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1 Introduction

After the traumatic realization that uniqueness of factorization into irreducible holds in some rings of

integers but not in others, mathematicians took steps to develop more insightful theories. Kummer
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had the bright idea that if he could not factorize a number uniquely in a given ring of integers, then

perhaps he could extend the ring to a bigger one in which the factorization is possible and unique.

He called the new elements to be added to extend the ring in such a way ideal numbers. Dedekind

looked at the same ideas from a different direction instead. He introduced in ring theory the notion

of ideal, a term arising from the correspondence with ideal numbers.

It turns out that although factorization might fail for numbers, an elegant theory of unique

factorization can be developed for ideals. In this theory, the essential building blocks are prime

ideals. We want to find a quantitative measure of how non-unique factorization can be though. Here

comes the notion of class-group, with the class-number being its corresponding size. Intuitively, the

larger the class-number, the more complicated the possibilities for non-uniqueness become.

The importance of the class-number can only be hinted at here. Many deep and delicate results

in the theory of numbers are related to arithmetic properties of the class-number, or to algebraic

properties of the class-group. The goal of this project is to study a case where things are somewhat

well understood: the case of 2-power torsion in the class-groups of quadratic fields.

2 Background

We are going to start our journey by assembling some definitions and proving some preliminary

results which will help us achieve our two initial goals of describing the prime factorization of ideals

and constructing the ideal class-group. Throughout this section (and, indeed, the whole project)

ring will mean commutative ring with unity.

2.1 Number Fields and Algebraic Integers

The first concepts which will need to be introduced are number field and algebraic integer.

Definition 2.1. A number field K is a field of the form Q(α1, ..., αn) where the αis are algebraic

numbers.

Definition 2.2. The minimal polynomial fα of an algebraic number α is the monic polynomial of

least degree among all the polynomials in Q[x] having α as a root.

The fact that fields of such form are indeed fields is definitely not obvious and needs to be

proven. We stow these background results to the supplement at the end of this paper to be able to

move more quickly to the actual results we want to present.

In this research project we will focus on quadratic fields of the form Q(
√
d) where d is a square-

free integer.

Definition 2.3. We call an element δ ∈ C an algebraic integer if it is in the zero set of a monic

polynomial f(x) ∈ Z[x].
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Definition 2.4. The ring of integers OK of a number field K is the ring of all the algebraic integers

in K.

Again, the ring of integers of a number field turns out to be a ring. Here we are going to prove

a basic result about Z to provide an example of what we are trying to talk about.

Proposition 2.1. The ring of algebraic integers of Q is Z.

Proof. First of all, any rational integer n has the minimal polynomial x−n and because it is monic

we get that n is an algebraic integer in Q. Now, let us take any rational number α = p
q where p, q

are coprime integers with q > 0 such that α is an algebraic integer in Q. Then there is a polynomial

f(x) = xk + ak−1x
k−1 + . . .+ a0

with a0, . . . , ak−1 ∈ Z such that

f(α) =

(
p

q

)k
+ ak−1

(
p

q

)k−1
+ . . .+ a0 = 0.

Multiplying this equation by qk we obtain pk = −ak−1pk−1q − . . .− a0qk, from which we get that

q | pk. Since p and q are coprime and q positive, it follows that q = 1. Therefore, α = p ∈ Z.

The reader might now ask what happens if we consider different number fields. In the case we

care about, the case of quadratic number fields, things work out rather neatly. Here we have a first

useful result.

Lemma 2.2. Let d be a square-free integer. Then the algebraic integers in Q(
√
d) are:

OQ(
√
d) =

Z 1+
√
d

2 if d ≡ 1 (mod 4)

Z
√
d if d 6≡ 1 (mod 4).

Proof. Every element α ∈ Q[(
√
d) is of the form α = r + s

√
d where r, s ∈ Q. Hence we may write

α =
a+ b

√
d

c

where a, b, c ∈ Z and (a, b, c) = 1. Now α is an algebraic integers if the coefficients in the minimal

polynomial (
x−

(a+ b
√
d

c

))(
x−

(a− b√d
c

))
are integers. We want

a2 − b2d
c2

∈ Z and
2a

c
∈ Z.

Now we must have either c = 1 or c = 2. If c and a share a common factor p then by the first

equation p | b, because d is square-free, against our assumption (a, b, c) = 1.
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Let’s concentrate on the case c = 2. Then a and b are both odd and a2−b2d
4 ∈ Z. Hence

a2 − b2d ≡ 0 (mod 4).

This is only possible if d ≡ 1 (mod 4). Conversely, for d ≡ 1 (mod 4) and a, b odd we have α is an

algebraic integers, because our previous argument holds. To sum up:

OQ(
√
d) =

Z[ 1+
√
d

2 ] if d ≡ 1 (mod 4)

Z[
√
d] if d 6≡ 1 (mod 4).

We may now wonder whether the ring of integers OK of number fields K = Q(
√
d) have unique

prime factorization. It is worth noticing that counterexamples in rings such as Z[
√
−3], e.g.

(1 +
√
−3)(1−

√
−3) = 2 · 2,

shouldn’t bother us much. We now know indeed that ring of integers OK for K = Q(
√
−3) is

actually Z[ 1+
√
−3

2 ] and not Z[
√
−3].

It turns out there are actually number fields whose ring of integers indeed do not have unique

prime factorization. It is easy to prove unique prime factorization when we have an efficient division

algorithm. This happens for

d = −11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

It is an open question whether there exist finitely many such values.

Example. In the ring of integers OK = Z[
√
−5] of the number field K = Q(

√
−5) all the factors of

the factorization 6 = 2 · 3 = (1 +
√
−5)(1−

√
−5) are indeed irreducible.

For an element a+ b
√
−5 ∈ OK for the norm we have

N(a+ b
√
−5) = a2 + 5b2.

Hence the norms of our 4 elements in the two factorizations are 4, 9, 6 and 6 respectively. If two

of them were not to be an irreducible element then there would exist p, q ∈ OK such that 2 = pq,

leading to 4 = N(2) = N(p)N(q) =⇒ N(p) and N(q) = ±2. Similarly there would exist r, s ∈ OK
such that 3 = rs, leading to

9 = N(3) = N(r)N(s) =⇒ N(r) = ±3 and N(s).

This all sums up to the existence of integer solutions to the equation

a2 + 5b2 = ±2 or± 3.

Such solutions do not exist. Thus all elements are irreducible. In the ring Z[
√
−5] unique prime

factorization does not hold.
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We might still have unique prime factorization without a division algorithm though. This

happens for

d = −19,−43,−67,−163.

These are the only negative integers (together with the ones listed above) for which unique prime

factorization holds true.

2.2 Ideals

To fix the issue of rings which don’t have unique factorization in the usual sense we introduce the

notion of ideals.

Definition 2.5. A subset I of a ring R is said to be an ideal in R if it satisfies the following two

properties: (i) ∀ a, b ∈ I we have a + b ∈ I (I is an additive subgroup of R); (ii) ∀ r ∈ R we have

rI ⊆ I.

Definition 2.6. An ideal p is prime if ∀ a, b ∈ R we have that ab ∈ p implies either a ∈ p or b ∈ p.

Definition 2.7. If a1, . . . , an are elements of R then (a1, . . . , an) is defined to be the set {a1r1 +

· · ·+ anrn : ri ∈ R}.

The reader is invited to check that (a1, . . . , an) is indeed an ideal.

Definition 2.8. If an ideal I is equal to (a) for some a ∈ R we say I is principal.

Definition 2.9. If I and J are two ideals then IJ = {
∑
aibi : ai ∈ I, bi ∈ J}.

The reader is invited to check that also IJ is still an ideal.

Proposition 2.3. All ideals I in Z are principal.

Proof. The case I = (0) is boring. Suppose I 6= (0). Since both s and −s belong to I by definition

there also exists a positive integer in our ideal. We choose the smallest positive element d in I and

try to prove that all the other elements in I are multiples of d.

Take any a ∈ I and let a = qd+ r, where q, r ∈ Z and 0 ≤ r < d. Since a ∈ I and qd ∈ I also

r = a− qd ∈ I.

But d was supposed to be a smallest element. Therefore r = 0 and a = qd. Hence I = (d).

Corollary 2.4. The sum of two ideals (a) and (b) in Z is (a) + (b) = (gcd(a, b)).

We then conclude with two more definitions. Here we just gave a general idea of what we are

talking about, further results about ideals will be proven in future sections.

Definition 2.10. If K is a number field and I ⊆ OK is a non-zero ideal then OK/I is the set of

all the equivalence classes under the relation a ≡ b (mod I) if and only if b− a ∈ I.

Definition 2.11. We define the norm of a non-zero ideal I ⊆ OK to be N(I) =
∣∣OK/I∣∣.
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2.3 Class-Group

Now that we have concluded our endless list of definitions about ideals we can actually move

on to the definition of the class-group. Finally we will prove the equivalence of some fundamental

statements involving unique prime factorization of elements and the size of the class-group. Further

details and more in-deep results will be left to the following section.

Definition 2.12. Let K be a number field and I and J be ideals in OK . Define I ∼ J if and only

if there exist a, b ∈ OK such that aI = bJ .

Again it is easy to show this is indeed an equivalence relation.

Definition 2.13. The set of equivalence classes under the above equivalence relation is called the

class-group of K and denoted cl(K) or cl(OK).

Our next goals will be showing that cl(K) is actually a group and eventually that | cl(K) | is

finite. To achieve this we need to mention an appealing feature of ideals.

Assumption. Let K be a number field and OK be its ring of integers. If I is a non-zero ideal in

OK then I admits a unique prime factorization.

Proposition 2.5. Let K be a quadratic field. Then for any ideal I ⊆ OK there exists an ideal

I ′ ⊆ OK and a rational integer k such that II ′ = (k).

Proof. Let I ⊆ OK be an ideal. Suppose I = p1p2 . . . pi where pi are prime ideals (not necessarily

different). Consider the ideal Ī generated by the conjugates of the generators of I. Then

IĪ = p1p2 . . . pi · p̄1p̄2 . . . p̄i = p1p̄1 · p2p̄2 · · · · · pnp̄n.

Since pp̄ = N(p), by Proposition 8.1, the equation above then becomes

IĪ = (N(p1))(N(p2)) . . . (N(pn)) = (N(I)),

which is clearly a principal ideal generated by k = N(I) ∈ Z.

In the following sections we might mention the notion of Dedekind domain. It is worth providing

a definition. In this project we will just use the fact that a ring of integers OK is indeed a Dedekind

domain.

Definition 2.14. An integral domain R is said to be a Dedekind domain if it satisfies the following

properties: (i) R is Noetherian; (ii) R is integrally closed; (iii) every nonzero prime ideal in R is

maximal.

It is not necessary to fully understand this definition. It just allows us to present our results in

a more general way. We might rephrase our previous statement about unique prime factorization

of ideals as follows.
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Assumption. Let R be a Dedekind domain. If I is a non-zero ideal in R then I admits a unique

prime factorization.

This allows us to conclude this sections with the following two results. More details about these

proofs can be found in the following section. Here the main purpose is just to give a general feeling

of what we will be dealing with.

Proposition 2.6. The ring of integers OK has unique factorization if and only if every ideal in

OK is principal.

Proof of ⇐. Follows immediately from the fact that ideals factors uniquely.

Proof of 7→. Let p be a prime ideal in OK . Since N(p) =
∣∣OK/p∣∣, we have m · N(p) ∈ p for any

element m ∈ OK . Hence p |N(p). Now let us factorize N(p) into irreducible elements in OK and

notice that we can write
(
N(p)

)
as the product of the principal ideals generated by such irreducible

elements. Since p is prime and our factorization is unique, p | (qi) for some ideal generated by prime

factor of N(p). Hence p = (qi) and both the ideals are prime. In particular p is principal.

Proposition 2.7. Every ideal in OK is principal if and only if cl(K) is trivial.

Proof of ⇐. Suppose any two ideals are equivalent. Then there always exist an element a ∈ OK
and a principal ideal (b) such that a · I = (b). Therefore b = a · i for some i ∈ I. Hence a · I = a · (i)
and I = (i).

Proof of 7→. Suppose every ideal is principal. Given any two ideals I = (a) and J = (b) clearly we

have bI = aJ . Hence they to belong the same class. Thus cl(K) = {1}.

3 Norm of Ideals

Here we will prove some more in-deep results about the norm of ideals which will turn out to be

really useful in future sections. If the reader is already familiar with these concepts the section

might also be skipped as a whole to jump to the actual aim of our project.

Definition 3.1. If R is a ring and I ⊆ R is a non-zero ideal then N(I) is the size of R/I.

We have already defined the concept of norm in the previous sections. Here we generalized the

concept to any ring R. In other words the norm N(I) of an ideal I ⊆ R is the number of equivalence

classes in the quotient ring R/I. In particular, the ideal norm is multiplicative.

We start with a basic result. We discover without much surprise that modding out a ring by a

non-principal ideal is the same as modding out the ring by each of the ideal generators in turn.

Proposition 3.1. Let R be a ring and I, J ⊂ R be ideals. Then (R/I)/(J/(J∩I)) ∼= (R/J)/(I/(J∩
I)) ∼= R/(I + J).
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Proof. It is sufficient to show that (R/I)/(J/(J ∩ I)) ∼= R/(I + J). Let

ψ : R 7→ (R/I)/(J/(J ∩ I))

be the homomorphism. Then I ⊆ kerψ and J ⊆ kerψ. Since kerψ is an ideal, it is closed under

addition. So I + J ⊆ kerψ.

It turns out that I + J is in fact the kernel of ψ. Any element not in I + J can be written

as k + a for k ∈ (I + J) and a ∈ R/(I + J). We can further decompose k into i + j and require

i ∈ I/(I ∩ J) and j ∈ J/(I ∩ J). Then (i+ j) + a is mapped to j + a by the first quotient and then

to a by the second quotient. So k + a belongs to the kernel if and only if a = 0.

On the other hand, the kernel of the homomorphism

µ : R 7→ R/(I + J)

is I + J . Hence the kernels are the same. Thus by the First Isomorphism Theorem we have

(R/I)/(J/(J ∩ I)) ∼= R/(I + J).

We are now able to prove the generalization of CRT for generic rings. This allows us to prove

the first actual result about the norm of ideals.

Theorem 3.2. Let R be a ring and I, J ⊂ R be ideals such that I + J = R. Then R/(IJ) ∼=
R/I ×R/J .

Proof. The kernel of ψ : R 7→ R/(IJ) is clearly IJ . Let µ be the homomorphism

µ : R 7→ R/I ×R/J

such that µ(x) = (x (mod I), x (mod J)). Since I + J = (1), there always exist a ∈ I, b ∈ J such

that a+ b = 1. It follows that there is always a solution x = as+ br to the system of congruences

x ≡ r (mod I) ∧ x ≡ s (mod J).

This solution is unique modulo IJ . If two elements a1s + b1r and a2s + b2r are equivalent in

R/I × R/J then they are also equivalent in R/I and R/J . Hence (a1 − a2)s + (b1 − b2)r belongs

to both I and J . So it belongs to IJ . Therefore the two elements are also equivalent in R/(IJ).

The kernel of µ consists of elements r ∈ R that map to (0 (mod I), 0 (mod J)). It follows

that r ≡ 0 (mod IJ) is the unique solution to such congruences. So kerµ = IJ = kerψ. Since the

kernels of the functions are the same, the images of the homomorphisms must be isomorphic by the

First Isomorphism Theorem, and so we have R/(IJ) ∼= R/I ×R/J .

Corollary 3.3. Let R be a ring and I, J ⊂ R be ideals such that I + J = R. Then N(IJ) =

N(I)N(J).
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Proof. We just showed R/(IJ) ∼= R/I ×R/J . Thus

|R/(IJ) | = |R/I ×R/J | = |R/I | × |R/J | .

This is indeed the definition of norm. Hence N(IJ) = N(I)N(J).

We can now move on trying to extend this result to the general case. We will here start using

the notion of Dedekind domain. Since any ring of integers OK of a number field K is indeed such

a domain, in our case this is equivalent to considering the by-now-familiar ring OK .

Proposition 3.4. Let R be a Dedekind domain and p ⊂ R be a prime ideal. Then pn/pn+1 ∼= R/p.

Proof. First of all p 6= R. So pn+1 6= pn. Hence there is an element b ∈ pn/pn+1, b 6= 0. Let ψ be

the homomorphism

ψ : R/p 7→ pn/pn+1

such that ψ(a) = ab. Since

ψ(a) = 0 =⇒ ab ∈ pn+1,

we have kerψ = p. Since b is not an element of pn+1, we have pn+1 - (b). Hence

pn+1 | (a)(b) =⇒ p | (a) =⇒ a ≡ 0 in R/p.

We now show that ψ is injective. We have

ψ(x) = ψ(y) = by = bx =⇒ b(x− y) ≡ 0 =⇒ (x− y) ∈ kerψ =⇒ x ≡ y.

We now show that ψ is surjective, and hence ψ is an isomorphism. Suppose it is not. Then b

does not generate the whole pn/pn+1 under addition. So

(pn/pn+1)/((b)/(b) ∩ pn+1)) ∼= pn/(pn+1 + (b))

is non-trivial. In other words (b) + pn+1 6= pn. But

(b) ⊂ pn =⇒ (b) = I · pn

for some ideal I. Hence pn(I + p) 6= pn =⇒ I + p 6= R. Since p is a prime ideal, we have

p | I =⇒ pn+1 | (b),

which is a contradiction.

Corollary 3.5. Let R be a Dedekind domain and p ⊂ R be a prime ideal. Then N(pn) = N(p)n.
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Proof. Consider the ring R and the ideals pn, pn+1 as additive commutative groups. We have

pn+1 ⊂ pn ⊂ R

and by the First Isomorphism Theorem we get

R/pn+1

pn/pn+1
∼= R/pn.

Hence

|R/pn+1 |
| pn/pn+1 |

= |R/pn | =⇒ |R/pn+1 |
|R/p |

= |R/pn | =⇒ |R/p | |R/pn | = |R/pn+1 | .

Therefore

N(pn+1) = N(pn)N(p).

We can inductively assume that the claim is true for all exponents of p up to and including n to

use the same argument and extend our claim to the exponent n+ 1. We clearly have N(p1) = N(p)

as a base case.

Finally we are able to prove that the norm is multiplicative. This fact will be widely used in

future proofs.

Proposition 3.6. Let R be a ring and I, J ⊂ R be ideals. Then N(IJ) = N(I)N(J).

Proof. Let the product IJ decompose into the prime ideals
∏n
i=1 p

ei
i . Each pair of prime ideals in

the decomposition is clearly coprime. We have peii + p
ej
j = R for i 6= j. Thus by Corollary 3.3 we

get

N(IJ) =

n∏
i=1

N(peii ).

This by Corollary 3.5 can be decomposed as N(IJ) =
∏n
i=1N(pi)

ei . The ideal norm is multiplica-

tive. We essentially have N(IJ) = N(I)N(J).

This achieves the main aim of this section. Now we state some more simple observations that

mainly follow as corollaries of previous results.

Proposition 3.7. Let R be a ring and I ⊆ R be an ideal. Then N(I) = 1 ⇐⇒ I = R.

Proof of ⇐. Clear. I = R =⇒ N(I) = |R/R | = 1.

Proof of implies. If N(I) = |R/I | = 1 then every element from R is mapped to the same equiva-

lence class 0. In other words a− 0 = a ∈ I ∀ a ∈ R =⇒ I = R.

Corollary 3.8. Let K be a quadratic field and I ⊆ O be an ideal. Suppose I = (p) for a rational

prime p. Then I factors into at most 2 prime ideals.
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Proof. We have N
(
(p)
)

= p2. Hence every ideal that properly divides (p) must have norm that

divides p. Thus either (p) is a prime ideal or it factors into exactly 2 prime ideals with norm p.

Corollary 3.9. Let R be a Dedekind domain and p ⊂ R be a prime ideal. Then for each a ∈ p we

must have N(p) |N(a).

4 Computing the Class-Group

4.1 Lattices

We now take a small detour to prove a few results about lattices. We will focus here on quadratic

number fields K = Q(
√
d) where d is a square-free integer d < 0. We can view ideals in K as

lattices in the complex plane. The results we are going to provide will turn out to be really useful

to prove facts about the ideal class-group.

Definition 4.1. Given a a bounded subset R of the plane C:

(i) We call R convex if for all a, b ∈ R, for any c on the line segment joining a to b we have c ∈ R.

(ii) We call R centrally symmetric if for all p ∈ R we have −p ∈ R.

Recall that a lattice L ∈ C can either be {0} or must be generated by one or two vectors. We

are here just considering the cases where d > 0, meaning that there will always be an imaginary

component, so it is always the case with two vectors, and note also that such vectors constitute the

lattice basis for L.

Will hereafter denote by ∆(L) the area of the fundamental parallelogram of the lattice L ⊂ C
and by VR the volume of a convex centrally symmetric region R ⊂ C.

Theorem 4.1 (Minkowski). Let L be a lattice in C and R ⊂ C be a convex and centrally symmetric

region such that VR > 4∆(L). Then R must contain a lattice point other than the origin.

4.2 Minkowski’s Bounds

Proposition 4.2. Let K = Q(
√
d) be a number field with d < 0 being a square-free integer and

OK = Z[α] = {a+ bα : (a, b) ∈ Z2} be its ring of integers. Let I ⊆ OK be an ideal and L ⊂ Z×αZ
be the lattice generated by I in Z× αZ ⊂ C. Then ∆(L) = detL =

∣∣∣Z[α]/I
∣∣∣ = N(I).

Proposition 4.3. Let I ⊆ OK be an ideal. Then ∆(I) = kN(I) for some k ∈ R.

Proof. Let I ⊆ OK be an ideal. In a quadratic number field K = Q(
√
d) we have that OK = Z[α]

where either α =
√
d or α = 1+

√
d

2 and Z[α] = {a+ bα : (a, b) ∈ Z2}. Let L ⊂ Z×αZ be the lattice

generated by I in Z× αZ ⊂ C. Let f be the scaling function

f : Z× αZ 7→ Z2
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such that

f
(
(a, bα)

)
= (a, b).

Let L′ := f(L). Hence ∆(I) = ∆(L) = δ∆(L′) where either δ =
√
|d| or δ =

1+
√
|d|

2 . Therefore we

have δ∆(L′) = δN(I).

Lemma 4.4. Let I ⊆ OK be an ideal. Then there always exist an element a ∈ I such that

N(a) < cN(I) for some (possibly different) c ∈ R.

Proof. Define the convex and central symmetric region

K := {a ∈ C : |a|2 < cN(I)}

for a constant c ∈ R yet to be defined. Then K is a circle of radius
√
cN(I) with VK = π

√
cN(I)

2
=

πcN(I).

Suppose now

VK > 4∆(I) = 4δN(I)

where either δ =
√
|d| or δ =

1+
√
|d|

2 as in the proposition above. Then c > 4α
π . Put c > 4α

π . Then

by Theorem 4.1 there exist a ∈ I such that a ∈ K, a 6= 0. In particular

N
(
(a)
)

= |a|2 < cN(I).

Now (a) ⊂ I =⇒ I | (a) =⇒ ∃ an ideal J ∈ OK such that (a) = IJ . Hence I ∼ J−1 and

N(IJ) = N(I)N(J) =⇒ N(a) = N(I)N(J) =⇒ N(J) < c.

In particular for c properly chosen we have N(J) < 4α
π .

Such results can also be generalized to real quadratic fields. We can define the notion of dis-

criminant and sum up everything as follows.

Definition 4.2. Let K = Q(
√
d) be a number field and OK = Z[α] be its ring of integers. Then

we say the discriminant DK of K is the discriminant of the minimal polynomial fα ∈ Z[x] of the

algebraic integer α.

Lemma 4.5. Each ideal class in the class-group cl(K) contains an ideal with norm at most MK

with:

MK =
√
|DK | ·

 2
π if D < 0

1
2 if D > 0.

We can now compute the class-group easily by only checking those ideals I ⊆ OK such that

N(I) < c. Every ideal I contains a rational integer, namely N(I), so that can find every prime ideal

by factoring rational primes. We then just need to factor rational primes p < MK . Please now

12



pause and ponder on how powerful this tool is. By factoring a handful of principal ideals we can

compute the class-group of the number field and, for example, among other things, check whether

the ring of integers has unique prime factorization.

Example. We compute the class-group cl(K) of K = Q(
√
−5).

For d =
√
−5 we have DK = −20 and MK = 2

√
20
π < 3. We then just have to factor the principal

ideal generated by 2. We find

(2) = (2, 1 +
√
−5)2.

Now (2) ∼ (1) and clearly (2) 6∼ (2, 1 +
√
−5) in the class-group. We then have

cl(Q(
√
−5)) = {(1), (2, 1 +

√
−5)}.

Incidentally we notice |cl(Q(
√
−5))| = 2 6= 1. In the ring Z[

√
−5] unique prime factorization does

not hold.

Here is a table displaying the structure of class groups for OQ(n) for square-free integers n = −2

to −22:

n class number class group n class number class group

−2 1 − −13 2 C2

−3 1 − −14 4 C4

−5 2 C2 −15 2 C2

−6 2 C2 −17 4 C4

−7 1 − −19 1 −

−10 2 C2 −21 4 C2 × C2

−11 1 − −22 2 C2

Table 1: Examples of class groups

5 Prime Factorization of Ideals

We know that an ideal I ∈ R is prime if and only if R/I is an integral domain. In this section we

will exploit an isomorphism between the ring Z[α] and the ring of polynomials Z[x]/fα in order to

extend our understanding of this fact. In this section fα will denote the minimal polynomial of α

in Z[x]. Our results will allow for both a quicker and more systematic method of studying ideal

factorization.

13



Lemma 5.1. There is an isomorphism Z[x]/fα ∼= Z[α] induced by ψ : f(x) 7→ f(α).

Proof. We can extend the domain of ψ such that

ψ : Z[x] 7→ Z[α].

Now ψ is clearly surjective as every element e ∈ Z[α] can be written as

n∑
i=0

kiα
i

for some integers ki and a natural number n. The kernel of this map is the ideal generated by fα

in Z[x] because

f(α) = 0 ⇐⇒ fα|f.

Then by the First Isomorphism Theorem, it follows that Z[x]/fα ∼= Z[α].

We will make use of the results proved earlier to demonstrate a fundamental result in quadratic

number fields.

Theorem 5.2 (Dedekind’s Criterion). Let K = Q(
√
d) be a quadratic number field. Consider the

ring of integers OK = Z[δ] where δ is the primitive element of OK . Let p be a rational prime and

(p) ⊂ OK be the principal ideal generated by p in OK . Let fδ be the minimal polynomial of δ in

Z[x]. Suppose fδ decomposes as (x+ a)(x+ b) in OK/(p) for some non-zero a, b ∈ OK/(p). Then

we have the unique factorization in prime ideals (p) = (p, a+ δ)(p, b+ δ).

Proof. We start by showing that (p) ⊃ (p, δ + a)(p, δ + b). Since

(p, δ + a)(p, δ + b) = (p2, pδ + pa, pδ + pb, δ2 + (a+ b)δ + ab)

and p divides each generator the claim follows. We now try to show that p ∈ (p, a+ δ)(p, b+ δ).

1. If a 6= b then we have (pδ + pa)− (pδ + pb) = p(a− b) in the ideal. Hence

(p, (a− b)) = 1 =⇒ ∃ x, y ∈ Z : p · (xp+ y(a− b)) = p.

2. If a = b then we need to consider the two cases fδ = x2− d and fδ = x2−x− d−1
4 separately:

a) If δ =
√
d then we have

fδ = x2 − d ≡ x2 + 2ax+ a2

and so either p | a or p = 2 by comparing coefficients.

In the first scenario we have a ≡ 0 (mod p). Our factorization is (p2, p
√
d, d). Also

−d ≡ a2 =⇒ p | d

14



and we may write d = pk where k 6≡ 0 (mod p). From (p, k) = 1 it follows that

∃ x, y ∈ Z : p · (xp+ yk) = p.

In the second scenario we have p = 2 and a 6≡ 0 (mod p). Then

x2 + 2ax+ a2 ≡ (x+ 1)2 (mod 2).

Our factorization is (4, 2 + 2
√
d, d+ 1 + 2

√
d). We have

(d+ 1 + 2
√
d)− (2 + 2

√
d) = d− 1.

In this case d ≡ 2, 3 (mod 4), and so

a 6≡ 0 (mod 2) =⇒ d 6≡ 0 (mod 2) =⇒ d ≡ 3 (mod 4).

Hence

(d− 1, 4) = 2 =⇒ ∃ x, y ∈ Z : (x(d− 1) + 4y) = 2.

b) If δ = 1+
√
d

2 then we have

fδ = x2 − x− d− 1

4
≡ x2 + 2ax+ a2.

Therefore by comparing coefficients

2a ≡ 1 and a2 ≡ −d− 1

4
=⇒ 4a2 ≡ 1 and 4a2 ≡ 1− d =⇒ −d ≡ 0 (mod p).

Hence

p|d =⇒ x2 − x− d− 1

4
≡ x2 − x+

1

4
≡ (x− 1

2
)2 ≡ (x− p+ 1

2
)2.

Since p is an odd prime our factorization here becomes (p2, −p
2+p
√
d

2 , p
2+d−2p

√
d

4 ). We now

have

4(
−p2 + p

√
d

2
+
p2 + d− 2p

√
d

4
) = 4

−p2 + d

4
= d− p2.

Now p divides d but d is square-free and we may write d = pk where k 6≡ 0 (mod p). Hence

(p, k) = 1 =⇒ ∃ x, y ∈ Z : p · (xp+ yk) = p.

We just showed that (p) ⊃ (p, δ+a)(p, δ+ b) and (p) ⊂ (p, δ+a)(p, δ+ b). Thus we have the unique

factorization in prime ideals (p) = (p, a+ δ)(p, b+ δ).

Now we will introduce some terminology in order to distinguish the cases of prime ideals.

Definition 5.1. Given a principal ideal (p) ⊂ OK generated by a rational prime p:

(i) We say p is inert in OK if (p) is also a prime ideal in R.
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(ii) We say p splits in OK if (p) is the product of two distinct prime ideals.

(iii) We say p is ramified in OK if (p) is the square of a prime ideal.

Theorem 5.3. Let (p) be an ideal in Q(
√
d) generated by an integral prime. Let OK be the ring

of integers of Q(
√
d). Then we have the following conditions for the factorization of (p):

1. The prime p is inert if and only if
(
d
p

)
= −1 and p - disc(Q(

√
d)).

2. The prime p splits if and only if
(
d
p

)
= 1 and p - disc(Q(

√
d)).

3. The prime p is ramified if and only if p | disc(Q(
√
d)).

Proof. Firstly, all factors of (p) are of the form (p, n+α) where n ∈ Z due to Dedekind’s Criterion.

We are going to prove the three parts of the theorem separately.

1. To prove this case, it is sufficient to prove cases 2, 3.

2. Suppose that (p) splits as (p,m+ α)(p, n+ α) where m 6= n. Then

p | (mn+ (m+ n)α+ α2).

We now apply reverse map from Lemma 5.1. If d ≡ 2, 3 (mod 4) we have

x2 + (m+ n)x+mn ≡ x2 − d (mod p),

which leads to m+ n ≡ 0 (mod p) and so −d ≡ mn ≡ −m2 (mod p), which implies that d is

a quadratic residue modulo p as required. If d ≡ 1 (mod 4) we have

x2 + (m+ n)x+mn ≡ x2 − x− d− 1

4
(mod p),

which leads to m+ n ≡ −1 and 1− d ≡ 4mn (mod p). Now

1− d ≡ 4m(−m− 1) ≡ −4m2 − 4m =⇒ d ≡ (2m+ 1)2

and so d is a quadratic residue modulo p as required.

We now prove the other direction. If d is a quadratic residue modulo p then there exists an

element k ∈ Z such that k2 ≡ d (mod p). If d ≡ 2, 3 (mod 4) then

x2 − d ≡ (x+ k)(x− k) (mod p)

and so (p) splits in OK . If d ≡ 1 (mod 4) then

x2 − x− d− 1

4
≡ (x− 1

2
)2 − (

k

2
)2 ≡ (x− 1 + k

2
)(x− 1− k

2
) (mod p)

and again (p) splits in OK .
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3. We showed in that if (p) factors as a square of the form (p, k+α)2, then (i) we require p|d in

the case d ≡ 1 (mod 4), or (ii) we require p | d ∨ p = 2 otherwise.

Conversely, if d ≡ 1 (mod 4) and p |DQ(
√
d) then p | d and

x2 − x− d− 1

4
≡ x2 − x+

1

4
≡
(
x− p− 1

2

)2
(mod p)

so that (p) ramifies.

We now prove the other direction. If d ≡ 2, 3 (mod 4) and p |DQ(
√
d) then either p | d or p = 2.

In the first case x2 − d ≡ x2 (mod p), and so (p) ramifies.

In the second case p = 2, and (i) if 2|d then

x2 − d ≡ x2 (mod p)

which is similar to the first case, or (ii) otherwise

x2 − d ≡ x2 + 2x+ 1 ≡ (x+ 1)2 (mod p)

and again (p) ramifies.

Whilst proving the previous theorems we managed to specify to a higher degree of precision

how the prime ideals in a quadratic number field look like. We will now present a table which

summarizes these results. This table will be referenced in future chapters where we require explicit

use of prime ideals. Note that the split and ramified prime ideals are not necessarily non-principal

but for simplicity we will leave them in this form.

d (mod 4) 1 2 3

p is inert (p) (p) (p)

p is ramified (p, −p+
√
d

2 ) (p,
√
d) (p,

√
d)

p splits (p, a+ ±1+
√
d

2 ) (p,±a+
√
d) (p,±a+

√
d)

p = 2 (2) (2,
√
d) (2, 1 +

√
d)

Table 2: Prime ideals in quadratic number fields

6 Computing the 2-Torsion

In this section we want to construct a map which will help us compute the degree of 2-torsion in

the class-group. This will be our main result. We will focus here only on the case d < 0. First of
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all we need to go through some technical details to ensure that such a map is well-defined and that

it exists. We then prove a sufficient condition for norm of an element of an ideal to be a quadratic

residue modulo DK . This will only work in the cases d ≡ 1, 3 (mod 4).

Lemma 6.1. Let d ≡ 1, 3 (mod 4) and α ∈ OK such that (N(α), DK) = 1. Then
(N(α)
DK

)
= 1.

Proof. Consider the case d ≡ 1 (mod 4), where DK = d. Then let α = x+y 1+
√
d

2 for some x, y ∈ Z,

in which case

N(α) = x2 + xy +
1− d

4
y2 = (x+

y

2
)2 − dy2

4
.

Since d ≡ 1 (mod 2), then 2 must be a unit in Z/dZ. Hence

(x+
y

2
)2 − d(

y

2
)2 ≡ (x+

y

2
)2 (mod d)

as y
2 ∈ Z/dZ. Therefore N(α) is a quadratic residue modulo d = DK .

Consider now the case d ≡ 3 (mod 4), where DK = 4d. Then let α = x+y
√
d for some x, y ∈ Z,

in which case

N(α) = x2 − dy2.

Since x2 − dy2 ≡ x2 (mod d), then N(α) clearly is a quadratic residue modulo d. Let us now have

a look at the congruence of (x2, y2) modulo 4. We have the following possible cases:

1. (0, 0) =⇒ N(α) ≡ 0− 3 · 0 ≡ 0 (mod 4) =⇒ 4|(N(α), DK), which is a contradiction;

2. (1, 1) =⇒ N(α) ≡ 1− 3 · 1 ≡ 2 (mod 4) =⇒ 2|(N(α), DK), which is a contradiction;

3. (0, 1) =⇒ N(α) ≡ 0− 3 · 1 ≡ 1 (mod 4);

4. (1, 0) =⇒ N(α) ≡ 1− 3 · 0 ≡ 1 (mod 4).

Hence N(α) ≡ 1 (mod 4). So it is a quadratic residue modulo 4. Since (4, d) = 1, then N(α) is

also a quadratic residue modulo 4d = DK .

We will from now on just consider the number fields K = Q(
√
d) with d ≡ 1, 3 (mod 4). We

want to show that every ideal I ⊆ OK contains an element i for which the quotient N(i)
NI is coprime

to DK . We will also identify examples and provide a useful and handy table of such elements. All

this work is required for the well-definability of the map we want to construct.

Lemma 6.2. Let d ≡ 1, 3 (mod 4) and K = Q(
√
d). Then for any ideal I ⊂ OK there exists an

element i ∈ I such that (N(i)
N(I) , DK) = 1.

Proof. Let us first prove this for primes. We will then extend to any other ideal. We will make use

of our table of prime ideals from the previous section.

Suppose d ≡ 1 (mod 4). We have DK = d.
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1. Consider any inert prime ideal p = (p). Now choose i = p ∈ p so that N(i)
N(p) = 1. Clearly

(1, d) = 1.

2. Consider any ramified prime ideal p = (p, −p+
√
d

2 ). Now choose i = −p +
√
d ∈ p so that

N(i) = p2 − d. Every prime dividing d divides either p or d
p , but can’t divide both, because

d is square-free. Hence (N(i)
N(p) , d) = (p− d

p , d) = 1.

3. Consider any split prime ideal p = (p, a+ ±1+
√
d

2 ). Now choose i = p ∈ p. Then N(i)
N(p) = p and

also p - DK . Hence (p, d) = 1.

4. In this case the ideal (2) is inert. We pick i = 2 ∈ (2) so that N(i)
N((2)) = 1. Clearly (1, d) = 1.

Suppose now d ≡ 3 (mod 4). We have DK = 4d.

1. Consider any inert prime ideal p = (p). Now choose i = p ∈ p so that N(i)
N(p) = 1. Clearly

(1, 4d) = 1.

2. Consider any ramified prime ideal p = (p,
√
d). Now choose i = 2p +

√
d ∈ p so that

N(i) = 4p2 − d. Every prime dividing d divides either 4p or d
p , but can’t divide both. In this

case p is odd and so 2 - 4p− d
p . Hence (N(i)

N(p) , d) = (4p− d
p , 4d) = 1.

3. Consider any split prime ideal p = (p,±a+
√
d). Now choose i = p ∈ p. Then N(i)

N(p) = p and

also p - DK . Hence (p, 4d) = 1.

4. In this case the ideal (2) ramifies as p2 = (2, 1 +
√
d)2. We pick i = 1 +

√
d ∈ p so that

N(i) = 1− d ≡ 2 (mod 4). Then N(i)
N(p) = 1−d

2 and also every prime dividing d cannot divide
1−d
2 because 1−d

2 is odd. Hence ( 1−d
2 , 4d) = 1.

We have proven the statement for all prime ideals. Now we show that this property is multi-

plicative. Let I, J ⊂ OK be two ideals with i ∈ I and j ∈ J such that

(
N(i)

N(I)
, DK) = 1 and (

N(j)

N(J)
, DK) = 1.

Then the ideal IJ contains ij so that N(ij)
N(IJ) = N(i)

N(I) ·
N(j)
N(J) which satisfies

(
N(i)

N(I)
· N(j)

N(J)
, DK) = 1.

Hence this property follows for all ideals in OK .

Now we can define the map itself and show that it is well-defined.

Lemma 6.3. Let K = Q(
√
d) with d ≡ 1, 3 (mod 4). Then there exists a well-defined group

homomorphism g : cl(OK) 7→ (Z/DKZ)×/((Z/DKZ)×)2 such that the class I is mapped to N(i)
N(I)

for some element i in some ideal I ∈ I satisfying the property (N(i)
N(I) , DK) = 1.
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Proof. We need to prove that g is well-defined. First of all we show that the choice of element in an

ideal does not affect the image of a class. Let I be an ideal and a, b ∈ I be two possible candidates

satisfying the condition (N(i)
N(I) , DK) = 1. Then Ī turns out to be mapped both to N(a)

N(I) and N(b)
N(I) .

These are the same in (Z/DKZ)×/((Z/DKZ)×)2 if and only if

N(a)

N(I)
/
N(b)

N(I)
=
N(a)

N(b)
∈ ((Z/DKZ)×)2.

Now both N(a) and N(b) are quadratic residues modulo DK and then are mapped to ((Z/DKZ)×)2.

But ((Z/DKZ)×)2 is an abelian group and therefore N(a)
N(b) is also a quadratic residue modulo DK

and it is congruent to 1 in (Z/DKZ)×/((Z/DKZ)×)2.

We now need to show that the choice of ideal does not affect the image of a class. Let a, b ∈ Ī be

two ideals in the same class with m ∈ a and n ∈ b as elements satisfying the required condition as

above. There exist elements x, y ∈ OK such that (x)a = (y)b. Then Ī turns out to be mapped both

to N(m)
N(a) and N(n)

N(b) . These are the same in (Z/DKZ)×/((Z/DKZ)×)2 if and only if their quotient

lies in ((Z/DKZ)×)2. We have

N(m)

N(a)
=

N(xm)

N((x)a)
=

N(xm)

N((y)b)

and so
N(m)

N(a)
/
N(n)

N(b)
=

N(xm)

N((y)b)
/
N(n)

N(b)
=
N(xm)

N(yn)
.

But xm and yn are just elements of OK and therefore their norms are quadratic residues modulo

DK . We reach the same conclusion as above.

We finally have to show that g is a group homomorphism. It is sufficient to show that

g(Ī J̄) = g(Ī)g(J̄)

because the other conditions have been met. Assume we have a ∈ I inĪ and b ∈ J inJ̄ being

chosen such that (N(a)
N(I) , DK) = 1 and ( N(b)

N(J) , DK) = 1. Clearly g(Ī J̄) = N(ab)
N(IJ) by the definition of

multiplication for ab ∈ IJ such that (N(ab)
N(IJ) , DK) = 1 as explained before. However

N(ab)

N(IJ)
=
N(a)

N(I)
· N(b)

N(J)
= g(Ī)g(J̄)

and so g is indeed a well-defined group homomorphism.

So what are we going to do with this well-defined map? The class-group is a mysterious object

so far, and so any map that could potentially unravel its mysteries should be studied. In particular,

we will learn that he kernel of g is cl(OK)2. This will tell us a lot about the 2-torsion in the

class-group once we understand the image of the map, which is what we are going to do now.

20



6.1 Finding the Image

Proposition 6.4. Let K = Q(
√
d) with d ≡ 1, 3 (mod 4). Then (Z/DKZ)×/((Z/DKZ)×)2 ∼=∏

p
ei
i |DK

(Z/peii Z)×/((Z/peii Z)×)2 ∼= (Z/2Z)ω(DK) where ei is maximum power of pi dividing DK

and ω(DK) is the number of distinct prime factors of DK .

Proof. In order to show that∏
p
ei
i |DK

(Z/peii Z)×/((Z/peii Z)×)2 ∼= (Z/2Z)ω(DK)

it is sufficient prove

(Z/peii Z)×/((Z/peii Z)×)2 ∼= (Z/2Z)

for any prime pi dividing DK .

In DK the exponents ei always equal 1. The one exception in the case d ≡ 3 (mod 4) is the

exponent of 2 which is 2. In that particular case we have

(Z/4Z)×/((Z/4Z)×)2 ∼= (1, 3)/(1) ∼= (1, 3) ∼= Z/2Z

and we are still good.

Now we can assume ei = 1. The quadratic residues ((Z/piZ)×)2 form an Abelian group and we

can consider the multiplication table for quadratic residues and quadratic non-residues:

× QR QNR

QR QR QNR

QNR QNR QR

We can see that these classes form a structure which is isomorphic to Z/2Z with the quadratic

residues being mapped to 0 and the quadratic non-residues being mapped to 1. Note that ((Z/piZ)×)2

is the kernel of this map and by the First Isomorphism Theorem we have

(Z/piZ)×/((Z/piZ)×)2 ∼= (Z/2Z).

We will require an additional map µ to represent this isomorphism, which we define by:

µ
((a
pi

))
=

0 if
(
a
pi

)
= 1

1 if
(
a
pi

)
= −1.

We will extend µ so that (Z/4Z)×/((Z/4Z)×)2 is also included as a potential domain. Here the

image is defined in the same way as above. Now we have an isomorphism

Z/DKZ ∼=
∏

p
ei
i |DK

Z/peii Z
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which sends a ∈ Z/DKZ to (a (mod pe11 ), ..., a (mod p
eω(DK )

ω(DK) )). Since a is a unit in Z/DKZ if and

only if it is a unit in each of Z/peii Z, this is still an isomorphism when we restrict the groups to

units. Hence (Z/DKZ)× ∼=
∏
p
ei
i |DK

(Z/peii Z)×.

On the other hand, a is a quadratic residue modulo DK if and only if it is a quadratic residue

modulo each of the peii dividing DK . Hence can restrict both the image and the domain further,

quotienting by the quadratic residues. Therefore we have an isomorphism

φ : Z/DKZ)×/((Z/DKZ)×)2 7→
∏

p
ei
i |DK

(Z/peii Z)×/((Z/peii Z)×)2

which sends a ∈ Z/DKZ)×/((Z/DKZ)×)2 to (
(
a
p
e1
1

)
, ...,

(
a

p
eω(DK )

ω(DK )

)
).

Over the next three results we will demonstrate that the image of the map g is in fact isomorphic

to (Z/2Z)ω(DK)−1.

Lemma 6.5. We have µ(φ(im(g))) ⊂ S where S := {a ∈ (Z/2Z)ω(DK)|
∑
e∈a e ≡ 0 (mod 2)}.

Proof. We can think of S as the coordinates in (Z/2Z)ω(DK) such that the sum of the individual

components of each coordinate is even. How does the pre-image of S under µ look like? It consists

of all sets of coordinates in {−1, 1}ω(DK) such that there are an even number of instances of −1.

In other words we claim that every element a in the image of g is a QNR over an even number of

primes pi (and 4 in the case d ≡ 3 (mod 4)). This occurs if and only if
∏
p
ei
i |DK

(
a
p
ei
i

)
= 1. Keep

this condition in mind as we will prove it for every such element a which originated from a prime

ideal under g. This is sufficient given that g is a group homomorphism and the prime ideal classes

generate the ideal class-group.

Recall the isomorphism

φ : (Z/DKZ)×/((Z/DKZ)×)2 7→
∏

p
ei
i |DK

(Z/peii Z)×/((Z/peii Z)×)2

which has been previously explained. It is the composition of homomorphisms

φi : (Z/DKZ)×/((Z/DKZ)×)2 7→ (Z/peii Z)×/((Z/peii Z)×)2

which send a to
(
a
p
ei
i

)
.

Remember how we found the image of every prime ideal under g in Lemma 6.2? Now we will

see how these elements map under these components of φ. We denote by qi the integral prime from

which the prime ideal originates from. The following table summarizes the images under φj for a

corresponding prime pj dividing d, φ4 corresponding to 4 in the case 4 |DK and φi in the ramified

case where qi = pi.
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d prime type image under g image under φj image under φi image under φ4

1
(
d
qi

)
= −1 1 1 N/A N/A

1
(
d
qi

)
= 0 qi − d/qi

(
qi
pj

) (d/qi
qi

)
N/A

1
(
d
qi

)
= 1 qi

(
qi
pj

)
N/A N/A

1 p = 2 1 1 N/A N/A

3
(
d
qi

)
= −1 1 1 N/A

(
qi
4

)
3

(
d
qi

)
= 0 4qi − d/qi

(
qi
pj

) (d/qi
qi

) (d/qi
4

)
3

(
d
qi

)
= 1 qi

(
qi
pj

)
N/A

(
qi
4

)
3 p = 2 1−d

2

(
2
pj

)
N/A

(
2
d

)
Table 3: Image of prime ideals under g and φ

We have to show that every element represented by a prime ideal in cl(OK) is mapped to S

under g ◦ φ ◦ µ. If you remembered, this is equivalent to showing that the image under g is a QNR

over an even number of primes (or 4 in the case d ≡ 3 (mod 4)).

Firstly we consider the case d ≡ 1 (mod 4). Let DK =
∏n
j pj for primes pj . We require∏n

j

(
qi
pj

)
= 1 for primes pj . We enumerate through the rows of the table.

1. 1 is mapped to S because it is a QR over each of the primes pj .

2. In this case the image under φ is in S if

n∏
j

(
qi
pj

)
=

(
d/qi
qi

) n∏
j,j 6=i

(
qi
pj

)
=

n∏
j,j 6=i

(
qi
pj

)(
pj
qi

)
= 1

because d
qi

consists of the product of all primes dividing d not equal to qi. This is equivalent

to showing that
n∏

j,j 6=i

(−1)(
pj−1

2 )(
qi−1

2 ) = 1.

We have d ≡ 1 (mod 4) and so there must be an even number of primes pj ≡ 3 (mod 4).

If qi ≡ 1 (mod 4) then (−1)(
pj−1

2 )(
qi−1

2 ) = 1 for all pj .

If qi ≡ 3 (mod 4) then an even number of (−1)(
pj−1

2 )(
qi−1

2 ) are −1 so that the product is 1.

3. In this case
(
d
qi

)
=
∏n
j

(
qi
pj

)
= 1.

4. 1 is mapped to S because it is a QR over each of the primes pj .
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Secondly we consider the case d ≡ 3 (mod 4). Let DK = 4
∏n
j pj for primes pj . We require(

qi
4

)∏n
j

(
qi
pj

)
= 1 for primes pj . We enumerate through the rows of the table.

1. 1 is mapped to S because it is a QR over each of the primes pj as well as over 4.

2. In this case the image under φ is in S if(
qi
4

) n∏
j

(
qi
pj

)
=

(
qi
4

)(
d/qi
qi

) n∏
j,j 6=i

(
qi
pj

)
=

(
qi
4

) n∏
j,j 6=i

(
qi
pj

)(
pj
qi

)
= 1

by similar reasoning as above. This is equivalent to showing that(
qi
4

) n∏
j,j 6=i

(−1)(
pj−1

2 )(
qi−1

2 ) = 1.

We have d ≡ 3 (mod 4) and so there must be an odd number of primes pj ≡ 3 (mod 4).

If qi ≡ 1 (mod 4) then (−1)(
pj−1

2 )(
qi−1

2 ) = 1 for all pj and
(
qi
4

)
= 1.

If qi ≡ 3 (mod 4) then an odd number of (−1)(
pj−1

2 )(
qi−1

2 ) are −1 so that the product is −1.

However this is multiplied by
(
qi
4

)
= −1 and so the whole product is 1.

3. In this case the image is in S if (
qi
4

) n∏
j

(
qi
pj

)
= 1.

In the case qi ≡ 1 (mod 4) we have
(
d
qi

)
=
∏n
j

(
qi
pj

)
= 1. Additionally,

(
qi
4

)
= 1 and so the

whole product is 1. In the case d ≡ 3 (mod 4) we have −
(
d
qi

)
=
∏n
j

(
qi
pj

)
= −1 and

(
qi
4

)
= −1

and so the whole product is 1.

4. In this case the image of the ideal class of 2 is in S if(
2

d

) n∏
j

(
2

pj

)
=

n∏
j

(

(
2

pj

)
)2 = 1.

That is true as it is a product of squares which must equal 1.

We have shown that all prime ideals chosen are mapped to the set S. Since this mapping is

a group homomorphism, and the prime ideals generate the class-group, it must be true that the

images of all ideals lie in S. Hence µ(φ(im(g))) ⊂ S.

Now we prove the other direction, that for every element in S there exists an element in the

class-group that maps to it under g ◦ φ ◦ µ. We are assuming a pretty powerful theorem, the proof

is not at all slick. However it is the most efficient approach given that we have classified the images

of all prime ideals.
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Lemma 6.6. We have im(g) ∼= S via the isomorphism φ ◦ µ.

Proof. By applying Theorem 8.7 for each congruence p ≡ a (mod b) there is a prime p satisfying it

as long as (a, b) = 1. Then for each s ∈ µ−1(S) there is an element a ∈ (Z/DKZ)× that is mapped

to s under φ. Hence we can construct primes p that map to each element s ∈ S under φ ◦ µ.

Now we need to calculate
(
DK

p

)
for such primes in order to make sure that there is a prime ideal

p that maps to p under g.

Let DK =
∏n
i pi as before for primes pi. Then

(
DK

p

)
=
∏n
i

(
p
pi

)
. Since we picked p so that an

even number of
(
p
pi

)
produce −1 we have

(
DK

p

)
= 1 and so p splits in OK and its split ideals can

map to p under g.

Therefore every element in S has an element in cl(OK) that maps to it.

The final missing piece for constructing the image of g is to show that the group S is isomorphic

to a much more easily defined group.

Lemma 6.7. Let S be the set defined earlier. Then S is isomorphic to (Z/2Z)ω(DK)−1.

Proof. S is clearly a group because it is an image of a group cl(OK) under group homomorphisms

g ◦ φ ◦ µ. Define λ : S 7→ (Z/2Z)ω(DK)−1 by truncating the last digit of an element a ∈ S. This

is clearly a homomorphism because the individual binary digits of a do not interact and so any

truncation of the digits will still form a group. Additionally the first ω(DK)−1 digits can be chosen

arbitrarily so that the last digit acts as a deterministic check digit to make sure the number of 1’s

is even. This ensures both surjectivity and injectivity and so λ is an isomorphism.

6.2 Finding the Kernel

Lemma 6.8. Let J be an ideal such that N(J) is a QR modulo DK , d is a QR modulo N(J) and

(N(J), DK) = 1. Then there exists an element a ∈ OK such that N((a)J) is a perfect square.

Proof. We separate the cases into d ≡ 1 (mod 4) and d ≡ 3 (mod 4) because of the different

definition of norm.

Consider d ≡ 3 (mod 4). The norm of an arbitrary element in OK is of the form x2 − dy2 for

integers x, y. Hence we are looking for a solution in integers (x, y, z) to

N(J)(x2 − dy2) = z.2

ClearlyN(J)|z2, and by clearing squared factors from both we reduce the equation to x2−dy2 = cz2,

where c is the square-free part of N(J). Note that c is a quadratic residue modulo d due to the

reduction of squares. Similarly d is a QR modulo c and (c,DF ) = 1.

By using Theorem 8.8 there exists such a solution in integers (x, y, z).
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Consider d ≡ 1 (mod 4). The norm of an arbitrary element is of the form x2 + xy + 1−d
4 y2 for

integers x, y. Hence we are looking for a solution in integers (x, y, z) to

N(J)(x2 + xy +
1− d

4
y2) = z2.

This is equivalent to N(J)(4x2 + 4xy + (1− d)y2) = 4z2, which factorizes as

N(J)((2x+ y)2 − dy2) = (2z)2,

and by canceling squares from N(J) we get c((2x + y)2 − dy2) = (2z)2 where c|z. This is also

equivalent to (2x + y)2 = 4cz2 + dy2. The integers 4c, d satisfy the same conditions as in the

previous case.

By using Theorem 8.8 there exists such a solution in integers (2x+ y, z, y).

We just need to show that x is an integer in this case. If y is odd then we have

4cz2 + dy2 ≡ 1 ≡ (2x+ y)2 (mod 4)

and so 2x+ y is odd. This implies 2x is even and we are done. If y is even then we have

4cz2 + dy2 ≡ 0 ≡ (2x+ y)2 (mod 4)

and so 2x+ y is even. This implies 2x is even and we are done.

Lemma 6.9. Recall the definition of the map g from previous results. Then ker(g) = (cl(K))2. In

other words if N(i)
N(I) ∈

(
Z/DK)×

)2
then I ∈ (cl(K))2.

Proof. Let I ⊆ OK be an ideal and i ∈ I in such a way that N(i)
N(I) ∈

(
Z/DK)×

)2
. Define J = (i)I−1

such that

N(J) =
N(i)

N(I)
∈
(
Z/DK)×

)2
.

Note that J = I−1 in the class-group. Clearly I ∈ (cl(K))2 if and only if J ∈ (cl(K))2. We only

need to show J ∈ (cl(K))2.

Suppose J = p1p2 . . . pn for some prime ideals pi. Then

(N(J)) = p1p̄1 · p2p̄2 · . . . · pnp̄n = (N(p1))(N(p2)) . . . (N(pn)) = (p1)(p2) . . . (pn)

for some rational primes pi.

Since every principal ideal is a square in the class-group, we can assume J doesn’t contain any

principal ideals in its factorization.

Suppose pi = p̄i for some 1 ≤ i ≤ n. Then p = pip̄i would be a ramified prime and then p |DK .

But p|N(J) and then (N(J), DK) 6= 1. Which contradicts

N(J) =
N(i)

N(I)
∈
(
Z/DK)×

)2
.
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Hence all the principal ideals (pi) in the factorization above split. In other words
(
pi
DK

)
= 1 for

each 1 ≤ i ≤ n. Then N(J) is a quadratic residue modulo DK .

By applying Quadratic reciprocity we get
(
DK

pi

)
=
(
d
p1

)
= 1 for each 1 ≤ i ≤ n. Then d is also a

quadratic residue modulo N(J).

By applying Lemma 6.8 then there exist an element a ∈ OK such that N
(
(a)J

)
is a perfect

square.

Put J ′ = (a)J . Now we have

N(J ′) = J ′J̄ ′ = (k)2

for some k ∈ Z. But J ′ and J̄ ′ are coprime. Hence also J ′ is a square. Since

J ′ ∼ J ∼ I

in the class-group we finally get I ∈ (cl(K))2.

We have been able to understand both the kernel of the map g and its image. Then the result

we found can be summed up by the formula

cl(OK)/cl(OK)2 ∼= (Z/2Z)ω(DK)−1.

In other words the degree of 2-torsion in the class-group is

|cl(OK)[2]| = |{I ∈ cl(K) : I2 = (1)}| = ω(DK)− 1.

7 Conclusion

The failure of the uniqueness of factorization into irreducibles in some rings prompted us to study

the ideals and ideal class-group. At first we developed some algebraic background - we explored

the rings of algebraic integers and proved some of their properties. We managed to discover various

results concerning ideals, such as the fact that norm of ideals is multiplicative.

At this point we were ready to try to understand the class-group. To compute it, we used

Minkowski‘s theorem and some deep facts about ideals. But it turned out, that to perform these

computations more efficiently we can use the isomorphism Z[x]/fα ∼= Z[α] to get a powerful tool to

factorize ideals, namely Dedekind‘s Criterion. We summarized our results by discovering the way

the prime ideals factor. An unexpected fact was the substancial role of quadratic residues in this

issue. Having done all of this, we thoroughly studied the structure of class-groups what allowed us

to state a few conjectures.

At last, we got down to the main problem of our project - computing the degree of 2-torsion in the

ideal class-group for imaginary quadratic fields. We constructed a well-defined group homomor-

phism g : cl(OK) 7→ (Z/DKZ)×/((Z/DKZ)×)2 such that the class I is mapped to N(i)
N(I) for some

element i in some ideal I ∈ I satisfying the property (N(i)
N(I) , DK) = 1. Using quadratic reciprocity
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we found the image of prime ideals under this map. Then we explored the kernel of g, which with

the previous result about the image implied the following property of the degree of 2-torsion:

|cl(OK)[2]| = |{I ∈ cl(K) : I2 = (1)}| = ω(DK)− 1

It turns out that these results can also be extended to real quadratic fields, by introducing the

notion of narrow class-group.

One can also try to focus on different kind of fields, such as F (
√

(−απ)) where α, π are totally

positive and π is a prime number, or also F ( 3
√

(α)) and F ( 3
√

(απ))... Unfortunately problems in

this area range from speculative to almost completely open though.

8 Algebraic Supplement

In this section we mention, without proof, some theorems and statements that were assumed in

this project.

Proposition 8.1. Let K be a quadratic field, and let I ⊂ OK be a non-zero ideal. Let I be the

conjugate ideal of I. Here the generators of I are the conjugates of the generators of I. Then we

have II = (N(I)) = N((I)).

Proposition 8.2. Let α ∈ OK . Then each polynomial g ∈ Q[x] such that g(α) = 0 is divisible by

the minimal polynomial of α.

Lemma 8.3 (Gauss). Let α ∈ K. Then α ∈ OK if and only if the minimal polynomial fα ∈ Q[x]

of α is also monic polynomial in Z[x].

Theorem 8.4 (First Isomorphism Theorem). Let R,S be rings and φ : R 7→ S be a ring homo-

morphism. Then R/ker(φ) ∼= S.

Theorem 8.5 (Third Isomorphism Theorem). Let G be an abelian group with subgroups H, I such

that I ⊂ H ⊂ G. Then G/I
H/I
∼= G/H.

Proposition 8.6. Let (i) be a principal ideal in a Dedekind domain R. Then N((i)) = |R/(i)| =
N(i).

Theorem 8.7 (Dirichlet’s Theorem on Arithmetic Progressions). There are infinitely many primes

p satisfying the congruence p ≡ a (mod b) as long as (a, b) = 1 and a, b are positive integers.

Theorem 8.8 (Legendre). The equation x2 = by2 + cz2 has a solution in integers (x, y, z) if b and

c are quadratic residues modulo each other and (b, c) = 1.

We also provide some useful definitions in the case the reader is not familiar with the following

concepts.
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Definition 8.1. Let a ∈ Z and P be an odd rational prime. We define the Jacobi symbol as:

(
a

p

)
=

1 if a is a QR modulo p,

−1 if a is a QNR modulo p.

Remark. If a, b,m are integers then we have(
ab

m

)
=

(
a

m

)(
b

m

)
and

(
m

ab

)
=

(
m

a

)(
m

b

)
.

Remark. If a, b,m are integers such that a ≡ b (mod m) then we have(
a

m

)
=

(
b

m

)
.
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