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Abstract. Let p > 2 be prime. We prove the weight part of Serre’s conjec-

ture for rank two unitary groups for mod p representations in the unramified

case (that is, the Buzzard–Diamond–Jarvis conjecture for unitary groups), by
proving that any Serre weight which occurs is a predicted weight. Our methods

are purely local, using the theory of (ϕ, Ĝ)-modules to determine the possible
reductions of certain two-dimensional crystalline representations.

1. Introduction

Let p be a prime number. Classically, given a continous, odd, irreducible repre-
sentation r̄ : GQ → GL2(Fp), the weight part of Serre’s conjecture predicts the set
of weights k such that r̄ is isomorphic to the mod p representation r̄f,p attached to
some eigenform of weight k (and prime-to-p level). In recent years, generalisations
of the weight part of Serre’s conjecture have taken on an increasing importance, at
least in part because they can be viewed as statements about local-global compat-
ibility in a possible mod p Langlands correspondence, as we now (briefly) recall.

Let F be a number field and r̄ : GF → GLn(Fp) a representation that is modular
in a suitable sense. For simplicity, suppose that F has a single place w lying
above p; in this context a Serre weight is an isomorphism class of irreducible mod
p representations of GLn(OFw). One may hope that there exists a mod p local
Langlands correspondence that attaches to r̄|GFw a mod p representation Π of

GLn(Fw). Although our present understanding of the putative representation Π is
rather limited, one ultimately expects that r̄ should be modular of Serre weight a
if and only if a is a subrepresentation of Π|GLn(OFw ).

In this paper we establish the weight part of Serre’s conjecture for rank two
unitary groups in the case where F is unramified at p. To be precise, we prove the
following.

Theorem A (Theorem 2.13). Let F be an imaginary CM field with maximal totally
real subfield F+, and suppose that F/F+ is unramified at all finite places, that each
place of F+ above p splits in F , and that [F+ : Q] is even. Suppose p > 2, and that
r̄ : GF → GL2(Fp) is an irreducible modular representation with split ramification
such that r̄(GF (ζp)) is adequate. Assume that p is unramified in F .
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Let a be a Serre weight. Then a ∈ WBDJ(r̄) if and only if r̄ is modular of
weight a.

Here WBDJ(r̄) is the set of Serre weights in which r̄ is predicted to be modular.
We will recall the definition of WBDJ(r̄) in Section 2 below (as well as what we
mean for r̄ to be modular of weight a, and any other unfamiliar terminology in
the statement of the theorem), but for now we give some motivation and context.
Theorem A is the natural variant of the Buzzard–Diamond–Jarvis conjecture for
unitary groups; recall that the original conjecture [BDJ10] was formulated for auto-
morphic forms on indefinite quaternion algebras. Note that strictly speaking, this
is not the most general result that one could hope to prove, because of the (mild)
assumption that r̄(GF (ζp)) is adequate. In fact we prove unconditionally that if r̄

is modular of weight a, then a ∈WBDJ(r̄); see Proposition 2.11 and Theorem 2.12.
The assumption that r̄(GF (ζp)) is adequate is needed for the converse, which is
proved in [BLGG13] via automorphy lifting theorems.

To explain this in greater depth, suppose for simplicity that F+ has a single place
v above p, write the factorization of v in F as wwc, and assume now that Fw/Qp is
unramified. If r̄ is modular of weight a, then r̄ ' r̄π for some cuspidal automorphic
representation π whose infinitesimal character is determined by the weight a. In
particular, the local representation r̄|GFw has a lift rπ|GFw that is crystalline with
specific Hodge–Tate weights: to be precise, the lift rπ|GFw has Hodge type a in the
sense of Definition 2.2 below.

One plausible definition for the set of predicted weights WBDJ(r̄) (which is not
the definition that we will use, although the main result of this paper shows that
it is in fact equivalent to our definition) would be the set of Serre weights a such
that r̄|GFw has a crystalline lift of Hodge type a. (There is a natural modification
of this definition in the case where Fw/Qp is ramified.) Under this description of
the set of predicted weights, it would be essentially automatic that if r̄ is modular
of weight a then a ∈ WBDJ(r̄), and the problem would be to prove that every
predicted weight actually occurs. Significant progress towards establishing this
result was made (irrespective of any ramification conditions on F ) in [BLGG13].
In particular, [BLGG13] show that under the hypotheses of Theorem A, if r̄|GFw
has a crystalline lift of Hodge type a that furthermore is potentially diagonalisable
in the sense of [BLGGT13], then r̄ is modular of weight a.

Temporarily adopting this definition of WBDJ(r̄), our task, therefore, is to re-
move the potential diagonalisability hypothesis; or in other words, we are left with
the purely local problem of showing that if r̄|GFw has a crystalline lift of Hodge
type a, then it has a potentially diagonalisable such lift. This is a consequence of
the following theorem, which is our main local result.

Theorem B (Theorem 9.1). Suppose that p > 2 and K/Qp is a finite unramified

extension. Let ρ : GK → GL2(Zp) be a crystalline representation whose κ-labeled

Hodge–Tate weights for each embedding κ : K ↪→ Qp are {0, rκ} with rκ ∈ [1, p].
If ρ is reducible, then there exists a reducible crystalline representation ρ′ : GK →
GL2(Zp) with the same labeled Hodge–Tate weights as ρ such that ρ ' ρ′.

Before discussing the proof of Theorem B, we make a few additional comments
about the global setting of our paper, and about the actual definition of WBDJ(r̄)
with which we work.
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Remark on the definition of WBDJ(r̄). One often builds the potential diago-
nalisability hypothesis into the definition of WBDJ(r̄). In fact this is what is done
in [BLGG13], and for consistency we will adopt the same definition here. In this
optic, the results of [BLGG13] prove that if a ∈ WBDJ(r̄), then r̄ is modular of
weight a (assuming of course that r̄ is modular to begin with); but then it becomes
nontrivial to show that if r̄ is modular of weight a, then a is a predicted weight, and
that is what is done in the present paper. One advantage of this alternative defi-
nition is that it is relatively easier to make completely explicit. Such a description
of the set of Serre weights in the unramified case was made in [BDJ10], and it is
in these explicit terms that we define the set WBDJ(r̄) in Section 2 below. (In the
case that r̄ is reducible but indecomposable, the description is in terms of certain
crystalline extension classes.)

Remarks on related papers. Theorem A had previously been established in the
case of generic (or regular) weights in [Gee11], by a rather different method. In
particular, the regularity hypothesis allowed the author to avoid the difficulties that
arise when dealing with Hodge–Tate weights outside the Fontaine–Laffaille range,
i.e., the Hodge–Tate weight range [0, p−2]. The main contribution of this paper is a
method for addressing these difficulties. It is perhaps also worth emphasizing that
for many applications (for instance the work of the first author and Kisin [GK12]
on the Breuil-Mézard conjecture for potentially Barsotti-Tate representations) it is
essential that one know the weight part of Serre’s conjecture in its entirety, rather
than generically.

We also recall that our previous paper [GLS12] established the weight part of
Serre’s conjecture for unitary groups in the totally ramified case. In that paper
we used a mixture of local and global techniques to complete the proof. These
techniques relied on a combinatorial relationship between Serre weights and the
existence of potentially Barsotti–Tate lifts, which does not hold in general; in par-
ticular we were able to avoid having to prove the analogue of Theorem B in that
setting.

Finally, we remark that Theorem A is rather more general than anything that
has been proved directly for inner forms of GL2 over totally real fields, where there
is a parity obstruction due to the unit group: algebraic Hilbert modular forms
must have paritious weight, which prevents one from applying the techniques of
[BLGG13] for non-paritious mod p weights. However, there are now two proofs
(due to Newton [New13], and to Gee–Kisin [GK12]) that the weight part of Serre’s
conjecture for inner forms of GL2 is equivalent to the conjecture for unitary groups.
In combination with the results in this paper and in [BLGG13], the conjecture for
inner forms of GL2 (that is, the original Buzzard–Diamond–Jarvis conjecture) has
thus been established, under a mild Taylor–Wiles hypothesis on the image of the
global representation.

Discussion of our approach to proving Theorem B. In the special case that
the Hodge–Tate weights rκ are all contained in the interval [1, p − 2], Theorem B
follows easily from Fontaine–Laffaille theory. However, Fontaine–Laffaille theory
cannot be extended to the required range, and so new methods are required.

Perhaps the most direct approach to Theorem B would be to write down all
the filtered ϕ-modules corresponding to crystalline representations ρ of the sort
considered in the theorem, and attempt to compute each ρ explicitly, for instance
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using the theory of (φ,Γ)-modules and Wach modules. Some partial results to-
wards Theorem B have been obtained by other authors working along these lines
(cf. [CD11], [Dou10], [Zhu08]; the results of [CD11] are limited primarily to the
case that [K : Qp] = 2, whereas the other two references consider only semisimple ρ
and restricted classes of representations). However, the general case has so far been
resistant to these methods.

Instead, our idea is to proceed indirectly, by characterising the mod p represen-
tations ρ that arise in Theorem B without actually computing the reduction mod
p of any specific ρ. The key technical innovation in our paper is that it is possi-
ble to carry out such an approach using the theory of (ϕ, Ĝ)-modules introduced in

[Liu10b]. In particular, we are able to prove a structure theorem for (ϕ, Ĝ)-modules
attached to crystalline Galois representations of arbitrary dimension with Hodge–
Tate weights in [0, p] (Theorem 4.1); this result is best possible, in the sense that it
does not extend to any wider Hodge–Tate weight range. We expect this structure
theorem to be of broader interest. For instance, it can be used to study the possi-
ble reductions mod p of n-dimensional crystalline representations with Hodge–Tate
weights in the range [0, p]; we hope to report on this in a future paper.

The proof of the structure theorem is rather delicate and relies on a close study
of the monodromy operator; the result does not extend to a wider range of Hodge–
Tate weights, nor do we know how to extend it to the ramified case.

Now assume that ρ is as in Theorem B. We use our structure theorem and an
elementary argument to determine the list of possible subcharacters of ρ (Corollary
7.11). This essentially completes the proof in the completely decomposable case,
but in the indecomposable case we need to show that we have a lift of ρ to a partic-
ular crystalline extension of characters. To do this, we begin by making a careful
study of the possible extensions of rank one Kisin modules. We then examine the
possibility of extending these Kisin modules to (ϕ, Ĝ)-modules, and show that in
most cases such an extension is unique. Together with some combinatorial argu-
ments, this enables us to show that all of the Galois representations resulting from
these (ϕ, Ĝ)-modules have reducible crystalline lifts with the desired Hodge–Tate
weights, completing the proof of Theorem B. Finally, note that Theorem B ad-
dresses only the case where ρ is reducible; we conclude by deducing the irreducible
case of Theorem A from the reducible one, using the fact that an irreducible ρ
becomes reducible after restriction to an unramified quadratic extension, together
with another combinatorial argument.

It is natural to ask whether our methods could be extended to handle the general
case, where Fw/Qp is an arbitrary extension. Unfortunately we do not know how
to do this, because the proof of the key Theorem 4.1 relies on the assumption that
the base field is unramified.

Outline of the paper. In Section 2 we recall some material from [BLGG13], and
in particular explain the precise local results that we will need to prove in the
remainder of the paper. The next three sections are concerned with the general
theory of Kisin modules and (ϕ, Ĝ)-modules attached to crystalline representations.
In Section 3 we review what we will need of the theory of Kisin modules from [Kis06].
In Section 4, which is the technical heart of the paper, we prove our structure
theorem for the (ϕ, Ĝ)-modules attached to crystalline Galois representations (of
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arbitrary dimension) with Hodge–Tate weights in [0, p]. Section 5 proves a variety of

foundational results on the (ϕ, Ĝ)-modules associated to crystalline representations.
With our technical foundations established, we then begin the proofs of Theo-

rems A and B. Section 6 contains basic results about rank one Kisin modules and
(ϕ, Ĝ)-modules. In Section 7 a detailed study of the possible extensions of rank
one torsion Kisin modules is carried out; crucially, thanks to our work in Section 4
we are able to specialize these results for Kisin modules coming from the reduction
mod p of crystalline representations with Hodge–Tate weights in [0, p]. This work

is extended to the case of (ϕ, Ĝ)-modules in Section 8. Finally, we deduce our main
results in Sections 9 and 10.

1.1. Acknowledgments. We would like to thank Brian Conrad, Fred Diamond,
Matthew Emerton, Jean-Marc Fontaine, and Mark Kisin for helpful conversations,
and Matthew Emerton and Florian Herzig for their comments on an early draft of
this manuscript. We are grateful to the anonymous referees for their comments,
which have improved the exposition of this paper. D.S. would like to thank the
mathematics department of Northwestern University for its hospitality during a
sabbatical year.

1.2. Notation and conventions.

1.2.1. Galois theory. If M is a field, we let GM denote its absolute Galois group.
If M is a global field and v is a place of M , let Mv denote the completion of M at v.
If M is a finite extension of Q` for some `, we let M0 denote the maximal unramified
extension of Q` contained in M , and we write IM for the inertia subgroup of GM .
If R is a local ring we write mR for the maximal ideal of R.

Let p be a prime number. Let K be a finite extension of Qp, with ring of integers
OK and residue field k. Fix a uniformiser π of K, let E(u) denote the minimal
polynomial of π over K0, and set e = degE(u). We also fix an algebraic closure K
of K. The ring of Witt vectors W (k) is the ring of integers in K0.

Our representations of GK will have coefficients in Qp, another fixed algebraic

closure of Qp, whose residue field we denote Fp. Let E be a finite extension of Qp
contained in Qp and containing the image of every embedding of K into Qp; let OE
be the ring of integers in E, with uniformiser $ and residue field kE ⊂ Fp.

We write ArtK : K× → W ab
K for the isomorphism of local class field theory,

normalised so that uniformisers correspond to geometric Frobenius elements. For
each σ ∈ Hom(k,Fp) we define the fundamental character ωσ corresponding to σ
to be the composite

IK // W ab
K

Art−1
K // O×K // k×

σ // F×p .

In the case that k ' Fp, we will sometimes write ω for ωσ. Note that in this case we

have ω[K:Qp] = ε; here ε denotes the p-adic cyclotomic character, and ε̄ the mod p
cyclotomic character.

We fix a compatible system of pnth roots of π: that is, we set π0 = π and for all
n > 0 we fix a choice of πn satisfying πpn = πn−1. Similarly fix a compatible system
of primitive pnth roots of unity ζpn . Define the following fields:

K∞ =

∞⋃
n=0

K(πn), Kp∞ =

∞⋃
n=1

K(ζpn), K̂ =

∞⋃
n=1

K∞(ζpn).
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Note that K̂ is the Galois closure of K∞ over K. Write G∞ = Gal(K/K∞),

Ĝp∞ := Gal(K̂/Kp∞), Ĝ = Gal(K̂/K), and HK := Gal(K̂/K∞).

If p > 2 then Ĝ ' Ĝp∞ oHK and Ĝp∞ ' Zp(1) (see e.g. [Liu08, Lem. 5.1.2] for

a proof), and so we can (and do) fix a topological generator τ ∈ Ĝp∞ . In that case,
we take our choice of ζpn to be τ(πn)/πn for all n.

1.2.2. Hodge–Tate weights. If W is a de Rham representation of GK over Qp and

κ is an embedding K ↪→ Qp then the multiset HTκ(W ) of Hodge–Tate weights of
W with respect to κ is defined to contain the integer i with multiplicity

dimQp(W ⊗κ,K K̂(−i))GK ,

with the usual notation for Tate twists. (Here K̂ is the completion of K.) Thus for
example HTκ(ε) = {1}. We will refer to the elements of HTκ(W ) as the “κ-labeled
Hodge–Tate weights of W”, or simply as the “κ-Hodge–Tate weights of W”.

1.2.3. p-adic period rings. Define S = W (k)JuK. The ring S is equipped with a
Frobenius endomorphism ϕ via u 7→ up along with the natural Frobenius on W (k).

We denote by S the p-adic completion of the divided power envelope of W (k)[u]
with respect to the ideal generated by E(u). Let Filr S be the closure in S of
the ideal generated by E(u)i/i! for i ≥ r. Write SK0 = S[1/p] and Filr SK0 =
(Filr S)[1/p]. There is a unique Frobenius map ϕ : S → S which extends the Frobe-
nius on S. We write NS for the K0-linear derivation on SK0

such that NS(u) = −u.
Let R = lim←−OK/p where the transition maps are the pth power map. The ring

R is a valuation ring with valuation defined by vR((xn)n≥0) = limn→∞ pnvp(xn),

where vp(p) = 1; the residue field of R is k, the residue field of K.
By the universal property of the Witt vectors W (R) of R, there is a unique sur-

jective projection map θ : W (R)→ ÔK to the p-adic completion of OK which lifts
the projection R → OK/p onto the first factor in the inverse limit. We denote by
Acris the p-adic completion of the divided power envelope of W (R) with respect to
ker(θ). Write π = (πn)n≥0 ∈ R and let [π] ∈ W (R) be the Teichmüller representa-
tive. We embed the W (k)-algebra W (k)[u] into W (R) ⊂ Acris by the map u 7→ [π].
This embedding extends to embeddings S ↪→ S ↪→ Acris which are compatible with
Frobenius endomorphisms. As usual, we write B+

cris = Acris[1/p]. As a subring of
Acris, the ring S is not stable under the action of G; however, S is the subring of
G∞-invariants in Acris (see [Bre97, §4]).

Let OE denote the p-adic completion of S[ 1u ], a discrete valuation ring with
residue field k((u)). Write E for the field of fractions of OE . The inclusion S ↪→
W (R) extends to an inclusion OE ↪→W (FrR), and thus to E ↪→W (FrR)[1/p]. We
let Eur denote the maximal unramified extension of E in W (FrR)[1/p], with ring of

integers Our. Write Êur for the p-adic completion of Eur, with ring of integers Ôur.

Write Sur = Ôur ∩W (R) ⊂W (FrR).
Set ε := (ζpi)i≥0 ∈ R and t = − log([ε]) ∈ Acris. For any g ∈ GK , write

ε(g) = g(π)/π, which is a cocycle from GK to R×. Note that ε(τ) = ε.
By [Liu07b, Ex. 5.3.3] (see also the discussion before Theorem 3.2.2 of ibid.)

there exists an element t ∈ W (R) such that t = cϕ(t) with c ∈ S×. It is shown
in the course of the proof of [Liu10b, Lem 3.2.2] that the image of t in R has
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valuation 1
p−1 . Following [Fon94, §5] we define

I [m]B+
cris = {x ∈ B+

cris : ϕn(x) ∈ FilmB+
cris for all n > 0}.

(See [Fon94, §5] for the definition of the filtration on B+
cris.) For any subring A ⊂

B+
cris write I [m]A = A ∩ I [m]B+

cris. By [Fon94, Prop 5.1.3] the ideal I [m]W (R) is
principal, generated by ϕ(t)m.

2. Serre weight conjectures

In this section we explain the definition of the sets of weights WBDJ(r̄), and recall
some results from [BLGG13]. We refer the reader to Section 4 of [BLGG13] for a
detailed discussion of these definitions and their relationship with other definitions
in the literature.

2.1. Local definitions. Let K be a finite unramified extension of Qp of degree f

with residue field k, and let ρ : GK → GL2(Fp) be a continuous representation.

Definition 2.1. A Serre weight is an isomorphism class of irreducible represen-
tations of GL2(k) over Fp. Up to isomorphism, any such representation is of the
form

Fa := ⊗σ : k↪→Fp det aσ,2 ⊗ Symaσ,1−aσ,2 k2 ⊗σ,k Fp
where 0 ≤ aσ,1− aσ,2 ≤ p− 1 for each σ. We recall that Fa ' Fb as representations
of GL2(k) if and only if we have aσ,1−aσ,2 = bσ,1− bσ,2 for all σ, and the character

k× → F×p , x 7→
∏
σ : k↪→Fp σ(x)aσ,2−bσ,2 is trivial.

Write Z2
+ for the set of pairs of integers (n1, n2) with n1 ≥ n2. We also use

the term Serre weight to refer to tuples a = (aσ,1, aσ,2)σ ∈ (Z2
+)Hom(k,Fp) with

the property that aσ,1 − aσ,2 ≤ p − 1 for all σ ∈ Hom(k,Fp), and we identify the

Serre weight a ∈ (Z2
+)Hom(k,Fp) with the Serre weight represented by Fa. (Note

that a Serre weight in the latter sense will be represented by infinitely many Serre
weights in the former sense.) Since there is a natural bijection between Hom(k,Fp)
and HomQp(K,Qp), we will feel free to regard a Serre weight as an element of

(Z2
+)HomQp (K,Qp). (In the terminology of [BLGG13] we are regarding the Serre

weight as a lift of itself; as such lifts are unique in the unramified case, we choose
not to use this terminology in this paper.)

Definition 2.2. Let K/Qp be a finite extension, let λ ∈ (Z2
+)HomQp (K,Qp), and let

ρ : GK → GL2(Qp) be a de Rham representation. Then we say that ρ has Hodge

type λ if for each κ ∈ HomQp(K,Qp) we have HTκ(ρ) = {λκ,1 + 1, λκ,2}.

Following [BDJ10] (as explained in [BLGG13, §4]), we define an explicit set of
Serre weights WBDJ(ρ).

Definition 2.3. If ρ is reducible, then a Serre weight a ∈ (Z2
+)Hom(k,Fp) is in

WBDJ(ρ) if and only if ρ has a crystalline lift of the form(
χ1 ∗
0 χ2

)
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which has Hodge type a. In particular, if a ∈ WBDJ(ρ) then by [GS11, Lem. 6.2]
(or by Lemma 6.3 and Proposition 6.7 below) it is necessarily the case that there
is a decomposition Hom(k,Fp) = J

∐
Jc such that

ρ|IK '

(∏
σ∈J ω

aσ,1+1
σ

∏
σ∈Jc ω

aσ,2
σ ∗

0
∏
σ∈Jc ω

aσ,1+1
σ

∏
σ∈J ω

aσ,2
σ

)
.

Let K2 denote the quadratic unramified extension of K inside K, with residue
field k2.

Definition 2.4. If ρ is irreducible, then a Serre weight a ∈ (Z2
+)Hom(k,Fp) is in

WBDJ(ρ) if and only if there is a subset J ⊂ Hom(k2,Fp) containing exactly one

element extending each element of Hom(k,Fp), such that if we write Hom(k2,Fp) =
J
∐
Jc, then

ρ|IK '

(∏
σ∈J ω

aσ,1+1
σ

∏
σ∈Jc ω

aσ,2
σ 0

0
∏
σ∈Jc ω

aσ,1+1
σ

∏
σ∈J ω

aσ,2
σ

)
.

We remark that by [BLGG13, Lem. 4.1.19], if a ∈WBDJ(ρ) and ρ is irreducible
then ρ necessarily has a crystalline lift of Hodge type a.

It is worth stressing that in all cases, if a ∈ (Z2
+)Hom(k,Fp) is a Serre weight, then

whether or not a ∈WBDJ(ρ) depends only on the representation Fa; this can be seen
by twisting by suitable crystalline characters. It is also worth remarking again (cf.
the discussion in the introduction) that there are other definitions one could make
of a set of conjectural weights. For example, one could define the set of conjectural
weights for ρ to be the set of weights a for which ρ has a crystalline lift of Hodge
type a; this would be the most natural definition from the perspective of local-
global compatibility, cf. Proposition 2.11, which shows that any set of conjectural
weights should be contained in this set. We choose our definition of WBDJ(ρ) in
order to be consistent with [BLGG13]; ultimately, it follows from the results of this
paper that these two definitions are equivalent.

2.2. Global definitions. The point of the local definitions above is to allow us to
formulate global Serre weight conjectures. Following [BLGG13], we work with rank
two unitary groups which are compact at infinity. As we will not need to make any
arguments that depend on the particular definitions made in [BLGG13], and our
methods are purely local, we simply recall some notation and basic properties of
the definitions, referring the reader to [BLGG13] for precise formulations.

We emphasise that our conventions for Hodge–Tate weights are the opposite of
those of [BLGG13]; for this reason, we must introduce a dual into the definitions.

Fix an imaginary CM field F in which p is unramified, and let F+ be its maximal
totally real subfield. We define a global notion of Serre weight by taking a product
of local Serre weights in the following way.

For each place w|p of F , let kw denote the residue field of Fw. If w lies over a place
v of F+, write v = wwc. Write S :=

∐
w|p Hom(kw,Fp), and let (Z2

+)S0 denote the

subset of (Z2
+)S consisting of elements a such that for each w|p, if σ ∈ Hom(kw,Fp)

then
aσ,1 + aσc,2 = 0.

If a ∈ (Z2
+)S and w|p is a place of F , then let aw denote the element (aσ)σ∈Hom(kw,Fp)

of (Z2
+)Hom(kw,Fp).
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Definition 2.5. We say that an element a ∈ (Z2
+)S0 is a Serre weight if for each

w|p and σ ∈ Hom(kw,Fp) we have

p− 1 ≥ aσ,1 − aσ,2.

Let r̄ : GF → GL2(Fp) be a continuous irreducible representation. We refer the
reader to [BLGG13, Def. 2.1.9] for an explanation of what it means for r̄ to be
modular, and more precisely for r̄ to be modular of some Serre weight a; roughly
speaking, r̄ is modular of weight a if there is a cohomology class on some unitary
group with coefficients in a certain local system corresponding to a whose Hecke
eigenvalues are determined by the characteristic polynomials of r̄ at Frobenius
elements. Since our conventions for Hodge–Tate weights are the opposite of those
of [BLGG13], we make the following definition.

Definition 2.6. Suppose that r̄ : GF → GL2(Fp) is a continuous irreducible mod-
ular representation. Then we say that r̄ is modular of weight a ∈ (Z2

+)S0 if r̄∨ is
modular of weight a in the sense of [BLGG13, Def. 2.1.9].

We remark that if r̄ is modular then r̄c ' r̄∨ ⊗ ε. We globalise the definition of
the set WBDJ(ρ) in the following natural fashion.

Definition 2.7. If r̄ : GF → GL2(Fp) is a continuous representation, then we define
WBDJ(r̄) to be the set of Serre weights a ∈ (Z2

+)S0 such that for each place w|p the

corresponding Serre weight aw ∈ (Z2
+)Hom(kw,Fp) is an element of WBDJ(r̄|GFw ).

One then has the following conjecture.

Conjecture 2.8. Suppose that r̄ : GF → GL2(Fp) is a continuous irreducible mod-
ular representation, and that a ∈ (Z2

+)S0 is a Serre weight. Then r̄ is modular of

weight a if and only if a ∈WBDJ(r̄).

If r̄ : GF → GL2(Fp) is a continuous representation, then we say that r̄ has split
ramification if any finite place of F at which r̄ is ramified is split over F+. For the
remainder of this section, we place ourselves in the following situation.

Hypothesis 2.9. Let F be an imaginary CM field with maximal totally real sub-
field F+, and let r̄ : GF → GL2(Fp) be a continuous representation. Assume that:

• p > 2,
• [F+ : Q] is even,
• F/F+ is unramified at all finite places,
• p is unramified in F ,
• each place of F+ above p splits in F , and
• r̄ is an irreducible modular representation with split ramification.

The following result is [BLGG13, Thm. 5.1.3], one of the main theorems of that
paper, specialised to the case of interest to us where p is unramified in F . (Note
that in [BLGG13], the set of Serre weights WBDJ(r̄) is often denoted W explicit(r̄).
Note also that the assumption that p is unramified in F implies that ζp 6∈ F .)

Theorem 2.10. Suppose that Hypothesis 2.9 holds. Suppose further that r̄(GF (ζp))

is adequate. Let a ∈ (Z2
+)S0 be a Serre weight. Assume that a ∈ WBDJ(r̄). Then r̄

is modular of weight a.
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Here adequacy is a group-theoretic condition, introduced in [Tho12]. For sub-
groups of GL2(Fp) with p > 5, adequacy is equivalent to the usual condition that
the action is irreducible; for p = 3 it is equivalent to irreducibility and the re-
quirement that the projective image is not conjugate to PSL2(F3), and for p = 5
it is equivalent to irreducibility and the requirement that the projective image is
not conjugate to PSL2(F5) or PGL2(F5). (See [BLGG13, Prop. A.2.1].) We also
remark that the hypotheses that F/F+ is unramified at all finite places, that every
place of F+ dividing p splits in F , and that [F+ : Q] is even, are in fact part of the
definition of “modular” made in [BLGG13].

Theorem 2.10 establishes one direction of Conjecture 2.8, and we are left with
the problem of “elimination,” i.e., the problem of proving that if r̄ is modular of
weight a, then a ∈WBDJ(r̄). The following is [BLGG13, Cor. 4.1.8].

Proposition 2.11. Suppose that Hypothesis 2.9 holds. Let a ∈ (Z2
+)S0 be a Serre

weight. If r̄ is modular of weight a, then for each place w|p of F , there is a crys-
talline representation ρw : GFw → GL2(Qp) lifting r̄|GFw , such that ρw has Hodge
type aw.

We stress that Proposition 2.11 does not already complete the proof of Conjec-
ture 2.8, because the representation ρw may for example be irreducible when ρw
is reducible (compare with Definition 2.3). However, in light of this result, it is
natural to conjecture that the following result holds.

Theorem 2.12. Let K/Qp be a finite unramified extension, and let ρ : GK →
GL2(Fp) be a continuous representation. Let a ∈ (Z2

+)Hom(k,Qp) be a Serre weight,

and suppose that there is a crystalline representation ρ : GK → GL2(Qp) lifting ρ,

such that ρ has Hodge type a. Then a ∈WBDJ(ρ).

Theorem 2.12 is the main local result of this paper, and the remainder of the
paper is concerned with its proof. In the case that ρ is irreducible, this is Theorem
10.1 below; and in the reducible case it follows immediately from Theorem 9.1.
Our methods are purely local. We have the following global consequence, which
essentially resolves Conjecture 2.8.

Theorem 2.13. Suppose that Hypothesis 2.9 holds. Suppose further that r̄(GF (ζp))

is adequate. Let a ∈ (Z2
+)S0 be a Serre weight. Then r̄ is modular of weight a if and

only if a ∈WBDJ(r̄).

Proof. This is an immediate consequence of Theorem 2.10, Proposition 2.11, and
Theorem 2.12. �

3. Kisin modules with coefficients

We begin to work towards the proof of Theorem 2.12 by recalling some facts
about the theory of Kisin modules (or Breuil–Kisin modules) as initiated by [Bre00,
Bre98] and developed in [Kis06], and giving some (essentially formal) extensions of
these results in order to allow for nontrivial coefficients. Throughout this section
we allow K to be an arbitrary finite extension of Qp, and recall that e = e(K/Qp)
is the ramification index of K. Recall also that our coefficient field E is a finite
extension of Qp contained in Qp and containing the image of every embedding of

K into Qp.
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Definition 3.1. A ϕ-module over S is an S-module M equipped with a ϕ-semi-
linear map ϕM : M → M. The subscript on ϕM will generally be omitted. A
morphism between two ϕ-modules (M1, ϕ1) and (M2, ϕ2) is an S-linear morphism
compatible with the maps ϕi. The map 1 ⊗ ϕ : S ⊗ϕ,S M → M is S-linear, and
we say that (M, ϕ) has height r if the cokernel of 1⊗ ϕ is killed by E(u)r; we say
that (M, ϕ) has finite height if it has height r for some r ≥ 0.

Denote by ′Modϕ,rS the category of ϕ-modules of height r. By definition, a
finite free Kisin module (of height r) is a ϕ-module (of height r) M such that the
underlying S-module is finite free. A torsion Kisin module M is a ϕ-module of
height r which is killed by pn for some n ≥ 0, and such that the natural map
M → M[ 1u ] is injective. By [Liu07b, Prop 2.3.2], this is equivalent to asking that
M can be written as the quotient of two finite free Kisin modules of equal S-rank.

Throughout this article, a Kisin module M is either a finite free Kisin module
or a torsion Kisin module, of some height r. We denote by Modϕ,rS the category of
finite free Kisin modules, and Modϕ,rS,tor the category of torsion Kisin modules.

Define contravariant functors TS from Modϕ,rS and Modϕ,rS,tor to the category

RepZp(G∞) of Zp[G∞]-modules as follows:

TS(M) := HomS,ϕ(M,W (R)) if M is a finite free Kisin module

and

TS(M) := HomS,ϕ(M,Qp/Zp ⊗Zp W (R)) if M is a torsion Kisin module.

These definitions are slightly different from the ones that are sometimes given (e.g.
[Kis06, Lem. 2.1.2, Cor. 2.1.4]), but in fact the various definitions are equivalent by
[Fon90, Prop. B.1.8.3]. We summarize some important properties of the functor TS.

Theorem 3.2. ([Kis06, Liu08])

(1) The functor TS from Modϕ,rS to RepZp(G∞) is exact and fully faithful.

(2) For any M ∈ Modϕ,rS of rank d, the functor TS restricts to a bijective
equivalence of categories between the set of ϕ-stable S-submodules N ⊂
E ⊗S M of finite height and rank d, and the set of G∞-stable finite free
Zp-sublattices of V = TS(M)[1/p].

(3) If V is a semi-stable representation of GK with non-negative Hodge–Tate
weights in some range [0, r], and L ⊂ V is a GK-stable Zp-lattice, there
exists M ∈ Modϕ,rS such that TS(M) ' L|G∞ .

(4) With notation as in (3), if D is the filtered (ϕ,N)-module corresponding to
the representation V , then there is a canonical isomorphism

SK0
⊗ϕ,S M ∼= SK0

⊗K0
D

compatible with ϕ and filtrations, as well as with the monodromy operator
(whose definition on the left-hand side we will not discuss).

Proof. Exactness in (1) is [Kis06, Lem. (2.1.2), Cor. (2.1.4)], while full faith-
fulness is [Kis06, Prop. (2.1.12)] or [Liu07b, Cor. 4.2.6]. Part (2) follows from
[Kis06, Lem. (2.1.15)] together with the full faithfulness of (1). Part (3) is [Kis06,
Cor. (1.3.15), Lem. (2.1.15)]. Finally, part (4) is [Liu08, Cor. 3.2.3]. �

Definition 3.3. With notation as in Theorem 3.2(3), we say that M is the Kisin
module attached to the lattice L; by Theorem 3.2(1) this is well-defined up to
isomorphism.
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Let A be a finite commutative Zp-algebra, by which we mean a commutative
Zp-algebra that is finitely generated as a Zp-module. We say M has a natural A-
action (or A-coefficients) if M is an A-module such that the A-action commutes
with the S-action and ϕ-action on M, and such that the Zp-module structures on
M arising from Zp ⊂ S and Zp → A are the same. If M has a natural A-action
then it is easy to see that TS(M) is an A[G∞]-module.

Proposition 3.4. Let A be a finite commutative Zp-algebra.

(1) Suppose V is a semi-stable representation of GK with non-negative Hodge–
Tate weights and L ⊂ V is a GK-stable Zp-lattice. If L is an A-module
such that the A-action commutes with the action of GK , then the Kisin
module attached to M has a natural A-action.

(2) If L1, L2 are lattices with A-action as in (1) and f : L1 → L2 is an A[G∞]-
module homomorphism, then the map g : M2 → M1 such that TS(g) = f
is a morphism of Kisin modules with natural A-action.

(3) If M ∈ Modϕ,rS has a natural OE-action, then M is free as a S ⊗Zp OE-
module. Furthermore there is a natural isomorphism of Zp[G∞]-modules

TS(M) = Homϕ,S(M,Sur) ' Homϕ,S⊗ZpOE (M,Sur ⊗Zp OE).

Proof. The existence of the natural A-action on M in (1) follows from the equiva-
lence of categories in Theorem 3.2(2), and then the full faithfulness of TS gives (2).
The first part of (3) follows from the fact that S⊗Zp OE is a semilocal ring whose
maximal ideals are permuted transitively by ϕ together with the injectivity of the
map (1⊗ ϕ) : S⊗ϕ,S M→M. See [Kis09, Lemma (1.2.2)] for details.

The remainder of the proof concerns the last part of (3). The argument that
we give is motivated by the proof of [Kis08, Lem. (1.4.1)]. Fix once and for all an
isomorphism η : OE ' O∨E := HomZp(OE ,Zp) of OE-modules; our natural isomor-
phism will depend on this choice. Write SOE := S⊗Zp OE , Sur

OE := Sur ⊗Zp OE ,
and OE,E := OE ⊗Zp OE . Further define

M = OE ⊗S M, ϕ∗M = OE ⊗ϕ,OE M ' OE,E ⊗ϕ,OE,E M

and

M∨ = HomOE (M,OE), M∨E = HomOE,E (M,OE,E).

Define a ϕ-action onM∨E as follows. For any f ∈M∨E , let f∗ ∈ HomOE,E (ϕ∗M,OE,E)
be the map sending the basic tensor a ⊗ m to aϕ(f(m)). Note that ϕ∗ = 1 ⊗
ϕ : ϕ∗M → M is an OE,E-linear bijection, since E(u) ∈ O×E . Then we can define
ϕ(f) = f∗ ◦ (ϕ∗)−1.

It is routine to check that ϕ on M∨E is a ϕ-semi-linear map and that ϕ(f) ◦ ϕ =
ϕ ◦ f . (In particular, beware that ϕ(f) 6= ϕ ◦ f .) Similarly, we have a ϕ-action on
M∨ that also satisfies ϕ(f) ◦ ϕ = ϕ ◦ f .

Extend our fixed isomorphism η to isomorphisms ηE : OE,E ' OE ⊗Zp O∨E and
η∗ : HomOE,E (M,OE,E) ' HomOE,E (M,OE ⊗Zp O∨E) of OE,E-modules. If g =∑
i xi ⊗ λi ∈ OE ⊗Zp O∨E , we write θ(g) =

∑
i xiλi(1) ∈ OE . Now we can con-

struct a map ι : M∨E →M∨ as follows: for each f ∈M∨E we set

ι(f)(m) = θ(η∗(f)(m))

for all m ∈ M. Equivalently, ι(f) = θ ◦ ηE ◦ f . It is easy to see that ι(f) is
OE -linear. We claim that ι is an isomorphism of OE,E-modules, compatible with
ϕ-actions. To see the former, it suffices to assume that M = OE,E because M
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is a finite free OE,E-module. Identifying OE ' HomOE (OE ,OE) identifies η with
an isomorphism HomOE (OE ,OE) ' HomZp(OE ,Zp) sending a to θ ◦ η ◦ a (where
θ again denotes evaluation at 1), and so the special case M = OE,E follows by
tensoring this isomorphism with OE over Zp. Checking that ι is ϕ-compatible boils
down to checking that ι(f)∗ = θ ◦ηE ◦ f∗, which follows directly from the definition
since ϕ commutes with θ and ηE .

Set Ôur
E := Ôur ⊗Zp OE . We claim that the injection Homϕ,SOE

(M,Sur
OE ) ↪→

Homϕ,OE,E (M, Ôur
E ) is a bijection. To see this, first observe that the OE-linear map

(3.5) Homϕ,S(M,Sur
OE ) ↪→ Homϕ,OE (M, Ôur

E )

is a bijection: if g is an element of the right-hand side, then the image of g(M)

under any Ôur-linear projection Ôur
E → Ôur must lie in Sur by [Fon90, Proposition

B 1.8.3], hence g(M) ⊂ Sur
OE . Then the claim follows by taking OE-invariants on

both sides of (3.5). Similarly, we have Homϕ,S(M,Sur) = Homϕ,OE (M, Ôur).

Since M∨E is finite OE,E-free, we have a canonical isomorphism Ôur
E ⊗OE,E M∨E '

HomOE,E (M, Ôur
E ) sending

∑
i ai ⊗ fi 7→

∑
i aifi. We will now check that this

isomorphism identifies (Ôur
E ⊗OE,E M∨E)ϕ=1 with Homϕ,OE,E (M, Ôur

E ). The element

λ =
∑
i ai ⊗ fi ∈ Ôur

E ⊗OE,E M∨E is ϕ-invariant if and only if∑
i

ϕ(ai)⊗ ϕ(fi) =
∑
i

ai ⊗ fi,

and this is equivalent to the identity
∑
i ϕ(ai)(ϕ(fi))(ϕ(x)) =

∑
i aifi(ϕ(x)) for

all x ∈ M ; it suffices to test equality on elements of the form ϕ(x) since ϕ(M)
spans M . Recalling that ϕ(f) ◦ ϕ = ϕ ◦ f , we see that λ is ϕ-invariant if and only
if
∑
i ϕ(ai)ϕ(fi(x)) =

∑
i aifi(ϕ(x)); but this is precisely the condition that f =∑

i aifi is in Homϕ,OE,E (M, Ôur
E ), as desired. Similarly, we obtain an identification

of (Ôur ⊗OE M∨)ϕ=1 with Homϕ,OE (M, Ôur) as OE-modules.
From what we have proved above, it suffices to show that there is a natural iso-

morphism (Ôur
E ⊗OE,EM∨E)ϕ=1 ' (Ôur⊗OEM∨)ϕ=1 of OE [G∞]-modules. But since

we have constructed a natural OE,E-module isomorphism ι : M∨E 'M∨ compatible
with ϕ, we see that

M∨E ⊗OE,E Ôur
E 'M

∨ ⊗OE,E Ôur
E 'M

∨ ⊗OE,E (OE,E ⊗OE Ôur) 'M∨ ⊗OE Ôur

and the result follows. �

Remark 3.6. We stress that because of the choice of isomorphism η : OE ' O∨E , the
isomorphism of Proposition 3.4(3) is natural but not canonical. In fact the functor
TS,OE : M Homϕ,S⊗ZpOE (M,Sur⊗ZpOE) is in some sense the correct version of
TS for use with coefficients; for instance it is evidently compatible with extension
of the coefficient field, whereas TS is not. It will be convenient for us to use TS
for the most part, e.g. so that we can directly apply results from certain references.
Thanks to Proposition 3.4(3), on the occasions when we need to calculate TS we
can use TS,OE instead (see e.g. Lemmas 6.3 and 6.4).
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4. The shape of Kisin modules with Hodge–Tate weights in [0, p]

Let T be a GK-stable Zp-lattice in a semi-stable representation V of dimension d
with Hodge–Tate weights in [0, r], and M the Kisin module attached to T . Write
0 ≤ r1 ≤ · · · ≤ rd ≤ r for the Hodge–Tate weights of V .

We will write [x1, . . . , xd] for the d × d diagonal matrix with diagonal entries
x1, . . . , xd. The aim of this section is to prove the following:

Theorem 4.1. Assume that K is unramified, V is crystalline, r ≤ p, and p ≥ 3.
Then there exists an S-basis e1, . . . , ed of M such that the matrix of ϕ is XΛY
where X and Y are invertible matrices such that Y is congruent to the identity
matrix modulo p, and where Λ is the matrix [E(u)r1 , . . . , E(u)rd ].

We proceed in several (progressively less general) steps.

4.1. General properties of the Hodge filtration. Let D = SK0
⊗ϕ,SM be the

Breuil module attached to M. Unless explicitly stated otherwise, we will regard
M as a ϕ(S)-submodule of D from now on. By Theorem 3.2(4) (i.e., by [Liu08,
Cor. 3.2.3]), D comes from the weakly admissible filtered (ϕ,N)-module Dst(V ) =

(D,ϕ,N,FiliDK), in the sense that there is a canonical isomorphism D ∼= SK0⊗K0

D compatible with all structures. We write fπ : D → DK for the map induced by
u 7→ π. By [Bre97, §6], FiliD is inductively defined by Fil0D = D and

(4.2) FiliD = {x ∈ D : fπ(x) ∈ FiliDK , N(x) ∈ Fili−1D}.

Then the filtration FiliDK coincides with fπ(FiliD), again by [Bre97, §6].
Let M∗ be the S-submodule S ⊗ϕ,S M ⊂ D. Recall that we have an S-linear

map 1⊗ ϕ : M∗ →M. Define

FiliM∗ = {x ∈M∗|(1⊗ ϕ)(x) ∈ E(u)iM}.

Lemma 4.3. The filtration on M∗ has the following properties.

(1) FiliM∗ = M∗ ∩ FiliD.
(2) griM∗ is finite OK-free.
(3) rankOKgriM∗ = dimK griD.

Proof. Since D = SK0
⊗ϕ,S M, one can prove (see for example, [Liu08, §3.2]) that

FiliD = {x ∈ D : (1⊗ ϕ)(x) ∈ Fili SK0D}.

Since M is finite S-free, (1) then follows from the fact that Fili SK0
∩S = E(u)iS.

From (1) it follows that griM∗ injects in griD, which is a K-vector space; this
gives (2).

Finally, set M := M∗ ⊗Zp Qp and FiliM := FiliM∗ ⊗Zp Qp = M ∩ FiliD.

Observe that D = M + (Fili+1 SK0
)M∗, since M ⊂ D is finite S[ 1p ]-free and any

s ∈ SK0
can be written as s0 + s1 with s0 ∈ K0[u] ⊂ S[ 1p ] and s1 ∈ Fili+1 SK0

.

From this we deduce that FiliD = FiliM + (Fili+1 SK0
)M∗, so griM ' griD and

(3) follows. �

Set MK := fπ(M∗) ⊂ DK and FiliMK = MK ∩ FiliDK , so that FiliMK is an

OK-lattice in FiliDK . By Lemma 4.3(1), fπ(FiliM∗) ⊂ FiliMK for i ∈ Z≥0.
Consider the positive integers 1 = n0 ≤ n1 ≤ n2 ≤ · · · ≤ nrd ≤ d such that

dimK FiliDK = d − ni + 1. Choose an OK-basis e1, . . . , ed of MK such that
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eni , . . . , ed forms a OK-basis of FiliMK ; the existence of such a basis follows by
repeated application of the following lemma.

Lemma 4.4. Let DK be a finite K-vector space, MK an OK-lattice in DK and
D′K ⊂ DK a K-subspace. Then there exists an OK-basis e1, . . . , ed of MK such
that {em, . . . , ed} is a K-basis of D′K for some integer m.

Proof. Consider the exact sequence of K-vector spaces

0 −→ D′K −→ DK
f−→ D′′K −→ 0.

Then we get an exact sequence 0 → M ′K → MK → M ′′K → 0 where M ′K =
MK ∩ D′K and M ′′K = f(MK). Since D′K is divisible, we see that M ′′K is torsion
free and thus finite OK-free, so there exists a section s : M ′′K ↪→ MK such that
MK = M ′K ⊕ s(M ′′K). �

Proposition 4.5. Assume that fπ(FiliM∗) = FiliMK for all i ∈ Z≥0.

(1) There exists an S-basis ê1, . . . , êd of M∗ such that fπ(êj) = ej for all j and

êj ∈ FiliM∗ for j ≥ ni.
(2) For any basis as in (1), the module Filrd M∗ is generated by (ê1, . . . , êd)Λ

∗,
where Λ∗ is the matrix [E(u)rd−r1 , . . . , E(u)rd−rd ].

Proof. Since fπ(FiliM∗) = FiliMK , there exist ê1, . . . , êd ∈M∗ such that fπ(êj) =

ej for all j and êj ∈ FiliM∗ for j ≥ ni. One easily checks that {êi} forms an S-basis

of M∗; this proves (1). Now define F̃il
i
M∗ inductively as follows: F̃il

0
M∗ = M∗

and F̃il
i
M∗ is the S-submodule generated by E(u)F̃il

i−1
M∗ and êni , . . . , êd. It is

immediate from this description that

(4.6) F̃il
i
M∗ =

i−1⊕
j=0

(E(u)i−jSênj ⊕ · · · ⊕ E(u)i−jSênj+1−1)⊕
d⊕

j=ni

Sêj .

Comparing (4.6) with the statement of the Proposition, we see that we will be

done if we can prove that Filrd M∗ = F̃il
rd
M∗. In fact we now show by induction

on i that FiliM∗ = F̃il
i
M∗ for 0 ≤ i ≤ rd. The statement is clear for i = 0.

Assume that the statement is true for i = l, and let us consider the case i =

l + 1. From the construction of F̃il
l+1

M∗ we see that F̃il
l+1

M∗ ⊂ Fill+1 M∗,

and so we get a surjection α : FillM∗/F̃il
l+1

M∗ → FillM∗/Fill+1 M∗. By (4.6)

it is clear that FillM∗/F̃il
l+1

M∗ = F̃il
l
M∗/F̃il

l+1
M∗ is finite OK-free with rank

nl+1 − 1 = d − dimK(Fill+1DK). By Lemma 4.3, we know that grlM∗ is finite
OK-free with rankOKgrlM∗ = dimK grlD, so α is an isomorphism if and only

if dimK grlD = d − dimK(Fill+1DK). But this is immediate from the fact that

(D,FiliD) has a base adaptée in the sense of [Bre97, Déf. A.1], and indeed a
base adaptée given as in the display equation in the middle of page 223 of ibid.

Therefore α is an isomorphism and we have F̃il
l+1

M∗ = Fill+1 M∗. �

4.2. The range of monodromy. We retain the notation of the previous subsec-
tion, except that we now let N denote the monodromy operator on D. In this
subsection, we always regard M as an ϕ(S)-submodule of D. Select a ϕ(S)-basis
ê1, . . . , êd of M (not necessarily related to the basis of Proposition 4.5). We have
N(ê1, . . . , êd) = (ê1, . . . , êd)U with U a matrix with coefficients in SK0

. In this
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subsection, we would like to control the coefficients of U . Let S̃ = W (k)Jup, u
ep

p K,
so that ϕ(S) ⊂ S̃ ⊂ S and N(S̃) ⊂ S̃. Note that unlike S, the ring S̃ has the

property that if upx ∈ S̃ for some x ∈ K0JuK then x ∈ S̃[ 1p ].

Proposition 4.7. We have U ∈ Md×d(S̃[ 1p ]). If V is crystalline and p ≥ 3 then

furthermore U ∈ up(Md×d(S̃[ 1p ] ∩ S)).

Proof. Note that {ê1, . . . , êd} forms an SK0
-basis of D. Let ei be the image of êi

under the natural map D → D/I+SD = D, where I+S = uK0JuK ∩ S. Since
D has a unique (ϕ,N)-equivariant section s : D → D (see [Bre97, Prop. 6.2.1.1])
we just write ei for s(ei); obviously {e1, . . . , ed} forms an SK0-basis for D. Let
X ∈ Md×d(SK0) be the matrix such that (ê1, . . . , êd) = (e1, . . . , ed)X.

We claim that both X and X−1 are in Md×d(S̃[ 1p ]). In fact this is a consequence

of the proof of [Liu07a, Prop. 2.4.1], as we now explain. As in that proof, let

Ã ∈ Md×d(S) denote the matrix such that ϕ(ê1, . . . , êd) = (ê1, . . . , êd)Ã in M; then

the matrix of ϕ on D with respect to the same basis is A = ϕ(Ã) ∈ Md×d(ϕ(S)).
Again as in loc. cit. let A0 ∈ Md×d(W (k)) be the matrix of ϕ on D with respect to

the basis e1, . . . , ed. Since ϕ(E(u))/p ∈ S̃×, observe that the next-to-last paragraph

of loc. cit. actually shows that prA−1 ∈ Md×d(S̃) and that A0A
−1 = Id+ up

pr Y with

Y ∈ Md×d(S̃) (note that the matrix Y ′ in loc. cit. is actually in Md×d(ϕ(S))).

The main part of the argument in loc. cit. shows that X = X0 +
∑∞
i=0

up
i+1

pr Zi
where X0 = A0A

−1 and Zi is defined by the formula

Zi = A0ϕ(A0) · · ·ϕi(A0)ϕi+1(Y )ϕi(A−1) · · ·ϕ(A−1)A−1.

From the previous paragraph the matrices prX0 and pr(i+1)Zi are all in Md×d(S̃).

Choose any i0 ≥ 1 such that pi ≥ er(i+2− i0) for all i ≥ 0. Then pri0 · u
pi+1

pr Zi ∈ S̃
for i ≥ 0, and pri0X ∈ Md×d(S̃), as desired. The argument for X−1 is essentially the
same, beginning from an analysis of AA−10 instead of A0A

−1, cf. the last paragraph
of loc. cit.

Since N(ê1, . . . , êd) = N((e1, . . . , ed)X) we compute that

U = X−1BX +X−1N(X)

where B ∈ Md×d(K0) is the matrix of N acting on e1, . . . , ed. Since N(X) ∈
Md×d(S̃) (indeed it is contained in upMd×d(S̃)) this completes the argument in the
semi-stable case.

Suppose for the rest of the argument that V is crystalline, so that B = 0,
U = X−1N(X), and U ∈ upMd×d(S̃[ 1p ]). Write U = upU ′; we have to show that

U ′ ∈ Md×d(S). Here we use the argument in the proof of [Liu12, Prop. 2.4.1]1, and
we freely use the notation of that item; in particular for any x ∈ D we define

(4.8) τ(x) =

∞∑
i=0

γi(t)⊗N i(x)

Recall that the element t is defined in Section 1.2.3; since the topological generator
τ ∈ Ĝp∞ acts trivially on t, one can recursively define τn(x).

1The hypothesis that p ≥ 3 is required by the argument in [Liu12, Prop. 2.4.1]. In fact this is
the only place in the proof of Theorem 4.1 that the hypothesis p 6= 2 is used.
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Suppose that x ∈M. The formula (2.4.2) of ibid. and the comments immediately
following it show that (τ−1)n(x) ∈ upB+

cris⊗ϕ,SM and (τ−1)n(x) ∈ I [n]W (R)⊗ϕ,S
M. We claim that (τ − 1)n(x) ∈ upI [n]W (R) ⊗ϕ,S M. In fact, if y ∈ upB+

cris ∩
I [n]W (R) then by [Liu10a, Lem. 3.2.2] we have y = upz with z ∈ W (R). Since
uw ∈ FilnW (R) with w ∈ W (R) implies w ∈ FilnW (R), it follows from upz ∈
I [n]W (R) that z ∈ I [n]W (R), and this proves the claim.

Since (τ − 1)n(x)/up is in I [n]W (R), it follows exactly as in the final paragraph
of the proof of [Liu12, Prop. 2.4.1] that the elements (τ − 1)n(x)/(ntup) lie in
Acris ⊗ϕ,S M and tend to 0 as n → ∞. (Recall from Section 1.2.3 that I [n]W (R)
is a principal ideal generated by (ϕ(t))n.) Therefore the sum

∞∑
n=1

(−1)n−1
(τ − 1)n

ntup
(x)

converges in Acris ⊗ϕ,S M. But by (2.4.3) and (2.4.4) of ibid. this sum is precisely

N(x)/up. Since Acris ∩ S̃[ 1p ] ⊂ Acris ∩ S[ 1p ] = S (e.g. by recalling that S is the

subring of G∞-invariants in Acris), we are done. �

Remark 4.9. It is possible that the matrices U and U ′ in the preceding proof are
in Md×d(S̃), but we do not know how to show it.

For later use, we record the conclusion of the next-to-last paragraph of the
preceding proof (with n = 1) as a separate corollary.

Corollary 4.10. If V is crystalline and p ≥ 3, then for any x ∈ M there exists
y ∈ W (R) ⊗ϕ,S M such that τ(x) − x = upϕ(t)y, with τ(x) as in (4.8) and t the
element defined in the last paragraph of Section 1.2.3.

Write S′ = S̃[ 1p ] ∩ S, and let Il denote the ideal
∑l
m=1 p

l−mupmS′ in S′. If

x ∈M, write x = (ê1, . . . , êd) · v with v a column vector whose entries lie in ϕ(S),
and with (ê1, . . . , êd) viewed as a row vector. Let vl be the column vector such that
N l(x) = (ê1, . . . , êd)vl.

Corollary 4.11. Suppose that V is crystalline and p ≥ 3 .Then vl has entries in
Il.

Proof. We proceed by induction on l. For l = 1 we have v1 = U · v + N(v), and
since U · v and N(v) both have entries in upS′ (the former by Proposition 4.7) the
base case follows.

Suppose the statement is true for l, and consider the case l + 1. We have the
recursion formula

vl+1 = U · vl +N(vl),

and it suffices to show that the two terms on the right-hand side of the recursion
both have entries in Il+1. This is immediate for U · vl since upIl ⊂ Il+1 and
U ∈ upMd×d(S

′). For the other term we must show that N(Il) ⊂ Il+1.
Observe that if z ∈ S′ then N(z) ∈ pS′. Indeed, since z ∈ K0JupK and N(upi) =

−piupi, the valuation of the coefficient of uj in N(z)/p is at least the valuation of
the coefficient of uj in z for any j ≥ 0, and we have N(z)/p ∈ S′. As a consequence
we see that

N(pl−mupmz) = pl−m(−pmupmz + upmN(z)) ∈ pl+1−mupmS′ ⊂ Il+1

and the induction is complete. �
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In the remainder of this subsection, we prove two technical lemmas for the next
subsection. In Lemma 4.12 we assume for simplicity that K = K0 is unramified,
although the analogue for general K can be proved by exactly the same argument.

Lemma 4.12. Assume that K is unramified. Suppose that y ∈ Il for some 1 ≤
l ≤ p, and write y =

∞∑
i=0

ai(u − π)i with ai ∈ K. Then we have ai ∈ W (k) for

0 ≤ i ≤ p. More precisely we have pp+l−1 | a0, pp+l−i | ai for 1 ≤ i ≤ p − 1 and
pl−1 | ap.

Proof. By hypothesis we have y =
l∑

m=1
pl−mupmzm with zm ∈ S′. We can write

zm =
∞∑
j=0

bj,mu
pj

(pj)! with bj,m ∈W (k). Then

y =

l∑
m=1

pl−m

 ∞∑
j=0

bj,m
up(j+m)

(pj)!


=

l∑
m=1

∞∑
j=0

pl−mbj,m
(u− π + π)p(j+m)

(pj)!

=

l∑
m=1

∞∑
j=0

pl−m
bj,m
(pj)!

p(j+m)∑
i=0

(
p(j +m)

i

)
(u− π)iπp(j+m)−i


=

∞∑
i=0

 l∑
m=1

∑
j≥si,p,m

bj,mπ
p(j+m)−ipl−m

(pj)!

(
p(j +m)

i

) (u− π)i,

where si,p,m = max{0, i/p −m}. Since we only consider ai for 0 ≤ i ≤ p, we have
si,p,m = 0 in all our cases. Note that ppj/(pj)! ∈ Zp for all j ≥ 0. We first observe
that vp(a0) ≥ (p − 1)m + l ≥ p − 1 + l because m ≥ 1. If 1 ≤ i ≤ p − 1 then p

divides
(
p(j+m)

i

)
. So we get vp(ai) ≥ pm − i + l −m + 1 ≥ p + l − i. Finally, we

have vp(ap) ≥ pm+ l −m− p ≥ l − 1. �

Lemma 4.13. We have N l((u− π)k) =
k∑

m=0
cmπ

m(u− π)k−m for some cm ∈ Z.

Proof. We induct on l, with trivial base case l = 0. Assume that the statement is
true for l. Then

N l+1((u− π)k) = N

(
k∑

m=0

cmπ
m(u− π)k−m

)

=

k∑
m=0

cmπ
m(k −m)(u− π)k−m−1(−u+ π − π)

which rearranges to

k∑
m=0

cm(m− k)πm(u− π)k−m +

k∑
m=0

cm(m− k)πm+1(u− π)k−m−1.

The induction follows. �
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4.3. The proof of Theorem 4.1. Retain the notation of the previous subsections,
but assume now that K = K0 is unramified, V is crystalline, and r ≤ p. Recall that
π denotes our fixed choice of uniformiser in W (k). The essential remaining input

that we need for the proof of Theorem 4.1 is the statement that fπ(FiliM∗) =

FiliMK for i ∈ Z when p ≥ 3. The proof of that statement is the key point where
the hypothesis r ≤ p is used (see Remark 4.18 below). We begin the proof with the
following lemma.

Lemma 4.14. Assume that K is unramified. There exists a ϕ(S)-basis e1, . . . , ed ∈
M such that for 0 ≤ i ≤ r, fπ(eni), . . . , fπ(ed) forms a OK-basis for FiliMK .

Proof. There exists an S-basis e′1, . . . , e
′
d of M∗ such that fπ(e′ni), . . . , fπ(e′d) forms

anOK-basis of FiliMK for all 0 ≤ i ≤ r. (Choose any basis ofMK as in the sentence
preceding Lemma 4.4, and lift it to M∗.) Select any ϕ(S)-basis ẽ1, . . . , ẽd of M.
We have (e′1, . . . , e

′
d) = (ẽ1, . . . , ẽd)B where B ∈ Md×d(S) is an invertible matrix.

Let B0 = fπ(B) ∈ GLd(W (k)) and set (e1, . . . , ed) := (ẽ1, . . . , ẽd)B0. Evidently
e1, . . . , ed is a ϕ(S)-basis of M. Also note that fπ(ei) = fπ(e′i), so e1, . . . , ed is just
the basis we need. �

Remark 4.15. The fact that B0 has entries in W (k) in the above lemma makes
essential use of the hypothesis that K is unramified. We are not aware of any way
to extend this lemma to the case of a ramified base.

Proposition 4.16. Suppose that K is unramified, V is crystalline, r ≤ p and p ≥ 3.
Let e1, . . . , ed be a basis of M as in Lemma 4.14 . Then there exists an S-basis

e′1, . . . , e
′
d of M∗ with the properties that fπ(e′j) = fπ(ej) and e′j − ej ∈ p

∑d
j′=1 Sej′

for all 1 ≤ j ≤ d, and moreover e′j ∈ FiliM∗ whenever ni ≤ j < ni+1 (taking i = rd
when j ≥ nrd).

In particular fπ(FiliM∗) = FiliMK for all i ≥ 0.

Proof. Let e1, . . . , ed be a basis of M as in Lemma 4.14, and set ej = fπ(ej) ∈MK .

The desired statement is only nontrivial for 1 ≤ i ≤ r. To prove fπ(FiliM∗) =

FiliMK for 1 ≤ i ≤ r, we consider the following assertion:

(?) For each i = 1, . . . , r, there exist e
(i)
ni , . . . , e

(i)
d ∈ FiliM∗ such that for all

ni ≤ j ≤ d we have

e
(i)
j = ej +

d∑
n=1

i−1∑
s=1

α
(i)
j,n,sp

p−s(u− π)sen

with α
(i)
j,n,s ∈W (k). (Recall that the integers ni are defined immediately above the

statement of Lemma 4.4.) Since fπ(e
(i)
j ) = fπ(ej) = ej , this assertion is sufficient

to establish the result, taking e′j = e
(i)
j whenever ni ≤ j < ni+1 (and using i = rd

when j ≥ nrd .
We will prove the statement (?) by induction on i. Let us first treat the case

that i = 1. We just set e
(1)
j = ej for n1 ≤ j ≤ d. Note that fπ(e

(1)
j ) = fπ(ej) = ej ∈

Fil1MK ⊂ Fil1DK . By the construction of Fil1D, we see that e
(1)
j ∈ Fil1D, and

therefore e
(1)
j ∈M∗ ∩ Fil1D = Fil1 M∗. This settles the case that i = 1.
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Now assume that (?) is valid for some i < r, and let us consider the case i + 1.
Set H(u) = u−π

π . If ni+1 ≤ j ≤ d we set

ẽ
(i+1)
j :=

i∑
l=0

H(u)lN l(e
(i)
j )

l!
.

We claim that ẽ
(i+1)
j ∈ Fili+1D. Since fπ(ẽ

(i+1)
j ) = ej ∈ Fili+1DK , from (4.2) it

suffices to check that N(ẽ
(i+1)
j ) ∈ FiliD. One computes, after rearranging, that

N(ẽ
(i+1)
j ) =

H(u)iN i+1(e
(i)
j )

i!
+

i∑
l=1

(1 +N(H(u)))H(u)l−1N l(e
(i)
j )

(l − 1)!
.

Now the claim follows from the facts that N l(e
(i)
j ) ∈ Fili−lD (apply (4.2) again,

together with the inductive assumption that e
(i)
j ∈ FiliM∗ ⊂ FiliD) and H(u)l ∈

Fill SK0 , together with the observation that 1 +N(H(u)) = 1− u/π ∈ Fil1 SK0 .
Now by induction, we have

ẽ
(i+1)
j − e

(i)
j =

i∑
l=1

(u− π)l

πll!
N l

(
ej +

d∑
n=1

i−1∑
s=1

α
(i)
j,n,sp

p−s(u− π)sen

)
which rearranges to

(4.17) ẽ
(i+1)
j − e

(i)
j =

i∑
l=1

(u− π)l

πll!
N l(ej)+

d∑
n=1

i∑
l=1

i−1∑
s=1

pp−s(u− π)l

πll!
α
(i)
j,n,s

l∑
t=0

(
l

t

)
N l−t((u− π)s)N t(en).

Now write N t(en) =
d∑
k=1

∞∑
m=0

cn,tm,k(u − π)mek with cn,tm,k ∈ K0. Using Lemma 4.13

and noting that we always have l ≥ 1, we can write

ẽ
(i+1)
j = e

(i)
j +

d∑
k=1

∞∑
m=1

bm,k(u− π)mek

for some elements bm,k ∈ K0. Now we remove all terms of (u − π)-degree at least
i+ 1 from this expression, and define

e
(i+1)
j = e

(i)
j +

d∑
k=1

i∑
m=1

bm,k(u− π)mek.

Since (u − π)i+1 = E(u)i+1 ∈ Fili+1 SK0
, we see that e

(i+1)
j is still in Fili+1D.

Comparing with (?), it remains to prove that pp−m | bm,k, which we do by showing
that every occurrence of (u− π)mek on the right-hand side of (4.17) has coefficient
divisible by pp−m. There are two cases to consider.

We begin with terms coming from the first sum
i∑
l=1

(u−π)l
πll!

N l(ej) in (4.17). By

Corollary 4.11 and Lemma 4.12, each term coming from this sum is of the form
(u−π)l
πll!

· ah(u − π)hek with l + h ≤ i, and with ah as in Lemma 4.12 applied to Il.
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In all cases ah is divisible by pp+l−h−1, and so this occurrence of (u− π)l+hek has
coefficient divisible by pp−h−1. Since l ≥ 1, the claim follows in this case.

For the large second sum in (4.17), by Corollary 4.11, Lemma 4.12, and Lemma 4.13,
each term coming from this sum is of the form

α
(i)
j,n,s

pp−s(u− π)l

πll!

(
l

t

)
·
[
cmπ

m(u− π)s−m
]
·
[
ah(u− π)h

]
ek

with l+ (s−m) +h ≤ i, with cm ∈ Z as in Lemma 4.13, with ah as in Lemma 4.12
applied to It if t ≥ 1, and with ah = δk,nδh,0 if t = 0. (Here δx,y is 1 if x = y and 0
otherwise.) In all cases we have ah ∈W (k), which is all that we will need here. In
particular this occurrence of (u− π)l+s−m+h has coefficient divisible by pp−sπm−l,
or equivalently by pp−s+m−l. Since h ≥ 0, this gives what we need. �

Remark 4.18. If we had r = p+ 1, then the induction in the above argument would
fail when trying to deduce the case i = p+ 1 from the case i = p. Indeed if we had
i = p in the last paragraph of the proof, then the term with l = p, t = h = 0, and

m = s and k = n would have the form αpj,n,scs
pp−s(u−π)p

πpp! πsen, whose coefficient

need not be in W (k).

Combining Propositions 4.5 and 4.16 immediately gives the following.

Corollary 4.19. Suppose that K is unramified, V is crystalline, r ≤ p, and p ≥
3. There exists an S-basis ê1, . . . , êd of M∗ such that Filrd M∗ is generated by
(ê1, . . . , êd)Λ

∗, where Λ∗ is the matrix [E(u)rd−r1 , . . . , E(u)rd−rd ].

Finally, we can prove Theorem 4.1, which we re-state here for the convenience
of the reader.

Theorem 4.20. Assume that K is unramified, V is crystalline, r ≤ p, and p ≥ 3.
Then there exists an S-basis e1, . . . , ed of M such that the matrix of ϕ is XΛY
where X and Y are invertible matrices such that Y is congruent to the identity
matrix modulo p, and where Λ is the matrix [E(u)r1 , . . . , E(u)rd ].

Proof. Let e1, . . . , ed be a basis of M as in Lemma 4.14. For each 1 ≤ j ≤ d

choose i such that ni ≤ j < ni+1 (taking i = rd when nrd ≤ j) and set e′j = e
(i)
j

as in the proof of Proposition 4.16. We have e′j ∈ FiliM∗, and by construction
Proposition 4.5(2) shows that Filrd M∗ is generated by (e′1, . . . , e

′
d)Λ
∗.

We now consider M as an S-module in its own right, rather than as a ϕ(S)-
submodule of D. Let A be the matrix of ϕ on M with respect to the basis
e1, . . . , ed. Then there exists a matrix B such that AB = BA = E(u)rdId. It
follows straightforwardly from the definition of Filrd M∗ that (e1, . . . , ed)B forms
a basis of Filrd M∗, and therefore there exists a matrix X−1 ∈ GLd(S) such that
(e′1, . . . , e

′
d)Λ
∗X−1 = (e1, . . . , ed)B. If we write (e′1, . . . , e

′
d) = (e1, . . . , ed)Y

−1 then
we get Y −1Λ∗X−1 = B. Hence A = XE(u)rd(Λ∗)−1Y , and since E(u)rd(Λ∗)−1 =
[E(u)r1 , . . . , E(u)rd ] = Λ we have A = XΛY .

Finally, observe from the formula for e
(i)
j in (?) that e′j−ej is divisible by p (since

the index s in (?) is always at most p − 1). It follows that Y is congruent to the
identity modulo p, as claimed, and (e1, . . . , ed) is the basis we want. �
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4.4. Coefficients. We now prove an analogue of Theorem 4.1 for representations
with nontrivial coefficients. Assume as before that K = K0 is unramified, let E be
a finite extension of Qp containing the images of all the embeddings K ↪→ Qp, and
let T be a GK-stable OE-lattice in a crystalline representation V of E-dimension d
with Hodge–Tate weights in [0, p]. Let M be the Kisin module with coefficients
attached to T , so that M is a free module of rank d over (W (k) ⊗Zp OE)JuK by
Proposition 3.4(3). Write f = [K0 : Qp], and assume that p ≥ 3.

Let S = {κ : K ↪→ E} be the set of embeddings of K into E. Fix one such
embedding κ0, and recursively define κs+1 to be the embedding such that κps+1 ≡ κs
(mod p); these subscripts are to be taken mod f , so that κf = κ0. Let εs ∈
W (k)⊗ZpOE be the unique idempotent element such that (x⊗1)εs = (1⊗κs(x))εs
for all x ∈W (k). Then we have εs(W (k)⊗Zp OE) ' OE .

Definition 4.21. The filtered (ϕ,N)-moduleD is aK⊗E-module, and decomposes
as a product D = D0 × · · · ×Df−1 with Ds = εsD an E-vector space of dimension

d. Since D = DK we have a similar decomposition of FiliDK for all i. Write
0 ≤ r1,s ≤ · · · ≤ rd,s ≤ p for the jumps in the filtration FiliDs := εs(FiliDK)
on Ds. The integers rj,s are the κs-labeled Hodge–Tate weights of V , as defined
in Section 1.2. Note that the multiset {rj,s : 1 ≤ j ≤ d, 0 ≤ s ≤ f − 1} taken
[E : K0] times is precisely the set of Hodge–Tate weights of V regarded as a Qp-
representation.

The object D can be formed from M by the same formula as in the preceding
section, and since M is free as an S⊗Zp OE-module, D is free as an SK0

⊗Zp OE-
module and has a decomposition D = D0 × · · · × Df−1 with Ds = εsD. Similar
statements hold for M, M∗, and M := MK (with SK0 replaced by S and W (k)
respectively), so in particular each Ms ⊂ Ds is an OE-lattice. However, note that
when we regard M as a ϕ(S)-submodule of M∗, we are regarding Ms−1 (rather
than Ms) as a submodule of M∗s because ϕ(εs−1) = εs.

Theorem 4.22. Assume that K is unramified, V is crystalline with Hodge–Tate
weights in [0, p], and p ≥ 3. Then there exists an OEJuK-basis {ej,s} of M such
that

• e1,s, . . . , ed,s is an OEJuK-basis of Ms for each 0 ≤ s ≤ f − 1, and
• we have

ϕ(e1,s−1, . . . , ed,s−1) = (e1,s, . . . , ed,s)XsΛsYs

where Xs and Ys are invertible matrices, Ys is congruent to the identity
matrix modulo p, and Λs is the matrix [E(u)r1,s , . . . , E(u)rd,s ].

Proof. Setting FiliM = M ∩ FiliD as before, we have εs FiliM = Ms ∩ FiliDs,
which must therefore be an OE-lattice in FiliDs. Let 1 = n0,s ≤ n1,s ≤ · · · ≤
nrd,s ≤ d be the positive integers such that dimE FiliDs = d − ni,s + 1. By the
same argument as in the paragraph before Lemma 4.4, there exists an OE-basis
e′1,s, . . . , e

′
d,s of Ms such that e′ni,s,s, . . . , e

′
d,s forms an OE-basis of εs FiliM . Now

the same argument as in Lemma 4.14 produces an OEJupK-basis e1,s, . . . , ed,s of

Ms−1 ⊂ M∗s such that fπ(eni,s,s), . . . , fπ(ed,s) forms an OE-basis for FiliMs, and
fπ(ei,s) = e′i,s.
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Choose any OK-basis y1, . . . , yg of OE with y1 = 1. Then {ymej,s}m,j,s is
a ϕ(S)-basis of M as in Lemma 4.14, and so Proposition 4.16 produces an S-
basis e′m,j,s of M∗ with the properties that fπ(e′m,j,s) = yme

′
j,s, e′m,j,s − ymej,s ∈

p
∑
m′,j′,s′ Sym′ej′,s′ , and e′m,j,s ∈ FiliM∗ for i as in the Proposition.

Set e′′j,s = εse
′
1,j,s. From the above we see that fπ(e′′j,s) = e′j,s, e

′′
j,s ∈ (FiliM∗)s,

and e′′j,s−ej,s ∈ p
∑
j′ OEJuKej′,s, and one checks easily that {e′′j,s} forms an OEJuK-

basis of M∗. Let rd = maxs{rd,s}. Now the argument of Proposition 4.5 proves
that Filrd M∗ is generated over OEJuK by the elements of the form E(u)rd−ie′′j,s
where i is determined by ni,s ≤ j < ni+1,s (or i = rd,s when nrd,s ≤ j ≤ d), i.e.
where i = rj,s.

Let A be the matrix of ϕ : Ms−1 →Ms with respect to the OEJuK-bases ej,s and
ej,s+1. Let B be the matrix such that AB = BA = E(u)rdId. It follows as in the
proof of Theorem 4.1 that the image of {ej,s} under B forms a basis of Filrd M∗.
It follows as in the proof of Theorem 4.1 that the matrix A has the form XsΛsYs,
where the matrix Xs is invertible, the matrix Ys is congruent to Id modulo p, and
Λs = [E(u)r1,s , . . . , E(u)rd,s ]. Therefore ej,s−1 := ej,s is the basis that we want. �

Remark 4.23. Theorem 4.22 is best possible, in the sense that it is false if the
Hodge–Tate weight range [0, p] is replaced with [0, r] for any r > p; see Example 6.8
for an explanation.

5. (ϕ, Ĝ)-modules and crystalline representations

We recall that the theory of (ϕ, Ĝ)-modules, introduced by the second author in
[Liu10b], has been used to classify lattices in semi-stable Galois representations. In

this section we review the theory of (ϕ, Ĝ)-modules, and discuss some properties

of the (ϕ, Ĝ)-modules arising from crystalline representations. As in Section 3, we
allow K to be an arbitrary finite extension of Qp, and recall that e = e(K/Qp) is
the ramification index of K.

5.1. (ϕ, Ĝ)-modules. Define a subring inside B+
cris:

RK0
:=

{
x =

∞∑
i=0

fit
{i} : fi ∈ SK0

and fi → 0 as i→ +∞

}
,

where t{i} = ti

pq̃(i)q̃(i)!
and q̃(i) satisfies i = q̃(i)(p− 1) + r(i) with 0 ≤ r(i) < p− 1.

Define R̂ = W (R) ∩ RK0 . One can show that RK0 and R̂ are stable under the

action of GK , and that the GK-action factors through Ĝ (see [Liu10b, §2.2]). Recall
that the ring R is a valuation ring whose valuation we have denoted vR, and let
I+R = {x ∈ R : vR(x) > 0} be the maximal ideal of R.

We have an exact sequence

0 −→W (I+R) −→W (R)
ν−→W (k) −→ 0.

By the discussion in the paragraphs leading up to [Liu10b, Lem. 2.2.1] one can
naturally extend ν to a map ν : B+

cris →W (k)[ 1p ].
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For any subring A of B+
cris, we write I+A = ker(ν) ∩ A, and we also write

I+ = I+R̂. Since ν(u) = 0, it is not hard to see that I+S = uS and

I+S =

{
x ∈ S : x =

∞∑
i=1

ai
ui

q(i)!
, ai ∈W (k)

}
,

where q(i) satisfies i = q(i)e+ r(i) with 0 ≤ r(i) < e. By [Liu10b, Lem. 2.2.1], one

has R̂/I+ ' S/I+S ' S/uS 'W (k), and that R̂ is ϕ-stable.

Definition 5.1. Following [Liu10b] and [CL11], a (ϕ, Ĝ)-module of height r is a

triple (M, ϕM, Ĝ) in which:

(1) (M, ϕM) is an (either finite free or torsion) Kisin module of height r,

(2) Ĝ is an R̂-semi-linear Ĝ-action on M̂ := R̂ ⊗ϕ,S M,

(3) the Ĝ-action commutes with ϕM̂ := ϕ ⊗ ϕM on M̂, i.e., for any g ∈ Ĝ we
have gϕM̂ = ϕM̂g,

(4) regarding M as a ϕ(S)-submodule in M̂, we have M ⊂ M̂HK , and

(5) Ĝ acts on the W (k)-module M := M̂/I+M̂ 'M/uM trivially.

A morphism between two (ϕ, Ĝ)-modules is a morphism of ϕ-modules that com-

mutes with the Ĝ-actions on R̂ ⊗ϕ,S M. We will generally allow M̂ to denote the

(ϕ, Ĝ)-module (M, ϕM, Ĝ), and (as usual) we will typically suppress the subscripts
on ϕM and ϕM̂.

Let M̂ = (M, ϕ, Ĝ) be a (ϕ, Ĝ)-module. We say that (M, ϕ) is the ambient Kisin

module of M̂, and we say that a sequence of (ϕ, Ĝ)-modules is exact if the sequence
of ambient Kisin modules is exact. It turns out that the natural map

M ' S⊗S M −→ S⊗ϕ,S M −→ R̂ ⊗ϕ,S M

is always injective (see [CL11, Lem. 3.1.2] and the discussion preceding it); as a

result we can regard M as a ϕ(S)-submodule of R̂ ⊗ϕ,S M, and we always do so.

To a (ϕ, Ĝ)-module M̂ = (M, ϕ, Ĝ), we can attach a Zp[GK ]-module as follows:

T̂ (M̂) := HomR̂,ϕ(R̂ ⊗ϕ,S M,W (R)) if M is a finite free Kisin module

and

T̂ (M̂) := HomR̂,ϕ(R̂ ⊗ϕ,S M,Qp/Zp ⊗Zp W (R)) if M is a torsion Kisin module,

where GK acts on T̂ (M̂) via g(f)(x) = g(f(g−1(x))) for any g ∈ G and f ∈ T̂ (M̂).

There is a natural map θ : TS(M)→ T̂ (M̂) induced by f 7→ ϕ(f).

Let A be a finite commutative Zp-algebra. We say M̂ has a natural A-action if
the ambient Kisin module M has a natural A-action that also commutes with the
Ĝ-action on R̂⊗ϕ,SM. If M̂ has a natural A-action then it is easy to see that T̂ (M̂)

is an A[GK ]-module. Now we summarize some useful results about the functor T̂ .

Theorem 5.2. ([Liu10b, CL11])

(1) There is a natural isomorphism θ : TS(M)→ T̂ (M̂)|G∞ .
(2) The functor T̂ is an anti-equivalence between the category of finite free

(ϕ, Ĝ)-modules and the category of GK-stable Zp-lattices in semi-stable rep-
resentations with Hodge–Tate weights in {0, . . . , r}.

(3) The functor T̂ is exact.
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(4) Let A be a finite Zp-algebra that is free as a Zp-module, and L ⊂ L′ two
finite free A-modules with an action of GK such that L[ 1p ] = L′[ 1p ] is a

semi-stable representation with Hodge–Tate weights in {0, . . . , r}. Then

there exists an exact sequence of (ϕ, Ĝ)-modules

0 −→ L̂′ −→ L̂ −→ M̂ −→ 0

such that:
• L̂, L̂′ are finite free (ϕ, Ĝ)-modules with natural A-actions,

• M̂ is a torsion (ϕ, Ĝ)-module with a natural A-action,

• T̂ (L̂′ ↪→ L̂) is the inclusion L ↪→ L′, and

• there is a natural isomorphism L′/L = T̂ (L̂′)/T̂ (L̂) ' T̂ (M̂).

Proof. Parts (1) and (2) are proved in [Liu10b, Thm. 2.3.1]. The functor TS is

exact from Theorem 3.2, and then (1) implies the exactness of T̂ . The proof of
[CL11, Thm. 3.1.3(3), Lem. 3.1.4] gives (4) except for consideration of the natural

A-actions. In particular if pnM̂ = 0 then the snake lemma gives a natural exact
sequence of torsion (ϕ, Ĝ)-modules [CL11, Eq. (3.1.4)]:

0→ M̂→ L̂′/pnL̂′ → L̂/pnL̂→ M̂→ 0

and the isomorphism T̂ (L̂′)/T̂ (L̂) ' T̂ (M̂) is induced by applying T̂ to the left-hand
part of this sequence. For the A-actions, the proof of [Liu12, Prop. 3.4.1] shows

that there exist natural A-actions on L̂ and L̂′ such that the injection ι : L̂′ ↪→ L̂
is also a morphism of A-modules and T̂ (ι) : T̂ (L) ↪→ T̂ (L′) is just the injection

L ↪→ L′ as A[G]-modules. Hence M̂ has a natural A-action and T̂ (M̂) ' L′/L as
A[G]-modules. �

We highlight the following consequence of Theorem 5.2(4).

Proposition 5.3. Let V be a semi-stable representation of GK with E-coefficients
and Hodge–Tate weights in {0, . . . , r}, and let L ⊂ V be a GK-stable OE-lattice

inside V . Let L̂ be a finite free (ϕ, Ĝ)-module with natural OE-action such that

T̂ (L̂) ' L. Then L̂/mEL̂ is a torsion (ϕ, Ĝ)-module with natural kE-action such

that T̂ (L̂/mEL̂) ' L/mEL.

Proof. Write L′ = 1
$L and L = L′/L ' L/mEL. Let ι : L̂′ ↪→ L̂ be the inclusion of

(ϕ, Ĝ)-modules inducing L ↪→ L′, as provided by Theorem 5.2(4).

Since T̂ is an (anti-)equivalence of categories, there is an isomorphism m : L̂ ' L̂′

such that T̂ (m) is the multiplication-by-$ map L′ ' L. Now T̂ (m ◦ ι) is multipli-

cation by $ on L′, hence m ◦ ι is multiplication by $ on L̂′, and we deduce that
L̂′ = $L = mEL.

Now the rest of Theorem 5.2(4) implies that M̂ := L̂/mEL̂ is a (ϕ, Ĝ)-module
with natural OE-action such that

(5.4) T̂ (M̂) = T̂ (L̂/mEL̂) ' 1
$L/L ' L

asOE-modules. The naturalOE-action on the (ϕ, Ĝ)-module M̂ evidently induces a
natural kE-action, and the isomorphisms in (5.4) are kE-module isomorphisms. �

Lemma 5.5. Let M̂ be a torsion (ϕ, Ĝ)-module with natural kE-action, and assume

further that M̂ arises as a quotient M̂ ' L̂/L̂′ of finite free (ϕ, Ĝ)-modules with
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natural OE-action as in Theorem 5.2(4). Suppose that L := T̂ (M̂) sits in a short
exact sequence of kE [GK ]-modules

L : 0 −→ L
′ −→ L −→ L

′′ −→ 0.

Then there exists a short exact sequence of (ϕ, Ĝ)-modules with natural kE-action

M̂ : 0 −→ M̂′′ −→ M̂ −→ M̂′ −→ 0

such that T̂ (M̂) = L.

Proof. If G is a group, H < G is a subgroup, and N is a short exact sequence of
G-representations, let N|H denote the short exact sequence of H-representations
obtained from N by restriction.

Let M be the ambient Kisin module of M̂ and let M = k((u))⊗kJuK M. By the
theory of étale ϕ-modules ([Fon90, Proposition A.1.2.6], and see also the exposition
in [Liu07b, §2.2]), there exists an exact sequence of étale ϕ-modules with natural
kE-actions

(5.6) 0 −→M ′′ −→M
f−→M ′ −→ 0

which corresponds to L|G∞ under the functor T of [Liu07b, (2.2.4)]. Set M′ := f(M)
and M′′ := ker(f|M). By [Liu07b, Lem. 2.3.6] applied to the map f|M : M→M ′ we
see that M′,M′′ are both Kisin modules with natural kE-actions, and evidently

M : 0 −→M′′ −→M −→M′ −→ 0

is a short exact sequence. It is easy to check that k((u))⊗kJuKM is the short exact
sequence of (5.6), so that by [Liu07b, Cor 2.2.2] the short exact sequence TS(M) is
also isomorphic to L|G∞ . It remains to show that the short exact sequence of Kisin

modules M extends to a short exact sequence of (ϕ, Ĝ)-modules that yields L.
By [Liu07b, Prop. 3.2.1], we have the following commutative diagram

0 // Sur ⊗S M′′ //
� _

��

Sur ⊗S M //
� _

ιM
��

Sur ⊗S M′ //
� _

��

0

0 // Sur ⊗Zp L
′′∨

// Sur ⊗Zp L
∨

// Sur ⊗Zp L
′∨

// 0

which is compatible with the G∞-actions, ϕ-actions, and kE-actions, and where the
superscript ∨ denotes the Qp/Zp-dual; the vertical arrows are injective by [Liu07b,

Thm. 3.2.2(2)]. Now tensoring with W (R) and R̂ respectively, we get another
commutative diagram

0 // R̂ ⊗ϕ,S M′′ //
� _

��

R̂ ⊗ϕ,S M //
� _

��

R̂ ⊗ϕ,S M′ //
� _

��

0

0 // W (R)⊗ϕ,S M′′ //
� _

��

W (R)⊗ϕ,S M //
� _

W (R)⊗ϕ,Sur ιM
��

W (R)⊗ϕ,S M′ //
� _

��

0

0 // W (R)⊗Zp L
′′∨

// W (R)⊗Zp L
∨ f

// W (R)⊗Zp L
′∨

// 0.

The exactness of the rows and the vertical maps follow from the facts that M′′,

M and M′ are all finite kJuK-free modules, and that R̂/pR̂ and Sur/pSur inject
into R (the latter by [Fon90, Proposition B.1.8.3(iv)]), which is a domain.
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Thanks to the hypothesis that M̂ is the quotient of two finite free (ϕ, Ĝ)-modules,
[Liu12, Lem. 3.2.6] shows that the map W (R)⊗ϕ,Sur ιM is equal to the map ι̂M̂ of
the diagram [Liu12, (3.2.4)], and so in particular is GK-equivariant (see e.g. [Liu12,
Thm. 2.2.2]). Note also that the GK-actions in the middle column commute with
the kE-actions.

Regarding R̂ ⊗ϕ,S M′ and R̂ ⊗ϕ,S M as submodules of W (R) ⊗Zp L
′∨

and

W (R)⊗ZpL
∨

respectively, we have R̂⊗ϕ,SM′ = (f ◦ ι̂M)(R̂⊗ϕ,SM). So R̂⊗ϕ,SM′

inherits a GK-action which factors through Ĝ, and then so does R̂⊗ϕ,SM′′; more-

over these Ĝ-actions commute with the kE-actions. It is easy to check that these
Ĝ-actions satisfy the axioms for (ϕ, Ĝ)-modules, so we obtain an exact sequence of

(ϕ, Ĝ)-modules that we call M̂.

It remains to check that T̂ (M̂) ' L. To see this, we note thatM is the sequence

of ambient Kisin modules underlying M̂, and TS(M) is isomorphic to L|G∞ . We

therefore have T̂ (M̂)|G∞ ' TS(M) ' L|G∞ , where the first isomorphism comes

from Theorem 5.2(1). But by hypothesis the middle map T̂ (M̂)|G∞ → L|G∞ in

that complex is actually a GK-isomorphism, and it follows that T̂ (M̂) ' L as short
exact sequences of kE [G]-modules. (Suppose G is a topological group, L′,M′ are
short exact sequences of continuous G-representations, and f : L′ →M′ is an iso-
morphism between L′ andM′ regarded as short exact sequences of vector spaces. If
the map in the middle of f is a isomorphism of continuous G-representations, it fol-
lows formally that the same is true of the two outer maps, and f is an isomorphism
from L′ to M′.) �

Remark 5.7. Lemma 5.5 may well remain true without the assumption that M̂

arises as a quotient M̂ ' L̂/L̂′ of finite free (ϕ, Ĝ)-modules with natural kE-action,
but the proof would require additional work and we will only need the weaker
statement.

Before continuing, we note one additional consequence of the relationship be-
tween torsion Kisin modules and the theory of étale ϕ-modules.

Lemma 5.8. Suppose that f̂ : M̂ → M̂′ is a map of torsion (ϕ, Ĝ)-modules with

natural A-action, and let M,M′ be the ambient Kisin modules of M̂, M̂′ respectively.

Then T̂ (f̂) is injective (resp. surjective, an isomorphism) if and only if the induced
map M[ 1u ]→M′[ 1u ] is injective (resp. surjective, an isomorphism).

Proof. Note that M[ 1u ] = k((u))⊗kJuKM and similarly for M′. Let f denote the map

of Kisin modules underlying f̂ , and fu the map of étale ϕ-modules M[ 1u ]→M′[ 1u ]

obtained by inverting u. By Theorem 5.2(1), the map T̂ (f̂) is injective (resp.
surjective) if and only if the map TS(f) is injective (resp. surjective). By [Liu07b,
Cor. 2.2.2] the map TS(f) is naturally isomorphic to T (fu). But the functor T is
an equivalence of abelian categories. �

5.2. τ-actions for crystalline representations. We now re-state Corollary 4.10
using the language of (ϕ, Ĝ)-modules.

Proposition 5.9. Suppose p > 2. Let L be a G-stable Zp-lattice in a crystalline

representation and M̂ the (ϕ, Ĝ)-module corresponding to L, with ambient Kisin

module M. Then for any x ∈M we have τ(x)− x ∈ M̂ ∩ upϕ(t)(W (R)⊗ϕ,S M).
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Proof. This is a direct consequence of Corollary 4.10, since by [Liu10b, Eq. (3.2.1)

and Prop. 3.2.1], the formula (4.8) defines the action of τ on the (ϕ, Ĝ)-module
L. �

We let Repst,r
E (GK) denote the category of finite E-vector spaces V with an

E-linear GK-action such that V is a semi-stable representation with Hodge–Tate
weights in {0, . . . , r}. We denote by Repst,r

OE (GK) the category of G-stable OE-

lattices inside objects in Repst,r
E (GK), and by Repcris,r

OE the subcategory of Repst,r
OE

whose objects are crystalline.

Now assume that L is in Repcris,r
OE and let M̂ be the (ϕ, Ĝ)-module corresponding

to the reduction L/mEL via Theorem 5.2(4), with ambient Kisin module M.

Corollary 5.10. For any x ∈M, there exist α ∈ R and y ∈ R ⊗ϕ,S M such that
τ(x)− x = αy and vR(α) ≥ p

p−1 + p
e .

Proof. Recall from Section 1.2.3 that the image of t in R has valuation 1
p−1 , from

which it follows that the image of ϕ(t) in R has valuation p
p−1 . Since the image of

u in R is π, and vR(π) = 1
e , the result follows from Proposition 5.9. �

6. Kisin modules and (ϕ, Ĝ)-modules of rank one

We assume for the remainder of this article that K/Qp is unramified, with f =

[K : Qp]. In this section we determine the isomorphism classes of (ϕ, Ĝ)-modules of
rank one, compute their corresponding Galois representations, and show that they
arise as the reductions of crystalline characters with specified Hodge–Tate weights.

Recall that E is a finite extension of Qp, with ring of integers OE and residue field
kE . As in Section 4.4, we fix (again for the remainder of the article) an embedding
κ0 : K ↪→ E and recursively define κs+1 : K ↪→ E so that κps+1 ≡ κs (mod p). Let
εs ∈W (k)⊗ZpOE be the idempotent defined in Section 4.4, and if M is any module
that can naturally be regarded as a module over W (k) ⊗Zp OE we write Ms for
εsM .

Definition 6.1. Suppose r0, . . . , rf−1 are non-negative integers and a ∈ k×E . Let

M(r0, . . . , rf−1; a) be the Kisin module with natural kE-action that is rank one
over S⊗Zp kE and satisfies

• M(r0, . . . , rf−1; a)i is generated by ei, and
• ϕ(ei−1) = (a)iu

riei.

Here (a)i = a if i ≡ 0 (mod f) and (a)i = 1 otherwise. (For later use, we extend
this notation as follows: if S ⊂ Z, we write (a)S = a if S contains an integer
divisible by f , and (a)S = 1 otherwise.)

The following fact is proved by a standard change-of-variables argument whose
details we omit (but see for instance the paragraph before the statement of [Sav08,
Thm. 2.1] for an analogous argument).

Lemma 6.2. Any rank one ϕ-module over S⊗Zp kE is isomorphic to (exactly) one

of the form M(r0, . . . , rf−1; a).

Now let â ∈ OE be a lift of a. Let M(r0, . . . , rf−1; â) be the rank one ϕ-module
over S⊗Zp OE such that

(1) M(r0, . . . , rf−1; â)i is generated by ei, and
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(2) ϕ(ei−1) = (â)i(u− π)riei.

It is obvious that M := M(r0, . . . , rf−1; â) is a finite free Kisin module such that

M/mEM = M(r0, . . . , rf−1; a). We would like to show that the G∞-representation
TS(M) can be uniquely extended to a crystalline character of GK .

Lemma 6.3. There exists a unique (ϕ, Ĝ)-module M̂ := M̂(r0, . . . , rf−1; â) such

that the ambient Kisin module of M̂ is M(r0, . . . , rf−1; â) and T̂ (M̂) is a crystalline

character. The κs-labeled Hodge–Tate weight of T̂ (M̂) is rs.

Proof. The uniqueness is a general fact, combining Theorem 5.2(2) with [Kis06,
Thm. (0.2)]. For existence, consider the Kisin module N(j) = M(0, . . . , 1, . . . , 0; 1)
where rj = 1 and ri = 0 if i 6= j. This is a Kisin module of height 1, and it
follows from [Kis06, Thm. (2.2.7)] that TS(N(j)) can be uniquely extended to a
crystalline character ψj with Hodge–Tate weights in {0, 1}. By Theorem 4.22 (or,
if one prefers, from Lemma 4.3(3) together with the existence of a base adaptée for
D), ψj has κs-labeled Hodge–Tate weights 0 if s 6= j and 1 if s = j.

Next consider N(â) = M(0, . . . , 0; â), and define λâ = TS(N(â)). Let Zur
p denote

the maximal unramified extension of Zp. Since there exists x ∈ Zur
p ⊗Zp OE with

ϕf (x) = (1⊗ â)x, it is easy to check using the functor TS,OE that N(â) is the Kisin
module attached to the unramified character of GK sending arithmetic Frobenius
to â. Now it suffices to show that the Kisin module associated to the crystalline
character λâψ

r0
0 · · ·ψ

rf−1

f−1 is just M(r0, . . . , rf−1; â). This is a consequence of the
following general fact. �

Lemma 6.4. Let χ and χ′ be two crystalline OE-characters of GK whose Kisin
modules N, N′ are defined by the conditions

• Ni, N
′
i are generated by ei, e

′
i respectively, and

• ϕ(ei−1) = αiei and ϕ(e′i−1) = α′iei with i = 0, . . . , f−1 and αi, α
′
i ∈ OEJuK.

Then the Kisin module Ñ of χ ·χ′ has the form ϕ(fi−1) = αiα
′
ifi, with fi a generator

of Ñi.

Proof. We compute using the functor TS,OE . Pick generators f, f ′ of the rank one
OE-modules TS,OE (N) and TS,OE (N′), and write βi, β

′
i for the elements f(ei), f(e′i)

in Sur ⊗Zp OE . Then ϕ(βi−1) = αiβi and similarly for ϕ(β′i−1).

Let Ñ be as in the statement of the lemma, and consider the map f̃ : Ñ →
Sur ⊗Zp OE which sends fi to βiβ

′
i. Evidently f̃ ∈ TS,OE (Ñ), and the latter is

an OE-character of G∞. As f̃ = f · f ′, we see that TS,OE (Ñ) = (χχ′)|G∞ as

OE [G∞]-modules. That is, Ñ is the Kisin module associated to χ · χ′. �

Corollary 6.5. There is a unique (ϕ, Ĝ)-module M̂ := M̂(r0, . . . , rf−1; a) whose

ambient Kisin module is M(r0, . . . , rf−1; a). Furthermore, T̂ (M̂) is the reduction

of the crystalline character T̂ (M̂(r0, . . . , rf−1; â)) for any lift â ∈ OE of a.

Proof. The existence of M̂ follows from Lemma 6.3 and Theorem 5.2(4). For
uniqueness, it suffices to see that the action of τ on M is uniquely determined.
Write τ(ei) = αiei with αi ∈ R. We see that αi = ε−priϕ(αi−1), and it follows
that ϕf (αi) = αiε

mi for some integer mi which is determined by the rj . Lemma
6.6 below shows that αi = cηmi for some c ∈ k, where the element η ∈ R is defined
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in Lemma 6.6(2). Since η − 1 ∈ I+R and Ĝ must act trivially on M/uM, we have
c = 1 and αi is uniquely determined for all i. �

Lemma 6.6. Recall that ε = ε(τ) is the image in R of τ(u)/u.

(1) Write m = psm0 ∈ Zp with m0 ∈ Z×p and s ∈ Z≥0 a non-negative integer.

Then vR(ε−m − 1) = ps( p
p−1 ).

(2) If m ∈ Z, then the solutions to the equation ϕf (x) = xεm with x ∈ R are

precisely the cηm where η =
∞∏
n=0

(ε−1)p
nf

and c ∈ k.

(3) If m ∈ Z then vR(ηm − 1) = vR(εm − 1).

Proof. (1) It suffices to prove that vR(εm − 1) = ps( p
p−1 ). If m = m0 ∈ Z×p , then

vR(εm − 1) = limn→∞ pnvp(ζ
m
pn − 1) = p

p−1 where ζmpn is defined in the usual way

for m ∈ Z×p . For the general case, note that εm − 1 = (εm0)p
s − 1 = (εm0 − 1)p

s

.
(2) One checks that (1) implies the convergence of η in R, and that cηm is

a solution to the equation. Comparing valuations on both sides of the equation
ϕf (x) = xεm, one sees that if x 6= 0 then vR(x) = 0; it follows that if x, y are two
solutions with the same image in k ' R/mR, then x− y = 0. Also note that since
ε ≡ 1 (mod mR) and k is the fixed field of ϕf in k, the image of x in k must lie
in k. It is easy to see that η ≡ 1 (mod mR), and we conclude that if c ∈ k then
cηm is the unique solution with image c in R/mR.

(3) Write ϕf (ηm−1) = ηm(εm−1)+(ηm−1). Since ηm−1 has positive valuation,
the term on the left-hand side has greater valuation than the second term on the
right-hand side; therefore the two terms on the right-hand side must have equal
valuation. �

Recall that in Section 1.2.1, for each σ ∈ Hom(k,Fp) we have defined the fun-

damental character ωσ : IK → F×p corresponding to σ. Let κs : k ↪→ Fp be the
embedding obtained by reducing κs modulo p, and for brevity we write ωs for ωκs
(throughout the rest of the paper).

Proposition 6.7. Write M̂ = M̂(r0, . . . , rf−1; a) and M̂′ = M̂(r′0, . . . , r
′
f−1; a′) for

some a, a′ ∈ kE and non-negative integers r0, r
′
0, . . . , rf−1, r

′
f−1. Let M,M′ denote

the ambient Kisin modules of M̂, M̂′.

(1) We have T̂ (M̂)|IK ' ω
r0
0 · · ·ω

rf−1

f−1 .

(2) We have T̂ (M̂) ' T̂ (M̂′) if and only if TS(M) ' TS(M′).

(3) The isomorphism in (2) occurs if and only if a = a′ and
∑f−1
i=0 p

f−i−1ri ≡∑f−1
i=0 p

f−i−1r′i (mod pf − 1).

Proof. (1) By Lemma 6.3 and Corollary 6.5, it suffices to check that ψs|IK = ωs,
where ψs is the reduction modulo p of the character ψs whose κj-labeled Hodge–
Tate weight is 1 if j = s and 0 otherwise. By [Con11, Prop. B.3] we have (ψs ◦
ArtK)|O×K ' κs|O×K ; comparing with the definition of ωs, the result follows.

(2) Since K∞/K is totally wildly ramified but the kernels of mod p characters
of GK correspond to tame extensions, a mod p character of GK that is trivial on
G∞ must be trivial.

(3) Let us first check that the given conditions are sufficient. Choose any inte-

gers r′′0 , . . . , r
′′
f−1 such that r′′i ≥ max(ri, r

′
i) and

∑f−1
i=0 p

f−i−1r′′i ≡
∑f−1
i=0 p

f−i−1ri
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(mod pf − 1), and define M′′ = M(r′′0 , . . . , r
′′
f−1; a). It is enough to check that

TS(M) ' TS(M′′) (for then we must have TS(M′) ' TS(M′′) by the same argu-

ment). Set mi = 1
pf−1

∑f−1
j=0 p

f−i−1(r′′i+j+1 − ri+j+1), which by construction is a

non-negative integer for all i. Then there is a map f : M′′ →M sending e′′i 7→ umiei
(with the obvious meaning for e′′i ). Since f is an isomorphism after inverting u,
it follows from the theory of étale ϕ-modules (as in Section 5) that TS(f) is an
isomorphism.

In the reverse direction, it follows from (1) that the condition
∑f−1
i=0 p

f−i−1ri ≡∑f−1
i=0 p

f−i−1r′i (mod pf−1) is necessary. The calculation of the unramified charac-
ter λâ in the proof of Lemma 6.3, together with Lemma 6.4 and Corollary 6.5, shows

that changing a′ must change T̂ (M̂′). Thus for fixed values of r0, r
′
0, . . . , rf−1, r

′
f−1

and a the isomorphism in (2) holds for at most one value of a′, and so the necessity
of a = a′ follows from the result of the previous paragraph. �

Example 6.8. We can now show that Theorem 4.22 is best possible. Suppose that
V is a two-dimensional crystalline representation of GQp with Hodge-Tate weights
(0, r) for some r > 0, and assume that the reduction mod p of V is reducible.
Possibly after extending the coefficients of V , it is possible to choose a lattice T ⊂ V
with associated Kisin module M such that M is a direct sum M(h; a) ⊕M(h′; a′)
for some h, h′ with h + h′ = r. (This follows by essentially the same argument by
which it is possible to choose a lattice in V whose reduction is split, again after
possibly extending the coefficients.)

If the conclusion of Theorem 4.22 were to hold for the Kisin module M, then ϕ
on M would be nontrivial mod u. It would then follow that {h, h′} = {0, r}, and

V
ss ∼= 1 ⊕ εr. But if r = p + 1, it is well-known that there exists V as above with

V
ss ∼= ε⊕ ε, a contradiction.

7. Extensions of rank one ϕ-modules

Recall that we have assumed thatK/Qp is unramified. In this section we consider
possible extensions of Kisin modules. Our analysis in this section, combined with
the results of Section 4, is already sufficient to prove our main results for semisimple
representations; in Section 8, we will extend this analysis to (ϕ, Ĝ)-modules, in order
to be able to handle extension classes.

Before we begin our analysis of extensions of rank one ϕ-modules, we give some
combinatorial lemmas, which will be used to determine when an extension of Kisin
modules corresponds to a Galois representation with scalar semisimplification. (See
Remark 7.10 below, and see also the discussion in the opening pages of [BDJ10,
§3.2].)

Lemma 7.1. Suppose that r0, . . . , rf−1 are integers in the range [−p, p] that satisfy∑f−1
i=0 p

f−1−iri ≡ 0 (mod pf − 1). Then either:

(1) (r0, . . . , rf−1) = ±(p− 1, . . . , p− 1),
(2) the numbers r0, . . . , rf−1, considered as a cyclic list, can be broken up into

strings of the form ±(−1, p − 1, . . . , p − 1, p) (where there may not be any
occurrences of p− 1) and strings of the form (0, . . . , 0), or else

(3) p = 2 and (r0, . . . , rf−1) = ±(2, . . . , 2).
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Proof. First suppose that none of the ri are equal to ±p. Then |
∑f−1
i=0 p

f−1−iri| ≤
pf −1; so the only possibilities for that sum are 0 and ±(pf −1), and the latter can

occur only for (r0, . . . , rf−1) = ±(p − 1, . . . , p − 1). If instead
∑f−1
i=0 p

f−1−iri = 0
then considering divisibility by p we have rf−1 = 0. Dividing by p and repeating,
we see that ri = 0 for all i in this case.

Next suppose that ri = ±p for some i. We perform a “carrying” operation,
by adding ∓p to ri and adding ±1 to ri−1; this preserves the given congruence.
Now move left, and if the new |ri−1| is at least p we perform the carrying operation
there. Continue this process with ri−2, . . . , r0, rf−1, . . . , ri+1 until we have returned
to ri again. Note that if we have had to carry for both rj and rj−1, then the two
carries necessarily had the same sign; so a string of consecutive carries has the
effect of subtracting ±(−1, p − 1, . . . , p − 1, p) from a subsequence of the rj ’s, or
else ±(p− 1, . . . , p− 1) from the full list.

At the end of this carrying process, we have a new sequence r′0, . . . , r
′
f−1 satisfying

the original congruence condition, but with all r′j ∈ [−(p − 1), (p − 1)]. Note also
that ri ∈ {0,±1} at our starting point. If p > 2, then the first paragraph implies
that r′i = 0 for all i, and the last sentence of the second paragraph shows that
(r0, . . . , rf−1) has the desired shape. If p = 2 then it is also possible that r′i = 1 for
all i, or r′i = −1 for all i. But note that if we add some number of (non-overlapping)
strings of the form (1,−1, . . . ,−1,−2) to (1, . . . , 1), the result actually has the form
(2) again; so the only new possibility when p = 2 is (3). �

Definition 7.2. Let P be the set of f -tuples (r0, . . . , rf−1) with ri ∈ {1, p− 1, p}
for all i, and such that

• if ri = p then ri+1 = 1, and
• if ri ∈ {1, p− 1} then ri+1 in {p− 1, p},

conventionally taking rf = r0. (If p > 2, these conditions are equivalent to: ri = p
if and only if ri+1 = 1.)

The preceding definition is motivated by the following Lemma.

Lemma 7.3. Let r0, . . . , rf−1 be integers in the range [1, p]. Let J be a subset of
{0, . . . , f − 1}, and set hi = ri if i ∈ J and hi = 0 if i 6∈ J . Then

f−1∑
i=0

pf−1−ihi ≡
f−1∑
i=0

pf−1−i(ri − hi) (mod pf − 1)

if and only if (r0, . . . , rf−1) ∈ P and J satisfies:

• if (ri−1, ri) = (p, 1) then i+ 1 ∈ J if and only if i 6∈ J
• if (ri−1, ri) = (1, p− 1) or (p− 1, p− 1) then i+ 1 ∈ J if and only if i ∈ J ,

or else p = 2, (r0, . . . , rf−1) = (2, . . . , 2), and J = ∅ or {0, 1, . . . , f − 1}.

Proof. The congruence is equivalent to
∑f−1
i=0 (−1)[i∈J]pf−1−iri ≡ 0 (mod pf − 1),

where we write [i ∈ J ] = 1 if i ∈ J and [i ∈ J ] = 0 otherwise. Since none of the
ri are zero, by Lemma 7.1 we see that if p > 2 the sequence ((−1)[i∈J]ri)0≤i≤f−1
must either be ±(p − 1, . . . , p − 1) or else break up into subsequences of the form
±(−1, p−1, . . . , p−1, p); when p = 2 we have the additional possibilities ±(2, . . . , 2).
This is equivalent to the description in the statement of the lemma. �
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The following result gives a structure theorem for extensions of Kisin modules;
we will build on it in the following section to prove Proposition 8.8, which is the
main result we will need on extensions of (ϕ, Ĝ)-modules.

Proposition 7.4. Let r0, . . . , rf−1 be integers in the range [1, p]. Let J be a subset
of {0, . . . , f − 1}, and set hi = ri if i ∈ J and hi = 0 if i 6∈ J . Fix a, b ∈ k×E . Let

M be an extension of M(h0, . . . , hf−1; a) by M(r0 − h0, . . . , rf−1 − hf−1; b); then

we can choose bases ei, fi of the Mi so that ϕ has the form

ϕ(ei−1) = (b)iu
ri−hiei

ϕ(fi−1) = (a)iu
hifi + xiei

with xi ∈ kEJuK a polynomial with deg(xi) < hi, except in the following cases:

• (r0, . . . , rf−1) ∈ P, J = {i : ri−1 6= p}, and a = b, or
• p = 2, (r0, . . . , rf−1) = (2, . . . , 2), J = {0, . . . , f − 1}, and a = b.

In that case fix i0 ∈ J ; then xi may be taken to be a polynomial of degree deg(xi) <
hi for all i except i = i0, where xi0 is the sum of a polynomial of degree less than hi0
and a (possibly trivial) term of degree p (for the first exceptional case) or degree 4
(for the second exceptional case).

Proof. Let M be an extension of M(h0, . . . , hf−1; a) by M(r0 − h0, . . . , rf−1 −
hf−1; b); then we can choose bases ei, fi of the Mi so that ϕ has the form

ϕ(ei−1) = (b)iu
ri−hiei

ϕ(fi−1) = (a)iu
hifi + xiei.

We wish to determine to what extent the xi’s can be simultaneously simplified via
a change of basis of the form f ′i = fi + αiei for some elements αi ∈ kEJuK. If
α = α(u) ∈ kEJuK let ϕ(α) = α(up). Observing that

ϕ(fi−1 + αi−1ei−1) = (a)iu
hi(fi + αiei) + (xi + (b)iu

ri−hiϕ(αi−1)− (a)iu
hiαi)ei,

we see that such a change of basis replaces each xi with

x′i = xi + (b)iu
ri−hiϕ(αi−1)− (a)iu

hiαi.

Observe that we may make x′i = 0 if i 6∈ J (at least for any individual such i) by
choosing

(7.5) αi = (a)−1i (xi + (b)iu
riϕ(αi−1)).

If J 6= ∅ then we can take x′i = 0 simultaneously for all i 6∈ J by choosing αi
arbitrarily for each i ∈ J and determining αi recursively by the formula (7.5) for
i 6∈ J . If J = ∅ then the preceding sentence shows that we can at least have
x′i = 0 for i 6= f − 1 by choosing αf−1 arbitrarily and choosing αi recursively for
i = 0, . . . , f − 2 using (7.5). Suppose now that x0 = · · · = xf−2 = 0. Taking αf−1
arbitrary and choosing αi = (b/a)iu

riϕ(αi−1) for i = 0, . . . , f − 2, one computes
that

x′f−1 = xf−1 + (b/a)urf−1+prf−2+···+pf−1r0ϕf (αf−1)− αf−1.
It is possible to choose αf−1 in the above equation so that x′f−1 = 0: indeed, if we
set the right-hand side of the above expression equal to zero, the resulting equation

αf−1 = xf−1 + (b/a)urf−1+prf−2+···+pf−1r0ϕf (αf−1)

can be regarded as a system of equations for the coefficients of αf−1. Since rf−1 +
prf−2 + · · · + pf−1r0 > 0, the coefficient of ui on the left-hand side depends only
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on lower-degree coefficients of αf−1 on the right-hand side, and so this system can
be solved recursively. With such a choice of αf−1 we have x′i = 0 for all i.

The preceding paragraph shows that in all cases, we can assume (possibly after
a change of variables) that xi = 0 if i 6∈ J . At this point we are done with the case
J = ∅, so we assume from now on that J 6= ∅. For the remainder of the argument,
whenever we consider a simultaneous change of basis of the form f ′i = fi +αiei, we
will make some choice of αi’s for i ∈ J and then (without further comment) define
αi for i 6∈ J by the recursive formula αi = (b/a)iu

riϕ(αi−1); then the resulting
change of variables preserves the property that xi = 0 if i 6∈ J .

If i ∈ J , let δi be the least positive integer such that i+ δi ∈ J (taken modulo f ,
as usual); then a simultaneous change of basis of the form f ′i = fi + αiei has the
effect

(7.6) x′i+δi = xi+δi +
(b){i+1,...,i+δi}

(a){i+1,...,i+δi−1}
u
∑δi−1

j=1 ri+jp
δi−j

ϕδi(αi)−(a)i+δiu
ri+δiαi+δi .

If i ∈ J and d ≥ ri, we shall say that the ud-term in xi affects the ud
′
-term in xi+δi

if the change of variables f ′i = fi + cud−riei (for just the single i ∈ J) alters the

term of degree ud
′

in x′i+δi , or in other words if

(7.7) d′ = pδi(d− ri) +

δi−1∑
j=1

ri+jp
δi−j .

In that case, for brevity we will write that (i, d) affects (i+ δi, d
′).

Observe that each pair (i, d) affects exactly one pair (i′, d′) (though possibly
with d′ < ri′) and similarly is affected by at most one pair (though often by none).
Observe also, e.g. from (7.7), that if (i, d) affects (i + δi, d

′) then (i, d + 1) affects
(i+ δi, d

′ + pδi); one deduces that there are at most finitely many pairs (i, d) that
affect a pair (i′, d′) with d′ ≤ d. It follows that the set of all pairs (i, d) with i ∈ J
and d ≥ ri is partitioned into:

• a finite number of loops (i0, d0), . . . , (i|J|−1, d|J|−1) in which (ij , dj) affects
(ij+1, dj+1) (and (i|J|−1, d|J|−1) affects (i0, d0)),

• a finite number of stubs (i0, d0), . . . , (im, dm) in which (i0, d0) is not affected
by any (i, d), while (im, dm) affects some (i′, d′) with d′ < ri′ ,

• a collection of paths (i0, d0), . . . , (ij , dj), . . . in which (i0, d0) is not affected
by any (i, d), and in which (ij , dj) affects (ij+1, dj+1).

It is straightforward to see that by making a suitable choice of ud0−ri0 -coefficient
in αi0 (in the second and third cases) or an arbitrary choice of ud0−ri0 -coefficient

in αi0 (in the first case), recursively making suitable choices for udj−rij -coefficient
in αij for j > 0 (stopping at j = |J | − 1 in the first case and at j = m in the
second case), and doing this simultaneously for all loops, stubs, and paths, the
resulting change of basis ensures that x′i has degree less than ri for all i ∈ J , with
the exception that for each loop, x′i0 may also have a term of degree d0.

Assume that we have made such a change of basis, so that now xi is a polynomial
of degree less than hi for all i, except possibly for a term of degree d0 in xi0 for
each loop as above.

It remains to analyze any possible loops more closely. It follows immediately
from (7.7) that in a loop (i0, d0), . . . , (i|J|−1, d|J|−1) we have p | dj for all j. But

note that if d ≥ 2p and (i, d) affects (i+ δi, d
′), then since d′ ≥ pδi(d− p) we have
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d′ > d unless p = 2, d = 4 and δi = 1. It follows that there is at most one loop, and
in any loop we either have di = p for all i, or else p = 2 and (δi, ri, di) = (1, 2, 4)
for all i.

The latter is the second exceptional case described in the statement (except for

the condition that a = b); now consider the former. If δi > 2 then
∑δi−1
j=1 ri+jp

δi−j >
p since ri+1 > 0, so any loop with di = p for all i requires δi ≤ 2 for all i ∈ J . The
possibilities, then, are either δi = 1 and ri = p− 1 or else δi = 2 and

p = p2(p− ri) + pri+1,

i.e., ri = p and ri+1 = 1. Conversely, if δi ∈ {1, 2} for all i ∈ J , with ri = p − 1
whenever δi = 1 and (ri, ri+1) = (p, 1) whenever δi = 2, we indeed have a loop
{(i, p) : i ∈ J}. Observe that this is precisely the first exceptional case described in
the statement of the Proposition, again modulo the condition that a = b.

In fact one checks without difficulty for the first exceptional case in the statement
(with di = p for all i) that making the change of variables αi0 = cup−ri0 (and
choosing αij accordingly for 1 ≤ j < |J | to ensure that xij does not acquire a
nonzero term of degree p), we find that x′i0 = xi0 + (a)i0(b/a− 1)cup. Thus if a 6= b
we can always choose c to kill the term of degree p in xi0 , and the exceptional
case only occurs when a = b. The argument in the second exceptional case is
analogous. �

Note that in Proposition 7.4 we made no assumption about M having a lift to
some M of characteristic zero (let alone having a lift to some M coming from a
crystalline representation). We now examine what happens when we make such
an assumption. For the remainder of this section we re-assume the notation of
Section 4.4, so that p > 2, T is aGK-stableOE-lattice in a crystalline representation
V of E-dimension d with Hodge–Tate weights in [0, p], and M is the associated Kisin
module. Write r1,s, . . . , rd,s for the κs-labeled Hodge–Tate weights of V , and let

M := M⊗OE kE , with kE the residue field of E.

Proposition 7.8. With notation as above (in particular p > 2), suppose that
N ⊂M is a sub-ϕ-module such that M/N is free of rank one as a W (k)JuK⊗Zp kE-

module. Then N ' M(r0, . . . , rf−1; a) with rs ∈ {r1,s, . . . , rd,s} for all s, and for
some a ∈ k×E .

Proof. Choose a basis {ei,s} for M as in Theorem 4.22. Since we will work in M
for the remainder of the proof, no confusion will arise if we write {ei,s} also for the

image of that basis in M.
A generator fs−1 of Ns−1 has the form (e1,s−1, . . . , ed,s−1) · (v1,s, . . . , vd,s)T for

some v1,s, . . . , vd,s ∈ kEJuK, by hypothesis at least one of which is a unit. We know
from Theorem 4.22 that

ϕ(fs−1) = (e1,s, . . . , ed,s)XsΛs · (ϕ(v1,s), . . . , ϕ(vd,s))
T

where Xs is the reduction mod mE of Xs and Λs = [ur1,s , . . . , urd,s ] Now, observe
that each entry of (ϕ(v1,s), . . . , ϕ(vd,s))

T is either a unit or divisible by up, and
at least one is a unit. Since we have ri,s ≤ p for all i, it follows that the largest

power of u dividing the column vector Λs · (ϕ(v1,s), . . . , ϕ(vd,s))
T is uri,s for some

i. Noting that Xs is invertible, the same is true of ϕ(fs−1), and the proposition
follows. �
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Theorem 7.9. Suppose that K/Qp is unramified and p > 2. Let T be a GK-stable
OE-lattice in a crystalline representation V of E-dimension 2 whose κs-labeled
Hodge–Tate weights are {0, rs} with rs ∈ [1, p] for all s. Let M be the Kisin module
associated to T , and let M := M⊗OE kE.

Assume that the kE [GK ]-module T := T/mET is reducible. Then M is an
extension of two ϕ-modules of rank one, and there exist a, b ∈ k×E and a subset

J ⊂ {0, . . . , f − 1} so that M is as follows.
Set hi = ri if i ∈ J and hi = 0 if i 6∈ J . Then M is an extension of

M(h0, . . . , hf−1; a) by M(r0 − h0, . . . , rf−1 − hf−1; b), and we can choose bases

ei, fi of the Mi so that ϕ has the form

ϕ(ei−1) = (b)iu
ri−hiei

ϕ(fi−1) = (a)iu
hifi + xiei

with xi = 0 if i 6∈ J and xi ∈ kE constant if i ∈ J , except in the following case:

• (r0, . . . , rf−1) ∈ P,
• J = {i : ri = p− 1, p}, and
• a = b.

In that case fix i0 ∈ J ; then xi may be taken to be 0 for all i 6∈ J , to be a constant
for all i except i = i0, and to be the sum of a constant and a term of degree p if
i = i0.

Finally, T |IK '
(∏

i∈J ω
ri
i ∗

0
∏
i/∈J ω

ri
i

)
.

Proof. It follows from (for example) Lemma 5.5 that M is an extension of two rank
one ϕ-modules. Then Proposition 7.8 guarantees that if M is an extension of M′

by M′′, then M′′ has the form M(r′0, . . . , r
′
f−1; b) with r′i ∈ {0, ri} for all i. Taking

i ∈ J if r′i = 0 and i 6∈ J if r′i = ri puts M′′ into the correct form; considering the

determinant of ϕ in Theorem 4.22 one finds that M′ then also has the correct form.
Now M can be taken to have the form given by Proposition 7.4, and it remains

to show that each xi with i ∈ J cannot have any nonzero terms of degree between 1
and ri − 1. But Theorem 4.22 implies that the image ϕ(Mi−1) ⊂ Mi is spanned
over kEJupK by an element divisible exactly by u0 and an element divisible exactly
by uri . On the other hand, if xi were to have a term of degree between 1 and ri−1
then neither (b)iei + ϕ(c)((a)iu

rifi + xiei) nor (a)iu
rifi + xiei + ϕ(c)(b)iei would

be divisible exactly by uri for any c ∈ kEJuK. This is a contradiction.
Finally, that T |IK is as claimed follows from parts (1) and (2) of Proposition 6.7,

together with the fact that two mod p characters of GK that are equal on G∞ must
be equal. �

Remark 7.10. It follows easily from Proposition 6.7 and Lemma 7.3 that the ex-
ceptional case of Theorem 7.9 in which we allow a term of degree p can only occur
if T is an extension of a character by itself.

Corollary 7.11. Suppose that K/Qp is unramified and p > 2. Let ρ : GK →
GL2(Fp) be the reduction mod p of a GK-stable Zp-lattice in a crystalline represen-

tation Qp-representation of dimension 2 whose κ-labeled Hodge–Tate weights are
{0, rκ} with rκ ∈ [1, p] for all κ.
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Assume that ρ is reducible. Let S = Hom(k,Fp), and identify the set S with

HomQp(K,Qp). Then there is a subset J ⊂ S such that

ρ|IK '
(∏

σ∈J ω
rσ
σ ∗

0
∏
σ/∈J ω

rσ
σ

)
.

Proof. This follows immediately from Theorem 7.9, since ρ is necessarily defined
over some finite extension E/Qp. �

Note that Corollary 7.11 does not suffice to prove Theorem 2.12 in the reducible
case, because it says nothing about the extension classes. In the following sections
we will improve on this result by making a more detailed study of the full (ϕ, Ĝ)-
modules, rather than just the underlying Kisin modules. However, Corollary 7.11
can be combined with a combinatorial argument to deduce Theorem 2.12 in the
irreducible case (see Theorem 10.1 below).

8. Extensions of rank one (ϕ, Ĝ)-modules

8.1. From Kisin modules to (ϕ, Ĝ)-modules. We will now study how (and

whether) the rank two ϕ-modules of Section 7 can be extended to (ϕ, Ĝ)-modules.
Return to the situation of the previous section: that is, suppose K = K0 and p > 2,

and let T be a GK-stable OE-lattice as in Theorem 7.9. Let M̂ = (M̄, ϕ, Ĝ) be the

(ϕ, Ĝ)-module associated to T = T/mET via Theorem 5.2(4). We further assume
that T is reducible and sits in an exact sequence

0→ ψ1 → T → ψ2 → 0.

By Lemma 5.5, the (ϕ, Ĝ)-module M̂ sits in an exact sequence of (ϕ, Ĝ)-modules,
whose ambient Kisin module is an exact sequence 0→M2 →M→M1 → 0. In the
notation of Theorem 7.9, it follows from that result that M1 = M(h0, . . . , hf−1; a)

and M2 = M(r0 − h0, . . . , rf−1 − hf−1; b) for some choice of a, b, and J .

Lemma 8.1. Except possibly for the case that ri = hi = p for all i = 0, . . . , f − 1,
there is at most one way to extend the exact sequence

0 −→M2 −→M −→M1 −→ 0

to an exact sequence of (ϕ, Ĝ)-modules with natural kE-action satisfying the con-

clusion of Corollary 5.10. In particular the Ĝ-action on M̂ is uniquely determined
by M, except possibly for the case that ri = hi = p for all i = 0, . . . , f − 1.

Proof. Since M̂ is assumed to come from a crystalline representation, the conclusion

of Corollary 5.10 holds for M̂. Since by definition M is contained in the HK-

invariants of M̂, it suffices to show that the τ -action on R̂ ⊗ϕ,S M is uniquely

determined by the condition of Corollary 5.10. Since M̂ is reducible, we can write

τ(ei−1, fi−1) = (ei−1, fi−1)

(
αi βi
0 γi

)
with αi, βi, γi ∈ (R̂/pR̂)⊗FpkE ⊂ R⊗FpkE . If ζ ∈ R⊗FpkE is written ζ =

∑n
i=1 yi⊗

zi with z1, . . . , zn ∈ kE linearly independent over Fp, write vR(ζ) = mini{vR(yi)}.
One checks without difficulty that this is independent of the sum representing ζ, so
is well-defined and satisfies the usual inequality vR(ζ1 + ζ2) ≥ min(vR(ζ1), vR(ζ2)).
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The condition of Corollary 5.10 implies that vR(αi − 1), vR(γi − 1), vR(βi) ≥ p2

p−1
for all i.

Recalling that M is regarded as a ϕ(S)-submodule of R ⊗ϕ,S M, by Theorem

7.9 we may write ϕ(ei−1, fi−1) = (ei, fi)ϕ(Ai) with Ai =

(
(b)iu

ri−hi xi
0 (a)iu

hi

)
.

Since ϕ and τ commute, we have

ϕ(Ai)

(
ϕ(αi) ϕ(βi)

0 ϕ(γi)

)
=

(
αi+1 βi+1

0 γi+1

)
τ(ϕ(Ai)).

Recall that τ(u) = εu, and once again let η ∈ R be the element defined in
Lemma 6.6(2), so that ϕf (η) = εη. We obtain the following formulas:

(8.2) up(ri−hi)ϕ(αi) = αi+1(εu)p(ri−hi), uphiϕ(γi) = (εu)phiγi+1

and

(8.3) (b)iu
p(ri−hi)ϕ(βi) + ϕ(xi)ϕ(γi) = αi+1τ(ϕ(xi)) + (a)i(εu)phiβi+1

where for succinctness we have written (a)i, (b)i in lieu of 1⊗ (a)i, 1⊗ (b)i in the
preceding equation.

From (8.2) we see that ϕf (αi) = αiε
∑f−1
j=0 p

f−j(ri+j−hi+j), and now Lemma 6.6(2)
together with the requirement that vR(αi − 1) > 0 imply that

αi = η
∑f−1
j=0 p

f−j(ri+j−hi+j) ⊗ 1

for all i. Similarly we must have γi = η
∑f−1
j=0 p

f−jhi+j ⊗ 1 for all i. So at least the
αi, γi are uniquely determined.

Now suppose that there exists some other extension of M to a (ϕ, Ĝ)-module

M̂′. Then the τ -action on M̂′ is given by some α′i, β
′
i and γ′i that also satisfy (8.2)

and (8.3), and indeed we have already seen that α′i = αi and γ′i = γi.

Let β̃i = βi − β′i. Taking the difference between (8.3) for M̂ and M̂′ gives

(b)iu
p(ri−hi)ϕ(β̃i) = (a)i(εu)phi β̃i+1,

which implies that

bu
∑f−1
j=0 u

pf−j(ri+j−hi+j)
ϕf (β̃i) = a(εu)

∑f−1
j=0 u

pf−jhi+j
β̃i.

Considering the valuations of both sides, we see that if β̃i 6= 0, then

(8.4) vR(β̃i) =
1

pf − 1

f−1∑
j=0

pf−j(2hi+j − ri+j).

But since 2hi − ri ∈ {±ri} is at most p with equality if and only if hi = ri = p,

the right-hand side of (8.4) is at most p2

p−1 with equality if and only if hi = ri = p

for all i. In particular, since vR(βi), vR(β′i) ≥
p2

p−1 , either βi = β′i for all i, or else

hi = ri = p for all i, as required. �

Remark 8.5. In the case that each ri is at most p − 2, the results of [Bre99] show

that there is a canonical Ĝ-action on M̂.
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8.2. Comparison of extensions of rank one (ϕ, Ĝ)-modules. We are now

in a position to prove our main result on extensions of rank one (ϕ, Ĝ)-modules,
namely Proposition 8.8 below, which we will use in the following section to prove
our main local result (Theorem 9.1), showing that (under appropriate hypotheses)
the existence of a crystalline lift implies the existence of a reducible crystalline lift
with the same Hodge–Tate weights.

Definition 8.6. Write ~r := (r0, . . . , rf−1) with ri ∈ [1, p] for all i. We say that a

Kisin module M is an extension of type (~r, a, b, J) if it has the same shape as the
Kisin modules described by Theorem 7.9; that is, M sits in a short exact sequence

0 −→M(r0 − h0, . . . , rf−1 − hf−1; b) −→M −→M(h0, . . . , hf−1; a) −→ 0

in which the extension parameters xi satisfy xi = 0 if i 6∈ J and xi ∈ kE if i ∈ J
(except that xi0 is allowed to have a term of degree p for one i0 ∈ J when ~r ∈ P,

J = {i : ri = p − 1, p}, and a = b). We say that a (ϕ, Ĝ)-module M̂ with natural
kE-action is of type (~r, a, b, J) if it is an extension

0 −→ M̂′′ −→ M̂ −→ M̂′ −→ 0

such that the ambient short exact sequence of Kisin modules is an extension of type
(~r, a, b, J), and if for all x ∈ M there exist α ∈ R and y ∈ R ⊗ϕ,S M such that

τ(x)− x = αy and vR(α) ≥ p2

p−1 .

Remark 8.7. Thanks to our work in previous sections, we have the following.
(1) Unless ~r = (p, p, . . . , p) and J = {0, . . . , f−1}, we know from Lemma 8.1 that

each extension M of type (~r, a, b, J) extends to an extension M̂ of type (~r, a, b, J)
in at most one way.

(2) Suppose K = K0, p > 2, and T is a GK-stable OE-lattice as in Theorem 7.9.

If T = T/mET is reducible, then the (ϕ, Ĝ)-module M̂ associated to T = T/mET
via Theorem 5.2(4) is of type (~r, a, b, J) for some a, b, and J .

Suppose p > 2, fix integers r0, . . . , rf−1 ∈ [1, p], and let r =
∑f−1
i=0 p

f−1−iri
(mod pf − 1), so that r is an element of Z/(pf − 1)Z. If J ⊂ {0, . . . , f − 1}, let

the integers hi be defined as in Theorem 7.9, and write h(J) :=
∑f−1
i=0 p

f−1−ihi
(mod pf − 1).

Fix h ∈ Z/(pf − 1)Z and suppose that there exists a subset J ⊂ {0, . . . , f − 1}
such that h = h(J). For fixed h there may be several such choices of J , as we now
describe. Let i1, . . . , iδ be the distinct integers in the range {0, . . . , f−1} such that:

• (rij , . . . , rij+sj ) = (1, p− 1, . . . , p− 1, p) for some sj > 0, and
• either ij ∈ J and ij + 1, . . . , ij + sj 6∈ J , or vice versa.

According to Lemma 7.1, all other sets J ′ such that h = h(J ′) are obtained from J
by choosing some integers j ∈ [1, δ], and removing ij from J and adding ij +
1, . . . , ij + sj to J (if ij ∈ J to begin with), or vice versa (if ij 6∈ J to begin with);
or else ri = p− 1 for all i and J , J ′ = ∅ or {0, . . . , f − 1}.

In particular, for each h such that h = h(J) for at least one J , we can define
Jmax to be the unique subset of {0, . . . , f − 1} such that

• h = h(Jmax), and
• ij 6∈ J and ij + 1, . . . , ij + sj ∈ J for all 1 ≤ j ≤ δ.
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When ri = p−1 for all i and J = ∅ or {0, . . . , f −1}, we set Jmax = {0, . . . , f −1}.
(Strictly speaking we should write Jmax(h) instead of Jmax, but h will always be
fixed in any discussion involving Jmax.)

The main result of this subsection is the following.

Proposition 8.8. Let M̂ be a (ϕ, Ĝ)-module of type (~r, a, b, J), and set h = h(J).

Then there exists a (ϕ, Ĝ)-module N̂ of type (~r, a, b, Jmax) such that T̂ (N̂) ' T̂ (M̂).

Proof. If ~r = (p − 1, . . . , p − 1) and J = ∅ then the ambient Kisin module M is

split, and by Corollary 6.5 and Remark 8.7(1) the extension M̂ is also split. So in
this case there is nothing to prove. If J = Jmax (e.g. if δ = 0) there is again nothing
to prove, so we assume for the remainder of the proof that ~r 6= (p − 1, . . . , p − 1)
and J 6= Jmax. In particular δ > 0 and there exists some j such that ij ∈ J and
ij + 1, . . . , ij + sj 6∈ J . Let J ′ = J ∪ {ij + 1, . . . , ij + sj} \ {ij}. By induction on

#{j ∈ [1, δ] : ij ∈ J}, it suffices to prove that there exists an extension M̂′ of type

(~r, a, b, J ′) with T (M̂′) ' T (M̂). For simplicity write i, s for ij , sj .

Take a basis of M with notation as in Theorem 7.9, so that in particular we have

ϕ(ei−1) = (b)iei ϕ(ei+t−1) = (b)i+tu
p−1ei+t ϕ(ei+s−1) = (b)i+su

pei+s

ϕ(fi−1) = (a)iufi + xiei ϕ(fi+t−1) = (a)i+tfi+t ϕ(fi+s−1) = (a)i+sfi+s

with the middle set of equations holding for 1 ≤ t ≤ s− 1.
We will now construct two ϕ-submodules M′ and M′′ of M[1/u], and check that

they are the ambient Kisin modules of (ϕ, Ĝ)-modules that satisfy the conclusion
of Corollary 5.10.

Set e′j = ej and f ′j = fj for all j except i ≤ j ≤ i + s − 1, and take e′j = u−1ej
and f ′j = ufj for i ≤ j ≤ i+ s− 1. Let M′ be the S⊗Zp kE-submodule of M[1/u]

spanned by the e′j ’s and f ′j ’s. Then M′ is a ϕ-submodule of M[1/u] with

ϕ(e′i−1) = (b)iue
′
i ϕ(e′i+t−1) = (b)i+te

′
i+t ϕ(e′i+s−1) = (b)i+se

′
i+s

ϕ(f ′i−1) = (a)if
′
i + xiue

′
i ϕ(f ′i+t−1) = (a)i+tu

p−1f ′i+t ϕ(f ′i+s−1) = (a)i+su
pf ′i+s

together with defining equations for ϕ on M′j with j 6∈ {i − 1, . . . , i + s − 1} that

are identical to those of ϕ on Mj .
Next set e′′j = ej for all j, set f ′′j = fj for all j except i ≤ j ≤ i + s − 1, and

take f ′′j = ufj for i ≤ j ≤ i+ s− 1. Let M′′ be the S⊗Zp kE-submodule of M[1/u]

spanned by the e′′j ’s and f ′′j ’s. Then M′′ is a ϕ-submodule of M[1/u] with

ϕ(e′′i−1) = (b)ie
′′
i ϕ(e′′i+t−1) = (b)i+tu

p−1e′′i+t ϕ(e′′i+s−1) = (b)i+su
pe′′i+s

ϕ(f ′′i−1) = (a)if
′′
i + xie

′′
i ϕ(f ′′i+t−1) = (a)i+tu

p−1f ′′i+t ϕ(f ′′i+s−1) = (a)i+su
pf ′′i+s

and defining equations for ϕ on M′′j with j 6∈ {i−1, . . . , i+ s−1} that are identical

to those of ϕ on Mj .

Let us check that the Ĝ-action on R̂⊗ϕ,SM[1/u] preserves M′ and makes it into

a (ϕ, Ĝ)-module of type (~r, a, b, J ′). Since HK acts trivially on u and M, and since
ε − 1 ∈ I+, the only nontrivial part of of this claim is that M′ is preserved by τ .
This is immediate for the action of τ on (e′j , f

′
j) if j 6∈ [i, i+s−1]. If i ≤ j ≤ i+s−1
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and

τ(ej , fj) = (ej , fj)

(
αj+1 βj+1

0 γj+1

)
then an easy calculation shows that

τ(e′j , f
′
j) = (e′j , f

′
j)

(
αj+1ε

−p βj+1u
2pεp

0 γj+1ε
p

)
and again the conclusion is clear. In fact, since vR(βj+1u

2pεp) ≥ vR(βj+1) ≥
p2/(p− 1), not only do we obtain a (ϕ, Ĝ)-module M̂′ with ambient Kisin module
M′, we have also shown that for all x ∈M′ there exist α ∈ R and y ∈ R ⊗ϕ,S M′

such that τ(x)− x = αy and vR(α) ≥ p2

p−1 . The argument for M̂′′ is essentially the

same, with the same conclusion.

By construction we have natural inclusions M̂′′ ↪→ M̂ and M̂′′ ↪→ M̂′. It follows

from Lemma 5.8 that T̂ (M̂′) ' T̂ (M̂′′) ' T̂ (M̂).

Note that we have not quite finished showing that M̂′ is an extension of type
(~r, a, b, J ′): because of the presence of the term xiue

′
i in ϕ(f ′i−1), the presentation

for M′ that we have given does not have exactly the same shape as in Theorem 7.9.
To conclude, we must show that there is a change of variables as in the proof
of Proposition 7.4 that puts M′ into the correct form. First replace f ′i with f ′i +
xiu(a)−1i e′i, so that now ϕ(f ′i−1) = (a)if

′
i ; this introduces a term of the form cupe′i+1

into the formula for ϕ(f ′i), with c ∈ kE . Noting that i+ 1 ∈ J ′, we can now use the
terminology of the proof of Proposition 7.4: since p ≥ hi+1 ∈ {p − 1, p}, the pair
(i+ 1, p) affects some other pair. We now distinguish three possibilities.

• If the pair (i+ 1, p) is part of a loop, then J ′ must be as in the exceptional
case of Proposition 7.4; in that case M′ is already written as an extension
of type (~r, a, b, J ′), because the term cupe′i+1 is permitted.
• If the pair (i + 1, p) is part of a stub, suppose that the last term (im, dm)

in the stub affects (i′, d′) with d′ < ri′ . Then in fact d′ = 0, because p | d′
by (7.7) and ri′ ≤ p. It follows that there is a change of variables as in
the proof of Proposition 7.4 that removes the term cupe′i+1 from ϕ(f ′i), and
adds a term of the form xe′j into some ϕ(f ′j−1) with j ∈ J ′ and x ∈ kE .

After such a change of variables, M′ is written as an extension of type
(~r, a, b, J ′).
• If the pair (i+ 1, p) is part of a path, then just as in the proof of Proposi-

tion 7.4 there is a change of variables which eliminates the cupe′i+1 term.

After such a change of variables, M′ is written as an extension of type
(~r, a, b, J ′).

This completes the proof. �

9. The reducible case

We now prove Theorem 2.12 in the reducible case. Let K/Qp be a finite unram-

ified extension with residue field k. As usual, we will identify HomQp(K,Qp) with

Hom(k,Fp). From Definition 2.3, we see that we need to prove the following result,
whose proof will occupy the remainder of this section.

Theorem 9.1. Suppose p > 2. Let ρ : GK → GL2(Zp) be a continuous represen-

tation such that ρ : GK → GL2(Fp) is reducible. Suppose that ρ is crystalline with
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κ-Hodge–Tate weights {bκ,1, bκ,2} for each κ ∈ HomQp(K,Qp), and suppose further
that 1 ≤ bκ,1 − bκ,2 ≤ p for each κ.

Then there is a reducible crystalline representation ρ′ : GK → GL2(Zp) with the
same κ-Hodge–Tate weights as ρ for each κ, such that ρ ' ρ′.

Write ρ '
(
ψ1 ∗
0 ψ2

)
. Note that by Corollary 7.11 there is a decomposition

HomQp(K,Qp) = J
∐
Jc such that ψ1|IK =

∏
κ∈J ω

bκ,1
κ

∏
κ∈Jc ω

bκ,2
κ and ψ2 =∏

κ∈Jc ω
bκ,1
κ

∏
κ∈J ω

bκ,2
κ . In fact there may be several such J ; temporarily fix one

choice.
Let ψ1, ψ2 : GK → Z×p be crystalline lifts of ψ1, ψ2 respectively with the prop-

erties that HTκ(ψ1) = bκ,1 if κ ∈ J and bκ,2 otherwise, and HTκ(ψ2) = bκ,2 if
κ ∈ J and bκ,1 otherwise. (The characters ψ1 and ψ2 exist by Corollary 6.5 and
Proposition 6.7, and are easily seen to be unique up to an unramified twist.)

We naturally identify ExtGK (ψ2, ψ1) with H1(GK , ψ1ψ
−1
2 ) from now on.

Definition 9.2. Let Lψ1,ψ2
be the subset of H1(GK , ψ1ψ

−1
2 ) consisting of all ele-

ments such that the corresponding representation has a crystalline lift of the form(
ψ1 ∗
0 ψ2

)
.

We have the following variant of [GLS12, Lem. 4.2.2] (which is in turn a variant
of [BDJ10, Lem. 3.12]).

Lemma 9.3. Lψ1,ψ2
is an Fp-vector subspace of H1(GK , ψ1ψ

−1
2 ) of dimension |J |,

unless ψ1 = ψ2, in which case it has dimension |J |+ 1.

Proof. Let ψ = ψ1ψ
−1
2 . Recall that H1

f (GK ,Zp(ψ)) is by definition the preimage

of H1
f (GK ,Qp(ψ)) under the natural map η : H1(GK ,Zp(ψ)) → H1(GK ,Qp(ψ)),

so that Lψ1,ψ2
is the image of H1

f (GK ,Zp(ψ)) in H1(GK , ψ). The kernel of η

is precisely the torsion part of H1(GK ,Zp(ψ)). Since ψ 6= 1, e.g. by examining

Hodge–Tate weights, this torsion is non-zero if and only if ψ = 1, in which case it has
the form λ−1Zp/Zp for some λ ∈ mZp . (To see this, note that if ψ 6= 1 is defined over

E, then the long exact sequence associated to 0→ OE(ψ)
$→ OE(ψ)→ kE(ψ)→ 0

identifies kE(ψ)GK with the $-torsion in ker(η).)
By [Nek93, Prop. 1.24(2)] and the assumption that bκ,1 > bκ,2 for each κ, we

see that dimQp H
1
f (GK ,Qp(ψ)) = |J |, again using ψ 6= 1. Since H1(GK ,Zp(ψ)) is

a finitely generated Zp-module, the result follows. �

The following Lemma is a slight variant of [BLGG12, Lem. 6.1.6] and [GLS12,
Prop. 5.2.9], and has an almost identical proof.

Lemma 9.4. Suppose that for each κ we have bκ,1−bκ,2 = p and that (ψ1ψ
−1
2 )|IK =

ε. Then ρ has a reducible crystalline lift ρ′ with HTκ(ρ′) = {bκ,1, bκ,2} for each κ.

Proof. Suppose firstly that ψ1 6= ψ2ε. By assumption, we can take J = S in the

above. Then for any choice of ψ1, ψ2, we have Lψ1,ψ2
= H1(GK , ψ1ψ

−1
2 ) by Lemma

9.3 and the local Euler characteristic formula, completing the proof in this case.

Assume now that ψ1ψ
−1
2 = ε. By twisting we can reduce to the case (bκ,1, bκ,2) =

(p, 0) for each κ. Let L be a given line in H1(GK , ε), and choose an unramified
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character χ with trivial reduction. Let E/Qp be a finite extension with ring of
integers O, uniformiser $ and residue field F, such that χ is defined over E and L
is defined over F (that is, there is a basis for L which corresponds to an extension
defined over F). Since any extension of 1 by χεp is automatically crystalline, it
suffices to show that we can choose χ so that L lifts to H1(GK ,O(χεp)).

Let H be the hyperplane in H1(GK ,F) which annihilates L under the Tate
pairing. Let δ1 : H1(GK ,F(ε)) → H2(GK ,O(χεp)) be the map coming from the

exact sequence 0 → O(χεp)
$→ O(χεp) → F(ε) → 0 of GK-modules. We need to

show that δ1(L) = 0 for some choice of χ.
Let δ0 be the map H0(GK , (E/O)(χ−1ε1−p))→ H1(GK ,F) coming from the ex-

act sequence 0 → F → (E/O)(χ−1ε1−p)
$→ (E/O)(χ−1ε1−p) → 0 of GK-modules.

By Tate local duality, the condition that L vanish under the map δ1 is equivalent
to the condition that the image of the map δ0 be contained in H. Let n ≥ 1 be the
largest integer with the property that χ−1ε1−p ≡ 1 (mod $n). Then we can write
χ−1ε1−p(x) = 1 + $nαχ(x) for some function αχ : GK → O. Let αχ : GK → F
denote αχ (mod $). Then αχ is a group homomorphism (i.e. a 1-cocycle), and
the choice of n ensures that it is non-trivial. It is straightforward to check that the
image of the map δ0 is the line spanned by αχ. If αχ is in H for some χ, we are
done. Suppose this is not the case. We break the rest of the proof into two cases.

Case 1: L is très ramifié: To begin, we observe that it is possible to have chosen χ
so that αχ is ramified. To see this, letm be the largest integer with the property that
(χ−1ε1−p)|IK ≡ 1 (mod $m). Note that m exists since the Hodge–Tate weights of
χ−1ε1−p are not all 0. If m = n then we are done, so assume instead that m > n.
Let g ∈ GK be a fixed lift of FrobK . We claim that χ−1ε1−p(g) = 1 + $nαχ(g)
such that αχ(g) 6≡ 0 (mod $). In fact, if αχ(g) ≡ 0 (mod $) then χ−1ε1−p(g) ∈
1 + $n+1OK . Since m > n we see that χ−1ε1−p(GK) ⊂ 1 + $n+1OK and this
contradicts the selection of n. Now let χ′ be the unramified character sending our
fixed g to 1 +$nαχ(g). Then χ′ has trivial reduction, and after replacing χ by χχ′

we see that n has increased but m has not changed. After finitely many iterations
of this procedure we have m = n, completing the claim.

Suppose, then, that αχ is ramified. The fact that L is très ramifié implies that H
does not contain the unramified line in H1(GK ,F). Thus there is a unique x ∈ F×
such that αχ+ux ∈ H where ux : GK → F is the unramified homomorphism sending
FrobK to x. Replacing χ with χ times the unramified character sending FrobK to
(1 +$nx)−1, for x a lift of x, we are done.

Case 2: L is peu ramifié: Making a ramified extension of O if necessary, we can
and do assume that n ≥ 2 (for example, replacing E by E($1/2) has the effect
of replacing n by 2n). The fact that L is peu ramifié implies that H contains the
unramified line. It follows that if we replace χ with χ times the unramified character
sending FrobK to 1 +$, then we are done (as the new αχ will be unramified). �

Proof of Theorem 9.1. We maintain the notation established above, so that in par-

ticular we have ρ '
(
ψ1 ∗
0 ψ2

)
. If (ψ1ψ

−1
2 )|IK = ε and bκ,1 − bκ,2 = p for all

κ then the result follows from Lemma 9.4, so assume from now on that either

(ψ1ψ
−1
2 )|IK 6= ε or bκ,1 − bκ,2 6= p for some κ. Twisting, we can and do assume in

addition that bκ,2 = 0 for each κ. Write rκ := bκ,1 for each κ.
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Choose a finite extension E/Qp which is sufficiently large. In particular, choose
E such that: ρ is defined over OE ; and for each tuple of integers {sκ} in the range
[0, p] such that if ψi (i = 1, 2) has a crystalline lift ψi with HTκ(ψi) = sκ for all κ,
it has such a lift defined over OE . Fixing one choice for each possible ψi (for each
choice of Hodge–Tate weights) in the previous clause, further enlarge E so that
each space H1

f (GK ,Zp(ψ1ψ
−1
2 )) is defined over OE .

From now on, we will allow ρ (and thus ρ) to vary over all crystalline represen-

tations GK → GL2(OE) which have ρ '
(
ψ1 ∗
0 ψ2

)
(where the extension class ∗

is allowed to vary) and have κ-labelled Hodge–Tate weights {0, rκ} for each κ. By
Theorem 7.9 together with Remark 8.7(2), Proposition 8.8, and the discussion be-
tween them, we see that there exist a, b ∈ kE and a subset Jmax ⊂ {0, . . . , f − 1}
so that for any such ρ, there is a (ϕ, Ĝ)-module N̂ of type (~r, a, b, Jmax) such that

T̂ (N̂) ' ρ. (Apply Proposition 6.7 to see that a, b are uniquely determined.) By

Theorem 7.9 and the assumption that we are not in the case that (ψ1ψ
−1
2 )|IK = ε

and each rκ = p, we see that we are not in the exceptional case in Lemma 8.1;

there are thus at most (#kE)|Jmax| isomorphism classes of (ϕ, Ĝ)-modules N̂ of type
(~r, a, b, Jmax), and thus (by Theorem 7.9 and Remark 7.10) at most (#kE)|Jmax| el-

ements of H1(GK , ψ1ψ
−1
2 ) corresponding to representations ρ, unless ψ1 = ψ2, in

which case (#kE)|Jmax| must be replaced with (#kE)|Jmax|+1.
Now apply the discussion at the beginning of this section with J = Jmax; that

is, choose (as we may, by, for example, Proposition 7.8) crystalline characters ψ1,
ψ2 lifting ψ1, ψ2 respectively such that HTκ(ψ1) = rκ if κ ∈ Jmax and 0 otherwise,
and HTκ(ψ2) = 0 if κ ∈ Jmax and rκ otherwise. Note that by our choice of E we
may further suppose that ψ1, ψ2, and H1

f (GK ,Zp(ψ1ψ
−1
2 )) are all defined over OE .

By Lemma 9.3 we see that there are (#kE)|Jmax| extension classes which arise
as the reductions of crystalline representations which are extensions of ψ2 by ψ1,
unless ψ1 = ψ2, in which case there are (#kE)|Jmax|+1 extension classes. Since
we have already shown that there are at most (#kE)|Jmax| (or (#kE)|Jmax|+1 if
ψ1 = ψ2) extension classes arising from the reduction of crystalline representations
with κ-labelled Hodge–Tate weights {0, rκ}, the result follows. �

10. The irreducible case

We now explain how to deduce the irreducible case of Theorem 2.12 from the
reducible one. A usual, let K = K0 be the unramified extension of Qp of degree f ,
and let

ρ : GK → GL2(Qp)

be a continuous irreducible representation such that ρ : GK → GL2(Fp) is also
irreducible. Suppose that ρ is crystalline with κ-Hodge–Tate weights {bκ,1, bκ,2}
for each κ ∈ Hom(K,Qp), and suppose further that 1 ≤ bκ,1 − bκ,2 ≤ p for each κ.

Let k denote the residue field of K, and let K2 be the quadratic unramified exten-
sion of K, with residue field k2. We write S = Hom(k,Fp) and S2 = Hom(k2,Fp).
We say that J ⊂ S2 is a balanced subset if it consists of precisely one element of S2

extending each element of S. If σ ∈ S is the reduction mod p of κ ∈ Hom(K,Qp),
we write bσ,i for bκ,i. Recalling the definition of WBDJ(ρ) when ρ is irreducible
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(Definition 2.4) we see that in order to complete the proof of Theorem 2.12, we
need to prove the following result.

Theorem 10.1. There is a balanced subset J ⊂ S2 such that

ρ|IK '

(∏
σ∈J ω

bσ|k,1
σ

∏
σ/∈J ω

bσ|k,2
σ 0

0
∏
σ∈J ω

bσ|k,2
σ

∏
σ/∈J ω

bσ|k,1
σ

)
.

Proof. Since ρ|GK2
is reducible, by Corollary 7.11 we certainly have a decomposition

as in the statement of the Theorem for some J ⊂ S2, but we do not know that
J is balanced. Indeed, this is not completely automatic, but we will show that a
balanced choice of J always exists.

To see this, note that since ρ|IK is irreducible, we must have∏
σ∈J

ω
bσ|k,1
σ

∏
σ/∈J

ω
bσ|k,2
σ =

∏
σ∈J

ω
bσ|k,2

σ◦ϕf
∏
σ/∈J

ω
bσ|k,1

σ◦ϕf .

Write J1 for the set of places in S both of whose extensions to S2 are in J , and J2
for the set of places in S neither of whose extensions to S2 are in J . Then we see
that we have ∏

σ∈J1

ωbσ,1−bσ,2σ =
∏
σ∈J2

ωbσ,1−bσ,2σ .

If both J1, J2 are empty, then J is balanced, and we are done. Assume therefore
that this is not the case.

Define xσ as follows: xσ = bσ,1 − bσ,2 if σ ∈ J1, xσ = bσ,2 − bσ,1 if σ ∈ J2, and
xσ = 0 otherwise. Note that since ρ is irreducible, there is at least one place σ with
xσ = 0. We have

∏
σ∈S ω

xσ
σ = 1, and each xσ ∈ [−p, p]. Choose an element σ0 ∈ S,

and recursively define σi = σpi+1. Writing ωi for ωσi , we have ωpi+1 = ωi. From now
on, we identify S with {0, . . . , f − 1} by identifying σi with i. By Lemma 7.1, the
cyclic set of those i with xi 6= 0 must break up as a disjoint union of sets of the
form (i, i+ 1, . . . , i+ j) with (xi, xi+1, . . . , xi+j) = ±(−1, p− 1, p− 1, . . . , p− 1, p)
(where there may not be any occurrences of p− 1). For each such interval (i, i+ j),
we may choose a lift of i to S2, and replace J with J∆{i, . . . , i + j}. It is easy to
see that this choice does not change ρ|IK , and results in a balanced choice of J , as
required. �

Remark 10.2. It is perhaps worth illustrating the proof of Theorem 10.1 with an
example. Take f = 4, and consider a representation of the form(

ωp−11 ωp2ω
b
3ω

p−1
5 ωp6 0

0 ω0ω4ω
b
7

)
,

with 0 < b ≤ p − 1. This is certainly a possible restriction to inertia of an irre-
ducible representation, but it is not written in the balanced form of the statement
of Theorem 10.1. However, if we write it as(

ωp−11 ωp2ω
b
3ω4 0

0 ω0ω
p−1
5 ωp6ω

b
7

)
,

then we obtain a balanced expression, as required.
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