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1 Basics of commutative algebra

Let k be a field. (Affine) algebraic geometry studies the solutions of systems
of polynomial equations with coefficients in k. Instead of a set of polyno-
mials it is better to consider the ideal of the polynomial ring k[X1, . . . , Xn]
generated by them. The subset of kn consisting of common zeros of the poly-
nomials of an ideal I ⊂ k[X1, . . . , Xn] is called the set of zeros of I. Such
subsets of kn are called closed algebraic sets.
Hence our main object of study will be the polynomial ring k[X1, . . . , Xn],

its ideals, their sets of zeros in kn, and the quotient rings of k[X1, . . . , Xn].
Here is the list of principal facts that we prove in this chapter:

(1) Every ideal of k[X1, . . . , Xn] is a finitely generated k[X1, . . . , Xn]-
module. (Hilbert’s basis theorem.)
(2) Every quotient ring of k[X1, . . . , Xn] is of the following form: it con-

tains a polynomial ring k[Y1, . . . , Ym] over which it is a finitely generated
module. (Emmy Noether’s normalization lemma).
(3) If k is algebraically closed, then all maximal ideals of k[X1, . . . , Xn]

are of the form (X1−a1, . . . , Xn−an), ai ∈ k, that is, consist of polynomials
vanishing at a point (a1, . . . , an) ∈ kn.
(4) Let k be algebraically closed. If a polynomial f vanishes at all the

zeros of an ideal of k[X1, . . . , Xn], then some power f
m belongs to this ideal.

(Hilbert’s Nullstellensatz.)

Fact (1) says that speaking about ideals and systems of (finitely many)
polynomial equations is the same thing. The meaning of (2) will be made
clear in the geometric part of the course (an important corollary of (2) is
the fact that any algebraic variety is birationally equivalent to a hypersur-
face). Fact (3) speaks for itself. Finally, (4) implies that certain ideals of
k[X1, . . . , Xn] bijectively correspond to closed algebraic sets.

1.1 Integral closure. Noetherian rings

Most of the time we assume that k is an algebraically closed field. When
k is not algebraically closed, k denotes a separable closure of k (unique up
isomorphism, see [Lang]). Let R be a commutative ring with a 1. We shall
always consider ideals I ⊂ R different from R itself. Then the quotient ring
R/I is also a ring with 1. By definition, a ring is an integral domain if it has
no zero divisors.
If M is an R-module, then 1 ∈ R acts trivially on M . An R-module M is

of finite type if it is generated by finitely many elements, that is, if there exist
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a1, . . . , an ∈M such that any x ∈M can be written as x = r1a1+ . . .+ rnan
for some ri ∈ R.
If a module A over a ring R also has a ring structure (compatible with

that of R in the sense that the map R → A given by r 7→ r.1A is a ring
homomorphism), then A is called an R-algebra. An R-algebra A is of finite
type (or finitely generated) if there exist a1, . . . , an ∈ A such that any x ∈ A
can be written as a polynomial in a1, . . . , an with coefficients in R.

Prime and maximal ideals. An ideal I ⊂ R is called prime if the
quotient ring R/I has no zero divisors. An ideal I is maximal if it is not
contained in another ideal (different from R). Then the ring R/I has no
non-zero ideal (otherwise its preimage in R would be an ideal containing I),
hence every element x ∈ R/I, x 6= 0, is invertible (since the principal ideal
(x) must concide with R/I, and thus contain 1), in other words, R/I is a
field. Since a field has no non-trivial ideals, the converse is also true, so that
I ⊂ R is maximal iff R/I is a field.

Integral closure. We shall consider various finiteness conditions. Sup-
pose we have an extension of integral domains A ⊂ B. An element x ∈ B is
called integral over A if it satisfies a polynomial equation with coefficients in
A and leading coefficient 1.

Proposition 1.1 The following conditions are equivalent:
(i) x ∈ B is integral over A,
(ii) A[x] is an A-module of finite type,
(iii) there exists an A-module M of finite type such that A ⊂M ⊂ B and

xM ⊂M .

The proof of (i)⇒ (ii) and (ii)⇒ (iii) is direct. Suppose we know (iii).
Let m1, . . . ,mn be a system of generators of M . Then xmi =

∑n
i=1 bijmj,

where bij ∈ A.
Recall that in any ring R we can do the following “determinant trick”.

Let S be a matrix with entries in R. Let adj(M) be the matrix with entries
in R given by

adj(M)ij = (−1)
i+jdet(M(j, i)),

where M(i, j) is M with i-row and j-th column removed. It is an exercise in
linear algebra that the product adj(M) ∙M is the scalar matrix with det(M)
on the diagonal.
We play this trick to the polynomial ring R = A[T ]. For M we take the

n × n-matrix Q(T ) such that Q(T )ij = Tδij − bij . Let f(T ) = det(Q(T )) ∈
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A[T ] (this is the analogue of the characteristic polynomial of x). We have a
matrix identity

adj(Q(T )) ∙Q(T ) = diag(f(T )).

We consider this as an identity between matrices over the bigger ring B[T ].
We are free to assign T any value in B. Substitute T = x ∈ B, and apply
these matrices to the column vector (m1, . . . ,mn)

t. Then the left hand side
is zero. Hence f(x)mi = 0 for any i. Since the mi generate M the whole
module M , is annihilated by f(x) ∈ B. In particular, f(x).1 = 0, that is,
f(x) = 0. Now note that f(T ) has coefficients in A and leading coefficient 1.
QED

Remark. This proof does not use the fact that A and B are integral. If
we assume this we can remove the condition A ⊂M in (iii).

Definitions. Let A ⊂ B be integral domains, then B is integral over A
if its every element is integral over A. The set of elements of B which are
integral over A is called the integral closure of A in B.

Important example. LetK be a number field, that is, a finite extension
of Q. One defines the ring of integers OK ⊂ K as the integral closure of Z
in K.

Let us prove some basic properties of integral elements.

Proposition 1.2 (a) The integral closure is a ring.
(b) Suppose that B is integral over A, and is of finite type as an A-algebra.

Then B is of finite type as an A-module.
(c) Suppose that C is integral over B, and B is integral over A, then C

is integral over A.

Proof. (a) Let x, y ∈ B be integral over A. Consider the A-module
generated by all the monomials xiyj, i, j ≥ 0. It is of finite type, and xy and
x+ y act on it.
(b) Suppose that B is generated by b1, ... , bn as an A-algebra, then B

is generated by monomials bi11 . . . b
in
n as an A-module. All higher powers of

each of the bi’s can be reduced to finitely many of its powers using a monic
polynomial whose root is bi. There remain finitely many monomials which
generate B as an A-module.
(c) Let x ∈ C. Consider the A-subalgebra D ⊂ C generated by x and

the coefficients bi of a monic polynomial with coefficients in B, whose root
is x. Then D is an A-module of finite type, as only finitely many monomials
generate it (the bi are integral, and the higher powers of x can be reduced to
lower powers) Now use (iii) of the previous proposition. QED
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Definition. A ring is integrally closed or normal if it is integrally closed
in its field of fractions.

Examples. Z and Z[1+
√
−3
2
] are integrally closed, but Z[

√
−3] is not. If

k is a field then k[x] and k[x, y] are integrally closed, but k[x, y]/(y2−x2−x3)
is not.

Noetherian rings. Another important finiteness property of rings is
given in the following definition.

Definition-Proposition. A ring R satisfying any of the following equiv-
alent properties is called Noetherian:
(i) any chain of ideals I1 ⊂ I2 ⊂ I3 ⊂ . . . of R stabilizes (that is, there is

an integer m such that Im = Im+1 = Im+2 = . . . ),
(ii) any set of ideals of R contains a maximal element,
(iii) any ideal of R is generated by finitely many elements, that is, is an

R-module of finite type.

Proof. The equivalence of (i) and (ii) is completely formal.
(iii) ⇒ (i): Let I =

∑
Ij, then I is an ideal which is generated, say, by

x1, . . . , xn as an R-module. Take m such that Im contains all the xi, then
the chain stabilizes at Im.
(ii) ⇒ (iii) is based on a trick called “Noetherian induction”. Suppose

that I ⊂ R is an ideal which is not of finite type as an R-module. Consider
the set of subideals of I which are of finite type as R-modules. This set is not
empty: it contains 0. Now it has a maximal element J 6= I. Take x ∈ I \ J ,
then the ideal J + (x) ⊂ I is strictly bigger than J , but is of finite type as
an R-module. Contradiction. QED

Examples of Noetherian rings: Fields, principal ideals domains, the ring
of integers in a number field.

An easy exercise: Quotients of a Noetherian ring are Noetherian.

Theorem 1.3 (Hilbert’s basis theorem) If R is Noetherian, then so are
the polynomial ring R[T ] and the formal power series ring R[[T ]].

Sketch of proof. Let I ⊂ R[T ] be an ideal. We associate to it a series of
ideals in R:

A0 ⊂ A1 ⊂ A2 ⊂ . . . ,

where Ai is generated but the leading coefficients of polynomials in I of degree
i. Since R is Noetherian, this chain of ideals stabilizes, say, at Ar. Then we
have a finite collection of polynomials whose leading coefficients generate A0,
... , Ar. Then the ideal of R[T ] generated by these polynomials is I. See
Lang’s book for the proof of the other statement. QED
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1.2 Noether’s normalization and Nullstellensatz

The elements r1, . . . , rn of a k-algebra R are algebraically independent (over
k) if the only polynomial f(x1, . . . , xn) with coefficients in k such that
f(r1, . . . , rn) = 0, is the zero polynomial.

Theorem 1.4 (E. Noether’s normalization lemma.) Let k be any field,
and I ⊂ k[T1, . . . , Tn] be an ideal, R = k[T1, . . . , Tn]/I. There exist alge-
braically independent elements Y1, . . . , Ym ∈ R such that R is integral over
k[Y1, . . . , Ym].

Proof. If I = 0 there is nothing to prove. Suppose we have a non-zero
polynomial f ∈ I. Let d be a positive integer greater than deg(f). Let us
choose new variables in the following tricky way:

X ′2 = X2−(X1)
d, X ′3 = X3−(X1)

d2 , X ′4 = X4−(X1)
d3 , . . . , X ′n = Xn−(X1)

dn−1 .

Substituting this into f we rewrite it as a linear combination of powers of
X1 and a polynomial, say, g containing no pure powers of X1. We observe
that the pure powers of X1 are of the form i1 + di2 + d

2i3 + . . . + d
n−1in.

Since d > is all these integers are different, hence there is no cancellation
among the pure powers of X1. At least one such power enters with a non-
zero coefficient. On the other hand, any power of X1 in g is strictly less
than the corresponding pure power. Therefore, we get a polynomial in X1
with coefficients in k[X ′2, . . . , X

′
n] and leading coefficient in k. Normalizing

this polynomial we conclude that X1 is integral over R1 = k[X
′
2, . . . , X

′
n]/I ∩

k[X ′2, . . . , X
′
n]. Hence R is integral over R1. We now play the same game

with R1 instead of R, and obtain a subring R2 over which R1 is integral.
By Property (c) of integral ring extensions R is also integral over R2. We
continue like that until we get a zero ideal, which means that the variables
are algebraically independent. QED

Theorem 1.5 Let k be an algebraically closed field. All maximal ideals of
k[X1, . . . , Xn] are of the form (X1−a1, . . . , Xn−an), ai ∈ k, that is, consist
of polynomials vanishing at a point (a1, . . . , an) ∈ kn.

Proof. Any polynomial has a Taylor expansion at the point (a1, . . . , an).
The canonical map

k[X1, . . . , Xn] −→ k[X1, . . . , Xn]/(X1 − a1, . . . , Xn − an)

sends f to f(a1, . . . , an), hence is surjective onto k. It follows that the ideal
(X1 − a1, . . . , Xn − an) is maximal.
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Let M a maximal ideal (recall that M 6= k[X1, . . . , Xn]), then K =
k[X1, . . . , Xn]/M is a field containing k. By Noetherian normalization K is
integral over its subring A = k[Y1, . . . , Ym]. ButK is a field, and we now show
that then Amust also be a field, in which case k[Y1, . . . , Ym] = k (no variables
at all), and hence K is integral over k. Indeed, let x ∈ A, then it is enough to
show that x−1 ∈ K also belongs to A. Since x−1 ∈ K is integral over A it is
subject to a polynomial relation (x−1)n+an−1(x

−1)n−1+ . . .+a1x
−1+a0 = 0,

for some ai ∈ A. Multiplying this by xn−1 we express x−1 as a polynomial in
x with coefficients in A, hence x−1 ∈ A.
The k-algebra of finite type K is integral over k, hence by Proposition

1.2 (b) K is a k-module (= vector space over k) of finite type (= of finite
dimension). Thus the field K is an algebraic extension of k. Since k is
algebraically closed, we must have k = K. Now let ai ∈ k be the image of Xi
under the map k[X1, . . . , Xn] → k = k[X1, . . . , Xn]/M . Then M contains
the maximal ideal (X1 − a1, . . . , Xn − an), hence coincides with it. QED

Remark. When k is not supposed to be algebraically closed, this proof
shows that the quotient by a maximal ideal of k[X1, . . . , Xn] is a finite ex-
tension of k.

Corollary 1.6 Let k be an algebraically closed field. If the polynomials
of an ideal I ⊂ k[X1, . . . , Xn] have no common zeros in kn, then I =
k[X1, . . . , Xn].

Proof. Assume I 6= k[X1, . . . , Xn]. Hilbert’s basis theorem says that
k[X1, . . . , Xn] is Noetherian. Then I is contained in a maximal ideal, since
the set of ideals that contain I has a maximal element, by (ii) of Definition-
Proposition above. Therefore I ⊂ (X1 − a1, . . . , Xn − an), for some ai ∈ k,
since all the maximal ideals are of this form by the previous result. But
then all the polynomials of I vanish at the point (a1, . . . , an), which is a
contradiction. QED

Theorem 1.7 (Nullstellensatz.) Let k be an algebraically closed field. If
a polynomial f vanishes at all the zeros of an ideal I ⊂ k[X1, . . . , Xn], then
fm ∈ I for some positive integer m.

Proof. We know that I is generated by finitely many polynomials, say, I =
(g1, . . . , gr). Let T be a new variable. Consider the ideal J ⊂ k[T,X1, . . . , Xn]
generated by g1, . . . , gr and Tf −1. We observe that these polynomials have
no common zero. The previous corollary implies that J = k[T,X1, . . . , Xn],
in particular, J contains 1. Then there exist polynomials p, p1, . . . , pr in
variables T,X1, . . . , Xn such that

1 = p(Tf − 1) + p1g1 + . . .+ prgr.
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Note that this is an identity in variables T,X1, . . . , Xn. Thus we can spe-
cialize the variables anyway we like. For example, we can set T = 1/f .
Multiplying both sides by an appropriate power of f we get an identity be-
tween polynomials in variables X1, . . . , Xn, which gives that some power of
f belongs to I = (g1, . . . , gr). QED

2 Affine geometry

2.1 Zariski topology

Let k be any field. Let us prove some easy facts about closed algebraic
sets. If X ⊂ kn we denote by I(X) ⊂ k[X1, . . . , Xn] the ideal consisting of
polynomials vanishing at all the points of X. We denote by Z(J) the set of
zeros of an ideal J ⊂ k[X1, . . . , Xn]. It is a tautology that X ⊂ Z(I(X)) and
J ⊂ I(Z(J)). If X is a closed algebraic set, then X = Z(I(X)) (if X = Z(J),
then I(Z(J)) ⊃ J , hence Z(I(Z(J))) ⊂ Z(J)).

Exercise. Show that if X ⊂ Ank and Y ⊂ A
m
k are closed subsets, then

X × Y ⊂ An+mk is a closed subset.

It is clear that the function J 7→ Z(J) reverses inclusions; associates the
empty set to the whole ring, and the whole affine space kn to the zero ideal;
sends the sum of (any number of) ideals to the intersection of corresponding
closed sets; and sends the intersection I1 ∩ I2 to Z(I1)∪Z(I2) (a part of the
last property is not completely obvious: if P /∈ Z(I1)∪Z(I2), then f(P ) 6= 0
for some f ∈ I1 and g(P ) 6= 0 for some g ∈ I2, but then (fg)(P ) 6= 0, whereas
fg ∈ I1 ∩ I2).
Because of these properties we can think of closed algebraic sets as the

closed sets for some topology on kn (any intersections and finite unions are
again closed, as are the empty set and the whole space). This topology is
called Zariski topology. In the case when k = C or k = R we can compare it
with the usual topology on Cn where closed sets are the zeros of continuous
functions. Any Zariski closed set is also closed for the usual topology but
not vice versa. Hence the Zariski topology is weaker. Another feature is that
any open subset of kn is dense (its closure is the whole kn).

Definition. A closed algebraic subset X ⊂ kn is irreducible if there is
no decomposition X = X1 ∪ X2, where X1 6= X and X2 6= X are closed
algebraic sets.

Proposition 2.1 A closed algebraic subset X ⊂ kn is irreducible iff I(X) is
a prime ideal. Any closed set has a unique decomposition into a finite union
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of irreducible subsets X = ∪iXi such that Xi 6⊂ Xj for i 6= j (these Xi’s are
called the irreducible components of X).

Proof. Let us prove the first statement. If we have X = X1 ∪ X2, then
since X = Z(I(X)) for any algebraic set, I(X) is a proper subset of I(Xi).
If fi ∈ I(Xi) \ I(X), then f1f2 ∈ I(X), hence I(X) is not a prime ideal.
Conversely, if I(X) is not prime, we can find two polynomials f1 and f2
not in I(X) such that f1f2 ∈ I(X), and define Ii = (I(X), fi), Xi = Z(Ii).
There exists a point P in X such that f1(P ) 6= 0, hence P /∈ X1 which
implies X1 6= X. Similarly we have X2 6= X. Therefore X = X1 ∪X2 is not
irreducible.
Let us prove the second statement. If X is not irreducible, we have some

decomposition X = X1 ∪ X2, and then continue for X1 and X2. At some
point we must stop because the chain of ideals I(X) ⊂ I(X1) ⊂ . . . stabilizes
somewhere (the ring k[X1, . . . , Xn] being Noetherian). If ∪iXi = ∪jYj are
two decompositions into irreducible subsets, then Xi = ∪j(Xi ∩ Yj), and
hence Xi = Xi ∩ Yj for some j (since Xi is irreducible). For the analogous
reason we have Yj = Yj ∩ Xi′ for some i′. Then Xi ⊂ Xi′ , hence i = i′. It
follows that Xi = Yj. Hence the two decompositions differ only in order.
QED

Up till now we did not use Hilbert’s Nullstellensatz. Let k be an alge-
braically closed field. Let us call an ideal I ⊂ k[X1, . . . , Xn] radical if fm ∈ I
implies f ∈ I. A corollary of Hilbert’s Nullstellensatz is that radical ideals
bijectively (via operations I and Z) correspond to closed algebraic sets. The
most important class of radical ideals are prime ideals. Again, by Hilbert’s
Nullstellensatz, these bijectively correspond to irreducible closed algebraic
sets. A particular case of prime ideals are maximal ideals, they correspond
to points of kn.
Zero sets of irreducible polynomials of k[X1, . . . , Xn] are called irreducible

hypersurfaces.

2.2 Category of affine varieties

An affine variety is a closed irreducible algebraic subset of kn for some n. The
variety kn will be also denoted Ank , and called the affine space of dimension
n.
Let X ⊂ Ank be an affine variety. Let J = I(X) be the corresponding

prime ideal. Let us denote k[X] := k[X1, . . . , Xn]/J . Then k[X] is an integral
k-algebra of finite type: k[X] contains no zero divisors. k[X] is called the
coordinate ring of X. The fraction field of k[X] is denoted by k(X), and is
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called the function field of X. Its elements are called rational functions as
opposed to the elements of k[X] which are called regular functions.
The function field k(X) is an important object defined by X. Two affine

varieties X and Y are called birationally equivalent if k(X) = k(Y ). A
variety X is called rational if k(X) is a purely transcendental extension of
k, that is, k(X) = k(T1, . . . , Tl). In other words, X is rational if and only
if X is birationally equivalent to the affine space. It is a classical, and often
a difficult problem of algebraic geometry to determine whether or not two
given varieties are birationally equivalent.
Affine varieties form a category, where a morphism X → Y , X ⊂ Ank , Y ⊂

Amk , is given by a function representable bym polynomials in n variables. The
varieties X and Y are called isomorphic if there are morphisms f : X → Y
and g : Y → X such that fg and gf are identities.

Proposition 2.2 Let X ⊂ Ank and Y ⊂ A
m
k be affine algebraic varieties.

(a) A morphism f : X → Y defines a homomorphism of k-algebras f ∗ :
k[Y ]→ k[X] via the composition of polynomials.
(b) Any homomorphism of k-algebras φ : k[Y ] → k[X] is of the form

φ = f ∗ for a unique morphism f : X → Y .
(c) f : X → Y is an isomorphism of affine varieties if and only if f ∗ :

k[Y ]→ k[X] is an isomorphism of k-algebras.

Proof. (a) follows from the fact that the composition of polynomials is a
polynomial.
(b) Let x1, . . . , xn be the coordinates on X, and t1, . . . , tm be the coor-

dinates on Y . Let Φ be the composition of the following homomorphisms of
k-algebras

k[t1, . . . , tm] −→ k[Y ] = k[t1, . . . , tm]/I(Y ) −→ k[X] = k[x1, . . . , xn]/I(X).

Let fi = Φ(ti), i = 1, . . . ,m. The polynomial map f = (f1, . . . , fm) maps
X to Amk . Let F (t1, . . . , tm) be a polynomial. Since we consider homomor-
phisms of k-algebras we have

F (f1, . . . , fm) = F (Φ(t1), . . . ,Φ(tm)) = Φ(F (t1, . . . , tm)).

If F ∈ I(Y ), then Φ(F ) = 0. Hence all the polynomials from I(Y ) vanish on
f(X), that is, f(X) ⊂ Z(I(Y )) = Y .
Finally, f ∗ = φ since these homomorphisms take the same values on the

generators ti of the k-algebra k[Y ].
(c) follows from (a) and (b). QED
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Examples. (1) Hypersurfaces in Ank bijectively correspond to principal
ideals in k[x1, . . . , xn] (via the usual operations Z and I).
(2) Square matrices of size n are parametrized by the points of An

2

k . The
multiplication of matrices is a morphism An

2

k ×A
n2

k → A
n2

k . The determinant
is a morphism An

2

k → A
1
k.

The closed subset given by det(M) = 1 is the special linear group SL(n).
Note that the inverse is an isomorphism SL(n) → SL(n). The group op-
erations are morphisms – when that is the case then the group is called an
algebraic group. SL(n) ⊂ An

2

k is a hypersurface of degree n.
(3) The orthogonal group O(n) ⊂ An

2

k given by the conditionsM ∙M
t = I

is another example of a closed subset which is an algebraic group. It is defined
by n2 quadratic polynomials.

Exercise. Show that O(n) is not irreducible. (Hint: what are the possi-
ble values of det(M)?)

Zariski topology on Ank induces a topology on a variety X ⊂ A
n
k . An

open subset U ⊂ X is an intersection of X with an open set of Ank . Such
sets are called a quasi-affine varieties. An example of a quasi-affine variety is
the general linear group GL(n) (square matrices with non-zero determinant).
Later we’ll see that GL(n) is isomorphic to an affine variety (see the end of
this subsection).

Definition. A rational function f ∈ k(X) is called regular at a point P
of X if f = g/h, where g, h ∈ k[X] and h(P ) 6= 0. A function is regular on
an open set U ⊂ X if it is regular at every point of U .

The ring of regular functions on an open subset U ⊂ X is denoted by
k[U ]. Since k[X] ⊂ k[U ] ⊂ k(X) the fraction field of k[U ] if k(X).
To a rational function f ∈ k(X) one associates “the ideal of denomina-

tors” Df ⊂ k[X] consisting of regular functions h such that hf ∈ k[X] (it is
clearly an ideal!). The set of all points P where f is regular is X \Z(Df ). In-
deed, we can write f = g/h, g, h ∈ k[X], h(P ) 6= 0, if and only if P /∈ Z(Df ).
An immediate corollary of the Nullstellensatz says that if I ⊂ k[X] is an

ideal, and f ∈ k[X] vanishes at all the common zeros of I in X, then f s ∈ I
for some s > 0. (Apply Theorem 1.7 to the pre-image of I in k[x1, . . . , xn]
under the natural surjective map.) We’ll often use the Nullstellensatz in this
form.

Lemma 2.3 Let X be an affine variety. The subset of k(X) consisting of
functions regular at all the points of X is k[X]. A function is regular on the
open subset given by h 6= 0, for h ∈ k[X], if and only if f ∈ k[X][h−1], in
other words, if f = g/hs for some g ∈ k[X] and s > 0.
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Proof. Let f be such a function. Then Z(Df ) = ∅. By Corollary 1.6
Df must be the whole ring, hence contains 1, hence f ∈ k[X]. This proves
the first statement. To prove the second statement we note that Z(Df ) is
contained in the closed set given by h = 0. By Nullstellensatz if h vanishes
on Z(Df ), then a power of h is in Df . QED

One defines rational maps using rational functions instead of regular ones.
Rational maps are not everywhere defined, that is, are not functions! A
rational map is called dominant if its image (=the image of the set of points
where the map is actually defined, that is, is regular) is dense, that is, not
contained in a smaller subvariety. The following proposition is proved along
the same lines as Proposition 2.2.

Proposition 2.4 (a) A dominant rational map f : X − − > Y defines a
homomorphism of k-algebras f ∗ : k(Y )→ k(X).
(b) Any homomorphism of k-algebras φ : k(Y ) → k(X) is of the form

φ = f ∗ for a unique dominant rational map f : X −− > Y .

We need the condition that f is dominant, as otherwise the composition
of rational functions is not always defined. (On substituting the fi for the
coordinates we may have to divide by zero! But this can’t happen if the map
is dominant, as the fi then do not satisfy a non-trivial polynomial condition.)

Finally, a morphism of quasi-affine varieties is an everywhere defined ra-
tional map. An isomorphism is a morphism that has an inverse. For example,
the map M 7→ M−1 is a morphism GL(n) → GL(n) (and in fact, an iso-
morphism). On the affine space of square matrices An

2

k this is just a rational
map.
A rational map which has an inverse (at the same time left and right)

is called a birational map or a birational equivalence. For example, the map
M 7→M−1 is a birational equivalence of An

2

k with itself.

Proposition 2.5 The following conditions are equivalent: a rational map
f : X −− > Y is
(i) birational,
(ii) f is dominant, and f ∗ : k(Y ) → k(X) is an isomorphism of k-

algebras,
(iii) there exist open sets in X and Y such that f defines an isomorphism

between them.

Proof. The only implication which is not immediate is (i) ⇒ (iii). But
this is also easy, see [Reid, UAG], (5.8).
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Theorem 2.6 Any affine variety is birationally equivalent to a hypersurface.

Proof. By Noether’s normalization there exist algebraically independent
elements y1, . . . , ym ∈ k[X] such that k[X] is integral over k[y1, . . . , ym].
Then the field extension k(y1, . . . , ym) ⊂ k(X) is finite. In fact, one can
arrange that this extension is separable (this is automatic if the character-
istic of k is 0, see [Reid, UAG], (3.16) for the case of finite characteristic).
Any separable finite extension can be obtained by adding just one element
(primitive element theorem), say, y. Let F (t) be an irreducible polynomial
with coefficients in k(y1, . . . , ym) such that F (y) = 0. By fiddling with the
coefficients can assume that the coefficients of F (t) are in k[y1, . . . , ym], and
that F is irreducible as a polynomial in y1, . . . , ym, t. Then k(X) is the frac-
tion field of k[y1, . . . , ym, t]/(F (t)). Let V ⊂ A

m+1
k be the hypersuface given

by F = 0. Then k(V ) = k(X). QED
The following lemma allows us to consider only affine open neighbour-

hoods.

Proposition 2.7 Every open neighbourhood of a point of an affine variety
contains a neighbourhood isomorphic to an affine variety (and not just quasi-
affine).

Proof. It is enough to show how to remove zeros of polynomials. Let
X ⊂ Ank be a closed set given by the polynomial equations f1 = . . . = fm = 0
in variables T1, . . . , Tn, and let g be another polynomial, g(P ) 6= 0. Let
X0 ⊂ X be given by g 6= 0. Consider the closed subset X1 ⊂ A

n+1
k with

coordinates T0, T1, . . . , Tn given by f1 = . . . = fm = T0g − 1 = 0. Then
the projection (T0, T1, . . . , Tn) 7→ (T1, . . . , Tn) defines an isomorphism of X1
with X0. QED

Exercise. Show that GL(n) is isomorphic to a closed subset of an affine
space.

2.3 Examples of rational varieties

Let’s do some concrete algebraic geometry.
Let X ⊂ Ank be a hypersurface given by f(X1, . . . , Xn) = 0. We shall

always assume that no linear change of coordinates X1, . . . , Xn reduces f to
a polynomial in n − 1 variables, and that no linear change of coordinates
reduces f to a homogeneous polynomial. Then X is called non-conical. We
shall only consider non-conical hypersurfaces. We call the degree of X the
degree of f .

14



In this section we examine some examples of rational hypersurfaces. By
definition X ⊂ Ank is rational if there is a birational map A

m
k − − > X.

Such a map is given by rational functions in m variables. The meaning of
rationality is that the points of X can be parametrized by rational functions
such that this parametrization is an isomorphism on a non-empty open set.

Remark. We observe that a rational variety over any infinite field k has
infinitely many k-points. Indeed, it contains an dense open subset isomorphic
to a dense open subset of Ank , and the latter contains infinitely many k-points
(easy exercise).

(1) Quadrics (degree 2). If k is not algebraically closed there may be no
k-point on X, e.g. x2 + y2 + 1 = 0 over k = R. Then X is not rational.

The following proposition is a generalization of the classical parametriza-
tion of the conic x2 + y2 = 1 by rational functions x = (t2 − 1)/(t2 + 1),
y = 2t/(t2 + 1).
Proposition. A non-conical quadric with a k-point is rational.

Proof. The idea is to exploit the classical stereographic projection. We
can assume that the k-point is N = (0, 0, . . . , 0) (N stands for the North
Pole ...). Then we can write

f = Q(x1, . . . , xn) + L(x1, . . . , xn),

where the homogeneous polynomials L and Q have degrees 1 and 2, respec-
tively (there is no constant term). Chose a hyperplane H not passing through
N , say the one given by x1 = 1. The coordinates on H are x2, . . . , xn. Let L
be the line passing through N and the point (1, x2, . . . , xn). Consider L∩X.
The line L is the set (t, tx2, . . . , txn), t ∈ k, hence the k-points of L ∩ X
correspond to the roots of the following equation in t:

t2Q(1, x2, . . . , xn) + tL(1, x2, . . . , xn) = 0.

The root t = 0 is the point N , but it is the other root t = −L/Q that is
interesting to us. Define the rational map φ : An−1k − − > X by sending
(x2, . . . , xn) to “the other” (residual) intersection point:

φ(x2, . . . , xn) = −
L(1, x2, . . . , xn)

Q(1, x2, . . . , xn)
(1, x2, . . . , xn).

The image is obviously in X. The inverse map sends (x1, x2, . . . , xn) to
(x2/x1, . . . , xn/x1). (Check that this is indeed the inverse to φ, both right
and left.) QED
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(2) A cubic surface. Assume that the characteristic of k is not 3, and
that k contains a non-trivial cubic root ρ of 1. Consider the hypersurface
X ⊂ A3k given by the equation

x31 + x
3
2 + x

2
3 = 1.

It contains two skew lines (non-parallel with empty intersection)

L0 = {(1, x,−x)}, x ∈ k, L1 = {(y,−ρy, 1)}, y ∈ k.

Let us write Px = (1, x,−x), Qy = (y,−ρy, 1). Let Lx,y be the line passing
through Px and Qy,

Lx,y = {tPx + (1− t)Qy}, t ∈ k.

We now contruct a rational map φ : A2k−− > X by sending (x, y) to the third
(“residual”) point of intersection of Lx,y with X. More precisely, substituting
tPx + (1 − t)Qy into the equation of X we get a cubic polynomial in t with
coefficients in k(x, y). It has two obvious roots t = 0 (the point Qy) and t = 1
(the point Px). After checking that its degree is exactly 3 (this is enough to
check for a particular choice of x and y, say x = 1, y = 0) we can write it as
c(x, y)t(t− 1)(t− λ(x, y)), where λ(x, y) ∈ k(x, y). Set

φ(x, y) = λ(x, y)Px + (1− λ(x, y))Qy.

By construction this is rational map A2k −− > X.

Exercise. Find λ(x, y), then check that φ is a birational equivalence.
There is a geometric construction of the inverse map. Let R be a point

of X \ (L0 ∪L1). Let Πi be the plane spanned by R and Li. Then for R in a
non-empty Zariski open subset of X the intersection Π0∩L1 is a single point
on L1, call it Q. Similarly, Π1 ∩ L0 is a point on L0, call it P . We have a
well-defined rational map

f : X \ (L0 ∪ L1)−−− > A
2
k, f(R) = (P,Q).

Check that f is inverse to φ.

(3) Conic bundles over the affine line. Let k be algebraically closed.
Let

F (x0, x1, x2) =
∑

ij≥0, i0+i1+i2≤2

fi0,i1,i2(t)x
i0
0 x
i1
1 x
i2
2

be a rank 3 quadratic form over the field K = k(t). By Tsen’s theorem (see
Theorem 2.15 below) the conic C ⊂ A2K given by F (1, x1, x2) = 0 has a K-
point. But we know from (1) that a non-conical quadric with a rational point

16



is rational. Hence C is rational over K, in other words, K(C) = K(y) =
k(t, y) is a purely transcendental extension of K, and hence of k as well.
Multiplying the coefficients of F by a common multiple, we can assume

that they are actually in k[t]. Hence the equation F (t; 1, x1, x2) = 0 defines a
surface X ⊂ A3k. If we assign to t a value in k we get a plain conic. Thus X
is a pencil (1-parameter family) of conics, or a conic bundle. We thus proved
that any conic bundle over the affine line over an algebraically closed field is
rational.

Exercise. Let X be a smooth cubic surface, and L ⊂ X be a straight
line. Planes Π passing through L form a 1-dimensional family. Show that
for almost all planes Π the intersection Π ∩X is the union of L and a conic.
Deduce that X is birationally equivalent to a pencil of conics. Now (3) gives
another proof of rationality of X.

2.4 Smooth and singular points

Let X ⊂ Ank be an affine variety, and suppose that the ideal of X is generated
by polynomials f1, . . . , fm. Let P = (a1, . . . , an) be a point of X. We define
the partial derivatives ∂fi/∂Tj as partial derivatives of a polynomial (in a
purely algebraic way, this works over any field). Then we get some constants
∂fi/∂Tj(P ) ∈ k. Recall that an affine subspace of Ank is a translation of a
vector subspace.

Definition. The affine subspace of kn given by the system of linear
equations in T1, . . . , Tn

n∑

j=1

∂fi/∂Tj(P )(Tj − aj) = 0, i = 1, . . . ,m,

is called the tangent space to X at P = (a1, . . . , an), as is denoted by TX,P .

Exercise. Let m = 1. Show that TX,P is the union of lines passing
through P such that the restriction of f to this line is a polynomial in one
variable with a multiple root at P .

All we need to know to compute TX,P are partial derivatives of the equa-
tions definiting X at P . Thus it makes sense to define TU,P , where U is an
open subset of X containing P , by the same formula, so that TU,P = TX,P .

We have a function from X to non-negative integers given by dim(TX,P ).

Lemma 2.8 (Upper semi-continuity) The subset of X given by the con-
dition dim(TX,P ) ≥ s is a closed subset of X.
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Proof. The condition dim(TX,P ) ≥ s is equivalent to the condition that
the rank of the matrix (∂fi/∂Tj(P )) is at most n − s, which is equivalent
to the vanishing of the determinants of all its square submatrices of size
n − s + 1. But these determinants are polynomials in a1, . . . , an, which
implies our statement. QED

It follows that the subset of X consisting of points where dim(TX,P ) takes
its minimal value is open. It is non-empty, and X is irreducible, hence this
subset is dense. The points in this subset are called smooth or non-singular,
and all the other points are called singular.

Exercises. When is the curve X ⊂ A2k given by x
a + yb, where a and b

are positive integers, non-singular at (0, 0)?
Show that any hypersurface defined by a homogeneous polynomial of

degree at least 2 is singular at the origin.

Proposition 2.9 Let mP = (T1 − a1, . . . , Tn − an) ∈ k[X] be the maximal
ideal of a point P in the coordinate ring of X. Then the tangent space TX,P
(considered as a vector space with origin at P ) is canonically dual to the
quotient ring mP/m

2
P .

Proof. We first do an exercise in linear algebra. Let V be a vector space,
V ∗ its dual space (that is, the space of linear forms V → k), and S a subspace
of V ∗. Consider the subspace

W = {v ∈ V |f(v) = 0, for any f ∈ S}.

Its dual space W ∗ can be identified with V ∗/S (the restrictions of linear
functions on V ). Since W is canonically isomorphic to (W ∗)∗ we conclude
that W is canonically isomorphic to (V ∗/S)∗.
After a translation in kn we can assume without loss of generality that

ai = 0, i = 1, . . . , n. Let V = k
n. The coordinates Ti form a basis of the

dual space V ∗. Let S ⊂ V ∗ be the subspace of linear terms of functions
from I(X), that is, linear combinations of

∑n
j=1 ∂fi/∂Tj(P )Tj. The k-vector

space mP/m
2
P consists of linear combinations of Ti’s modulo linear terms of

functions from I(X). This means that mP/m
2
P = V

∗/S. On the other hand,
by definition TX,P ⊂ V is the space of zeros of the functions from S. Now
the exercise in linear algebra above gives the required isomorphism. QED

The proposition implies that the tangent space to X at P is an intrinsic
invariant of X, in the sense that it only depends on the isomorphism class of
X, and not on the particular embedding.
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Exercise. Prove that computing mP/m
2
P for X and for an open subset

U ⊂ X containing P gives the same thing. (The resulting vector spaces are
canonically isomorphic.)

Let p : Ank → A
m
k be a collection of polynomials p1, . . . , pm in n variables

that defines a morphism p : X → Y . The m×n-matrix of partial derivatives
J = (∂pi/∂xj) is called the Jacobian matrix. Using the chain rule for partial
derivatives one easily checks that J defines a linear map p∗ : TX,P → TY,Q,
where Q = p(P ). The construction of p∗ from p is functorial in the sense
that if q : Y → Z is a morphism, then (qp)∗ = q∗p∗. In particular, if p is
an isomorphism, then so is p∗. This is a practical way to check that a given
map is not an isomorphism at a given point.

2.5 Dimension. Application: Tsen’s theorem

Definition. Let X be an affine variety over a field k. The transcendence
degree of k(X) over k is called the dimension of X. The dimension of a
closed affine set is defined as the maximum of the dimensions of its irreducible
components.

For example, dim(Ank) = n since k(A
n
k) is the purely transcendental field

extension k(x1, . . . , xn).

Proposition 2.10 Let X ⊂ Ank be a variety, Y ⊂ X a subvariety, Y 6= X.
Then dim(Y ) < dim(X).

Proof. Let tr.deg.kk(Y ) = m, and choose u1, . . . , um ∈ k[X] such that
their images in k[Y ] are algebraically independent. Then u1, . . . , um are
algebraically independent in k(X). In particular, tr.deg.kk(X) ≥ m. For
contradiction assume that tr.deg.kk(X) = m. Since Y 6= X the ideal
I(Y ) ⊂ k[X] is non-zero. Any u ∈ I(Y ), u 6= 0, must be algebraically
dependent on u1, . . . , um. Thus there exists a polynomial F (t, t1, . . . , tm) =∑
i ai(t1, . . . , tm)t

i such that F (u, u1, . . . , um) is zero in k[X]. We can as-
sume that the ai are polynomials, and that F is irreducible in all the vari-
ables t, t1, . . . , tm. In particular, the constant term a0(t1, . . . , tm) is not
the zero polynomial. Since the image of u in k[Y ] is zero, the image of
a0(u1, . . . , um) is zero in k[Y ]. This gives an algebraic relation between the
images of u1, . . . , um, contrary to our choice of u1, . . . , um. This contradic-
tion proves that tr.deg.kk(X) < m. QED

Corollary 2.11 A subvariety X ⊂ Ank has dimension n − 1 if and only if
X is a hypersurface. Then I(X) is a principal ideal of the polynomial ring
k[T1, . . . , Tn].
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Proof. It remains to show that dim(X) = n − 1 implies that X is a
hypersurface. Since the dimensions are different we have X 6= Ank . Let F be
a non-zero element in I(X). We write F as a product of irreducible factors
F = F1 . . . Fm. Then X = ∪(X ∩ {Fi = 0}). Since X is irreducible we have
X = X ∩ {Fj = 0} for some j, hence Fi ∈ I(X). Replace F by Fj. Then
X is contained in the irreducible hypersurface given by F = 0. Since the
dimensions are equal, these varieties coincide by Proposition 2.10. QED

Theorem 2.12 The dimension of the tangent space at a smooth point of X
equals dim(X).

Proof. We know that X is birationally equivalent to a hypersurface V ⊂
km+1 given by some (non-constant) polynomial F = 0. Since k(X) = k(V )
we conclude that dim(X) = dim(V ).
The dimension of the tangent space to X at any smooth point is the

same, and can be computed in any non-empty open subset of X. Wee can
arrange that the birational map X −− > V is an isomorphism on this open
set. This reduces the whole computation to V .
By Proposition 2.10 dim(V ) ≤ m. On the other hand, the transcendence

degree of k(V ) is at least m. Indeed, F depends on at least one variable, say
x1. Then the images of x2, . . . , xm+1 in k[V ] are algebraically independent
(as otherwise we would have a polynomial G(x2, . . . , xm+1) in the principal
ideal (F ) which is impossible since F depends on x1 whereas G does not).
Therefore, dim(V ) = m.
On the other hand, the dimension of TV,P for P in a certain dense open

subset of V is m: if all the partial derivatives of F vanish everywhere on V ,
they must belong to the principal ideal (F ) by Hilbert’s Nullstellensatz. Since
they have degrees less than the degree of F , they must be zero polynomials.
If the characteristic of k is zero, this implies that F is a constant, which
is a contradiction. If the characteristic is p, then F is a p-th power, which
contradicts the irreducibility of F . QED

We quote the following result without proof (see Ch. 1 of [Shafarevich]
or Ch. 11 of [Atiyah-McDonald]).

Theorem 2.13 Let k be an algebraically closed field. Let X ⊂ Ank be a
variety, F be a polynomial taking both zero and non-zero values on X. Then
dim(X ∩ {F = 0}) = n− 1.

Corollary 2.14 Let F1, . . . , Fm, m ≤ n, be homogeneous polynomials in n
variables. Then the closed affine set X given by F1 = . . . = Fm = 0 has
dimension at least n−m. In particular, X is not empty.
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Proof. Note that the all-zero point is in X. Thus at each successive
intersection the dimension drops at most by one. QED

The natural place of this statement is in intersection theory of subvarieties
of the projective space. To demonstrate its force we now deduce just one
corollary.
Recall that k is algebraically closed. Let

F (x0, x1, x2) =
∑

ij≥0, i0+i1+i2≤2

fi0,i1,i2(t)x
i0
0 x
i1
1 x
i2
2

be a homogeneous polynomial of degree 2 with coefficients in k[t].

Theorem 2.15 (Tsen) There exist non-zero polynomials p0(t), p1(t), p2(t)
with coefficients in k such that x0 = p0(t), x1 = p1(t), x2 = p2(t) is a solution
of the equation F (x0, x1, x2) = 0.

Proof. Let m be a positive integer. Polynomials of degree m form an
m + 1-dimensional vector space over k. Hence the dimension of the vector
space of coefficients of p0(t), p1(t), p2(t) is 3m + 3. We observe that the
conditions on these coefficients that must be satisfied in order for x0 = p0(t),
x1 = p1(t), x2 = p2(t) to be a solution, are given by homogeneous (quadratic)
polynomials. Let us compute the number of these conditions.
Let ` be the maximum of the degrees of the fi0,i1,i2(t). Suppose that the

degree of pj(t), j = 1, 2, 3, is at mostm. Then the degree of F (p0(t), p1(t), p2(t))
is at most `+ 2m. This means that the coefficients of the pj(t) must satisfy
`+2m+1 homogeneous polynomial conditions (1 must be added to provide
for the zero constant term). For large m we have 3m+3 > `+2m+1, hence
the number of variables exceeds the number of equations. By Corollary 2.14
the dimension of the closed affine set of polynomials that are solutions, is
positive. We conclude that there exist such non-zero polynomials. QED

A more general approach to dimension. Let R be a ring. The Krull
dimension of R is defined as the supremum of all integers n such that there
exists a chain I0 ⊂ I1 ⊂ . . . ⊂ In of distinct prime ideals of R. For example,
the Krull dimension of a field is 0. The dimension of Z and, more generaly,
of the ring of integers in a number field is 1. The dimension of k[T ] is also
1. The dimension of k[X,Y ] is 2, etc.
In fact all given definitions of dimension are equivalent.

Theorem 2.16 Let X be an affine variety, then the Krull dimension of k[X]
equals the transcendence degree of k(X).

This can be deduced from Theorem 2.13.
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3 Projective geometry

3.1 Projective varieties

Below is the list of main notions, and the outline of differences with the affine
case.

The projective space Pnk is the set of equivalence classes of points of A
n+1
k \

{(0, . . . , 0)}, where two points are equivalent if they differ by a common
non-zero multiple. The equivalence class of (x0, x1, . . . , xn) is denoted by
(x0 : x1 : . . . : xn).
The zeros of homogeneous polynomials (also called forms) are closed pro-

jective sets. One defines open sets as their complements. This gives rise to
Zariski topology on Pnk . The condition Ti 6= 0 defines an open subset of P

n
k

isomorphic to the affine space Ank with coordinates T0/Ti, . . . , Tn/Ti. We get
n+ 1 affine spaces which provide an open covering of Pnk .
Let f(T1, . . . , Tn) be a polynomial of degree d. It can be written as the

sum f = f0+ . . .+ fd, where fi is a form of degree i. The homogenization of
f is the form of degree d in n+ 1 variables given by

F (T0, T1, . . . , Tn) = F = T
d
0 f0 + T

d−1
0 f1 + . . .+ fd.

If X ⊂ Ank is a closed affine set, then associating to polynomials in the ideal
of X their homogenizations defines the projective closure of X.

There are serious reasons for working with projective varieties:
(1) The set of complex-valued points of Pn is compact in the usual com-

plex topology (e.g. P1 over C is just the Riemann sphere),
(2) classifications are simpler (e.g. quadratic forms are classified only by

their rank),
(3) intersection theory is simpler (any two curves in the plane, or more

generally, any n hypersurfaces in Pnk have a common point).

An ideal J ⊂ k[T0, . . . , Tn] is called homogeneous if whenever f ∈ J
we also have fi ∈ J , where fi is the homogeneous part of f of degree i.
Homogeneous ideals are generated by homogeneous polynomials.
The affine cone of a closed projective set X is the set of points in An+1k

given by the same (homogeneous) equations as X. To a closed projective set
X one associates the ideal I(X) of all polynomials in k[T0, . . . , Tn] vanishing
on the affine cone of X. The ideal I(X) is clearly homogeneous. To any
homogeneous ideal J one associates its set of zeros Z(J) ⊂ Pnk . This always
gives a non-empty set unless J = 1 (empty affine cone) or J = (T0, . . . , Tn)
(the affine cone consists of the zero point). Hence the projective variant
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of Nullstellensatz, which immediately follows from the affine Nullstellensatz,
reads as follows.

Theorem 3.1 (Projective Nullstellensatz) If J is a homogeneous ideal,
then
(1) Z(J) = ∅ iff the radical of J contains the ideal (T0, . . . , Tn) (the

maximal ideal of the zero point in An+1k ),
(2) if Z(J) 6= ∅, then I(Z(J)) is the radical of J .

Projective variety is an irreducible closed projective set. (The definition
of irreducible is the same as in the affine case.) Quasi-projective varieties are
dense open subsets of projective varieties. Rational functions on a projective
variety X are fractions of forms of equal degree F

G
, where G 6∈ I(X), modulo

natural equivalence: F
G
= F1
G1
if FG1 − F1G ∈ I(X). The rational function

F
G
is called regular at a point P ∈ X if G(P ) 6= 0. The field of rational

functions on X is again denoted by k(X), but it is not the field of fractions
of the ring of regular functions on X! Indeed, the only regular functions on
P1k are constants

1: k[P1k] = k (easy exercise, in fact every regular function
on A1k ⊂ P

1
k is a polynomial, and every non-constant polynomial has a pole

at infinity).

A rational map f : X − − > Pnk is (a not necessarily everywhere de-
fined function) given by (F0, . . . , Fn), where Fi ∈ k(X)∗, defined up to an
overall multiple from k(X)∗. A rational map f is regular at P ∈ X if there
exists a representative (F0, . . . , Fn), such that all the Fi’s are regular at P ,
and (F0(P ), . . . , Fn(P )) 6= (0, . . . , 0). A morphism is an everywhere regular
rational map.

Examples of projective varieties, rational maps and morphisms
(a) Rational normal curves. This is a map f : P1k → C ⊂ P

n given by

f : (X : Y ) 7→ (Xn : Xn−1Y : . . . : XY n−1 : Y n).

One checks that f is a morphism, whose image is given by equations T0T2 =
T 21 , T1T3 = T

2
2 , and so on. The inverse map is given by

g : (T0 : . . . : Tn) 7→ (T0 : T1) = (T1 : T2) = . . . = (Tn−1 : Tn)

which is everywhere defined (check!). Hence f is an isomorphism of P1k with
a closed subvariety C ⊂ Pn, called the rational normal curve of degree n.
For n = 2 one recovers the rational parametrization of the conic.

1The same is true for any projective variety, see page 20.
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(b) The Veronese embedding of Pnk . This is a natural generalization of the
previous example, where one considers all monomials of degree d. This defines
an isomorphism of Pnk with a closed subvariety of P

N
k , where N = C

n+d
n . For

d = 2 and n = 2 one gets the Veronese surface in P5k.
(c) Any quadric in Q ⊂ P3k is isomorphic to P

1
k × P

1
k. (Think of two

families of P1k’s on a quadric). The stereographic projection from a point
P ∈ Q defines a birational map Q − − > P2k which is not a morphism (not
regular at P ). Neither is the inverse map a morphism (two lines of Q passing
through P are contracted to points).
(d) The Segre embedding Pnk × P

m
k ⊂ P

nm+n+m
k . This map associates to

two vectors their tensor product. The map is well defined everywhere, and
is a bijection with the image. The image can be interpreted as the set of
non-zero matrices of rank one. In particular, when n = m = 1 we get a
quadric in P3k.
The Segre embedding can be used to define the structure of a projective

variety on Pnk×P
m
k . As a consequence we realize the product of two projective

varieties as a closed subset of some projective space.
(e) Elliptic curve. These are smooth plane cubic curves with a k-point.

It can be proved that such a curve is isomorphic to a projective curve y2z =
x3 + axz2 + bz3. The map (x : y : z) → (x : −y : z) is a non-trivial
automorphism with exactly four fixed points (there are three obvious fixed
points with y = 0, z = 1, and also (0 : 1 : 0)). This shows that the curve
is not P1k, as any element of PGL(2) that fixes three different point is an
identity. This follows from the fact that Aut(P1k) =PGL(2), see Proposition
5.4 below.

3.2 Morphisms of projective varieties

Examples show that if f : X → Y is a morphism of affine varieties, then
f(X) ⊂ Y need not be a closed subset. A standard example is X ⊂ A2k
given by xy = 1, mapped to A1k by the morphism (x, y) 7→ x. It is another
pleasant feature of projective varieties that the image of a projective variety
under a morphism is always closed! We start with a lemma.

Lemma 3.2 Let X and Y be quasi-projective varieties. The graph Γf of any
morphism f : X → Y is closed in X × Y .

Proof. It is enough to consider the case Y = Pnk . Consider the morphism
(f, Id) : X×Pnk → P

n
k×P

n
k , and let Δ ∈ P

n
k×P

n
k be the diagonal (the graph

of the identity map). Then Γf = (f, Id)
−1(Δ). It is clear that the preimage

of a closed subset is closed. Thus it is enough to prove that Δ ⊂ Pnk ×P
n
k is
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closed. But Δ is given by TiXj = TjXi for all i and j, and hence is closed.
QED

Theorem 3.3 Let X be a projective variety, and Y be a quasi-projective
variety. Then the projection to the second factor p : X×Y → Y maps closed
subsets to closed subsets.

Corollary 3.4 Let f : X → Y be a morphism, where X is a projective
variety. Then f(X) is closed in Y .

Proof. Apply the theorem to p(Γf ) = f(X). QED

Proof of the theorem. We can assume that X = Pnk . Next, the closedness
can be checked locally in a small affine neighbourhood of every point. Thus
we can assume that Y is a closed subset ofAmk . But then Y can be replaced by
Amk . All in all, we see that the general statement follows from the statement
for the projection Pnk ×A

m
k → A

m
k . Let us prove it.

Let a closed subset in Pnk ×A
m
k be given by equations

gi(T0, . . . , Tn;Y1, . . . , Ym) = 0, i = 1, . . . , s,

where the gi’s are homogeneous polynomials in variables T0, . . . , Tn whose co-
efficients are polynomials in variables Y1, . . . , Ym. We must prove that the set
U of y = (y1, . . . , ym) ∈ km such that the ideal Jy = (gi(T0, . . . , Tn; y1, . . . , ym))
has no zeros in Pnk , is open. By the projective Nullstellensatz, Z(Jy) = ∅ iff
all Ti’s are contained in the radical of Jy, that is, T

li
i ∈ Jy for some li. Let

l = l0+. . .+ln, then in any monomial of degree l at least one variable Ti enters
in the power greater or equal to li. Hence Jy contains the ideal Il generated
by all monomials of degree l. Let Ul be the set of y = (y1, . . . , ym) ∈ km such
that Jy ⊃ Il. Then U is the union of all Ul’s, l = 1, 2, . . . , hence it is enough
to prove that each Ul ⊂ Amk is open.
If one can represent a monomial as a linear combination of homogeneous

polynomials, then the coefficients can be chosen to be homogeneous polyno-
mials. Let di be the degree of gi(T0, . . . , Tn; y1, . . . , ym). Then y ∈ Ul iff the
products of the gi(T0, . . . , Tn; y1, . . . , ym) with all monomials of degree l− di
span the vector space of forms of degree l. Equivalently, the corresponding
matrix has maximal rank, which is the condition on the non-vanishing of the
determinants of its square submatrices of maximal size. This cleary describes
an open subset. (Which may well be empty, but it does not matter!) QED

This result hints at the following definition.

Definition. A morphism f : X → Y of quasi-projective varieties is
proper if it is a composition of a closed embedding X ↪→ Pnk × Y and the
projection Pnk × Y → Y .
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It follows from the previous theorem that f(X) ⊂ Y is closed provided
f is proper. It is clear that if f is proper, and P ∈ Y , then f−1(P ) is a
projective variety.

Proposition 3.5 Any regular function on a projective variety is constant.
Any morphism of a projective variety X to an affine variety sends X to a
point.

Proof. The second statement clearly follows from the first one. A regular
function gives rise to a morphism f : X → P1k whose image does not contain
the point at infinity. Hence f(X) 6= P1k is a union of finitely many points.
Since X is irreducible, f(X) is just one point. QED

4 Local geometry

4.1 Localization, local rings, DVR

Let R be a ring. A subset S ⊂ R is called multiplicative if it is closed under
multiplication and contains 1. The localization S−1R of R with respect to S
is defined as the set of formal fractions a

b
, with a ∈ R and b ∈ S, up to the

equivalence relation: a
b
= a1
b1
iff (ab1−a1b)s = 0 for some s ∈ S. When R has

no zero divisors, the natural map a 7→ a
1
is an injective homomorphism of

rings, so that we can think of R as a subset of S−1R. Then S−1R is simply
the fractions with “restricted denominators”. Note that if I ⊂ R is an ideal,
then S−1I is an ideal in S−1R.

Exercise. A localization of a Noetherian ring is Noetherian.

Examples. (1) If S = R \ {0}, then S−1R is just the field of fractions.
(2) Let P ⊂ R be a prime ideal, then S = R \ P is a multiplicative

system. Then S−1R is denoted RP and is called the localization of R at P .
The ring RP has a very important property: S

−1P is its only maximal ideal
(every element not in S−1P is by definition invertible, hence S−1P contains
all other ideals). Such rings have a name.

Definition. Rings with just one maximal ideal are called local rings.

Examples: (a) rational numbers such that p does not divide the denomi-
nator,
(b) p-adic integers Zp,
(c) rational functions in one variable over a field k such that the denom-

inator does not vanish at 0,
(d) formal power series k[[T ]],
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(e) rational functions in two variables such that the denominator does
not vanish at (0, 0).

In all these examples, except the last one, the maximal ideal is principal.
Such ring forms the simplest class of local rings.

Definition. A local ring whose maximal ideal is principal is called a
discrete valuation ring (DVR).

Definition. Any generator of the maximal ideal of a DVR is called a
uniformizer or a local parameter.

Lemma 4.1 Let R be a Noetherian integral domain, t ∈ R \ R∗. Then
∩∞i=1(t

i) = 0.

Proof. ([Reid, UCA], 8.3) For contradiction let x 6= 0 be contained in
(ti), for any i ≥ 1. We write x = tixi, then (x) ⊂ (x1) ⊂ (x2) ⊂ . . . is an
ascending chain of ideals. Then (xi+1) = (xi) = (txi+1) for some i. Hence
xi+1 = taxi+1, but this implies t ∈ R∗ since xi+1 6= 0 and R is an integral
domain. Contradiction. QED

Proposition 4.2 Let R be a DVR with maximal ideal m = (π) and the field
of fractions K. Then
(1) there exists a discrete valuation on K defined by R, that is, a ho-

momorphism v : K∗ → Z such that v(x + y) ≥ min{v(x), v(y)}, and
R \ {0} = {x ∈ K∗|v(x) ≥ 0}, m \ {0} = {x ∈ K∗|v(x) ≥ 1}.
(2) All non-zero ideals of R are principal ideals mi = (πi), i ≥ 1.

Proof. (1) By the previous lemma every x ∈ R, x 6= 0, is in mi \ mi+1

for some i ≥ 0. Then x = πiu, where u ∈ R must be a unit. We also write
y = πju′ with u′ ∈ R∗. Then xy = πi+juu′, hence v(xy) = v(x) + v(y).
Suppose that i ≤ j, then x + y = πi(u + πj−iu′), hence v(x + y) ≥ v(x) =
min{v(x), v(y)}. We now can extend v to K∗ by the formula v(x/y) =
v(x)− v(y). The remaining properties are clear.
(2) Let s be the infinum of v on the ideal I ⊂ R, then there exists

x ∈ I such that v(x) = s. Then ms = (x) ⊂ I. On the other hand,
v(I \ {0}) ⊂ {s, s + 1, . . . }, and ms \ {0} = {x ∈ K∗|v(x) ≥ s}, hence
I ⊂ ms. All in all we have I = ms. QED

Observe that (1) implies that R∗ = {x ∈ K∗|v(x) = 0}.
A DVR, like any other PID, is a UFD (note my excellent style).

Exercise. Prove that any DVR is normal (=integrally closed in its field
of fractions).
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The local ring of a subvariety. Let X ⊂ Pnk be a variety, and Y ⊂ X
a subvariety. We define the local ring OY of X at Y as the subring of k(X)
consisting of the rational functions that are regular on an open set with a
non-trivial intersection with Y . It is easy to check the ring axioms. An ideal
mY ⊂ OY consisting of functions vanishing on Y is maximal since OY /mY
is the field k(Y ). Any function in OY \mY is invertible in OY , so that mY
is the unique maximal ideal. Thus OY is a local ring.
Let U ⊂ X be an affine open subset of X. Then OY is the localization

of k[U ] at the prime ideal I(Y ∩ U) (i.e. we divide by the functions that do
not vanish on Y ).

4.2 Regular local rings

Definition 4.3 A Noetherian local ring R with maximal ideal m and residue
field k is regular if the Krull dimension of R is dimk(m/m

2).

Key example. It follows from Proposition 2.9, Theorem 2.12 and Theorem
2.16 that if P is a smooth point of X, then OP is a regular local ring.

A theorem of Auslander and Buchsbaum says that a regular local ring is
a UFD ([Matsumura], 20.3). A very important corollary is

Theorem 4.4 The local ring of a smooth point of an algebraic variety is a
UFD.

See Appendix A.2 for a sketch of proof of this theorem.

Exercise. Let X be a curve in P2k, and P ∈ X a smooth point. Here is
a low level proof that OP is a DVR (and hence also a UFD). The question
being local we can assume that X ⊂ A2k, P = (0, 0). To fix ideas suppose
that TX,P is the line y = 0. Then X is given by

y +
∑

i+j≥2

aijx
iyj = 0.

The maximal ideal mP ⊂ OP is mP = (x, y). All we need to do is to show
that it is principal. I claim that mP = (x). Indeed, on X we have

y = −x

∑
i+j≥2,i≥1 aijx

i−1yj

1 +
∑
j≥2 a0jy

j−1
,

and the fraction is regular at P , that is, belongs to OP . Hence y ∈ (x).
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4.3 Geometric consequences of unique factorization in
OP

The following statement is a generalization of Corollary 2.11.

Theorem 4.5 In a sufficiently small neighbourhood of a smooth point any
subvariety of codimension 1 can be given by one equation.

Proof. Let P be a smooth point of X contained in a subvariety Y ⊂ X of
codimension 1. Replacing X by a neighbourhood of P we can assume that X
is affine with coordinate ring k[X]. Choose a non-zero element f ∈ I(Y ) ⊂
k[X]. Now OP ⊂ k(X) is a UFD by Theorem 4.4, so that f is a product of
prime factors f = f1 . . . fr, fi ∈ OP . By further shrinking X we can assume
that fi ∈ k[X], i = 1, . . . , r. We have

Y = (Y ∩ {f1 = 0}) ∪ . . . ∪ (Y ∩ {fr = 0}).

Y is irreducible hence Y = Y ∩ {fi = 0} for some i. Replacing f by this fi
we can assume without loss of generality that f is a prime element of OP .
Consider the closed subset Z = Z(f) ⊂ X. By Theorem 2.13 the codi-

mension of Z is 1. Now Proposition 2.10 implies that Y is an irreducible
component of Z, so that we can write Z = Y ∪ Y ′, where Y ′ is the union
of irreducible components of Z other than Y . If P /∈ Y ′ we replace X by
a small affine neighbourhood of P that does not intersect with Y ′. Then
Y = Z(f). Let us show that f is an equation of Y , that is, the ideal I(Y ) is
generated by f . (Recall that we shrinked X a several times by now, so that
f does not have to be a global equation of Y in the original X). Indeed, let
g ∈ I(Y ) = I(Z(f)). By the Nullstellensatz there exists a positive integer m
such that gm is divisible by f in k[X]. Then the same thing is also true in
OP . Since OP is a UFD we conclude that g is divisible by f .
It remains to exclude the possibility that P ∈ Y ′. Choose h ∈ I(Y ) \

I(Y ′), h′ ∈ I(Y ′) \ I(Y ), then hh′ ∈ I(Z) whereas h, h′ /∈ I(Z). By the
Nullstellensatz there exists a positive integer n such that (hh′)n is divisible
by f in k[X]. Then the same thing is also true in OP . Since OP is a UFD we
conclude that h or h′ is divisible by f , hence vanishes on Z. Contradiction.
QED

Corollary 4.6 Let X be a smooth variety. Then the local ring of a subvariety
Y ⊂ X of codimension 1 is a DVR.

Proof. The maximal ideal mY ⊂ OY is generated by any local equation of
Y in X, which exists by the previous theorem. Hence mY is principal which
means that OY is a DVR. QED
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Recall that a rational map is regular on a non-empty open set. For smooth
projective varieties there is a better result:

Corollary 4.7 A rational map of smooth projective varieties is regular away
from a closed subset of codimension at least 2.

Proof. Without loss of generality we assume that the target space is Pnk .
So let f : X − − > Pnk be a rational map. There exist a dense open set
U ⊂ X such that f restricted to U is regular, and U is maximal with this
property. Suppose that Z ⊂ X is a subvariety of codimension 1 contained in
X \ U . Write f = (f0, . . . , fn), where fi ∈ k(X). Multiplying all the fi by a
common multiple does not change f . We can choose this common multiple
so that all the fi are in the DVR OZ and have no common factor. Then
at least one fi is not divisible by the generator of the maximal ideal of OZ ,
hence is non-zero at some point of Z. Therefore, f = (f0, . . . , fn) is regular
on an open set which has a non-trivial intersection with Z. This contradicts
the fact that U is the largest open set on which f is regular. QED

Corollary 4.8 Any rational map from a smooth and projective curve to a
projective variety is a morphism.

Corollary 4.9 A birational map between smooth and projective curves is an
isomorphism.

Hence birationally equivalent smooth projective curves are isomorphic.
The same is very far from being true in higher dimensions (there are many
examples, e.g. the projection P2k −− > P

1
k from a point (0 : 0 : 1) given by

(x0 : x1 : x2) 7→ (x0 : x1), or the stereographic projection of a quadric). The
smoothness assumption is also very important. Indeed, let C be the image
of the morphism f : P1k → P

2
k defined by (x0 : x1) 7→ (x

3
0 : x0x

2
1 : x

3
1). Then

f : P1k → C is a birational map, but C is not isomorphic to P
1
k (C contains

a singular point (1 : 0 : 0), whereas P1k is smooth).

5 Divisors

5.1 The Picard group

Let X be a smooth variety. Let Div(X) = {
∑
Y nY Y } be the free abelian

group generated by all subvarieties of codimension 1 Y ⊂ X. The elements
of Div(X) are called divisors. Divisors of the form Y , where Y ⊂ X is
a subvariety of codimension 1, are called irreducible. A divisor is called
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effective if all the coefficients nY ≥ 0, and at least one coefficient is positive.
Then one writes

∑
Y nY Y > 0. The union of the subvarieties Y such that

nY 6= 0 is called the support of
∑
Y nY .

Corollary 4.6 allows us to define the divisor of a rational function f ∈
k(X)∗ as

div(f) =
∑

codim(Y )=1

valY (f).Y,

where valY : k(X)
∗ → Z is the valuation attached to the irreducible divisor

Y ⊂ X. The following lemma shows that this sum is finite.

Lemma 5.1 Let f ∈ k(X)∗. For almost all subvarieties Y ⊂ X of codimen-
sion 1 we have valY (f) = 0.

Proof. Let U be a dense open set where f is regular, and U ′ be a dense
open set where f−1 is regular. Then f ∈ O∗Y for any subvariety Y ⊂ X
of codimension 1 that has a non-empty intersection with U ∩ U ′. Hence if
valY (f) 6= 0, then Y is one of the finitely many irreducible components of
X \ (U ∩ U ′) of codimension 1. QED

The divisors of rational functions are called principal.

Proposition 5.2 Let f ∈ k(X)∗ be such that div(f) = 0. Then f is regular
on X.

Proof. Let P ∈ X be a point where f is not regular. Since OP is a
UFD we can write f = uf i11 . . . f

in
n , where u ∈ O

∗
P , and the fi are irreducible

elements. Since f is not regular at P we must have is < 0 for some s. But
fs comes from a regular function on some afffine open neighbourhood U of
P . Let Y ⊂ U be given by fs = 0. Its Zariski closure is a subvariety of X of
codimension 1 (cf. Theorem 2.13). But then valY (f) = ns < 0 contrary to
our assumption. QED

Corollary 5.3 Let X be a smooth and projective variety. Then a rational
function is determined by its divisor up to a constant.

Proof. The ratio of two functions with the same divisor is regular by
Proposition 5.2. But Proposition 3.5 says that any regular function on a
projective variety is a constant. QED

Definition. The group of classes of divisors modulo principal divisors is
called the Picard group of the variety X, and is denoted by Pic(X).
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Remark. For a smooth and projective variety X there is an exact sequence
of abelian groups

1→ k∗ → k(X)∗ → Div(X)→ Pic(X)→ 0.

The words ‘exact sequence’ mean that the kernel of each homomorphism is
the image of the previous one.

Remark. Note the analogy with the construction of the class group Cl(K)
of a number field K. In that case we have an exact sequence

1→ O∗K → K
∗ → Frac(K)→ Cl(K)→ 0,

where Frac(K) is the group of fractional ideals of K with respect to multi-
plication.
The Picard group contains a lot of information about X.

Examples. Pic(Ank) = 0.
Pic(Pnk) = Z is generated by the class of a hyperplane.
Pic(Pn1k × . . .×P

nm
k ) = Z

m.
Pic(P2k \ C) = Z/d where C is a curve of degree d.
The Picard group of a smooth cubic surface is isomorphic to Z7 (and is

generated by 27 lines on it, cf. [Reid, UAG], Ch. 3).

Functoriality of the Picard group. Associating the abelian group
Pic(X) to a smooth variety X is a natural construction in the sense that to
any morphism f : X → Y there corresponds a homomorphism f ∗ : Pic(Y )→
Pic(X). This f ∗ is functorial: if g : Y → Z is another morphism, then
(gf)∗ = f ∗g∗. We only outline the construction of f ∗ for smooth and projec-
tive curves. See Appendix B.2 for a sketch of a more complicated definition
of f ∗ in the case of varieties of arbitrary dimension.
Consider a surjective morphism f : X → Y of smooth and projective

curves. We know by Corollary 4.6 that the local ring at any point of X or Y
is a DVR. This makes it possible to define the inverse image homomorphism
f ∗ : Div(Y ) → Div(X) as follows. Let P ∈ Y , Q ∈ X such that f(Q) = P .
Then we have an injective homomorphism of local rings f ∗ : OP → OQ which
allows us to think aboutOP as a subring ofOQ. Let uP be the local parameter
at P , and let valQ be the valuation defined by the local ring OQ ⊂ k(Y ). We
define

f ∗(P ) =
∑

Q∈X,f(Q)=P

valQ(uP ).Q,

and then extend this to Div(Y ) by linearity. It can be checked directly that
if g ∈ k(Y )∗ is a rational function, then div(g ◦ f) = f ∗(div(g)). Thus f ∗
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gives rise to a homomorphism of Picard groups:

f ∗ : Pic(Y )→ Pic(X).

Example. Let X be the conic in P2k given by x0x1 = x
2
2, Y = P

1
k, and

f : X → Y be given by (x0 : x1 : x2) 7→ (x0 : x1).
Let P = (1 : 0) ∈ Y . We compute f ∗(P ). It is clear that f−1(P ) = Q =

(1 : 0 : 0). We first check that x2/x0 is a local parameter at Q. Indeed, in
the affine plane given by x0 6= 0 where the coordinates are t1 = x1/x0 and
t2 = x2/x0, the equation of X is t1 = t

2
2. Hence the maximal ideal of Q is

(t1, t2) = (t2). Next, t1 is a local parameter at P . In k(X) we have t1 = t
2
2,

thus valQ(uP ) = 2, and finally f
∗(P ) = 2Q.

Now we want to compute f ∗(R), where R = (1 : 1) ∈ Y . It is clear that
f−1(R) = {Q+, Q−}, where Q± = (1 : 1 : ±1). Obviously t1 − 1 is a local
parameter at R. Let us find a local parameter at Q+. The maximal ideal at
this point is (t1− 1, t2− 1). But in k(X) we have t1− 1 = (t2− 1)(t2 + 1) so
that (t1− 1, t2− 1) = (t2− 1) = (t1− 1) since t2− 1 is regular and invertible
at Q+. A similar computation shows that t1 − 1 is also a local parameter at
Q−. Thus valQ±(uP ) = 1, hence f

∗(P ) = Q+ +Q−.

5.2 Automorphisms of Pnk and of A
n
k

As an application of the fact that Pic(Pnk) is isomorphic to Z we prove the
following useful statement.

Proposition 5.4 Any automorphism of Pnk is given by a linear transforma-
tion of the corresponding n + 1-dimensional vector space, so that AutP1k =
PGL(n+ 1).

Proof. The group of non-degenerate matrices GL(n + 1) acts on kn+1.
Lines through the origin are mapped to lines through the origin, hence
GL(n+ 1) also acts on Pnk . The only matrices that act trivially on the lines
through the origin are scalar matrices. Hence PGL(n + 1) = GL(n + 1)/k∗

acts faithfully on Pnk (the only element acting trivially is the identity). We
must show that any automorphism of Pnk is of such a form.
We first consider P1k. Any rational map P

1
k − − > P

1
k is given by a

bijective rational function t 7→ f(t). Then f(t) = (at + b)/(ct + d) for some
a, b, c, d ∈ k. (It is easy to check that other rational functions are never
bijective.) This morphism clearly comes from the linear transformation with
matrix (

a b
c d

)
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Since Pic(Pnk) = Z the induced morphism f
∗ sends a generator to a

generator. Let H ⊂ Pnk be the projective subspace of codimension 1, also
called a hyperplane. We denote by [H] its class in Pic(P1k). The classes [H]
and −[H] are the only classes that generate Pic(Pnk). But the hyperplane
class [H] ∈ Pic(Pnk) = Z contains effective divisors, whereas −[H] does not.
Hence f ∗([H]) = [H]. Therefore the inverse image of a hyperplane is a
hyperplane. Now any rational map Pnk − − > P

n
k is given by a collection

of n rational functions f1, . . . , fn in the affine coordinates t1, . . . , tn. The
condition f ∗(H) = H says that

∑
aifi = a defines a hyperplane for any

a, a1, . . . , an ∈ k, where not all of the ai are equal to 0. Write each fi as a
fraction in lowest terms Fi/Gi. Then, for a, a1, . . . , an general enough, we
get a hyperplane only if all the Gi are of degree 1 and proportional, and the
Fi are of degree 1 (the details of this argument are left to the reader). This
is precisely what we needed to prove. QED

Exercise. Compute Aut(A1k) by proving that every automorphism of A
1
k

extends uniquely to an automorphism of P1k which fixes the point at infinity.

Remark. In contrast, Aut(Ank) for n ≥ 2 is very big. Note that (x, y) 7→
(x, y+g(x)), where g(x) is any polynomial, is an automorphism of A2k. There
are also automorphisms of A2k defined by the elements of PGL(2) that pre-
serve the line at infinity. It can be proved that these automorphisms generate
the whole group. See [Shafarevich] for more details.

The Jacobian Conjecture. Let F (x, y), G(x, y) be polynomials in x
and y. When is the map f : A2k → A

2
k given by (x, y) 7→ (F (x, y), G(x, y))

an automorphism of the affine plane?
Consider the Jacobian matrix

J(f) =

( ∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

)

If g : A2k → A
2
k is another polynomial map, then one checks by using the

chain rule for partial differentiation that J(fg) = J(f)J(g). If f is an au-
tomorphism, then we can find g such that fg is the identity map, so that
J(f)J(g) is the identity matrix. This implies that det(J(f)) ∙ det(J(g)) = 1.
This says that the polynomial det(J(f)) is invertible in the polynomial al-
gebra k[x, y], and so must be a constant. The famous Jacobian Conjecture
asserts that if det(J(f)) ∈ k, then f ∈ Aut(A2k). Many cases of polynomi-
als of small degree are known, but the general case of this hard conjecture
remains open.
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5.3 The degree of the divisor of a rational function on
a projective curve

From this point on all our varieties are smooth and projective curves. For
curves one defines the degree of the divisor

∑
nPP as the integer

∑
nP . It

is clear that this produces a surjective homomorphism deg : Div(X) → Z
which sends any point to 1.

Lemma 5.5 Let f : X → Y be a surjective morphism of curves. Then k(X)
is a finite extension of k(Y ).

The proof is omitted. The number [k(X) : k(Y )] = dimk(Y )k(X) is called
the degree of f , and is denoted by deg(f). A sketch of proof of the following
theorem can be found in Appendix B.1.

Theorem 5.6 Let f : X → Y be a surjective morphism of smooth and
projective curves. Then the degree of the divisor f ∗(P ) equals deg(f), for
any P ∈ Y .

In the notation of the example in the end of Subsection 5.1 we have
deg(f ∗(P )) = deg(2Q) = 2, deg(f ∗(R)) = deg(Q+ + Q−) = 2. This agrees
with the fact that the degree of the map f in that example is 2: indeed,
k(X) = k(

√
t1) is a quadratic extension of k(Y ) = k(t1).

Corollary 5.7 The degree of the divisor of a non-zero rational function on
a smooth projective curve is zero.

Proof. If f is constant there is nothing to prove. By Corollary 4.8 any
rational non-constant function f ∈ k(X)∗ gives rise to a dominant morphism
f : X → P1k. Since X is projective, f(X) is closed, hence f(X) = P

1
k. A

comparison of definitions shows that the divisor div(f) equals f ∗(0)−f ∗(∞).
By Theorem 5.6 deg(f ∗(0)) and deg(f ∗(∞)) both equal to deg(f), hence
deg(div(f)) = 0. QED

Due to Corollary 5.7 deg descends to a surjective homomorphism deg :
Pic(X)→ Z. Define Pic0(X) as the kernel of deg.

Proposition 5.8 Let X be a smooth and projective curve.
(i) The divisor P −Q is principal for some P 6= Q if and only if X = P1k.
(ii) Pic0(X) = 0 if and only if X = P1k.
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Proof. We already know that Pic(P1k) = Z is generated by the class of a
point. Hence deg is an isomorphism in this case, so that Pic0(P1k) = 0.
To prove (i) let P 6= Q be points on X such that P − Q = div(f). As

in the proof of Corollary 5.7 f defines a morphism f : X → P1k. If we write
div(f) = f ∗(0)− f ∗(∞), then the divisors f ∗(∞) and f ∗(0) are effective and
disjoint. This implies that f ∗(0) = P . By Theorem 5.6 the degree of the
morphism f is 1, hence f is birational, hence is an isomorphism (Corollary
4.9).
The degree of P −Q is 0. Thus (ii) follows from (i). QED

Among the plane curves this proposition applies to lines and conics.

5.4 Bezout theorem for curves

Let X ⊂ Pnk be a smooth curve, and let F be a homogeneous form in n + 1
variables not vanishing identically on X. Cover X by open subsets Ui =
X ∩ {Gi 6= 0}, where deg(Gi) = deg(F ). Then F/Gi is a regular function on
Ui. We define the divisor of F by the formula

div(F ) =
∑

P∈X

valP (F/Gi).P,

where in the term corresponding to P we take any Gi such that P ∈ Ui,
or equivalently, Gi(P ) 6= 0. The definition does not depend on what Ui we
choose for a given point P , because Gi/Gj is an invertible rational function
on Ui ∩ Uj, so that for P ∈ Ui ∩ Uj we have valP (F/Gi) = valP (F/Gj).
Similarly, one shows that another family of Gi’s produces the same divisor
div(F ).

Definition. The intersection index (X.F ) is the degree of div(F ).

Since the function F/Gi is regular on Ui we see from the definition that
div(F ) ≥ 0, therefore (X.F ) ≥ 0. The intersection index counts the num-
ber of intersection points of X with the hypersurface F = 0 with ‘correct
multiplicities’.

Definition. The degree of X in Pnk , denoted by deg(X), is the intersec-
tion index of X with the hyperplane.

Of course, we need to show that this definition makes sense, that is, it
does not matter which hyperplane we take.

Theorem 5.9 (Bezout) The intersection index (X.F ) depends only on X
and the degree of F . We have (X.F ) = deg(X)deg(F ).
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Proof. If F ′ is another form of the same degree, then div(F ) − div(F ′)
is clearly the divisor of the rational function F/F ′. Thus (X.F ) = (X.F ′)
since by Corollary 5.7 deg(div(F/F ′)) = 0. This shows that the intersection
index depends only on deg(F ) and not F itself. To compute (X.F ) we can
now replace F by any other form of the same degree, for example by Hdeg(F ),
where H is linear. This proves the second statement. QED

Exercise. Let X ⊂ P2k be a plane curve, P ∈ X be a smooth point, and
L ⊂ P2k be a line passing through P . Let div(L) be the divisor on X given
by a linear form defining L.
1. Show that the multiplicity of P in div(L) is 1 if and only if L is not

the tangent line to X at P . Solution: This question is local. Assume that
P = (0, 0) ∈ X ⊂ A2k, then X is given by 0 = ax + by+ terms of higher
degree in x and y. Since P is smooth, a and b are not both 0. To fix ideas
assume that b 6= 0. Then x is a local parameter at P . Indeed, the maximal
ideal of OP is (x, y), but modulo the equation of X we can write y as the
product of x and a rational function that is regular at P . Hence mP = (x). If
L = μx+νy, then L = (μ− a

b
ν)x+terms of degree at least 2 in x. Therefore,

if L′ is a linear form such that L′(P ) 6= 0, then valP (L/L′) = 1 if and only if
bμ− aν 6= 0, that is, when the vectors (a, b) and (μ, ν) are not proportional.
On the other hand, TX,P is given by ax+ by = 0.
2. The set of lines in P2k has a natural structure of the projective variety

P2k. Show that the map P 7→ TX,P defines a rational map f : X − − > P
2
k

(called the Gauss map). Conclude that dim(f(X)) = 1.
3. By comparing the dimensions we see that P2k \ f(X) 6= ∅. Thus there

are infinitely many lines L such that div(L) is the sum of distinct points taken
with multiplicity 1. (Recall that k is algebraically closed hence infinite.)
Therefore, deg(X) equals the maximal number of points in the intersection

X ∩L. This is also true for the curves in Pnk , where we need to replace lines
by hyperplanes. See [Shafarevich] for details. For plane curves, however, we
can also say that deg(X) equals the degree of the form by which X is defined.
Since a curve in Pnk is defined by two or more forms, this property has no
higher dimensional analogue. (Warning: two forms may not be enough to
define a curve in P3k! An example is provided by the rational normal cubic
curve, that is, the image of P1k under the map (x : y) 7→ (x

3 : x2y : xy2 : y3).)

Exercise. Let X ⊂ P2k be a plane curve, P ∈ X be a smooth point. Let
L ⊂ P2k be the tangent line to X at P . Show that the multiplicity of P in
div(L) is 2 if and only if the Hessian matrix of X at P is non-degenerate. The
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Hessian matrix of the curve given by f(x0, x1, x2) = 0 is defined as follows:

H(f) =







∂2f
∂x20

∂2f
∂x0∂x1

∂2f
∂x0∂x2

∂2f
∂x1∂x0

∂2f
∂x21

∂2f
∂x1∂x2

∂2f
∂x2∂x0

∂2f
∂x2∂x1

∂2f
∂x22







Solution (char(k) 6= 2): The question is local. Assume that P = (0, 0) ∈ X ⊂
A2k and that L is given by y = 0. Then X is given by 0 = y+ax

2+bxy+cy2+
terms of higher degree in x and y. As in the previous example one shows that
x is a local parameter at P . A direct computation shows that the Hessian
of f at P is non-degenerate if and only if a 6= 0. On the other hand, y can
be written as the product of the polynomial in one variable ax2+terms of
higher degree in x, and a rational function that is regular at P .)

We define deg(X), where X is a reducible curve, as the sum of the degrees
of components. We then extend the Bezout theorem to reducible curves X,
and get the same formula (X.F ) = deg(X)deg(F ). Note that (X.F ) is only
defined when F does not vanish identically on some component of X.
In the case of plane curves the Bezout theorem says that the number of

common points of two (possibly reducible) curves without common compo-
nents is the product of their degrees, provided we count points with correct
multiplicities. As an illustration of this we now prove Pascal’s mysterious
theorem.

Theorem 5.10 (Pascal) Let C ⊂ P2k be a conic. For any six distinct points
of C consider the hexagon with vertices in these points. Then the common
points of the three pairs of opposite lines of the hexagon are collinear.

Proof. (Plücker) Let the sides of the hexagon be l1,m2, l3,m1, l2,m3 in
this order. We denote their equations by the same letters. Then Qx =
l1l2l3 + xm1m2m3 is a cubic form that depends on the parameter x ∈ k.
We observe that for any x this cubic passes through the six vertices of the
hexagon. Let P ∈ C be a point different from these six points. Then
li(P ) 6= 0, mi(P ) 6= 0 for i = 1, 2, 3, as no line contains more than two points
of a conic. Thus we can find x ∈ k such that Qx(P ) = 0. Write Q = Qx.
Either C is a component of Q, or it isn’t. In the second case by the Bezout
theorem C ∩ Q consists of at most six points, but there are visibly seven
points in this intersection. Hence the cubic form defining Q is a product of
the quadratic form defining C and some linear form L. Let Ai = li ∩ mi,
i = 1, 2, 3. Since a line intersects a conic in at most two points, we have
Ai /∈ C. On the other hand, Ai ∈ Q, hence these points must be in L. QED
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Let X ⊂ P2k be a smooth curve of degree d given by f = 0. A point
P ∈ X is a called a flex if the tangent line TX,P intersects X in P with
multiplicity at least 3. We have seen that P is a flex of X if and only P
belongs to the closed set given by det(H(f)) = 0, called the Hessian HX of
X. It can be shown that if d ≥ 3, then the Hessian HX is a curve of degree
3(n− 2). By applying the Bezout theorem we see that every curve of degree
at least 3 has a flex, and at most 3n(n− 2) of them. (Check that X is not a
component of HX .)

We now study smooth plane cubics X ⊂ P2k in some more detail.

Exercise. (char(k) 6= 2, 3) Choose a flex P on smooth plane cubic X.
Suppose that P = (0 : 1 : 0), and TX,P has the equation z = 0. Show
that X is then given by the affine equation y2 + axy = f(x), where f(x)
is a polynomial in x of degree 3. Now show how to reduce to the equation
y2z = x3 + axz2 + bz3.

Let us consider Pic0(X) whereX is a smooth plane cubic. In the following
proposition we do not assume that k is algebraically closed.

Proposition 5.11 Let X be a smooth cubic curve in P2k with a k-point P0.
Then the map P 7→ P − P0 is a bijection from the set of k-points X(k) to
Pic0(X).

Proof. By virtue of example (e) in Subsection 3.1 X is not isomorphic
to P1k. (Note that the previous exercise shows how to reduce the equation
of X to y2z = x3 + axz2 + bz3, at least when k is algebraically closed.) By
Proposition 5.8 (i) the divisor P − P0 is never equivalent to 0 for P 6= P0.
This proves injectivity. To prove surjectivity use secants and tangents to
decrease the number of points in the support of the divisor. QED

For any smooth and projective curve X it can be proved that Pic0(X) is
isomorphic to the group of k-points on the so called Jacobian variety of X.

Further exercises: Directly prove the associativity of the group law on a
cubic curve.

5.5 Riemann–Roch theorem

Definition. Let X be a smooth projective curve, D ∈ Div(X). The space of
functions associated with D is the subset L(D) ⊂ k(X) consisting of 0 and
rational functions f such that div(f) + D ≥ 0 (that is, is 0 or an effective
divisor).

Note that any function f ∈ L(D) is regular away from the support of D.

39



Proposition 5.12 Let D be a divisor on a smooth and projective curve X.
(i) Let g ∈ k(X)∗. Then the map f 7→ f/g identifies L(D) with L(D +

div(g)).
(ii) L(D) = 0 if deg(D) < 0.
(iii) L(0) = k.
(iv) L(D) is a vector space of dimension at most deg(D) + 1.

Proof. (i) is obvious.
(ii) follows from Corollary 5.7 and the trivial observation that an effective

divisor has positive degree.
(iii) reflects the fact that div(f) = 0 implies that f is a constant function.
(iv) Let D =

∑
P nPP . Then f ∈ L(D) if and only if valP (f) ≥ −nP .

The ultrametric inequality (Proposition 4.2) shows that L(D) is closed under
addition; and L(D) is obviously closed under multiplication by constants.
Now we prove dim(L(D)) ≤ deg(D) + 1 for all D of non-negative degree

by induction on deg(D). Because of (i) we can assume that D is effective
or zero. In the last case we conclude by (ii). Now D is effective, hence
of positive degree. Suppose that the inequality is proved for all divisors of
degree at most deg(D) − 1. We can write D = nQQ +

∑
P 6=Q nPP where

nQ > 0 and nP ≥ 0. Then D′ = D − Q ≥ 0, and L(D′) ⊂ L(D). It
suffices to show that the codimension of L(D′) in L(D) is 0 or 1. Choose a
local parameter uQ at Q. Then it is immediate from the definition of L(D)
that fu

nQ
Q is regular at Q. Consider the linear form on L(D) given by the

value of fu
nQ
Q at Q. The set of zeros of this form is precisely L(D

′), hence
the codimension of this subspace is at most 1. Now we use the inductive
assumption to finish the proof. QED

Let `(D) = dim(L(D)).

Exercise. If the curve is P1k, then `(D) = deg(D)+1 if deg(D) ≥ 0, and
`(D) = 0 otherwise. To show this it is enough to assume that D = n(∞). In
this case L(D) is the space of polynomials of degree at most n in x, where x
is the coordinate on A1k = P

1
k \∞.

Exercise. If the curve X is not isomorphic to P1k, then `(D) ≤ deg(D).
Hint: combine the proof of (iv) above with Proposition 5.8 (i).

The Riemann–Roch theorem is the following formula:

`(D)− `(K −D) = deg(D)− g + 1.

Here K is the canonical class, defined as the class of the divisor of any
differential form on X, and g is the genus of X, defined as g = `(K). By
letting D = K we see that deg(K) = 2g − 2. If deg(D) > 2g − 2, then the
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degree of K − D is negative implying that `(K − D) = 0, so that in this
case we have `(D) = deg(D) − g + 1. In general, we only have Riemann’s
inequality `(D) ≥ deg(D)− g + 1.

The main reason to introduce L(D) is that this is a nice way to build
morphisms f : X → Pnk , where n = `(D) − 1. Indeed, let D be an effective
divisor on X, and let 1, f1, . . . , fn be a basis of L(D). Consider the rational
map f which sends P ∈ X to the point (1 : f1(P ) : . . . : fn(P )). It is actually
a morphism, as is any rational map from a smooth and projective curve to a
projective space.

Exercise. Let H be a hyperplane in Pnk . Show that deg(f
∗(H)) =

deg(D). In particular, if f is injective, then f(X) is a curve of degree deg(D).

It can be shown that if deg(D) > 2g, then f is an embedding, that is, f
defines an isomorphism of X with its image f(X).

5.6 From algebraic curves to error correcting codes

In this subsection k is a finite field. Recall that if p is the characteristic of
k, then k has ps elements for some s > 0. (Indeed, k contains Fp, and is a
vector space over it.)
The vector space kn is turned into a metric space with the Hamming

distance between two vectors v and v′ defined as the number of coordinates
where v and v′ differ:

|v, v′| = #{i = 1, . . . , n|vi − v
′
i 6= 0}.

Let D(v, r) be the disc of radius r with centre in v ∈ kn. A subset C ⊂ kn is
a code correcting at least r errors if the discs D(v, r) with centres in v ∈ C
are disjoint. Then one can correct up to r errors occuring in the elements of
C, called the code words. The number

dist(C) = minv,v′∈C,v 6=v′ |v, v
′|

is called the minimum distance of C. It is easy to see that C corrects r errors
if 2r + 1 ≤ dist(C).
A linear code is a vector subspace C ⊂ kn. For a linear code dist(C) is

simply the minimal number of non-zero coordinates of a code word.
The main problem of the theory of linear error-correcting codes is to

construct codes with both dist(C) and dim(C) as large as possible. (Another,
more practical task is to construct efficient coding and decoding algorithms,
but we don’t discuss this here.) There are combinatorial bounds that say that
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dist(C) and dim(C) can’t both be too big. The contribution of algebraic
geometry is an explicit construction of linear codes from algebraic curves.
These codes turn out to be very good (better than those provided by the
randomly chosen vector subspaces) when n tends to infinity, and ps is not
too small.
Let X be a smooth and projective curve over k, and let {P1, . . . , Pn}

be k-rational points of X. Choose a divisor D on X of degree at most n.
Assume for simplicity that the points Pi are not in the support of D. Then
we can evaluate any function f ∈ L(D) at the points P1, . . . , Pn since f is
regular at these points. The collection of values {f(P1), . . . , f (Pn)} is an
element of kn. This gives a linear map

ev : L(D)→ kn.

Let C = ev(L(D)).

Theorem 5.13 We have dim(C) ≥ deg(D) − g + 1 and dist(C) ≥ n −
deg(D).

Proof. We have

dim(C) = dim(L(D))− dim(L(D −
n∑

i=1

Pi)) = `(D)− `(D −
n∑

i=1

Pi).

Since deg(D) < n the second term is 0, and so the Riemann-Roch theorem
gives the first inequality. By Corollary 5.7 the degree of div(f) is 0. Hence
the degree of the divisor of zeros of f outside the support of D is at most
deg(D). In particular, a non-zero code word has at least n−deg(D) non-zero
coordinates. Thus we obtain the second inequality. QED

Exercise. Work out C in the case when X = P1k, P1, . . . , Pn, n = p
s,

are the k-points in A1k ⊂ P
1
k, and D = d∞, 0 < d < n. In this way we get

Reed–Solomon codes (much used in practice).
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A More algebra

A.1 Krull’s intersection theorem

The proof of the following general property of Noetherian rings uses primary
decomposition of ideals ([Lang], VI.5, [Reid, UCA], 7).

Lemma A.1 (Krull’s intersection theorem) Let R be a Noetherian in-
tegral domain with an ideal m. Then ∩∞i=1m

i = 0.

Proof. Let M = ∩∞i=1m
i. This is an ideal in R, and hence has a finite

basis, say, μ1, . . . , μn. It is clear that m.M ⊂M . We claim that we also have
M ⊂ m.M . Let us assume this and show how to conclude the proof. We
can write μi =

∑n
j=1 αijμj for all i = 1, . . . , n, where αij ∈ m. Let f(t) be

the characteristic polynomial of the matrix (αij). Then f(1) ∈ R annihilates
M (Hamilton–Cayley). But f(t) is monic with coefficients in m, hence f(1)
is invertible modulo m, hence f(1) 6= 0. Since R is an integral domain we
conclude that M = 0.
The proof of the claim. Here is a proof borrowed from [Van der Waerden].

We first prove that every ideal in a Noetherian ring can be represented as
the intersection of finitely many primary ideals. (An ideal I ⊂ R is called
primary if every zero divisor in R/I is nilpotent. For example, prime ideals
are primary.)
Let us call an ideal I irreducible if whenever I = J1∩J2 we have I = J1 or

I = J2. By Noetherian induction one proves that every ideal is an intersection
of finitely many irreducible ideals (the set of ideals that do not have this
property contains a maximal element). Now it suffices to show that every
irreducible ideal I is primary. [Otherwise we can find a 6∈ I, and bi 6∈ I
for all i such that ab ∈ I. Let Ji := {x ∈ R|xbi ∈ I}. The ascending
chain of ideals J1 ⊂ J2 ⊂ . . . stabilizes, say, at Jl = Jl+1. We trivially have
I ⊂ (a, I) ∩ (bl, I). Let us show that the inverse inclusion is also true. Let
x+blr be an element of this ideal, where x ∈ I. Then bx+bl+1r ∈ (ab, bI) ⊂ I,
hence bl+1r ∈ I. This means that r ∈ Jl+1 = Jl, thus blr ∈ I. Hence
x+ blr ∈ I. Now I = (a, I) ∩ (bl, I), hence I is reducible. Contradiction.]
We write m.M = I1 ∩ . . . ∩ Is, where all the Ij are primary. Then for

every j we have either ms ⊂ Ij for some s, or M ⊂ Ij. In both cases we
conclude that M ⊂ Ij. Therefore M ⊂ m.M . QED

A.2 Completion

Let R be a local ring with maximal ideal m. We have a topology on R such
that the ideals mi form a base of neighbourhoods of 0 (i.e., x ∈ R is close to
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0 is x belongs to a high power of m). Let the ring R̂ be the completion of R
with respect to this topology (defined via Cauchy sequences, as usual). Then
R̂ is also a local ring, with maximal ideal mR̂, and has the same dimension
as R.
A standard example of a complete local ring is the ring of formal power

series k[[x1, . . . , xn]]. It is regular of dimension n. The units of this ring are
the power series with non-zero constant term.

Theorem A.2 (Weierstrass preparation theorem) Let F ∈ k[[x1, . . . , xn]]
be such that the lowest non-zero homogeneous form of F contains the mono-
mial cxm1 , c 6= 0. Then F = UG, where U ∈ k[[x1, . . . , xn]]

∗ and G is a
monic polynomial in x1 of degree m over k[[x2, . . . , xn]].

It can be deduced form this result (by induction in n) that k[[x1, . . . , xn]]
is a UFD.
Note by the way that there is not much variety of complete local rings of

geometric origin. This is shown by the following result, which shall not be
used.

Theorem A.3 (Cohen structure theorem) A complete regular local ring
R of dimension n containing some field is isomorphic to k[[x1, . . . , xn]], where
k is the residue field of R.

Idea of proof of Theorem 4.4. Let P be a smooth point of a variety
X, OP the local ring of P in X, and ÔP be the completion of OP . The
canonical homomorphism OP → ÔP is injective by Theorem A.1. It is clear
that this map associates to a function its Taylor series with respect to a
system of local parameters at P , that is, n functions u1, . . . , un such that
n = dim(X) and (u1, . . . , un) is the maximal ideal of OP . This also proves
that ÔP = k[[x1, . . . , xn]]. This is a UFD. Finally, it can be deduced from
here that OP is also a UFD.

A.3 The topological space Spec(R)

Let R be a commutative ring with 1. We define the set Spec(R) as the set of
prime ideals of R. One endows Spec(R) with the topological space structure,
where a subset Z ⊂ Spec(R) is closed if there is an ideal I ⊂ R such that Z
is the set of prime ideals that contain I. This identifies Z with Spec(R/I). If
f : R1 → R2 is a ring homomorphism, then f−1(I), where I ⊂ R2 is a prime
ideal, is a prime ideal of R1.

Exercise. Prove that this gives a continuous map of topological spaces
Spec(R2)→ Spec(R1).
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Thus Spec is a functor from the category of rings and their homomor-
phisms to the category of topological spaces and their continuous maps.
Let us explore in more detail the topological space Spec(k[X1, . . . , Xn])

where k is any field.

Definition. The topological space Spec(k[X1, . . . , Xn]) is called the
affine space over k, and is denoted by Ank .

If n = 0 we obtain a one-point space Spec(k), called a k-point. Let n = 1
and k is algebraically closed. The prime ideals of k[X] (which is a principal
ideal ring) are the zero ideal (0) and the principal ideals (X − a), for a ∈ k.
The ideals (X−a) naturally correspond to the points of the usual affine line,
with finite subsets as closed sets. The ideal (0) is called the generic point of
Spec(k[X]): its closure is the whole space Spec(k[X]).
For n > 1 the situation becomes dramatically different. As for n = 1

we can consider kn as the subset of Ank corresponding to maximal ideals
(X1 − a1, . . . , Xn − an) ⊂ k[X1, . . . , Xn]. Obviously the Zariski topology of
kn is induced by the topology of Ank . When k is algebraically closed, then by
Nullstellensatz the points of Spec(k[X1, . . . , Xn]) bijectively correspond to
irreducible closed subsets of kn. Let us check when a point of Ank is closed.
Let I ⊂ k[X1, . . . , Xn] be a prime ideal. Let Z(J) be a closed set containing
the point corresponding to I, where J is an ideal. Then I contains J . Hence
the smallest closed subset corresponds to I = J , that is, Z(I) is the closure
of I. This means that only the maximal ideals correspond to closed points of
Ank , and all the other points, for example, those corresponding to principal
ideals (f(X)), are not closed! If J is not a closed point, then the closed points
of its closure correspond to maximal ideals containg J . If k is algebraically
closed than this is precisely the closed subset Z(J) ⊂ kn. The point J is
called the generic point of Z(J). For example, (0) is the generic point of Ank .

A fundamental example of a scheme is Spec(Z) (= (0) and (p), where
p is a prime number, the closure of (0) is the whole space, other closed
sets are finite unions of closed points). Note that Spec(Z) is connected.
Let us also consider Spec(Z[T ]). We have a natural continuous surjective
map Spec(Z[T ]) → Spec(Z) (sending a prime ideal I ⊂ Z[T ] to the prime
ideal I ∩ Z). There are several kinds of prime ideals in Spec(Z[T ]): 0, then
(p) and (f(T )), where p is a prime, and f(T ) is a polynomial (all these
are not closed points!), and, finally, the closed points. Every closed point
is located “over” a closed point of Spec(Z), that is, over some prime p,
and the quotient by the corresponding maximal ideal is a finite field F of
characteristic p. Such an ideal of Z[T ] can be given by (p, f(T )) for some
polynomial f(T ) ∈ Z[T ], where F = Fp[T ]/(f(T )). The closure of (p) is A1Fp
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(the “fibre” of Spec(Z[T ]) → Spec(Z) at p). The closure of (f(T )) consists
of (p, g(T )) where g(T ) ∈ Z[T ], considered modulo p, is an irreducible divisor
of f(T ).
Other instructive examples are Spec(Ok) where Ok is the ring of integers

in a number field k. The natural map Z → Ok gives rise to a surjection
Spec(Ok) → Spec(Z). The inverse image of (p) ∈ Spec(Z) consists of the
prime ideals of Ok that lie over p.
Exercise: make this explicit when k = Q(

√
−1).

Let X be a topological space. The dimension of X can be defined as the
supremum of all integers n such that there exists a chain Z0 ⊂ Z1 ⊂ . . . ⊂ Zn
of distinct closed irreducible subsets of X. Then trivially dim(Spec(R)) is
the Krull dimension of R.

B More geometry

B.1 Finite morphisms

We begin with defining finite morphisms of affine varieties.

Definition. A dominant morphism f : X → Y of affine varieties is called
finite if k[X] is integral over f ∗(k[Y ]) ' k[Y ].

Proposition B.1 Let f : X → Y be a finite morphism of affine varieties,
then
(i) for any P ∈ Y the set f−1(P ) is finite,
(ii) f is surjective.

Proofs. (i) Coordinates of points in f−1(P ), as elements of k[X], sat-
isfy monic polynomial equations, and hence for any values of (non-leading)
coefficients have only finitely many roots.
(ii) Let mP ∈ k[Y ] be the maximal ideal of P ∈ Y . Then f−1(P ) = ∅

iff 1 ∈ mPk[X], that is, mPk[X] = k[X]. But by assumption k[X] is a k[Y ]-
module of finite type, and Nakayama’s Lemma leads to contradiction. (Let
f1, . . . , fn be a basis of the k[Y ]-module k[X], then fi =

∑n
j=1mijfj for all

i = 1, . . . , n, where mij ∈ mP . Let f(t) be the characteristic polynomial of
the matrix (mij). Then f(1) ∈ k[Y ] annihilates k[X]. Since k[X] contains
1, we must have f(1) = 0. But f(t) is monic with non-leading coefficients in
mP 6= k[Y ], hence f(1) is non-zero. Contradiction.) QED

One checks that finiteness is a local property, that is, a morphism is
finite if and only if it has this property in a neighbourhood of any point
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(see [Shafarevich]). Then one uses this to define finite morphisms of quasi-
projective varieties. (Another general property of finite morphisms is that
they send closed subsets to closed subsets.)

Definition. A morphism of quasi-projective varieties f : X → Y is
called finite if every point y ∈ Y has an affine neighbourhood U such that
f−1(U) is affine, and f : f−1(U)→ U is finite.

Definition. The degree of a finite morphism f : X → Y is the degree of
the field extension k(X)/k(Y ).

Theorem B.2 A dominant morphism of smooth projective curves is finite.

Proof. See [Shafarevich], Ch. 2.

Example. The affine variety X with equation yn = f(x1, . . . , xn), where
f is a polynomial in n variables, is equipped with a morphism π : X → Ank
which forgets the coordinate y. This morphism is finite of degree n.

Now we sketch the proof of Theorem 5.6. This theorem is proved as a
corollary of Theorems A and B below. We note that by Theorem B.2 f is a
finite morphism.
Let P ∈ Y , and f−1(P ) = {Q1, . . . , Qr}. This is a finite set by Proposi-

tion B.1 (ii). The ring
Õ = ∩ri=1OQi

is called the semi-local ring of {Q1, . . . , Qr}. The first of two following theo-
rems describes the algebraic structure of the semi-local ring Õ, which is very
similar to that of a local ring. The second theorem describes the structure
of Õ as a module over the local ring OP .

Theorem A. (1) Õ is a PID.
(2) The only prime ideals of Õ are the ideals mi := mQi ∩ Õ, where mQi

is the maximal ideal of OQi.
(3) There are elements ti ∈ Õ, i = 1, . . . , r, such that valQj(ti) = δij, in

other words, ti is a local parameter at Qi, (ti) = mi, and a unit at Qj when
i 6= j. Any element of Õ can be uniquely written as uta11 . . . t

ar
r , where u ∈ Õ

∗

is a unit, and ai ≥ 0.

Theorem B. Let n be the degree of the finite morphism f , n = [k(X) :
k(Y )]. Then Õ is a free OP -module of rank n.

Proof of Theorem 5.6. By definition, if t ∈ OP is a local parameter, and
we write t = uta11 . . . t

ar
r as in Theorem A, then deg(f

∗(P )) = a1 + . . .+ ar.
By the Chinese remainder theorem the ring Õ/(t) is isomorphic to the

product of Õ/(taii ) ' OQi/(t
ai
i ). This latter ring is the ring of power series
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in ti with coefficients in k, considered modulo t
ai
i . As a vector space over k

it has dimension ai. Hence dimk(Õ/(t)) = a1 + . . .+ ar.
On the other hand, by Theorem B Õ/(t) is isomorphic to (OP/(t))n as

a OP/(t)-module. Since t is a local parameter at P , we have OP/(t) ' k,
and thus Õ/(t) is a vector space kn. By comparing dimk(Õ/(t)) computed
in two different ways we conclude that n = a1 + . . .+ ar. QED

B.2 Functoriality of Pic

Let f : X → Y be a morphism of smooth varieties. The construction of f ∗

relies on a so called “moving lemma”.

Moving lemma. Let X be a smooth variety, and x1, . . . , xn be points
on X. In every class of divisors on X there exists a divisor whose support
does not contain the points x1, . . . , xn.

The inverse image f∗(D) of a divisor D on Y such that Supp(D) 6⊂ f(X)
is defined as follows. We may assume that D is an irreducible subvariety
of codimension 1. We know that locally D is given as the zero set of a
rational function. Thus the variety Y can be covered by open affine subsets
Ui such that D∩Ui is either empty or is the set of zeros of a rational function
φi ∈ k(Y ) in Ui. It is clear that the restrictions of φi and φj to the intersection
Ui ∩ Uj differ by an invertible function. Since Supp(D) 6⊂ f(X) we observe
that φi◦f is a well defined rational function on X. Moreover, the restrictions
of φi ◦ f and φj ◦ f to f−1(Ui) ∩ f−1(Uj) differ by an invertible function.
Together these function define a divisor f ∗(D) on X:

f ∗(D) =
∑

Z⊂X, codimX(Z)=1

valZ(φi ◦ f)

Here Z ⊂ X is irreducible and of codimension 1, valZ is the valuation defined
by the local ring OZ of X at Z (recall that OZ is a DVR by Corollary 4.6),
and i is such that Z ∩ f−1(Ui) 6= ∅. It is easy to see that all such i give the
same result. [Note that the verification that this defintion does not depend
on the choice of the affine covering and the functions φi is non-trivial.]
Now by the moving lemma, we can modify D in its divisor class in Pic(Y )

such that the condition Supp(D′) 6⊂ f(X) is satisfied for some some D′ ∼ D.
Then we define f ∗([D]) as the class [f ∗(D′)]. (Note that in general this
homomorphism f ∗ : Pic(Y ) → Pic(X) is not induced by a homomorphism
Div(Y )→ Div(X)!)
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