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e Idea of the lectures is to provide a relatively advanced-level course that builds up on the existing introductory-
level fluid dynamics courses. The lectures target an audience of upper-level undergraduate students, graduate
students, and postdocs.

e Main topics:

(1) Introduction

(2) Governing equations

(3) Geostrophic dynamics
(4) Quasigeostrophic theory
(5) Ekman layer

(6) Rossby waves

(7) Linear instabilities

(8) Ageostrophic motions
(9) Transport phenomena

(10) Nonlinear dynamics and wave-mean flow interactions

e Suggested textbooks:

(1) Introduction to geophysical fluid dynamics (Cushman-Roisin);
(2) Fundamentals of geophysical fluid dynamics (McWilliams);
(3) Geophysical fluid dynamics (Pedlosky);

(4) Atmospheric and oceanic fluid dynamics (Vallis);

(5) Essentials of atmospheric and oceanic dvnamics (Vallis).



Motivations

e Main motivation for the recent rapid development of Geophysical Fluid Dynamics (GFD) is advancing our
knowledge about the following very important, challenging and multidisciplinary research lines:

— Earth system modelling,

— Predictive understanding of climate variability (emerging new science!),

— Forecast of various natural phenomena (e.g., weather),

— Natural hazards, environmental protection, natural resources, etc.

What is GFD?

e Most of GFD i1s about dynamics of stratified and turbulent fluids on giant rotating planets (spheres).
— On smaller scales GFD becomes classical fluid dynamics with geophysical applications.
— Other planets and some astrophysical fluids (e.g., stars, galaxies) are also included in GFD.

e GFD combines applied math and theoretical physics.
It is about mathematical representation and physical interpretation of geophysical fluid motions.

e Mathematics of GFD is heavily computational, even relative to other branches of fluid dynamics (e.g., modelling
of the ocean circulation and atmospheric clouds are the largest computational problems in the history of science).
— This is because lab experiments (i.e., analog simulations) can properly address only tiny fraction of interesting
questions (e.g., small-scale waves, convection, microphysics).

e In geophysics theoretical advances are often GFD-based rather than experiment-based, because obtaining field
measurements is very complicated, difficult, expensive and often impossible.

Let’s overview some geophysical phenomena of interest...



An image of the Earth from space:

e Earth’s atmosphere
and oceans are the
main but not the only
target of GFD




This is not an image of the Earth from space...

...but a visualized solution of the mathematical equations!



e Atmospheric cyclones and anticyclones shape up midlatitude weather.

This cyclone is naturally visualized by clouds:

e Modelling atmospheric clouds 1s notoriously difficult multi-scale problem with phase transi-
tions and chemistry involved.



e Tropical cyclones (hurricanes and typhoons) are a coupled ocean-atmosphere phenomenon.
These are powerful storm systems characterized by low-pressure center, strong winds, heavy
rain, and numerous thunderstorms.

Hurricane Katrina approaching New Orleans:
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e Ocean-atmosphere coupling: Ocean and atmosphere exchange momentum, heat, water, radi-
ation, aerosols, and greenhouse gases.

Ocean-atmosphere interface is a very complex two-sided boundary layer:




Ocean currents are full of transient mesoscale eddies:

e Mesoscale (synoptic) oceanic eddies — also called “oceanic weather” — are dynamically
similar to atmospheric cyclones and anticyclones; however, they are smaller, slower and more

numerous.

e Modelling mesoscale eddies and their large-scale effects is very important (and challenging),
because predictive skills of climate models crucially depend on their accurate representation.



Submesoscale eddies around island...
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e Submesoscale motions are geostrophically and hydrostatically unbalanced, which means that

they are less affected by the rotation and stratification than mesoscale eddies.

e Many submesoscale processes are steered by coasts and topography (e.g., coastal currents,

upwellings, tidal mixing, lee waves).

e Turbulence operates on all scales down to millimeters, but on smaller scales effects of plane-

tary rotation and density stratification weaken, and GFD turns into classical fluid dynamics.



Breaking surface
gravity wave

e GFD deals with many types of waves operating on lengthscales from centimeters to thousands
of kilometers.

e Breaking internal gravity waves are very important for vertical mixing shaping up stratifica-
tions of geophysical fluids.



Evolution of a tsunami predicted by high-accuracy shallow-water modelling:
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e Tsunami is specific type of surface gravity waves: long, fast and energetic. Tsunami running
on coasts creates extreme danger.



e GFD is involved in problems with formation and propagation of ice.

<= Flowing glacier
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Erupting volcano
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e GFD provides basis for modelling turbulent material transport of various substances and
chemicals in atmospheres and oceans.



Chlorophyll
concentration
on the sea surface

e Biogeochemical modelling links GFD with population biology and involves solving for con-
centrations of hundreds of mutually interacting species feeding on light, nutrients and each
other.



e GFD applies to atmospheres of other planets.
Circulation of the Jupiter’s weather layer:

Images of Jupiter from the Cassini

and Voyager missions

e Weather layer of Jupiter is characterized by multiple, alternating zonal jets, long-lived coher-
ent vortices (e.g., Great Red Spot), waves and turbulence.



e Towards the poles jovian turbulence changes its character, as the jets fade out and give way
to vortex crystals.

e Many physical processes shape this circulation up: thermal convection, flow instabilities,
energy cascades, planetary surf zones, transport barriers, etc.

Similar jets exist on other planets, including the Earth... And not only on the planets!



Convection clouds on Jupiter (science fiction art by Andrew Stewart):

e Some theories argue that alternating jets on giant gas planets are driven by deep convective
plumes that feed upscale cascade of energy.




What are the other planets where alternating zonal jets also exist?

e Brown dwarfs are substellar objects
about Jupiter size but 50 times denser

e Larth’s atmosphere has only a few jets, for good . tPSc:tlar
. et Stream
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e Larth’s ocean has hundreds of (recently discovered) weak jets.



e MagnetoHydroDynamics (MHD) naturally extends the realm of GFD to modelling the Sun
and other stars.

Beautiful example of coronal plasma rain on the Sun:
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e GFD also deals with space weather and violent winds.

Spectacular aurora (borealis)
during polar night:

Powerful tornado emerges from a funnel cloud:




e GFD also deals with atmospheric electricity and motion of floating objects.

Drifting iceberg near Antarctic:

Multiple lightnings strike in a tropical thunderstorm:

And there are many other geophysical phenomena in the need of science explorers!



e Representation of fluid flows

Let’s consider a flow consisting of infinitesimal fluid particles.
Each particle is characterized by its position r and velocity
u vectors, which are connected by the kinematic equation:

dr(t) Or(a,t) B
T v u(r,t), r(a,0)=a

e Trajectory (pathline) of an individual fluid particle is “recording”
of the path of this particle over some time interval. Instantaneous direction of the trajectory is determined by the
corresponding instantaneous streamline.

e Streamlines are a family of curves that are instantaneously tangent to the velocity vector of the flow
u = (u,v,w). Streamline shows the direction a fluid element will travel in at any moment of time.

A parametric representation of just one streamline (here s is coordinate along the streamline) at some moment in
time is X (s, Ys, 25) :
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For 2D and non-divergent flows the velocity streamfunction can be used to plot streamlines:
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Note, that u-V = 0, hence, velocity vector u always points along the isolines of (z,y), implying that these
isolines are indeed the streamlines.

e Streakline is the collection of points of all the fluid particles that have passed continuously through a particular
spatial point in the past. Dye steadily injected into the fluid at a fixed point extends along a streakline.

Note: if flow is stationary, thatis 9/0t = 0, then streamlines, streaklines and trajectories coincide.



e Timeline (material line) 1s the line formed by a set of fluid particles that were marked at the same time, creating
a line or a curve that is displaced in time as the particles move.

e Lagrangian framework: Point of view such that fluid is described by following fluid particles. Interpolation
problem; not optimal use of information, because evolving particles will always nonuniformly cover the fluid
area.

e Eulerian framework: Point of view such that fluid is described at fixed positions in space. Nonlinearity
problem.



GOVERNING EQUATIONS

Complexity: These equations are sufficient for finding a solution but are too complicated to solve; they are useful
only as a starting point for GFD analysis.

Art of modelling: Typically the governing equations are approximated analytically and, then, solved approximately
(by analytical or numerical methods); one should always keep track of all main assumptions and approximations.

e Continuity equation (conservation of mass)

Let us take the Eulerian view and consider a fixed infinitesimal cubic volume of fluid and flow of mass through
its surface: the mass budget must state conservation of mass.

« Changein mass in x-direction: (,

+ Total change in mass (continuity of mass): _

0 D D
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Note: if fluid is incompressible (i.e., p = const), then the continuity equation is reduced to

Vou=0].

which is its incompressible form.

e Material derivative

This is one of the most important concepts in fluid mechanics.
When operating on X, it gives the rate of change of X with time following the fluid element and subject to a
space-time dependent velocity field.

Material derivative is the fundamental link between the Eulerian [0/0t + u-V] and Lagrangian [D/Dt| descrip-
tions of changes in the fluid.

The way to see that the material derivative describes the rate of change of any property F'(t,x,y, z) following a
fluid particle is by applying (i) the chain rule of differentiation and (ii) definition of velocity as the rate of change
of particle position:
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Tendency term 0X /Ot represents the rate of change of X at a point which is fixed in space (and occupied by
different fluid particles at different times). Changes of X are observed by a stand-still observer.

Advection term u-V X represents changes of X due to movement with velocity u, which is the flow supply of
X to the fixed reference point. Additional advective changes of X are experienced by an observer swimming
with velocity u, even when the field of X is steady.



e Material tracer equation

For any material (e.g., chemicals, aerosols, gases) tracer concentration T (amount per unit mass), via similar to
the continuity equation budgeting, the governing evolution equation for composition is:

d(p7)
ot

+V-(pru) = pS7|,

where S(7) stands for all non-conservative sources and sinks of T (boundary sources, molecular diffusion, reac-

tion rate, etc.).
Turbulent tracer diffusion is generally added to S(™) and represented by V- (k V1), where & is diffusivity (tensor)

coefficient.



e Momentum equation

Consider the Newton’s Second Law in a fixed frame of reference, for an infinitesimal cubic volume of fluid 0V,
and for some force F' acting on the unit volume:

D D
—(pudV)=FoV = u
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where the first term of the second equation is zero, because mass of the fluid element remains constant (i.e., we
do not consider relativistic effects). Let us now consider different forces.

Pressure force arises thermodynamically (due to internal motion of molecules) from the pressure p(z,y, z) that
acts perpendicularly on 6 faces of the infinitesimal cubic volume 0V. Hence, the pressure force component in x
is

0 0
F, 6V =p(x,y,2) — plx + dz,y,2)] dydz = sy = F, = ——
ox ox
Frictional force (due to internal motion of molecules and tangential stresses acting on 6 faces of the infinitesimal
cubic volume) is typically approximated as vV?u, where v is the kinematic viscosity. Note: dynamic viscosity
1S kK = pv.

— F=-Vp

Body force Fy is typically represented by gravity (e.g., downward F, = —g ) and electromagnetic (e.g., on the
Sun) forces.

Coriolis force is one of pseudo-forces (more accurately: pseudo-accelerations) that appear only in rotating (i.e.,

non-inertial!) frames of reference, which are characterized by the rotation rate given by the angular velocity vector
Q:

F.=-2Qxu

(a) It acts to deflect a fluid particle at right angle to its motion; note, that only moving particles are affected.
(b) It doesn’t do work on a particle, because it is perpendicular to the particle velocity.

(c) Think about motion of tossed ball on a rotating carousel, or about Foucault pendulum. Watch some YouTube
movies about the Coriolis force.



(d) Physics of the Coriolis force: particle on a rotating sphere is deflected because of the conservation of angular
momentum. When moving to smaller/larger latitudinal circle, the particle should be accelerated/decelerated in
the latitudinal direction to conserve its angular momentum.

(e) Because of the deflecting force, moving particles will go around inertial circles that become smaller towards
the planetary poles.

(f) Tangential Coriolis force is zero on the equator and acts in the opposite directions in the planetary northern
and southern hemispheres.
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To summarize, the (vector) momentum equation is:
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Note, that in GFD the Coriolis force is traditionally kept on the lhs of the momentum equation, to remind that it
1s a pseudo-force.



e Derivation of pseudo-forces in rotating coordinate system

Rates of change of general vector B in the inertial (fixed) and rotating (with {2) frames of reference (indicated by
1 and r, respectively) are related as:

2] - (), +n

dt
Apply this relationship to r and u, and obtain
d
{d—ﬂ_zui:ur—kﬂxr, ()
du, du,
][] e

However, we need acceleration of u; in the inertial frame and expressed completely in terms of u, and in the
rotating frame.

Let’s (a) differentiate (*) with respect to time, and in the inertial frame of reference; and (b) substitute [du, /dt];
from (xx) :

du; du, d$2 dr
{dt L - [ dt L+qu7“+%xr+ﬂx[£L

Now, we again substitute [dr/dt]; from (x) :

d$2 du; du,
w v = [dt}i_[dt}r+Qqur+QX(er)

The term disappearing due to the constant rate of rotation is the (minus) Euler force.
The last term is the (minus) centrifugal force, which acts both on moving and standing particles. It acts a bit like
gravity but in the opposite direction, hence, it can be incorporated in the gravity force field and “be forgotten”.



e Equation of state

p=pp T, 1)

relates pressure p to the state variables — density p, temperature 7', and chemical tracer concentrations 7,,,
where n = 1,2, ... is the tracer index.
All the state variables are related to matter; therefore, the equation of state is a constitutive equation.

(a) Equations of state are often phenomenological and very different for different geophysical fluids (note, that
the other equations are universal).

(b) The most important 7,, are humidity (i.e., water vapor concentration) in the atmosphere and salinity (i.e.,
concentration of diluted salt mix) in the ocean.

(c) Equation of state brings in temperature, which has to be determined thermodynamically [not part of these
lectures!] from internal energy (i.e., energy needed to create the system), entropy (thermal energy not available
for work), and chemical potentials corresponding to 7,, (energy that can be available from changes of 7, ).

(d) Example of equation of state (for sea water) involves empirically fitted coefficients of thermal expansion «,
saline contraction 3, and compressibility v, which are all empirically determined functions of the state variables:

@:1(@

T2 aT)&pdT + % (@)T’pds 42 <@)T’Sdp — —qdT + 3dS +~dp
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e Thermodynamic equation is just one more way of writing the first law of thermodynamics, which is an ex-
pression of the conservation of total energy. (Recall that the second law is about “arrow of time”: direction of
processes in isolated systems is such that the entropy only increases; in simple words, the heat doesn’t go from
cold to hot objects.)

The thermodynamic equation can be written for 7' (i.e., DT/Dt = ...), but in GFD it is more convenient to
write it for p :




where ¢, is speed of sound, and Q)(p) is source term (both concepts have complicated expressions in terms of the
state variables).

To summarize, we obtained (assuming one material tracer) the following COMPLETE SET OF GOVERNING

EQUATIONS:
dp
-F : — 1
a5 T V(eu) =0 1
@+2§2><u = —EVp%—VVle—Fb (2)
Dt p
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Di ? Di Q(p) (5)

(a) Momentum equation is for the flow velocity vector, hence, it can be written as 3 equations for the (scalar)
velocity components.

(b) We ended up with 7 equations and 7 unknowns (for single tracer concentration): w, v, w, p, p, 1, T.
(c) These equations (or their approximations) are to be solved subject to some boundary and initial conditions.
(d) These equations are too difficult to solve not only analytically but even numerically.

(e) One remaining step that makes these equations even more difficult, is to rewrite them in the spherical coordi-
nates which are natural for planetary fluid motions on.



e Spherical coordinates are natural for GFD: longitude A, latitude ¢
and altitude r. 0

Material derivative for a scalar quantity ¢ in spherical coordinates is:
D 0¢ u 0 v P a¢
Dt 8t+r00898)\+r€99+ or’

where the flow velocity in terms of the corresponding unit vectors is:

w40+ K ( ) ( 0 d\x db dr)
u =iu—+jv w u,v,w) = |rcost —, r—, —
J Y Y Y dt Y dt Y dt

Vector analysis provides differential operators in spherical coordinates
acting on a field given by either vector B =iB*+j B’ + k B"

or scalar ¢ :
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(a) Writing down material derivative in spherical coordinates is a bit problematic, because directions of the unit
vectors 1, j, k change when fluid element changes its location; therefore, material derivatives of the unit vectors

are not zeros. Note, that this doesn’t happen in Cartesian coordinates.

(b) Note that 6 can be chosen to be polar rather than latitudinal angle; then, coefficients in some of the above

formulas will change.

(c) GFD also uses terrain-following sigma coordinates or space-time varying Lagrangian coordinates.



e Material derivative in spherical coordinates:

Du _ Du, Dv. Dw,  Di Dj Dk "
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where €2, is angular velocity (relative
to the centre of Earth) of the unit vector

corresponding to the moving element of
the fluid flow:
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Let’s find €2, by moving fluid particle in the direction of each unit vector and observing whether this motion
generates any rotation. It is easy to see that motion in the direction of i makes €2, motion in the direction of ]
makes {2, and motion in the direction of k produces no rotation. Note (see left Figure), that 2| is a rotation
around the Earth’s rotation axis, and it can be written as: €2 = € (jcos 0 + ksin ¢/). This rotation rate comes
only from a zonally (i.e., along latitude) moving fluid element, and it can be estimated as the following:

oA u u u utan 6

— = — Q) = ] f+ksinf) =j—+k
ot rcosf ] r COS (jeos f+ksin0) ‘]r+

udt = rcos 0o\ —> QII =
r

Note: the rotation rate vector in the perpendicular to €2 direction is aligned with i and given by
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The additional quadratic (in terms of velocity components) terms are called metric terms.

e Coriolis force in spherical coordinates also needs to be written in terms of the unit vectors.
The planetary angular velocity vector is always orthogonal to the unit vector i (see Figure on previous page):

Q= (0, QY, Q) = (0, Qcosh, Nsinb)

However, the Coriolis force projects on all the unit vectors:

i j k
20xu =10 2Qcosf 2Qsinf | =1i(2Qwcosl — 2Qusinf) + j2Qusin — k 2Qu cos b .
U v w

By combining the metric and Coriolis terms, we obtain the spherical-coordinates governing equations (other
equations are treated similarly):

%—(29—1—“3% )(vsin@—wcos@) = _prclos@%’
g—:+%+(29+r0080>usin9 B _%%’
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2
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Metric terms are relatively small on the surface of a large planet (r — Ry) and, therefore, can be neglected for
many process studies;
Note, that the gravity acceleration —g was included; viscous term can be also trivially added.



e Local Cartesian approximation

Both for mathematical simplicity and process studies, the governing equations can be written locally for a plane
tangent to the planetary surface. Then, the momentum equations become:

D 1 D 1 D 1
F?:JFQ (QcosQw—Qsinv) = —— @, ) (Qsinfu) = - g—z, %J& (—Qcosbu) = —— @—g,

and they can be simplified by neglecting some components of the Coriolis force:

(a) Neglect Coriolis force in the vertical momentum equation, because its effect (upward/downward deflection of
fluid particles, also known as Eotvos effect, which can be also interpreted as change of weight of zonally moving
fluid element), 1s small.

(b) Neglect vertical velocity in the zonal momentum equation, because the corresponding component of the Cori-
olis force is small relative to the other one (vertical velocity components are often small relative to the horizontal
ones).

Next, we introduce the Coriolis parameter, which is a nonlinear function of latitude: f = 202* = 2Q2sin6. The
following approximations are often made in GFD:

(a) f-plane approximation: f = f, (constant).

(b) Planetary sphericity is accounted for by S-plane approximation: f(y) = fo + By, where [ is gradient of
planetary vorticity.

With the above inputs, the resulting local Cartesian equations are:

Du 1 dp D 1 Op Dw 1 0p Dp

— — fo=-—-== - — __-r it =r =0
Dt Jv p Oz’ Dt+fu p oy’ Dt p 0z 9 Dt+qu

These equations are to be combined with the other equations (thermodynamic, material tracer, constitutive) also
written in the local Cartesian coordinates. Even this system of equations is too difficult to solve. In order to
simplify it further, we have to focus on specific classes of fluid motions. Our main focus will be on stratified
incompressible flows.



e Stratification

Let’s think about density fields in terms of their decomposition into (a) time-dependent dynamic anomalies
(primed) due to fluid motion and (b) background static fields:
p(t,z.y,2) = po+p(2) + 0/ (t, 2.y, 2) = ps(2) + p/(t, 2,9, 2)

Later on static density will be represented in terms of stacked isopycnal (i.e., constant-density) and fluid layers,
and dynamic density anomalies will be described by vertical deformations of these layers.

Pressure field can be also treated in terms of static and dynamic components:

p(t,x,y,2) =ps(2) + 9 (t, 2,9, 2).

We will use symbols [0p] and [0p'] to describe the corresponding dynamic scales.

With this concept of fluid stratification, we are ready to make one more important approximation (below) that will
affect both thermodynamic and vertical momentum equations.



e Boussinesq approximation

It is used routinely for oceans and sometimes for atmospheres, and it invokes the following assumptions:

(1) Fluid incompressibility: c; =00,

(2) Small variations of static density: p(z) < pg = only p(z) is neglected but not its vertical derivative.
(3) Anelastic approximation (used for atmospheres) is when p(z) is not neglected.

Boussinesq approximation affects thermodynamic equation and vertical momentum equation.

Thermodynamic Boussinesq equation (Dp/Dt = @Q),)

It is written for dynamic buoyancy anomaly b and invokes static buoyancy b :

D(b+ 1) o _ D
_— = : b(t,z,y,z) = —g— b(z) = —g— *
o7 Qb (t,z,y,2) 9 (2) 9 (*)

where @)y is source term proportional to ()(p). Equation (x) is often written as

b

— N (2w = Q) NQ(Z):%

()

Buoyancy frequency N measures strength of the static (background) stratification in terms of its vertical deriva-
tive, in accord with assumption (2).

NOTE: Primitive equations are often used in practice as approximation to (xx), which in the realistic general
circulation models is replaced by separate material transport equations for thermodynamic variables, and, then,
the buoyancy is found diagnostically from the equation of state:

— =Qr, — = s, b:b(T,S,Z)




Vertical momentum Boussinesq equation

It is written for pressure anomaly p’ (without static pressure part):

Ips . D 10
p=ps+p., p=pstp, — 8]; = psg (static balance), ?z;) = —; 8—]; — (momentum,)
Let’s keep the static part for a while and rewrite the last equation in the Boussinesq approximation:
Dw d(ps +7) Dw op/

— s / = — 5 — s / —_—> - = - /

(ps +77) 5, 5 (ps+0) g P =g, P
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Note, that in the vertical acceleration term p, + p' is replaced by pg, in accord with approximation (2).
Horizontal momentum equations are treated similarly.

To summarize, the Boussinesq system of equations is (we drop primes, from now on, keeping in mind that p
indicates dynamic pressure anomaly):

Du 1 Op Dv 1 Op Dw 1 Op

_ = ——_—— _— = ——_—— _— — b
Dt fo po O’ Dt +u po Oy’ Dt po 0z +o,
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e Hydrostatic approximation

For many fluid flows vertical acceleration is small relative to gravity acceleration, and gravity force is balanced
by the vertical component of pressure gradient (we’ll revisit this approximation more formally):

Dw  109p dp

- = - > _— = —
Dt p 0z 0z P

Hydrostatic Boussinesq approximation is commonly used for many GFD phenomena.

e Buoyancy frequency

N(z) has clear physical meaning. In a continuously stratified fluid consider density difference Jdp between a
fluid particle adiabatically lifted by dz and surrounding fluid ps(z). Motion of the particle is determined by the
buoyancy (Archimedes) force F' and the Newton’s second law:

Aps _ _Ops
0p = pparticte = ps(2 +02) = ps(2) = ps(z +02) = =570z = F=-gdp=g-5-02
825Z aps . 2
— s s _9(9252 — 02+ N0z=0

(a) If N? > 0, then fluid is statically stable (negative N? describes unstable stratification prone to convective
instability), and the particle will oscillate around its resting position with frequency N(z) (typical periods of
oscillations are 10 — 100 minutes in the ocean, and about 10 times shorter in the atmosphere).

(b) In the atmosphere, which is significantly non-Boussinesq, one should take into account how density of the
lifted particle changes due to the local change of pressure. Then, N? is reformulated with potential density py,
rather than density itself.



¢ Rotation-dominated flows are in the focus of GFD. Such flows are slow, in the sense that they have advective
time scales longer than the planetary rotation period: L/U > f~1.

Given typical observed flow speeds in the atmosphere (U, ~ 1—10 m/s) and ocean (U, ~ 0.1U,), the length
scales of rotation-dominated flows are L, > 100—1000 km and L, > 10—100 km. Motions on these scales
constitute most of the weather and strongly influence climate and climate variability.

Rotation-dominated flows tend to be hydrostatic (to be shown later).

Later on, we will use asymptotic analysis to focus on these scales and filter out less important faster and smaller-
scale motions.

e Thin-layered framework describes fluid in terms of stacked, vertically thin but horizontally vast layers of fluid
with slightly different densities (increasing downwards) — this is rather typical situation in GFD.

Let’s introduce physical scales: L and H are horizontal and vertical length scales, respectively, such that

L > H; then, U and W are horizontal and vertical velocity scales, respectively, such that U > W. From now
on, we’ll focus mostly on motions with such scales.

Thin-layered flows tend to be hydrostatic (to be shown later).

Later on, we will formulate models that describe fluid in terms of properly scaled, vertically thin but horizontally
vast fluid layers.



Summary

We considered the following sequence of simplified approximations:

Governing Equations (spherical coordinates) = —  Local Cartesian ~ —  Boussinesq ~ —  Hydro-
static Boussinesq.

Lost by going Local Cartesian: some effects of rotation and sphericity.

Lost by going Boussinesq: compressible motions (i.e., acoustics, shocks, bubbles), strong stratifications (e.g.,
inner Jupiter).

Lost by going Hydrostatic Boussinesq: large vertical accelerations (e.g., convection, breaking gravity waves,
Kelvin-Helmholtz instability, density currents, double diffusion, tornadoes).

In what follows we consider the simplest relevant thin-layered model, which is locally Cartesian, Boussinesq and
hydrostatic, and try to focus on its rotation-dominated flow component...



BALANCED DYNAMICS

Fluld surface

e Shallow-water model

This is our starting point that describes motion

of a horizontal fluid layer with variable thickness,
h(t,x,y). Density is a constant p, and vertical
acceleration is neglected (hydrostatic approximation),
hence:

dp
Loy pltayz) = bty - 2],

where we took into account that p = 0 at z = h(t, z,y).
Note, that horizontal pressure gradient is independent of z; hence,
u and v are also independent of z, that is, fluid moves in columns.

In local Cartesian coordinates the horizontal momentum equations are Cl:}

Du 1 Op oh Dv 1 Op oh
= —fo=-— =g, Ttfu=——L——g=|
Ox Dt po Oy Jy : :
" D 0 n 0 n 0 B
— =—4u—+4v—. : :
WSS Dt T ot Ox Oy : "’F—\\\_
Continuity equation is needed to close the system, so let us e o
derive it from the first principles. Recall that horizontal velocity
does not depend on z and consider mass budget of a fluid column. I T

The horizontal mass convergence (see earlier derivation of the l

continuity equation) into a fixed-radius fluid column is by
application of the divergence theorem:

NOONON RN N N N N N NN
M:—/pou-dS:—fpohu-ndl:—/V-(pghu)dA,
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and this must be balanced by the local increase of the mass due to increasing height of fluid column:

d d Oh Oh Dh
M= [pdV=- [ phdA= [ py= dA =  —=-V(h — | +hVu=
dt/pg dt/ApO /Apﬂat 5 = — Vi) 5y ThVu=0




(a) Note that the above shallow-water continuity equation can be obtained from the original one by transformation
p — h, hence, h can be treated as density of compressible fluid.

(b) It can be also obtained by integrating 3D incompressible continuity equation V-u + dw/0z = 0, which
yields vertical velocity component linear in z, and by using kinematic boundary conditions (see later): w(h) =
Dh/Dt, w(0) = 0.

Relative vorticity vector is defined as curl of velocity, but in the shallow-water flow it contains only vertical
component, because u and v have no z-dependence:
v  Ou
= |Vxu| =—— —
where ( > 0 is counterclockwise cyclonic motion, and ¢ < 0 is clockwise anticyclonic motion.
Note that relative vorticity describes rotation of fluid particles, rather than circular motions of fluid that can be
irrotational.

e Vorticity equation is obtained by taking curl of the momentum (vector) equation (i.e., taking y-derivative of
the first equation and subtracting it from the z-derivative of the second equation). Remember to differentiate
advection term of the material derivative; note that curl of the pressure gradient term is automatically zero.

The resulting vorticity equation is:

D¢ n [au
Dt ox
By using velocity divergence from the shallow-water continuity equation we obtain single material conservation
equation:
D¢ 1 Dh  df D(C+f) 1

1 Dh
o Ry =0 = e rH =0

df

— =0
dy

v
+8_y] (C+ f)+w

2150



e Potential vorticity (PV) material conservation law:

C+f
h

Dq_
Dt

0, ¢

(a) This is very powerful statement that reduces dynamical description of fluid motion to solving for evolution of
materially conserved, scalar quantity. Analogy with electric charge and field: PV can be viewed as active tracer
that changes its own, induced velocity field.

(b) For each fluid column, conservation of PV constrains and mutually connects changes of ¢, f(y), and h,
where changes of the latter can be interpreted as stretching/squeezing of moving fluid columns.

(c) PV inversion problem: Under certain conditions (e.g., when flow is rotation-dominated and hydrostatic) flow
solution can be determined entirely from evolving PV. For example, when h = H = const the inversion is trivial.

(d) The above PV conservation law can be derived for many layers and continuous stratification.

(e) More general formulation of PV is referred to as Ertel PV :

q=—g(C+f)00/0p,

where 6 is potential density.



e Rossby number is ratio of scalings for material derivative (i.e., horizontal acceleration) and Coriolis forcing:

UL U
‘U T 7L

For rotation-dominated motions: [¢ < 1].

More conventional notation for Rossby number is Ro, but we’ll use € to emphasize its smallness and apply the
small-e asymptotic expansion.

Given smallness of €, we can expand the governing equations in terms of the geostrophic (leading-order terms)
and ageostrophic (e-order terms) motions:

u=u,+eu,+o(€),  p=pgtep,tole®), P =p+ep,+o(e).

e Rossby number expansion

The goal is to be able to predict strong geostrophic motions — this requires taking into account weak ageostrophic
motions. Let’s consider [-plane, focus on relatively slow mesoscale motions, and express velocity scale via e:

L L 1 f

T="el =~ L/Ry ~ ¢ —> ~ L~ ey,
U~ chl oy /Ry ~ € By Ro ¢fo
Consider e-expansion of the horizontal momentum equations:
Duy, 5 B 1 Op, € Op,
Dt fo(vy +€vy) — Byv, +€...] = 0 O o O
Du, 5 1 Op, € Op,
— * Ug + €Ug) + PY UG+ €7]...] = - - —
Dt fO ( g ) By g [ ] 0 8y 00 ay
chU U efeU  €fU [P']/(poL) e[p']/(poL)

Note that Coriolis force can be balanced only by pressure gradient term — this is called geostrophic balance.



e Geostrophic balance

It is obtained from the horizontal
momentum equations at the leading order:
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(a) Proper scaling for pressure must be

'] ~ pofoUL.

(b) Counterintuitive dynamics: Induced local pressure anomaly results in a circular flow around it, rather than in
a classical fluid flow response along the pressure gradient.

v,

(c) It follows from the geostrophic balance that u, is nondivergent: % + — = (see later that w, =0 ).

or Oy

(d) Geostrophic flow is 2D and nondivergent, hence, it can be described by a velocity streamfunction; note that
pressure in the geostrophic balance acts as streamfunction in disguise!

(e) Geostrophic balance is diagnostic rather than prognostic equation, hence, it can not be used for predictions of
any temporal evolution. Therefore, the next order of the e-expansion is needed to determine the flow evolution
(see later).

(f) Geostrophically balanced flows are also hydrostatically balanced (see next).



e Hydrostatic balance

Vertical acceleration is typically small for large-scale geophysical motions, because they are thin-layered and
rotation-dominated. Let’s prove this formally:

Dw 1 O(ps+py) Dw Ops
Dt -9, . ~0, = PsY
Ps + Py 0z Dt 0z
Ip
— 8—,29 = —Pg9 ()

Use the corresponding scalings
W=UH/L, T=L/U [pl=pofoUL, U =¢efyL

to identify the validity bound for the leading-order hydrostatic balance:

D ) HU? UL H
w Pg < Pofo N E(

2
- “ly = 1
Dt < po 0z L? poH L) <

If the last inequality is true, then vertical acceleration can be neglected — this situation of hydrostatic balance
routinely happens for large-scale geophysical flows.



e Scaling for geostrophic density anomaly

From the hydrostatic balance for geostrophic flow and the geostrophic scaling for pressure [p'], we find scaling
for geostrophic dynamic density anomaly p, :

Pl pofoUL _ foL?

/
~ = — F

[pg]

where F'is Froude number (it can be also written as ratio of characteristic flow velocity to the fastest wave
velocity):

_ fgLQ L\? _ \/QH 4
F = = [ — [, = ~ O(1
< d) R d fo ( 0 km),

and L, is the external deformation length scale.

For many geophysical scales of interest: F' < 1, therefore, it is safe to assume that

Fre = [0g] = po €

Thus, ubiquitous and powerful, double-balanced (geostrophic and hydrostatic) motions correspond to nearly flat
isopycnals.



e Continuity equation for ageostrophic flow

Let’s now turn attention to the continuity equation and also expand it in terms of small ¢:

dp 0 0 0
(9_[t)+ g);)—i- 59'0;)—% ((,')O:U) =0, P = pPstpPg, U=1UgtEU, V=0Vy+€EU, W= WyF+eEW, —
dp ou, Ov dp dp Ou, 0v, 0
a—;+(P5+/)g) <8—:Ug+8—yg> Ty a—;+vg a—;+€ps <%+8—y> e’ [H’% (wyps+€waps+wepg+ewapg) =0
Use % -+ % —(0 and p, ~ € to obtain at the leading order:
or Oy
O(wyps
(gip ) =0 — Wy ps = const
Because of the BCs, somewhere in the water column w,(z) has to be zero
H
—  |w, =0, W = €W, [w]:W:eUf

At the next order of the small-e expansion we recover the continuity equation for ageostrophic flow component:

O(wqps) + (8% 3%) _ol

0z Ox + 0y

Let’s keep this in mind and use it in the derivation of geostrophic vorticity equation.



e Geostrophic (absolute) vorticity equation

It is obtained by going to the next order of € in the shallow-water momentum equations:

Dgu, 1 Opa Dyv, 1 Opa D, 0 0 0

Dt _(Efan—FUgﬁy) - _EE @x ’ Dt +(€f0ua+ugﬁy) — _EE 8y , Dt = at+ug %—Fvg a—y

(1) Take curl of the above equations (i.e., subtract y-derivative of the first equation from x-derivative of the second
equation) and mind complexity of the material derivative;

(i1) Use nondivergence of the geostrophic velocity;
(ii1) Use continuity equation for ageostrophic flow to replace horizontal ageostrophic velocity divergence.

Thus, we obtain the geostrophic vorticity equation:

DyGy
Dt

D d sWa ov ou
vy = TG+ ) = e A (= 2

(a) This looks almost as PV material conservation law, but unfortunately it is not the one, because of the rhs term.
Can the rhs be absorbed under the material derivative, so that PV conservation law is recovered?

(b) Evolution of absolute vorticity (,+ Sy is determined by divergence of the vertical mass flux due to tiny vertical
velocity. This is physical process of squeezing or stretching isopycnals; it is the form drag mechanism (discussed
below).

(c) If ps 1s constant within a layer (i.e., thin-layered framework), then, it cancels out from the rhs, and we are left
with the vertical component of velocity divergence.

(d) Note that, although vertical velocity is tiny, its divergence is at the leading order of the absolute vorticity
equation. Can this divergence be determined from the leading-order geostrophic fields?

(e) Yes! Quasigeostrophic theory expresses this divergence in terms of vertical movement of isopycnals, then,
it relates this movement to geostrophic (dynamic) pressure, which turns to be geostrophic streamfunction in
disguise.

(f) On the other hand, evolution of absolute vorticity produces squeezing and stretching deformations, which
induce motions in the neighbouring isopycnal layers.



e Form drag

This is horizontal pressure-gradient force due to varying isopycnal-layer thickness. In turn, isopycnal variations
can arise due to vertical squeezing and stretching.

Geostrophic motions are very efficient in terms of redistributing horizontal momentum vertically, through the form
drag mechanism.

Let’s consider a constant-density fluid layer confined by two interfaces, h;(z) and hy(z), and periodic in zonal
direction with period L ; let’s also assume that situation is 2D (homogeneous in meridional direction).

Zonal pressure-gradient force acting on a volume of fluid is obtained by integration over the domain:

h op Op 1M op1 Ops ohy Ohy
——//h drdz = _Z/O 5 7], = G ey =gy gy

where p; and po are pressures on the interfaces; dp/Jdx does not depend on vertical position within a layer;
and the overbar denotes zonal averaging. Note, that for x-derivatives zonal averaging is zero due to the function
periodicity.

Note that force F), acting on fluid is zero, if both boundaries are flat. This statement can be reversed: if isopy-
cnal boundaries of a fluid layer are deformed (e.g., by squeezing or stretching), the layer can be accelerated or
decelerated by the corresponding form drag pressure force.

Thus, if a geostrophic motion in some isopycnal layer squeezes or stretches it, the underlying layer is also de-
formed, and the resulting pressure-gradient force accelerates fluid in the underlying layer.



QUASIGEOSTROPHIC THEORY

e Two-layer shallow-water model P1

.. . . hy(x,yt
This is a natural extension of the single-layer shallow-water No(X,Y,t) l R
model. It illuminates effects of isopycnal deformations on ™ i e R ——— —
the geostrophic vorticity. This model can be straightforwardly H I
extended to many isopycnal (i.e., constant-density) layers, ’ Pa> Py
thus, producing the family of isopycnal models. ha(x:3it)
The model assumes geostrophic and hydrostatic balances, 1
and usual Boussinesq treatment of density: ]

Ap=py—p1 < p1,p2, pLR P2 R

All notations are introduced on the Figure.
The layer thicknesses and pressures consist of the static and dynamic components:

hl(t7x7y) — Hl + H2 + 771(7573373/) 3 hZ(t7x7y) — H2 + 772(t7x7y)7
p1=p1g(Hi + Hy — 2) + pi(t, 2, y) pa = p1gHi + pag(Ha — 2) + ph(t, z,y),

Here, the shallow-water dynamic pressure anomalies are independent of z, as we have seen, and the static pres-
sures were obtained as the following.
Let’s integrate out static pressure in the top layer:

Py = —/ pgdz = —pagHy — p1g(z — Hy) + C4
0
Since Pi(z = Hy + Hy) = 0, we obtain C) = p1gH; + p2gH> and find:
P =pg(Hy + Hy — 2) .
Similarly, in the deep layer:
Py = — / p2gdz = —pagz + Co
0

Since P(z = Hy) = Pi(z = Hs), we obtain Cy = p1gH; + p2gH> and find:
Py = p1gHy + pog(Hy — 2)



e Continuity boundary condition for pressure

This is just a component of the continuity boundary condition for stress tensor (sometimes, this involves surface
tension). Here, it allows to relate dynamic pressure anomalies and isopycnal deformations.

In the two-layer model this boundary condition is equivalent to saying that:
(a) pressure at the upper surface must be zero (more generally, it must be equal to the atmospheric pressure),
(b) pressure on the internal interface must be continuous, i.e., p; = ps = P.

Note, that in the absence of motion (p]; = p, = 0) both of these conditions are automatically satisfied for the
static pressure component:

Pils=m+m, =0, P1leem, = D2l = p1gHy .

In the presence of motion, the upper-surface pressure continuity statement p;|.—, m,+m, = O translates into

Pyt y) = prgm(t, x,y)|.

On the internal interface, the pressure continuity statement is:
P =pilsmprm, = prg(Hy —m2) + 91, P = polocppin, = prgHi — pagne + ph

— ph(t,z,y) = pi(t, 2, y) + gApme(t, z,y)

Thus, by using expression for the upper-layer pressure, we obtain:

ph(t,z,y) = prgm(t, 2, y) + gApna(t,z,y)|.




e Geostrophy

It always appears at the leading order of small-e expansion and links horizontal velocities and slopes of the
1sopycnals (i.e., isopycnal interfaces), which correspond here to the upper and deep layers:

o 8771 o 8771 )

Jovr = —g or Jour = —g By |
Cfg = —grm BpOm e dm BpO
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Next, we recall that p; = po =~ p (Boussinesq argument) and introduce the reduced gravity parameter:

g =glp/p.

This allows us to simplify the second-layer geostrophic equations:

o om , O o dm , Ona
fov2 = g@az g@x’ foua = g@y g@y'




e Geostrophic vorticity equations

Now, let’s take a look at the full system of the two-layer shallow-water equations:

Du,  an Du, O d(h1 — ha) _
o =90 oy Tfw = 95, g + V-((h1 = hg)uy) =0,
DUQ o 8771 ,8772 DUQ o (97]1 ,8772 ahg o

At the leading order the momentum equations are geostrophic, as we have argued.

At the e-order, we can formulate the layer-wise vorticity equations with the additional rhs terms responsible for
vertical deformations. For this purpose:

(a) Expand the momentum equations in terms of ¢,

(b) take curl of the momentum equations (9(2)/0x — 9(1)/0y),

(c) replace divergence of the horizontal ageostrophic velocity (u,,v,) with the vertical divergence of w,.

The resulting geostrophic vorticity equations are:

D, ¢, ow,, D,, 0 0 0 _ % ou,,

Dt +an:f0 P E:§+un%+vna_ya Cn =

ox Oy’

n=1,2

-~

Within each layer horizontal velocity does not depend on z, therefore, vertical integrations of the vorticity equa-
tions across each layer yield (here, we assume nearly flat isopycnals everywhere by replacing actual layer depths
with the constants:

hl—hngl, h2%H27

on the left-hand sides, thus obtaining the depth-integrated geostrophic vorticity equations:

Hy <D5§1 + ﬁm) = fo (wi(h1) — wi(hs)), Hy (Dl;%

Here we extended the assumption of nearly flat isopycnals to everywhere, beyond the scale of motions.
Note, that in (%) we took ws(bottom) = 0, but this is true only for the flat bottom (along topographic slopes
vertical velocity can be non-zero, as only normal-to-boundary velocity component vanishes).

+ Buz) = fows(ha) (+)



e Vertical movement of isopycnals in terms of pressure

This step can be worked out and essentially closes the equations.

For that we use kinematic boundary condition, which comes from considering fluid elements on a fluid interface
or surface, such that the vertical coordinates of these elements are given by z = h(t, x,y).

Next, let’s consider function F(¢,z,y,2) = h(t,z,y) — z, and acknowledge, that it is always zero for a fluid
elements sitting on the interface or surface; hence, its material derivative is zero:

DF _ _Dr_ 0z _ Dh
Dt~ Dt Vo Y= Dt

By combining the kinematic boundary condition with the Boussinesq argument (p; /= py =< p), we obtain:

— Dyhy, Dyny, 1 Dlpll 1 D1a2(p/2 _pll)

Dt Dt wi{f) pg Dt ’ Apg Dt

wy(hy) w1 2(hs) ()

Pressure is streamfunction in disguise.

In each layer geostrophic velocity streamfunction is linearly related to dynamic pressure anomaly, as follows from
the geostrophic momentum balance:

_ 1 ap;L _ 1 ap;z o L, o (9% o a¢n
fovn— P Ox foun— ’ &g — ¢n— foppn ) Up = &g y Up = O

(skskk)

Relative vorticity ( is always conveniently expressed in terms of ) :

_Ov Ju
C_@x_ﬁy_vw

Let’s now combine (%), (*%) and (x*x) to obtain the fully closed equations predicting evolution of the leading-
order streamfunction...



e Two-layer quasigeostrophic (QG) potential vorticity (PV) model

D¢y f02 p D D1y B
Dt = gH, (Ap Dt (W = ¥2) + Dt ) =0,
Dy i p Do B
D1 + [ug oH, Ap Dt (12 — 1) =0

(a) Note that Ap < p, therefore the last term of the first equation is neglected (i.e., the rigid-lid approximation
is taken; it states that the surface elevation is much smaller than the internal interface displacement).

(b) Familiar reduced gravity is ¢' = gAp/p, and stratification parameters are defined as

2 2
Slz—fo , Sy= ,fo .
g Hy 9'Hy

(c) Dimensionally, [Si] ~ [S2] ~ L™2 — QG (i.e., double-balanced) motion of stratified fluid operates on the
internal deformation scales:

Rlzl/\/s_ly R2:1/\/5’727

which are O(100km) in the ocean and about 10 times larger in the atmosphere.
Note: R, < Ly=+/gH/ fy, because ¢ < g.

With the above information taken into account, we obtain the final set of two-layer QG PV equations:

Dy
Dt

D,

Di (Vs — Sy (1o — )] + Bua =0

(VP01 — S1 (1 — )] + Bur =0,

Potential vorticity anomalies are defined as:

g = Vi — S1 (1 —b2),  qo = Vhy — S (1o — 1)

Note: These expressions for the PV anomalies can be obtained by linearization of the full shallow-water PV
(without proof).




¢ Potential vorticity (PV) material conservation law.

(Absolute) PV is defined as

Ih=qg+f=a+fo+by, Ih=¢+f=q¢+ fo+By.

(a) PV is materially conserved quantity:

D,IL, 8Hn+8wn oL, 9y, 11, 0 n—1.9
Dt Ot oxr Oy oy o0r -

(b) PV can be considered as a “charge” advected by the flow; but this is active charge, as it defines the flow itself.

(c) PV inversion brings in intrinsic and important spatial nonlocality of the velocity field around “elementary
charge” of PV:

I = V21 — 51 (1 — o) + By + fo, o= Vo — So (2 — 1) + By + fo

(d) PV consists of of relative vorticity, density anomaly (resulting from isopycnal displacement), and planetary
vorticity.

e Continuous stratification yields (without derivation) similar PV conservation law and PV inversion formula
for the geostrophic fields:

I oY O pofo OV 5 g dps
- __Z7 _ ¥ _ _poJo &% N _ 9
¥ fopp7 “ oy’ YT o P g 0z’ (2) ps dz
o 0von gual o R0 0
8t+8:c oy ay(?:r:_o’ H_varpS(?z(NQ(z)@z)JrfOJrﬁy

Note, that density anomalies are now described by vertical derivative of velocity streamfunction, rather than by
deformation of interface 7 that is related to (vertical) difference between the streamfunction values above and
below it.



e Boundary conditions for QG equations.
(a) On lateral solid boundaries there is always no-normal-flow condition: ¥ = C(t).

(b) The other lateral boundary conditions can be periodic, double-periodic,
no-slip:

oY _

on
free-slip:

0%

anz ~ O
partial-slip:

Oy 10y _

on? o on

where derivatives are normal to the surface.

0,

0,

(c) There are also integral constraints on mass and momentum.
For example, one can require that basin-averaged density anomaly integrates to zero in each layer:

//pdxdy:() — //a—wdxdy:().
0z

e Ageostrophic circulation (of the e-order) can be obtained with further efforts, and even diagnostically.

For example, vertical ageostrophic velocity is equal to material derivative of pressure, which is known from QG
solution:

1 Dip)

wl(hl) = —

1 D /_ /
o D ’ U}l(hg)_ 1(292 p1)

VAN Dt




Summary about QG PV models
(a) Midlatitude theory: QG framework does not work at the equator, where f = 0.

(b) Vertical control: Nearly horizontal geostrophic motions are determined by vertical stratification, vertical com-
ponent of (, and vertical isopycnal stretching.
(¢c) Four main assumptions that have been made:

(1) Rossby number ¢ is small (hence, the expansion focuses on mesoscales);

(i1) B-plane approximation and small meridional variations of Coriolis parameter;

(iii) isopycnals are nearly flat ([6p'] ~ eFpy ~ €2py) everywhere;

(iv) hydrostatic Boussinesq balance.



¢ Planetary-geostrophic equations (extra material)

This is another asymptotic model that can be similarly derived for small-Rossby-number motions on scales that
are much larger than internal deformation scale R and for large meridional variations of Coriolis parameter.

Let’s start from the full shallow-water equations,

Du oh Do O Dh
D VT 95, D T 9%, pr ThVu=0,

and consider very large scales: F' = L?/R?> ~ e 1> 1.

Let’s assume that, for large scales of motion, fluid height variations ( [0p'] ~ €F'py ) are as large as the mean
height of fluid:

h=H(1+¢eFn)=H(1+n).
Asymptotic expansions u = ug + €u; + ..., and n =1y + en; + ... yield:

%_EgH%+O(E2)7 ................ y

duy
‘ [ Ox ox

W‘FUO'VUO_]CUJ — Jug=—gH

0
el [% -+ uO-VnO} + (1 +€Fny)V-uy=0.

Thus, only geostrophic balance is retained in the momentum equation, and all terms are retained in the continuity
equation, and the resulting set of equations is:

2 I
Ox

~fv = u=—05.
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EKMAN LAYERS

¢ Ekman surface boundary layer i :> Wind stress (1)
Boundary layers are governed by physical processes very ___WI h
different from those in the interior. Non-geostrophic effects =
)

at the free-surface or rigid-bottom boundary layers are i
responsible for transferring momentum from wind stress or : =

o . Velocity
bottom stress to the interior (large-scale) geostrophic currents. H

Let’s consider Ekman layer below the ocean surface:

(a) Horizontal momentum is transferred down by the vertical =y
turbulent flux (its exact form is unknown due to complexity of
many physical processes involved), which is commonly modelled
by vertical viscosity (i.e., diffusion of momentum) with constant
turbulent viscosity coefficient:

o’ o*u

Wwe— = A, ——

0z Y027

where overbar and prime indicate the time mean and fluctuating flow components, respectively.

Note that vertical viscosity must be balanced by some other term containing velocity, because momentum diffu-
sion creates flow velocity, and at the leading order only Coriolis force contains velocity.

(b) Consider boundary layer correction, so that u = u, + ug in the thin layer with depth /i :
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The Ekman balance 1s

0%u 0%v
U872E ) fOuE - Av872E (*)

To make the viscous term important in the balance, the Ekman layer thickness mustbe hp ~ [A,/ fo]'/?, therefore,
let’s define:

he = [24,/ fo] /2]
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Typical values of hp are ~ 1 km in the atmosphere and ~ 50 m in the ocean.

(c) If Ekman number,

o= () = 7

is small, i.e., £’k < 1, then, the boundary layer correction can be matched to the interior geostrophic solution.

(d) Boundary conditions for the Ekman flow correction

are: zero at the bottom of the boundary layer and wind Wind .~ ~—-45
stress condition at the upper ocean surface: : ‘\\
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Let’s look for solution of (x) and (xx) in the form:

ug = /e [Cl CoS <i> + (5 sin (iﬂ ,
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vp = e*/hE [Cg cos (i) + (4 sin (é)} ,

and obtain the Ekman spiral solution:
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e Ekman pumping

Vertically integrated, horizontal Ekman transport Up= f urg dz can be divergent. It satisfies:

oug oug 1
— — Av __~ _ = - x’
JoVE [ 0z ltop 0z bottomi| 00 i
(%E aUE 1
=A, | — - —_= = — 7Y
fOUE [ 0z top 0z bottom} L0 !

The bottom stress terms vanish due to the exponential decay of the boundary layer solution. In order to obtain
vertical Ekman velocity at the bottom of the Ekman layer, let’s integrate the continuity equation:
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Recall the non-divergence of the geostrophic velocity and use the above-derived integrated Ekman transport com-
ponents to obtain
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Thus, the Ekman pumping (i.e., vertical velocity at the bottom of the boundary layer) wg can be found directly
from the wind curl:
1

Wg = — VX7
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Conclusion: Ekman pumping provides external forcing for the interior geostrophic motions by vertically squeez-
ing or stretching isopycnal layers; it can be viewed as transmission of an external stress into the geostrophic-flow
forcing.

e Ekman bottom boundary layer can be solved for in a similar way (see Practical Problems).



ROSSBY WAVES

e In broad sense, Rossby wave is inertial wave propagating on the background PV gradient. First discovered in
the Earth’s atmosphere.

Jet axis

The jet stream begins to undulate, Rossby waves begin fo form,

Waves are strongly developed. The When the waves are pinched off,
cold air occupies troughs of low pressure. they form cyclones of cold air.
Copyright & AN, Strahler '



e Oceanic Rossby waves are more difficult to observe. Initially they were detected from in situ measurements,
but nowdays they are observed from satellite altimetry.

Cycle 21 (April 13, 1993)
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Flow speed from a high resolution
computation shows many eddies/waves —>

Many properties of the flow fluctuations
can be interpreted in terms of linear
Rossby waves.

<= Visualization of oceanic eddies/waves
by virtual tracer



e General properties of waves
(a) Waves provide interaction mechanism which is both long-range and fast relative to flow advection.

(b) Waves are observed as periodic propagating (or standing) patterns, e.g.,
Y = Re{A expli(kx + ly + mz — wt + ¢)] },

which is characterized by amplitude, wavenumbers, frequency, and phase.
Wavevector is defined as the ordered set of wavenumbers: K= (k, [, m).

(c) Dispersion relation comes from the dynamics and relates frequency and wavenumbers, and, thus, yields phase
speeds and group velocity.

(d) Phase speeds along the axes of coordinates are rates at which intersections of the phase lines with each axis
propagate along this axis:

these speeds do not form a vector (note that phase speed along an axis increases with decreasing projection of K
on this axis).

(e) Fundamental phase speed C, = w/K, where K = |K]|, is defined along the wavevector. This is natural,
because waves described by complex exponential functions have instantaneous phase lines perpendicular to K.
Fundamental phal%e velocity (vector) is defined as
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Cp K.

KKK
(f) Group velocity (vector) is defined as
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(g) Propagation directions: phase propagates in the direction of K; energy (hence, information!) propagates at
some angle to K.

(h) If frequency w = w(z,y, z) is spatially inhomogeneous, then trajectory traced by the group velocity is called
ray, and the path of waves is found by ray tracing methods.



e Mechanism of Rossby waves

Consider the simplest 1.5-layer (a.k.a. the equivalent barotropic) QG PV model, which is obtained by considering
Hy — oo 1in the two-layer QG PV model:
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where R~2 = S is the stratification parameter written in terms of the inverse length scale parameter R.
By introducing the Jacobian operator J(A, B) = A, B, — A,B,, the corresponding equivalent barotropic equa-
tion can be written as
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Note, that in the limit R — oo the dynamics becomes purely 2D and deformations of the layer thickness become
infinitesimal; this is equivalent to ¢’ — oc.

We are interested in small-amplitude flow disturbances North
around the state of rest; the corresponding linearized
equation (x) is
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Thus, the resulting Rossby waves dispersion relation is:
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Plot dispersion relation, discuss zonal, phase and group speeds...
Consider a timeline in the fluid at rest, then, perturb it (see Figure): the resulting westward propagation of Rossby
waves is due to the 3-effect and material PV conservation.



¢ Energy equation

Multiply the equivalent-barotropic equation by —/ and use the following identity,
0 0 (V)? 0
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to obtain the (mechanical) energy equation:
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where E is energy density, consisting of the kinetic (first term) and potential (second term) components; and S
1s energy flux (vector).

(a) It can be shown (see Practical Problems), that the mean energy (F) of a wave packet propagates according to:
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where C, is the Rossby waves group velocity.
This is a general statement, which is true for other types of waves.

(b) The energy equation for the corresponding nonlinear equivalent-barotropic equation is derived similarly; its
energy flux vector is:
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and note that it contains additional cubic terms.
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(c) Similar equations can be derived for multi-layer QG PV models and not only for the state of rest but also for
situations with background flows.



e Background-flow effects

Consider small-amplitude flow disturbances around some steady background flow given by its streamfunction
U(z,y, z). What happens with the underlying dispersion relation and, hence, with the waves?

To simplify the problem, let’s stay with the (equivalent barotropic) 1.5-layer QG PV model, and let’s consider
some uniform, zonal background flow W = —Uy, and substitute it into the dynamics and obtain:
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The linearized dynamics becomes:

(G +va) (Vo) + 57 (4 ) ¢

hence, the dispersion relation becomes:

N w ~ 6i(kx—|—ly—wt) — w= kU —

(a) In the dispersion relation, the first term kU is the Doppler shift, which is due to advection of wave by the
background flow;

(b) The second term contains effect of the altered background PV; note, that background flows can alter PV in
complicated ways. Bottom topography also alters the background PV (not considered here).

(c) There are also corresponding changes in the group velocity C, ;

(d) Complicated 2D and 3D background flows profoundly influence Rossby waves properties, but the correspond-
ing dispersion relations are difficult to obtain; normal modes rather than Fourier harmonics are to be considered
and found numerically;

(e) The underlying background flow can be nonstationary, in principle, but the linear-waves problem becomes
nearly intractable.



e Two-layer Rossby waves

Let us consider the two-layer QG PV equations linearized around the state of rest:
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Diagonalization of the dynamics: the governing equations can be decoupled from each other by a linear transfor-
mation of variables from streamfunctions of the layers to streamfunctions of the vertical modes. The diagonalizing
layers-to-modes transformation and its inverse (modes-to-layers) transformation are linear operations.

In the two-layer model context, the barotropic mode ¢ and the first baroclinic mode ¢, are defined as:
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These modes represent distinct (i.e., governed by different dispersion relations) families of Rossby waves, which
are referred to as barotropic and baroclinic, respectively:
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where (important) parameter Rp is referred to as the first baroclinic Rossby radius of deformation:
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Note, that Rp depends on stratification and Coriolis parameter; in the ocean it varies from 200 km near equator
to 2 km in the Arctic; in the atmosphere it is about 1000 km.



Purely barotropic mode can be written in terms of layers as:

¢1:¢2:¢1,

therefore, it is vertically uniform and actually describes vertically averaged flow.

(a) Barotropic waves are fast (typical periods are several days in the ocean and 10 times faster in the atmo-
sphere); their dispersion relation does not depend on stratification.

(b) Barotropic waves do not involve isopycnal deformations corresponding to density (heat) anomalies, hence,
they are thermodynamically neutral.

Purely baroclinic mode can be written in terms of layers as:
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therefore, it changes sign vertically, and its vertical integral 1z sero.

(a) Baroclinic waves are slow (typical periods are several months in the ocean and 10 times faster in the atmo-
sphere); they can be viewed as propagating anomalies of the pycnocline (thermocline), because the streamfunction
has large vertical derivative (hence, there is large density anomaly).

(b) Baroclinic waves are thermodynamically active.



e Continuously stratified Rossby waves Dharndty [Frofids Pyl Thee Darmciri: Mo
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Boundary conditions at the top and bottom are to be specified, e.g., by imposing zero density anomalies:
dd(z)
Y = O .
P dz |:=0,-H (%)

Combination of (x) and (xx) is an eigenvalue problem that can be solved for discrete spectrum of eigenvalues
and eigenmodes.

(a) Eigenvalues )\, yield dispersion relations w, = w,(k,[), and the corresponding eigenmodes ¢, (z) are the
vertical normal modes, like the familiar barotropic and first baroclinic modes in the two-layer case.

(b) The Figure illustrates the first, second and third baroclinic modes for realistic ocean stratification.

(c) The corresponding n-th baroclinic Rossby radius Rg) = \n 12 Characterizes horizontal length scale of the
n-th vertical mode. The higher is the mode, the slower and more oscillatory in vertical it is.

(d) The (zeroth) barotropic mode has Rg) = o0 and )y = 0.

(e) The first Rossby deformation radius Rg) is the most important fundamental length scale of geostrophic tur-
bulence; it sets length scale of mesoscale (synoptic) eddies.



LINEAR INSTABILITIES

e Linear stability analysis is the first step towards understanding turbulent flows. Sometimes it can predict some
patterns and properties of flow fluctuations.
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These Figures illustrate different regimes of thermal convection.
Linear stability analysis is very useful for simple flows

(e.g., convective rolls), somewhat useful for intermediate-complexity
flows (convective plumes), and completely useless in highly
developed turbulence.

e Small-amplitude behaviours can be predicted by linear stability
analysis very well, and some of the linear predictions carry on to
turbulent flows.

e Nonlinear effects become increasingly more important in more
complex turbulent flows.




Shear instability occurs on
flows with sheared velocity

Eventually, there is nonlinear

evolution leading to substantial
stirring and eventual molecular
mixing of material and vorticity




Instabilities of jet streams

Developed instabilities of idealized jet
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e Barotropic instability
This is horizontal-shear instability of (geophysical) flows.

Let us find a necessary condition for this instability in the context of the equivalent barotropic (i.e., 1.5-layer QG
PV) model configured in a zonal channel (—L < y < +L) and linearized around some zonally uniform and
meridionally sheared background flow U (y) :

(G o 2 [Po- o] s 0y, Ay L
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where 1I is the background PV.

Consider usual wave solution with meridional amplitude function ¢(y) :
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Multiply the last equation by (complex conjugated) ¢*, integrate it in ¥, using the simple identity,
* a * *
¢ Pyy = a_y(¢ Qby) - ¢y¢y-
Take into account that integral of y-derivative is zero, because of the no-flow-through BCs on the channel sides:

¢(—L) = ¢(L) = 0.

The resulting integrated equation
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can be written so, that its first integral [...] is real, and the second integral is complex, so that:
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If the last integral is non-zero, then, necessarily: w; =0, and the normal mode ¢(y) is neutral; this results in the
following theorem.

Necessary condition for barotropic instability states that w; can be nonzero (hence, instability has to occur for
w; > 0), only if the above integral is zero, hence, ONLY IF the background PV gradient dII/dy changes sign
somewhere in the domain.

Note: this is equivalent to existence of inflection point in the velocity profile in the case of 5 = 0 and pure 2D
dynamics.

The necessary condition is also true for non-zonal parallel flows.



e Baroclinic instability
This is vertical-shear instability of geophysical flows.

Let us find a necessary condition for this instability in the context of continuously stratified QG PV model in
a zonal channel. In a channel with vertically and meridionally sheared but zonally uniform background flow
U(y, z), let us find the background PV 1I and its meridional gradient:

ou 9 1f¢ o oIl 0*U fé ou
M= By — — — — |20 = ey B A
by Jdy 0z [NQ QZ/U(y’Z) dy] ’ dy p oy? 0z [NQ 8,2]
The linearized around the background flow material conservation law for the total PV is:
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We need BCs at the bottom and top of the fluid, because of the involved vertical derivatives. Let us recall the
kinematic BC and take into account that material particle at the surface (or bottom) always stays at the surface
(bottom); also, its density is conserved because of the involved Boussinesq approximation.

Conservation of density (sum of dynamic density anomaly and background density) on material particles can be
written as (first, in the full form; then, in the /inearized form):

Dyp _ Dy(py+ o)

Dt Dt
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— 8t+8t+(U+ )8 + (U + u) (%_H) 9y +w o =0.

By linearizing out the quadratic terms and taking into account that the background density is stationary and x-

independent, we obtain linearized conservation of density (i.e., linearized thermodynamic equation for Boussinesq
fluid):
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Consider this equation on the bottom and top rigid boundaries, hence w = 0 and obtain the vertical BCs:
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Then, in the continuously stratified fluid with background flow, this statement translates into:
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With the wave solution 1) ~ ¢(y, ) €@~ the linearized PV equation (x) and the vertical BCs (%) become:
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Let’s multiply the above equation by ¢* and integrate over z and y. Vertical integration of the second term
involves the boundary conditions:
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Taking the above into account, full integration of the ¢*-multiplied equation for ¢ yields the following imaginary
part equal to zero:
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In the common situation: 5 0 at 2=0,H = a necessary condition for baroclinic instability is that

y4
oll(y, z)
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NOTE: in practice, vertical change of the PV gradient sign always indicates baroclinic instability.

changes sign at some depth.



e Eady model

This is classical, continuously stratified model of baroclinic instability in atmosphere (Eric Eady was a PhD
graduate from Imperial College in 1949).

Eady model assumes:

(i) f-plane (5 =0),

(ii) linear stratification: N(z) = const,

(iii) constant vertical shear: U(z) = Uy z/H,

(iv) rigid boundaries at z = 0, H.

NOTE: Background PV is zero, hence, the necessary condition for baroclinic instability is satisfied.

The linearized continuously stratified QG PV equation and boundary conditions are:
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Let us look for the wave-like solution 1) ~ ¢(z) e'*(#=¢)+19) in the horizontal plane to obtain the vertical-structure

equation and the corresponding vertical BCs:
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For ¢ 2 U, o we obtain linear ODE with characteristic vertical scale H/pu :
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Look for solution of the above ODE in the exponential form:
¢®(z) = Acosh(uz/H) + Bsinh(uz/H),
substitute it in the top and bottom BCs (x) and obtain pair of linear equations for A and B that yield:
Uy 1

1
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The second bracket under the square root is always positive, hence, the normal modes grow (w; > 0) when the
first bracket becomes negative; that is, if p satisfies:

i < cothE

2 2

which is the region to the left of the dashed curve (see Figure below).

(a) The maximum instability growth rate occurs at p=1.61, and it is estimated to be 0.31 U/ RS). Its inverse 1s
Eady time scale.

(b) For any k the most unstable wave has [ =0; and this wave is characterized by k..; =1.6/ RS) . This yields
Eady length scale L. z4RS) )

NOTE: Eady time and length scales are consistent with the observed synoptic scale variability.

(c) Eady solution can be interpreted as a pair of phase-locked edge waves (see Figure).

(d) Assumptions of the Eady model are quite unrealistic, as well as the absense of PV gradients; nevertheless it is
a good starting point for analyses and one of the classical models illustrating the baroclinic instability mechanism.

Later on we will discuss the baroclinic instability mechanism in more detail and from the physical perspective...



Figure illustrating Eady’s solution in terms of its growth rate and the phase-locked edge waves:
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e Phillips model is the other classical model of the baroclinic instability mechanism.

It describes two-layer fluid with uniform background zonal velocities U; and Us, and with the [-effect (see
Problem Sheet). In this situation background PV gradient is nonzero, thus, making the set-up more realistic. New
outcomes from solving this problem are:

(a) Stabilizing effect of (3: Phillips model has critical shear, Uj—Us ~ SR%,.

(b) Westward flows are less stable: 1f the upper layer is thinner than the deep layer (ocean-like situation), then the
eastward critical shear is larger than the westward one.



e Mechanism of baroclinic instability

Baroclinic instability, illustrated by the Eady and
Phillips models, feeds geostrophic turbulence
(i.e., synoptic scale variability in the atmosphere

|] increases
demsrnngrard

and dynamically similar mesoscale eddies in the ocean), C
therefore, it is fundamentally important.

| increases
(a) Available potential energy (APE) is part of potential poleward
energy that can be released as a result of complete
isopycnal flattening. .

Baroclinic instability converts APE of large-scale
background flow into eddy kinetic energy (EKE).

Figure: Consider a fluid particle, initially positioned at A, that migrates to either B or C. If it moves along levels
of constant pressure (in QG: streamfunction), then no work is done on the particle = full mechanical energy
of the particle remains unchanged. However, its APE can be converted into EKE, and the other way around.

(b) Consider the following exchanges of fluid particles:

A <— B leads to accumulation of APE (the heavier particle goes “up”, and the lighter particle goes “down”),
A +— (' leads, on the opposite, to release of APE.

That is, if a > 7 (steep tilt of isopycnals, relative to tilt of pressure isolines), then APE is released into EKE.
This is situation of the positive baroclinicity:

VpxVp > 0],

which implies that the above vector product points out of the Figure, i.e., in the positive zonal direction.
This situation routinely happens in geophysical fluids because of the prevailing thermal winds.



e Thermal wind
This common situation is a consequence of the double — geostrophic and hydrostatic — balance:
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Consider typical atmospheric thermal wind situation with dp/0z < 0 and u > 0; and prove that it is baroclini-

cally unstable (i.e., corresponds to positive baroclinicity):
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Thus, positive baroclinicity implies baroclinic instability of the most common geophysical flows.



¢ Energetics of barotropically and baroclinically unstable flows
Can we quantify amounts of APE and KE transferred from an unstable flow to the growing perturbations?

In the continuously stratified QG PV model, the kinetic and available potential energy densities of flow perturba-
tions are:
_ Ve
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Consider the continuously stratified QG PV equation linearized around some background zonal flow U(y, z) :
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The energy equation is obtained by multiplying () with —¢ and, then, by mathematical manipulation (see the
QG energetics):
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Vertical energy flux is in square brackets on the rhs, and it is due to the form drag arising from isopycnal defor-
mations.

Horizontal energy flux:

L I OTI 42
S=—t (5 + U5 ) Vot [—a—y7+U(K+P)+¢

oou . fy , 0voU 0]
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Integration of (xx) over the domain removes both horizontal and vertical flux divergences, and yields the fotal
energy equation:

Sl [ R e

The pair of energy conversion terms on the rhs of (x % x) has clear physical interpretations...




(a) Reynolds-stress energy conversion term can be written as integral of —u/v’ 8_U , where primes remind that we
deal with the flow fluctuations around U (y, z). y

This conversion is positive (and associated with barotropic instability of horizontally sheared flow), if the Reynolds
stress u'v’ acts against the velocity shear (see left panel of Figure below), that is, «/v" < 0. In this case the
background flow feeds growing instabilities at the rate given by the energy conversion.

(b) Form-stress energy conversion term involves the form stress v'p’ .
The integrand can be rewritten using the thermal wind relations and basic considerations about the vertical deriva-

tives:

/ dp dp
o pg N2 _9dp ap _,

9z pofo’ - ppdz’ dz '

With this in mind, the integrand of the second integral can be manipulated as the following:

’ ] op op 1dp] g dz, g g
v/(_ Pg)fo ( g _P)_ //i[_ —}:—U/pl ——:—v’p’—tana%—v’p’ —OdN—U/p/
pofo/ N2 \pofo Oy po LOy/ dz 0 | d?/] 0 | | Po =]
This conversion term is positive (and associated with baroclinic instability), if the form stress is negative: v'p’.

This implies flattening of tilted isopycnals (right panel of Figure below shows —v’p’ and isopycnals; the situation
has negative density anomalies moving northward).

e

uv’
= Uly)

[=———— =28
[—

NOTE: Left figure panel can be interpretted as flattening of the shear, and right panel — as flattening of the tilted
isopycnals (i.e., restratification).



AGEOSTROPHIC MOTIONS

(a) Geostrophy filters out all types of (relatively fast) waves, which are important for many geophysical processes.
(b) Geostrophy doesn’t work near the equator (where: f = 0), because the Coriolis force becomes too small.

Let’s consider, first, gravity waves and, then, equatorial waves, that are both important ageostrophic fluid motions.

el inearized shallow-water model

Let’s consider a layer of fluid with constant density, f-plane approximation, and deviations of the free surface 7 :

ou . On Ov __,9n — Ou  Ov, 9w _
= fw=—g5", o T fou= 95, p=—pog(z—mn), 8x+8y+8z_0'

The last equation can be vertically integrated, using the linearized kinematic boundary condition on the free
surface:

.. On on Ju Ovy

alternatively this equation can be obtained by linearization of the shallow-water continuity equation.

Take curl of the momentum equations, substitute the velocity divergence taken from (x) into the Coriolis term
and obtain:

0 <(91} 8u> JoOn

ot “Hor ()

or Oy

Take divergence of the momentum equations, substitute the velocity divergence taken from (x) in the tendency
term and obtain:

1 0%
H 0t?

dv  Ou 5
+h(5,~,) V=0 (3 % %)

By differentiating ( * %) with respect to time and by substituting vorticity from (xx), we obtain:

0 1 0% 2
—v2—————0]:0 2=gH
[ n C(Q)atg 6(2)77 ) Co g



Let’s integrate this equation in time and choose the integration constant so, that 77 = 0 is a solution.
The resulting free-surface evolution equation is also known as the Klein-Gordon equation:

1 0%  f¢
Vi — =5 —2n=0
n 22 & n (s * %)

This equation needs lateral boundary conditions, which are to be obtained from the velocity boundary conditions.

Velocity-component equations. Take the u-momentum equation, differentiate it with respect to time, and add it
to the v-momentum equation multiplied by f; ; similarly, take time derivative of the v-momentum equation and
subtract from it the u-momentum equation multiplied by fj :

on 0% s 0n on
th) gt Rv=—9(gEhg)|

0%u
g+ =

0n
Ox0ot

Boundary conditions of some sort are needed. Let’s consider solid boundary at =0 (ocean west coast). On the
boundary: u = 0, therefore, the free-surface boundary condition is:

0%n
Jx0t

0
—|—foa—n:0 at x =0|.
Y

Let’s now look for the wave solutions ) — 7i(z) cily—wi) of (# % #%) with the above BC:

2 2
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The BC provides important constrain, whereas the main equation can be written as:

d?7) By .
w:AQH —_— n=e

where the dispersion relation,
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supports solutions that in x are either oscillatory (imaginary ) or decaying (real \): consider them separately.

e Poincare (inertial-gravity) waves

These are the oscillatory solutions:

k
A=1ik, |n= Acoskx+ Bsinkx|, r=0: A:Bﬁ, w® = f3+ch (K> +17)
0

(a) Dispersion relation of these dispersive waves can be visualized by hyperboloid with the cut-off frequency fj.

(b) These are very fast surface gravity waves. For wavelength ~ 1000 km and H ~ 5 km, the phase speed
is ¢ = v/gH ~ 300 m s~! (compare this tsunami-like speed to the slow speed ~ 0.2 m s~! for the oceanic
baroclinic Rossby wave).

(c) In the long-wave limit: w = f.
These waves are called the inertial oscillations; they are characterized by circular motions (see Problem Sheet).

(d) In the short-wave limit, the effects of rotation vanish, and these are common (nondispersive) non-rotating
shallow-water surface gravity waves (note their difference from the deep-ocean waves considered in the Problem
Sheet!).

(e) Poincare waves are isotropic: their propagation properties are the same in any direction (in the flat-bottom
f-plane case that we considered).



e Kelvin waves
These are the exponentially decaying solutions (i.e., edge waves); here, on the western
(eastern) boundary they correspond to different signs of & (let’s take k > 0) :

A=k (=—k).
— =A™ (= A, x:O:k:—@é(:Eg (%)

Note that the BC connects &k with [ and allows to get rid of it.

In the northern hemisphere, positive k at the western wall implies C;” = w/l <0,
hence the Kelvin wave propagates to the south. Thus, the meridional phase speed is
northward at the eastern wall and southward at the western wall, that is, the coast

is always to the right of the Kelvin wave propagation direction.

l
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Note, that f; changes sign in the southern hemisphere, and this modifies the Kelvin wave so, that it has the coast

always to the left (see Figure).

With (%) used to get rid of k, the Kelvin wave dispersion relation becomes:

@ﬁ—ﬁ)@—%&ﬁ:o.

Its first root, w = =+ fy, is just another class of inertial oscillations.

Its second root corresponds to the (nondispersive) Kelvin wave, which exponentially decays away from the bound-

ary:

w=Fcyl, k= :t@ —_— n = Aetrfo/co illyFeolt)
Co

Substitute this into the rhs of the normal-to-boundary velocity equation, and discover that this velocity component

1s zero everywhere:

0%u 0n
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because at the boundary it is always true that wu(¢,0,y) = 0. Note, that this equation has oscillatory solutions, but
they are not allowed by the boundary condition.

Because of (%), the along-wall velocity component of the Kelvin wave turns out to be in the geostrophic balance:

ou B on Oy
a—fov——g&lj = —fov = g@az’

hence, Kelvin wave is a boundary-trapped hybrid wave that is simultaneously ageostrophic (gravity) and geostrophic.

(a) There are Kelvin waves running around islands (in the proper direction); they are often phase-locked to tides.

(b) Kelvin waves can be further subdivided into the barotropic and baroclinic vertical modes.



e Geostrophic adjustment

This is a powerful and ubiquitous process, in which fluid from initially unbalanced state evolves toward a state of
geostrophic balance, by radiating gravity waves.

Let’s focus on the linearized shallow-water dynamics, which contains both geostrophically balanced and unbal-
anced motions:
ou on ov on on ou  Ov
— — fov=—g—, — + fou=—g—, —+H(—+—>:O,
g 0 e gt 70 Iy Bt or | oy
and consider a manifestly unbalanced initial state: discontinuity in free-surface height.
In non-rotating flow any initial disturbance will be radiated away by the gravity waves, characterized by phase
speed ¢y = +/gH, and the final state will be the state of rest. In rotating fluid there is geostrophic balance that
can trap the fluid in it, because it has absolutely no time dependence!
Effect of rotation is crucial for geostrophic adjustment, because:
(a) PV conservation provides a powerful constraint on the fluid evolution;

(b) There is fully adjusted steady state which is not the state of rest.

Let’s start with the corresponding PV description of the dynamics:

oIl (A fo_CHfo_ (C+f)/H

— VI =0 11 = —
ot u ’ h H+n l+n/H ’
and linearize both PV and its conservation law:
1 n 1 Jon

a6 901 ) = - )
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where ¢ is the linearized PV anomaly. Note that ¢ remains locally unchanged.



Let’s consider a discontinuity in fluid height:
77(%0):4'770, ZE’<0; 77(%0):—770, r>0.

The initial distribution of the linearized PV anomaly is:

ae.y.0)=~fogr, =<0i  qlay.0)=+fogr, z>0.

During the geostrophic adjustment process, the height discontinuity will become smeared out into a slope by
radiating gravity waves; through the geostrophic balance this slope must maintain a geostrophic flow current that
will necessarily emerge during the adjustment.

First, let’s introduce the final-state geostrophic flow streamfunction:

. On _On g

E .

Since PV is conserved on the fluid particles, the particles are only redistributed along the y-axis (this is based on
physical reasoning; alternative argument comes from the symmetry of the problem). The final steady state is the
solution of the equation described by monotonically changing ¥ ~ 7 and sharp jet concentrated along this slope:

n o (2 1) B Vgl PV 1 fo
C fOH Q('Iny) \% RQD Q('ray)a D f() (9:(:2 R2D H SZgTL(.CC)
— \I/:—@(l—e_x/RD), x> 0; ‘If:—|—@(1—e+x/RD), r <0
Jo Jo
o o gno  —jz|/Rp o Jo
— u=0, v=-——"T7=c¢ : ==y
JoBp Ty

(a) PV constrains adjustment within the deformation radius from the initial disturbance.

(b) Excessive initial energy (which can be estimated; see Problem Sheet) is radiated away by gravity waves.
The underlying processes which transfer energy from (initially) unbalanced flows to gravity waves remain poorly
understood.



e Equatorial waves

These are special class of linear waves populating equatorial zones.
Let’s assume the equatorial [3-plane and, with the goal to derive single equation for the meridional velocity
component, write down the momentum, continuity, and PV equations (and recall that cy=+/gH):

%_ﬁyvz_g% 8 {_i_g%} - _%%+6Z§2%:%8ajgt:%aa;gt (*)
%Wy“:_gg_z [c_lg 5_;} - c_lgg—z %%:_% 33222:_% a(zga?;? ()
%*H (%*%) =0 [_% 8(;281&} - _% a(zzzfaijat (%+g_;) =0 S
O L ST

Addup (x) and (xx), and use (* **) and (* % %) to get rid of 7 :

1 v %2 0v 0% ov  0* /O0u  Ov
St e = + B+ (— + —)
cg Ot cg Ot  Oxot dr  Oyot \Ox Oy

ov  Ou

Substitute (¢ = 9 oy to obtain the meridional-velocity equation:

F5G+oor) o] o

&
Let’s look for the wave solution: v = (y) ¢/(F*=*)
d?v 2 2 L
—— _U+@|:w_2_k2_(ﬁg) _ﬂ_}zo (.)
dy? & ct W




Hy(x) =1

H (x) = 2x

H,(x) = 4x° =2

H,(x) = 8x  —12x

H,(x) = 16x" —48x" +12

H.(x) = 32x" —160x" +120x

H,(x) = 64x" —480x* +720x% =120
H.(x) = 128x7 —1344x" +3360x° —1680x

Solutions of the inhomogeneous ODE (e) are symmetric around the equator and given by the set of Hermite
polynomials H, , which multiply the steeply decaying exponential:

) = (1) e[ -1 (2]

where L., = \/cy/[ is called the equatorial barotropic radius of deformation (~ 3000 km; the equatorial
baroclinic deformation radii are much shorter and can be obtained by considering a multi-layer problem and
projecting it on the vertical modes).

One can obtain the dispersion relation by recalling the following recurrence relations for the Hermite polynomials:
H;z =2nH, 1, 711—1 =2yH, 1 — H,,

and by considering v, = H, exp[—y*/2] :

U;L (H;L - yHn) €—y2/2 = (2an_1 — yHn) €_y2/2 :

vl = (2nH;L_1 — H, —yH —y(2nH, 1 — yHn)) e V2 = —(2n+1—19*H, eV /2

— v+ (2n+1—y*)v, =0 (o0)




Now, let’s consider (o) and nondimensionalize y by L, :

2

Legfy ﬂ[(j_j_kz ff)_g_gq]:o N gi;;+@[Lg(°;_§_kz Y ] =0

By comparing the last equation with (ee), we obtain the resulting dispersion relation for equatorial waves:

2n +1 k
2:c§<k2—|——(n )>+B—c§

" L2, Wy,

w

Let’s now analyze this dispersion relation by considering its frequency limits and effects of lateral boundaries:

(a) Fast waves: if w, 1s large, then:

wQ:cg(kQJrM).

n qu

This is identical to the dispersion relation for high-frequency Poincare waves, if we take | = v/2n + 1/L,.

(b) Slow waves: if w,, is small, then:

Bk
K2+ (2n+ 1)/L2,

This is identical to the dispersion relation for Rossby waves, if we take [ =+/2n+ 1/L,.

w”:_

(c) Mixed Rossby-gravity (Yanai) wave corresponds to n = 0. It behaves like Rossby/gravity wave for low/high
frequencies.

(d) Equatorial Kelvin wave is the edge wave for which equator plays role of solid bondary.
Let’s take v = 0, and use (x), (***), and (* * *x) :

ou on on ou
%= Y EJFH%—O; (%)
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From (%) we obtain the zonal-velocity equation and its canonical D’Alembert solution:

v _22%_ ¢ u=AG_(x —cot,y) + BGy(z + cot,y),

and notice, that this solution has to satisfy the PV constraint ().
Substitute the D’ Alembert solution in (xx), introduce pair of propagating-wave variables ¢ = x + ¢yt, and recall

that L.,=+/co/0 :

0 oG _ B 0 oG, B
8_§<_CO 9y —ByG_>—O, 8_§<CO oy —ByG+>—O
oG _ oG
—Co —ByG_=0, c———PByGs=0
dy dy

These equations have the following exponential solutions:

G — A e 3W/ k) F_(¢), G.=A, 03 W/ Leq)? Fy(8)

= G_ — A_ 6_%(y/Leq)2 F_(x _ Cot) , G+ — A_|_ eé(y/Leq)Q F+(£IZ' + Cot)

Only G_ remains finite away from the equator, hence, A, = 0.
Therefore, Kelvin wave is given by G_ and propagates only to the east.



Vertical modes: In continuously stratified case, the flow solution can be split in a set of vertical modes. Barotropic
and each baroclinic mode has its own Poincare, Rossby, Yanai and Kelvin waves and dispersion relations.

Most famous phenomenon: Equatorial waves play key role in the global, climate-type, coupled ocean-atmosphere
oscillation referred to as El Nino Southern Oscillation (ENSO). (see later).
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e Schematic of El Nino Southern Oscillation (ENSO) “delayed oscillator’” mechanism

El Nino and La Nina occur interannually causing extreme floods and droughts in many regions of the world.
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e Normal state is perturbed;
weakening of trade winds

e “Warm” Kelvin wave
radiates to the east and “cold”
Rossby wave radiates to the
west (their basin-crossing
times are about 70 and 220
days).

e When Kelvin wave reaches
the boundary, it warms the
upper ocean and “El Nino”
phenomenon occurs.

e “Cold” Rossby wave
reflects from the western
boundary as “cold” Kelvin
wave; then, it propagates to
the east, terminates E/ Nino,
and initiates “La Nina” event.



MATERIAL TRANSPORT PHENOMENA wave phase (1 T= 3000
e Stokes drift

This is a nonlinear phenomenon that illustrates

the difference between average Lagrangian velocity
(i.e., velocity estimated following fluid particles)
and average Eulerian velocity

(i.e., velocity estimated at fixed spatial positions).

Essential physics: Stokes drift may occur only when
the flow is both time-dependent and spatially
inhomogeneous.

We will consider the text-book example of deep-water
linear gravity waves (see Figure and Problem Sheet) and derive the Stokes drift velocity.

Lagrangian motion of a fluid particle is described by kinematic equation:

%S
ng(ayt)n a:u(gat)n f(a,O):a,
where u is the Eulerian velocity (at a fixed position), and 0&/0t is the Lagrangian velocity (found along the
particle trajectory).
Let’s compare time averages (denoted by overlines) of these velocities and assume that they are not the same (i.e.,
time averages along a trajectory and at a point do not have to coincide):

0&(a,t)

W —uxh), - —u(E(a.) - ug=T, T,

ot

where Stokes drift velocity ug is the difference between the Lagrangian and Eulerian average velocities.

Let’s now consider a sinusoidal plane wave on the free surface of fluid: 7 = A cos(kxz — wt). The corresponding
interior flow solution (see Problem Sheet) is given in terms of the velocity potential ¢, which is harmonic (i.e.,
V2¢ = 0); and the corresponding (nonlinear) dispersion relation of the deep-water waves:

gb:A%ekzsin(kx—wt), w? = gk.



Consider the horizontal &, and vertical £, components of the Lagrangian position vector ¢ and write down La-
grangian velocity components:

o6 0 e, 99

ot or’ ot 0z

The Lagrangian trajectory can be integrated near some point x = (x, z). Within the linear theory this yields:

—x—|—/—dt—x Aer* sin(ka — wt) | —z—|—/—dt—z—|—Aekzcos(kx—wt)

The central idea is to calculate Lagrangian velocity on trajectory by Taylor-expanding the Eulerian velocity field
around the reference position x. We focus only on z-direction (here, direction of the wave propagation):

T = u(E,t) — u(x, 1) = [u(x, £+ (& — ) a“g;’ D4 e— o) au((;, b, ] —ulx, )
~ (gx_x)%_k(gz_z)%:

= [ Al sin(kx — wt)] [~wkA eF? sin(kx — wt)] + [A ¥ cos(kx — wt)] [wk A e¥* cos(kx — wt)]
= wkA%** [sin?(kx — wt) 4 cos?(kx — wt)] = wkA%e** |

By converting to the wave periods in time and space, 1" and A , respectively, the outcome is:

4 A? e47rz/)\

Us =

(a) Stokes drift speed wug is quadratic in terms of the wave amplitude A.
(b) Stokes drift decays exponentially with depth and inversely depends on the flow periods.

(c) Darwin drift (permanent displacement of mass after the passage of a body through a fluid) is a related phe-
nomenon.

(d) Stokes drift accompanies all types of internal waves that displace isopycnals; therefore, it illustrates ubiquitous
“hidden” material transports.



e Homogeneous turbulent diffusion

This is a theory for describing dispersion of passive tracer (or Lagrangian particles) by spatially homogeneous,
stationary and isotropic turbulence.

Take (' as passive tracer concentration, and u as turbulent velocity field.
Standard approach is to consider large-scale (coarse-grained) quantities: passive tracer concentration C' and ve-
locity field 1 ; so that the corresponding small-scale (turbulent) fluctuations are C’ and u'.
Let’s assume the complete scale separation between the large and small scales, which here is:

C'"=0, u=0,
and coarse-grain the governing advection-diffusion tracer equation by taking its time average:

oC e . o(C + _

N + u-VC = molecular diffusion + sources/sinks  — % +(U+u)-vVIC+C)=..
oC
ot

— +u-VC = —u-VC' + ...

» €«

Can we find a simple mathematical model (also called: “parameterization”, “closure”) for the turbulent stress
term on the rhs? This is one of the frontier research directions not only in GFD but also in the whole Earth system
modelling!

Lagrangian point of view on turbulent diffusion.

For this purpose let’s consider dispersion (i.e., spreading) of an ensemble of Lagrangian particles. Concentration
of the particles is equivalent to C, and displacement of each particle from its initial position is given by the
integral of its Lagrangian velocity:

x(t) — x(0) = /0 uy(t') dt’

Standard functions characterizing evolution of the Lagrangian particles ensemble are single-particle dispersion
D(t) and Lagrangian velocity autocorrelation function R(7) . These functions are obtained by ensemble aver-
aging (i.e., over many flow realizations), as indicated by angle brackets:

(ur(t)-ug(t'))
(u?)

D(t) = <(x(t) — X(O))2> , R(t—t) =




These functions are mathematically connected with each other. Notice, that

' / o / tu(t)
/OR(t—t)dt_<[x(t)—x(0)}0 L >

u2
therefore:
d
- D(t) = 2 ([x(t) = x(0)] ws (1 _2<u2>/ (¢ —t)dt =2 (u >/ d7_2<u2>/
dD t
= g =2 /0 R(r)dr (+)
Next, recall the formula for differentiation under integral sign,
b(z) d / / b g
N /a(x) f(x,t) a - dx F( ) f($,b($))b(x) —f(x,a(x))a(x) +/a(x) %f(x,t) dt ,
and find:
t
D(t) =2 <u2>/(t — 7)Y R(7)dr (x)
0

Prove the above formula by differentiating it and, eventually, obtain (x) :

dD !

S5 =2(u?) ((t-1) R(t)—(H—/ R(r) dr)

dt 0

Asymptotic limits: Consider the short- and long-time limits of D(¢) by focusing on (x) :

(a) Ballistic limit. t — 0.
Then, 7~ 0, R(t)~1 = |D~t

(b) Diffusive limit: t — oo.
Introduce Lagrangian decorrelation time: Tp,= [~ R(T) dr.

dD

EOO=2TL<U2> —  |D~t



In the diffusive limit the area occupied by particles (or passive tracer) grows linearly in time, as in the molecular
diffusion process with the eddy diffusivity equal to:

K = <u2> 17

Let’s prove the diffusion equation analogy by considering the one-dimensional diffusion equation and by focusing
on the mean-square displacement of the tracer concentration (it is equivalent to the single-particle dispersion!):

g_f:g_c 0 [/_izcozx] [/_‘de]*

Differentiate D(t) and replace tendency term by rhs of the diffusion equation:

aD (9 002 B 002020 B B o0 B
Ewa/_x C’dm-m/_oic de—(byparts)—2ﬁ/_m0dx—2m

o0
Thus, in the diffusion process analogy, the tracer-containing area grows linearly in time.

NOTE: the same diffusion process analogy in 2D and 3D cases yields 4+« and 6k on the rhs, respectively.



NONLINEAR DYNAMICS AND WAVE-MEAN FLOW INTERACTIONS

Nonlinear flow interactions become fundamentally important when growing flow instabilities reach significant
amplitude and become finite-amplitude nonlinear eddies and currents.

e Weakly nonlinear analysis can predict slowly evolving amplitude of nearly monochromatic nonlinear waves
through derivation of an amplitude equation.

e Dynamical systems framework (bifurcations, attractors, etc.) can be useful for describing transition to turbu-
lence.

e Exact analytic solutions of nonlinear flows are known (e.g., solitary waves), but remain simple and exceptional.

e Statistical wave turbulence framework (resonant triads, kinetic equations, etc.) can be useful, when the under-
lying linear dynamics is relatively simple and wave coherency is weak.

e Stochastic modelling of turbulence is an emerging field, but it is poorly constrained by physics.

e Computational modelling 1s presently the most useful (in terms of the new knowledge!) approach for theoretical
analysis of nonlinear flows, but under the relaxed scientific standards it can be intoxicating and detrimental.

lllustration: Stages of nonlinear evolution of the growing instabilities in the Phillips model




Turbulence modelling is the process of construction and use of a model aiming to predict effects of broadly defined
spatio-temporally complex nonlinear flow dynamics, which is referred to as fluid “furbulence”.

e Closure problem is a dream (or a modern alchemy?) to predict coarse-grained flow evolution by expressing
important dynamical effects of unresolved flow features in terms of the coarse-grained flow fields.

Let’s consider some velocity field consisting of coarse-grained (i.e., large-scale obtained by some spatio-temporal
filtering) and fluctuation (i.e., small-scale) components:

u=u-+u, u =0.

Let’s assume the following toy dynamics:

d du
(%) d—?+uu+Au:O — d—?:JrW%—AU:O

To close the equation for u, let’s obtain the equation for u
coarse-graining:

= WU + w/v’ by multiplying (*) with « and by

1 duu
5%%—%%—%1@20

What are we going to do with the cubic term? An equation determining it will contain a quartic term uwuuu, and
SO on...
Let’s imagine a magic “philosopher’s stone” relationship that makes the closure:

uuuu = quuuu + Sunu

Many theoreticians are looking for various “philosopher’s stone” relationships that will be laughed at a century
from now, but by doing this a great deal of physical knowledge is obtained and many mathematical instruments
are developed.



¢ Reynolds decomposition

Common example of coarse-graining, referred to as Reynolds decomposition, is separation of a turbulent flow into
the time-mean and fluctuation (i.e., “eddy’””) components:

ult,x) = W) +W(Ex),  phx) =BX) +P(EX),  pltx) = Bx) + (£ X).

For example, let’s apply the Reynolds decomposition to the z-momentum equation and, then, average this equation
over time (as denoted by overline):
ou 1 0p 1op 0

—+uVu=———-Vuv=—— ——vv - —uv - —duv.

ot p Ox p Ox o dy 0z

The last group of terms is the first component of divergence of the nonlinear Reynolds stress tensor:

L ! .,/
T, = u; U

(a) In the above example replace: u — ¢ and consider nonlinear stress u’¢’, which is referred to as eddy flux of
¢. Divergence of an eddy flux can be interpreted as internally and nonlinearly generated eddy forcing exerted on
the dynamics of coarse-grained ¢.

(b) It is very tempting to assume that nonlinear stress can be related to the corresponding time-mean (large-scale)
gradient, for example:

Wy = —v=.

ox

This flux-gradient assumption is often called eddy diffusion or eddy viscosity (closure). Note, that this flux-
gradient relation is exactly true for real viscous stress (but only in Newtonian fluids!) arising due to molecular
dynamics.

(c) The flux-gradient assumption is common in models and theories, but it is often either inaccurate or fundamen-
tally wrong, because fluid dynamics is different from molecular dynamics.



(d) Turbulent QG PV dynamics can be also coarse-grained to yield diverging eddy fluxes, because ¢ can stand
for PV. Since PV anomalies consist of the relative-vorticity and buoyancy parts, the PV eddy flux u/q’ can be
straightforwardly split into the Reynolds stress (i.e., eddy vorticity flux) and form stress (i.e., eddy buoyancy flux)
components, which describe different physics.

e Parameterization of unresolved eddies

The above coarse-graining approach can be extended beyond the “Reynolds decomposition into the time mean and
fluctuations” by applying some general decomposition (e.g., filtering) of turbulent fields into: (i) some large-scale
and slow component and (ii) the small-scale and fast residual eddies.

For example, let’s consider the equivalent barotropic QG PV model with the eddy viscosity replacing the nonlinear
stresses:

O 9y O 9 AT

1
1=V — — i
N L T i s e

here it is assumed that the model solves for the large-scale flow, and the viscous term vNV*y) represents the effects
of unresolved eddies.
How can we interpret this viscosity parameter v ?

(a) Molecular viscosity of water is ~ 10~% m? s~!, but typical values of v used in geophysical models are 100—
1000 m? s~!. What do these numbers imply? Typical viscosities (in m? s~1): honey ~ 0.005, peanut butter
~ (.25, basaltic lava ~ 1000.

In simple words, oceans in modern computational models are made of basaltic lava rather than water...

(Similar analogy holds for the atmosphere; although kinematic viscosity is about 20 times larger in the air.)

(b) Reynolds number Re measures relative importance of nonlinear and viscous terms (Peclet number Pe is similar
but for a tracer diffusion term):

U1 UL b, _ UL

Re — _
‘ vU/L3 v K

NOTE: Modern general circulation models strive to achieve larger and larger Re (and Pe) by progressively re-
solving smaller scales, and by employing better numerical algorithms and faster supercomputers.



e Triad interactions in turbulence
This is the main mechanism of nonlinear interactions that transfers energy between scales.

Let’s consider a double-periodic domain with the following forced and dissipative 2D dynamics:

%+J(¢,g):F+uv2g, =V, ()

All flow fields can be expanded in Fourier series (summation is over all negative and positive wavenumbers):

my, Zwkt zkx :L‘y, Zth zkx

where
k =ik, + jko (=K%, K=k +k5.

Substituting these Fourier expansions in (x) yields:

& R = [ [0 ][ i) [ St

+Y Pk )™ vy Kk ) ™,
k

where k, p and q are 2D wavevectors.

Wavevector evolution equation is obtained for each spectral coefficient zﬂ(k, t) by multiplying the last equation
with exp(—ikx), by integrating over the domain, using Q* = ¢} + ¢35, and by noting that the Fourier modes are
orthogonal:

/eipxeiqx dA = L*$(p +q) —

2 d1) = > s~ o) (@ ) B, 1) B 1)+ PO 1)~ Kk D) (o)




This equation (xx*) can be reformulated for evolution of the complex amplitude |1(k, )| by multipling (+#) with
the complex conjugate spectral coefficient *(k, t).
Note, that there are as many equations (k%) involved, as wavevectors k considered.

Interaction coefficient weighs the nonlinear term according to the dynamics, and it is nonzero only for the inter-
acting wavevector triads that must satisfy: p + q = k, because of the d-function involved.

Hermitian (conjugate) symmetry property (i.e., ¢ is Hermitian function) states that

w(klak%t) - w*(_kla_k%t)a P k
because 1 is real function.
Some properties of the triad interactions: _ _
(a) Redistribution of spectral energy density. 'E k E
Suppose, there are initially only two Fourier z g Z
modes, with wavevectors p and ¢, and with E Z
the Fourier coefficients ¢ (p,t) and ¥(q,1). i q - a
Due to the conjugate symmetry, these modes

Z-wawennmg er Taavennmpe

must have their conjugate-symmetric

partners at —p and —q which are Fig Bl Two interacting triads, each with & = p + 5. On the left, & loeal trizd with
Y

. . . k ~ g~ . On the right, a non-local triad with & ~ e g.
described by the Fourier coefficients o . o

U*(—p,t) and ¢*(—q, t); thus, the initial
combination of the “two modes” are actually the “four modes” organized in 2 conjugate-symmetric pairs. Non-
linear interactions involving the initial 2 pairs will generate 2 more pairs:

k=p+q, I=-p-q, m=p-q, n=-p+tq,

and the subsequent nonlinear generation of the new wavevectors will continue to infinity.

(b) Nonlinear triad interactions are called local (k ~ p ~ q) or non-local (k ~ p < q), depending on the
differences between the involved scales (see Figure).

(c) Cascades in turbulence are energy transfers between scales based on local interactions.



(d) Fourier spectral descriptions are popular, because the modes are simple and orthogonal, and in spatially
homogeneous situations (only!) they even satisfy the linearized dynamics. Other spectral descriptions are possible
and can be even more useful.

(e) Fourier expansion in time allows to talk about nonlinear interactions of individual waves rather than wavevec-
tors. If phases of these waves are approximately random, then the problem can be approached by wave turbulence
theory; if the phases are coherent, as typical in 2D turbulence, then people talk about coherent structures.



e Homogeneous and stationary, non-rotating 3D turbulence.

This idealized turbulence is characterized by energy transfers from the larger to smaller scales.

These transfers can involve both local and nonlocal interactions; however, forward energy cascade is a popular
concept (conjecture) stating that energy is transferred only between similar scales (i.e., locally) and cascades from
larger to smaller scales.

Forward energy cascade assumes the following: oS _;-?\’
o B — — ’_/'_'_’.'E \‘I[I\“‘-‘_ = /"i‘.--f__‘f;::‘ -) ,_I_-:\‘\
(a) At large l'ength 's'cz'iles there is some energy input « e S \  Dissipation
(e.g., due to instabilities of large-scale flow), S @ =y
all dissipation happens on short length scales, and on - S D)

the intermediate length scales the turbulence is controlled
by conservation of energy.

(b) Dissipation acts on very short length scales, such that fluid motion is characterized by Re < 1. These are
scales on which cascading energy is drained out. Within the cascade energy input to each scale/wavenumber is
equal to energy output from it.

(c) Turbulence within the cascade is characterized by self-similarity, i.e., everything is structurally similar at each
scale/wavenumber.

Our goal is to connect the main ingredients: isotropic wavenumber, k., energy spectral density, FE(k), and energy
input rate, € and energy within a spectral interval is E(k)dk.

Involved physical dimensions are:

1 L3 U L?
S—— El=LU?=—_— - =

Advective velocity scale and time scale are:
oy = [RE(K)]'2,
7= (kvp) "' = [P E(k)] V2.



Kolmogorov “minus-five-thirds” law.

In the assumed inertial spectral range the kinetic energy is conserved; it is neither produced nor dissipated. Energy
input in and output from each spectral interval, on the one hand, is ¢, and, on the other hand, should scale with
v, and 73 only:

2| kE(k)
ENYN —| = ——

Tk Tk

= PEk)?? = E(k) ~ X/3k75/3

P log E

Dissipation will become important at
the Kolmogorov scale L, ~ ¥4/
and the energy dissipation rate equals
the energy input rate ¢ regardiess of
the viscosity v

dissipation
> |og K

The Kolmogorov law is robust, within +2% deviations, but similarly argued predictions for the higher-order
moments deviate from statistical measurements because of intermittency associated with relatively frequent large
velocities and the corresponding energy dissipation bursts.



Kolmogorov (dissipative) length scale.

This scale L,;,. 1S the smallest scale in fluid mechanics.

It can be obtained by equating the advective time scale 7; and the viscous time scale T,;s. = [k2y]_1 (expressed
in terms of ¢ and k ) for the corresponding isotropic wavenumber £k, . :

T = k32 V2 o B 28 — T = Tyisc
1

kvisc

1/4  —3/4

14

= = | Lyisc ~ 6_1/4 V3/4

— kvisc ~ €

Note, that this scaling is dominated by the viscosity dependence, therefore, L,;,. is often referred to as “dissipa-
tive” length scale. And equating the time scales is equivalent to assuming Re ~ 1.

(a) Alternatively, we can find this power law scaling for L,;s. from the method of dimensional analysis:

20 T2
g L L

-1 «Q
kviscNL NEVNﬁW

Vi8C

— 20+ 20 =-1, 3a+6=0 — o=

W~ o

(b) Kolmogorov time scale can be rewritten in terms of ¢ :

~ U2 2]

Tvisc

(c) Energy inpute rate e is often referred to as the average rate of dissipation of turbulence kinetic energy (per
unit mass).



¢ 2D homogeneous turbulence

This turbulence regime is controlled by conservation of not only energy but also enstrophy Z = (2, which is the
other useful quadratic scalar.
Consider the materially conserved enstrophy dynamics:

9¢

c =2 = > = —2(uV(=-uVC=-V-(u®+Vu, (%)

where the second step involves the material conservation law for (. Integrate () in space and take into account
that the rhs terms vanish, because we assume nondivergent flow and periodic boundaries, i.e., udS = 0, therefore:

at/gdA / CPdA = — /v —/SuQQdS:O

Therefore, there is global conservation of enstrophy.

Homogeneous 2D turbulence is characterized by the following:

(a) Energy is transferred to larger scales (hence, inverse energy cascade concept is valid) and ultimately removed
by some other physical processes; the Kolmogorov spectrum FE(k) ~ k=53 is preserved.

(b) Enstrophy is transferred to smaller scales (i.e., there is forward enstrophy cascade) and ultimately removed by
viscous dissipation.

(c) Upscale energy transfer occurs often through 2D vortex mergers.
(d) Downscale enstrophy cascade occurs often through irreversible process of stretching, filamentation and stir-

ring of relative vorticity.

To obtain its spectral law, the enstrophy cascade can be treated similarly to the energy cascade. Let’s assume that
enstrophy input rate 7 produces enstrophy that cascades through the inertial spectral range to the dissipation-
dominated scales.

Now, let’s recall that the advective scales are

7o =kPPE(R) T, o= [kE(K)]V?



2 (ko) _ KE(R)

Tk Tk Tk

=KPER)?? =

E(k) ~ 772/3]{_3

()

Let’s now use (*x) to ged rid of E/(k) , and take into account that the dissipative time scale for enstrophy is

—1/3]

T =1

Equate this to the viscous time scale to obtain the dissipative length scale for enstrophy:

-1/3 ~1/2

2 1-1 1
Tvisc ™ [k V] =1 — Eyise ~ n /6]/ —
Instead of engaging into detailed analysis of 2D vortex
mergers, let’s consider an alternative explanation of the od E
od

energy transfer to larger scales. Vorticity is conserved,
but it is also being stretched and filamented (e.g.,
consider a circular patch of vorticity that evolves and
becomes elongated as a spaghetti). The corresponding
streamfunction is obtained by the vorticity inversion,
V%) = (, therefore, its length scale will be controlled by
the elongated vorticity scale, hence, the streamfunction scale
will keep increasing. Therefore, the total kinetic energy will
become dominated by larger scales.

L.

= | Lyisc ~ n_1/6V1/2
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e Effects of rotation and stratification on 3D turbulence are such, that they suppress vertical motions, and,
therefore, create and maintain quasi-2D turbulence.

The (-effect or other horizontal inhomogeneities of background PV make quasi-2D turbulence anisotropic. Ex-
ample of anisotropic phenomenon is emergence of multiple alternating jets (e.g., zonal bands in the atmosphere
of Jupiter). Length scales controlling widths of the multiple jets are Rhines scale Lp = (U/B)"/? (here, U is
characteristic eddy velocity scale) and baroclinic Rossby radius Rp.



<= When people research homogeneous 3D
turbulence, they usually deal with this kind
of solutions...

e v SR (shown are isolines of vertical relative vorticity component)

I b

'?’f'-rﬁ.‘l" "t""*:' A

N ‘1-."\ .

Turbulent convection (heavy fluid on the top)

There are many types of
inhomogeneous 3D turbulence,
characterized by some broken
spatial symmetries —=—



<= 2D turbulence is characterized by interacting
and long-lived coherent vortices

These vortices are materially conserved
relative vorticity extrema  —




Merger of two same-sign vortices (snapshots show different stages in time)

In 2D turbulence:

e [nverse energy cascade occurs through mechanism
of vortex mergers.

e [orward enstrophy cascade occurs through mechanism
mechanism of irreversible filamentation and stirring of
vorticity anomalies.



e Extra topic: Transformed Eulerian Mean (TEM)

This is a useful transformation of the equations of motion (for predominantly zonal eddying flows, like atmo-
spheric storm track or oceanic Antarctic Circumpolar Current).

TEM framework:

(a) eliminates eddy fluxes in the thermodynamic equation,
(b) in a simple form collects all eddy fluxes in the zonal momentum equation,
(c) highlights the role of eddy PV flux.

Let’s start with the f-plane Boussinesq system of equations:

Du 1 Op Dv 1 Op Dw 1 Op

— — =—— —+F - —=————-D
o po 0z + o po Oy’ Dt po 0z

8u ov  Ow Db

_ _ - - N2 _

8x+8y+8z 0, DtJr W=

Assume geostrophic and ageostrophic velocities, and focus on the e-order terms in the zonal-momentum and
thermodynamic equations:

ou ou Ouy 0b 0b 0b
a_tg‘i_ ag+vga f()'Ua— ) at+uga +Uga +N2wa_Qb'
These equations can be rewritten in the flux divergence form:
Oug, — Ougu,  Ovgug ob  OJus,b  Ovyb
— fova = F s i L+ N2w, = Q-
ot or oy Jve=i ot "o gy TNV W=

Next, assume conceptual model of eddies evolving on zonally symmetric mean flow and feeding back on this
flow. Separate eddies from the mean flow by applying zonal x-averaging (denoted by overline; f' =0 ):

ou _ 0 —— =
a_tg = foUs — G_yugU9+F (%)

Note, that zonal integration of any O(flux)/Ox term yields zero, because of the zonal symmetry.
Similar decomposition of the buoyancy yields:

ug = ug(t,y, z) + u'g(t,m,y, 2), Uy = v;(t,m,y, z) =

bW V) - [ N LT AT ()




Equations () and (xx) are coupled by the thermal wind relations. Because of this, effects of the eddy momentum
and heat fluxes cannot be clearly separated from each other — this is a fundamental nature of the geostrophic
turbulence.

Progress can be made by recognizing that v, and w, are related by mass conservation (i.e., non-divergent 2D
field). Hence, we can define ageostrophic meridional streamfunction 1),, such that

oo
“T 9z “ oy

Meridional eddy buoyancy flux can be easily incorporated in 1),, and we can define the residual mean meridional
streamfunction,

* — 1? =% aw*_— a 1 1 1./ —*_aw*_— a BN,
(0 =¢a+m?}gb = v __82 —Ua—$<mvgb>, w = _wa+8_y <ﬁvgb>,

*

that by construction describes non-divergent 2D flow (7", w*).

(a) Thus, 9* combines the (ageostrophic) Eulerian mean circulation with the Lagrangian eddy-induced circula-
tion; the latter motion is of the Stokes drift type.

(b) These circulations tend to compensate each other, hence, mean zonal flow feels their residual effect.

Invoking the definition of )*, the momentum equation (x) can be written as

ot 0=, 0 fo—r, = 7
%=fov*—a_yu’gvg+$%%b’+F=fov*+Vyz-E+Fa

where we introduced the Eliassen-Palm flux:

E=(0, —ujv, %@) :




Next, let’s take into account that divergence of the Eliassen-Palm flux is equivalent to geostrophic PV flux:

V. E= vgqg

(see Problem Sheet), and obtain the Transformed Eulerian Mean (TEM) equations:

o, ob - ov*  ow* du, b
—9 F, ~~ — _N’w* = = ——
BT = fov” +vgqg+ BT W+ Qy, Iy + P 0, fo 8 (% % *)

where the last equation is just the thermal wind balance.

Let’s eliminate the left-hand sides from the first two equations by differentiating them with respect to 2z and v,
respectively. The outcome is equal by the last equation from (**%*), and the resulting diagnostic equation is

dv* aw OF aQb
“fo g+ —fo STt g

Now we can take into account definition of 1)* and obtain the final diagnostic equation:

82 * 82 * a
fO 8% N a;p _fO_UQQQ+f0_+— (****)

(a) If one knows the eddy PV flux, the TEM equations allow to solve for the complete circulation pattern.
This can be done by solving the elliptic problem (****) for )*, at every time (step).

(b) Eddy PV flux still has to be found dynamically, but the theory allows for many dynamical insights.
(c) The TEM framework can be extended to non-QG flows.



e Non-Acceleration Theorem

It states that under certain conditions eddies (or waves) have no net effect on the zonally averaged flow.
Let’s prove this by considering zonally averaged QG PV equation (with a non-conservative rhs D ):

dq  ov'g — _ % fi o
“4 -D
ot oy ’ 1= 52 +8z<N28)+6y
Let’s differentiate (0/0y) the QG PV equation:
0> 0% 9, 0> —_ 0D
G 2 (5]~ T+ G
otoy Loy2 ~ 0z\N? 9z oy? oy’
and recall that
=g -V,. B — ([l (L) E_SF.E) oD
7= vyly = Ve o2 9z \N29z)1 0t ~ T oy Dy

Theorem: If there is no eddy PV flux (i.e., Eliassen-Palm flux is non-divergent) in stationary and conservative
situation, then the flow can not get accelerated (Ju/dt = 0), because the “Eulerian mean” and “eddy-induced”
circulations completely cancel each other.



