HT/H (|Uw|/H) .

This is an open sub-diamond of XH . The main result of this section is that it is a perfectoid
space.

We prove this in two steps: first, we show the result for the case w = id, when XwH̃ = X nc
H̃ .

This can be done more generally for all closed H ⊆ Pµ,0 by adapting an argument of Ludwig
from the setting of modular curves [Lud17, Sect. 3.4]. For a general w, we use the action of w
to translate the perfectoid structure and deduce the result in general from the result for the
non-canonical locus. We use freely the notation from subsection 3.3, in particular the element
γ = µ(p) ∈ G(Qp) considered there.

Theorem 4.5.2. Let H ⊆ Pµ,0 be a closed subgroup. Then the diamond X nc
H is a perfectoid

space. More precisely, |X nc
H | is covered by the increasing union of quasicompact open subsets

|X 1(ε)a|γk/H for k ∈ Z>0 (and sufficiently small ε > 0), and the corresponding spatial diamonds
are affinoid perfectoid with strongly Zariski closed boundary.

Proof. We consider the projection map

X 1 → XH ,

which by Lemma 3.2.15 identifies |X nc
H | with |X

nc
1 |/H. By Corollary 3.3.4, the open subdiamonds

corresponding to the open sets |X 1(ε)a|γk/H are increasing and cover |X nc
H |. Note here that

|X 1(ε)a|γk is γ−kPµ,0γk-stable and that γ−kPµ,0γk ⊇ Pµ,0 ⊇ H (by direct computation), so this
quotient makes sense. It remains to prove that these opens are affinoid perfectoid for all k > 0,
with strongly Zariski closed boundary. On the level of topological spaces, we have an isomorphism

γ−k : |X 1(ε)a|γk/H
∼−→ |X 1(ε)a|/γkHγ−k

which is induced from an isomorphism

γ−k : XH
∼−→ X γkHγ−k

of diamonds. Since γkHγ−k ⊆ γkPµ,0γ−k ⊆ Pµ,0, X γkHγ−k(ε)a is affinoid perfectoid with strongly
Zariski closed boundary by Theorem 3.2.22 and we may conclude that the subdiamond of X nc

H
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corresponding to the open subset |X 1(ε)a|γk/H is affinoid perfectoid with strongly Zariski closed
boundary, as desired.

We now consider the case of a general w ∈W/WI .

Theorem 4.5.3. Let Hw ⊆ N0,w be a closed subgroup. Then the diamond XwHw is a perfectoid
space. More precisely, |XwHw | is covered by the increasing union of quasicompact open subsets
|X 1(ε)a|γkw−1/Hw for k ∈ Z>0 (and sufficiently small ε > 0), and the corresponding spatial
diamonds are affinoid perfectoid with strongly Zariski closed boundary.

Proof. We choose a representative w ∈ G(Zp) of w ∈ W/WI . Note that right multiplication by
w−1 induces an isomorphism of diamonds X nc

w−1Hww
∼−→ XwHw . To see this, note that right multi-

plication by w−1 induces an isomorphism of the diamonds Xw−1Hww and XHw . Now it remains
to check that multiplication by w−1 sends the non-canonical locus to the w-non-canonical locus.
This can be done on the level of topological spaces, thus after using Lemma 3.2.15 to identify
|XHw | with |X 1|/Hw. The claim can then be checked on the flag varieties (using equivariance of
the Hodge–Tate period map), and so follows from the definitions. Moreover, this isomorphism
identifies |X 1(ε)a|γk/w−1Hww with |X 1(ε)a|γkw−1/Hw. The theorem then follows from Theorem
4.5.2.

We denote F`aG,µ · γk by F`nc
G,µ(k). We denote F`nc

G,µ(k) ·w−1 by Uw(k). Later, we will also need
the following result.

Lemma 4.5.4. The open subset Uw(k) ⊂ F`G,µ is stable under the action of N0,w.

Proof. By the definition of N0,w, it is enough to see that Uw(k) is stable under wPµ,0w−1 or
equivalently that F`nc

G,µ(k) is stable under Pµ,0. As γ−kPµ,0γk ⊇ Pµ,0 this reduces us to the case
k = 0, which follows by explicit computation.

5. Vanishing of compactly supported cohomology

In this section we put the ingredients together and prove the vanishing theorem. The first sub-
section is devoted to reducing it to a statement about the fibers of the Hodge–Tate period map
(Theorem 5.1.5), which is mostly formal using the machinery of étale cohomology of diamonds
and our results from section 2. We then introduce a technical result about constructing invariant
rational neighborhoods of orbits on affinoid adic spaces with a continuous action of a profinite
group (Proposition 5.2.1), which we believe is important and interesting in its own right. We
conclude by proving Theorem 5.1.5 using the results of section 4, which finishes the proof of the
vanishing theorem.

5.1 The main result and first reductions
Recall that d denotes the dimension of our Shimura varieties. Our main theorem is:

Theorem 5.1.1. Let r ∈ Z>1 and let K ⊆ G(Zp) be an open subgroup. If i > d, then

lim−→
m

H i
c(XK∩Γ1(pm)(C),Z/pr) = 0.

Here Hc denotes compactly supported singular cohomology. For the applications in this paper,
the most important case is K = G(Zp), and the reader would not lose anything by making this
assumption in the proof. On the other hand, our proof allows us to treat general K, so we have
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opted for this extra generality since it is not clear to us if the case of general K follows from
the special case K = G(Zp). We also have the following more general version of Theorem 5.1.1,
which is a direct consequence of it.

Corollary 5.1.2 to Theorem 5.1.1. Let r ∈ Z>1 and let Km ⊆ Γ1(pm) be open subgroups for
m > 1 with Km+1 ⊆ Km for all m. If i > d, then

lim−→
m

H i
c(XKm(C),Z/pr) = 0.

We remark that Theorem 5.1.1 is false in general for usual cohomology; this fact is crucial for
our strategy to remove the nilpotent ideal in section 6.

To prove Theorem 5.1.1, note first that it suffices to treat the case r = 1 by the usual
dévissage argument. Then, applying the usual string of comparison theorems (between singular
cohomology and étale cohomology of schemes, and between étale cohomology of schemes and
étale cohomology of adic spaces), we find that Theorem 5.1.1 is equivalent to the statement that

lim−→
m

H i
ét(XK∩Γ1(pm), j!Fp) = 0

for i > d. Here, and in the rest of this section, we write j for any open immersion U → V, where
V is any locally spatial diamond that carries a quasi-pro-étale map V → XH for some closed
subgroup H ⊆ G(Zp), U = V ×X ∗H XH and j is the projection onto the first factor. To proceed
from here, the primitive comparison theorem for torsion coefficients [Sch13b, Thm. 3.13] gives us

lim−→
m

H i
ét(XK∩Γ1(pm), j!Fp)a ⊗Fp OC/p ∼= lim−→

m

H i
ét(XK∩Γ1(pm), j!Fp ⊗O+

XK∩Γ1(pm)
/p)a

and it suffices to prove that the right hand side vanishes. We record the following (more con-
venient) descriptions of the sheaf appearing on the right-hand side. The lemma is stated in the
generality needed in the paper; further generalizations should be possible whenever one has a
sufficiently well behaved notion of Zariski closed sets.

Lemma 5.1.3. Let V be a rigid space over a nonarchimedean field K/Qp, or an affinoid perfectoid
space over K. Let Z ⊆ V be a Zariski closed subset of V and let U be the open complement.
Write j : U ↪→ V for the open immersion and let I+ ⊆ O+

V be the subsheaf of functions which
vanish on Z. Then we have natural isomorphisms

(j!Fp)⊗O+
V /p
∼= I+/p ∼= j!(O+

U /p).

Proof. We start with the first isomorphism. By applying the adjunctions for j! and ⊗, the natural
map Fp → O+

U /p = j∗(I+/p) gives a map (j!Fp)⊗O+
V /p→ I+/p. This is clearly an isomorphism

over U , and on Z all stalks on both sides are 0, so it is an isomorphism on the whole of V . For the
second isomorphism, adjunction gives a natural map j!(O+

U /p)→ I+/p, which is an isomorphism
for the same reason as before.

For later use, we also explicitly record the following fact, which is implicit in [Sch15, §4.1].

Proposition 5.1.4. Let V be an affinoid perfectoid space over a perfectoid field (K,K+) over
Qp and let Z ⊆ V be a strongly Zariski closed subset, with its induced structure of an affinoid
perfectoid space. Set j : U = V \ Z ↪→ V . Then H i

ét(V, j!(O
+
U /p))a = 0 for i > 0.

Proof. Let I+ ⊆ O+
V be the subsheaf of functions vanishing on Z. By Lemma 5.1.3, j!(O+

U /p) ∼=
I+/p. By the long exact sequence associated with

0→ I+ → I+ → I+/p→ 0,
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it suffices to show that H i
ét(V, I+)a = 0 for i > 0. Since Z ⊆ V is strongly Zariski closed, we

have a short exact sequence
0→ I+a → O+a

V → O
+a
Z → 0

of almost sheaves on Vét by the definition and [Sch15, Lemma 2.2.9]. Taking the long exact
sequence and using [Sch12, Proposition 7.13], we see that H i

ét(V, I+)a = 0 for i > 1 and that
H1

ét(V, I+)a is the cokernel of H0(V,O+
V )a → H0(Z,O+

Z )a, which is 0 since Z ⊆ V is strongly
Zariski closed.

Keeping Lemma 5.1.3 in mind, we apply (the almost version of) Proposition 2.2.1 to get

lim−→
m

H i
ét(XK∩Γ1(pm), j!(O+

XK∩Γ1(pm)
/p))a ∼= H i

ét(XK∩N0 , j!(O+
XK∩N0

/p)a),

where (O+
XK∩N0

/p)a is the almost sheaf on (XK∩N0)ét constructed in subsection 2.3. Here we have
implicitly used some results from subsections 2.3 on the sheaves (O+/p)a, namely that (O+/p)a
is compatible with the usual construction on rigid spaces and that its construction commutes
with pullbacks by quasi-pro-étale maps. Furthermore we have used Lemma 2.2.6 and Proposition
2.3.4. To avoid some notational difficulties in the future we make the following convention: for
any quasi-pro-étale V → X we write (O+

X /p)a for the almost sheaf on (O+
V /p)a on Vét. This is

reasonable since, by the construction in subsection 2.3, (O+
V /p)a is the pushforward of the almost

sheaf (O+
X /p)a on Xqproét via the natural map Xqproét → Vét.

To proceed from here, we will use the morphism

πHT/K∩N0 :
(
XK∩N0

)
ét
→ |F`G,µ|/(K ∩N0)

from subsection 4.5. We have a Leray spectral sequence

Ers2 = Hr(|F`G,µ|/(K ∩N0), RsπHT/K∩N0,∗j!(O
+
X /p)

a) =⇒ Hr+s
ét (XK∩N0 , j!(O+

X /p)
a).

The key result in this section is then the following vanishing result for the stalks ofRiπHT/K̃∩Ñ0,∗
j!(O+

X /p)a:

Theorem 5.1.5. Let w ∈WI\W/WI and let x ∈ |F`wG,µ|/(K ∩N0). Then we have

RiπHT/K∩N0,∗j!(O
+
X /p)

a
x = 0

for i > d− dim F`wG,µ.

Our main theorem follows rather quickly from Theorem 5.1.5, using a bound on the cohomo-
logical dimension of spectral spaces due to Scheiderer.

Proof of Theorem 5.1.1. By the Leray spectral sequence for πHT/K∩N0 , it suffices to prove that
Hr(|F`G,µ|/(K∩N0), RsπHT/K∩N0,∗j!(O

+
X /p)a) = 0 for r+s > d. Fix r and assume that s > d−r.

Let Sr be the set of w ∈WI\W/WI for which dim F`wG,µ < r, and let Yr =
⋃
w∈Sr F`wG,µ. Let Y r

be the Zariski closure of Yr; Y r is N0-invariant and of dimension < r since Yr is. By Proposition
2.2.8, |Y r|/(K ∩N0) ⊆ |F`G,µ|/(K ∩N0) is a closed spectral subspace of dimension < r.

We claim that Fs := RsπHT/K∩N0,∗j!(O
+
X /p)a is supported on |Y r|/(K ∩ N0). To see this,

let x /∈ |Yr|/(K ∩ N0). Then x ∈ |F`wG,µ|/(K ∩ N0) for some w with dim F`wG,µ > r, so by
Theorem 5.1.5, Fsx = 0 since s > d − r > d − dim F`wG,µ. This proves that Fs is supported on
|Y r|/(K ∩N0), and it then follows from [Sch92, Corollary 4.6] that Hr(|F`G,µ|/(K ∩N0),Fs) =
Hr(|Y r|/(K ∩N0),Fs) = 0, as desired.

The rest of this section is devoted to the proof of Theorem 5.1.5.
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5.2 Constructing invariant rational neighborhoods
Before we prove Theorem 5.1.5, we prove an important technical result on profinite group actions
on affinoid adic spaces, which we believe is interesting in its own right.

Proposition 5.2.1. Let (A,A+) be a Huber pair, and let H be a profinite group acting continu-
ously on (A,A+). Let Y = Spa(A,A+), let x ∈ Y , and let U ⊂ Y be an H-stable open containing
x. Then there exists an H-stable open V ⊂ U containing x that is a rational subset of Y .

Lemma 5.2.2. Let (A,A+) be Huber pair, and let H be a profinite group acting continuously on
(A,A+). If W ⊂ Spa(A,A+) is a rational subset, then the stabilizer of W is open in H.

Proof. Let W be defined by the inequalities

|a1|, . . . , |an| 6 |a0| 6= 0

for some a0, ..., an ∈ A that generate an open ideal. Let M be the set of elements of the form∑n
i=0 λiai with λi ∈ A◦◦. Then M is open in A by [Hub94, Lemma 1.1]. So there is an open

normal subgroup K of H such that kai − ai ∈M for all k ∈ K, i ∈ {0, ..., n}.
For any x ∈W , k ∈ K, i ∈ {0, ..., n},

|kai − ai|x < max
j=0,...,n

|aj |x = |a0|x .

Therefore, by the strong triangle inequality,

|kai|x 6 max{|kai − ai|x, |ai|x} 6 |a0|x, and
|ka0|x = max{|ka0 − a0|x, |a0|x} = |a0|x 6= 0.

Hence x · k ∈W . So K stabilizes W .

Proof of Proposition 5.2.1. Let W be a rational subset of Y containing x and contained in U .
Let W be defined by the inequalities |a1|, ..., |an| 6 |a0| 6= 0 for some a0, ..., an ∈ A that generate
an open ideal, and define K as in the proof of Lemma 5.2.2.

Choose a section (not necessarily a homomorphism) σ : H/K → H of the quotientH → H/K.
Let S be the set of h ∈ H/K such that the |σ(h)ai|x are not all zero. From the definition of K,
we see that S is independent of the choice of σ. Let S denote the set of functions S → {0, ..., n}.
For any f ∈ S , h ∈ H/K, define

bf,h :=
∏
s∈S

σ(hs)af(s) .

The ideal of A generated by the bf,h contains the product of the ideals σ(s) · (a0, ..., an) for s ∈ S,
and hence is open.

Let m = #(H/K). For any f ∈ S and i ∈ {1, ...,m}, define ef,i to be the ith elementary
symmetric polynomial in (bf,h)h∈H/K . We observe that

bmf,h =
m∑
i=1

(−1)i−1ef,ib
m−i
f,h .

In particular, the ideal of A generated by the ef,i contains the ideal generated by the bmf,h. The
latter ideal contains the (#(S ×H/K)(m− 1) + 1)-st power of the ideal generated by the bf,h.
So the ef,i generate an open ideal of A.

Choose φ ∈ S so that φ(1) = 0 and for all s ∈ S and all i ∈ {0, ..., n},

|σ(s)ai|x 6 |σ(s)aφ(s)|x .
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For all f ∈ S and h ∈ H/K,
|bf,h|x 6 |bφ,1|x ;

to see this, note that if |bf,h|x 6= 0, then hs ∈ S for all s ∈ S and thus multiplication by h
permutes the elements of S. By the theory of Newton polygons, there exists r ∈ {1, ...,m} such
that

|bφ,1|x = |eφ,r|1/rx .

Choose one such r. Then for all f ∈ S and all i ∈ {1, ...,m},

|ef,i|1/ix 6 |eφ,r|1/rx .

Let V be the subset of Y defined by the inequalities

|ef,i|1/i 6 |eφ,r|1/r 6= 0 ∀i ∈ {1, ...,m}, f ∈ S .

Equivalently, V is defined by the inequalities |ef,i|m!/i 6 |eφ,r|m!/r 6= 0. Since the ef,i generate an
open ideal of A, the em!/i

f,i do as well, so V is rational. Moreover, V contains x.
Now we check that V ⊆

⋃
h∈HW · h ⊆ U . Let y ∈ V . By the theory of Newton polygons,

there exists some h ∈ H/K so that

|bf,h′ |y 6 |bφ,h|y 6= 0 ∀f ∈ S , h′ ∈ H/K .

In particular, by considering the case where h = h′ and f and φ agree except at the identity, we
find that

|σ(h)ai|y 6 |σ(h)a0|y 6= 0 ∀i ∈ {0, ..., n} .
Hence y ∈W · σ(h)−1.

Finally, we check that V is H-stable. Fix y ∈ V . First, consider, for all h, h′ ∈ H,

hbf,h′ =
∏
s∈S

hσ(h′s)af(s) =
∏
s∈S

(
σ(hh′s)af(s) +

(
hσ(h′s)af(s) − σ(hh′s)af(s)

))
.

When we expand the product, one of the terms is bf,hh′ . Observe that the definition of K implies
that for all i ∈ {0, ..., n},

hσ(h′s)ai − σ(hh′s)ai ∈ σ(h′hs)

 n∑
j=0

A◦◦ · aj

 =
n∑
j=0

A◦◦ · σ(h′hs)aj .

Thus, we can bound the norm of the remaining terms using the inequalities

|σ(hh′s)af(s)|y 6 max
j
|σ(hh′s)aj |y ,∣∣∣hσ(h′s)af(s) − σ(hh′s)af(s)

∣∣∣ ≺ max
j
|σ(hh′s)aj |y ;

here, α ≺ β means that either α < β or α = β = 0. We then find that

|hbf,h′ − bf,hh′ |y ≺
∏
s∈S

max
j
|σ(hh′s)aj |y = max

f ′
|bf ′,hh′ |y .

Since y ∈ V , the |bf ′,h′′ |y, where h′′ ranges over H, are not all zero, so

|hbf,h′ − bf,hh′ |y < max
f ′,h′′

|bf ′,h′′ |y .

Finally, for all h ∈ H, f ∈ S , and i ∈ {1, ...,m}, a similar argument shows that

|hef,i − ef,i|1/iy < max
f ′,h′
|bf ′,h′ |y = max

f ′,i′
|ef ′,i′ |1/i

′
y = |eφ,r|1/ry .
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Then the strong triangle inequality implies that for any h ∈ H, f ∈ S , and i ∈ {1, ...,m},

|hef,i|1/iy 6 |eφ,r|1/r = |heφ,r|1/r 6= 0 .

Hence y · h ∈ V . So V is H-stable.

5.3 Proof of Theorem 5.1.5
In this subsection, we prove Theorem 5.1.5. To simplify notation, we write H := K ∩N0, π :=
πHT/K∩N0 , F i := Riπ∗j!(O+

X /p)a. Let w ∈ WI\W/WI ; write d(w) = dim F`wG,µ and pick x ∈
|F`wG,µ|/H. We need to show that F ix = 0 for i > d − d(w). By Proposition 2.2.5 and Lemma
2.2.6,

F ix ∼= H i
ét(π−1(x), j!(O+

X /p)
a).

Recall from Subsection 2.3 that a point of the topological space underlying a locally spatial
diamond is said to be of rank one if it has no proper generalizations.

Lemma 5.3.1. It suffices to prove Theorem 5.1.5 for points x ∈ |F`wG,µ|/H which have no proper
generalizations.

Proof. Let x ∈ |F`wG,µ|/H be arbitrary. It has a unique maximal generalization y ∈ |F`wG,µ|/H,
which may be obtained by lifting x to x̃ ∈ |F`wG,µ|, letting ỹ ∈ |F`wG,µ| be the unique rank one
generalization of x̃ and setting y = ỹH (uniqueness of y follows from the fact that |F`wG,µ| →
|F`wG,µ|/H is generalizing). We then have a natural quasicompact open immersion of spatial
diamonds π−1(y)→ π−1(x) which induces maps

H i
ét(π−1(x), j!(O+

X /p)
a)→ H i

ét(π−1(y), j!(O+
X /p)

a)

for all i. Since π−1(y) contains all rank one points of π−1(x), these maps are isomorphisms by
Lemma 2.3.5, and this proves the lemma.

From now on, we assume that x ∈ |F`wG,µ|/H has no proper generalizations. Let x̃ ∈ |F`wG,µ|
be any lift of x; this is a rank one point. By Lemma 4.4.1, we choose a w1 ∈ δ−1(ww0) such
that x̃N0 ⊆ |Uw1 |; and we let x1 ∈ |F`wG,µ|/H1 denote the image of x̃, where H1 := H ∩N0,w1 .
Note that x1 has no proper generalizations in |F`G,µ|/H1, so the orbit x1(H/H1) is profinite by
Lemma 2.2.9. Write π1 := πHT/H1 for the morphism of sites (XH1)ét → |F`G,µ|/H1, and put
V1 := π−1

1 (x1(H/H1)). V1 is naturally a spatial diamond: The underlying map |π1| : |XH1 | →
|F`G,µ|/H1 is spectral and x1(H/H1) can be written as an intersection of quasicompact opens,
so V1 is an inverse limit of open spatial subdiamonds of X ∗H1

, hence spatial by Lemma 2.1.1.

Lemma 5.3.2. The natural map V1 → π−1(x) is a v-cover, and the restriction V1 ∩ XH1 →
π−1(x) ∩ XH is an H/H1-torsor.

Proof. V1 is equal to XH1 ×XH π−1(x) and the natural map to π−1(x) is the projection onto
the second factor. Now XH1 → XH is a (in fact quasi-pro-étale) map of spatial diamonds which
is surjective on topological spaces by Lemma 3.2.15, hence a v-cover by [Sch17, Lemma 12.11],
so the pullback V1 → π−1(x) is a v-cover. Moreover, XH1 → XH is an H/H1-torsor by Lemma
3.2.10, so the pullback V1 ∩ XH1 → π−1(x) ∩ XH is an H/H1-torsor.

By this lemma, Theorem 2.2.7 gives us a spectral sequence

Ers2 = Hr
cts(H/H1, H

s
ét(V1, j!(O+

X /p)
a)) =⇒ Hr+s

ét (π−1(x), j!(O+
X /p)

a).
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Since H/H1 ⊆ N0/N0,w1
∼= Zd−d(w)

p as Zp-modules (using Lemma 4.5.1) and the index is finite,
we must have H/H1 ∼= Zd−d(w)

p and hence continuous cohomology for H/H1 has cohomological
dimension d − d(w) (this is presumably well known—it follows e.g. from [NSW13, Proposition
5.2.7] and the fact that the Koszul complex of Zp[[Zd−d(w)

p ]] resolves the trivial module Zp).
Therefore, to prove that H i

ét(π−1(x), j!(O+
X /p)a) = 0 for i > d − d(w) it suffices to show that

Hs
ét(V1, j!(O+

X /p)a) = 0 for all s > 0. To do this, we start by considering the natural map

πV1 : (V1)ét → x1(H/H1).

Since x1(H/H1) is profinite, higher cohomology vanishes and we have

Hs
ét(V1, j!(O+

X /p)
a) = H0(x1(H/H1), RsπV1,∗j!(O+

X /p)
a).

Thus, we need to show that RsπV1,∗j!(O+
X /p)a = 0 for s > 0, which we can check on stalks. If

y ∈ x1(H/H1), then
RsπV1,∗j!(O+

X /p)
a
y
∼= Hs

ét(π−1
1 (y), j!(O+

X /p)
a)

by Proposition 2.2.5, so we need to show that the right-hand side vanishes for s > 0. As x̃, and
hence x1, was chosen arbitrarily, without loss of generality y = x1.

We now apply Proposition 5.2.1. Consider the orbit x̃H1 ⊆ |Uw1 |. By Theorem 4.5.3, we may
choose k large enough such that |X 1(ε)a|γkw−1

1 ⊇ π−1
HT(x̃H1) (for some sufficiently small ε > 0,

which we fix). We then choose a large enough k′ such that |X 1(ε)a|γkw−1
1 ⊆ π−1

HT(Uw1(k′)), which
we may do by Theorem 4.5.3 and Lemma 4.5.4. Note that Uw1(k′) is affinoid and N0,w1-stable
by Lemma 4.5.4, hence H1-stable. By Proposition 5.2.1, we can find a collection Ut, t ∈ T , of
H1-stable opens of Uw1(k′) which are rational subsets and⋂

t∈T
Ut = x̃H1;

we may and will also assume that π−1
HT(Ut) ⊆ |X 1(ε)a|γkw−1

1 for all t ∈ T . It follows that⋂
t∈T |Ut|/H1 = x1 and hence that

Hs
ét(π−1

1 (x1), j!(O+
X /p)

a) = lim−→
t∈T

Hs
ét(π−1

1 (|Ut|/H1), j!(O+
X /p)

a),

so it suffices to show that Hs
ét(π

−1
1 (|Ut|/H1), j!(O+

X /p)a) = 0 for s > 0 and t ∈ T .

Proposition 5.3.3. Hs
ét(π

−1
1 (|Ut|/H1), j!(O+

X /p)a) = 0 for s > 0 and t ∈ T .

Proof. In this proof we will (as we have occasionally done elsewhere) conflate an open subset of
the topological space of a perfectoid space or diamond with the corresponding open subspace or
open subfunctor; we hope that this will not cause any trouble. With this in mind, note that we
can write

|X 1(ε)a|γkw−1
1 = lim←−

m>0

(
|X 1(ε)a|γkw−1

1 /(H1 ∩ Γ(pm))
)

and that all spaces appearing are affinoid perfectoid with strongly Zariski closed boundary, by
Theorem 4.5.3. We get a corresponding inverse limit description

|π−1
HT(Ut)| = lim←−

m

(
|π−1

HT(Ut)|/(H1 ∩ Γ(pm))
)
.

Note that all spaces here are quasicompact perfectoid spaces and that the bottom space |π−1
HT(Ut)|/H1

is equal to π−1
1 (|Ut|/H1). By our choices of k and k′ and the construction of Ut, π−1

HT(Ut) is a
rational subset of |X 1(ε)a|γkw−1

1 . As a rational subset in an inverse limit must come from a
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rational subset at some finite level, there exists an m such that |π−1
HT(Ut)|/(H1 ∩ Γ(pm)) is a

rational subset of |X 1(ε)a|γkw−1
1 /(H1∩Γ(pm)), and hence affinoid perfectoid. Fix such an m and

put Vm := |π−1
HT(Ut)|/(H1 ∩Γ(pm)) and Gm := H1/(H1 ∩Γ(pm)). Note that Gm is a finite group.

The map
Vm → π−1

1 (|Ut|/H1)
is a Gm-equivariant map of perfectoid spaces and is a Gm-torsor away from the boundary by
Lemma 3.2.10. By [Han16, Theorem 1.2, Theorem 3.5], the quotient Vm/Gm exists (in the cate-
gory of adic spaces) and is affinoid perfectoid. We therefore get an induced map

Vm/Gm → π−1
1 (|Ut|/H1)

which is an isomorphism away from the boundary (since we had a Gm-torsor away from the
boundary). By Lemma 2.2.6, we have

Hs
ét(π−1

1 (|Ut|/H1), j!(O+
X /p)

a) = Hs
ét(Vm/Gm, j!(O+

X /p)
a)

for all s > 0. Moreover, the boundary of Vm/Gm is strongly Zariski closed since it is the pullback
of the boundary on |X ∗1 (ε)a|γkw−1

1 /H1. By Proposition 5.1.4 Hs
ét(Vm/Gm, j!(O

+
X /p)a) = 0, which

finishes the proof.

This finishes the proof of Theorem 5.1.5, and hence also the proof of Theorem 5.1.1.

6. Eliminating the nilpotent ideal

We begin by setting up notation for this section, which will be different from that used in previous
section. The main difference is that we will use symplectic/unitary groups in this section instead
of the similitude groups used in previous sections.

As before, F will denote a CM field with totally real subfield F+ and complex conjugation c.
We will let n > 2 be an integer, and we will fix a rational prime p throughout which is assumed
to be totally split in F . As in §3.1.1, we let Ψn denote the n × n matrix with 1’s along the
anti-diagonal and 0’s elsewhere, and we set

Jn =
(

0 Ψn

−Ψn 0

)
∈ GL2n(Z).

Jn defines a perfect pairing (x, y) = xtJny
c on L := O2n

F , which is alternating if F is totally real
and skew-Hermitian if F is imaginary CM. We define the symplectic/unitary group G0 over OF+

by
G0(R) = {g ∈ AutOF⊗O

F+R
(L⊗OF+ R) | gtJngc = Jn},

for OF+-algebras R. The condition defining the group is equivalent to preserving the pairing
(−,−). We then define

G := ResOF+/ZG0.

Over primes ` unramified in F , GZ(`) could have equivalently been defined by the condition
ψ(gx, gy) = ψ(x, y) for all x, y ∈ L, where ψ is the alternating form in §3.1.1. Similarly, G(Z`)
for all ` could have equivalently been defined by the condition ψ(gx, gy) = ψ(x, y). We define
P0 ⊆ G0 to be the stabilizer of OnF ⊕ 0 ⊆ L, and M0 ⊆ P0 to be the subgroup which additionally
stabilizes 0 ⊕ OnF . One sees easily that M0 ∼= ResOF /OF+ GLn; see [NT16, Lemma 5.1(2)] for
the imaginary CM case, the same proof works in the totally real case. We then define P :=
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ResOF+/ZP0 and M := ResOF+/ZM0 ∼= ResOF /Z GLn; these are subgroups of G. Whenever ` is
unramified in F , PZ(`) is a parabolic subgroup of GZ(`) , and MZ(`) is a Levi subgroup of PZ(`) .
We finish by defining some compact open subgroups in G(Qp). Set

Γ0(pm) := {g ∈ G(Zp) | (g mod pm) ∈ P (Z/pm)} ;
Γ1(pm) := {g ∈ G(Zp) | (g mod pm) ∈ N(Z/pm)} ;
Γ(pm) := {g ∈ G(Zp) | g ≡ I2n mod pm} .

Note that, in essence, most of what we have done here is make the “same” definitions for sym-
plectic/unitary groups as we did for the corresponding similitude groups earlier. We remark that
G(R) is connected. We finish this preamble by defining some principal congruence subgroups for
M . We set

KM,m,p := Ker(M(Zp)→M(Z/pm))
for all m > 0, and for a fixed Kp

M ⊆M(Apf ), which we will allow to be defined by the context in
what follows, we set

KM,m := Kp
MKM,m,p.

6.1 Introduction
To state our results, we first discuss the definitions of locally symmetric spaces that we will use
in this section. If G is a general connected linear algebraic group over Q, we consider a space of
type S−Q for G, in the sense of [BS73, §2]. This is a pair consisting of a homogeneous space for
G(R) and a family of Levi subgroups of GR satisfying certain conditions; we will suppress the
Levi subgroups from the notation. The underlying homogeneous space of a space of type S −Q
only depends on G (up to isomorphism of homogeneous spaces); this follows from [BS73, Lem.
2.1]. Moreover, this homogeneous space is a symmetric space for G and we will simply refer to
it as the symmetric space for G, and denote it by XG. Whenever K ⊆ G(Af ) is a compact open
subgroup, we set

XG
K := G(Q)\

(
XG ×G(Af )

)
/K;

this is a locally symmetric space (and in particular a Riemannian manifold) when K is neat. In
the cases we will consider, we will have G = ResF+/QG0 and G0 will have a natural model over
OF+ ; for the purpose of this discussion let us denote it by G0 as well. We will assume throughout
this section that all compact open subgroups K ⊆ G(Af ) appearing are decomposed as

K =
∏
v

Kv, Kv ⊆ G0(OF+,v),

where v runs over the finite places of F+. This is mostly done to simplify the exposition. We
say that K ⊆ G(Af ) (decomposed as above) is small (following [NT16, Definition 5.6]) if there
exists a rational prime q 6= p such that Kv ⊆ Ker(G(OF+,v) → G(OF+/qε)) for all v | q, where
ε = 1 if q 6= 2 and ε = 2 if q = 2. Such subgroups will always be neat in all cases we consider.
We will need this notion to apply the main result of [Sch15]; for everything else neatness will be
enough.

Let us now return to the groupsG andM defined in the beginning of this section. We will write
XG for what, if one strictly followed the notation above, would write XGQ , and similarly with
levels and for M . To discuss the relation between the XG

K and the Shimura varieties considered
in previous sections, let us write (Gold, Xold) for the Shimura datum denoted by (GQ, X) in
§3.1.2. We have GQ ⊆ Gold and one checks easily that XG is a connected component of Xold. If
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Kold ⊆ Gold(Af ) is neat and K = Kold ∩G(Af ), then one checks that the natural map

XG
K → Gold(Q)\Xold ×Gold(Af )/Kold

is injective, and hence the left hand side is a union of connected components of the right hand
side. Set

d := 1
2dimR(XG) = dimC(XG).

Since the injections above are compatible with changing Kold, we obtain the following as a direct
corollary to Theorem 5.1.1, along the lines of Corollary 5.1.2.

Theorem 6.1.1. Let r ∈ Z>1 and fix Kp ⊆ G(Apf ) small. If i > d and Kp,m ⊆ Γ1(pm) is compact
open for all m, then

lim−→
m

H i
c(XKpKp,m(C),Z/pr) = 0.

In this section, we will only use the special case when Kp,m = Γ1(pm) for all m.

Let us now turn our attention to the Levi M ⊆ G. Let KM ⊆ M(Af ) be a small compact
open subgroup. The space XM

KM
has dimension d − 1 (as a real manifold; it has no complex

structure in general). Let λ be a Weyl orbit of weights of M . This determines an irreducible
algebraic representation σλ of M , which can be defined over Qp (as M is split over Qp). There
is a natural M(Zp)-stable lattice σ◦λ ⊂ σλ, known as the dual Weyl module (see [Jan03] for more
details). This gives rise in the usual way to a local system on XM

KM
, which we denote by Vλ; for

further discussion see §6.2.

Let ι : Qp
∼−→ C be an isomorphism. We let S be a finite set of primes of Q, containing p, all

the primes which ramify in F , and all the primes where the level KM is not hyperspecial. We let
TSM denote the abstract Hecke algebra for M over Zp, defined as the product of spherical Hecke
algebras at places away from S

TSM := ⊗l 6∈S,w|lTM,w, TM,w := Zp[GLn(Fw)//GLn(OF,w)],

where w runs over the primes of F above l 6∈ S. For such a prime w, we let qw be the cardinality
of its residue field and q1/2

w ∈ Zp denote the inverse image of the positive square root of qw in C
under ι. The Satake transform gives a canonical isomorphism

TM,w[q1/2
w ] ' Zp[q1/2

w ][X±1
1 , . . . , X±1

n ]Sn ,

with Sn the symmetric group on n elements. For i = 1, . . . , n, define Ti,w to be qi(n−i)/2w times
the i-th elementary symmetric polynomial in X1, . . . , Xn.

The Hecke algebra TSM acts in the usual way onH∗(XM
KM

,Vλ) (see §6.2 for further discussion).
We consider its image

TSM (KM , λ) := Im
(
TSM → EndZp

(
H∗(XM

KM
,Vλ)

))
.

Let m ⊂ TSM (KM , λ) be a maximal ideal. The following is [Sch15, Cor. 5.4.3] (with slightly
different normalizations, which are consistent with [NT16]).

Theorem 6.1.2. There exists a unique continuous semisimple Galois representation

ρ̄m : Gal(F/F )→ GLn(Fp)
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such that, for every prime w of F above l 6∈ S, the characteristic polynomial of ρ̄m(Frobw) is
equal to the image of

PM,w(X) = Xn − T1,wX
n−1 + · · ·+ (−1)iqi(i−1)/2

w Ti,wX
n−i + · · ·+ (−1)nqn(n−1)/2

w Tn,w

modulo m.

From now on, we also impose the following non-Eisenstein condition on m.

Assumption 6.1.3. The Galois representation ρ̄m is absolutely irreducible.

The goal of this section is to prove a strengthening of [Sch15, Thm. 5.4.4] and [NT16, Thm. 1.3]
under our assumption on p. In order to state the main result, we need to introduce a derived
Hecke algebra9, which we define as follows:

TSM (KM , λ)der := Im
(
TSM → EndD(Zp)

(
RΓ(XM

KM
,Vλ)

))
.

Note that we have a surjection

TSM (KM , λ)der � TSM (KM , λ) ,

with nilpotent10 kernel; in particular this surjection induces a bijection of maximal ideals.
Thus, we can take our non-Eisenstein maximal ideal m ⊂ TSM (KM , λ) and form the localiza-
tion TSM (KM , λ)der

m . TSM (KM , λ)der
m is a finitely generated Zp-module and we give it the p-adic

topology. The following is the main theorem of this section.

Theorem 6.1.4. Let p be a rational prime which splits completely in F and m a non-Eisenstein
maximal ideal. Then there exists a unique continuous Galois representation

ρm : Gal(F/F )→ GLn
(
TSM (KM , λ)der

m

)
such that, for every prime w of F above l 6∈ S, the characteristic polynomial of ρm(Frobw) is
equal to

PM,w(X) = Xn − T1,wX
n−1 + · · ·+ (−1)iqi(i−1)/2

w Ti,wX
n−i + · · ·+ (−1)nqn(n−1)/2

w Tn,w.

Remark 6.1.5. In [Sch15, Thm. 5.4.4], a Galois representation valued in TSM (KM , λ) /I is con-
structed, where I is an ideal with In = 0 for some (computable) n independent of λ. In [NT16,
Thm. 1.3], a Galois representation valued in TSM (KM , λ)der /J with J4 = 0 is constructed (for
F imaginary CM). Theorem 6.1.4 thus refines these results by removing the nilpotent ideal; see
Remark 1.1.7 for some further comments.

The proof of Theorem 6.1.4 will take up the remainder of Section 6. We note that localizing
TSM (KM , λ)der � TSM (KM , λ) at m gives a surjection TSM (KM , λ)der

m � TSM (KM , λ)m, so Theo-
rem 6.1.4 also gives rise to a Galois representation valued in TSM (KM , λ)m.

Let us now discuss some notation that will be used throughout this section. First, we define
Λ := Z/pr throughout this section (the choice of r > 1 being arbitrary but fixed). We will also
need some notations for various categories that will arise. Whenever G is a group and R is a
commutative ring, Mod(G, R) will denote the category of (left) G-representations on R-modules.
If G is profinite, Modsm(G, R) will denote the full subcategory of smooth G-representations. If S
9This is in the sense of [NT16], who consider an enhancement of the usual notion of Hecke algebra living in the
derived category, rather than in the sense of Venkatesh, who considers additional “derived” Hecke operators.
10Nilpotency follows from [KT17, Lemma 2.5].
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is a (possibly noncommutative) ring, then Mod(S) will denote the category of left S-modules. If
S is an R-algebra, then we will write Mod(S×G, R) for the category of left S⊗RR[G]-modules.
Moving on, if an (abstract) group G acts (from the right) on a topological space X, then ShG(X)
will denote the category of G-equivariant sheaves on X (see [NT16, §2.3]). When R = Z, we will
typically omit it from the notation.

All of these are abelian categories, and their homotopy and bounded below derived categories
will be denoted using self-explanatory notations involving the letters K and D, respectively.
Please do note that we will write D instead of D+ for bounded below derived categories; we
apologize for this choice, which was made to avoid making already heavy notation even heavier.
Our convention for shifts of complexes is that (C•[1])n = Cn+1. We will freely use the fact
morphisms between complexes of injective objects in the derived category may be computed in
the homotopy category. Also, group cohomology will refer to discrete group cohomology unless
otherwise stated.

We end this introduction with a brief overview of this section and of our argument. Subsections
6.2-6.4 are preliminary. In §6.2 we recall some material on locally symmetric spaces, in particular
the method to compute Hecke actions introduced in [NT16], and in §6.3 we collect various
homological algebra results that we will need. In §6.4 we set up some theory of ordinary parts
(Hida theory) in the derived setting, essentially following [KT17]. We then begin our argument
to prove Theorem 6.1.4. Like in [Sch15, NT16], our strategy consists of three main steps.
(i) The first, carried out in §6.5, is to construct Galois representations for the cohomology of

the XG
K ; our work here is a slight refinement of [Sch15, NT16].

(ii) The second step is to relate cohomology of XG
K to cohomology of XM

KM
by studying the

boundary of the Borel–Serre compactification. This is done in §6.6 and represents the main
innovation of our work in this section. The two key new ingredients are Theorem 6.1.1 and
the use of the ordinary parts functor from G toM , as studied in §6.4. The final result of this
analysis, Theorem 6.6.6, should also be relevant to the study of local-global compatibility
at ` = p for the representations ρm above.

(iii) Finally, §6.7 finishes the proof of Theorem 6.1.4, following the argument in [NT16]; the key
point here is to extract an n-dimensional determinant from a 2n- or (2n + 1)-dimensional
one using character twists.

6.2 Locally symmetric spaces
In this subsection we recall some generalities on locally symmetric spaces that we will need later.
We go back to the situation when G be a connected linear algebraic group over Q. Let us briefly
recall the Borel–Serre compactification (see [BS73]; some useful summaries are [NT16, §3.1] and
[ACC+18, §2.1]). The space XG admits a partial compactification XG [BS73, §7.1] with an action
of G(Q), and every torsion-free arithmetic subgroup of G(Q) acts freely on XG [BS73, §9.5]. We
define

X
G
K := G(Q)\

(
X

G ×G(Af )
)
/K;

this is a compact differentiable manifold with corners, whose interior is XG
K (see [BS73, §7.1,

Theorem 9.3, §9.5]). As a consequence11, the inclusion XG
K ↪→ X

G
K is a homotopy equivalence.

11It is a standard consequence of the (global) collar neighbourhood theorem [Bro62, Theorem 2] that the inclusion
of the interior inside a topological manifold with boundary is a homotopy equivalence. To apply this to XG

K ↪→ X
G
K ,
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We will write ∂XG
K := X

G
K \XG

K for the boundary.

We now recall some material on local systems onXG
K andXG

K , and their cohomology, following
[NT16]. Consider the space

X
G := G(Q)\

(
X

G ×G(Af )
)
,

where G(Af ) is given the discrete topology prior to taking the quotient. Since G(Q) × K acts
freely on XG ×G(Af ), K acts freely on X

G. We will also use the subspace

XG := G(Q)\
(
XG ×G(Af )

)
,

which K acts freely on as well. A direct consequence of the freeness of these actions is the
following lemma.

Lemma 6.2.1. Let K,K ′ ⊆ G(Af ) be neat compact open subgroups with K ′ ⊆ K normal. Then
the finite group K/K ′ acts freely on XG

K′ with quotient XG
K .

We now discuss another consequence of the fact that K acts freely on X
G. Any K-equivariant

sheaf F on X
G descends to a sheaf on XG

K , which we will also denote by F by abuse of notation.
In practice, our K-equivariant sheaves will come by restriction from G(Af )-equivariant sheaves,
and this gives rise to Hecke actions on cohomology. We recall how these Hecke operators may be
defined and computed from [NT16, §2.3], to which we refer for more details. There is a diagram

ShG(Af )(X
G)

Γ(XG
,−)
//

forget
��

Mod(G(Af ))
Γ(K,−)

//Mod(H(G(Af ),K))

forget
��

ShK(XG) descent // Sh(XG
K)

Γ(XG
K ,−)

//Mod(Z)

of categories and functors, commutative up to natural isomorphism. Here H(G(Af ),K) denotes
the Hecke algebra ofK-biinvariant compactly supported functions G(Af )→ Z. The commutative
diagram may be derived, and for a G(Af )-equivariant sheaf F on X

G, this gives a canonical
homomorphism

H(G(Af ),K)→ EndD(Z)(RΓ(XG
K ,F))

which is computed from the object RΓ(K,RΓ(XG
,F)) ∈ D(H(G(Af ),K)). This way of defining

Hecke operators agrees with the traditional one using correspondences; for all this see [NT16,
Proposition 2.18] and the discussion following it. We remark that there are obvious versions of
the above when Z is replaced by an arbitrary commutative ring R. Also, if K ′ ⊆ K is an open
normal subgroup, one may descend a K-equivariant sheaf F on X

G to a K/K ′-equivariant sheaf
on XG

K′ , and an obvious version of the above yields a Hecke action

H(G(ASf ),KS)→ EndD(K/K′)(RΓ(XG
K′ ,F)),

where S is a finite set of places such thatKS = (K ′)S . Finally, also note that the entire discussion
of equivariant sheaves and Hecke actions apply equally well to the (locally) symmetric spaces
themselves and not just their Borel–Serre compactifications.

note that “corners” and “boundary” are the same thing for topological manifolds.
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We have inclusions XG ↪→ X
G and XG

K ↪→ X
G
K , both of which we will denote by j. We

will be interested in two types of G(Af )-equivariant sheaves on X
G. The first are local systems;

any right G(Af )-module gives rise to a G(Af )-equivariant sheaf on X
G. When F is a local

system on X
G
K obtained this way, pullback along the homotopy equivalence j : XG

K ↪→ X
G
K

induces a Hecke-equivariant isomorphism between RΓ(XG
K ,F) and RΓ(XG

K , j
∗F). The second

type are extensions by zero of G(Af )-equivariant local systems on XG; these will be used to
compute Hecke actions on compactly supported cohomology on the XG

K . They give exact functors
j! : ShG(Af )(XG)→ ShG(Af )(X

G) and j! : Sh(XG
K)→ Sh(XG

K) such that the diagram

ShG(Af )(XG) j! //

descent
��

ShG(Af )(X
G)

descent
��

Sh(XG
K) j! // Sh(XG

K)

commutes up to natural isomorphism. If F is G(Af )-equivariant sheaf on XG with descent F to
XG
K , this gives us a Hecke action

H(G(Af ),K)→ EndD(Z)(RΓc(XG
K ,F))

which is computed from the object RΓ(K,RΓ(XG
, j!F)) ∈ D(H(G(Af ),K)). Once again this

action agrees with the traditional one defined using correspondences, and as above we have
obvious versions for sheaves of R-modules and in the K/K ′-equivariant setting when K ′ ⊆ K is
open and normal.

Let us record a few results on computations of Hecke actions and changing levels.

Proposition 6.2.2. Let S be a finite set of places and let K = KSKS ⊆ G(Af ) be a neat
compact open subgroup. Let K ′ = KSK ′S be another compact open subgroup with K ′S ⊆ KS

normal. Let F ∈ D(ShG(Af )(X
G). Then there is a natural isomorphism

RΓ(K/K ′, RΓ(XG
K′ ,F)) ∼= RΓ(XG

K ,F)

which is equivariant for the action of H(G(ASf ),KS) on both sides.

Proof. By the formalism above, RΓ(XG
K ,F) with its H(G(ASf ),KS)-action is computed by the

objectRΓ(K,RΓ(XG
,F)) ∈ D(H(G(ASf ),KS)), andRΓ(XG

K′ ,F) with its actions ofH(G(ASf ),KS)
and K/K ′ is computed by the object RΓ(K ′, RΓ(XG

,F)) ∈ D(H(G(ASf ),KS)×K/K ′). To con-
clude, we use the formalism, noting that we have a (natural) isomorphism

RΓ(K,RΓ(XG
,F)) ∼= RΓ(K/K ′, RΓ(K ′, RΓ(XG

,F)))

in D(H(G(ASf ),KS)) and that

D(H(G(ASf ),KS)×K/K ′)
RΓ(K/K′,−)

//

forget
��

D(H(G(ASf ),KS))

forget
��

D(K/K ′)
RΓ(K/K′,−)

// D(Z)

commutes up to natural isomorphism. To see this last point, note that the corresponding un-
derived diagram commutes up to natural isomorphism, and then use that the forgetful mor-

49



A. Caraiani, D. Gulotta, C. Hsu, C. Johansson, L. Mocz, E. Reinecke, S. Shih

phism Mod(H(G(ASf ),KS) × K/K ′) → Mod(K/K ′) preserves injectives since its left adjoint
H(G(ASf ),KS)⊗Z − is exact.

Again, there are obvious versions with Z replaced by a commutative ring R, and equivariant
versions. For the next proposition, we continue to use the notation of Proposition 6.2.2; K =
KSKS and K ′ = KSK ′S with K ′S ⊆ KS normal. Below, tensor products are given diagonal
actions.

Proposition 6.2.3. Let V and W be left Z[G(ASf ) × KS ]-modules which are finite and free
as Z-modules, and assume that the K ′-action on W is trivial. We may view both V and W

as G(ASf ) × KS-equivariant local systems on X
G. Then we have a H(G(ASf ),KS)-equivariant

isomorphism

RΓ(XG
K , V ⊗Z W ) ∼= RΓ(K/K ′, RΓ(XG

K′ , V )⊗Z W )
in D(Z).

Proof. By Proposition 6.2.2 it suffices to show that

RΓ(XG
K′ , V ⊗Z W ) ∼= RΓ(XG

K′ , V )⊗Z W

H(G(ASf ),KS)-equivariantly in D(K/K ′), which would follow from an isomorphism

RΓ(K ′, RΓ(XG
, V ⊗Z W )) ∼= RΓ(K ′, RΓ(XG

, V ))⊗Z W

in D(H(G(ASf ),KS)×K/K ′), where W is viewed as a trivial H(G(ASf ),KS))-module. To prove
this, we argue as follows. First, note that trivial local systems are acyclic for Γ(XG

,−), and so
one computes that

RΓ(XG
, V ⊗Z W ) ∼= Γ(XG

, V ⊗Z W ) = Γ(XG
, V )⊗Z W ∼= RΓ(XG

, V )⊗Z W

where the middle equality follows from the equality Γ(XG
, V ) = Fun(π0(XG), V ) and similarly for

V ⊗Z W , using that W is a finite free Z-module (here Fun(X,Y ) denotes the functions between
two sets X and Y ). To conclude from here, it suffices to show that the diagram

D(G(ASf )×KS)
RΓ(K′,−)

//

−⊗ZW

��

D(H(G(ASf ),KS)×K/K ′)

−⊗ZW

��

D(G(ASf )×KS)
RΓ(K′,−)

// D(H(G(ASf ),KS)×K/K ′)

commutes. The corresponding underived diagram commutes, so it suffices to show that there are
enough injectives I in Mod(G(ASf )×KS) for which I⊗ZW is injective. For this, we may take the
injectives IM := Fun(G(ASf ) ×KS ,M) for injective Z-modules M , with the left action induced
by right translation. These are enough, and by a standard untwisting argument (using that W
is a finite free Z-module) IM ⊗ZW ∼= IM⊗ZW ; note that M ⊗ZW is an injective Z-module since
W is finite free.

Once again we have an obvious analogue for arbitrary commutative rings; we will use it for
Λ = Z/pr.
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6.3 Homological algebra
In this subsection we collect some algebraic facts and constructions that we will need. We start
by discussing idempotents and direct summands in derived categories. Let D be an additive
category. We assume that D is idempotent complete, meaning that if X is an object of D and
e ∈ EndD(X) is idempotent, then there exists a direct sum decomposition X ∼= Y ⊕ Z given in
part by morphisms i : Y → X and p : X → Y such that ip = e. A choice of i and p gives an
additive homomorphism

prX,Y : EndD(X)→ EndD(Y )
given by f 7→ pfi. If R is a commutative ring, then we define an action of R on X ∈ D to be
a ring homomorphism aX : R → EndD(X). Suppose that R acts on X and that Y is a direct
summand of X corresponding to an idempotent e = ip as above. We single out two situations
that will be relevant for this paper.
(i) Assume that we also have an action aY of R on Y . Then we say that Y is an R-equivariant

direct summand of X if aY = prX,Y ◦ aX .
(ii) Assume that e commutes with aX(R), without assuming that there is a given action of R

on Y . Then one may define an action of R on Y by aY := prX,Y ◦aX ; one checks easily that
this is a ring homomorphism. By construction, Y is then an R-equivariant direct summand
of X.

In the situation when D is a derived category of an abelian category A, one has the following
compatibilities. The induced morphism on cohomology H∗(i) : H∗(Y ) → H∗(X) is an isomor-
phism onto Im(H∗(e)). One can define two actions of R on Im(H∗(e)): One by restriction from
H∗(X), since the action R commutes with H∗(e), and one by transporting the action on H∗(Y )
coming from aY via the isomorphism H∗(i). These actions are easily seen to agree.

Our source of idempotents will come from the following situations. Keep the notation above.
Our first situation is when T ⊆ EndD(X) is a commutative subring with finitely many maximal
ideals, and we have a decomposition

T =
∏
m

Tm

where m runs over the maximal ideals of T . This happens for example if T has finite cardinality, or
is a finite Zp-algebra. Fix a particular maximal ideal m, then the identity in Tm is an idempotent
e ∈ T . The other situation is inspired by Hida theory. Suppose that f ∈ EndD(X) generates
a subring of finite cardinality (for example when EndD(X) is finite). Then, for large enough k,
fk! stabilizes and is an idempotent. For further discussion on idempotents, see [KT17, §2.4] and
[NT16, §3.2].

We move on. Later in Theorem 6.6.6, which is the main technical result of this section, we will
need to “glue” complexes computing cohomology groups of towers of locally symmetric spaces
at finite level, as the level varies, and deduce consequences in the limit from information at finite
level. The following two lemmas will provide a rather concrete context for this, and in §6.4 we
will discuss explicit complexes computing cohomology of locally symmetric spaces to which they
may be applied. Let G∞ be a compact p-adic analytic group, which is the inverse limit of a
countable sequence

· · · → G3 → G2 → G1

of finite groups. Let Hc = Ker(G∞ → Gc). The following is a variation on [KT17, Lemma 2.13].
Throughout, we will say that a complex C• is concentrated in an interval [a, b] (with a, b always
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assumed to be integers) if Ci = 0 whenever i /∈ [a, b].

Lemma 6.3.1. Let V •c be a complex of finitely generated injective Gc-representations over Λ,
together with Gc-equivariant isomorphisms fc : V •c → Γ(Hc, V

•
c+1), for 1 6 c < ∞. Assume that

V •c is concentrated in [a, b] for all c. Then:

(i) V •∞ = lim−→c<∞ V
•
c is a complex of smooth admissible injective G∞-representations, concen-

trated in [a, b]. Moreover, we have natural isomorphisms Fc : V •c → Γ(Hc, V
•
∞) for all c.

(ii) The natural map lim−→c<∞H
∗(V •c )→ H∗(V •∞) is an isomorphism.

(iii) Suppose that W •c , 1 6 c < ∞, is another system of complexes of finitely generated injec-
tive Gc-representations over Λ, concentrated in [a′, b′], together with Gc-equivariant isomor-
phisms gc : W •c → Γ(Hc,W

•
c+1). Suppose that we have morphisms tc ∈ HomK(Gc,Λ)(V •c ,W •c )

such that tc+1 ◦ fc = gc ◦ tc in K(Gc,Λ) for 1 6 c < ∞. Then there exists a unique
t∞ ∈ HomK(G∞,Λ)(V •∞,W •∞) such that the natural diagram

Γ(Hc, V
•
∞) t∞ //

��

Γ(Hc,W
•
∞)

��

V •c
tc //W •c

commutes in K(Gc,Λ).

(iv) Suppose that we have V •c and W •c as above for 1 6 c 6 ∞, but now suppose that we
have a G∞-equivariant map u∞ : V •∞ → W •∞. Set uc = Γ(Hc, u∞) : V •c → W •c and let
Cone(uc) denote the mapping cone (for 1 6 c 6∞). Then Cone(u∞) is a complex of smooth
admissible injective G∞-representations, and we have Γ(Hc,Cone(u∞)) = Cone(uc), which
is a complex of finitely generated injective Gc-representations.

Proof. We start with part (1). The transition maps V •c → V •c+1 are the fc composed with the
natural inclusions Γ(Hc, V

•
c+1) ↪→ V •c+1. Then everything is clear, apart from injectivity of the

V i
∞. For this, first note that by [Eme10b, Proposition 2.1.9] it suffices to prove that the V i

∞ are
injective in the category of admissible G∞-representations. Then note that if M is an another
admissible G∞-representation over Λ, then HomG∞(M,V i

∞) ∼= lim←−c HomGc(Γ(Hc,M), V i
c ), and

the right hand side gives an exact functor in M by the injectivity of V i
c , the finiteness of the

HomGc(Γ(Hc,M), V i
c ) and the Mittag-Leffler condition. This finishes part (1). Part (2) then

follows from exactness of direct limits. Part (3) is proved exactly as [KT17, Lemma 2.13(3)].
Finally part (4) follows immediately from the definition of the mapping cone.

Lemma 6.3.2. Assume that we have (Vc, fc)16c6∞ as in Lemma 6.3.1. Assume further that
we have idempotents ec ∈ EndK(Gc,Λ)(V •c ) such that ec+1 ◦ fc = fc ◦ ec in K(Gc+1,Λ). By
Lemma 6.3.1(3), this data is equivalent to an idempotent e∞ ∈ EndK(G∞,Λ)(V •∞). Then the direct
summand of V •∞ in Dsm(G∞,Λ) cut out by e∞ is isomorphic to a complex W •∞ of admissible
injective G∞-representations concentrated in [a, b]. Moreover, for each 1 6 c < ∞, W •c :=
Γ(Hc,W

•
∞) is a complex of finitely generated injective Gc-representations, and it is isomorphic

in D(Gc,Λ) to the direct summand of V •c cut out by ec.

Proof. We show that the direct summand of V •∞ in Dsm(G∞,Λ) cut out by e∞ is isomorphic to
a complex W •∞ of admissible injective G∞-representations concentrated in [a, b]; the rest then
follows, using functoriality and the fact that Γ(Hc,−) preserves injectives. We may work in
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Dadm(G∞,Λ). By [Eme10a, Equation (2.2.12)], the category of admissible G∞-representations
over Λ is anti-equivalent to the category of finitely generated left modules for the (left and right)
Noetherian ring ΛJG∞K. The assertion then follows from Lemma 6.3.3 below.

For convenience, we use chain complexes in the next lemma. Truncations always refer to good
truncations.

Lemma 6.3.3. Let R be a left Noetherian ring (in particular, R need not be commutative); all
R-modules will be left modules. Assume that C• is a complex of finitely generated projective R-
modules concentrated in [a, b], and assume that we have a direct sum decomposition C• ∼= D•⊕E•
in D(R). Then D• is isomorphic in D(R) to a complex of finitely generated projective R-modules
D′• concentrated in [a, b].

Proof. This is presumably well known, we sketch a proof. Note that if i /∈ [a, b], then Hi(D•) = 0
and ExtiR(D•,M) = 0 for any R-module M , since both these things are true for C• and are pre-
served under taking direct summands. We explain how to modify D• to satisfy the requirements
of the lemma. First, by truncation, we may assume that Di = 0 in degrees < a. Hence, we may
replace it with a quasi-isomorphic complex of projective R-modules which is 0 in degrees < a.
By truncation, using the facts in the second sentence of the proof and some standard dimension
shifting arguments, we may assume that Di = 0 when i /∈ [a, b]. Finally, applying [Mum70,
Chapter II, §5, Lemma 1] (whose proof does not require commutativity of the ring in question)
and remembering that finitely generated flat R-modules are projective, we may assume that the
Di are in addition finitely generated. This finishes the sketch of proof.

We now move on to discuss some results related to continuity of actions on objects in derived
categories which we will need. We regard Λ as a topological ring with the discrete topology. Let
T be a commutative topological Λ-algebra, with the topology defined by a decreasing sequence
of ideals . . . Ik ⊆ Ik−1 ⊆ · · · ⊆ I1 ⊂ T such that T/Ik is a finite free Λ-algebra for every k ∈ Z>1.

Lemma 6.3.4. Let G be a compact p-adic analytic group. Let K• be a bounded below complex
of smooth G-representations with Λ-coefficients and with a continuous action of T on each term
that commutes with the Λ[G]-module structure. Then there exists a bounded below complex I•
of injective objects in Modsm(G,Λ) with a continuous T-action on each term, that commutes with
the Λ[G]-module structure, and such that there is a T-equivariant quasi-isomorphism K• → I•.

Proof. First, we prove that for every M ∈ Modsm(G,Λ) with a continuous T-action there is an
injection

M ↪→ I(M)
where I(M) ∈ Modsm(G,Λ) is an injective object with a continuous T-action. For each k ∈ Z>1,
let Mk denote the Λ[G]-submodule of M on which the T-action factors through Λk := T/Ik.
Since M is a discrete T-module, we have M = lim−→k

Mk. We will construct I(M) := lim−→k
I(M)k

inductively, where each I(M)k will be an injective object in Modsm(G,Λk). The forgetful functor
from Modsm(G,Λk) to Modsm(G,Λ) has an exact left adjoint −⊗Λ Λk (exact because Λk is finite
free over Λ), so it preserves injectives, and hence the I(M)k will be injective in Modsm(G,Λ)
as well. We conclude that lim−→k

I(M)k is also an injective object in Modsm(G,Λ) by [Eme10b,
Lemma 2.1.3].

For k = 1, simply let M1 ↪→ I(M)1 be any embedding of M1 into an injective object of
Modsm(G,Λ1). Now let k > 2 and assume that we have already constructed I(M)k−1. DefineM ′k
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to be the pushout Mk ⊕Mk−1 I(M)k−1 in Modsm(G,Λk). Note that Mk−1 injects into both Mk

and I(M)k−1, so that we have injections Mk ↪→M ′k and I(M)k−1 ↪→M ′k. Then we let I(M)k be
an injective object in Modsm(G,Λk) such that M ′k ↪→ I(M)k. This gives us a compatible system
of injections Mk ↪→ I(M)k, and hence the desired I(M).

This now allows us to prove the lemma. If we forget about the topology on T, the category
Modsm(G,T) of smooth G-representations on abstract T-modules is abelian. The full subcategory
A consisting of objects M for which the action map

T×M →M

is continuous, when T is equipped with the above topology and M is equipped with the discrete
topology, is an abelian subcategory. One way to see this is by noting that T acts continuously on
M if and only if the annihilator AnnT(m) is open in T for every m ∈M , and using this criterion
it is easy to check that A is closed under taking kernels and cokernels, contains the zero object
and is closed under taking the direct sum of two objects. Let I denote the subset of objects of A
that are injective after applying the forgetful functor to Modsm(G,Λ). The set I contains the zero
object. We have shown above that any object in A admits an injective morphism to an object of
I. The fact that any bounded below complex K• with terms in A admits a quasi-isomorphism
to a bounded below complex with terms in I then follows from [Sta, Tag 05T6].

Remark 6.3.5. We remark that we crucially used that the ring Λ[[G]] is Noetherian in the proof.
This would fail if we worked with OC/pr-coefficients instead of Λ-coefficients.

The following proposition and its proof are due to James Newton. We thank him for allowing
us to include it here.

Proposition 6.3.6. Suppose G is a finite group and P • is a perfect complex in D(G,Λ) with an
action of T. Suppose I• is a bounded below complex of injectives in D(G,Λ) with a continuous
T-action on each term and such that P • is a T-equivariant direct summand of I• in D(G,Λ).
Then the map

T→ EndD(G,Λ)(P •)
is continuous for the discrete topology on the target.

Proof. We can replace P • with a bounded complex of finite projective Λ[G]-modules, which are
also injective Λ[G]-modules since Λ is self-injective and G is a finite group. The fact that P • is a
direct summand of I• in D(G,Λ) implies that we have Λ[G]-equivariant morphisms of complexes

f : P • → I•,

g : I• → P •

giving the T-equivariant splitting in D(G,Λ). (In particular, g ◦ f is homotopic to the identity
on P ). For each of the finitely many n such that Pn 6= 0, we choose generators xn1 , . . . , xnkn of
the finitely generated Λ[G]-modules Pn. Since T acts continuously on In, the annihilator in T of
f(xni ) is an open ideal for each i, n. Taking the intersection over all the finitely many i and n,
we see that the annihilator in T of the subcomplex f(P •) ⊂ I• is an open ideal. The fact that
the map

T→ EndD(G,Λ)(P •)
has open kernel is now an immediate consequence of Lemma 6.3.7 below.

Lemma 6.3.7. Suppose T ∈ T annihilates f(P •). Then T maps to zero in EndD(G,Λ)(P •).
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Proof. Choose a lift TP of T to an endomorphism of the complex P • (such a lift is well-defined up
to homotopy). Since P • is a complex of injectives and f and g cut out P • as a T-direct summand
of I•, TP coincides with g ◦ T ◦ f up to a Λ[G]-linear null homotopy of P •. Since T annihilates
f(P •), this shows that TP is a null homotopy of P •, which is what we needed to prove.

6.4 Explicit complexes and ordinary parts
We now recall some material on explicit complexes that can be used to compute cohomology of
locally symmetric spaces; this may be found (in varying levels of generality) in [AS, Han17, KT17].
We will then discuss some aspects of Hida theory in the situation we require.

As in §6.2, let G be a connected linear algebraic group over Q. We let CA,• denote the complex
of singular chains of XG×G(Af ) with Z-coefficients; this is naturally a left G(Q)×G(Af )-module
under the diagonal left action of G(Q) on XG × G(Af ) and the left action by G(Af ) given by
inverting the natural right action on XG × G(Af ) via the second factor. For any neat compact
open subgroup K ⊆ G(Af ) and any left K-module V , we set C•A(K,V ) := HomG(Q)×K(CA,•, V ),
where V is given the trivial G(Q)-action. The proof of [KT17, Proposition 6.2] works in full
generality and shows that C•A(K,V ) ∼= RΓ(XG

K , V ) in D(Z) (see also [Han17, Proposition 2.1.]).
Moreover, whenever V is a G(Af )-module, the action of double coset operators on RΓ(XG

K , V )
can be made explicit at the level of complexes on C•A(K,V ). More generally, if K,K ′ are neat
compact open subgroups and g ∈ G(Af ), we have a map [KgK ′]∗ : C•A(K ′, V )→ C•A(K,V ) given
by (

[KgK ′]∗(ϕ)
)

(σ) =
∑
i

giϕ(g−1
i σ),

where ϕ ∈ C•A(K ′, V ), σ ∈ CA,• and KgK ′ =
⊔
i giK

′; this is easily checked to be independent of
the choice of gi. If K ′ ⊆ K and V is a left K ′-module, we write IndKK′V for the left K-module
of functions f : K → V satisfying f(k′k) = k′f(k) for all k ∈ K, k′ ∈ K ′, with the left K-action
coming from right translation.

Lemma 6.4.1. Let K ′ ⊆ K and let V be a K ′-module. Then there is a natural isomorphism
C•A(K ′, V ) ∼= C•A(K, IndKK′V ).

Proof. One defines maps ext : C•A(K ′, V ) → C•A(K, IndKK′V ) and res : C•A(K, IndKK′V ) →
C•A(K ′, V ) by ext(ϕ)(σ)(k) = ϕ(kσ) and res(ψ)(σ) = ψ(σ)(1); it is then straightforward to
check that they are mutual inverses.

Note that in the entire discussion above we could have replaced XG by ∂XG, in which case
we denote the corresponding complexes by C•A,∂(K,V ).

The complexes C•A(K,V ) are rather large. To define complexes computing RΓ(XG
K , V ) with

good finiteness properties, we fix a neat compact open K0 and only consider compact opens
K ⊆ K0. Fix a finite triangulation of XG

K0 such that ∂XG
K0 is a subcomplex of the triangulation.

Choose representatives gi of G(Q)\G(Af )/K0; the disjoint union of the embeddings g̃i : XG →
X

G ×G(Af ) induce an isomorphism ⊔
i

Γ0,i\X
G ∼−→ X

G
K0 ,

where Γ0,i = G(Q) ∩ giK0g
−1
i . Restricting to a component, the triangulation of XG

K0 gives rise
to a Γ0,i-invariant triangulation of XG with the boundary as a subcomplex, giving bounded
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complexes F i• and F
i,∂
• of finite free Z[Γ0,i]-modules. For each K0-module V and ? ∈ {∅, ∂}, this

gives complexes
C•? (K,V ) :=

⊕
i

HomZ[Γ0,i](F
i,?
• , Vi),

where Vi denotes V with the Γ0,i-module structure obtained by restricting the K0-module struc-
ture via Γ0,i → K0, γ 7→ g−1

i γgi. Let C?
•(X

G) denote the complex of singular chains of ?XG. We
fix once and for all maps s?

i : F i,?• → C?
•(X

G) and t?i : C?
•(X

G) → F i,?• of chain complexes of
Γ0,i-modules which are mutual inverses in K(Γ0,i). The proof of [KT17, Proposition 6.2] works
by showing that

⊕g̃i,∗ : C•sing,?(K0, V ) :=
⊕
i

HomZ[Γ0,i](C
?
•(X

G), Vi)→ C•A,?(K0, V )

is an isomorphism. Thus, the s?
i and t?i induce chain homotopy equivalences C•? (K0, V ) ∼=

C•A,?(K0, V ), showing that the former are isomorphic to RΓ(?XG
K0 , V ) in D(Z). Combining this

with Lemma 6.4.1, we see that

C•? (K0, IndK0
K V ) ∼= RΓ(?XG

K , V )

in D(Z) for K-modules V .
We list the most important properties of C•? (K0, V ), which follow from the definitions. First,

C•? (K0, V ) is bounded independently of K and V , and each term is isomorphic as a Z-module
to a finite sum of copies of V . We also have an equivariant version of this. If K ′ ⊆ K ⊆ K0 with
K ′ ⊆ K normal and V is a K-module, then (k ∗ f)(x) = kf(k−1x) defines a left K/K ′-module
structure on IndK0

K′V commuting with the previously definedK0-module structure, and each term
of C•? (K0, IndK0

K′V ) is isomorphic to a finite sum of copies of Z[K/K ′] ⊗Z V , with V considered
as a Z-module, by untwisting. In particular, whenever V is finite projective, this shows that
RΓ(?XG

K′ , V ) is perfect in D(K/K ′). Moreover, we have equalities Γ(K/K ′, C•? (K0, IndK0
K′V )) =

C•? (K0, IndK0
K V ). Upon noting that Λ[K/K ′] is self-injective, Lemma 6.3.1 gives us the following

lemma, which can also be proved directly (note that Mapcont(K0,p, V ) = lim−→Kp=Kp
0

IndK0
K V ):

Lemma 6.4.2. Let V be a K0-representation which is finite and free as a Λ-module, and such that
Kp

0 acts trivially on V . The complex C•? (K0,Mapcont(K0,p, V )) = lim−→Kp=Kp
0
C•? (K0, IndK0

K V ) is a
bounded complex of smooth admissible injective K0,p-representations.

We may also treat compactly supported cohomology. There is a natural map C•(K,V ) →
C•∂(K,V ) coming from F i,∂• → F i•. Using this, we may define

C•c (K0, V ) := Cone(C•(K0, V )→ C•∂(K0, V ))[−1],

where Cone denotes the mapping cone. From the definitions and the excision sequence, C•c (K0, V ) ∼=
RΓc(XG

K0
, V ) in D(Z). Moreover, C•c (K0, V ) inherits all the properties above from C•(K0, V ) and

C•∂(K0, V ), i.e. everything above holds with ? = c. We have already touched upon it, but let us
finish by noting explicitly that as in §6.2, we have versions of the above with other coefficients
as well as equivariant versions.

The remainder of this section will discuss one particular aspect of Hida theory in the P -
ordinary setting, analogous to [KT17, Lemma 6.10]. We work over Λ, and we will work with our
symplectic/unitary group G and ordinary parts with respect to the Siegel parabolic P , though
our discussion is rather general and we will make use of a few obvious variants in §6.6. Fix a
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neat Kp. We will need to define some level subgroups. For m > 1, we define

Γ0(pm) := {g ∈ G(Zp) | (g mod pm) ∈ P (Z/pm)};

Γm := Γ1(pm) := {g ∈ G(Zp) | (g mod pm) ∈ N(Z/pm)}.
More generally, for a pair of integers ` > m > 0, ` > 1, let Γm,` ⊆ Γ0(p`) be the subgroup
defined by the Iwahori factorization N(Zp)p

`
KM,m,pN(Zp) ⊇ Γ1(p`). Γm,` is normal in Γ0(p`),

Γm,`/Γ1(p`) ∼= KM,m,p/KM,`,p, and Γ0(p`)/Γm,` ∼= M(Z/pm). In particular, Γm = Γm,m with the
notation above. We also set

Γ0 := Γ0(p).
We make analogous definitions for compact open subgroups of G(Af ); set Km,` = KpΓm,`, and
Km = KpΓm for m > 0. We will make use of a particular Hecke operator, which we will define
using the matrix

γ :=
∏
ι

diag(p, . . . , p, p−1, . . . , p−1) ∈M(Qp),

where in each matrix p and p−1 occur n times on the diagonal and the product runs over all
embeddings ι : F ↪→ C with ι ∈ Ψ when F is imaginary CM and over all embeddings ι : F ↪→ R
when F is totally real. We consider the double coset Γm,`γΓm,`′ when `′ − 1 6 `. Using the
Iwahori factorization one easily verifies the decomposition

Γm,`γΓm,`′ =
⊔
i

βiγΓm,`′ ,

where the βi run through a set of coset representatives of N(Zp)p
2 in N(Zp). This gives us maps

[Km,`γKm,`′ ]∗ : C•A(Km,`′ ,Λ)→ C•A(Km,`,Λ). When ` = `′ we will denote this Hecke operator by
Up; since γ is central in M the Up-action commutes with the action on M(Z/pm). One has the
following lemma.

Lemma 6.4.3. Up commutes with the inclusion maps C•A(Km,`,Λ)→ C•A(Km′,`′ ,Λ) for m 6 m′,
` 6 `′. When ` > 2 and ` > m, the image of Up acting on C•A(Km,`,Λ) is inside C•A(Km,`−1,Λ).

Proof. The first part follows from the formula for Up since the coset decomposition does not
change. The second follows from the same fact, since the formula for Up and for [Km,`−1γKm,`]∗ :
C•A(Kn,`,Λ)→ C•A(Km,`−1,Λ) are the same.

Recall that K0 = K0,1 = KpΓ0(p). We may transport the Up-action from C•A(Km,`,Λ) ∼=
C•A(K0, IndK0

Km,`
Λ) to C•(K0, IndK0

Ka,b
Λ) via the chosen chain homotopy equivalences; this gives

an operator Ũp which acts as Up up to homotopy. Tedious but straightforward calculations using
the definitions above and the maps in Lemma 6.4.1 show that when m 6 m′ and ` 6 `′, the
diagram

C•(K0, IndK0
Km,`

Λ)
Ũp
//

��

C•(K0, IndK0
Km,`

Λ)

��

C•(K0, IndK0
Km′,`′

Λ)
Ũp
// C•(K0, IndK0

Km′,`′
Λ)

commutes, where the vertical maps are injective, induced by the inclusion IndK0
Km,`

Λ→ IndK0
Km′,`′

Λ,
and also that Ũp commutes with the action ofM(Z/pm). By finiteness, Ũk!

p stabilizes to an idem-
potent as k → ∞ as discussed in §6.3. We will denote the corresponding direct summand of
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C•(K0, IndK0
Km,`

Λ) by C•(K0, IndK0
Km,`

Λ)ord. Since the diagram above commutes, we have inclu-
sions C•(K0, IndK0

Km,`
Λ)ord → C•(K0, IndK0

Km′,`′
Λ)ord when m 6 m′, ` 6 `′. Let V∞ be the smooth

induction sm− IndK0
N(Zp)Λ = lim−→m,`

IndK0
Km,`

Λ. V∞ is an injective smooth M(Zp)-representation
over Λ. We set

C•(K0, V∞)ord := lim−→
m,`

C•(K0, IndK0
Km,`

Λ)ord;

this is a direct summand of C•(K0, V∞) and hence a bounded complex of injective smooth
M(Zp)-representations. The following finiteness result is key.

Proposition 6.4.4. The inclusion C•(K0, IndK0
Km

Λ)ord → Γ(KM,m,p, C
•(K0, V∞)ord) is a quasi-

isomorphism of complexes of M(Z/pm)-representations.

Proof. One directly computes Γ(KM,m,p, C
•(K0, V∞)ord) = lim−→`>m

C•(K0, IndK0
Km,`

Λ)ord (the tran-
sition maps are injective). Thus, it suffices to show that C•(K0, IndK0

Km,`
Λ)ord → C•(K0, IndK0

Km,`+1
Λ)ord

is a quasi-isomorphism for all `, i.e that H i(XG
Km,`

,Λ)ord → H i(XG
Km,`+1 ,Λ)ord is an isomorphism

for all i. This follows from Lemma 6.4.3 as in the proof of [KT17, Lemma 6.10].

Proposition 6.4.5. C•(K0, V∞)ord is quasi-isomorphic to a bounded complex of injective ad-
missible M(Zp)-representations.

Proof. Since C•(K0, V∞)ord is a bounded complex of injective smooth M(Zp)-representations,
the proof of [Mum70, Chapter II, §5, Lemma 1] shows that it suffices to show that its cohomology
groups are admissible. Consider the (first quadrant) hypercohomology spectral sequence

Hj
cts(KM,m,p, H

i(C•(K0, V∞)ord)) =⇒ H i+j
cts (KM,m,p, C

•(K0, V∞)ord).

By Proposition 6.4.4, the terms in the abutment are finite. It follows that H0(C•(K0, V∞)ord)
is admissible. Admissibility of H i(C•(K0, V∞)ord) for i > 1 then follows by induction, since
admissible M(Zp)-representations have finite continuous KM,m,p-cohomology.

In other words, C•(K0, V∞)ord is quasi-isomorphic to a “good” complex of the form appearing
as the output in Lemma 6.3.1(1), which will allow us (for example) to glue morphisms. We note
that this entire discussion applies equally well to boundary cohomology, giving us a complex
C•∂(K0, V∞)ord quasi-isomorphic to a bounded complex of injective smooth admissible M(Zp)-
representations. Taking cones and shifting by −1 as above, we obtain “good” complexes for
compactly supported cohomology as well by Lemma 6.3.1(4).

6.5 Constructing determinants
We start on the road towards proving Theorem 6.1.4. To do so, we will use Chenevier’s notion of
a determinant [Che14] and their basic properties freely. Let GF,S denote the Galois group of the
maximal extension of F unramified outside primes above S. By [Che14, Theorem 2.22(i)] and
our non-Eisenstein assumption on the maximal ideal m, it suffices to construct a TSM (KM , λ)der

m -
valued continuous determinant of GF,S with the correct characteristic polynomial of Frobenii in
order to get the desired Galois representation ρm,r : Gal(F/F ) → GLn

(
TSM (KM , λ)der

m

)
; this is

what we will do.

Our goal in this subsection is to construct determinants valued in (derived) Hecke algebras
for G. The results are slight refinements of results from [Sch15, NT16]. For this, we start by first
recalling some material on Hecke algebras for G. Recall the groups G0 that we defined in the
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beginning of §6. In this subsection, all compact open subgroups K appearing are assumed to be
small, and the prime-to-p part Kp is assumed to be fixed throughout. We define the (abstract,
spherical) Hecke algebra TSG by:

TSG := ⊗l 6∈S,w̄|lTG,w̄, TG,w̄ = Zp
[
G0(F+

w̄ )//G0(OF+,w̄)
]
,

where the product runs over primes w̄ of F+ above a prime l 6∈ S. Let us recall the explicit
description of TG,w̄ given by the Satake isomorphism. This can be found in [Sch15, Lem. 5.1.6]
and in [NT16, Prop.-Def. 5.2] for F imaginary CM; we use a normalization for the Hecke operators
that is consistent with the latter reference (but not the former). If F is imaginary CM and w̄
splits in F ,

TG,w̄[q1/2
w̄ ] ∼= Zp[q1/2

w̄ ][Y ±1
1 , . . . , Y ±1

2n ]S2n .

We write TG,w̄,i for qi(2n−i)/2w̄ times the ith elementary symmetric polynomial in Y1, . . . , Y2n. If
F is imaginary CM and w̄ is inert in F ,

TG,w̄[q1/2
w̄ ] ∼= Zp[q1/2

w̄ ][X±1
1 , . . . , X±1

2n ]Sno(Z/2Z)n .

and the unramified endoscopic transfer from G(Fw̄) to GL2n(Fw̄) is dual to the map

Zp[q1/2
w̄ ][Y ±1

1 , . . . , Y ±1
2n ]S2n → Zp[q1/2

w̄ ][X±1
1 , . . . , X±1

2n ]Sno(Z/2Z)n

that sends {Y1, . . . , Y2n} to {X±1
1 , . . . , X±1

n }. We write TG,w̄,i for qi(2n−i)/2w̄ times the ith elemen-
tary symmetric polynomial in Y1, . . . , Y2n. If F is totally real,

TG,w̄[q1/2
w̄ ] ∼= Zp[q1/2

w̄ ][X±1
1 , . . . , X±1

n ]Snn(Z/2Z)n

and the unramified endoscopic transfer from G(Fw̄) to GL2n+1(Fw̄) is dual to the map

Zp[q1/2
w̄ ][Y ±1

1 , . . . , Y ±1
2n+1]S2n+1 → Zp[q1/2

w̄ ][X±1
1 , . . . , X±1

n ]Snn(Z/2Z)n

that sends {Y1, . . . , Y2n+1} to {X±1
1 , . . . , X±1

n , 1}. We write TG,w̄,i for qi(2n+1−i)/2
w̄ times the ith

elementary symmetric polynomial in Y1, . . . , Y2n+1.

Recall our complete, algebraically closed extension C ofQp. We fix once and for all embeddings
Q ⊂ C and Q ⊆ C. Set A := OaC/pr. The locally symmetric space XG

K is a “Shimura variety of
Hodge-type” in the sense of the non-standard definition in [Sch15, §4, Introduction]. In particular,
this gives us a complex structure on XG

K , making it canonically into an algebraic variety over C.
This algebraic variety has a canonical model over Q, which can be base changed and analytified to
an adic space XK over (C,OC). A similar discussion holds for minimal compactifications; we let
X ∗K be the minimal compactification of XK . We let I ⊂ OX ∗K be the ideal sheaf of the boundary
and ωK the usual ample line bundle. Following [Sch15, Thm. 4.3.1], we fix some sufficiently
divisible m′ ∈ Z>1 and define TScl,c to be TSG equipped with the weakest topology for which all
the maps

TSG → EndC
(
H0

(
X ∗K , ω⊗m

′k
K ⊗ I

))
are continuous, for varying k ∈ Z>1 and Kp, where the right-hand side is a finite-dimensional C-
vector space endowed with the p-adic topology12. We recall [Sch15, Cor. 5.1.11] on the existence
of determinants for certain quotients of TScl,c, but with our choice of normalizations.

Theorem 6.5.1.
12Our TScl,c is denoted by Tcl is [Sch15]

59



A. Caraiani, D. Gulotta, C. Hsu, C. Johansson, L. Mocz, E. Reinecke, S. Shih

(i) Assume F is imaginary CM. For any continuous quotient TScl,c → B with B discrete there
exists a unique 2n-dimensional continuous determinant D of GF,S with values in B, such
that for any prime w of F away from S and above a prime w̄ of F+ we have

D(X − Frobw) = X2n − TG,w̄,1X2n−1 + · · ·+ qn(2n−1)
w TG,w̄,2n.

(ii) Assume F is totally real. For any continuous quotient TScl,c → B with B discrete there exists
a unique 2n+ 1-dimensional continuous determinant D of GF,S with values in B, such that
for any prime w̄ of F+ away from S we have

D(X − Frobw) = X2n+1 − TG,w̄,1X2n + · · · − q(2n+1)n
w̄ TG,w̄,2n+1.

The main point of this section is Theorem 6.5.3 below, which will be our starting point in the
proof of Theorem 6.1.4. It is essentially a minor refinement of results of [NT16], but we need to
use the results of §6.3 to correct an error in the handling of the Hecke algebra there13. We thank
James Newton for his help with the proof below; any mistake is due to the authors.

It will be convenient to also work with a (possibly) different topology on TSG. Let ι : TSG → TSG
be the involution that sends a Hecke operator [Kw̄gKw̄] to [Kw̄g

−1Kw̄]. In terms of the action of
TSG by correspondences, this corresponds to sending XG

KpKp

f←− XG
Kp′Kp

g−→ XG
KpKp

to its opposite

XG
KpKp

g←− XG
Kp′Kp

f−→ XG
KpKp

. If F is totally real, then one can use the explicit description of the
Hecke algebra above to check that ι is the identity, but ι is not the identity when F is imaginary
CM. Let TScl := ι(TScl,c) as a topological ring14.

Lemma 6.5.2. Theorem 6.5.1 holds when TScl,c is replaced by TScl.

Proof. The argument is essentially the same as that of [NT16, Lemma 4.1]. Suppose F is
imaginary CM. Given a continuous map TScl → B, we can compose with ι to get a continu-
ous map TScl,c → B, and then apply Theorem 6.5.1 to construct a determinant D. We have
ι(TG,w̄,i) = TG,w̄,2n−i

TG,w̄,2n
for 0 6 i 6 2n (here we take TG,w̄,0 = 1), so D satisfies

D(X − Frobw) = X2n + · · ·+ (−1)jqj(j−1)/2
w

TG,w̄,2n−j
TG,w̄,2n

+ · · ·+ qn(2n−1)
w T−1

G,w̄,2n .

Now compose this determinant with the antiautomorphism B[GF ]→ B[GF ] that sends a group-
like element g to χ(g)2n−1g−1, where χ is the cyclotomic character. The resulting determinant
D′ satisfies

D′(X − Frobw) = X2n + · · ·+ (−1)jqj(j−1)/2
w TG,w̄,j + · · ·+ qn(2n−1)

w TG,w̄,2n ,

which is what we need.

In the totally real case, a similar argument applies, or one can just use the above observation
that ι is the identity.

We now come to the main theorem of this subsection. Our determinants will be constructed
modulo pr first for every r, and then glued together at the end. Recall the subgroups Km from
§6.4.

13This error stems from a mistake in the first version of [Sch15].
14We emphasize again that TScl is a priori different from the topological ring denoted by Tcl in [Sch15], which is
our TScl,c.
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Theorem 6.5.3. For every m > 0, the map

TScl → EndD(M(Z/pm),Λ)
(
RΓ(XG

Km ,Λ)
)

is continuous for the discrete topology on the target.

We will need the following lemma for the proof.
Lemma 6.5.4. Let Kp ⊆ G(Zp) be an open normal subgroup and set G = G(Zp)/Kp. There is a
commutative diagram

TSG EndD(G,Λ)(RΓc(XG
KpKp

,Λ))

TSG EndD(G,Λ)(RΓ(XG
KpKp

,Λ))

ι

where the horizontal maps are the usual Hecke actions, and dashed arrow is the anti-isomorphism
induced by Verdier duality.
Proof. We claim that it is possible to choose an orientation on XG×G(Af ) that is preserved by
the left G(Q)- and right G(Af )-actions. The group G(R) is connected, so any choice of orientation
on XG is preserved by G(R), and in particular by G(Q). The orientation can then be pulled back
to XG ×G(Af ), proving the claim.

We therefore get compatible, K/Kp-equivariant choices of orientation on XG
Kp′Kp

for each
Kp′ ⊆ Kp. Hence by [KS94, §3.3] , we get an isomorphism between Λ[dimXG] and the dual-
izing complex on each of these manifolds, and this isomorphism is G = G(Zp)/Kp-equivariant.
Applying G-equivariant Verdier duality (see for example [BL94, §3.5]) gives an anti-isomorphism

EndD(G,Λ)(RΓc(XG
KpKp ,Λ))→ EndD(G,Λ)(RΓ(XG

KpKp ,Λ)) .
which is the dashed arrow in the statement of the lemma. Verdier duality interchanges pullback
and exceptional pushforward, so it reverses the arrows in Hecke correspondences.

Proof of Theorem 6.5.3. This proof uses some almost mathematics for OC with respect to its
maximal ideal for which we refer to [GR03]; the almost algebra/module corresponding to an
OC-algebra/module M will be denoted by Ma. Assume first that F is imaginary CM. Lemma
5.23 of [NT16], together with the comparison results of Lemmas 5.15 to 5.18 of [NT16], gives a
bounded complex Č of smooth G(Zp)-representations with OC/pr-coefficients, with an action of
TScl,c on each term and with an isomorphism

Ča
∼−→ RΓ

X
G
Kp

(j!Λ)⊗Λ (OC/pr)a

in Dsm(G(Zp), (OC/pr)a) (we refer to [NT16, §2.6] for the notion of smooth representations over
(OC/pr)a). Here RΓ

X
G
Kp

(j!Λ) denotes a complex computing compactly supported completed
cohomology on the tower

XG
Kp = lim←−

Kp

XG
KpKp

j−→ lim←−
Kp

X
G
KpKp = X

G
Kp ,

constructed by the formalism of [NT16, §2.5]. The topology on TScl,c is defined so that the termwise
action on Č is continuous; see [Sch15, Proof of Theorem 4.3.1]. Recall the exact functor ( )! from
OaC-modules to OC-modules from [GR03, §2.2.21]. Applying it, we obtain an isomorphism

Č ⊗OC/pr mC/p
rmC

∼−→ RΓ
X
G
Kp

(j!Λ)⊗Λ mC/p
rmC
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in Dsm(G(Zp),OC/pr), which we may think of as an isomorphism in Dsm(G(Zp),Λ) via the
forgetful functor. Note that TScl,c still acts continuously on each term of Č ⊗OC/pr mC/p

rmC .
By Lemma 6.3.4 applied to Tc := TScl,c ⊗Zp Λ with the induced topology, we can replace
Č ⊗OC/pr mC/p

rmC with a quasi-isomorphic bounded below complex I• of injective objects
in Modsm(G(Zp),Λ) with a continuous Tc-action on each term. Let Kp ⊆ G(Zp) be a normal
open subgroup. We have a sequence of isomorphisms

RΓc(XG
KpKp ,Λ)⊗Λ mC/p

rmC
∼−→ RΓ

(
Kp, RΓ

X
G
Kp

(j!Λ)
)
⊗Λ mC/p

rmC

∼−→ RΓ
(
Kp, RΓ

X
G
Kp

(j!Λ)⊗Λ mC/p
rmC

)
∼−→ Γ(Kp, I

•)

in D(G(Zp)/Kp,Λ); the first is [NT16, Lemma 2.39], the second is [NT16, Lemma 2.38], and the
third follows from the definition of I• and the discussion above.

Set G := G(Zp)/Kp. Since Γ(Kp, I
•) is a Tc-stable subcomplex of I•, it still has a continuous

action of Tc on each term. We apply Lemma 6.3.4 again, for the finite group G, in order to
replace Γ(Kp, I

•) with a quasi-isomorphic bounded below complex of injective Λ[G]-modules J•
with a continuous action of Tc on each term15. Now RΓc(XG

KpKp
,Λ) is isomorphic to a bounded

complex of finite projective Λ[G]-modules P •, by the discussion in §6.4. Choose α ∈ mC \ pmC .
We have an injection of Λ-modules

Λα ↪→ mC/p
rmC

and, since Λ is self-injective, this admits a splitting. Thus, P • ⊗Λ Λα is a Tc-equivariant direct
summand of P • ⊗Λ mC/p

rmC ' J• in D(G,Λ). By Proposition 6.3.6, the map

Tc → EndD(G,Λ)(P •) = EndD(G,Λ)(RΓc(XG
KpKp ,Λ))

is continuous for the discrete topology on the target. By Lemma 6.5.4,

T→ EndD(G,Λ)(P •) = EndD(G,Λ)(RΓ(XG
KpKp ,Λ))

is also continuous for the discrete topology on the target, where T := TScl ⊗Zp Λ.

Now take Kp = Γ(pm) := Ker(G(Zp) → G(Z/pm)) when m > 1. We have a TScl-equivariant
isomorphism

RΓ(XG
Km ,Λ) ∼−→ RΓ

(
N(Z/pmZ), RΓ(XG

KpΓ(pm),Λ)
)

in D(M(Z/pmZ),Λ), by (an equivariant version of) Proposition 6.2.2. The map in the statement
of the theorem factors as

TScl → EndD(G(Z/pmZ),Λ)
(
RΓ(XG

KpΓ(pm),Λ)
)
→ EndD(M(Z/pmZ),Λ)

(
RΓ(XG

Km ,Λ)
)
,

where we have seen above that the first map is continuous and the second map is continuous as
both the source and the target have the discrete topology. This finishes the argument whenm > 1;
for m = 0 one chooses Kp = Γ(p) and argues in the same way using that Γ0/Γ(p) ∼= P (Z/p).

This finishes the proof when F is imaginary CM. The argument when F is totally real is the
same; the argument to prove of [NT16, Lemma 5.23] for ResF/QSp2n-Shimura varieties is exactly
the same, since [Sch15, §4] applies to them.

15Applying Lemma 6.3.4 twice in this proof is necessary: The first application sets up the possibility of applying
it to RΓc(XG

KpKp
, Λ)⊗Λ mC/prmC .
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6.6 The boundary of the Borel–Serre compactification
Our task now is to prove a relation between the Hecke actions on the cohomology of XG

K and
XM
KM

. We begin with a quick recap of the method of [NT16], which may be viewed as a derived
version of that of [Sch15]. The link between XG

K and XM
KM

is through the boundary ∂XG
K of the

Borel–Serre compactification. There is an open subset XG,P
K ⊆ ∂X

G
K and, if KP := K ∩ P (Af )

and KM := K ∩M(Af ), maps

XM
KM
� XP

KP
↪→ XG,P

K .

The surjective map is a torus fibration and the injective map is an open and closed immersion,
and one may use this to realize the cohomology of XM

KM
as a direct summand of the cohomology

of XG,P
K . After localization at a maximal ideal, the cohomologies of XG,P

K and ∂XG
K are equal,

so it remains to relate the cohomology of XG
K and ∂XG

K . In [NT16] this is done via the excision
sequence. This is the source of the nilpotent ideal in their method, but they also note that a
suitable vanishing results could remove this (cf. Theorem 1.4 of loc. cit.).

In light of this, we will use our Theorem 6.1.1 to remove the nilpotent ideal. Since our result
is at infinite level, we need an analysis along the above lines in which we have compatibility
as the level changes, but this is not the case for the method outlined above (the main issue is
the realization of the cohomology of XM

KM
as a direct summand of the cohomology of XG,P

K ). To
remedy this we take ordinary parts fromG (or P ) toM (as discussed in §6.4). This simultaneously
solves the compatibility problem and cuts down the cohomology groups to objects with good
finiteness properties in the limit, which is useful for the technical aspects of the analysis. The
resulting method is the main invention of this section; the end result is Theorem 6.6.6. Beyond
the applications in this paper, we believe that our method will be useful in reducing questions
of local-global compatibility from M to G.

Let us now turn to the mathematics, starting with a discussion of the structure of ∂XG
K . As

a set,
X
G =

⊔
Q

XQ,

where Q runs through the parabolics of G defined over Q. For any parabolic Q, the subset
X(Q) :=

⊔
Q′⊇QX

Q′ is open in XG. Since the Siegel parabolic P is maximal, it follows that XP

is open inside ∂XG = X
G \ XG. We denote by XG,P the union of all translates of XP inside

∂X
G by the action of G(Q); as a set this is the disjoint union of XQ where Q ranges over the

Q-parabolic subgroups of G which are Q-conjugate to P . If K is a neat level, we obtain an open
subset

XG,P
K := G(Q)\XG,P ×G(Af )/K ⊆ ∂XG

K ,

and one sees that XG,P
K = P (Q)\XP ×G(Af )/K. Note that if K ′ ⊆ K, then XG,P

K′ = XG,P
K ×

X
G
K

X
G
K′ . For each g ∈ G(Af ) we have an open and closed immersion

ιg : P (Q)\XP × P (Af )/(gKg−1 ∩ P (Af ))→ P (Q)\XP ×G(Af )/K

given by ιg(x, p) = (x, pg). Two maps ιg and ιh have equal image if h ∈ P (Af )gK, and otherwise
the images are disjoint. We will think of XP

K∩P (Af ) as an open and closed subset of XG,P
K via ι1.

To simplify notation, we will simply write XP
K for XP

K∩P (Af ). Note that if K
′ ⊆ K, then inclusion
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XP
K′ ⊆ XP

K ×XG,P
K

XG,P
K′ is not an equality in general; this is the “failure of compatibility” when

changing K that we will have to work around later.

Our first goal is Proposition 6.6.1, relating RΓ(XP
K ,Λ) and RΓ(XG,P

K ,Λ) and their Hecke
actions after taking ordinary parts, in a way that is compatible with changing K (for certain
choices of K). XP

K is acted on by H(P (Af ),K ∩ P (Af )) and XG,P
K is acted on by H(G(Af ),K).

Recall P0 ⊂ G0 defined in the beginning of 6. Inside H(P (Af ),K ∩P (Af )) we have the abstract
spherical Hecke algebra TSP , defined by

TSP := ⊗l 6∈S,w̄|lTP,w̄, TP,w̄ = Zp
[
P0(F+

w̄ )//P0(OF+,w̄)
]
.

TSP is related to its counterpart TSG for G via the homomorphism rP : TSG → TSP , which restricts a
function on G(ASf ) to P (ASf ). For further discussion of rP and a proof that it is a homomorphism
we refer to [NT16, §2.2.3].

We now recall some notation from §6.4. We recall the notation Km,` = KpΓm,` (for ` > m,
` > 1, m > 0) and Km = Km,m = KpΓ1(pm), K0 = KpΓ0 = KpΓ0(p). Also recall the matrix

γ :=
∏
ι

diag(p, . . . , p, p−1, . . . , p−1) ∈M(Qp),

where in each matrix p and p−1 occur n times on the diagonal and the product runs over all
embeddings ι : F ↪→ C with ι ∈ Ψ when F is imaginary CM and over all embeddings ι : F ↪→ R
when F is totally real. We have the decomposition

Γm,`γΓm,` =
⊔
i

βiγΓm,`,

where the βi run through a set of coset representatives of p2N(Zp) in N(Zp). We will also use the
double coset (P (Qp)∩Γm,`)γ(P (Qp)∩Γm,`), which defines an operator in H(P (Af ),K ∩P (Af )).
We have the decomposition

(P (Qp) ∩ Γm,`)γ(P (Qp) ∩ Γm,`) =
⊔
i

βiγ(P (Qp) ∩ Γm,`),

again independent ofm and `. For simplicity, we will denote both Hecke operators/correspondences
by Up. In §6.4 we discussed ordinary parts for G with respect to Up; the same discussion holds
for P and Up (in fact everything is easier, since XP

Km
is the quotient of XP

Km+1
by KM,m,p). Since

the action of Up on RΓ(XP
Km,`

,Λ) commutes with the action of TSP , RΓ(XP
Km

,Λ)ord inherits an
action of TSP as discussed in §6.3. Similar remarks apply for G.

Proposition 6.6.1. RΓ(XP
Km

,Λ)ord is a direct summand of RΓ(XG,P
Km

,Λ)ord in D(M(Z/pm),Λ),
compatibly with changing the level and Hecke-equivariant for the restriction of functions rP : TSG →
TSP .

Let us spell out what compatibility when changing the level means. When ` > m, we have
canonical isomorphisms

RΓ(XP
Km ,Λ)ord ∼= RΓ(KM,m,p/KM,`,p, RΓ(XP

K`
,Λ)ord)

and
RΓ(XG,P

Km
,Λ)ord ∼= RΓ(KM,m,p/KM,`,p, RΓ(XG,P

K`
,Λ)ord)

in D(M(Z/pm),Λ), by Proposition 6.2.2 and Proposition 6.4.4. In general, let εi be the idem-
potent on RΓ(XG,P

Ki
,Λ)ord cutting out RΓ(XP

Ki
,Λ)ord. Compatibility then means that εm =
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RΓ(KM,m,p/KM,`,p, e`) under the isomorphisms above. This will allows us to get idempotents in
the limit later, using Lemma 6.3.1. The same notion of compatibility, with the obvious modifi-
cations, will be used in Propositions 6.6.4 and 6.6.5 later.

Proof. To break up the proof into parts, it will be convenient for us to define an intermediate
space Y G,P

K by
Y G,P
K := P (Q)\XP × P (Apf )G(Qp)/(K ∩ P (Apf )G(Qp)), .

for K = KpKp compact open. Then Y G,P
K is an open and closed subset of XG,P

K . Compared to
XP
K , it has the advantage that Y G,P

K′ = Y G,P
K ×

XG,P
K

XG,P
K′ whenever K ′ = KpK ′p ⊆ K. Note

that H(G(Qp),Γm,`) and H(P (Apf ),Kp ∩ P (Apf )) act on Y G,P
Km,`

. In particular, it has a Up-action.
Since the decomposition of the double coset of γ into single right cosets is identical for G and P ,
the Up-actions on the spaces XP

Km
, Y G,P

Km
and XG,P

Km
commute with pullback along the open and

closed immersions XP
Km
⊆ Y G,P

Km
⊆ XG,P

Km
.

We begin by exhibiting RΓ(XP
Km

,Λ)ord as a direct summand of RΓ(Y G,P
Km

,Λ)ord compatibly
with changing m. Let im : XP

Km
↪→ Y G,P

Km
be the natural open and closed immersion. Let em

be the ordinary projector on RΓ(Y G,P
Km

,Λ). Then by the commutativity of Up and the pullback
functor i∗m and since i∗m ◦ im∗ is equal to the identity on RΓ(XP

Km
,Λ), we have i∗m ◦Up ◦ im∗ = Up.

We conclude that i∗m ◦ em ◦ im∗ is the ordinary projector on RΓ(XP
Km

,Λ). For 1 6 k 6 m,
let rkm be the idempotent on RΓ(Y G,P

Km
,Λ) corresponding to the open and closed immersion

XP
K0
×
Y G,PK0,k

Y G,P
Km

↪→ Y G,P
Km

.

Consider the maps

RΓ(XP
Km

,Λ) RΓ(Y G,P
Km

,Λ) .
em◦r1m◦em◦im∗

i∗m

We claim that i∗m ◦ (em ◦r1m ◦em ◦ im∗) is the ordinary projector i∗m ◦em ◦ im∗, giving a realization
of RΓ(XP

Km
,Λ)ord as a direct summand of RΓ(Y G,P

Km
,Λ)ord. By commutativity of Up and the

pullback functor i∗m, we have i∗m ◦ em = i∗m ◦ em ◦ rmm. So

i∗m ◦ (em ◦ r1m ◦ em ◦ im∗) = i∗m ◦ em ◦ rmm ◦ r1m ◦ em ◦ im∗
= i∗m ◦ em ◦ rmm ◦ em ◦ im∗ = i∗m ◦ em ◦ em ◦ im∗ = i∗m ◦ em ◦ im∗ .

It remains to check that the maps i∗m and em ◦ r1m ◦ em ◦ im∗ are compatible with change of
level. Let ` > m. Observe that

RΓ(KM,m,p/KM,`,p,Γ(Y G,P
K`

,Λ)) ∼= RΓ(Y G,P
Km,`

,Λ)

inD(M(Z/pm),Λ) by the argument of Proposition 6.2.2. When we take the quotient byKM,m,p/KM,`,p,
the map i` descends to the natural open and closed immersion im` : XP

Km
↪→ Y G,P

Km,`
, e` descends

to the ordinary projector em` ∈ EndRΓ(Y G,P
Km,`

,Λ), and rk` descends to the idempotent rkm` ∈
EndRΓ(Y G,P

Km,`
,Λ) corresponding to the open and closed immersion XP

K0
×
Y G,PK0,k

Y G,P
Km,`

↪→ Y G,P
Km,`

.

Let f`m : Y G,P
Km,`

→ Y G,P
Km

denote the projection map.
It is straightforward to check that the maps i∗m, em, and r1m are compatible with change of

level in the sense that i∗m = i∗m` ◦ f∗`m, f∗`m ◦ em = em` ◦ f∗`m, f∗`m ◦ r1m = r1m` ◦ f∗`m. However, im∗
is not compatible with the change of level; instead im`∗ = r`m` ◦ f∗`m ◦ im∗.
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To prove compatibility of the direct sum decompositions, we need to show that

f∗`m ◦ em ◦ r1m ◦ em ◦ im∗ = em` ◦ r1m` ◦ em` ◦ im`∗ .

Using the above identities, we find that the left-hand side equals em` ◦ r1m` ◦ em` ◦ f∗`m ◦ im∗,
while the right-hand side equals em` ◦ r1m` ◦ em` ◦ r`m` ◦ f∗`m ◦ im∗. So it suffices to show that
r1m` ◦ em` ◦ r`m` = r1m` ◦ em`. Then it suffices to show that for large enough k, in the Ukp -
correspondence

Y G,P
Km,`

γk←− Y G,P
Km,`∩γkKm,`γ−k

→ Y G,P
Km,`

,

the preimage of XP
K0
×
Y G,PK0,`

Y G,P
Km,`

along the first map contains the preimage of XP
K0
×
Y G,PK0,1

Y K,P
Km,`

along the second map. This is equivalent to the statement

P (Qp)Γ0,1γ
k ⊆ P (Qp)Γ0,`,

which holds for k >
⌈
`−1

2

⌉
by Lemma 6.6.2.

This finishes the proof that the direct summand RΓ(XP
Km

,Λ)ord of RΓ(Y G,P
Km

,Λ)ord is com-
patible with changing m. Showing that the direct summand RΓ(Y G,P

Km
,Λ)ord of RΓ(XG,P

Km
,Λ)ord

is compatible with changing m is easier; it follows from Up-equivariance of pullback and push-
forward along all inclusions, since in this case we have Y G,P

Km,`
= Y G,P

Km
×
XG,P
Km

XG,P
Km,`

.

It remains to check that our realization ofRΓ(XP
Km

,Λ)ord as a direct summand ofRΓ(XG,P
Km

,Λ)ord

is compatible with rP : TSG → TSP . It is immediate that RΓ(XP
Km

,Λ)ord is a TSP -equivariant direct
summand of RΓ(Y G,P

Km
,Λ)ord, since XP

Km
⊆ Y G,P

Km
is TSP -stable and Up (and hence the ordinary

projector) with commutes TSP . So it remains to check that the realization of RΓ(Y G,P
Km

,Λ)ord as
a direct summand of RΓ(XG,P

Km
,Λ)ord is compatible with rP , which we may do before applying

ordinary projectors.

For this we will compute Hecke actions by the methods of §6.2. RΓ(XG,P
Km

,Λ) with its TSG-
action is computed by the object RΓ(Km, RΓ(XG,P ,Λ)) ∈ D(TSG ×M(Z/pm)), where XG,P :=
P (Q)\XP×G(Af ). RΓ(Y G,P

Km
,Λ) can be viewed in two ways. On its own, its TSP -action is naturally

computed by RΓ(Km ∩ P (Af ), RΓ(YG,P
1 ,Λ)) ∈ D(TSP ×M(Z/pr)), where YG,P

1 := P (Q)\XP ×
P (Apf )G(Qp). However, viewing it as direct summand of RΓ(XG,P

Km
,Λ), it corresponds to the

direct summand RΓ(Km, RΓ(YG,P
2 ,Λ)) of RΓ(Km, RΓ(XG,P ,Λ)), where

YG,P
2 := Y G,P

Km
×
XG,P
Km

XG,P = P (Q)\XP ×G(ASf )P (AS)Km,SG(Qp)

(the equality on the right follows by direct computation, noting that G(ASf ) = P (ASf )KS). It
remains to show that RΓ(Km, RΓ(YG,P

2 ,Λ)) ∼= r∗PRΓ(Km ∩ P (Af ), RΓ(YG,P
1 ,Λ)), where r∗P

denotes restriction of scalars via rP . The right hand side is isomorphic to

r∗PRΓ
(
KS
P , RΓ

(
KP,S , RΓ(YG,P

1 ,Λ)
))
,

where KS
P = KS ∩ P (ASf ) and KP,S = Km,S ∩ P (AS)G(Qp). This is in turn is isomorphic to

RΓ
(
KS , Ind

G(ASf )
P (AS

f
)RΓ

(
KP,S , RΓ(YG,P

1 ,Λ)
))
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by [NT16, Corollary 2.6]. It is then straightforward to show that RΓ(KP,S , RΓ(YG,P
1 ,Λ)) =

H0(P (Q)\P (Apf )G(Qp)/KP,S ,Λ), using that P (Q)\P (Apf )G(Qp) is a free KP,S-space16. One then
writes RΓ(Km, RΓ(YG,P

2 )) ∼= RΓ(KS , RΓ(Km,S , RΓ(YG,P
2 ))). As above, one sees that

RΓ(Km,S , RΓ(YG,P
2 ,Λ)) = H0(P (Q)\G(ASf )P (AS)Km,S/Km,S ,Λ),

and the proof is complete upon noting (with a little bit of computation) that the right hand side
is isomorphic to Ind

G(ASf )
P (AS

f
)H

0(P (Q)\P (Apf )G(Qp)/KP,S ,Λ).

The following lemma was used in the proof of Proposition 6.6.1.
Lemma 6.6.2. For any integer k > 0, we have P (Qp)Γ0,1γ

k = P (Qp)Γ0,1+2k.
Proof. The Iwahori factorization gives Γ0,1+2k = N(Zp)KM,0,pN(Zp)p

1+2k . We then compute

P (Qp)Γ0,1γ
k = P (Qp)N(Zp)pγk = P (Qp)γkN(Zp)p

1+2k =
= P (Qp)N(Zp)p

1+2k = P (Qp)Γ0,1+2k .

Our next goal is to compute RΓ(XP
Km

,Λ)ord, which will be done in Proposition 6.6.4. To do
so, it will be desirable to understand the ordinary projector in the context of the Hecke action
computations of §6.2. For this we need some preparation. The quotient map P → M induces a
map Φ : XP → XM , which is P (Af )-equivariant when XM is given the P (Af )-action obtained
by inflation from M(Af ), which we do from now on. For now, let us simplify the notation by
omitting m; We set KP = P (Af ) ∩Km, KM = M(Af ) ∩Km and KN = N(Af ) ∩Km. For any
P (Af )-space S on which N(Af ) acts trivially, there is a derived functor

RΓ(KN,S ,−) : DP (Af )(S,Λ)→ DP (AS
f

)×K′M,S
(S,Λ),

of KN,S-invariants, where K ′M,S := KM,SM(Zp). The examples of such spaces S that we will use
are the point pt and XM . We set

Z+
M := {m ∈ ZM (Qp) | mN(Zp)m−1 ⊆ N(Zp)},

where ZM ⊆M is the center. Note that Z+
M is a monoid, and that γ ∈ Z+

M . If V ∈ ShP (Af )(S,Λ),
we may define a homomorphism

Z+
M → EndSh

P (AS
f

)×K′
M,S

(S,Λ)(Γ(KN,S , V ))

of multiplicative monoids using the formulam.v =
∑
nimv, where the sum runs over a set of coset

representatives ni of N(Zp)/mN(Zp)m−1. We refer to [Eme10a, Definition 3.1.3, Lemma 3.1.4]
and the surrounding discussion for a proof that this is well defined and does give a homomorphism
of monoids. The definition naturally extends to complexes and gives us an action of Z+

M on
RΓ(KN,S , V ) for any V ∈ DP (Af )(S,Λ). Consider the P (Af )-equivariant map π : XM → pt. We
have a diagram

D(P (Af ),Λ)
RΓ(KN,S ,−)

//

π∗

��

D(P (ASf )×K ′M,S ,Λ)

π∗

��

DP (Af )(XM ,Λ)
RΓ(KN,S ,−)

// DP (AS
f

)×K′M,S
(XM ,Λ)

16Also recall that in these computations, all groups are given the discrete topology.
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which commutes up to natural isomorphism, where we have identified DH(pt,Λ) with D(H,Λ)
for any group H (note that the standard injectives Fun(P (Af ),M) ∈ Mod(P (Af ),Λ), M injec-
tive Λ-module, pull back to RΓ(KN,S ,−)-acyclic sheaves under π). By direct computation, the
composition

Z+
M → EndD(P (AS

f
)×K′M,S)(RΓ(KN,S , V )) π∗→ EndD

P (AS
f

)×K′
M,S

(XM ,Λ)(RΓ(KN,S , π
∗V ))

is the action Z+
M → EndD

P (AS
f

)×K′
M,S

(XM ,Λ)(RΓ(KN,S , π
∗V )) defined above.

Before proceeding to Proposition 6.6.4, we prove a lemma that will be used in the proof. For
the proof, it will be convenient to note that (discrete) group cohomology for N(Zp) is often equal
to continuous group cohomology: the natural map

H i
cts(N(Zp), A)→ H i(N(Zp), A)

is an isomorphism for all i and all N(Zp)-modules A of finite cardinality by [FKRS08, Theorem
2.10] (since N(Zp) ∼= Zdp). For the lemma, we also need to define a character. There is an algebraic
character ψ : M → Gm over Zp, which is defined on points as the composition

GLn(OF ⊗Zp R) det−→ (OF ⊗Zp R)× Nm−→ R×,

where R is any Zp-algebra, det is the determinant and Nm is the norm map. For any k ∈ Z, we
write Λ(ψk) for Λ with M(Zp) acting via ψk. For any group H � M(Zp), we regard Λ(ψk) as
an H-module by inflation. Continue to use the notation above.

Lemma 6.6.3. Hd(KN,S ,Λ)[−d] is a direct summand of RΓ(KN,S ,Λ) in D(P (ASf ) × K ′M,S ,Λ),
and the idempotent cutting it out is a polynomial in γ ∈ Z+

M which reduces to γk!, for sufficiently
divisible k, on cohomology. Moreover, Hd(KN,S ,Λ) ∼= Λ(ψ−n) as P (ASf )×K ′M,S-modules.

Proof. We start with the first part. Since RΓ(KN,S ,−) ∼= RΓ(KP
N,S , RΓ(N(Zp),−)), we claim

that it suffices to prove the first part when S = {p}17. To see this, it suffices to show that
Hd(KN,S ,Λ) = RΓ(Kp

N,S , H
d(N(Zp),Λ)). This follows from the fact that Hd(N(Zp),Λ) is a

finite Λ-module with trivial Kp
N,S-action and Kp

N,S is isomorphic to a finite product of groups of
the form Z`, ` ∈ S \ {p}. So, we need to construct an idempotent

e ∈ EndD(P (Ap
f

)×M(Zp),Λ)(RΓ(N(Zp),Λ))

of the desired form such that e acts as 0 on H i(N(Zp),Λ) for i 6= d and as the identity on
Hd(N(Zp),Λ). Consider the endomorphism (induced by) γ. We may write it as a composition
in the following way: Let Λ → I• be an H-acyclic resolution of Λ as a P (Af )-representation;
then (I•)H represents RΓ(H,Λ) in Dsm(P (Apf )×M(Zp),Λ) for H = N(Zp), γN(Zp)γ−1. We may
define a homomorphism

mγ : RΓ(N(Zp),Λ)→ RΓ(γN(Zp)γ−1,Λ)

by termwise multiplication by γ from (I•)N(Zp) to (I•)γN(Zp)γ−1 . This is an isomorphism with
inverse mγ−1 (defined in the same way). Next, there is a corestriction map

cores : RΓ(γN(Zp)γ−1,Λ)→ RΓ(N(Zp),Λ)

17Of course, in the larger context of the paper this need not be the case, but this lemma and the discussion
preceding makes sense for arbitrary finite S containing p.
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given explicitly by v 7→
∑
n∈N(Zp)/γN(Zp)γ−1 nv termwise from (I•)γN(Zp)γ−1 to (I•)N(Zp); from the

definitions we see that γ = cores◦mγ . Writing γ in this way allows us to analyze the p-divisibility
of the action of γ on cohomology. Since mγ is an isomorphism, this boils down to computing
cores on cohomology groups, which we may do after restricting Λ to an N(Zp)-representation.
So we wish to understand

cores : H i(γN(Zp)γ−1,Λ)→ H i(N(Zp),Λ)

for all 0 6 i 6 d. Choose an isomorphism N(Zp) ∼= Zdp; then γN(Zp)γ−1 ∼= (p2Zp)d and, using
the Künneth formula, it will be sufficient to understand

cores : H i(p2Zp,Λ)→ H i(Zp,Λ).

We resolve Λ by Mapcts(Zp,Λ) → Mapcts(Zp,Λ) (with the translation action on both terms),
where the map is the difference operator ∆(f)(x) = f(x + 1) − f(x); this computes continuous
group cohomology of Λ and hence discrete group cohomology as well by the discussion preceding
the lemma. From the definitions, cores is then computed by taking cohomology of the rows of
the diagram

Map(Z/p2Z,Λ) Map(Z/p2Z,Λ)

Λ Λ.

cores

∆

cores

0

Here the top row is the p2Zp-invariants of Mapcts(Zp,Λ) → Mapcts(Zp,Λ) and the bottom
row is the Zp-invariants (with the obvious identifications), and cores is given by cores(f) =∑
i∈Z/p2Z f(i). As the kernel of ∆: Map(Z/p2Z,Λ) → Map(Z/p2Z,Λ) is the constant functions

and the image of ∆ is precisely Ker(cores), one sees that cores is divisible by p (indeed by p2)
on H0’s and is an isomorphism on H1’s. Returning to N(Zp) ∼= Zdp, the Künneth formula now
implies that cores : H i(γN(Zp)γ−1,Λ) → H i(N(Zp),Λ) is divisible by p when i < d and is an
isomorphism when i = d. It follows that the action of γm on H i(N(Zp),Λ) is zero when i < d and
the identity when i = d, for any m > 1 divisible by rpr−1(p− 1). Fix such an m; we have shown
that γm ∈ EndD(P (Af )×M(Zp),Λ)(RΓ(N(Zp),Λ)) gives rise on cohomology to an idempotent with
the desired property. Since the natural ring homomorphism

EndD(P (Ap
f

)×M(Zp),Λ)(RΓ(N(Zp),Λ))→ EndP (Ap
f

)×M(Zp)(H∗(N(Zp),Λ))

has nilpotent kernel (for example by the proof of [KT17, Lemma 2.5(2)]), the idempotent lifting
lemma [Sta, Tag 00J9] shows that there is a unique idempotent e ∈ EndD(P (Ap

f
)×M(Zp),Λ)(RΓ(N(Zp),Λ))

which is a polynomial in γ and reduces to γm on cohomology. This finishes the proof of the first
part.

For the second part, observe that any KN,S-acyclic resolution of Λ as a P (Qp)-module to
inflates to a KN,S-acyclic resolution by P (Af )-modules. Together with the observation above
that

Hd(KN,S ,Λ) = RΓ(Kp
N,S , H

d(N(Zp),Λ)) = H0(Kp
N,S , H

d(N(Zp),Λ)),
this shows that it suffices to show that Hd(KN,S ,Λ) ∼= Λ(ψ−n) as M(Zp)-modules, when Λ is
considered as a P (Qp)-module. This is a special case of equation (3.6.5) in the proof of [Eme10b,
Proposition 3.6.2], upon noting that the algebraic character denoted by α in loc. cit is equal to
ψn.
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Before proceeding to Proposition 6.6.4, we recall that there is a ring homomorphism rM : TSP →
TSM defined in [NT16, §2.2.4, 2.2.5], to which we refer for the precise definition.

Proposition 6.6.4. For any m, we have an isomorphism

RΓ(XM
KM,m

,Λ(ψ−n))[−d] ∼= RΓ(XP
Km ,Λ)ord

in D(M(Z/pmZ),Λ), compatible with changing the level, and Hecke-equivariant for the action
of TSP , where the TSP -action on RΓ(XM

KM,p,m
,Λ(ψ−n))[−d] is given by restricting the natural

TSM -action along rM .

Proof. We continue to use the notation above. This proof follows a part of the proof of [NT16,
Lemma 4.4] closely; we sketch that argument18 and add the extra arguments needed. RΓ(XP

Km
,Λ)

with its TSP -action is computed by RΓ(KP , RΓ(XP ,Λ)); we will need another description. Recall
the quotient map Φ : XP → XM . By [NT16, Equation (4.4)], we have (using the notation in the
proof of Lemma 6.6.3)

RΓ(KP , RΓ(XP ,Λ)) ∼= RΓ
(
KS
P ×KM,S , RΓ

(
XM , RΓ(KN,S , RΦ∗Λ)

))
in D(TSP × M(Z/pm),Λ). Further, by [NT16, Equation (4.7)], the right hand side is isomor-
phic to RΓ

(
KS
P ×KM,S , RΓ

(
XM , RΓ(KN,S ,Λ)

))
. By the discussing preceding Lemma 6.6.3,

RΓ(KN,S ,Λ) ∈ DP (AS
f

)×K′M,S
(XM ,Λ) carries an action of γ ∈ Z+

M which comes from the action
of γ on RΓ(KN,S ,Λ) ∈ D(P (ASf )×KM,S ,Λ) by pullback along π : XM → pt. By explicit compu-
tation using an injective resolution, we see that applying RΓ

(
KS
P ×KM,S , RΓ(XM ,−)

)
to the

action of γ one gets the action of Up on RΓ(KP , RΓ(XP ,Λ)). By uniqueness in the idempotent
lifting lemma [Sta, Tag 00J9], it follows that the idempotent constructed in Lemma 6.6.3 maps
to the ordinary projector on RΓ(XP

Km
,Λ), since both are equal to Uk!

p (for sufficient divisible k)
on cohomology. In particular, using Lemma 6.6.3, we see that RΓ(XP

Km
,Λ)ord is computed by

RΓ
(
KS
P ×KM,S , RΓ

(
XM ,Λ(ψ−n)

))
[−d].

It remains to show that

RΓ
(
KS
P ×KM,S , RΓ

(
XM ,Λ(ψ−n)

))
∼= r∗MRΓ(KM,m, RΓ(XM ,Λ(ψ−n))),

since the right hand side computes RΓ(XM
KM,m

,Λ(ψ−n)). This is proven in [NT16, p. 58-59], more
specifically it is the argument beginning in the last paragraph of p. 58 and continuing onto p.
59. In fact that argument shows that we have an isomorphism

RΓ
(
KS
P , RΓ

(
XM ,Λ(ψ−n)

))
∼= r∗MRΓ(KS

M,m, RΓ(XM ,Λ(ψ−n)))

and the previous isomorphism is obtained by applying RΓ(KM,S ,−). This implies the compati-
bility of the isomorphism with changing the level, and finishes the proof.

The last part of our analysis of the boundary will be to compareRΓ(∂XG
Km ,Λ) andRΓ(XG,P

Km
,Λ).

The open immersion XG,P
Km
→ ∂X

G
Km gives us a TSG-equivariant pullback map RΓ(∂XG

Km ,Λ) →
RΓ(XG,P

Km
,Λ) in D(M(Z/pm),Λ). Our next result, Proposition 6.6.5, asserts that this becomes

18Strictly speaking, it is assumed in [NT16, Lemma 4.4] that the ambient group is ResFQ GLn and that r = 1, but
the parts that we use are completely general.
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an isomorphism after localization at a certain maximal ideal of TSG. To define this maximal ideal,
we recall our non-Eisenstein maximal ideal m ⊆ TSM from §6.1. The composition

S = rM ◦ rP
defines a ring homomorphism TSG → TSM and we put M := S−1(m); this is a maximal ideal since
the residue field of m is finite. We remark that localizing RΓ(XG,P

Km
,Λ) and RΓ(∂XG

Km ,Λ) at M
gives direct summands by the discussion in §6.3, since TSG acts through a finite quotient, and
that TSG acts on the localization. Similar remarks apply to all localizations in this paper (the
reader may consult [NT16, §3.2] for a more extensive discussion). The homomorphism S is the
unnormalized Satake transform. Let us give an explicit description of S place by place, using the
Satake isomorphisms for M and G, following [Sch15, Lem. 5.2.5] and [NT16, Prop.-Def. 5.3] (we
adopt the normalizations of the latter reference). If F is imaginary CM and v splits in F , then
S is determined by the map

Zp[q1/2
v ][Y ±1

1 , . . . , Y ±1
2n ]S2n → Zp[q1/2

v ][W±1
1 , . . . ,W±1

n , Z±1
1 , . . . , Z±1

n ]Sn×Sn

that sends the set {Y1, . . . , Y2n} to the set {q−n/2v W1, . . . , q
−n/2
v Wn, q

n/2
v Z−1

1 , . . . , q
n/2
v Z−1

n }. If F
is imaginary CM and v is inert in F , S is determined by the map

Zp[q1/2
v ][X±1

1 , . . . , X±1
n ]Sno(Z/2Z)n → Zp[q1/2

v ][W±1
1 , . . . ,W±1

n ]Sn

that sends the set {X1, . . . , Xn} to the set {q−n/2v W1, . . . , q
−n/2
v Wn}. Finally, if F is totally real,

S is determined by the map

Zp[q1/2
v ][X±1

1 , . . . , X±1
n ]Snn(Z/2Z)n → Zp[q1/2

v ][W±1
1 , . . . ,W±1

n ]Sn

that sends the set {X1, . . . , Xn} to the set {q−(n+1)/2
v W1, . . . , q

−(n+1)/2
v Wn}. We now come to

Proposition 6.6.5.

Proposition 6.6.5. The pullback map RΓ(∂XG
Km ,Λ) → RΓ(XG,P

Km
,Λ) in D(M(Z/pm),Λ) in-

duces an isomorphism RΓ(∂XG
Km ,Λ)M → RΓ(XG,P

Km
,Λ)M in D(M(Z/pm),Λ) after localization

at M, equivariant for the action of H(G(Af ),Km). It therefore induces an isomorphism

RΓ(∂XG
Km ,Λ)ord

M → RΓ(XG,P
Km

,Λ)ord
M

in D(M(Z/pm),Λ), which is compatible with the action of TSG and with changing levels.

Proof. Let F be imaginary CM. The statement that RΓ(∂XG
Km ,Λ)M → RΓ(XG,P

Km
,Λ)M is an

isomorphism in D(M(Z/pm),Λ) can be checked on cohomology groups, hence after passing to
D(Λ), and this is then [ACC+18, Theorem 2.4.2] (for the trivial weight, after quotienting out by
pr). Note here that the space denoted by X̃P

K̃
in loc. cit is our XG,P

Km
, and not our XP

Km
. Note

further that the isomorphism in the statement of [ACC+18, Theorem 2.4.2] is the inverse of our
pullback map: The proof of loc. cit shows simultaneously that the left map and the composition
below

RΓc(XG,P
Km

,Λ)M → RΓ(∂XG
Km ,Λ)M → RΓ(XG,P

Km
,Λ)M

are isomorphisms, where the left map is the natural map on compactly supported cohomology
induced by the open immersion XG,P

Km
→ ∂X

G
Km and the right map is the pullback map. The

isomorphism in loc. cit is then obtained by inverting the composition and then applying the
left map. Compatibility with the H(G(Af ),Km)-action is clear, and this directly gives us the
TSG-equivariant isomorphism RΓ(∂XG

Km ,Λ)ord
M → RΓ(XG,P

Km
,Λ)ord

M . Finally, compatibility with
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changing levels follows from the fact that

RΓ(K/K ′, RΓ(∂XG
K′ ,Λ))

RΓ(K/K′,j∗)
//

��

RΓ(K/K ′, RΓ(XG,P
K′ ,Λ))

��

RΓ(∂XG
K ,Λ) j∗

// RΓ(XG,P
K ,Λ)

commutes whenever K ′ ⊆ K is normal, where j∗ denotes the pullback map and the vertical maps
are the isomorphisms of Proposition 6.2.2. This finishes the proof when F is imaginary CM.

The proof when F is totally real is formally identical, as [ACC+18, Theorem 2.4.2] may be
proven in exactly the same way, using the description of the unnormalized Satake transform
given before the Proposition.

We can now put all of the above results together with Theorem 6.1.1 to prove the main
technical result of this section.

Theorem 6.6.6. There exists an additive homomorphism

EndD(M(Z/pm),Λ)(RΓ(XG
Km ,Λ)ord

M )→ EndD(M(Z/pm),Λ)(RΓ(XM
KM,m

,Λ(ψ−n))m)

making the diagram

TSG //

S
��

EndD(M(Z/pm),Λ)(RΓ(XG
Km

,Λ)ord
M )

��

TSM // EndD(M(Z/pm),Λ)(RΓ(XM
KM,m

,Λ(ψ−n))m)

commute, where the horizontal maps are the natural actions and we recall that S = rM ◦ rP is
the Satake transform.

Proof. Putting together Propositions 6.6.1, 6.6.4 (after localization) and 6.6.5 together, we see
that S∗RΓ(XM

KM,m
,Λ(ψ−n))m[−d] is a TSG-equivariant direct summand of RΓ(∂XG

Km ,Λ)ord
M , com-

patible with changing levels. Using Lemma 6.3.1, Lemma 6.3.2 (to handle localizations) and
Lemma 6.4.2, we may glue the RΓ(XM

KM,m
,Λ(ψ−n))m into a complex in Modsm(M(Zp),Λ) which

we will call A∞. Similarly, using Lemma 6.3.1. Lemma 6.3.2 and Proposition 6.4.5, we may glue
the RΓ(?XG

Km ,Λ)ord
M into a complex B?

∞, for ? ∈ {∅, ∂}. By compatibility and Lemma 6.3.1,
the idempotents and the Hecke actions at finite level glue as well, showing that S∗A∞[−d] is a
TSG-equivariant direct summand of B∂

∞.

We now work in Dsm(M(Zp),Λ) and apply the truncation functor τ>d+1. By Lemma 6.6.7
below, this does not change S∗A∞[−d]. Moreover, we claim that the natural map B∞ → B∂

∞ in
Dsm(M(Zp),Λ) becomes an isomorphism after applying τ>d+1. This follows from Theorem 6.1.1,
since the cohomology of the cone is lim−→m

H i+1
c (XG

Km
,Λ)ord

M in degree i (using Lemma 6.3.1(4)),
which vanishes for i > d by Theorem 6.1.1 (our XG

Km
are connected components of the Shimura

varieties considered there). Thus, S∗A∞[−d] is TSG-equivariant direct summand of τ>d+1B∞.
Applying RΓ(KM,m,p,−) and using Lemma 6.3.1, we see that S∗RΓ(XM

KM,m
,Λ(ψ−n))m[−d] is

a TSG-equivariant direct summand of RΓ(KM,m,p, τ>d+1B∞). This gives us a projection map on
endomorphisms, and the theorem is proved by composing this map with the map

EndD(M(Z/pm),Λ) (RΓ(KM,m,p, B∞))→ EndD(M(Z/pm),Λ) (RΓ(KM,m,p, τ>d+1B∞))
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given by RΓ(KM,m,p,−)◦τ>d+1, upon noting that RΓ(KM,m,p, B∞) ∼= RΓ(XG
Km ,Λ)ord

M by Propo-
sition 6.4.4.

The following lemma was used in the proof.

Lemma 6.6.7. LetKM ⊆M(Ẑ) be a neat open compact subgroup and let V be a Λ[KM,S ]-module
which is finite over Λ. Equip it with the trivial M(ASf )-action. Then H0(XM

KM
, V )m = 0.

Proof. By [NT16, Thm. 4.2], the map H0
c (XM

KM
, V )m → H0(XM

KM
, V )m is an isomorphism. Every

connected component of XM
KM

is noncompact and V is a local system on XM
KM

, so H0
c (XM

KM
, V ) =

0.

6.7 Proof of Theorem 6.1.4
Armed with Theorem 6.6.6, we may now complete the proof of Theorem 6.1.4 following Scholze
and Newton–Thorne. We fix Kp so that K = KpKp is small for any open compact Kp ⊆ G(Zp)
and we set Kp

M = Kp ∩M(Apf ); then KM = Kp
MKM,p is small for any KM,p ⊆M(Zp). Let λ be

a Weyl orbit of weights for M . We define a mod pr Hecke algebra

TSM (KM , λ, r)der := Im
(
TSM → EndD(Λ)

(
RΓ(XM

KM
,Vλ/pr)

))
similar to the derived Hecke algebra TSM (KM , λ)der defined in §6.1. There we also defined
TSM (KM , λ), and noted that there is a surjection TSM (KM , λ)der → TSM (KM , λ) with nilpotent
kernel. In particular, the maximal ideals of TSM (KM , λ)der and TSM (KM , λ) coincide. By [NT16,
Lemma 3.11], TSM (KM , λ)der = lim←−r T

S
M (KM , λ, r)der, so it will suffice to construct Galois de-

terminants valued in TSM (KM , λ, r)der. Note that the inverse limit topology on TSM (KM , λ)der

coming from the discrete topology on the TSM (KM , λ, r)der is equal to the p-adic (a priori, the
p-adic topology is clearly finer, but both topologies are compact and Hausdorff and therefore
have to agree). The first step is the following proposition.

Proposition 6.7.1. Let χ : GF,S → Z×p be a continuous character of finite odd order, prime to
p. Let m ⊂ TSM (KM , λ) be a non-Eisenstein maximal ideal. Then there exists a continuous group
determinant, of dimension 2n if F is imaginary CM and of dimension 2n+ 1 if F is totally real,

DM,χ : GF,S → TSM (KM , λ, r)der
m

such that for every prime w of F above a rational prime l 6∈ S, the characteristic polynomial of
DM,χ(Frobw) is as follows. Set

P∨M,w(X) := (−1)n(qn(n−1)/2
w Tw,n)−1XnPM,w(X−1).

(i) If F is imaginary CM, then the characteristic polynomial is

χ(Frobw)nPM,w(χ(Frobw)−1X)χ(Frobwc)−nqn(2n−1)
w P∨M,wc(q1−2n

w χ(Frobwc)X).

(ii) If F is totally real, then the characteristic polynomial is

χ(Frobw)nPM,w(χ(Frobw)−1X)χ(Frobw)−nq2n2
w P∨M,w(q−2n

w χ(Frobw)X)(X − qn) .

Proof. Recall that TScl is the ring TSG equipped with the topology defined in §6.5. We first
prove the proposition under the assumption that χ = 1. We need to show that the map
TScl → EndD(Λ)(RΓ(XM

KM
,Vλ/pr)m) obtained by composing the natural action map with the

Satake transform S is continuous, when the target is endowed with the discrete topology. This
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would show that TSM (KM , λ, r)der
m is a continuous quotient of TScl that is also discrete, and we

then obtain the desired determinant by applying Lemma 6.5.2.

To prove the continuity, we argue as follows. For sufficiently large m we have, by Proposi-
tion 6.2.3, a TScl-equivariant isomorphism

RΓ
(
KM,p/KM,m,p, RΓ(XM

KM,m
,Λ(ψ−n))⊗Λ (σ◦/pr ⊗Λ ψ

n)
)
∼= RΓ(XM

KM
,Vλ/pr)

in D(Λ). The map TScl → EndD(Λ)
(
RΓ(XM

KM
,Vλ/pr)m

)
then factors as

TScl → EndD(KM,p/KM,p,m,Λ)
(
RΓ(XM

KM,m
,Λ(ψ−n))m

)
→ EndD(Λ)

(
RΓ(XM

KM
,Vλ/pr)m

)
.

The second map is continuous, since both the source and the target have the discrete topology,
so it is enough to show that the first map is continuous. But this follows directly by combining
Theorem 6.5.3 and Theorem 6.6.6.

This settles the case χ = 1. Deducing the case of general χ from the case χ = 1 is then the
second half of the proof of [NT16, Prop. 5.8].

We may then complete the proof of Theorem 6.1.4. Indeed, the theorem now follows from
Proposition 6.7.1 in the same way as [NT16, Thm. 1.3] follows from [NT16, Prop. 5.8] (see [NT16,
Theorem 5.9] and the discussion following it). This finishes the proof of Theorem 6.1.4.
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