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Abstract

We extend the descent theory of Colliot-Thélène and Sansuc to arbi-
trary smooth algebraic varieties by removing the condition that every
invertible regular function is constant. This links the Brauer–Manin
obstruction for integral points on arithmetic schemes to the obstruc-
tions defined by torsors under groups of multiplicative type.
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LetX be a smooth and geometrically integral variety over a number field k
with points everywhere locally. Descent theory of Colliot-Thélène and Sansuc
[7], [28] describes arithmetic properties of X in terms of X-torsors under k-
groups of multiplicative type. It interprets the Brauer–Manin obstruction to
the existence of a rational point (or to weak approximation) on X in terms
of the obstructions defined by torsors.
Let k̄ be an algebraic closure of k. Because of its first applications the

descent theory was stated in [7] for proper varieties that become rational over
k̄; in this case it is enough to consider torsors under tori. It was pointed out
in [27] that the theory works more generally under the sole assumption that
the group k̄[X]∗ of invertible regular functions on X := X×k k̄ is the group of
constants k̄∗. This assumption is satisfied when X is proper, but it often fails
for complements to reducible divisors in smooth projective varieties; it also
fails for many homogeneous spaces of algebraic groups. In the general case of
an arbitrary smooth and geometrically integral variety Colliot-Thélène and
Xu Fei have recently introduced a Brauer–Manin obstruction to the existence
of integral points [6, Sect. 1]. Descent obstructions to the existence of integral
points were briefly considered by Kresch and Tschinkel in [20], Remark 3,
see also Section 5.3 of [8]. In the particular case of an open subset of P1k a
variant of the main theorem of descent linking the two kinds of obstructions
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has recently turned up in connection with an old conjecture of Skolem, see
[18, Thm. 1].
The goal of this paper is to extend the theory of descent to the general

case of a smooth and geometrically integral variety. It turns out that the
main results are almost entirely the same. The methods, however, must be
completely overhauled. As it frequently happens, one needs to systematically
consider Galois hypercohomology of complexes instead of Galois cohomology
of individual Galois modules. For principal homogeneous spaces of algebraic
groups this approach has already been used in [1], [17] and [11]. But even in
the ‘classical’ case k̄[X]∗ = k̄∗ working with derived categories and hyperco-
homology of complexes streamlines the proof of a key result of descent theory
([7], Prop. 3.3.2 and Lemme 3.3.3, [28], Thm. 6.1.2 (a)) by avoiding delicate
explicit computations with cocycles (see our Theorem 3.5 and its proof).

Let us now describe the contents of the paper. Let S be a k-group of
multiplicative type, that is, a commutative algebraic group whose connected
component of the identity is an algebraic torus. In Section 1 we define the
extended type of an X-torsor under S, an invariant that classifies X-torsors
up to twists by a k-torsor. When k̄[X]∗ 6= k̄∗ the extended type defines a
stronger equivalence relation on H1(X,S) than the classical type introduced
by Colliot-Thélène and Sansuc in [7].
Let T be an X-torsor under S. In Section 2 we show that if U ⊂ X is an

open set such that the classical type of the torsor TU → U is zero, then TU is
canonically isomorphic to the fibred product Z×Y U , where Z and Y = Z/S
are k-torsors under groups of multiplicative type, and U → Y is a certain
canonical morphism (Theorem 2.6). This description follows the ideas of
Colliot-Thélène and Sansuc [7] who used similar constructions to describe
TU by explicit equations. Our goal was to obtain a functorial description,
so our results are not immediately related to theirs. Corollary 2.7 describes
the restriction of torsors of given extended type to sufficiently small open
subsets.
In Section 3 we prove the main results of our generalised descent theory.

The proof of Theorem 3.5 relies on the previous work of T. Szamuely and the
first named author [16, 17], in particular, on their version of the Poitou–Tate
duality for tori, which was later extended by C. Demarche to the groups of
multiplicative type [10].
In Section 4 we prove statements about the existence of integral points

and strong approximation. As an application we give a short proof of a result
by Colliot-Thélène and Xu Fei, generalised by C. Demarche, see Theorem 4.3.
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1 The extended type of a torsor

Let Z be an integral regular Noetherian scheme, and let p : X → Z be a
faithfully flat morphism of finite type. Let D(Z) be the derived category of
bounded complexes of fppf or étale sheaves on Z. For an object C of D(Z),
the hypercohomology groups Hi(Z, C) will be denoted simply by H i(Z, C).
Notation such as HomZ(A,B) or Ext

i
Z(A,B) will be understood in the cat-

egory of sheaves on Z, or in D(Z). The same conventions apply when Z is
replaced by X.
Consider the truncated object τ≤1Rp∗Gm,X in D(Z). Its shift by 1, which

has trivial cohomology outside the degrees −1 and 0, is denoted by

KD(X) = (τ≤1Rp∗Gm,X)[1].

There is a canonical morphism i : Gm,Z → τ≤1Rp∗Gm,X , and we define

KD′(X) = Coker (i)[1],

so that we have an exact triangle

Gm,Z [1]−→KD(X)
v
−→ KD′(X)

w
−→ Gm,Z [2]. (1)

A group scheme of finite type over Z is called a Z-group of multiplicative
type if locally on Z it is isomorphic to a group subscheme of Gnm,Z . By [13,
IX, Prop. 2.1] such a group is affine and faithfully flat over Z. If S is a group

of multiplicative type or a finite flat group scheme over Z, we denote by Ŝ
the Cartier dual of S. This is the group scheme over Z which represents the
fppf sheaf HomZ(S,Gm,Z), see [13, X, Cor. 5.9] when S is of multiplicative
type, and [24, Ch. 14] when S is finite flat.
The following proposition is a generalisation of the fundamental exact

sequence of Colliot-Thélène and Sansuc (see [28], Thm. 2.3.6 and Cor. 2.3.9).

Proposition 1.1 Let S be a Z-group scheme. Assume that one of the two
following properties is satisfied:
(a) S is of multiplicative type;
(b) S is finite and flat, and if 2 is a residual characteristic of Z, then the

2-primary torsion subgroup S{2} is of multiplicative type (equivalently, the

Cartier dual Ŝ{2} is smooth over Z).
Then there is an exact sequence

H1(Z, S)→ H1(X,S)
χ
→ HomZ(Ŝ,KD

′(X))
∂
→ H2(Z, S)→ H2(X,S). (2)

To simplify notation, here and elsewhere we write Hn(X,S) for the fppf
cohomology group Hn(X, p∗S). If S is smooth, then the fppf topology can
be replaced by étale topology.
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Proof of Proposition 1.1 We apply the functor Homk(Ŝ, .) to the exact
triangle (1). To identify the terms of the resulting long exact sequence we
use the following well known fact: for any scheme X/Z, any Z-group S of
multiplicative type and any n ≥ 0 we have

Hn(X,S) = ExtnX(p
∗Ŝ,Gm,X),

see [7], Prop. 1.4.1, or [28], Lemma 2.3.7. Let us recall the argument for the

convenience of the reader. One proves first that ExtnX(p
∗Ŝ,Gm,X) = 0 for

any n ≥ 1, and then the local-to-global spectral sequence

Hm(X, ExtnX(p
∗Ŝ,Gm,X))⇒ Ext

m+n
X (p∗Ŝ,Gm,X)

completely degenerates, giving the desired isomorphism.
In case (b) the same argument works for 1 ≤ n ≤ 3: indeed, for ` 6= 2 we

have ExtnX(p
∗Ŝ{`},Gm,X) = 0 by the main result of [5]. (Note that the case

` = 2 is exceptional: for example, Ext2K(α2,Gm,K) 6= 0 if K is a separably
closed field of characteristic 2, see [4].)

The functorRHomX(p
∗Ŝ, .) from D(X) to the derived category of abelian

groups D(Ab) is the composition of the functors Rp∗(.) : D(X)→ D(Z) and
RHomZ(Ŝ, .) : D(Z) → D(Ab). This formally entails a canonical isomor-
phism

ExtnX(p
∗Ŝ,Gm,X) = R

nHomZ(Ŝ,Rp∗Gm,X).

In particular, we have

Hn(Z, S) = ExtnZ(Ŝ,Gm,Z) = HomZ(Ŝ,Gm,Z [n]).

Truncation produces an exact triangle

τ≤1Rp∗Gm,X → Rp∗Gm,X → τ≥2Rp∗Gm,X → (τ≤1Rp∗Gm,X)[1],

and here τ≥2Rp∗Gm,X is acyclic in degrees 0 and 1. We deduce canonical
isomorphisms

R1HomZ(Ŝ, τ≤1Rp∗Gm,X) = R
1HomZ(Ŝ,Rp∗Gm,X) = H

1(X,S),

and an injection of R2HomZ(Ŝ, τ≤1Rp∗Gm,X) into R
2HomZ(Ŝ,Rp∗Gm,X) =

H2(X,S). Now (2) is obtained by applying HomZ(Ŝ, .) to (1).
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Remarks 1. Let k be a field of characteristic zero with algebraic closure
k̄ and Galois group Γ = Gal(k̄/k). In the case when X is smooth over k,
KD(X) was introduced in [17] as the following complex of Γ-modules in
degrees −1 and 0:

[k̄(X)∗ → Div(X)].

Here k̄(X) is the function field of X = X ×k k̄, and Div(X) is the group of
divisors on X (see [2], Lemma 2.3 and Remark 2.6). In this case KD′(X) is
quasi-isomorphic to the complex of Γ-modules

[k̄(X)∗/k̄∗ → Div(X)].

Up to shift, KD′(X) was independently introduced by Borovoi and van
Hamel in [2]: in their notation we have KD′(X) = UPic(X)[1]. Further-
more, if Xc is a smooth compactification of X, and Div∞(X

c
) is the group

of divisors of X
c
supported on X −X

c
, then, by [17], Lemma 2.2, KD′(X)

is quasi-isomorphic to the complex

[Div∞(X
c
)→ Pic(X

c
)].

2. In the relative case, when X is smooth over Z, our KD(X) and
KD′(X) coincide with analogous objects defined in [17], Remark 2.4 (2).
See Appendix A to the present paper for the proof of this fact.

3. In the relative case, when X is proper over Z with geometrically inte-
gral fibres, KD′(X) identifies with the sheaf R1p∗Gm,X , the relative Picard
functor. When X is also assumed projective over Z, the relative Picard func-
tor is representable by a Z-scheme, separated and locally of finite type, see
[3], Ch. 8, Thm. 1 on p. 210.

Let D(k) be the bounded derived category of the category of continuous
discrete Γ-modules.

Definition 1.2 LetX be a smooth and geometrically integral variety over k.
Let Y be an X-torsor under a k-group of multiplicative type S, and let [Y ] be

its class in H1(X,S). We shall say that the morphism χ([Y ]) : Ŝ → KD′(X)
in the derived category D(k) is the extended type of the torsor Y → X.

Remarks 1. There is a canonical morphism from (2) to the sequence of
Colliot-Thélène and Sansuc ([28], Thm. 2.3.6):

Ext1k(Ŝ, k̄[X]
∗)→ H1(X,S)→ Homk(Ŝ,Pic(X))→ Ext

2
k(Ŝ, k̄[X]

∗)→ H2(X,S)
(3)
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Indeed, (3) is obtained by applying the functor Homk(Ŝ, .) to the exact tri-
angle

k̄[X]∗[1]→ KD(X)→ Pic(X)→ k̄[X]∗[2] (4)

(cf. [28], p. 26), and there is an obvious canonical morphism from (1) to
(4). Recall that if Y → X is a torsor under S, then the image of the

class [Y ] ∈ H1(X,S) in Homk(Ŝ,Pic(X)) is called the type of Y → X. We
see that the notion of extended type defines a stronger equivalence relation
on H1(X,S) than the notion of type. For example two torsors have the
same extended type if and only if their classes in H1(X,S) coincide up to a
‘constant element’.

2. If we assume further that k̄[X]∗ = k̄∗ (e.g. X proper), then KD′(X)
is quasi-isomorphic to [0 → Pic(X)], and the exact sequence (2) is just the
fundamental exact sequence of Colliot-Thélène and Sansuc ([28], Cor. 2.3.9):

H1(k, S)→ H1(X,S)→ Homk(Ŝ,Pic(X))→ H
2(k, S)→ H2(X,S).

3. The other ‘extreme’ case is when Pic(X) = 0. Then KD′(X) is
quasi-isomorphic to (k̄[X]∗/k̄∗)[1], and the extended type is an element of

Ext1k(Ŝ, k̄[X]
∗/k̄∗). One case of interest is when X is a principal homogeneous

space of a k-torus T , so that Pic(X) = Pic(T ) = 0, then the extended type

is an element of Ext1k(Ŝ, T̂ ). Suppose that X = T , and let T
′ → T be a

surjective homomorphism of k-tori with kernel S. This is of course a T -
torsor under S. We shall show in Remark 2 after Proposition 2.5 below that
the extended type of this torsor is given by the natural extension

0→ T̂ → T̂ ′ → Ŝ → 0.

This fact was implicitly used in [18, Lemma 2.2].

4. Unlike the classical type, the extended type of a torsor Y → X is in
general not determined by the X-torsor Y . For example, if Pic(X) = 0 and

S is a torus, then Ext1k̄(Ŝ, k̄[X]
∗/k̄∗) = 0 because Ŝ is a free abelian group.

Proposition 1.3 Let X be a smooth and geometrically integral variety over
k, and let S be a k-group of multiplicative type. If X(k) 6= ∅, then the map
χ : H1(X,S) → Homk(Ŝ,KD′(X)) is onto. In other words, if X(k) 6= ∅,
then there exist X-torsors of every extended type.

Proof Since X(k) 6= ∅, the map H2(k, S) → H2(X,S) has a retraction,
hence is injective. Therefore the map ∂ is zero and χ is surjective.
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Let Br(X) = H2(X,Gm,X) be the cohomological Brauer–Grothendieck
group of X. As usual, Br0(X) will denote the image of the natural map
Br(k)→ Br(X), and Br1(X) the kernel of the natural map Br(X)→ Br(X).
It is easy to check that Br1(X) is canonically isomorphic toH

1(k,KD(X)),
see [2], Prop. 2.18, or [17], Lemma 2.1. Thus the exact triangle (1) induces
an exact sequence in Galois hypercohomology

Br(k)→ Br1(X)
r
−→ H1(k,KD′(X))→ H3(k, k̄∗). (5)

The cup-product in étale cohomology defines the pairing

∪ : H1(k, Ŝ)×H1(X,S)→ H1(X, Ŝ)×H1(X,S)→ Br(X),

whose image visibly belongs to Br1(X). The following statement generalises
[28, Thm. 4.1.1].

Theorem 1.4 Let X be a smooth and geometrically integral variety over k,
and let f : Y → X be a torsor under a k-group of multiplicative type S.
Let λ : Ŝ → KD′(X) be the extended type of this torsor. Then for any
a ∈ H1(k, Ŝ) we have

r(a ∪ [Y ]) = λ∗(a),

where λ∗ is the induced map H
1(k, Ŝ)→ H1(k,KD′(X)).

Proof We have canonical isomorphisms

H1(X,S) = Homk(Ŝ,Rp∗Gm,X [1]) = Homk(Ŝ,KD(X)),

cf. the proof of Proposition 1.1. By [22], Prop. V.1.20, these isomorphisms
fit into the following commutative diagram of pairings

H1(k, Ŝ) × H1(X,S) → Br(X)
|| || ||

H1(k, Ŝ) × Homk(Ŝ,Rp∗Gm,X [1]) → H1(k,Rp∗Gm,X [1])
|| || ↑

H1(k, Ŝ) × Homk(Ŝ,KD(X)) → H1(k,KD(X))

Here the vertical arrow is induced by the canonical map

KD(X) = (τ≤1Rp∗Gm,X)[1]→ Rp∗Gm,X [1].

Let u : Ŝ → KD(X) be the morphism corresponding to the class [Y ]. By
the commutativity of the diagram we have

a ∪ [Y ] = u∗(a) ∈ H
1(k,KD(X)) = Br1(X).
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By definition, λ is the composed map

Ŝ
u
−→ KD(X)

v
−→ KD′(X).

By construction, the map r from the exact sequence (5) is the induced map
v∗ : H

1(k,KD(X))→ H1(k,KD′(X)), hence r(a∪ [Y ]) = v∗(u∗(a)) = λ∗(a).

2 Localisation of torsors

Let U be a smooth and geometrically integral variety over k. The abelian
group k̄[U ]∗/k̄∗ is torsion free, so we can define a k-torus R as the torus

whose module of characters R̂ is the Γ-module k̄[U ]∗/k̄∗. The natural exact
sequence of Γ-modules

1→ k̄∗ → k̄[U ]∗ → k̄[U ]∗/k̄∗ → 1 (∗U )

defines a class
[∗U ] ∈ Ext

1
k(k̄[U ]

∗/k̄∗, k̄∗) = H1(k,R).

Let Y be the k-torsor under R whose class in H1(k,R) is −[∗U ].

Lemma 2.1 There exists a morphism qU : U → Y such that q∗U identifies
(∗Y ) with (∗U). Any morphism from U to a k-torsor under a torus factors
through qU .

Proof This is Lemma 2.4.4 of [28].

To deal with the case of torsors under arbitrary groups of multiplicative
type we need to extend this constrution to certain geometrically reducible va-
rieties. However, Lemma 2.1 does not readily generalise, because its essential
ingredient is Rosenlicht’s lemma which is valid only for connected groups. If
S is a torus, it says that the natural map of Γ-modules Ŝ → k̄[S]∗ induces
an isomorphism Ŝ ∼= k̄[S]∗/k̄∗ (every invertible regular function that takes
value 1 at the neutral element of S is a character). This is no longer true if

Ŝ has non-zero torsion subgroup. For general groups of multiplicative type
we propose the following substitute.

Definition 2.2 For a (not necessarily integral) k-variety V with an action
of S we define k̄[V ]∗S as the subgroup of k̄[V ]

∗ consisting of the functions f(x)

for which there exists a character χ ∈ Ŝ such that f(sx) = χ(s)f(x) for any
s ∈ S(k̄).

It is easy to see that k̄[V ]∗S is a Γ-submodule of k̄[V ]
∗.
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Remark If S is a torus and V is geometrically connected, then k̄[V ]∗S =
k̄[V ]∗, so we are not getting anything new. Indeed, if x ∈ V (k̄) and f ∈
k̄[V ]∗, then f(sx)/f(x) is a regular invertible function on S with value 1
at the neutral element e ∈ S(k̄). By Rosenlicht’s lemma such a function is
a character in Ŝ. We obtain a morphism from a connected variety V to a
discrete group Ŝ, which must be a constant map. Hence there exists χ ∈ Ŝ
such that f(sx) = χ(s)f(x) for any x ∈ V (k̄) and any s ∈ S(k̄).

Proposition 2.3 Let S be a k-group of multiplicative type. Then the natural
map Ŝ → k̄[S]∗S induces an isomorphism of Γ-modules Ŝ−̃→k̄[S]

∗
S/k̄

∗.

Proof The image of the natural inclusion Ŝ → k̄[S]∗ is contained in k̄[S]∗S,
so it remains to show that any function from f(x) ∈ k̄[S]∗S that takes value
1 at the neutral element e of S is a character. Indeed, for any s ∈ S(k̄) we
have f(sx) = χ(s)f(x), and taking x = e we obtain f(s) = χ(s).

Corollary 2.4 Let V be a k-torsor of S. Then we have an exact sequence
of Γ-modules

0→ k̄∗ → k̄[V ]∗S → Ŝ → 0. (6)

The class of extension (6) in Ext1k(Ŝ, k̄
∗) = H1(k, S) is −[V ].

Proof The action of S(k̄) on Ŝ = k̄[S]∗S/k̄
∗ is trivial, hence the first state-

ment follows from Proposition 2.3 by Galois descent. In the case when S
is a torus the last statement is a well known lemma of Sansuc [26], (6.7.3),
(6.7.4), see also Lemma 5.4 of [2]. The same calculation works in the general
case.

We shall need a relative version of Corollary 2.4. Recall that π∗Gm,Y is
the sheaf on X such that for an étale morphism U → X we have

π∗Gm,Y (U) = MorU(YU ,Gm,U ) = Mork(YU ,Gm,k).

Define (π∗Gm,Y )S as the subsheaf of π∗Gm,Y such that for an étale morphism
U → X the group of sections (π∗Gm,Y )S(U) consists of the functions f(x) ∈
MorU(YU ,Gm,U ) for which there exists a group scheme homomorphism χ :
SU → Gm,U such that f(sx) = χ(s)f(x) for any s ∈ SU(k̄) and any x ∈
YU(k̄). If m : SU ×U YU = S ×k YU → YU is the action of S on YU , then the
last condition is m∗f = χ ∙ f .

Proposition 2.5 Let p : X → Spec(k) be a smooth and geometrically inte-
gral variety, and let π : Y → X be a torsor under S.
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(i) We have an exact sequence of étale sheaves on X:

0→ Gm,X → (π∗Gm,Y )S → p
∗Ŝ → 0. (7)

Applying p∗ to (7) we obtain an exact sequence of Γ-modules

0→ k̄[X]∗ → k̄[Y ]∗S → Ŝ → PicX. (8)

(ii) The class of extension (7) in Ext1X(p
∗Ŝ,Gm,X) = H

1(X,S) is the
class [Y/X] of the X-torsor Y (up to sign).
(iii) The last arrow in (8) is the type of the torsor π : Y → X.
(iv) When the type of π : Y → X is zero, the extension given by the first

three non-zero terms of (8) maps to the class of (7) by the canonical injective
map

0→ Ext1k(Ŝ, k̄[X]
∗)→ Ext1X(p

∗Ŝ,Gm,X) = H
1(X,S).

Proof (i) The maps in this sequence are obvious maps. The exactness can
be checked locally, so we can assume that Y = X ×k S, but in this case the
exactness is clear. The exact sequence (8) follows from (7) once we note that

the canonical morphism Ŝ → p∗p∗Ŝ is an isomorphism since X is connected.
(ii) The proof of [7, Prop. 1.4.3] applies as is.
(iii-iv) More generally, let A be a Γ-module, and F be a sheaf on X.

Recall that we have the spectral sequence of the composition of functors Rp∗
and RHomk(A, ∙):

Extmk (A,H
n(X,F))⇒ Extm+nX (p∗A,F).

It gives rise to the exact sequence

0→ Ext1k(A, p∗F)→ Ext
1
X(p

∗A,F)→ Homk(A,R
1p∗F). (9)

The arrows in (9) have explicit description. The canonical map E1 → E0,1

sends the class of the extension of sheaves on X

0→ F → E → p∗A→ 0

to the last arrow in

0→ p∗F → p∗E → p∗p
∗A→ R1p∗F ,

composed with the canonical map A → p∗p∗A. If the class of the extension
E goes to 0 ∈ E0,1, then this class comes from the extension of Γ-modules

0→ p∗F → p∗E → Ker[p∗p
∗A→ R1p∗F ]→ 0

pulled back by the same canonical map. See Appendix B to this paper for a
proof of these facts. In our case take A = Ŝ and F = Gm,X .
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Remarks 1. The type of the torsor π : Y → X, at least up to sign, can also
be described explicitly as follows. Let K = k̄(X). The fibre of p : Y → X
over Spec(K) is a K-torsor YK under S. By Corollary 2.4 we can lift any

character χ ∈ Ŝ to a rational function f ∈ K[YK ]∗S ⊂ k̄(Y )
∗. By construction

f is an invertible regular function on YK , hence divY (f) = π
∗(D) where D is

a divisor on X. Note that D is uniquely determined by χ up to a principal
divisor on X. It is not hard to check that the class of this divisor in PicX
is the image of χ (up to sign). Indeed, by [28], Lemma 2.3.1 (ii), the type
associates to χ the subsheaf Oχ of χ-semiinvariants of p∗(OY ). The function
f is a rational section of Oχ, hence the class [D] represents Oχ ∈ PicX. If
this description was used as a definition of type, then the exactness of (8) is
easily checked directly.
2. From (8) we obtain the following exact sequence:

0→ k̄[X]∗/k̄∗ → k̄[Y ]∗S/k̄
∗ → Ŝ → PicX. (10)

In the same way as in Proposition 2.5 (iii) one shows that when the type of
the torsor π : Y → X is zero, the extension given by the first three non-zero
terms of (10) maps to the extended type of π : Y → X by the canonical
injective map

0→ Ext1k(Ŝ, k̄[X]
∗/k̄∗)→ Homk(Ŝ,KD

′(X)).

In particular, a surjective homomorphism of k-tori T1 → T2 with kernel S
is a T2-torsor under S. The extended type of this torsor comes from the
extension

0→ k̄[T2]
∗/k̄∗ → k̄[T1]

∗
S/k̄

∗ → Ŝ → 0,

which is precisely the dual exact sequence

0→ T̂2 → T̂1 → Ŝ → 0.

Theorem 2.6 Let U be a smooth and geometrically integral variety over k,
let S be a k-group of multiplicative type, and let π : T → U be a torsor under
S of type zero. Then we have the following statements.
(i) There is a natural exact sequence of Γ-modules

0→ k̄∗ → k̄[T ]∗S → M̂ → 0,

which is the definition of the k-group of multiplicative type M .
(ii) There is a natural exact sequence of Γ-modules

0→ k̄[U ]∗ → k̄[T ]∗S → Ŝ → 0. (11)
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Let
1→ S →M → R→ 1

be the dual exact sequence of k-groups of multiplicative type.
(iii)We have T = Z×Y U , where Z is a k-torsor under M that represents

the negative of the class of the extension (i), Z → Y = Z/S is the natural
quotient, and U → Y is the morphism qU from Lemma 2.1.

Proof We note that the abelian group k̄[T ]∗S/k̄
∗ is finitely generated since

the same is true for k̄[U ]∗/k̄∗ and Ŝ. Thus we can define M as in (i). The
extension (11) gives rise to the following commutative diagram:

0 0
↓ ↓
k̄∗ = k̄∗

↓ ↓
0 → k̄[U ]∗ → k̄[T ]∗S → Ŝ → 0

↓ ↓ ||
0 → R̂ → M̂ → Ŝ → 0

↓ ↓
0 0

(12)

Similarly to Lemma 2.1 the extension (i) defines a k-torsor Z under M and
a morphism q : T → Z which identifies (i) with the extension

0→ k̄∗ → k̄[Z]∗S → M̂ → 0.

The functoriality of this construction and the commutativity of (12) imply
that there is an isomorphism Z/S ∼= Y of torsors under R which makes the
diagram commute

T → U
↓ ↓
Z → Y

This gives a morphism T → Z ×Y U of U -torsors under S, which, as any
such morphism, is an isomorphism.

Corollary 2.7 Let X be a smooth geometrically integral variety over k, let S
be a k-group of multiplicative type, and let λ ∈ Homk(Ŝ,KD′(X)). Let U be
a dense open set of X such that the induced element λU ∈ Homk(Ŝ,KD′(U))
has trivial image in Homk(Ŝ,PicU), so that

λU ∈ Ext
1
k(Ŝ, k̄[U ]

∗/k̄∗) = Ext1k(Ŝ, R̂) = Ext
1
k−groups(R,S),
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where R̂ = k̄[U ]∗/k̄∗. Let

1→ S →M → R→ 1

be an extension representing this class. Then we have the following state-
ments.
(i) The restriction of an X-torsor of extended type λ to U is isomorphic

to Z ×Y U , where Y is a k-torsor under R, U → Y is the morphism qU
defined in Lemma 2.1, and Z is a k-torsor under M such that Y = Z/S.
(ii) Conversely, any U -torsor Z×Y U → U extends to an X-torsor under

S of extended type λ.

Proof By Remark 2 after Proposition 2.5 we know that the extension (11)
represents the class λU . Now part (i) follows from Theorem 2.6.
Recall that the embedding j : U → X gives a natural injective map

Gm,X → j∗Gm,U of étale sheaves on X. On applying Rp∗ and the truncation
τ≤1 we obtain a natural morphism τ≤1Rp∗Gm,X → τ≤1R(pj)∗Gm,U in D(k).
It is clear that we have a commutative diagram of exact triangles in D(k)

k̄∗ → τ≤1Rp∗Gm,X → KD′(X)[−1]
|| ↓ ↓
k̄∗ → τ≤1R(pj)∗Gm,U → KD′(U)[−1]

It gives rise to the following commutative diagrams of abelian groups:

H1(k, S) → H1(X,S) → Homk(Ŝ,KD
′(X)) → H2(k, S)

|| ↓ ↓ ||
H1(k, S) → H1(U, S) → Homk(Ŝ,KD

′(U)) → H2(k, S)

(13)

Now it is easy to complete the proof of the corollary. From Corollary 2.4 and
Remark 2 after Proposition 2.5 we see that the extended type of Z → Y is
λU . This implies that the extended type of Z ×Y U → U is λU . Now (ii) is
an immediate consequence of (13).

3 Descent theory

In this and the next chapters k is a number field with the ring of integers
Ok. Let Ωk be the set of places of k, and let Ω∞ (resp. Ωf ) be the set
of archimedean (resp. finite) places of k. For v ∈ Ωk we write kv for the
completion of k at v.
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For a variety X over k we denote by X(Ak) the topological space of
adelic points of X; it coincides with

∏
v∈Ωk
X(kv) when X is proper. Recall

(cf. [28], Ch. 5) that the Brauer–Manin pairing

X(Ak)× Br(X)→ Q/Z

is defined by the formula

((Pv), α) 7→
∑

v∈Ωk

jv(α(Pv)),

where jv : Br(kv) → Q/Z is the local invariant in class field theory. By
global class field theory we have ((Pv), α) = 0 for every α ∈ Br0(X). For a
subgroup B ⊂ Br(X) (or B ⊂ Br(X)/Br0(X)) we denote by X(Ak)B the
set of those adelic points that are orthogonal to B, and we write X(Ak)

Br

for X(Ak)
Br(X). By the reciprocity law in global class field theory, we have

X(k) ⊂ X(Ak)Br.

If f : Y → X is a torsor under a k-group of multiplicative type S, the
descent set X(Ak)

f is defined as the set of adelic points (Pv) ∈ X(Ak) such
that the family ([Y ](Pv)) is in the image of the diagonal map H

1(k,G) →∏
v∈Ωk
H1(kv, G), see [28], Section 5.3.

Proposition 3.1 Let X be a smooth and geometrically integral variety over
a number field k, and let S be a k-group of multiplicative type. An adelic
point (Pv) ∈ X(Ak) belongs to the descent set X(Ak)f associated to the
torsor f : Y → X under S if and only if (Pv) is orthogonal to the subgroup

Brλ(X) := r
−1(λ∗(H

1(k, Ŝ))) ⊂ Br1(X)

with respect to the Brauer–Manin pairing.

Proof The property (Pv) ∈ X(Ak)f means that the family ([Y ](Pv)) is in
the image of the diagonal map H1(k, S) → P1(S), where P1(S) is the re-
stricted product of the groups H1(kv, S). By the Poitou–Tate exact sequence
(see, for example, [10], Thm. 6.3) this is equivalent to the condition

∑

v∈Ωk

jv((a ∪ [Y ])(Pv)) = 0

for every a ∈ H1(k, Ŝ). On the other hand, by Theorem 1.4 and exact
sequence (5) every element of Brλ(X) can be written as a ∪ [Y ] + α0, where
α0 ∈ Br0(X). The proposition follows.
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What we want now is an ‘integral version’ of Proposition 3.1. If Σ is
a finite set of places of k, we denote by OΣ the subring of k consisting
of the elements integral at the non-archimedean places outside Σ. Then
U = Spec (OΣ) is an open subset of Spec (Ok). Let us assume that there are

• a faithfully flat and separated U -scheme of finite type X ,

• a flat commutative group U -scheme S of finite type, and

• an fppf X -torsor Y under S,

such that X = X ×U k, S = S ×U k, and Y = Y ×U k. This assumption can
always be satisfied if Σ is large enough.
Let [Y ] be the class of Y in the fppf cohomology group H1(OΣ,S) =

H1(U,S). For every OΣ-torsor c under S, one defines the twisted torsor
Yc = (Y ×U c)/S. This is a U -torsor under S such that [Yc] = [Y ] − c (see
[28], Lemma 2.2.3).

Corollary 3.2 Let (Pv) ∈
∏
v∈ΣX(kv) ×

∏
v 6∈ΣX (Ov). Then the following

conditions are equivalent:

(a) The adelic point (Pv) is orthogonal to Brλ(X).

(b) There exists a class [c] ∈ H1(OΣ,S) that goes to ([Y ](Pv)) under the
diagonal map

H1(OΣ,S) →
∏

v∈Σ

H1(kv, S)×
∏

v 6∈Σ

H1(Ov,S).

(c) There exists an OΣ-torsor c under S such that the adelic point (Pv)
lifts to an adelic point in

∏
v∈Σ Y

c(kv)×
∏
v 6∈Σ Y

c(Ov), where Y c = Yc×OΣ k
is the generic fibre of the twisted torsor Yc.

Proof Let c be anOΣ-torsor under S with cohomology class [c] ∈ H1(OΣ,S).
Then [c] goes to ([Y(Pv)]) if and only if [Yc(Pv)] = 0 for every place v. But
this is equivalent to the fact that Pv lifts to a point in Y

c(kv) if v ∈ Σ, and
to a point in Yc(Ov) if v 6∈ Σ. This proves the equivalence of (b) and (c).

Condition (b) implies that the adelic point (Pv) is in the descent set
X(Ak)

f . Hence (a) follows from (b) by Proposition 3.1.

Assume condition (a). By Proposition 3.1, the element

([Y(Pv)]) ∈
∏

v∈Σ

H1(kv, S)×
∏

v 6∈Σ

H1(Ov,S)
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is in the diagonal image of some σ ∈ H1(k, S). Since σ is unramified outside
Σ, Harder’s lemma ([19], Lemma 4.1.3 or [12], Corollary A.8) implies that
σ is in the image of the restriction map H1(OΣ,S) → H1(k, S). Thus (a)
implies (b).

Remarks 1. If we assume further that S and X are smooth over U , then
everywhere in the previous corollary we can replace fppf cohomology by étale
cohomology. This can be arranged by choosing a sufficiently large set Σ.
2. We refer the reader to [20] and [8] for examples of descent on the

torsor Y → X under μd, where X ⊂ P2Z is the complement to the closed
subscheme given by a homogeneous polynomial f(x, y, z) of degree d with
integral coefficients, and Y is given by the equation ud = f(x, y, z).

Below is a “truncated” variant of Proposition 3.1 where we consider all
places of k except finitely many. Keep the notation as above and let Σ0 be a
finite set of places of k. Let X(AΣ0k ) be the topological space of “truncated”
adelic points, defined as the restricted product of the spaces X(kv) for v 6∈ Σ0
with respect to the subsets X (Ov), v /∈ Σ ∪ Σ0. We define P1Σ0(S) as the
restricted product of the groups H1(kv, S) for v 6∈ Σ0 with respect to the
subgroups H1(Ov,S), v /∈ Σ ∪ Σ0. As in the classical case Σ0 = ∅, the sets
P1Σ0(S) and X(A

Σ0
k ) are independent of the choices of models S and X . Let

H1Σ0(k, Ŝ) be the kernel of the restriction map H
1(k, Ŝ)→

∏
v∈Σ0
H1(kv, Ŝ).

Proposition 3.3 Let (Pv)v 6∈Σ0 ∈ X(A
Σ0
k ). Then ([Y ](Pv))v 6∈Σ0 is in the im-

age of the diagonal map H1(k, S) → P1Σ0(S) if and only if the “truncated”
adelic point (Pv)v 6∈Σ0 is orthogonal to the subgroup

Brλ,Σ0(X) := r
−1(λ∗(H

1
Σ0
(k, Ŝ))) ⊂ Brλ(X).

Proof Using the local Tate duality, we see that the Poitou–Tate exact
sequence for S (see [10], Thm. 6.3.) gives rise to the Σ0-truncated exact
sequence

H1(k, S)→ P1Σ0(S)→ H
1
Σ0
(k, Ŝ)D,

where the superscript D denotes the Pontryagin dual Hom(∙,Q/Z). By this
sequence, (sv)v 6∈Σ0 ∈ P

1
Σ0
(S) is in the image of H1(k, S) if and only if

∑

v 6∈Σ0

jv(a ∪ sv) = 0

for every a ∈ H1Σ0(k, Ŝ). The proof finishes in the same way as the proof of
Proposition 3.1.
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Taking Σ = Σ0 we obtain a “truncated” analogue of Corollary 3.2.

Corollary 3.4 Let (Pv) ∈
∏
v 6∈ΣX (Ov). Then the following conditions are

equivalent.

(a) (Pv) is orthogonal to Brλ,Σ(X).

(b) There exists a class [c] ∈ H1(OΣ,S) that goes to ([Y ](Pv)) under the
diagonal map

H1(OΣ,S) →
∏

v 6∈Σ

H1(Ov,S).

(c) There exists an OΣ-torsor c under S such that Pv lifts to a point in
Yc(Ov) for every v 6∈ Σ.

Thm. 1 of [18] is a particular case of this result.

Let X be a smooth and geometrically integral k-variety. Define

B(X) := ker[Br1(X)/Br(k)→
∏

v∈Ωk

Br1(Xv)/Br(kv)],

where Xv := X ×k kv. For α ∈ B(X) and (Pv) ∈ X(Ak) the image αv of α
in Br1(Xv) is constant for every place v, hence

i(α) =
∑

v∈Ωk

jv(α(Pv)) ∈ Q/Z

is well defined and does not depend on the choice of (Pv). Let us assume
that X(Ak) 6= ∅. Then we obtain a map i : B(X) → Q/Z. Note also that
this assumption, by global class field theory, implies that the natural map
Br(k) → Br(X) is injective. For a number field k we have H3(k, k̄∗) = 0,
so we see from (5) that the map r : Br1(X) → H1(k,KD′(X)) induces an
isomorphism

Br1(X)/Br(k)−̃→H
1(k,KD′(X)).

If C is an object of D(k), and i > 0 we define

X i(C) = ker[H i(k, C)→
∏

v∈Ωk

H i(kv, C)].

Thus we get an isomorphism B(X)−̃→X 1(KD′(X)), using which we obtain
a map i :X 1(KD′(X))→ Q/Z.

Let S be a k-group of multiplicative type. There is a perfect Poitou–Tate
pairing of finite groups (cf. [10], Thm. 5.7)

〈, 〉PT :X
2(S)×X 1(Ŝ)→ Q/Z
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defined as follows. Let a ∈X 1(Ŝ) and b ∈X 2(S). By [22], Lemma III.1.16,
the group H2(k, S) is the direct limit of the groups H2(U,S) where U runs
over non-empty open subsets of Spec (Ok). Note that by taking a smaller U
we can assume that S and Ŝ extend to smooth U -group schemes S and Ŝ,
respectively. For U sufficiently small we can lift b to some bU ∈ H2(U,S),
and lift a to some ãU ∈ H1(U, Ŝ). For any object C of D(U) we have the
hypercohomology groups with compact support H ic(U, C), see Section 3 of [16]
for definitions. By [21], Prop. II.2.3 (a) (see also [16], Sect. 3), since a is

locally trivial everywhere, ãU comes from some aU ∈ H1c (U, Ŝ) under the
natural map

H1c (U, Ŝ)→ H
1(U, Ŝ).

Define 〈b, a〉PT as the cup-product bU ∪ aU ∈ H3c (U,Gm,U) ' Q/Z (the last
isomorphism comes from the trace map, see [21], Prop. II.2.6). It is not clear
to us whether this definition of the Poitou–Tate pairing coincides with the
classical definition in terms of cocycles, but we shall only use the fact that it
leads to a perfect pairing.
Recall that the map ∂ : Homk(Ŝ,KD

′(X)) → H2(k, S) was defined in
the exact sequence (2).

Theorem 3.5 Let X be a smooth and geometrically integral variety over a
number field k such that X(Ak) 6= ∅. Let S be a k-group of multiplicative
type, λ ∈ Homk(Ŝ,KD′(X)) and a ∈X 1(Ŝ). Then ∂(λ) ∈X 2(S), and we
have

〈∂(λ), a〉PT = i(λ∗(a)).

Proof The image of ∂(λ) in H2(X,S) is zero because (2) is a complex.
The assumption X(Ak) 6= ∅ implies that the map H2(kv, S) → H2(Xv, S)
is injective for every place v (cf. also Proposition 1.3). Therefore, we have
∂(λ) ∈X 2(S).

Recall that w : KD′(X) → Gm,k[2] is the natural map defined in (1)
for X/k. Since (2) is obtained by applying the functor Homk(Ŝ, .) to (1),

under the canonical isomorphism Homk(Ŝ,Gm,k[2]) = H
2(k, S) we have the

equality w ◦ λ = ∂(λ). Let us write α = λ∗(a) ∈X 1(KD′(X)).
Let U ⊂ Spec (Ok) be a sufficiently small non-empty open subset such

that there exists a smooth U -scheme X with geometrically integral fibres and
the generic fibre X = X ×U k, and a smooth U -group of multiplicative type
S with the generic fibre S = S ×U k.
Write wU ∈ HomU(KD′(X ),Gm,U [2]) for the map in the exact triangle

(1) for X /U . The passage to the generic point Spec (k) of U defines the
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restriction map

HomU(Ŝ, KD
′(X ))→ Homk(Ŝ,KD

′(X)),

Consider the exact sequence (2) for XV = X ×U V and SV = S ×U V ,
where V ⊂ U is a non-empty open set, and also for X and S. We obtain a
commutative diagram

H1(XV ,SV ) → HomV (Ŝ, KD′(XV )) → H2(V,SV ) → H2(XV ,SV )
↓ ↓ ↓ ↓

H1(X,S) → Homk(Ŝ,KD
′(X)) → H2(k, S) → H2(X,S)

Passing to the inductive limit over V and using [22], Lemma III.1.16, we
deduce from this diagram a canonical surjective homomorphism

lim−→
V

HomV (ŜV , KD
′(XV ))→ Homk(Ŝ,KD

′(X)).

Thus, by shrinking U , if necessary, we can lift λ to some λU ∈ HomU(Ŝ, KD′(X )).
Then

wU ◦ λU ∈ HomU(Ŝ,Gm,U [2]) = H
2(U,S)

(see the proof of Proposition 1.1 for the equality here) goes to ∂(λ) under
the restriction map to H2(k, S).

As was explained above, we can lift a ∈X 1(Ŝ) to some aU ∈ H1c (U, Ŝ).
Write αU = λU∗(aU). Then αU is sent to α by the natural map

H1c (U,KD
′(X ))→ H1(k,KD′(X)).

By the remark before Proposition 1.1 we can use [17], Prop. 3.3, which gives

i(λ∗(a)) = i(α) = wU ∪ αU = wU∗(αU) = wU∗(λU∗(aU))
= (wU ◦ λU)∗(aU) = (wU ◦ λU) ∪ aU .

The above definition of the Poitou–Tate pairing shows that this equals 〈∂(λ), a〉PT .

Remark This proof avoids delicate computations with cocycles as in [28],
the proof of Thm. 6.1.2, which follows [7], Prop. 3.3.2.

Corollary 3.6 Let X be a smooth and geometrically integral variety over a
number field k such that X(Ak)

B(X) 6= ∅. Then the map

χ : H1(X,S)→ Homk(Ŝ,KD
′(X))

is surjective (there exist X-torsors of every extended type). The converse is
true when Pic(X) is a finitely generated abelian group.
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Proof Let λ ∈ Homk(Ŝ,KD′(X)). Since X(Ak)B(X) 6= ∅, Theorem 3.5
ensures that 〈∂(λ), a〉PT = 0 for every a ∈ X 1(Ŝ). The non-degeneracy of
the Poitou–Tate pairing implies that ∂(λ) = 0. By Proposition 1.1 this is
equivalent to λ ∈ Im(χ).

To prove the converse it is enough to show that i : B(X) → Q/Z is
the zero map. The formation of B(X) is functorial in X, so there is a
natural restriction map B(Xc)→ B(X). By [26], formula (6.1.4), this is an
isomorphism. The map ic : B(Xc)→ Q/Z is the composition

B(Xc)−̃→B(X)
i
−→ Q/Z,

so it is enough to show that ic is identically zero.
By functoriality of the exact sequence (2) we have a commutative diagram

with exact rows

H1(Xc, S)
χc

−→ Homk(Ŝ,Pic(X
c
))

∂c
−→ H2(k, S) → H2(Xc, S)

↓ ↓ || ↓

H1(X,S)
χ
−→ Homk(Ŝ,KD

′(X))
∂
−→ H2(k, S) → H2(X,S)

The commutativity of this diagram implies that if χ is surjective, so that
∂ is zero, then ∂c is also zero, hence χc is surjective. The assumption that
Pic(X) is finitely generated implies that Pic(X

c
) is also finitely generated.

Using [28], Prop. 6.1.4, we see that Xc(Ak)
B(Xc) is not empty, thus ic is

identically zero.

See [29], Thm. 3.3.1, for miscellaneous characterisations of the property
X(Ak)

B(X) 6= ∅ in terms of the so called elementary obstruction and the
generic period.

4 Application: existence of integral points,

obstructions to strong approximation

Recall that for a finite set of places Σ0 ⊂ Ωk we denote by A
Σ0
k the ring

of k-adèles without v-components for v ∈ Σ0. Let X be a smooth and
geometrically integral k-variety such that X(Ak) 6= ∅. There exists a finite
set of places Σ containing Σ0 ∪ Ω∞, and a faithfully flat morphism X →
Spec (OΣ) such that X = X ×OΣ k. We shall say that X satisfies strong
approximation1 outside Σ0 if X(k) is dense in the restricted product X(A

Σ0
k )

1We adopt the convention that a variety X such that X(Ak) = ∅ satisfies strong
approximation outside Σ0 for every Σ0.

20



of the sets X(kv) for v 6∈ Σ0 with respect to the subsets X (Ov) (defined
for v /∈ Σ). The restricted product topology is called the strong topology.
Explicitly, the base of open subsets of this topology consists of the sets

∏

v∈T

Uv ×
∏

v/∈T

X (Ov),

where T is a finite subset of Ωk \ Σ0 such that Σ ⊂ T , and Uv is an open
subset of X(kv) for v ∈ T .
The following theorem gives sufficient conditions for “the Brauer–Manin

obstruction to strong approximation outside Σ0” to be the only obstruction
on X.

Theorem 4.1 Let X be a smooth and geometrically integral k-variety such
that X(Ak) 6= ∅, and let S be a k-group of multiplicative type. Let Σ0 be a
finite set of places of k. Assume that there exists an X-torsor Y under S with
the following property: For all k-torsors c under S, the twisted torsor Y c has
the strong approximation property outside Σ0. If (Pv) ∈ X(Ak) is orthogonal
to Brλ(X), then (Pv)v 6∈Σ0 belongs to the closure of X(k) in X(A

Σ0
k ) for the

strong topology.

Proof Choose a finite set of places Σ containing Σ0 ∪ Ω∞ such that X
is the generic fibre of a flat smooth OΣ-scheme of finite type X . We can
also assume that the torsor Y → X extends to a torsor Y → X under a
smooth OΣ-group scheme of multiplicative type S such that S = S ×OΣ k.
Furthermore, we can assume that the adelic point (Pv) ∈ X(Ak) belongs to∏
v∈ΣX(kv)×

∏
v 6∈ΣX (Ov). We want to find a rational point on X very close

to Pv for v ∈ (Σ− Σ0) and integral outside Σ.
By Corollary 3.2, the property that (Pv) is orthogonal to Brλ(X) implies

that it can be lifted to an adelic point (Qv) ∈
∏
v∈Σ Y

c(kv)×
∏
v 6∈Σ Y

c(Ov) on
some twisted torsor Y c. In particular, Y c(Ak) 6= ∅. Since Y c satisfies strong
approximation outside Σ0, we can find a rational point m ∈ Y c(k) very close
to Qv for v ∈ (Σ − Σ0) and integral outside Σ. Sending m to X produces
a rational point m′ ∈ X(k) very close to Pv for v ∈ (Σ − Σ0) and integral
outside Σ.

The following corollary gives sufficient conditions for “the Brauer–Manin
obstruction to the integral Hasse principle” to be the only obstruction.

Corollary 4.2 Let X be a faithfully flat and separated scheme of finite type
over Ok such that X = X ×Ok k. Assume that Y

c has the strong approxi-
mation property outside Ω∞ for every k-torsor c under S. If there exists an
adelic point (Pv) ∈

∏
v∈Ωk
X (Ov) orthogonal to Brλ(X), then X (Ok) 6= ∅.
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Proof Theorem 4.1 says that (Pv) can be approximated by a rational point
m ∈ X(k) for the strong topology on X(AΩ∞k ). Since Pv ∈ X (Ov) for v ∈ Ωf ,
this implies that m ∈ X (Ok).

As an application of Theorem 4.1 we get a short proof of a result that
already appeared in C. Demarche’s thesis [9, Remark 4.8.2] (see also [6,
Thm. 4.5], where there is an additional assumption that the geometric sta-
biliser H is finite).

Theorem 4.3 Let G be a semi-simple, simply connected linear group over
a number field k. Let Σ0 be a finite set of places of k such that for every
almost k-simple factor G1 of G there exists a place v ∈ Σ0 such that G1(kv)
is not compact (for example, if k is not totally real we can take Σ0 = {v0},
where v0 is a complex place of k). Let X be a homogeneous space of G such
that the geometric stabiliser H is a k̄-group of multiplicative type. Then for
every adelic point (Pv)v∈Ωk of X orthogonal to Br1(X), the point (Pv)v 6∈Σ0 is
in the closure of X(k) in X(AΣ0k ) for the strong topology.

In other words: the Brauer–Manin obstruction to strong approximation
outside Σ0 is the only one on X.

Proof Let us assume that G acts on X on the left. Then X with the
left action of G is isomorphic to G/H. Since Pic(G) = 0 and k̄[G]∗ = k̄∗,
the abelian group Pic(X) is finitely generated, and k̄[X]∗ = k̄∗. Now the
existence of a point (Pv)v∈Ωk orthogonal to Br1(X) implies that X(k) 6= ∅
by [28], Prop. 6.1.4, and [15], Prop 3.7 (3) and Example 3.4. Therefore X
with the left action of G is isomorphic to X = G/H, where H is a k-group of
multiplicative type. Taking Y = G, we obtain a right torsor Y → X under
H such that for any k-torsor c under H the twist Y c is a left k-torsor under
G.
By the Hasse principle for semi-simple simply connected groups (a theo-

rem of Kneser–Harder–Chernousov), Y c(Ak) 6= ∅ implies Y c(k) 6= ∅, hence
Y c ' G. By the strong approximation theorem (see, for example, [25], Thm.
7.12), G satisfies strong approximation outside Σ0. It remains to apply The-
orem 4.1.

Remarks 1. It is not clear to us whether Corollary 4.2 still holds if we only
assume that all the twists Y c satisfy the integral Hasse principle: indeed, we
do not know in general whether the torsor Y → X can be extended to an
fppf torsor Y → X over Spec (Ok).
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2. The assumptions of Theorem 4.1 and Corollary 4.2 imply that k̄[X]∗ =
k̄∗, that is, we are still in “the classical case” of descent theory. Indeed, if
Y satisfies strong approximation outside a finite set of places, then Y is
simply connected (this was first observed in [23], Thm. 1, see also [14],
Cor. 2.4). This implies k̄[Y ]∗ = k̄∗, and hence k̄[X]∗ = k̄∗. (Otherwise
pick up a function f ∈ k̄[Y ]∗ such that the image of f in the free abelian
group k̄[Y ]∗/k̄∗ is not divisible by a prime `. Then the normalisation of Y in
k̄(Y )(f 1/`) is a connected étale covering of Y of degree `.)

Appendix A

Let Z be an integral regular Noetherian scheme, and let p : X → Z be
a smooth faithfully flat morphism of finite type with geometrically integral
fibres. The goal of this appendix is to show that the object τ≤1Rp∗Gm,X of
the derived category D(Z) of étale sheaves on Z can be represented by an
explicit two-term complex. This links our KD(X) and KD′(X) with their
analogues introduced in [17], Remark 2.4 (2).

Let j : η = Spec(k(X)) ↪→ X be the inclusion of the generic point. Since
X is regular, there is no difference between Weil and Cartier divisors, so we
have the following exact sequence of sheaves on X, see [22], Examples II.3.9
and III.2.22:

0→ Gm,X → j∗Gm,η → DivX → 0,

where DivX is the sheaf of divisors on X, that is, the sheaf associated to the
presheaf such that the group of sections over an étale U/X is the group of
divisors on U .
We call an irreducible effective divisor D on X horizontal if it is the

Zariski closure of a divisor on the generic fibre of p : X → Z. If D = p−1(D′)
for a divisor D′ on Z, we call D vertical. The sheaf DivX is the direct sum
of sheaves

DivX = DivX/Z ⊕Div
v
X ,

where DivX/Z is the subsheaf of horizontal divisors, and Div
v
X is the subsheaf

of vertical divisors.
Define a subsheaf K×X/Z ⊂ j∗Gm,η by the condition that the following
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diagram is commutative and has exact rows and columns:

0 0
↓ ↓

0 → Gm,X → K×X/Z → DivX/Z → 0

|| ↓ ↓
0 → Gm,X → j∗Gm,η → DivX → 0

↓ ↓
DivvX = DivvX
↓ ↓
0 0

The complex of étale sheaves on Z

p∗K
×
X/Z → p∗DivX/Z ,

after the shift by 1 to the left, is the complex KD(X ) defined in [17], Remark
2.4 (2), see also the formulae on the bottom of page 538. There is a natural
injective morphism Gm,Z → p∗K

×
X/Z ; the complex

p∗K
×
X/Z/Gm,Z → p∗DivX/Z

was introduced in [17] and denoted there by KD′(X ).

Proposition The object τ≤1Rp∗Gm,X of the derived category of étale sheaves
on Z is represented by the complex p∗K

×
X/Z → p∗DivX/Z.

Proof The proof of Lemma 2.3 of [2] works in our situation. To complete
the proof we only need to show that R1p∗K

×
X/Z = 0. Note that the canonical

morphism DivZ → p∗Div
v
X is an isomorphism because p is surjective with

geometrically integral fibres. Now the exact sequence of sheaves on X

0→ K×X/Z → j∗Gm,η → Div
v
X → 0

gives rise to the following exact sequence of sheaves on Z:

p∗j∗Gm,η → DivZ → R
1p∗(K

×
X/Z)→ R

1p∗(j∗Gm,η).

Using the spectral sequence of the composition of functors Rp∗ and Rj∗ we
see that the sheaf R1p∗(j∗Gm,η) has a canonical embedding into R

1(pj)∗Gm,η.
The latter sheaf is zero by Grothendieck’s version of Hilbert’s theorem 90.
It remains to prove the surjectivity of (pj)∗Gm,η → DivZ , which is enough

to check at the stalk at any geometric point of Z. But locally every divisor
on Z is the divisor of a function, since Z is regular. This completes the proof.
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Remark In this appendix we worked over the small étale site of Z. Ap-
plying our arguments to an arbitrary smooth scheme of finite type S/Z one
shows that the same results remain true for the smooth site Sm/Z used in
[17].

Appendix B

The functor RHomX(p
∗A, ∙) : D(X)→ D(Ab) is the composition of functors

Rp∗ : D(X)→ D(k) and RHomk(A, ∙) : D(k)→ D(Ab), hence we have

RHomX(p
∗A,F) = RHomk(A,Rp∗F).

Explicitly, this isomorphism associates to p∗A→ F the composition

A→ Rp∗(p
∗A)→ Rp∗F ,

where the first map is the canonical adjunction morphism. The inverse as-
sociate to A→ Rp∗F the composition

p∗A→ p∗(Rp∗F)→ F ,

where the last map is the second canonical adjunction morphism.

Let us now complete the proof of Proposition 2.5 (iii). To give an equiv-
alence class of the extension of sheaves on X

0→ F → E → p∗A→ 0 (14)

is the same as to give a morphism p∗A→ F [1] in the derived category D(X).
By the above, to this morphism we associate the composition

A→ Rp∗p
∗A→ Rp∗F [1].

Since A is a one-term complex concentrated in degree 0 this composition
comes from a morphism α : A→ (τ≤1Rp∗F)[1] in D(k). By taking the 0-th
cohomology we obtain a homomorphism β : A → R1p∗F of discrete Galois
modules. Clearly, β is the composition of the canonical map A→ p∗p∗A with
the differential in the long exact sequence of cohomology attached to (14):

0→ p∗F → p∗E → p∗p
∗A→ R1p∗F .

To finish the proof of (iii) we need to show that β can also be obtained
through the spectral sequence, that is, as the image of the class of (14) under
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the right arrow in (9). But (9) is obtained by applying RHomk(A, ∙) to the
exact triangle

(p∗F)[1]→ (τ≤1Rp∗F)[1]→ R
1p∗F . (15)

By definition, β is the composition of α with the right map in (15), so the
proof of (iii) is now complete.

Let us complete the proof of Proposition 2.5 (iv). The exact triangle (15)
gives rise to the exact sequence of abelian groups

0→ Homk(A, (p∗F)[1])→ Homk(A, (τ≤1Rp∗F)[1])→ Homk(A,R
1p∗F),

which is the same as (9). Since the right arrow here sends α to β, we see
that if β = 0, then α comes from a morphism A→ (p∗F)[1]. Hence the class
of (14) comes from the class of an extension of A by p∗F , say

0→ p∗F → B → A→ 0, (16)

in the sense that (14) is the push-out of

0→ p∗p∗F → p
∗B → p∗A→ 0

by the adjunction map p∗p∗F → F . Therefore, by the description of the
adjunction isomorphism and its inverse given above, applying p∗ to (14),
and pulling back the resulting short exact sequence via the adjunction map
A→ p∗p∗A (this makes sense when β = 0) gives back the extension (16).
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