KMB, 18/11/10
Number Theory: Elliptic Curves, Problem Sheet 3

The questions on this sheet are not logically essential for your understanding of the course,
and some do not even test your ability to apply theorems from the course—they are just there to
give you some background to some of the statements I have made recently in the course. I will
perhaps make use of Q3 and Q7 in the course, but this doesn’t mean you have to do the questions,
it just means that you have to have read the statements. Q1 is quite good, it won’t teach you too
much about cubics, but it will make you good at applying Hensel’s lemma, which is important.

1) Here is a sketch of a proof there are solutions to 3z® + 4y® = 5 in Q,, for any prime p. I
claimed this without proof in the course. If you do this question then it will teach you a bit about
the “power of Hensel’s lemma”. Note that there are obviously real solutions to 3z3 + 4y® = 5 and
hence this question shows that there are solutions to 323 4+ 4y = 5 in any completion of Q.

a) Prove that there exists y € Qs such that 4y = 5. Deduce that there is a solution to
323 4+ 493 =5 in Q3.

b) Prove that there is z € Q5 such that 323 = 1. Deduce that there is a solution to 3z3+4y> = 5
in Q5.

Clearly strategies like the above may well deal with any fixed p that you can think of. But
how to deal with all p at once? There are “pure thought” methods, coming from deeper results
about the existence of mod p solutions to cubic equations, but here is an elementary approach
that works for the cubic in question. Let p be any prime that is not 3 or 5.

c¢) Prove that either 3, 5, 15 or 45 is a cube mod p. Hint: consider (Z/pZ)* quotiented out by
the subgroup of cubes. If this doesn’t have order 1 then it has order 3.

d)

(i) If 3 is a cube mod p then check that there is a Qp-solution to 3z3 + 4y® = 5 with y = 1.

(i) If 5 is a cube mod p then check that there is a solution with x = —y.

(iii) If 45 is a cube mod p then check that there is a solution with y = 0.

(iv) If 15 is a cube mod p then check that there is a solution with y = 5/7.

Conclude that there is a solution to 3z% + 4y® = 5 in Q,, for any prime p.

In fact this proof is elementary but rather artificial and if you knew the standard but tricky
fact that smooth cubic curves over finite fields always had points then the result (and many more
like it) follows easily from Hensel’s lemma

2) Here as promised is the change of coordinates which takes an irreducible cubic with a given
smooth point O into the form

y? + arzy 4 asy — (23 + agx® + agx + ag) = 0.

We work over a field k. The exercise is to check the details. Firstly draw the tangent line to the
cubic at O. The tangent line will meet the cubic at three points, at least two of which will be O.

CASE 1: the third point of intersection is also O. In this case a linear change in coordinates
(ie., X1 =aX+bY+cZ, Y1 =eX+ fY+gZ, Zy = hX +iY +jZ) will suffice: change variables of
the homogeneous equation by a linear transformation so that O goes to [0 : 1: 0] and the tangent
line goes to the line Z; = 0 in projective 2-space, that is, the line at infinity. Check that this does
it.

CASE 2: the third point of intersection is P, a point not equal to O. Make a linear change
of variables so that P is at (0,0) and that the tangent to O is the y-axis in the x, y-plane. Let’s
work with the inhomogeneous cubic f(x,y) = 0. The fact that (0,0) is on the cubic implies that
the constant term of f is zero, so we can write

f(:z:,y) = fl(x’y) +f2(x,y) +f3(§6,y)

where f; is homogeneous of degree i.



We know that the intersection of f = 0 with the line = 0 (that is, the y-axis) is (0,0)
with multiplicity 1 and some other root (namely ©O) with multiplicity 2. Hence, setting = = 0, we
deduce that the quadratic f1(0,1) + 4 f2(0,1) +y?£3(0,1) has a double root and hence f»(0,1)? =
4f1(07 1)f3(07 1)'

Now draw lines through the origin. The line y = ¢z (think of ¢ as a constant) meets the curve
at three points whose z-coordinates are the three roots of xf1(1,t) + 22 fo(1,t) + 23 f3(1,t) so this
line hits a k-point other than (0,0) if and only if the quadratic z?f5(1,t) + x f2(1,t) + f1(1,t) has
roots in k, which happens iff fo(1,¢)? — 4f1(1,t)f3(1,t) is a square in k. Hence if we write

s = fo(1,t)* — 4f1(1,) f3(1,1)
then the formula for the roots of a quadratic equation give us, for every solution to this equation,
a root of 22 f5(1,1) + ¢ fo(1,1) + f1(L,t), namely @ = (— fo(1,1) + ) /2f5(1,1).
The punchline however is that G(¢) := fa(1,t)? — 4f1(1,t) f3(1,t), which looks like an equation
of degree 4 in t, is actually of degree 3 because f2(0,1)? = 4f1(0,1)f3(0,1). Hence the cubic has
now become an equation of the form s? = G(t) with G a cubic, which is what we were after.

3) An example of the easy case of the algorithm presented in Q2. Let d be a non-zero constant,
and let’s consider the cubic F(X,Y,Z) = X3 + Y3 4+ dZ?, over a field of characteristic not equal
to 2 or 3.

(i) Prove that F' = 0 has no singular points.

(i) Prove that the point [1: —1: 0] is a point of inflexion.

(iii) Write down a linear change of coordinates (i.e., X1 = aX +bY +¢Z, Y1 =eX + fY +¢Z,
Z1 = hX +14Y + jZ) that takes this point to [0 : 1 : 0] and which takes the tangent line at this
point to the line Z; = 0.

If you did it right, and then tidy up and complete the square and cube if necessary, you should
be left with an equation of the form Y?Z; = X3 —432d?Z3}, whose corresponding dehomogenisation
is 4?2 = o3 — 432d?. These are exactly the kinds of curves we will deal with later.

4) Here is the beginning of a proof that 3z + 4y = 5 has no rational solutions, but it
assumes a little Galois theory, or some common sense. Say there were a solution. Then by clearing
denominators we get integers u, v, w, not all zero (and hence all non-zero), such that 3u3 + 4v3 +
5w? = 0 (change the sign of w if necessary). Now set p = €27¥/3, a non-trivial cube root of 1,
and work in the field Q(p) = Q(v/=3). Set a = 3u® + 4pv>® + 5p?w? and let 3 be the complex
conjugate of a (note that the conjugate of p is p?). Check that a + 3 = 9u? (recall p + p? = —1),
that pa + p28 = 15w3 and that p?a + pB = 12v3. Deduce that o3 + 3% = 603, where v = 3uvw.

Now P := (a/v,pB/7) is a point on 2 + y3 = 60 defined over Q(v/—3), and so is its complex
conjugate P. Draw the line through P and P; this meets the cubic 2> +y3 = 60 at P and P and a
third point @Q; applying complex conjugation to everything we deduce that Q = @ and hence that
Q@ has rational coordinates. Furthermore, the point @ is not the point at infinity, as the general
line through infinity is of the form z 4+ y = ¢ with ¢ constant, and a + pg cannot be rational.

We conclude that if there is a rational solution to 323 +4y3 = 5 then there is a rational solution
to 2% 4+ y® = 60. By Q3, we deduce that there is a rational solution to s? = t3 — 60.432. Later on
in the course we’ll see how to prove that the only solution to this equation over the rationals is
the point at infinity, and finally our proof of the statement “3z3 + 4y3 = 5 has p-adic points for
all p, and real points, but no rational points” will be complete.

5) It turns out that there are other equations that can be put into the form y? = f(x) with f
a cubic. For example, perhaps surprisingly, the equation y? = g(x) with g(z) of degree 4, can be
put into this form, as long as a smooth point is known. Read the proof on p35 of Cassels’ book.

6) Similarly, the intersection of two quadric surfaces, that is, the simultaneous solutions to two
homogeneous equations of degree 2 in 4 variables, can be put into this form, if a smooth point is
known. Read the proof on p36 of Cassels’ book.

7) Check that disc(2®+az+b) = 4a®+27b%. One can do this for example by calling the roots «,
(3 and v and then noting a+ 3+~ = 0 etc, and then explicitly checking that (a—3)%(3—7)%(y—a)?
agrees with 4a® + 27b up to a minus sign (I think that the general rule is that discriminants are
only defined up to sign).



