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Abstract

We study the possible weights of an irreducible 2-dimensional mod p representation of
Gal(F/F ) which is modular in the sense of that it comes from an automorphic form
on a definite quaternion algebra with centre F which is ramified at all places dividing
p, where F is a totally real field. In most cases we determine the precise list of possible
weights; in the remaining cases we determine the possible weights up to a short and
explicit list of exceptions.

1. Introduction

Let F be a totally real field and let p be a prime number. In this paper we formulate, and largely
prove, an analogue of the weight part of Serre’s conjecture [Ser87] for automorphic forms on
quaternion algebras over F which are ramified at all places dividing p.

In recent years, a great deal of attention has been given to the problem of generalizing the
weight part of Serre’s conjecture beyond the case of GL(2,Q), beginning with the seminal paper
[BDJ08] which considered the situation for Hilbert modular forms. Let GF denote the absolute
Galois group of F ; then to any irreducible modular representation

ρ : GF → GL2(Fp)

there is associated a set of weights W (ρ), the set of weights in which ρ is modular (see section
2 for the definitions of weights and of what it means for ρ to be modular of a certain weight).
Under the assumption that p is unramified in F , the paper [BDJ08] associated to ρ a set of
weights W ?(ρ), and conjectured that W ?(ρ) = W (ρ). Schein [Sch08] subsequently proposed a
generalisation that, in the tame case (where the restrictions of ρ to inertia subgroups at places
dividing p are semisimple), removes the restriction that p be unramified in F . When p is either
unramified or totally ramified in F many cases of these conjectures have been proved, in [Gee06]
and [GS] respectively, but the general case has so far been out of reach.

As far as we know, there is no corresponding conjecture in the literature for automorphic
forms on quaternion algebras that are ramified at p (although the results in the case F = Q
are easily deduced from the discussion in section 4 of [Kha01]). We specify a conjectural set
of weights W ?(ρ), depending only on the restrictions of ρ to decomposition subgroups at places
dividing p. In the case that these restrictions are semisimple, the conjecture is completely explicit
(and depends only on the restrictions to inertia subgroups). In the general case the set W ?(ρ)
is defined in terms of the existence of certain potentially Barsotti-Tate lifts of specific type, and
so depends on some rather delicate questions involving extensions of crystalline characters. In
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fact, we always make a definition in terms of the existence of certain potentially Barsotti-Tate
lifts, and in the semisimple case we make this description explicit by means of calculations with
Breuil modules and strongly divisible modules.

We assume that p is odd, and that ρ|GF (ζp)
is irreducible. We make a mild additional assump-

tion if p = 5. All of these restrictions are imposed by our use of the modularity lifting theorems
of [Kis09b] (or rather, by their use in [Gee]). Under these assumptions, we are able to prove that

if for each place v|p, ρ|GFv is not of the form
(
ψ1 ∗
0 ψ2

)
with ψ1/ψ2 equal to the mod p cyclotomic

character, then W ?(ρ) = W (ρ). In the exceptional cases we establish that W (ρ) ⊂ W ?(ρ), with
equality up to a short list of possible exceptions (for example, in the case that there is only one
place of F above p there is only one exception). Our techniques are analogous to those of [Gee06]
and [GS]. As in those papers, the strategy is to construct modular lifts of ρ which are potentially
semistable of specific type, using the techniques of Khare-Wintenberger, as explained in [Gee].

The significant advantage in the present situation over those considered in [GS] and [Gee06]
is that the property of being modular of a specific weight corresponds exactly to the property
of having a lift of some specific type (in the case considered in [Gee06] this correspondence was
considerably weaker). Accordingly, we have no regularity assumption on the weights, we do not
have to use Buzzard’s “weight cycling” technique, and especially we do not need to make any
restriction on the splitting behaviour of p in F .

In the case that the restrictions of ρ to decomposition groups at places dividing p are all
semisimple, we establish an explicit description of W ?(ρ) by a computation in two stages. In
one step we make use of Breuil modules with descent data, in the same style as analogous
computations in the literature; our calculations are more complicated than those made in the
past, however, as we have no restrictions on the ramification or inertial degrees of our local fields.

For the second step, we have to exhibit potentially Barsotti-Tate lifts of the appropriate types.
Writing down such lifts is rather non-trivial. We accomplish this by means of an explicit construc-
tion of corresponding strongly divisible modules; again, these calculations are more complicated
than those in the literature, because we make no restrictions on the ramification or inertial
degrees of our local fields.

We also note that while we work throughout with definite quaternion algebras, it should not
be difficult to extend our results to indefinite algebras; one needs only to establish the analogue
of Lemma 2.1 (see for example the proof of Lemma 6 of [DT94] for the case F = Q).

We now detail the outline of the paper. In section 2 we give our initial definitions and notation.
In particular, we introduce spaces of algebraic modular forms on definite quaternion algebras,
and we explain what it means for ρ to be modular of a specific weight.

In section 3 we explain which tame lifts we will need to consider, and the relationship be-
tween the existence of modular lifts of specified types and the property of being modular of a
certain weight. This amounts to recalling certain concrete instances of the local Langlands and
Jacquet-Langlands correspondences for GL2 and local-global compatibility. All of this material
is completely standard.

Section 4 begins the work of establishing an explicit description of W ?(ρ), by finding necessary
conditions for the existence of potentially Barsotti-Tate lifts of particular type, via calculations
with Breuil modules. The sufficiency of these conditions is established in section 6, by writing
down explicit strongly divisible modules. Both sections make use of a lemma relating the type
of the lifts to the descent data on the Breuil modules and strongly divisible modules, which is
established in section 5.
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These local calculations are summarised in section 7. Finally, in section 8 we prove our main
theorem.

We are grateful to the anonymous referee for reading the paper carefully and providing a
number of valuable suggestions. The second author thanks the MPIM for its hospitality.

2. Notation and assumptions

Let p be an odd prime. Fix an algebraic closure Q of Q, an algebraic closure Qp of Qp, and an

embedding Q ↪→ Qp. We will consider all finite extensions of Q (respectively Qp) to be contained

in Q (respectively Qp). If K is such an extension, we let GK denote its absolute Galois group

Gal(K/K). Let F be a totally real field. Let ρ : GF → GL2(Fp) be a continuous representation.
Assume from now on that ρ|GF (ζp)

is absolutely irreducible. If p = 5 and the projective image of ρ

is isomorphic to PGL2(F5), assume further that [F (ζ5) : F ] = 4. We normalise the isomorphisms
of local class field theory so that a uniformiser corresponds to a geometric Frobenius element.

We wish to discuss the Serre weights of ρ for quaternion algebras ramified at all places dividing
p. We choose to work with totally definite quaternion algebras. We recall the basic definitions
and results that we need.

Let D be a quaternion algebra with center F which is ramified at all infinite places of F and
at a set Σ of finite places which contains all primes dividing p. Fix a maximal order OD of D
and for each finite place v /∈ Σ fix an isomorphism OD,v := (OD)v

∼−→ M2(OFv). For any finite
place v let πv denote a uniformiser of Fv.

Let U =
∏
v Uv ⊂ (D ⊗F AfF )× be a compact open subgroup, with each Uv ⊂ O×D,v. Further-

more, assume that Uv = O×D,v for all v ∈ Σ.

Take A a topological Zp-algebra. For each place v|p fix a continuous representation σv : Uv →
Aut(Wv) with Wv a finite A-module. Let σ denote the representation ⊗v|pσv of Up :=

∏
v|p Uv,

acting on Wσ := ⊗v|pWv. We regard σ as a representation of U in the obvious way (that is, we

let Uv act trivially if v - p). Fix also a character ψ : F×\(AfF )× → A× such that for any finite

place v of F , σ|Uv∩O×Fv is multiplication by ψ−1. Then we can think of Wσ as a U(AfF )×-module

by letting (AfF )× act via ψ−1.

Let Sσ,ψ(U,A) denote the set of continuous functions

f : D×\(D ⊗F AfF )× →Wσ

such that for all g ∈ (D ⊗F AfF )× we have

f(gu) = σ(u)−1f(g) for all u ∈ U,

f(gz) = ψ(z)f(g) for all z ∈ (AfF )×.

We can write (D ⊗F AfF )× =
∐
i∈I D

×tiU(AfF )× for some finite index set I and some ti ∈
(D ⊗F AfF )×. Then we have

Sσ,ψ(U,A)
∼−→ ⊕i∈IW

(U(AfF )
×∩t−1

i D×ti)/F×

σ ,

the isomorphism being given by the direct sum of the maps f 7→ f(ti). From now on we make
the following assumption:

For all t ∈ (D ⊗F AfF )× the group (U(AfF )× ∩ t−1D×t)/F× = 1.
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One can always replace U by a subgroup (satisfying the above assumptions, and without changing
Up) for which this holds (cf. section 3.1.1 of [Kis09a]). Under this assumption Sσ,ψ(U,A) is a
finite A-module, and the functor Wσ 7→ Sσ,ψ(U,A) is exact in Wσ.

We now define some Hecke algebras. Let S be a set of finite places containing Σ and the primes
v of F such that Uv 6= O×D,v. Let Tuniv

S,A = A[Tv, Sv]v/∈S be the commutative polynomial ring in

the formal variables Tv, Sv. Consider the left action of (D ⊗F AfF )× on Wσ-valued functions on

(D ⊗F AfF )× given by (gf)(z) = f(zg). Then we make Sσ,ψ(U,A) a Tuniv
S,A -module by letting Sv

act via the double coset U
(
πv 0
0 πv

)
U and Tv via U

(
πv 0
0 1

)
U . These are independent of the choices

of πv. We will write Tσ,ψ(U,A) or Tσ,ψ(U) for the image of Tuniv
S,A in EndSσ,ψ(U,A).

Let m be a maximal ideal of Tuniv
S,A . We say that m is in the support of (σ, ψ) if Sσ,ψ(U,A)m 6= 0.

Now let O be the ring of integers in Qp, with residue field F = Fp, and suppose that A = O in the
above discussion, and that σ has open kernel and is free as an O-module. Consider a maximal
ideal m ⊂ Tuniv

S,O with residue field F which is in the support of (σ, ψ). Then there is a semisimple
Galois representation ρm : GF → GL2(F) associated to m which is characterised up to conjugacy
by the property that if v /∈ S then ρm|GFv is unramified, and if Frobv is an arithmetic Frobenius
at v then the characteristic polynomial of ρm(Frobv) is the image of X2 − TvX + SvNv in F[X].

We have the following basic lemma.

Lemma 2.1. Let ψ : F×\(AfF )× → O× be a continuous character, and write ψ for the composite
of ψ with the projection O× → F×. Fix a representation σ′ of Up on a finite free O-module Wσ′ ,
and an irreducible representation σ of Up on a finite free F-module Wσ. Suppose that we have

σ′|Uv∩O×Fv = ψ−1|Uv∩O×Fv and σ|Uv∩O×Fv = ψ
−1|Uv∩O×Fv for all finite places v.

Let m be a maximal ideal of Tuniv
S,O .

Suppose that Wσ occurs as a Up-module subquotient of Wσ′ ⊗ F. If m is in the support of
(σ, ψ), then m is in the support of (σ′, ψ).

Conversely, if m is in the support of (σ′, ψ), then m is in the support of (σ, ψ) for some
irreducible Up-module subquotient Wσ of Wσ′ ⊗ F.

Proof. The first part is proved just as in Lemma 3.1.4 of [Kis09b], and the second part follows,
for example from Proposition 1.2.3 of [AS86], or from a basic commutative algebra argument.

We are now in a position to define what it means for a representation to be modular of some
weight. Let v|p be a place of F , so that Uv = O×D,v. Let σv be an irreducible F-representation of
Uv. Note that if Πv is a uniformiser of OD,v, then k2,v := OD,v/Πv is a finite field, a quadratic
extension of the residue field kv of Fv. The kernel of the reduction map Uv → k×2,v is a pro-p

group, so σv factors through this kernel, and is a representation of the finite abelian group k×2,v.
It is therefore one-dimensional. Let σ = ⊗v|pσv, which we will regard as an O-module via the
natural map O → F.

Definition 2.2. We say that ρ is modular of weight σ if for some D, S, U , ψ, and m ⊂ Tuniv
S,O as

above, we have Sσ,ψ(U,O)m 6= 0 and ρm
∼= ρ.

[Here ρm is characterised as above, and exists by Lemma 2.1 and the remarks above.] Write
W (ρ) for the set of weights σ for which ρ is modular of weight σ. Assume from now on that ρ is
modular of some weight, and fix D, S, U , ψ, m as in the definition.

We also have the following useful lemma, which was first observed by Serre in the case F = Q
(see remark (11) in Serre’s letter to Tate in [Ser96]). For each place v|p we let qv denote the order
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of the residue field kv of Fv. If σv is an irreducible F-representation of O×D,v, then by the remarks

above it is a character of k×2,v. Thus σqvv is another irreducible F-representation, and σ
q2v
v = σv.

Serre observed that the set W (ρ) is preserved by this operation. This is essentially a consequence
of the structure of OD,v. Let K2,v = W (k2,v)[1/p], a subfield of Dv. Note that there is a choice
of uniformiser Πv of Dv with the property that conjugation by Πv preserves K2,v, and acts on it
via a non-trivial involution. In particular, the induced action on k2,v is via the qv-th power map.

Lemma 2.3. Let v be a place of F dividing p, and let σ be a weight as above. Let σ′ = σqvv ⊗w|p,w 6=v
σw. Then ρ is modular of weight σ if and only if it is modular of weight σ′.

Proof. It suffices to exhibit a bijection

θ : Sσ,ψ(U,F)→ Sσ′,ψ(U,F)

which commutes with the action of Tuniv
S,O . Let Π ∈ (D⊗F Af )× be trivial away from v, and equal

to Πv at v, where Πv is as in the previous paragraph. Then we define θ by

(θf)(x) := f(xΠ).

It is straightforward to check that this map has the required properties; the key point is that if
u ∈ U , then

(θf)(xu) = f(xuΠ)

= f(xΠ(Π−1uΠ))

= σ(Π−1uΠ)−1f(xΠ)

= σ′(u)−1f(xΠ)

= σ′(u)−1(θf)(x).

3. Weights are controlled by lifts of tame type

Continue to let v be a place of F that divides p. We distinguish two types of irreducible
F-representations σv of Uv. Recall that any such representation is 1-dimensional, and factors
through k×2,v, with k2,v a quadratic extension of kv.

Definition 3.1. We say that σv is of type I if it does not factor through the norm k×2,v → k×v .
Otherwise, we say that it is of type II.

We now recall some facts about the local Langlands and local Jacquet-Langlands correspon-
dences. Let K be a finite extension of Qp, let L be an unramified quadratic extension of K, and
let D be a nonsplit quaternion algebra over K. Consider L as a subfield of D. Let k be the residue
field of K, of cardinality q. If π is an irreducible admissible (C- or Qp-valued) representation of
D×, we let JL(π) be the corresponding representation of GL2(K). If π is an irreducible admissi-
ble representation of GL2(K), we let LL(π) denote the corresponding representation of the Weil
group WK of K. Let ND : D× → K× be the reduced norm. As usual we identify characters of
L× or K× with characters of the corresponding Weil groups via local class field theory. If χ is
a character of L× which does not factor through the norm to K×, we denote the corresponding
supercuspidal representation of GL2(K) by Wχ.

– If χ is a character of K×, then JL(χ ◦ ND) = (χ ◦ det) ⊗ St, where St is the Steinberg
representation.
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– Suppose that χ is a character of L× of conductor 1. Then LL(π)|IK ∼= χ|IK ⊕ χ|
q
IK

if and
only if π = Wχ′ for some unramified twist χ′ of χ. [See section A.3.2 of [BM02].]

– If χ is a character of L× of conductor 1, then JL−1(Wχ) is 2-dimensional. Furthermore,
JL−1(Wχ)|O×L

∼= χ|O×L ⊕ χ|
q

O×L
. [See section 7 of [Pra90].]

We now recall some definitions relating to potentially semistable lifts of particular type. We
use the conventions of [Sav05].

Definition 3.2. Let τv be an inertial type. We say that a lift ρ : GFv → GL2(Qp) of ρ|GFv is
parallel potentially Barsotti-Tate (respectively parallel potentially semistable) of type τv if ρ is
potentially Barsotti-Tate (respectively potentially semistable with all Hodge-Tate weights equal
to 0 or 1), has determinant a finite order character of order prime to p times the cyclotomic char-
acter, and the corresponding Weil-Deligne representation, when restricted to IFv , is isomorphic
to τv.

Note that for a two-dimensional de Rham representation with all Hodge-Tate weights equal
to 0 or 1, the condition that all pairs of labeled Hodge-Tate weights are {0, 1} is equivalent to
the condition that the determinant is the product of the cyclotomic character, a finite order
character, and an unramified character; the condition of being parallel is slightly stronger than
this.

If σv is an irreducible F-representation of Uv, we will consider the inertial type of IFv given
by σ̃v ⊕ σ̃qvv , where a tilde denotes a Teichmüller lift (considered as a representation of IFv via
local class field theory).

Lemma 3.3. ρ is modular of weight σ = ⊗v|pσv if and only if ρ lifts to a modular Galois

representation ρ : GF → GL2(Qp) which for all places v|p is parallel potentially Barsotti-Tate of
type σ̃v ⊕ σ̃qvv at v if σv is of type I, and is parallel potentially semistable of type σ̃v ⊕ σ̃qvv at v,
but not potentially crystalline, if σv is of type II.

Proof. We first tackle the only if direction. If σv is of type I then we choose an arbitrary extension
of σ̃v to a character of F×v,2, where Fv,2 is the unramified quadratic extension of Fv, and if σv
is of type II then we choose an arbitrary extension of σ̃v to a character of F×v . We continue to
denote these extensions by σ̃v. We apply Lemma 2.1, with m and ψ chosen such that ρm

∼= ρ and
Sσ,ψ(U,F)m 6= 0 (such a maximal ideal exists by the assumption that ρ is modular of weight σ),
and

σ′ = ⊗v|pσ′v
where

σ′v = (JL−1(Wσ̃v))|O×D,v
if σv is of type I, and

σ′v = σ̃v

if σv is of type II. We take the ψ of Lemma 2.1 to be the Teichmüller lift of ψ. The correspondence
between the algebraic modular forms considered in section 2 and automorphic representations of
D× is explained in section 3.1.14 of [Kis09b] (there is a running assumption in that paper that D
is split at all places dividing p, but it is not needed in this discussion, and if one sets the represen-
tation Wτalg of loc. cit. to be the trivial representation the discussion goes through immediately
in our case), and we see that after choosing an isomorphism Qp

∼−→ C there is an automorphic
representation π of D× whose weight is the trivial representation, whose Hecke polynomials at
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unramified places lift the characteristic polynomials of the corresponding Frobenius elements for
ρ, and such that for each place v|p, πv is either JL−1(Wχ) for χ an unramified twist of σ̃v if
σv is of type I, or an unramified twist of σ̃v if σv is of type II. [To see this in the case that σv
has type I, note that if πv|O×D,v contains (JL−1(Wσ̃v))|O×D,v , then the conductor of πv is at most

the conductor of (JL−1(Wσ̃v))|O×D,v . By the results recalled in section 7 of [Pra90], we see that

πv must be of the form Wχ for χ a character of F×2,v of conductor 1. Since (for example by the
character formulae in section 7 of [Pra90]) Wσ̃v

∼= Wσ̃qvv
, the result follows from the third bullet

point above.]

Applying the Jacquet-Langlands correspondence (Theorem 16.1 of [JL70]) we see that there is
an automorphic representation π′ of GL2(AF ) with the same infinitesimal character as the trivial
representation, whose Hecke polynomials at unramified places lift the characteristic polynomials
of the corresponding Frobenius elements for ρ, and such that for each place v|p, πv is either Wχ

for χ an unramified twist of σ̃v if σv is of type I, or an unramified twist of (σ̃v ◦det)⊗St if σv is of
type II. The compatibility of the local and global Langlands correspondences at places dividing
p (see [Kis08]), and the results on the form of the local Langlands correspondence recalled above,
show that the Galois representation corresponding to π′ gives a representation of the required
form (note that the Galois representation has determinant ψε, so is indeed parallel).

For the converse, we may reverse the above argument, and we see that Lemma 2.1 guarantees
that ρ is modular of a weight µ = ⊗v|pµv, where for each v|p if σv is of type II then µv = σv,
and if σv is of type I then µv = σv or σqvv . The result then follows from Lemma 2.3.

This motivates the following definition of W ?(ρ).

Definition 3.4. For each place v|p, let W ?(ρ|GFv ) denote the set of σv of type I such that ρ|GFv
has a parallel potentially Barsotti-Tate lift of type σ̃v⊕ σ̃qvv , together with the set of σv of type II
such that ρ|GFv has a parallel potentially semistable lift of type σ̃v⊕ σ̃qvv which is not potentially
crystalline. Let W ?(ρ) be the set of weights σ = ⊗v|pσv with σv ∈W ?(ρ|GFv ) for all v|p.

Note that by Lemma 3.3 we have W (ρ) ⊂W ?(ρ). We will prove under a mild hypothesis that
W (ρ) = W ?(ρ) in section 8. In the intervening sections we will give an explicit description of
W ?(ρ) in the case that ρ|GFv is semisimple for each v|p. It is already possible to see that weights
of type II are rather rare.

Lemma 3.5. If ρ is modular of weight σ = ⊗v|pσv, and σv is of type II, then

ρ|IFv ∼= σv

(
ε ∗
0 1

)
where σv is regarded as a character of IFv via local class field theory, and ε is the cyclotomic
character.

Proof. This follows from Lemma 3.3, and the well-known fact that 2-dimensional semistable non-
crystalline p-adic representations with all pairs of labeled Hodge-Tate weights equal to {0, 1} are
unramified twists of an extension of the trivial character by the cyclotomic character.
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4. Necessary conditions

4.1 Breuil modules with descent data

Let k be a finite extension of Fp, define K0 = W (k)[1/p], and let K be a finite totally ramified
extension of K0 of degree e′. Suppose that L is a subfield of K containing Qp such that K/L
is Galois and tamely ramified. Assume further that there is a uniformiser π of OK such that
πe(K/L) ∈ L, where e(K/L) is the ramification degree of K/L, and fix such a π. Since K/L is
tamely ramified, the category of Breuil modules with coefficients and descent data is easy to
describe (see [Sav08]). Let kE be a finite extension of Fp. The category BrModdd,L consists of
quadruples (M,Fil1M, φ1, {ĝ}) where:

– M is a finitely generated (k ⊗Fp kE)[u]/ue
′p-module, free over k[u]/ue

′p.

– Fil1M is a (k ⊗Fp kE)[u]/ue
′p-submodule of M containing ue

′M.

– φ1 : Fil1M→M is kE-linear and φ-semilinear (where φ : k[u]/ue
′p → k[u]/ue

′p is the p-th
power map) with image generating M as a (k ⊗Fp kE)[u]/ue

′p-module.

– ĝ :M→M for each g ∈ Gal(K/L) are additive bijections that preserve Fil1M, commute
with the φ1-, and kE-actions, and satisfy ĝ1 ◦ ĝ2 = ĝ1 ◦ g2 for all g1, g2 ∈ Gal(K/L). Further-
more 1̂ is the identity, and if a ∈ k⊗FpkE ,m ∈M then ĝ(auim) = g(a)((g(π)/π)i⊗1)uiĝ(m).

The category BrModdd,L is equivalent to the category of finite flat group schemes over OK
together with a kE-action and descent data on the generic fibre from K to L (this equivalence
depends on π).

We choose in this paper to adopt the conventions of [BM02] and [Sav05], rather than those
of [BCDT01]; thus rather than working with the usual contravariant equivalence of categories,
we work with a covariant version of it, so that our formulae for generic fibres will differ by
duality and a twist from those following the conventions of [BCDT01]. To be precise, we obtain
the associated GL-representation (which we will refer to as the generic fibre) of an object of
BrModdd,L via the functor TLst,2.

Let E be a finite extension of Qp with integers OE , maximal ideal mE , and residue field
kE . Recall from [Sav05, Sec. 2] that the functor DK

st,2 is an equivalence of categories between
the category of E-representations of GL which are semistable when restricted to GK and have
Hodge-Tate weights in {0, 1}, and the category of weakly admissible filtered (φ,N)-modules D
with descent data and E-coefficients such that Fil0(K⊗K0D) = K⊗K0D and Fil2(K⊗K0D) = 0.

Suppose that ρ is a representation in the source of DK
st,2. Write S = SK,OE (notation and

terminology in this paragraph are as in [Sav05, Sec. 4]). Then TLst,2 is an essentially surjec-
tive functor from strongly divisible modules M (with OE-coefficients and descent data) in
S[1/p] ⊗K0⊗E DK

st,2(ρ) to Galois-stable OE-lattices in ρ. This functor is compatible with re-

duction mod mE , so that applying TLst,2 to the object (k⊗Fp kE)[u]/(ue
′p)⊗S/mES (M/mEM) of

BrModdd,L yields a reduction mod p of ρ (see [Sav05, Cor. 4.12, Prop 4.13]).

To simplify notation, for the remainder of the paper we write simplyM/mEM for the above
reduction mod mE ofM in BrModdd,L (we will never mean the literal S/mES-module). Let ` be
the residue field of L, and let urλ denote the unramified character of GL sending an arithmetic
Frobenius element to λ. Define N`/Fp,kE : (`⊗Fp kE)× → (Fp⊗Fp kE)× ∼= k×E to be the norm map
x 7→

∏
β∈Gal(`/Fp) β(x), with each β acting trivially on kE .

The following lemma is a more precise version of [GS, Lem. 5.2].
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Lemma 4.1. Let χ : Gal(K/L)→ k×E be a character, and for c ∈ (`⊗Fp kE)× letM(χ, c) denote
the Breuil module with kE-coefficients and descent data from K to L that is free of rank one
with generator v and

Fil1M(χ, c) =M(χ, c), φ1(v) = cv, ĝ(v) = (1⊗ χ(g))v

for g ∈ Gal(K/L). Then TLst,2(M(χ, c)) = urλ · χ, where λ = N`/Fp,kE (c)−1.

Proof. This statement is exactly the same as [GS, Lem. 5.2], except that here we determine the
unramified character multiplying χ. We return ourselves to the proof of that statement, and in
particular we re-adopt the notation from that proof, so that χ is the Teichmüller lift of χ, the
element c̃ ∈ (W (`) ⊗Zp OE)× is a lift of c, and D := D(χ, c̃) is a filtered φ-module of rank one
over K0⊗QpE with descent data χ and generator v such that φ(v) = pc̃v; moreover the filtration
on DK = K ⊗K0 D vanishes in degree 2. It is possible to choose c̃ to be an element of finite
multiplicative order, and we do so.

The representation V L
st,2(D) giving rise to D is equal to (Bst⊗K0D)φ=pN=0∩Fil1(BdR⊗KDK) (see

the definition after [Sav05, Cor. 2.10]), and so is generated by some αv with α ∈ (Fil0Bcris)⊗QpE;

then pαv = φ(αv) = φ(α)c̃pv, so that φ(α)c̃ = α. If f = [` : Fp] it follows that φ(f)(α) =
NL0/Qp,E(c̃)−1α, where L0 = W (`)[1/p] and NL0/Qp,E is defined via the obvious analogy with

N`/Fp,kE . Set λ̃ = NL0/Qp,E(c̃)−1.

Since c̃ has finite order we have φ(m)(α) = α for some m > 0, and therefore α is an element of

(Fil0Bcris)
φ(m)=1⊗Qp E = Qpm ⊗Qp E. In particular, the action of crystalline Frobenius coincides

with the action of an arithmetic Frobenius on α. As a result, if g ∈ GL is a lift of an nth power
of arithmetic Frobenius with n ∈ Z then g(αv) = φ(nf)(α)χ(g)v = (ur

λ̃
· χ)(g)αv. Since λ̃ lifts

λ, the result follows by continuity.

For the remainder of this paper we make the hypothesis that kE is sufficiently large as to
contain an embedding of k. Let σ0 be a fixed choice of embedding k ↪→ kE and recursively define
σpi+1 = σi. If M is any (k⊗Fp kE)-module, we recall from [Sav08] that M decomposes as a direct

sum M = ⊕d−1i=0Mi, where d = [k : Fp] and Mi is the kE-submodule on which multiplication
by x ⊗ 1 for x ∈ k is the same as multiplication by 1 ⊗ σi(x). In fact there is a collection of
idempotents ei ∈ k ⊗Fp kE so that Mi = eiM and φ(ei) = ei+1.

Suppose now that M is an object of BrModdd,L. Note that φ1 maps (Fil1M)i into Mi+1.
For g ∈ GL let η(g) be the image of g(π)/π in (the e(K/L)th roots of unity of) k. The rank one
objects of BrModdd,L are classified as follows.

Proposition 4.2 [Sav08], Theorem 3.5. With our fixed choice of uniformiser π, every rank one
object of BrModdd,L with descent data relative to L has the form:

– M = ((k ⊗Fp kE)[u]/ue
′p) · v,

– (Fil1M)i = uriMi,

– φ1(
∑d−1

i=0 u
rieiv) = cv for some c ∈ (`⊗Fp kE)×, and

– ĝ(v) =
∑d−1

i=0 (η(g)ki ⊗ 1)eiv for all g ∈ Gal(K/L),

where 0 6 ri 6 e′ and 0 6 ki < e(K/L) are sequences of integers satisfying ki ≡ p(ki−1 + ri−1)
(mod e(K/L)); furthermore the sequences ri, ki are periodic with period dividing f = [` : Fp].

Corollary 4.3. In the above proposition, suppose that e(K/L) is divisible by pf − 1. Define
s0 = p(pf−1r0 + · · ·+ rf−1)/(p

f − 1) and λ = N`/Fp,kE (c)−1. Then TLst,2(M) = (σ0 ◦ ηk0+s0) · urλ.

9
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Remark 4.4. According to [Sav08, Rem. 3.6], the congruences ki ≡ p(ki−1+ri−1) (mod e(K/L))
imply that

pf−1r0 + · · ·+ rf−1 ≡ 0 (mod pf − 1),

and k0 is a solution to −p(pf−1r0 + · · ·+ rf−1) ≡ (pf − 1)k0 (mod e(K/L)). It follows that s0 is
an integer; moreover (pf − 1)(k0 + s0) ≡ 0 (mod e(K/L)), so that the image of ηk0+s0 lies in `×

and ηk0+s0 is actually a character.

Proof of Corollary 4.3. We proceed as in Example 3.7 of [Sav08].

Define si = p(rip
f−1+· · ·+ri+f−1)/(pf−1) with subscripts taken modulo f , and observe that

(ki + si) ≡ pi(k0 + s0) (mod e(K/L)). Let χ = σ0 ◦ ηk0+s0 . We check that there is a morphism
M(χ, c) → M with M(χ, c) as in Lemma 4.1 (except that here we will use w to denote its
generator, since v is now our generator of M).

The morphism will send w 7→
∑

i u
sieiv. One checks easily that this is a morphism of Breuil

modules. Indeed: the filtration is preserved since si > ri; the morphism commutes with φ1 because
si+1 = p(si− ri); and to check that the morphism commutes with descent data, use the fact that
ĝ(w) = (1⊗ (σ0 ◦ ηk0+s0(g)))w =

∑
i(η

ki+si(g)⊗ 1)eiw.

Now the claim follows immediately from Lemma 4.1 and an application of [Sav04, Prop. 8.3].
(This last step uses our running hypothesis that p > 2.)

4.2 Necessary conditions: notation and preliminaries

Let p be a prime of F lying above p, and πp ∈ p our chosen uniformiser. Suppose that the residue
field of Fp has order q = pf .

In the remainder of Section 4, we consider the following situation. Let L be the unramified
quadratic extension of Fp, and K the splitting field of up

2f−1 − πp over L. Let $ be a choice of

π
1/(p2f−1)
p in K. Let k denote the residue field of K, and if g ∈ Gal(K/Fp) then as before we let
η(g) be the image of g($)/$ in k. Suppose that Fp has absolute ramification index e, and write
e′ = e(p2f − 1). (We alert the reader that in what follows, the fields Fp and L will both take
turns being used in the role of the field L of the previous subsection.)

Suppose that k embeds into kE . By Proposition 4.2, any rank one Breuil module M with
kE-coefficients and descent data from K to L may be written in the form

– M = ((k ⊗Fp kE)[u]/ue(p
2f−1)p) · v,

– (Fil1M)i = uriMi,

– φ1(u
rieiv) = (1⊗ γi)ei+1v for some γi ∈ k×E ,

– ĝ(
∑2f−1

i=0 eiv) =
∑2f−1

i=0 (η(g)ki ⊗ 1)eiv for all g ∈ Gal(K/L).

Here the ki, ri are any integers with ki ∈ [0, p2f − 1) and ri ∈ [0, e(p2f − 1)] satisfying ki+1 ≡
p(ki + ri) (mod p2f − 1). For g ∈ Gal(K/L) we write ĝ(eiv) = (1⊗χi(g))eiv where χi = σi ◦ ηki .
Note that χi, defined on Gal(K/L), is a homomorphism.

Let χ : IFp → O×E be an inertial character with χ = χq
2

but χ 6= χq, and let χ denote its
reduction modulo the maximal ideal of OE . In what follows we will be concerned with Breuil
modulesM as above that have the extra property χi ∈ {χ, χq} for all i. In the remainder of this
subsection we introduce some notation that is special to this situation (and that will be used
repeatedly throughout the rest of the paper), and we derive a variant of Corollary 4.3.

Let ηi = (σi ◦ η)|IFp for 0 6 i < 2f be a system of fundamental characters of niveau 2f of

IFp ; note that ηpi = ηi−1. Then ωi = ηiηi+f for 0 6 i < f is a system of fundamental characters

10
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of niveau f . Write

χ =

2f−1∏
i=0

ηcii (4.5)

with 0 6 ci 6 p − 1; since χ is nontrivial, this is unambiguous. We let J be the set of i ∈
{0, . . . , 2f − 1} such that χi = χ. References to elements of J should always be taken modulo
2f , so that e.g. if i = 2f − 1 then i+ 1 refers to 0.

The congruence ki+1 ≡ p(ki + ri) (mod p2f − 1) is equivalent to the relation χi+1 = χiη
ri
i . If

i ∈ J and i + 1 ∈ J , or if i /∈ J and i + 1 /∈ J , this gives ri ≡ 0 (mod p2f − 1). In either case,
write ri = (p2f − 1)xi for some 0 6 xi 6 e. If i ∈ J and i+ 1 /∈ J , we see that

ri = (p2f − 1)xi + (pf − 1)(pf−1(ci+f+1 − ci+1) + pf−2(ci+f+2 − ci+2) + · · ·+ (ci − ci+f ))

for some xi, and if i /∈ J and i+ 1 ∈ J , then

ri = (p2f − 1)xi + (pf − 1)(pf−1(ci+1 − ci+f+1) + pf−2(ci+2 − ci+f+2) + · · ·+ (ci+f − ci)).

Since the expression (pf − 1)(pf−1(ci+f+1 − ci+1) + pf−2(ci+f+2 − ci+2) + · · ·+ (ci − ci+f )) is
nonzero and is strictly between 1− p2f and p2f − 1, we allow either 0 6 xi 6 e− 1 or 1 6 xi 6 e,
depending on whether the sign of this expression is positive or negative. If i ∈ J and i+ 1 /∈ J ,
then the allowable range is 0 6 xi 6 e− 1 precisely when there is a j > 1 with ci+k = ci+k+f for
all 1 6 k < j and ci+j+f > ci+j , and the situation is reversed in the case i /∈ J and i + 1 ∈ J .
We summarize these conditions in the following definition.

Definition 4.6. Fix J and χ as above. We say that xi ∈ {0, 1, . . . , e} is allowable in each of the
following situations, and not allowable otherwise.

– i, i+ 1 ∈ J or i, i+ 1 6∈ J ;

– i ∈ J , i+ 1 6∈ J : we require xi 6= e if there is j > 1 with ci+k = ci+k+f for all 1 6 k < j and
ci+j < ci+j+f ; we require xi 6= 0 otherwise;

– i 6∈ J , i+ 1 ∈ J : we require xi 6= 0 if there is j > 1 with ci+k = ci+k+f for all 1 6 k < j and
ci+j < ci+j+f ; we require xi 6= e otherwise.

Here subscripts should be taken modulo 2f . We also say xi is not allowable if xi 6∈ {0, 1, . . . , e}.
We say that the list x0, . . . , x2f−1 is allowable if each xi is allowable.

Thus a rank one Breuil module M with the property that χi ∈ {χ, χq} for all i gives rise to
a set J and an allowable collection x0, . . . , x2f−1. Conversely, it is straightforward to check that
this construction can be reversed: any J and any allowable list x0, . . . , x2f−1, together with any
choice of γi’s, determines a Breuil module M with the desired property.

Let ψ denote the restriction to inertia of TLst,2(M), and note from Corollary 4.3 that ψ depends
only on the χi’s and ri’s, or equivalently only on J and the xi’s.

Lemma 4.7. Let M be a rank one Breuil module with kE-coefficients and descent data from K
to L with χi ∈ {χ, χq} for all i. Then

ψ =
∏
i∈J

ηcii
∏
i/∈J

η
ci+f
i

2f−1∏
i=0

ηxii . (4.8)

Proof. Recall that

s0 =
p

(p2f − 1)
(r0p

2f−1 + r1p
2f−2 + · · ·+ r2f−1),

11
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so that ψ = ηk0+s00 = χ0η
s0
0 . Write s0 as p2fx0 + p2f−1x1 + · · ·+ px2f−1 plus a linear expression

in the ci’s.

We compute the coefficient of c0 in this linear expression. For each transition i ∈ J , i+ 1 6∈ J
with i ∈ [0, f), the coefficient of c0 in p2f−iri is p2f (pf −1); on the other hand for each transition
i 6∈ J , i+ 1 ∈ J with i ∈ [0, f) the coefficient of c0 in p2f−iri is −p2f (pf − 1).

For i ∈ [f, 2f − 1) the respective coefficients are −pf (pf − 1) for transitions i ∈ J , i+ 1 6∈ J ,
and pf (pf − 1) for the reverse. As a consequence:

– If 0, f ∈ J or 0, f 6∈ J then the net number of transitions out of J from i = 0 to i = f is
zero, and similarly from f to 2f . In either case the coefficient of c0 in s0 is zero.

– If 0 ∈ J and f 6∈ J , then the net number of transitions out of J from i = 0 to i = f is 1,
and from i = f to i = 2f is −1. In this case the coefficient of c0 in s0 is (p2f (pf − 1) +
pf (pf − 1))/(p2f − 1) = pf .

– Similarly if 0 6∈ J and f ∈ J , the coefficient of c0 in s0 is −pf .

From (4.5) and the definition of J , the contribution of c0 to χ0 is ηc00 if 0 ∈ J and ηp
f c0

0 if
0 6∈ J . Thus the total contribution of c0 to ψ = χ0η

s0
0 is:

– ηc00 if 0 ∈ J , f ∈ J ;

– ηc00 η
pf c0
0 = ηc00 η

c0
f if 0 ∈ J , f 6∈ J ;

– η−p
f c0

0 ηp
f c0

0 = 1 if 0 6∈ J , f ∈ J ;

– ηp
f c0

0 = ηc0f if 0 6∈ J , f 6∈ J .

In each case we obtain precisely the contribution of c0 to the first two products on the right-hand
side of (4.8). The lemma follows by cyclic symmetry, together with the fact that η0 raised to the
power p2fx0 + · · ·+ px2f−1 is the third product on the right-hand side of (4.8).

4.3 Necessary conditions: the reducible case

Suppose that ρ : GFp → GL2(kE) with kE a finite field into which k may be embedded, and
assume that ρ is the reduction mod mE of a parallel potentially Barsotti-Tate representation ρ
of type χ⊕χq. Let H be the mE-torsion of the Barsotti-Tate group over OK corresponding to ρ;
then H is a finite flat group scheme over OK with descent data to Fp, and ρ is the generic fibre
of H.

In this subsection we suppose that ρ ∼=
(
ψ1 ∗
0 ψ2

)
is reducible, and we wish to restrict

the possibilities for ψ1 and ψ2. Note that by a standard scheme-theoretic closure argument, ψ1

corresponds to a finite flat subgroup scheme G of H. LetM be the rank one Breuil module with
kE-coefficients and descent data from K to Fp corresponding to G, and let χi for i = 0, . . . , 2f−1
be defined as in the previous subsection. It follows from Corollary 5.2, which does not depend
on anything in this paper before Section 5, that the descent data for H is of the form χ ⊕ χq,
so that we have χi ∈ {χ, χq} for all i. Therefore we may define J and x0, . . . , x2f−1 as in the
previous subsection, and the analysis of the previous subsection applies to M.

Since the descent data on M is from K to Fp and not simply from K to L, we in fact have
from Proposition 4.2 that ri+f = ri and ki+f = ki for all i, or equivalently χi = χqi+f and
xi = xi+f for all i. In particular for all i we have exactly one of i, i + f in J , and xi+f = xi is
allowable if and only if xi is. Letting π denote the natural projection from Z/2fZ to Z/fZ, we
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deduce from Lemma 4.7 that ψ1|IFp has the form

ψ1|IFp =
∏
i∈J

ωciπ(i)

f−1∏
i=0

ωxii (4.9)

where J contains exactly one of i, i+ f for all i, and x0, . . . , xf−1 are allowable for χ and J .

Proposition 4.10. If e > p− 1, then (for fixed χ) any inertial character of niveau f occurs as
the right-hand side of (4.9) for some choice of J with exactly one of i, i + f ∈ J for all i, and
some allowable values x0, . . . , xf−1.

Proof. The proposition is immediate if e > p, because for any J the allowable range for each xi
contains p consecutive integers; so we suppose that e = p− 1, where the matter is more delicate.
Observe that the claim is invariant under twisting χ by a character ω of niveau f : replacing χ
with ωχ replaces each χi with ωχi, leaving the possibilities for the integers ri and s0 arising
from the relevant Breuil modules unchanged. The claim is similarly invariant under replacing χ
with χp. As a consequence of these observations we may suppose without loss of generality that
c0, . . . , cf−1 = 0 while c2f−1 6= 0.

Consider first the set J = {0, . . . , f−1}. The allowable range for xf−1 is [1, p−1] (since there
is some 1 6 j 6 f with cf−1+j > 0 while each cj−1 = 0), and x0, . . . , xf−2 can range over [0, p−1].
Writing the right-hand side of (4.9) as ωf−1 raised to the power pf−1x0 + · · ·+ pxf−2 +xf−1, we
see that the exponent of ωf−1 obtains every integer value in [0, pf − 1] except those divisible by
p.

Now consider the sets J = {2f − i, . . . , 2f − 1, 0, . . . , f − i − 1} with 1 6 i 6 f − 1. The
allowable range for xf−i−1 is [0, p−2] since c2f−1 > 0 while each cf−i, . . . , cf−1 equals 0; for each
other xi the allowable range is [0, p−1]. For this choice of J the right-hand side of (4.9) becomes
ωf−1 raised to the power

(pi−1c2f−i + · · ·+ c2f−1) + (pf−1x0 + · · ·+ pxf−2 + xf−1). (4.11)

The right-hand term varies over all integers in the range [0, pf − 1] except those whose pi-
coefficient in base p is p − 1. In particular the base p sum in (4.11) does not have a carry from
the pi-place to the pi+1-place. Since c2f−1 6= 0, it follows that the values taken by (4.11) (with
allowable x0, . . . , xf−1) include all integers in [0, pf − 1] that are exactly divisible by pi.

All together, we find that for suitable choices of J the right-hand side of (4.9) when written
as a power of ωf−1 can take every exponent in the range [1, pf − 1]. This is a complete set of
powers of ωf−1.

4.4 Necessary conditions: the irreducible case

We retain the notation and hypotheses of the previous subsection, but now we consider the

case of an irreducible ρ. In this case, ρ|GL ≡
(
ψ1 0
0 ψ2

)
with ψ2 = ψq1. Again, we examine the

possibilities for ψ1|IFp . Let H be the finite flat group scheme with generic fibre descent data from
K to L corresponding to ρ|GL , and let G be the finite flat subgroup scheme corresponding to ψ1.
Note that the descent data on H must extend to Gal(K/Fp) while the descent data on G must
not.

LetM be the Breuil module with kE-coefficients and descent data from K to L corresponding
to G. It follows once again from Corollary 5.2 that the descent data for H is of the form χ⊕ χq,
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so that we have χi ∈ {χ, χq} for all i. Thus the analysis of subsection 4.2 applies to M, and we
may employ the notation of that subsection; in particular we take J = {i : χi = χ}.

Remark 4.12. In an earlier version of this paper we claimed to show that H must decompose
as a product G × G′ where G′ is the finite flat subgroup scheme with descent data from K to L
corresponding to ψ2, in which case it would follow that i ∈ J if and only if i + f ∈ J , and also
that xi + xi+f = e for all i. Our proof of this claim was in error and we do not know whether or
not the claim is true. Nevertheless we have the following proposition.

Proposition 4.13. There exists J ⊂ {0, . . . , 2f − 1} with i ∈ J if and only if i+ f ∈ J , and an
allowable list x0, . . . , x2f−1 with xi + xi+f = e for all i, such that

ψ1|IL =
∏
i∈J

ηcii
∏
i/∈J

η
ci+f
i

∏
i

ηxii . (4.14)

Per Remark 4.12, the J in the proposition may not necessarily be the J coming fromM. The
proof of Proposition 4.13 occupies the remainder of this section.

Lemma 4.15. If ρ has a parallel potentially Barsotti-Tate lift of type χ ⊕ χq, then det ρ|IFp =

ε · χq+1, where ε is the mod p cyclotomic character.

Proof. This follows at once from Definition 3.2 and the results of section B.2 of [CDT99].

By the Lemma, we must have (ψ1|IL)q+1 = ε · χq+1. A straightforward computation shows
that for any J with i ∈ J if and only if i+ f ∈ J , and any x0, . . . , x2f−1 with xi + xi+f = e for
all i, the character ψ on the right-hand side of (4.14) has ψq+1 = ε · χq+1 as well; this uses the
fact that ε = ωe0 · · ·ωef−1.

Lemma 4.16. If e > p− 1, then as J varies over subsets of {0, . . . , 2f − 1} with i ∈ J if and only
if i + f ∈ J , and x0, . . . , x2f−1 varies over allowable lists for J with xi + xi+f = e for all i, the
right-hand side of (4.14) varies over all inertial characters ψ with ψq+1 = ε · χq+1. In particular
Proposition 4.13 is true if e > p− 1.

Proof. First take J = {0, . . . , 2f − 1}, so that any x0, . . . , x2f−1 ∈ [0, e] are allowable. We let
x0, . . . , xf−1 vary over [0, e] and take xi+f = e−xi, and we consider the characters ψ that occur.

If X = pf−1x0 + · · · + xf−1 then ψ = χ · ηe(p
f−1)/(p−1)

2f−1 · η(1−p
f )X

f−1 and depends only on X

(mod pf + 1). If e > p then as x0, . . . , xf−1 range over the interval [0, e], the integer X ranges
over an interval that includes [0, pf ], and ψ ranges over all pf + 1 inertial characters ψ with
ψq+1 = ε · χq+1.

If instead e = p − 1, then X only ranges over the interval [0, pf − 1], and we obtain all
possibilities for ψ satisfying the condition on ψq+1 except ψ = χ. But performing the same
analysis with J = ∅ gives us all possibilities for ψ except ψ = χq; in particular since χ 6= χq we
obtain ψ = χ as a possibility with J = ∅.

Before continuing with the proof of Proposition 4.13, we make the following observation.
Suppose that i ∈ J if and only if i + f ∈ J , and x0, . . . , x2f−1 is an allowable list such that the
product ψ on the right-hand side of (4.14) satisfies ψq+1 = εχq+1. If e < p−1, then the condition
xi + xi+f = e must be satisfied automatically. Indeed, the condition ψq+1 = εχq+1 comes down

to
∏f−1
i=0 ω

xi+xi+f
i =

∏f−1
i=0 ω

e
i . Since xi + xi+f ∈ [0, 2e] and e < p − 1, the only possibility is

xi + xi+f = e for all i.
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Proof of Proposition 4.13. Thanks to Lemma 4.16 we may assume e < p−1. Let J be any subset
of {0, . . . , 2f − 1}, let x0, . . . , x2f−1 be allowable for J , and write

ψ =
∏
i∈J

ηcii
∏
i 6∈J

η
ci+f
i

∏
i

ηxii .

We wish to prove that if ψq+1 = ε · χq+1 (so that, for instance, J and x0, . . . , x2f−1 might be
the data associated to M) then there exists some J ′ with i ∈ J ′ if and only if i + f ∈ J ′, and
allowable x′0, . . . , x

′
2f−1 such that if we write

ψ′ =
∏
i∈J ′

ηcii
∏
i 6∈J ′

η
ci+f
i

∏
i

η
x′i
i

then in fact we have ψ = ψ′. (Then the desideratum x′i +x′i+f = e also holds, by the observation
immediately before we began the remainder of the proof.)

Assuming that J does not already satisfy i ∈ J if and only if i+ f ∈ J , it suffices to produce
J ′ and allowable x′0, . . . , x

′
2f−1 such that ψ′ = ψ and J ′ has more pairs (i, i + f) with i ∈ J ′ if

and only if i + f ∈ J ′ than J does. (Then repetition of this step will complete the argument.)
This is what we now carry out.

Let S be the set of indices i such that ci appears as an exponent twice in the product for ψ
(equivalently, such that i ∈ J and i+ f 6∈ J), and similarly let T be the set of indices i such that
ci occurs zero times (equivalently, i 6∈ J and i+ f ∈ J). Note that S = f + T (with the obvious
meaning for this notation). Then the condition on ψq+1 is

f−1∏
i=0

ω
xi+xi+f
i

∏
i∈T

ω−cii

∏
i∈S

ωcii =

f−1∏
i=0

ωei

which we re-write as
f−1∏
i=0

ω
xi+xi+f−e±[ci−ci+f ]
i = 1

where the brackets around ci − ci+f denote that the term may not occur (in this case, it occurs
with sign + if i ∈ S, with sign − if i ∈ T , and not at all if i is in neither S nor T ).

Each exponent in this product lies in the interval [−e−p+ 1, e+p−1] ⊂ [−(2p−3), (2p−3)]

since e < p − 1. Now, if
∏f−1
i=0 ω

yi
i = 1 then the vector (y0, . . . , yf−1) must be an integral linear

combination

a0(p, 0, . . . , 0,−1) + a1(−1, p, 0, . . . , 0) + . . .+ af−1(0, . . . , 0,−1, p).

It is easy to check that if each yi lies in [−(2p − 3), (2p − 3)] then in fact each ai must be 0 or
±1.

Writing the vector (xi + xi+f − e± [ci − ci+f ])i as such a linear combination, we have

xi + xi+f − e± [ci − ci+f ] = pai − ai+1

for all i ∈ {0, . . . , 2f − 1} where we conventionally set ai+f := ai; take all subscripts modulo 2f ;
and the sign is + if i ∈ S and − if i ∈ T , and 0 otherwise.

Choose any maximal interval [j′, j] ⊂ Z such that i 6∈ J and i+f ∈ J for i ∈ [j′, j]. (As usual,
we abuse notation and take all indices modulo 2f .) By definition this interval cannot contain
both i and i+ f for any i, so it contains at most f integers. Now if i ∈ [j′, j] we have i ∈ T and
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i+ f ∈ S, so that in fact

xi + xi+f − e− (ci − ci+f ) = pai − ai+1 (4.17)

for i ∈ [j′, j].

First consider the case j = j′ + (f − 1). Define J ′ = {0, . . . , 2f − 1}, and set

– x′i = xi − (ci − ci+f )− pai + ai+1 if i ∈ [j′, j′ + f − 1),

– x′j′+f−1 = xj′+f−1 − (cj′+f−1 − cj′−1)− paj′−1,
– x′j′−1 = xj′−1 + aj′ , and

– x′i = xi for all other indices i.

One checks easily that ψ′ = ψ, and by construction x′i + x′i+f = e for all i. We next verify that
x′j′−1 remains in the interval [0, e]. Note that by our choice of interval [j′, j] we have j′ − 1 ∈ J
while j′ 6∈ J . If we had aj′ = −1 then (4.17) for i = j′ implies cj′ > cj′+f , and according to the
definition of allowability we must have xj′−1 > 0; hence x′j′−1 remains non-negative. Similarly if
aj′ = 1 we still have x′j′−1 6 e. This completes the verification.

Since x′i = xi for i 6∈ [j′ − 1, j′ + f − 1], we in fact have x′i ∈ [0, e] for all i ∈ [j′ − f, j′ − 1].
But x′i + x′i+f = e for all i, and one of the two summands always lies in [0, e]; therefore so does
the other. Since J ′ = {0, . . . , 2f − 1} the list x′0, . . . , x

′
2f−1 is allowable and we are done.

Henceforth suppose that j − j′ < f − 1. Consider the following two “moves”:

(i) Set J ′ = J ∪ {j′, . . . , j}, and define

– x′i = xi − (ci − ci+f )− pai + ai+1 if i ∈ [j′, j),
– x′j = xj − (cj − cj+f )− paj ,
– x′j′−1 = xj′−1 + aj′ ,
– x′i = xi for all remaining indices.

(ii) Set J ′ = J \ {j′ + f, . . . , j + f} and define

– x′i+f = xi+f − (ci − ci+f )− pai + ai+1 if i ∈ [j′, j),
– x′j+f = xj+f − (cj − cj+f )− paj ,
– x′j′+f−1 = xj′+f−1 + aj′ ,
– x′i = xi for all remaining indices.

In either case we have ψ′ = ψ. For i ∈ [j′, j) we have x′i + x′i+f = e, from which it follows that
x′i, x

′
i+f ∈ [0, e] (since at least one is in that interval); moreover i, i + 1 are either both in J ′ or

both not in J ′ for i ∈ [j′, j) or [j′ + f, j + f). Thus x′i, x
′
i+f are allowable for i ∈ [j′, j).

To decide whether the list x′0, . . . , x
′
2f−1 is allowable, the only issue that remains is the

allowability of x′j′−1 and x′j after move (i), or of x′j′+f−1 and x′j+f after move (ii). Note that
x′j′−1 and x′j are not the same object since j − j′ < f − 1, and similarly for x′j′+f−1 and x′j+f .
We will argue that at least one of these two pairs must be allowable.

First consider move (i) and the allowability of x′j . We have x′j + x′j+f = e − aj+1, so in
particular x′j ∈ [−1, e+ 1]. Note that if aj+1 6= 0 then the last term on the left-hand side of

xj+1 + xj+f+1 − e± [cj+1 − cj+f+1] = paj+1 − aj+2

must be nonzero, so j + 1 is in S or T . By maximality of [j′, j] we have j + 1 6∈ T , so j + 1 ∈ S
and the sign ± must be +. In particular either aj+1 = 1 and cj+1 > cj+f+1, or aj+1 = −1 and
cj+1 < cj+f+1.

There are several conceivable ways that x′j might be non-allowable.

16



Serre weights for quaternion algebras

– If x′j = −1, then x′j+f = xj+f = e and aj+1 = 1. We have seen that aj+1 = 1 implies
j + f + 1 6∈ J and cj+1 > cj+f+1. But since j + f ∈ J , under these conditions xj+f = e
would not have been allowable to begin with. Thus x′j = −1 cannot occur.

– If x′j = e+ 1, then x′j+f = xj+f = 0 and aj+1 = −1. We have seen that aj+1 = −1 implies
j + f + 1 6∈ J and cj+1 < cj+f+1. But since j + f ∈ J , under these conditions xj+f = 0
would not have been allowable to begin with. Thus x′j = e+ 1 cannot occur.

– If x′j = 0 and is not allowable, then since j ∈ J ′ we must have j + 1 6∈ J ′. By maximality of
[j′, j] we have j+f + 1 6∈ J ′ and j+ 1 6∈ S ∪T . In particular aj+1 = 0 and x′j+f = xj+f = e.
The allowability of xj+f = e when j+f ∈ J , j+f +1 6∈ J implies the allowability of x′j = 0
when j ∈ J ′, j + 1 6∈ J ′, a contradiction.

– If x′j = e and is not allowable, then since j ∈ J ′ we must have j + 1 6∈ J ′. By maximality
of [j′, j] we have j + f + 1 6∈ J ′ and j + 1 6∈ S ∪ T . In particular aj+1 = 0 by the remarks
above, and x′j+f = xj+f = 0. The allowability of xj+f = 0 when j + f ∈ J , j + f + 1 6∈ J
implies the allowability of x′j = e when j ∈ J ′, j + 1 6∈ J ′, a contradiction.

We deduce that in all cases, x′j is allowable after move (i). By an identical argument, in all
cases x′j+f is allowable after move (ii).

Now consider move (i) and the allowability of x′j′−1 = xj′−1 + aj′ . Note that if aj′ 6= 0 then
the last term on the left-hand side of

xj′ + xj′+f − e− (cj′ − cj′+f ) = paj′ − aj′+1

must be positive if aj′ = 1 and negative if aj′ = −1. That is, if aj′ = 1 then cj′ < cj′+f and
if aj′ = −1 then cj′ > cj′+f . There are again several conceivable ways that x′j′−1 might be
non-allowable.

– If x′j′−1 = −1, then aj′ = −1 and xj′−1 = 0. We obtain cj′ > cj′+f . Since j′ 6∈ J , if we had
j′ − 1 ∈ J it would contradict the allowability of xj′−1 = 0. So in this case we must have
had j′ − 1 6∈ J to begin with.

– If x′j′−1 = 0 or e, then since j′ ∈ J ′, in order to be non-allowable we must have j′ − 1 6∈ J ′,
and so j′ − 1 6∈ J .

– If x′j′−1 = e+ 1, then aj′ = 1 and xj′−1 = e. We obtain cj′ < cj′+f . Since j′ 6∈ J , if we had
j′ − 1 ∈ J it would contradict the allowability of xj′−1 = e. So yet again we must have had
j′ − 1 6∈ J .

We deduce that in all cases, x′j′−1 is allowable after move (i) provided that j′− 1 ∈ J . By an
identical argument, in all cases, x′j′+f−1 is allowable after move (ii) provided that j′+ f − 1 6∈ J .

By maximality of [j′, j], we must have either j′ − 1 ∈ J or j′ + f − 1 6∈ J . Therefore at least
one of moves (i) and (ii) results in an allowable collection J ′ and x′0, . . . , x

′
2f−1 with ψ′ = ψ.

After such a move, the set T for J ′ is strictly smaller than it was for J . The result follows.

5. Descent data on strongly divisible modules and Galois types

For this section only, let F/Qp be a finite extension. Suppose that K/F is a tamely ramified Galois
extension with ramification index e(K/F ). Suppose moreover that there exists a uniformiser
π ∈ OK with πe(K/F ) ∈ L, where L is the maximal unramified extension of F contained in K;
then K = L(π) and L contains all of the e(K/F )th roots of unity. Let k denote the residue
field of K (also equal to the residue field of L), and K0 the maximal unramified extension of Qp
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contained in K. Let E/Qp be a finite extension.

Suppose that ρ is a potentially Barsotti-Tate representation GF → GLn(E) that becomes
Barsotti-Tate over K. We assume as usual that K0 embeds into the coefficients E. Write D :=
DK

st,2(ρ) and let N be a strongly divisible module with descent data over S := SK,OE contained
in S[1/p]⊗K0⊗QpE D.

Let τ be the inertial Galois type of ρ. Note that τ factors through IL/IK ∼= Gal(K/L). Since
Gal(K/L) is abelian, τ decomposes as a direct sum of n characters χi : IL → O×E , and we use
the isomorphism IL/IK ∼= Gal(K/L) to identify each χi as a character of Gal(K/L).

Proposition 5.1. We have τ = χ1 ⊕ · · · ⊕ χn if and only if there is an S-basis v1, . . . , vn of N
such that the descent data acts on N via ĝ · vi = (1⊗ χi(g))vi for all g ∈ Gal(K/L).

Proof. For each embedding σ : K0 → E, let eσ denote the corresponding idempotent in W (k)⊗Zp
OE , so that S ∼= ⊕σeσS with each eσS a local domain. Since ĝ fixes each eσ, we see that ĝ acts
separately on each eσN .

Suppose we know thatN has an S-basis v′1, . . . , v
′
n on which ĝ·v′i = ψi(g)v′i for some characters

ψi : Gal(K/L) → (W (k) ⊗Zp OE)×. The argument in the first three paragraphs of the proof of
Proposition 6.6 of [GS] proves that D has a K0 ⊗Qp E-basis on which ĝ acts via the maps ψi.
This is enough for the ‘if’ direction; for the ‘only if’ direction, recall that by definition of τ , we
know that D also has a K0 ⊗Qp E-basis on which ĝ acts via the maps 1⊗ χi. Since K0 ⊗Qp E is
not a domain it may not quite be the case that ψi = 1⊗ χi, but at least for each σ the multiset
{eσψi} is equal to the multiset {χi}: that is, we may relabel eσv

′
1, . . . , eσv

′
n as v1,σ, . . . , vn,σ in

such a way that ĝ · vi.σ = χi(g)vi,σ. If we define vi =
∑

σ vi,σ then v1, . . . , vn is the desired basis.
Thus we are reduced to the statement at the beginning of the paragraph.

In particular it is enough to show for each σ that the free eσS-module eσN of rank n has
a eσS-basis on which ĝ acts by characters Gal(K/L) → O×E . Let eσS0 be the subring of eσS
consisting of power series in ue(K/F ). Observe that eσS is free of rank e(K/F ) as an eσS0-
module, with basis 1, . . . , ue(K/F )−1; this is because e(K/F ) divides the absolute ramification
index of K, so that if pα exactly divides um−1 in S and a larger power of p divides um, then m
is divisible by e(K/F ).

We now regard eσN as a free eσS0-module of rank e(K/F )n. Note that Gal(K/L) acts trivially
on eσS0, so that eσN is actually a Gal(K/L)-representation over eσS0. Since Gal(K/L) is abelian
and p - # Gal(K/L), and sinceO×E contains the e(K/F )th roots of unity, the module eσN actually
has a simultaneous eσS0-basis of eigenvectors y1, . . . , ye(K/F )n for the action of Gal(K/L). Relabel
the elements yi so that y1, . . . , yn are a basis for the kE-vector space eσN/(meσS)eσN ; here meσS

is the maximal ideal of eσS and kE is the residue field of E. By Nakayama’s lemma [Mat89,
Thm. 2.3], the elements y1, . . . , yn are the desired eσS-basis of eσN .

The following corollary is immediate.

Corollary 5.2. Let N denote the Breuil module with descent data corresponding to the πE-
torsion in the Barsotti-Tate group corresponding to ρ |GK . If τ = χ1 ⊕ · · · ⊕ χn, then N has a
(k ⊗ kE)[u]/(ue

′p)-basis v1, . . . , vn such that ĝ · vi = (1⊗ χi(g))vi for all g ∈ Gal(K/L). (Here e′

is the absolute ramification index of K.)

Let ei ∈ k ⊗ kE be one of our usual idempotents. Since the descent data fixes ei, we see in
particular that the descent data acts via χ1 ⊕ · · · ⊕ χn on each piece eiN of N .
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6. Local lifts

6.1 Lifts of certain rank two Breuil modules

We continue to use the following notation from Sections 4.2 to 4.4. Let L be the unramified
quadratic extension of Fp, and K the splitting field of up

2f−1 − πp over L. Let $ be a choice of

π
1/(p2f−1)
p in K. Let k0 and k denote the residue fields of Fp and K respectively. If g ∈ Gal(K/Fp)

then we define η(g) = g($)/$ ∈ W (k), so that η(g) is the image of η(g) in k. Suppose that Fp

has absolute ramification index e, and write e′ = (p2f − 1)e.

Let E0(u) be an Eisenstein polynomial for πp, so that E(u) = E0(u
p2f−1) is an Eisenstein

polynomial for $. Write E(u) = ue
′
+ pF (u); then F (u) is a polynomial in up

2f−1 over W (k0)
whose constant term is a unit.

Let E, a finite extension of Qp, denote the coefficient field for our representations, with integer
ring OE and maximal ideal mE . Enlarging E if necessary, we assume that a Galois closure of K
embeds into E. In particular E is ramified and W (k) embeds into E. Let kE denote the residue
field of E. Write S = SK,OE (notation as in [Sav05, Sec. 4]). Recall that φ : S → S is the
W (k)-semilinear, OE-linear map sending u 7→ up. The group Gal(K/Fp) acts W (k)-semilinearly
on S via g · u = (η(g) ⊗ 1)u. Set c = 1

pφ(E(u)) ∈ S×. Let ϕ ∈ Gal(K/Fp) denote the element

fixing $ and acting nontrivially on L, so that ϕ−1gϕ = gq for g ∈ Gal(K/L).

We now define a rank two Breuil module N over (k ⊗ kE)[u]/(ue
′p) with descent data from

K to Fp with generators v̄ and w̄, as follows. Choose J ⊂ {0, . . . , 2f − 1}, and set χi = χ if i ∈ J
and χi = χq otherwise. For each i, choose ri ∈ [0, e′] such that χi+1 = χiη

ri
i . (This is equivalent

to choosing an allowable xi for J and χ.) Set r′i = e′−ri and χ′i = χqi , and note that χ′i+1 = χ′iη
r′i
i

since each ri is divisible by q − 1. We define N as follows.

– Fil1N is generated by
∑2f−1

i=0 urieiv̄ and
∑2f−1

i=0 ur
′
ieiw̄.

– φ1(u
rieiv̄) = (1⊗ γi)ei+1v̄ and φ1(u

r′ieiw̄) = (1⊗ γ′i)ei+1w̄.

– ĝ(eiv̄) = (1⊗ χi(g))(eiv̄) and ĝ(eiw̄) = (1⊗ χi(g)q)(eiw̄) for g ∈ Gal(K/L).

Here γi, γ
′
i ∈ k

×
E . Finally, we assume that one of the following two sets of additional conditions

holds: 

i ∈ J if and only if i+ f 6∈ J
χi+f = χqi
ri = ri+f and r′i = r′i+f
γi = γi+f and γ′i = γ′i+f
ϕ̂(v̄) = v̄ and ϕ̂(w̄) = w̄

(RED)

or 

i ∈ J if and only if i+ f ∈ J
χi+f = χi

ri = r′i+f
γi = γ′i+f
ϕ̂(v̄) = w̄ and ϕ̂(w̄) = v̄.

(IRR)

The second line in each set of conditions is equivalent to the first. Note that the relation
ϕ̂−1 ◦ ĝ ◦ ϕ̂ = ĝq holds in either case, and so the module N so-defined is indeed a Breuil module
with descent data from K to Fp. Since r′i+f = e′ − ri+f , in case (IRR) the condition ri = r′i+f is
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equivalent to xi + xi+f = e.

Theorem 6.1. For each Breuil module N as above, the generic fibre ρ of N lifts to a parallel
potentially Barsotti-Tate representation ρ with inertial type χ⊕ χq.
Proof. We will show that N lifts to a strongly divisible module N with OE-coefficients and
tame descent data from K to Fp such that ρ′ := T

Fp

st,2(N )[1/p] is a potentially Barsotti-Tate
representation with inertial type χ ⊕ χq and with all its pairs of labeled Hodge-Tate weights
equal to {0, 1}. The representation ρ′ need not be parallel, but since det(ρ′) is the product of the
cyclotomic character, a finite order character of order prime to p, and an unramified character,
we may take ρ to be the twist of ρ′ by a suitable unramified character with trivial reduction mod
p.

Let N be the free S-module generated by v and w; as one would imagine, v, w will lift v̄, w̄
respectively. Let ei ∈ W (k) ⊗Zp OE also denote the idempotent lifting ei ∈ k ⊗Fp kE , and let
σ̃i : K0 ↪→ E be the embedding that lifts σi. We define Fil1N to be the sum of (Fil1S)N and the
submodules N ′i of eiN defined for each 0 6 i < 2f as follows.

If χi = χi+1, let gihi be a monic factorization of σ̃i(E0(u)) in OE [u] such that deg(gi) =
ri/(p

2f − 1) and deg(hi) = r′i/(p
2f − 1). This is where we use our hypothesis that E contains all

conjugates of πp over Qp. Take Gi = gi(u
p2f−1) and Hi = hi(u

p2f−1), so that GiHi = σ̃i(E(u)),
and let N ′i be the S-module generated by (1⊗Gi(u))eiv and (1⊗Hi(u))eiw.

If χi 6= χi+1 let yizi be a factorization of −pσ̃i(F (u)) in OE [u] such that yi ∈ mE and
zi ∈ mE [u] or vice-versa. This is where we use our hypothesis that E is ramified. Take N ′i to be
the S-module generated by ei(u

riv + (1⊗ yi)w) and ei((1⊗ zi)v + ur
′
iw).

We impose the following extra conditions. IfN satisfies (RED), then we insist that Gi+f = Gi,
Hi+f = Hi, yi+f = yi, and zi+f = zi; on the other hand if N satisfies (IRR), then we require
Gi = Hi+f and yi = zi+f . Note that this is possible because E(u) is defined over W (k0), so that
σ̃i+f (E(u)) = σ̃i(E(u)).

We define descent data from K to Fp on N as follows, semilinearly with respect to the action
of Gal(K/Fp) on S. Let χ̃i be the Teichmüller lift of χi.

– If g ∈ Gal(K/L), set ĝ(eiv) = (1⊗ χ̃i(g))eiv and ĝ(eiw) = (1⊗ χ̃i(g)q)eiw.

– If N satisfies (RED) then set ϕ̂(v) = v and ϕ̂(w) = w.

– If N satisfies (IRR) then set ϕ̂(v) = w and ϕ̂(w) = v.

In either of the last two cases, using the fact that ϕ acts trivially on OE and takes ei 7→ ei+f , one
checks that ϕ̂−1ĝϕ̂ = ĝq, so that this descent data extends to Gal(K/Fp) in a well-defined way.
One checks with little difficulty from the definition of Fil1N and the conditions on N that this
descent data preserves Fil1N . (Note in particular that Gal(K/Fp) acts trivially on Gi, Hi, yi, zi
since they are all polynomials in up

2f−1.)

Finally we wish to define a map φ : N → N , semilinear with respect to φ on S and such that
φ1 = 1

pφ|Fil1N is well-defined and satisfies

φ1((1⊗Gi(u))eiv) = γ̃iei+1v (6.2)

φ1((1⊗Hi(u))eiw) = γ̃′iei+1w (6.3)

if χi = χi+1 and

φ1(ei(u
riv + (1⊗ yi)w)) = γ̃iei+1v (6.4)

φ1(ei((1⊗ zi)v + ur
′
iw)) = γ̃′iei+1w (6.5)
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if χi 6= χi+1. Here γ̃i, γ̃
′
i are lifts of γi, γ

′
i to O×E that satisfy γ̃i+f = γ̃i and γ̃′i+f = γ̃′i in case

(RED) and γ̃′i+f = γ̃i in case (IRR).

If χi = χi+1 we may satisfy (6.2) and (6.3) by setting

φ(eiv) = c−1φ(1⊗Hi(u))γ̃iei+1v

φ(eiw) = c−1φ(1⊗Gi(u))γ̃′iei+1w.

If χi 6= χi+1, then since

(E(u)⊗ 1)eiv = ur
′
i(ei(u

riv + (1⊗ yi)w))− yi(ei((1⊗ zi)v + ur
′
iw))

and similarly for (E(u)⊗ 1)eiw, we should set

φ(eiv) = c−1ei+1(u
pr′i γ̃iv − φ(yi)γ̃

′
iw)

φ(eiw) = c−1ei+1(u
pri γ̃′iw − φ(zi)γ̃iv).

Extending this map additively φ-semilinearly to all of N , one checks that equations (6.2)–(6.5)
hold, so that φ(Fil1N ) is contained in pN and generates it over S. One checks futhermore that
φ commutes with the descent data on N that was constructed in preceding paragraphs.

It is now evident that (N ,Fil1N , φ) with the given descent data is a lift of N . It remains to
check that N satisfies the rest of the axioms of a strongly divisible module with coefficients and
descent data (namely, conditions (2), (5)–(8), and (12) of [Sav05, Def. 4.1]) and to prove our
claims about the representation ρ′.

To check that Fil1N ∩ IN = IFil1N for an ideal I ⊂ OE , observe that it suffices to check
separately for each i that eiFil1N ∩eiIN = eiIFil1N . If χi 6= χi+1 then this is follows by exactly
the same argument as in the proof of [GS, Thm. 6.5] (the algebraic claim being made is literally
identical). If χi = χi+1 then the argument is even easier. Each coset in ei(Fil1N/(Fil1S)N ) has
a representative of the form ei(aGiv + bHiw) with a, b ∈ OE [u] such that deg(a) < deg(Hi) and
deg(b) < deg(Gi): terms of higher degree can be absorbed into (Fil1S)N by using the relation
E(u)⊗1 = 1⊗GiHi in eiS. If aGieiv+bHieiw+s1v+s2w lies in eiIN (with s1, s2 ∈ eiFil1S) then
aGiei+s1 must lie in eiIS; the same must be true of aGiei and s1 individually since they have no
terms in common of the same degree in their unique expansions of the form

∑
j>0 qj(u)E(u)j/j!

with deg(qj) < deg(E(u)). Then since Gi is monic the coefficients of a must lie in I. Similarly
s2 ∈ eiIS and the coefficients of b lie in I. It follows that aGieiv + bHieiw + s1v + s2w actually
lies in eiIFil1N .

As for the axioms (5)–(8) and (12) of [Sav05, Def. 4.1] concerning the monodromy operator
N , again we appeal to arguments in the proof of [GS, Thm. 6.5]: ignoring the action of OE
and the descent data and regarding (N ,Fil1N , φ) simply as a strongly divisible Zp-module over
K, it follows from [Bre00, Prop. 5.1.3(1)] that there exists a unique W (k) ⊗ Zp-endomorphism
N : N → N satisfying axioms (5)–(8) of [Sav05, Def. 4.1], except that we have axiom (5)
only with respect to s ∈ SK,Zp until we know that N commutes with the action of OE . This
commutativity, as well as the commutativity between N and the descent data (axiom (12)),
follows by uniqueness of the operator N . This completes the proof that N is a strongly divisible
module.

As before, set ρ′ = T
Fp

st,2(N )[1/p], the potentially Barsotti-Tate Galois representation asso-

ciated to N , and let D := DK
st,2(ρ

′). The claim that the Galois type of ρ′ is χ ⊕ χq follows
directly by Proposition 5.1 applied with respect to the S-basis v′ =

∑
i∈J eiv +

∑
i 6∈J eiw and

w′ =
∑

i 6∈J eiv +
∑

i∈J eiw of N .
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The last thing to verify is that all pairs of labeled Hodge-Tate weights of ρ′ are {0, 1}. Recall
that if we regard K ⊗Qp E as an S[1/p]-algebra via the map u 7→ $ ⊗ 1, then by [Bre97, Prop.
6.2.2.1] there is an isomorphism

f$ : (K ⊗Qp E)⊗S[1/p] N [1/p] ∼= DK := K ⊗W (k)[1/p] D

that identifies the filtrations on both sides. It follows that DK is the free (K ⊗Qp E)-module
generated by f$(v) and f$(w), and we need to show that Fil1DK is a free submodule of rank
one in DK . It suffices to check for each i that eiFil1DK is a free ei(K ⊗Qp E)-submodule of rank
one in eiDK . If χi 6= χi+1 then this follows as in the last paragraph of the proof of [GS, Prop.
6.6]: the images of ei(u

riv+yiw) and ei(ziv+ur
′
iw) under f$ are scalar multiples of one another,

and each generates a free submodule of rank one in eiFil1DK .

For the case χi = χi+1, we note that each of our idempotents ei ∈ K ⊗Qp E decomposes as
a sum of idempotents eτ , where τ ranges over the e(p2f − 1) embeddings K ↪→ E extending σ̃i.
Since $ ⊗ 1 = 1 ⊗ τ($) in eτ (K ⊗Qp E), we deduce that the eτ -component of f$(Gi(u)eiv) is
nonzero precisely for those τ such that the root τ($) of σ̃i(E(u)) is not a root of Gi(u), and
similarly the eτ -component of f$(Hi(u)eiw) is nonzero for those τ such that τ($) is not a root of
Hi(u). It follows that eiFil1DK is free of rank one, generated by the image of ei(Gi(u)v+Hi(u)w)
under f$.

7. An explicit description of the set of weights

We maintain the notation of the previous three sections, so that F is totally real and p|p is
a place of F . The results of sections 4 and 6 may be combined to give a complete description
of when a semisimple 2-dimensional mod p representation of GFp admits a parallel potentially
Barsotti-Tate lift of type χ ⊕ χq with χ 6= χq. In turn, this furnishes an explicit description of
the conjectural set of weights for a global representation whose restriction to each decomposition
group above p is semisimple.

Theorem 7.1. Write χ =
∏2f−1
i=0 ηcii , with 0 6 ci 6 p− 1. Assume that the local representation

ρ is semisimple. Then ρ has a parallel potentially Barsotti-Tate lift of type χ⊕ χq if and only if
one of the following three possibilities holds.

(i) e > p− 1 and det ρ|IFp = ε · χq+1.

(ii) ρ ∼=
(
ψ1 0
0 ψ2

)
is decomposable, with (ψ1ψ2)|IFp = ε · χq+1, and

ψ1|IFp =
∏
i∈J

ωciπ(i)

f−1∏
i=0

ωxii

where J ⊂ {0, . . . , 2f − 1} is a subset with i + f ∈ J if and only if i 6∈ J , where the xi
are allowable for J and χ (as in Definition 4.6), and where π is the natural projection from
Z/2fZ to Z/fZ.

(iii) ρ is irreducible, and ρ|IFp ∼=
(
ψ 0
0 ψq

)
with

ψ =
∏
i∈J

ηcii
∏
i/∈J

η
ci+f
i

∏
i

ηxii

where J ⊂ {0, . . . , 2f − 1} is a subset with i+ f ∈ J if and only if i ∈ J , and where the xi
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are allowable for J and χ (as in Definition 4.6) and satisfy xi + xi+f = e.

Note that by Lemma 4.16 and the observation following its proof, the condition in (iii) that
the xi are nonnegative integers satisfying xi + xi+f = e may be replaced by the condition that
0 6 xi 6 e for all i and ψq+1|IFp = ε · χq+1.

Proof. The necessity of these conditions follows from Lemma 4.15 and the discussions of section
4.3 and 4.4, particularly equation (4.9) and Proposition 4.13. For their sufficiency, consider first
the case that ρ is irreducible. Then by the discussion of section 4.4, along with the conditions
given in (iii), there is a Breuil module N as in section 6 so that the generic fibre of N restricted
to IFp is ρ|IFp . Since we are in the irreducible case, the generic fibre of N is an unramified twist

of ρ, and the representation coming from Theorem 6.1 applied to N is an unramified twist of
the desired lift of ρ. This completes case (iii), and case (i) with ρ irreducible follows from case
(iii) combined with Lemma 4.16.

In the case that ρ is reducible, note that case (i) will follow immediately from case (ii) and
Proposition 4.10. For case (ii), observe that by the discussion in section 4.3, the generic fibre
of the rank one Breuil module M of section 4.3 agrees with ψ1 up to an unramified twist; but
in fact by Corollary 4.3 the parameters γi may be chosen so that these characters agree on the
whole group GFp . Choosing the parameters γ′i similarly to suit ψ2, the Breuil module M from
section 4.3 may be extended to a Breuil module N as in section 6, satisfying the conditions
(RED), whose generic fibre is ρ. The result again follows from Theorem 6.1.

We now return to the situation where ρ : GF → GL2(Fp) is a global representation.

Theorem 7.2. Suppose that ρ : GF → GL2(Fp) is continuous, and that ρ|GFv is semisimple for
each v|p. Let σ = ⊗v|pσv be a weight. Then σ ∈W ?(ρ) if and only if for each v|p we have

(i) σv is of type I, and the conditions of Theorem 7.1 apply with p = v and χ = σ̃v (regarded
as a character of IFv by local class field theory), or

(ii) σv is of type II, and

ρ|IFv ∼= σv

(
ε 0
0 1

)
where σv is regarded as a character of IFv via local class field theory.

In particular, if for each v|p the ramification index of Fv is at least p− 1, and σv is of type I
for each v|p, then σ ∈W ?(ρ) if and only if for each v|p we have det ρ|IFv = ε · σq+1

v .

Proof. This all follows immediately from Definition 3.4 and Theorem 7.1, except for the case
that σv is of type II. In this case, the necessity of the given condition follows from Lemma
3.5, and the sufficiency is straightforward: twisting reduces to the case σv = 1, when the result
follows from the existence of a non-crystalline extension of the trivial character by the cyclotomic
character.

8. Proof of the weight conjecture

Recall that we are assuming that F is a totally real field. We now prove in many cases that
W (ρ) = W ?(ρ), by combining the results of earlier sections with the lifting machinery of Khare-
Wintenberger, as interpreted by Kisin. In particular, we use the following result.
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Definition 8.1. Let v|p. We say that a representation ρ : GFv → GL2(Qp) is ordinary if ρ|IFv is
an extension of a finite order character by a finite order character times the cyclotomic character.

Proposition 8.2. Suppose that p > 2 and that ρ : GF → GL2(Fp) is modular. Assume that
ρ|GF (ζp)

is irreducible. If p = 5 and the projective image of ρ is isomorphic to PGL2(F5), assume

further that [F (ζp) : F ] = 4. Suppose that for each place v|p, θv is an inertial type for IFv such
that ρ|GFv has a non-ordinary parallel potentially Barsotti-Tate lift of type θv. Then ρ has a
modular lift which is parallel potentially Barsotti-Tate of type θv for all v|p.

Proof. This is a special case of Corollary 3.1.7 of [Gee].

Recall that we defined the set of weights W ?(ρ) conjecturally associated to ρ in section 3,
and that in the case that the restrictions of ρ to decomposition groups above p are semisimple,
Theorem 7.2 gives an explicit description of W ?(ρ).

Theorem 8.3. Suppose that p > 2 and that ρ : GF → GL2(Fp) is modular. Assume that ρ|GF (ζp)

is irreducible. If p = 5 and the projective image of ρ is isomorphic to PGL2(F5), assume further
that [F (ζp) : F ] = 4. Then W (ρ) ⊂W ?(ρ). If σ ∈W ?(ρ), and σ = ⊗v|pσv with each σv of type I,
then σ ∈W (ρ). In particular, if there are no places v|p for which ρ|GFv is a twist of an extension
of the trivial character by the cyclotomic character, then W (ρ) = W ?(ρ).

Proof. The inclusion W (ρ) ⊂ W ?(ρ) already follows from Lemma 3.3. The rest of the result
follows from Lemma 3.3, Proposition 8.2 and Lemma 3.5, because if σv is of type I, any lift
of type σ̃v ⊕ σ̃qvv only becomes crystalline over a nonabelian extension, and is thus certainly
non-ordinary.

Remark 8.4. It should be possible to improve this result to prove the equality W ?(ρ) = W (ρ)
under the assumption that ρ has a modular lift of parallel weight two which is ordinary at any
place v such that there is an element of W ?(ρ|GFv ) of type II. This would involve strengthening
Proposition 8.2 to include potentially semistable lifts, and the use of R = T theorems for Hida
families. The required results are not in the literature in the appropriate level of generality,
however.

Appendix A. Corrigendum to [Sav05]

The second author wishes to take this opportunity to correct an error in [Sav05], as a consequence
of which there is one more family of strongly divisible modules that must be studied by the
methods of [Sav05]. Once this is done, the remaining claims of [Sav05] are unaffected. We adopt
the notation of [Sav05] without further comment, and all numbered references are to that paper.

The mistake is in the statement and proof of Theorem 6.12(4). In the situation of that item,
if m = 1 + (p + 1)j — i.e., if i = 1 — then the two characters ωm+p

2 and ωpm+1
2 are both

characters of niveau one, and are equal; hence in this case the proof of Theorem 6.12(4) does

not show that T
Qp
st,2(M/mE) |Ip decomposes as a sum of two conjugate characters. In fact, for

each choice c of square root of w, the map M′2 → ME(F2/Qp2 , e2, c,m − 1) extends to a map
M′ →ME(F2/Qp, e2, c, j); by Proposition 5.4(1), we conclude when i = 1 that

T
Qp
st,2(M/mE)⊗kE Fp ∼= λc−1ω1+j ⊕ λ−c−1ω1+j .

This means that when i = 1 and val(b) > 0 we still need to construct a strongly divisible lattice
in Dm,[1:b] whose reduction mod p has trivial endomorphisms; or, conversely, we need to study
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deformations of type ω̃m2 ⊕ ω̃
pm
2 (with i = 1) of non-split residual representations of the form(

λc−1ω1+j ∗
0 λ−c−1ω1+j

)
.

We rectify this omission now. Our statements are numbered to mesh with the original article if
one drops the A. prefix.

Lemma A.6.7. (2) If i = 1, valp(b) > 0, and w is a square in E, then there is X ∈ S×F2,OE
satisfying

X(1⊗ wb) = 1⊗ w −
(

1 +
upe2

p

)
Xφ(X).

Proof. The constant term of X may be taken to be 1⊗x0 where x0 is either root of x20+wbx0−w
inO×E . The recursion for the coefficient xn of un is xn(x0+wb) = lower terms, and so the recursion
can be solved to obtain X ∈ S×F2,OE .

Moreover, since valp(b) > 0, by putting the variable B for b we obtain an element XB of
SF2,OE [[B]] which specializes to X under the map OE [[B]] → OE sending B 7→ b. Note that the
image of X in (Fp2 ⊗ kE)[u]/ue2p is 1⊗ c with c a square root of w. Assume henceforth that the
coefficient field E contains a square root of w. Now Proposition 6.10 is modified as follows.

Proposition A.6.10. In the case i = 1 and valp(b) > 0, we instead define

Mm,[1:b] = SF2,OE · g1 + SF2,OE · g2

g1 = e1 +
X

pw
up(p−1)e2

g2 = e2,

and this is a strongly divisible OE-module with descent data inside Dm,[1:b].

Proof. Put M = Mm,[1:b]. Observe that h := up−1g1 +
(
X
w + (1⊗ b)

)
g2 lies in Fil1M. Since

X
w + (1⊗ b) is a unit in SF2,OE and g1 does not lie in Fil1M, we deduce that Fil1M = SF2,OE ·h+
(Fil1SF2,OE )M. From this it is easy to check that IM ∩ Fil1M = IFil1M. Finally, we compute
that

φ(g1) = φ(X)up
2(p−1)g1 +

(
1−Xφ(X)

upe2

pw

)
g2

φ(g2) = pwg1 −Xup(p−1)g2
both lie in M; using the defining relation for X we find φ1(h) = (1⊗w)X−1g1 ∈M and conclude
that M is a strongly divisible module.

Now amend Theorem 6.12(4) so that it applies only to the case i > 1, and add the following.

Theorem A.6.12. (5) If i = 1 and valp(b) > 0, then T
Qp
st,2(M/mE) is independent of b and

T
Qp
st,2(M/mE) ∼=

(
λ−c−1ω1+j ∗

0 λc−1ω1+j

)
with ∗ 6= 0.
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Proof. Write M′ = T0(M/mE). Then Fil1M′ is generated by up−1g1 + c−1g2 and ue2g1, with
φ1(u

p−1g1 + c−1g2) = cg1 and φ1(u
e2g1) = up

2(p−1)cg1 + g2. Note that φ1(u
p(p−1)g2) = −cg2.

There is evidently a nontrivial map M′ → ME(F2/Qp, e2, c, j) sending g2 7→ 0 and g1 7→ up
2
e.

On the other hand if f : M′ → ME(F2/Qp, e2, d, n) is a nontrivial map sending g1 7→ αe and
g2 7→ βe, then α, β must both be polynomials in up since g1, g2 are in the image of φ1. Now if
β 6= 0 then the relation f ◦ φ1 = φ1 ◦ f on up(p−1)g2 implies that β is a unit times up; but then
f(up−1g1 + c−1g2) ∈ 〈ue2e〉 implies that α has a linear term, a contradiction. Therefore β = 0,
and then it is easy to check that c = d and j = n. It follows that ∗ 6= 0.

(We also note the following typos in the published version of the proof of Theorem 6.12(4): in
the first sentence, the expression φ1(u

e2) should be φ1(u
e2g2); in the last sentence, the characters

λc should both be λc−1 .)

The proof of Corollary 6.15(2) should then invoke Theorem 6.12(5) in lieu of Theorem 6.12(4)
in the case of representations ρ to which Theorem 6.12(5) applies, noting that the two choices
for x0 lead to different reductions of ρ.

We now turn to deformation spaces of strongly divisible modules. The proof of the following
proposition is identical to the proof that the corresponding module Mm,[1:b] of Proposition 6.10
is a strongly divisible module. As noted in Remark 6.20, we omit the description of N in the
strongly divisible module below.

Proposition A.6.21. There exists a strongly divisible module with descent data and OE [[B]]-
coefficients as follows.

(vi) If i = 1 and assuming that w is a square in E,

MX = (SF2,OE [[B]]) · g1 ⊕ (SF2,OE [[B]]) · g2,

Fil1MX = SF2,OE [[B]] · (up−1g1 + (w−1XB + (1⊗B))g2) + (Fil1SF2,OE [[B]])MX ,

φ(g1) = φ(XB)up
2(p−1)g1 +

(
1−XBφ(XB)

upe2

pw

)
g2,

φ(g2) = pwg1 −XBu
p(p−1)g2,

ĝ(g1) = (ω̃m2 ⊗ 1)g1, ĝ(g2) = (ω̃pm2 ⊗ 1)g2.

Finally, one must amend the proof of Theorem 6.24 to include a proof that the canonical
injection

R(2, τ(MX), ρ(MX))OE → OE [[B]]

is a surjection; this proceeds exactly along the strategy outlined in the proof of Theorem 6.24.
Indeed, let M′′ denote the minimal Breuil module with descent data from F2 to Qp associ-
ated to the character λ−c−1ω1+j , with generator h such that φ1(h) = −c−1h. Then a map
f : M′′ → T0(MX/(mE , B

2)) must send h to an element of the form αue2g1 + β(up−1g1 +
(w−1XB +B)g2) (where, abusing notation, we identify elements of SF2,OE [[B]] with their images
in (Fp2⊗kE [B]/(B2))[u]/ue2p). Write α = α0 +Bα1 and β = β0 +Bβ1 to separate out the terms

involving B. The relation f(φ1(h)) = φ1(f(h)) shows first that α0 = aup, β0 = −aup2 for some
a ∈ kE , by considering the relation mod B; then, after some algebra, the full relation eventually
implies a = 0. Thus the image of f lies in B · T0(MX/(mE , B

2)), as desired.
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BM02 Christophe Breuil and Ariane Mézard, Multiplicités modulaires et représentations de GL2(Zp)
et de Gal(Qp/Qp) en l = p, Duke Math. J. 115 (2002), no. 2, 205–310, With an appendix by
Guy Henniart.

Bre97 Christophe Breuil, Représentations p-adiques semi-stables et transversalité de Griffiths, Math.
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