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Abstract. We show that the category of smooth representations of GL2(Qp)
on p-power torsion modules localizes over a certain projective scheme, and give

some applications.
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1. Introduction

In this paper we establish a localization theory for the category of smooth repre-
sentations of GL2(Qp) on Zp-modules on which p is locally nilpotent, for any prime
p ≥ 5.

1.1. Initial statement of results. In order to make a precise statement, we in-
troduce some notation. Let O denote the ring of integers in a finite extension E
of Qp and let A denote the category of smooth representations of GL2(Qp) on
O-modules on which p acts locally nilpotently, and which have a central character
equal to some fixed character ζ : Q×p → O×. Let F denote the residue field of O.

Let X denote a chain of projective lines over F with ordinary double points,
of length (p ± 1)/2 (where the sign is equal to −ζ(−1)). Our definition of X is
motivated by the mod p semisimple local Langlands correspondence for GL2(Qp)
due to Breuil [Bre03b, Defn. 1.1]. Indeed, one can think of X as a moduli space of
semisimple representations ρ : GQp

→ GL2(Fp), with the intersection points of the
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P1s corresponding to irreducible representations. It then follows from Paškūnas’
results [Paš13] that the blocks in the subcategory Al.adm of locally admissible rep-
resentations with central character ζ are in bijection with the closed points of X.

Given a closed subset Y of X with open complement U := X \Y , we let AY de-
note the subcategory ofA consisting of those representations all of whose irreducible
subquotients lie in blocks corresponding to closed points of Y . The subcategory AY
is localizing (in the usual sense, recalled in Appendix A.2), and is in particular a
Serre subcategory of A, and we set AU := A/AY .

Our main result shows that the category A can be localized over X, in the
following precise sense (see Theorem 3.3.1 and Remark 3.3.2).

Theorem 1.1.1. The collection {AU} forms a stack (of abelian categories) over
the Zariski site of X.

1.2. Applications. In Section 4 we demonstrate that Theorem 1.1.1 (and the re-
sults that go into its proof) has many concrete consequences for the representation
theory of GL2(Qp). In particular we compute various Ext1 groups between compact
inductions of Serre weights, and between such compact inductions and irreducible
representations. For example, in Proposition 4.2.2 we show that if σ is a Serre
weight and π is absolutely irreducible, then

dim Ext1(π, c-IndGKZ(σ)) ≤ 1;

in addition, we explicitly describe all of the non-split extensions that arise. Simi-
larly, in Proposition 4.2.4 we compute the dimensions of the Ext1 groups for exten-
sions in the opposite direction (with a genericity assumption), and in Section 4.3
we compute the Ext1 groups between full compact inductions of Serre weights.

In addition, in Section 4.1 we make precise the fashion in which the category
of finitely generated smooth representations is built out of finite length representa-
tions (which admit finite filtrations by irreducible representations), together with
compact inductions of Serre weights. In particular we prove Proposition 4.1.3,
which shows that every finitely generated representation π admits a maximal sub-
object πfl which is of finite length, and the quotient π/πfl is a successive extension

of submodules of representations c-IndGKZ σ, for σ a Serre weight. (The structure
of these submodules is not mysterious; indeed, as recalled in Remark 4.1.4, most
such submodules are isomorphic to c-IndGKZ σ.)

1.3. The relationship to the Bernstein centre. Our results can be understood
by comparison with other, more classical contexts, in the representation theory of
p-adic reductive groups. Note that the particular choice of coefficient ring O does
not affect things much, as long as its residue field F has characteristic p. Thus it
makes sense to compare our results with the classical case of smooth representations
of a p-adic reductive group G over a field F of characteristic zero.

The first thing to note is that, in this classical case just as in our case, there are
many smooth representations, indeed naturally occuring ones, that are not admis-
sible. For example, if G = GL2(Qp) and V is a finite dimensional representation

of KZ = GL2(Zp)Q
×
p , then c-IndGKZ V is admissible if and only if V has vanishing

“Jacquet module” (see e.g. [Bus90, Thm. 1 supp.] for a proof of a more general
result), a condition which certainly need not hold in characteristic zero (e.g. if V

is the trivial representation). In characteristic p, c-IndGKZ V is never admissible,
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provided V itself is non-zero. At least morally, this is because in characteristic p,
the Jacquet module of a non-zero V will never vanish.

However, if F is a field of characteristic zero, if G is any p-adic reductive group,
and if Z denotes the Bernstein centre of the category of smooth G-representations on
F-vector spaces, then Bernstein’s results [Ber84] show that any finitely generated
smooth G-representation is admissible over Z. (This is the p-adic analogue of
a theorem of Harish-Chandra, to the effect that if G is a real reductive group
with Lie algebra g, then any finitely generated

(
U(g),K

)
-module is admissible

over the centre Z of U(g).) Thus we may think of a not-necessarily-admissible
smooth G-representation in characteristic zero as being a “family” of admissible
representations parameterized by some subscheme of Spec(Z). An analogous result
has also recently been proved by Dat–Helm–Kurinczuk–Moss [DHKM22] for the
category of smooth representations of G over a field of characteristic ` 6= p, or more
generally over a Noetherian Z`-algebra.

On the other hand, the analogous result is not true for our category A. Indeed,
independent results of A.D. and Ardakov–Schneider [AS21, Dot21] show that the
Bernstein centre of A is trivial. Thus any finitely generated non-admissible repre-
sentation (such as the c-IndGKZ V introduced above) provides a counterexample to
the analogue of Bernstein’s result.

The localization theory of this paper was developed in part to rectify this absence
of an interesting Bernstein centre for A: rather than simply regarding objects of A
as lying over the Spec of its Bernstein centre, we localize them over the non-affine
variety X. Then, by forming the Bernstein centres of the various categories AU ,
we may endow X with the structure of a topologically ringed space, and we expect
to prove (in forthcoming work) that this endows X with the structure of a formal

scheme over O — which we denote by X̂ — such that X itself is the underlying

reduced scheme over F of X̂. The triviality of the Bernstein centre of A would then
correspond to the fact that the only global sections of the structure sheaf OX̂ are
the constant functions. In turn, this statement itself would be an extension to the

thickening X̂ of the fact that the only globally defined functions on the connected
projective variety X are the constant functions — thus the fact that X is projective,
rather than affine, is closely related to the fact that the Bernstein centre of A is
trivial.

1.4. The relationship with local Langlands. Our definition of X suggests that
there is a connection between our results and the mod p or p-adic local Langlands
correspondence, and indeed, this is the case. To explain and motivate this, we first
recall the analogous result in the ` 6= p context. Namely, if F is a field of charac-
teristic zero or ` 6= p, or more generally if O is a complete DVR whose residue field
is such a field F, then, for any p-adic field F and any n ≥ 1, we may consider the
moduli stack X parameterizing n-dimensional representations of the Weil–Deligne
group of F over O-algebras, and the local Langlands correspondence over O iden-
tifies Z — the Bernstein centre of O[GLn(F )] — with the ring of functions on X ,
by a theorem of Helm–Moss [HM18]. Since X is a reductive quotient of an affine
scheme, we may rephrase this as saying that SpecZ is the moduli space associated
to X , or more precisely an adequate moduli space in the sense of Alper [Alp14].

In forthcoming work we expect to prove a p-adic analogue of this result. Namely,

we will show that X̂ — the thickening of X induced by the localized Bernstein cen-
tre of A discussed above — is a formal moduli space associated to the stack XQp
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parameterizing (ϕ,Γ)-modules arising from continuous rank two p-adic representa-
tions of GalQp of appropriately fixed determinant.

Remark 1.4.1. In the ` 6= p case, the identification of the Bernstein centre with the
ring of functions on X is an outward manifestation of a deeper phenomenon, namely
the categorical local Langlands correspondence considered in [BZCHN20, FS21,
Hel20, Zhu20]. In the forthcoming paper [DEG], we establish (using the results
of this paper as one our tools) an analogous categorical p-adic local Langlands
correspondence for GL2(Qp), in the form of a fully faithful functor from the derived
category of A to an appropriate derived category of coherent sheaves on the stack
of (ϕ,Γ)-modules X2,Qp

mentioned above.
However, while we anticipate that fully faithful functors of this kind exist in

great generality (in particular, for the representations of GLn(F ) for any n and any
p-adic local field F ), we don’t expect the results of the present paper to generalise
in any obvious way, even to GL2(F ) with F 6= Qp.

Relatedly, on the Galois side of the Langlands correspondence, we do not expect
the stacks of (ϕ,Γ)-modules to admit interesting associated moduli spaces beyond
the cases of GL2(Qp) and GL1(F ), F being any finite extension of Qp. For example,
if X2,Qp2

denotes the analogous stack for GL2(Qp2), then the various specialisation

relations in reducible families cause any morphism X2,Qp2
→ Z with Z being a

locally separated formal algebraic space to factor through the structure morphism
X2,Qp2

→ Spf O.

1.5. Methods of proof. The subcategory Aadm of A consisting of admissible
representations is well-understood, thanks to the results of Paškūnas [Paš13]. As
already mentioned above, it factors into a product of blocks, which are labelled by
the closed points of X. In our perspective, the objects of Al.adm are supported on
finite closed subsets of X, so that our localization theory, for these objects, is just
a restatement of Paškūnas’s results.

The novel aspects of our theory are seen when the objects under consideration
are not locally admissible, since then they will localize over subsets of X with
non-empty interior. A basic consequence of the localization theory is that, if two
representations have disjoint support, then all Exti groups between them vanish.
Conversely, proving such statements is the key to proving Theorem 1.1.1. The key
result is Lemma 3.1.6, which (at least morally) shows that if σ is a Serre weight, and

π is a supported on some closed subset Y , then the Exti between π and c-IndGKZ σ
are also supported on Y . It is proved by exploiting the fact that these Exti groups
are typically not finite dimensional over F, but they are of countable dimension.
Since they are also modules over the Hecke algebra H(σ) ∼= F[T ], this makes them
amenable to an application of a well-known technique of Dixmier [Dix63], at least
when F is uncountable; and we can always arrange that F is uncountable via an
appropriate base-change. With this result in hand, we are able to show that for
any open cover of X, the corresponding “Čech resolution” of any π is acyclic, and
we deduce Theorem 1.1.1 from this acyclicity.

Remark 1.5.1. We do not explicitly use the p-adic local Langlands correspondence
in our arguments. However, we do use the results of Paškūnas [Paš13], whose
proofs use p-adic local Langlands. In particular we frequently use the classification
of blocks in the locally admissible category Al.adm, and for some of the results in
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Section 3.8, we furthermore make use of Paškūnas’s description of the Bernstein
centres of these blocks.

Remark 1.5.2. We expect that the results of this paper extend to the cases of p = 2,
3, with minor modifications to the statements (e.g. to the definition of X in the
case p = 2: in this case X should consist of a single P1). Our arguments would
necessarily become more complicated in the cases p = 2, 3, so that we could no
longer argue uniformly in p. Note that this already happens for the description of
blocks in [Paš13], which is not carried out in loc. cit. for p = 2, 3, but is rather
in [Paš14, PT21]. Thus we have not attempted to make the modifications of our
arguments that would be required to treat these cases.

1.6. A guide to the paper. In Section 2 we recall some basic results on the
smooth p-adic representation theory of GL2(Qp), and explain our interpretation of
Paškūnas’ classification [Paš13] of the blocks of locally admissible representations
in terms of the closed points of X. In Section 2.5 we prove some general results on
Ext groups, including finiteness properties, compatibility with extension of scalars,
and compatibility with colimits. Finally in Section 2.6 we prove some technical
results on the Bernstein centres of these blocks.

We establish our localization theory in Section 3. We begin with the basic defini-
tions of our localizing categories, and then prove the crucial Lemma 3.1.6 mentioned
above, and (with some work) deduce Theorem 1.1.1. The rest of Section 3 is de-
voted to a discussion of the analogue on the representation theory side of completion
along a closed subset of X. In particular, we prove Theorem 3.8.1, which is the
analogue of Beauville–Laszlo gluing in this setting. As well as being of independent
interest, this is used crucially in our forthcoming paper [DEG].

In Section 4 we give a variety of examples and application of our localization
theory, showing in particular how it can be used to compute extensions between
compact inductions c-IndGKZ σ, and extensions between such compact inductions
and admissible representations. Finally in Appendix A we recall some background
material in category theory that we use in the body of the paper.

1.7. Notation and conventions. We fix throughout the paper a prime p ≥
5. Fix an algebraic closure Qp of Qp, and write GQp

for the absolute Galois

group Gal(Qp/Qp). Let O denote the ring of integers in a fixed finite extension
E of Qp, and let F be the residue field of O; all representations considered in this
paper will be on O-modules.

We write G = GL2(Qp), K = GL2(Zp), and Z = Q×p for the centre of G.

We fix a continuous character ζ : Q×p → O× throughout the paper. We write

ω : Q×p → F×p for the reduction mod p of the character Q×p → Z×p , x 7→ x|x|.
We always let A denote a complete Noetherian local O-algebra, where “local” is

understood in the strong sense that A is a local ring, and the morphism O → A is
a local morphism; given the first assumption, this second hypothesis is equivalent
to requiring that the residue field k be of characteristic p. We then let AA denote
the category of smooth G-representations with central character ζ on locally mA-
torsion A-modules. In more detail, mA denotes the maximal ideal of A, a module
is locally mA-torsion if each element is annihilated by some power of mA, and a
representation is smooth if each element is fixed by some open subgroup of G; so
we are considering precisely those representations over A which are called smooth in
[Eme10a] (and which have the required central character). In the case that A = O
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we write A for AA. If V is a finite length object of A we will write JH(V ) for the
multiset of Jordan–Hölder factors of V .

We will write Iζ for the two-sided ideal of A[G] or A[KZ] (or other group algebras
of groups containing Z) generated by [z]− ζ(z) for z ∈ Z.

We write CA for the category of smooth KZ-representations with central char-
acter ζ on A-modules on which p is locally nilpotent. In the case that A = O we
write C for CA. A Serre weight is an irreducible object of CA, or equivalently of Ck.
Since every irreducible k-representation of K is defined over Fp, and Z is acting
by ζ, the set of isomorphism classes of Serre weights is independent of A.

More explicitly, the isomorphism classes of Serre weights are represented by the
representations Symb F2

p⊗deta of GL2(Fp), where 0 ≤ a < p−1 and 0 ≤ b ≤ p−1.
It is sometimes convenient to view a as an element of Z/pZ, and we will do so
without further comment.

We make some use of tame types, by which we mean the principal series and
cuspidal representations of GL2(Fp). For any pair of characters χ1 6= χ2 : F×p →
O×, we have the principal series representation I(χ1, χ2) = Ind

GL2(Fp)

B(Fp) χ1 ⊗ χ2,

and for any character χ : F×p2 → O
× which does not factor through the norm, the

corresponding cuspidal representation Θ(χ). (Up to sign, these are the Deligne–
Lusztig inductions of regular characters of the nonsplit maximal torus in GL2(Fp).)
These representations are irreducible of dimensions p+1, p−1 respectively, and the
only isomorphisms between them are that I(χ1, χ2) ∼= I(χ2, χ1) and Θ(χ) ∼= Θ(χp).

The Jordan–Hölder factors of their reductions modulo p are as follows. Firstly, if
we write χi(x) = xni , then the Jordan–Hölder factors of the reduction of I(χ1, χ2)

are Sym[n1−n2]⊗detn2 and Sym[n2−n1]⊗detn1 , where [ni−nj ] denotes the unique
integer in (0, p− 1) congruent to ni − nj (mod p− 1).

Secondly, if χ(x) = xi+(p+1)j with 1 ≤ i ≤ p, then if 1 < i < p then the reduction

of Θ(χ) has two Jordan–Hölder factors, namely Symi−2⊗det1+j and Symp−1−i⊗deti+j ;

while if i = 1 or p, then it is irreducible and isomorphic to Symp−2⊗det1+j .

1.8. Acknowledgements. We would like to thank Pierre Colmez, Gabriel Dospinescu,
and Vytautas Paškūnas for helpful correspondence and conversations, and com-
ments on an earlier draft of this paper.

2. Preliminaries on smooth GL2(Qp)-representations

2.1. Irreducible representations. If A = k is an algebraically closed field of
characteristic p, the irreducible objects of Ak have been classified in [BL94, Bre03a].
As we will often need to extend scalars to transcendental extensions of k, in this
section we will extend their results to arbitrary and possibly imperfect extensions
k/Fp.

To state the classification, recall more generally that the restriction functor
from AA to CA has an exact left adjoint given by compact induction and denoted

V 7→ c-IndGKZ(V ).

The case when V = σ is an irreducible k[KZ]-module (a “Serre weight”) is
of particular importance. We begin by recalling the description, due to Barthel
and Livné [BL94], of their endomorphism rings, which we denote by H(σ) :=

EndG(c-IndGKZ σ).
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Lemma 2.1.1. We have an isomorphism

(2.1.2) H(σ) ∼= k[T ],

generated by a specific choice of Hecke operator T . Furthermore, c-IndGKZ σ is free
over k[T ].

In what follows we will denote T by Tp in case of a notational clash, for instance
if T ∈ k[T ] is a formal variable.

We also recall (again from [BL94]) the classification of G-equivariant morphisms
between the compact inductions of Serre weights.

Lemma 2.1.3. If σ and σ′ are distinct Serre weights then HomG(c-IndGKZ σ
′, c-IndGKZ σ) =

0 except in the case when {σ, σ′} = {det s,Symp−1⊗det s} for some s, in which
case we have the following:

(1) All elements of

HomG

(
c-IndGKZ Sym0⊗ det s, c-IndGKZ Symp−1⊗det s

)
and of

HomG

(
c-IndGKZ Symp−1⊗det s, c-IndGKZ Sym0⊗det s

)
are k[T ]-equivariant, where k[T ] acts on each of source and target in the
natural way, i.e. with T acting by the appropriate Tp.

(2) Each of

HomG

(
c-IndGKZ Sym0⊗ det s, c-IndGKZ Symp−1⊗det s

)
and

HomG

(
c-IndGKZ Symp−1⊗det s, c-IndGKZ Sym0⊗det s

)
is free of rank 1 over k[T ].

(3) We can choose k[T ]-generators

α ∈ HomG

(
c-IndGKZ Sym0⊗det s, c-IndGKZ Symp−1⊗det s

)
and

β ∈ HomG

(
c-IndGKZ Symp−1⊗det s, c-IndGKZ Sym0⊗ det s

)
such that

α ◦ β = β ◦ α = T 2 − 1.

The cokernels of α and β have length 2.

This lemma has the following useful corollary.

Corollary 2.1.4.
(1) If σ is not a twist of Sym0 or Symp−1, then any subobject of c-IndGKZ σ is

of the form f(T )c-IndGKZ σ for some f(T ) ∈ k[T ].

(2) If σ is a twist of Sym0 or Symp−1, then any subobject π of c-IndGKZ σ
satisfies inclusions

(T 2 − 1)f(T )c-IndGKZ σ ⊆ π ⊆ f(T )c-IndGKZ σ

for some f(T ) ∈ k[T ]. Furthermore, π is a k[T ]-submodule of c-IndGKZ σ.

Proof. If π is non-zero, then it contains a Serre weight σ′, and the inclusion
π → c-IndGKZ σ induces a G-equivariant morphism c-IndGKZ σ

′ → c-IndGKZ σ. The
corollary now follows easily from Lemma 2.1.3. �



8 A. DOTTO, M. EMERTON, AND T. GEE

This corollary is the beginning of the classification of irreducibleG-representations.
Namely, we see that if π is irreducible, then by choosing a Serre weight σ in π, we
obtain a surjection

c-IndGKZ σ/f(T )c-IndGKZ σ → π,

for some irreducible polynomial f(T ) ∈ k[T ]. Classifying irreducibles then amounts

to analyzing the structure of such quotients c-IndGKZ σ/f(T )c-IndGKZ σ (with f(T )
irreducible). In the case when k is algebraically closed, so that f(T ) = T − λ for
some λ ∈ k, this was done by Barthel and Livné when λ 6= 0, and by Breuil [Bre03a]
when λ = 0. Theorem 2.1.5 and Lemma 2.1.6 below summarize their results.

Theorem 2.1.5. Let k be an algebraically closed field of characteristic p. Every
irreducible object of Ak is isomorphic to a representation in the following list:

(1) η ◦ det for some smooth character η : Q×p → k×;

(2) (η ◦ det) ⊗ St for some smooth character η : Q×p → k×, where St is the
Steinberg representation of G; or

(3) c-IndGKZ(σ)/(f(T )), where σ is an irreducible representation of k[KZ] and f =
T − λ for some λ ∈ k, and

(σ, λ) 6∈ {(Sym0⊗ dets,±1), (Symp−1⊗dets,±1)}.

Conversely, all these representations are irreducible and pairwise noniso-
morphic, with the following exceptions:

(c-IndGKZ Sym0⊗dets)/(T − λ) ∼= (c-IndGKZ Symp−1⊗dets)/(T − λ) if λ 6= ±1.

(c-IndGKZ Symr ⊗dets)/T ∼= (c-IndGKZ Symp−1−r ⊗detr+s)/T.

We recall what happens in the excluded cases of part (3) of the preceding theo-
rem.

Lemma 2.1.6. There are non-split short exact sequences

0→ (nr±1◦det)⊗det s → (c-IndGKZ Symp−1⊗det s)/(T±1)→ (nr±1◦det)⊗StG⊗det s → 0

and

0→ (nr±1◦det)⊗StG⊗det s → (c-IndGKZ Sym0⊗det s)/(T±1)→ (nr±1◦det)⊗det s → 0.

These short exact sequences are induced by the morphisms of Lemma 2.1.3(3).
It is a standard result that they are not split; we will give a proof in the course of
proving Lemma 2.1.12 below.

The next result generalizes Theorem 2.1.5 to an arbitrary coefficient field. See [Paš13,
Section 5.3] for similar results under the assumption that k is perfect.

Theorem 2.1.7. Assume A is a complete Noetherian local O -algebra, and let π
be an irreducible object of AA. Then π is isomorphic to one of the following:

(1) η ◦ det for some character η : Q×p → k×;

(2) (η ◦ det)⊗ StG for some character η : Q×p → k×; or

(3)
(
c-IndGKZ σ

)
/f(T )

(
c-IndGKZ σ

)
for some irreducible k[KZ]-representation σ

and some irreducible polynomial f(T ) ∈ k[T ], with f(T ) 6= T ± 1 if σ is a
twist of Sym0 or Symp−1.

Conversely, each of these representations is irreducible.
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Proof. If π is an irreducible object of AA then it is a k[G]-module. As noted above,
there exists a surjection

Π := (c-IndGKZ σ)/f(T )→ π

for some irreducible k[KZ]-representation σ and some irreducible polynomial f(T ) ∈
k[T ]. Bearing in mind Theorem 2.1.5, it suffices to prove that Π is irreducible when-
ever deg(f) > 1. To do so, observe first that

Homk[G](c-IndGKZ σ,Π)

is deg(f)-dimensional over k. Indeed, since both representations are finitely gener-
ated over k[G], by [Paš13, Lemma 5.1] this can be checked after extending scalars
to an algebraic closure of k. Then it follows from the fact that Π⊗k k has deg(f)
Jordan–Hölder factors, each of which contains σ as a KZ-subrepresentation with
multiplicity one.

Now let Π′ ⊂ Π be a nonzero G-stable subspace. We claim that Π′ contains the
image of a nonzero element of Homk[G](c-IndGKZ σ,Π). To see that this implies the
theorem, notice that this space contains the field k[T ]/f(T ), which has dimension
deg(f) over k, and so coincides with it. It follows that every nonzero element is
bijective, and so Π′ = Π.

To prove the claim, notice that since Π′ is nonzero it contains the image of a
nonzero morphism

c-IndGKZ(σ′)→ Π

for some irreducible k[KZ]-module σ′. Extending scalars to k and using Theo-
rem 2.1.5 we see that σ ∼= σ′, except possibly when σ and σ′ are twists of Sym0

or Symp−1. However, in this case we have that

c-IndGKZ(Symp−1)[1/(T 2 − 1)] ∼= c-IndGKZ(Sym0)[1/(T 2 − 1)],

and we are done since our assumption on f(T ) implies that Π has no Jordan–Hölder
factors isomorphic to characters or Steinberg twists. �

We note the following easy corollaries of these classification results.

Corollary 2.1.8. Let σ1, σ2 be Serre weights and let fi ∈ H(σi) be irreducible

monic polynomials of degree greater than one. Then c-IndGKZ(σ1)/f1
∼= c-IndGKZ(σ2)/f2

if and only if σ1 = σ2 and f1 = f2.

Proof. Passing to a finite extension l/k where both f1 and f2 split, this is an
immediate consequence of Theorem 2.1.5, Theorem 2.1.7, and [Paš13, Lemma 5.1].

�

Corollary 2.1.9. Let σ be a Serre weight. If π′ is a non-zero subobject of c-IndGKZ σ,

then (c-IndGKZ σ)/π′ is of finite length.

Proof. Corollary 2.1.4 allows us to reduce to the case π′ = f(T )c-IndGKZ σ for
some non-zero f(T ) ∈ k[T ], and then by factoring f(T ), we reduce to the case
that f(T ) is irreducible, in which case the corollary follows from Theorem 2.1.7
and Lemma 2.1.6. �

We will use the following result in the proof of Lemma 3.6.6.



10 A. DOTTO, M. EMERTON, AND T. GEE

Lemma 2.1.10. Let σ be a Serre weight, and g be a non-zero irreducible element of
H(σ). Then (c-IndGKZ σ)[1/g]/(c-IndGKZ σ) is Artinian, and is in fact an essential

extension of 1
g c-IndGKZ σ/c-IndGKZ σ.

Proof. Write Π := c-IndGKZ σ. It is enough to show that for each n ≥ 1,

1

g
Π→ 1

gn
Π

is an essential extension. Let Θ be a sub-G-representation of 1
gnΠ/Π; we can and

do assume that Θ is not contained in 1
gn−1 Π/Π. Let Θ be the image of Θ under

the isomorphism
1

gn
Π/Π

∼−→ Π/gnΠ

given by multiplication by gn; we need to show Θ has non-trivial intersection with
gn−1Π/gnΠ. By Corollary 2.1.4, Θ is stable under the action of H(σ), and in
particular under the action of g. We have gn−1Θ 6= 0 by our assumption that Θ is
not contained in 1

gn−1 Π, and gn−1Θ ⊆ Θ ∩ (gn−1Π/gnΠ), as required. �

In fact, the Artinian property for locally admissible representations follows from
finiteness of the socle, by Paškūnas’s results on the structure of blocks. We prove
this in the following proposition.

Proposition 2.1.11. Let J be an injective object of Al.adm. Then J is Artinian if
and only if socG(J) has finite length.

Proof. One direction is immediate, so we assume that socG(J) is finite-dimensional
and prove that J is Artinian. After a finite extension of scalars, J is isomorphic to a
direct sum of injective envelopes of absolutely irreducible objects, hence by [Paš13,
Corollary 5.18] it suffices to prove that indecomposable injective objects of any
absolutely irreducible block of Al.adm are Artinian. This is a consequence of one of
the main results of [Paš13], which shows that the endomorphism rings of projective
generators of blocks are right and left Noetherian: in fact, they are finite modules
over their centres, which are Noetherian rings. �

We will also find the following refinement of Lemma 2.1.10 useful.

Lemma 2.1.12. Let σ be a Serre weight, and g = T − λ ∈ H(σ) for some λ ∈ k.

Then (c-IndGKZ σ)[1/g]/(c-IndGKZ σ) is uniserial.

Proof. Except in the case when σ is a twist of Sym0 or Symp−1 and g = T ± 1, we
know by Theorem 2.1.7 that c-IndGKZ σ/g(c-IndGKZ σ) is irreducible, in which the
lemma is an easy consequence of Lemma 2.1.10. If we are in one of the remaining
cases, we may twist so that σ = Sym0 or Symp−1 and g = T − 1, and so we assume
this from now on.

Since we are working modulo powers of T − 1, we localize each of c-IndGKZ σ
0

and c-IndGKZ Symp−1 at the prime ideal (T − 1) of k[T ], so as to obtain a chain of
inclusions

(c-IndGKZ Sym0)(T−1) ⊃ (c-IndGKZ Symp−1)(T−1)

⊃ (T − 1)(c-IndGKZ Sym0)(T−1) ⊃ (T − 1)(c-IndGKZ Symp−1)(T−1)
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with successive quotients equal to 1G (the trivial representation of G), StG, and

1G again. Since any non-isomorphic map of (c-IndGKZ Sym0)(T−1) to itself factors

through the quotient by (T −1)(c-IndGKZ Sym0)(T−1), and similarly for Symp−1, we
see that the induced extensions of 1 by StG and of StG by 1 are non-split. This
easily proves the uniseriality in the cases of Sym0 and Symp−1 for g = T − 1 (and
thus completes the proof of the lemma). �

2.2. Blocks, and a chain of P1s. We now discuss the full subcategory Al.adm

of A consisting of locally admissible representations. Recall [Eme10a, Defn. 2.2.15]
that a representation π ∈ A is locally admissible if every vector v ∈ π is smooth
and generates an admissible representation, and is locally finite if for every v the
representation generated by v is of finite length. In this setting locally admissible
representations are locally finite by [Eme10a, Thm. 2.2.17]. Hence the category
Al.adm is locally finite, unlike A, and so admits a decomposition into blocks. These
blocks are studied intensively in [Paš13].

Recall that, by definition, a block of Al.adm is an equivalence class of (isomor-
phism classes of) irreducible objects1 under the equivalence relation generated by

π1 ∼ π2 if Ext1
A(π1, π2) 6= 0 or Ext1

A(π2, π1) 6= 0.

As in the proof of [Paš13, Proposition 5.34], or equivalently using the spectral
sequence (2.5.5), we get the same equivalence relation if we work instead with
Ext1

AF
, which we will do in what follows. The blocks B that contain absolutely

irreducible representations are as follows:

(1) B = {π} for an irreducible supersingular representation π,

(2) B = {IndGB(χ1 ⊗ ω−1χ2), IndGB(χ2 ⊗ ω−1χ1)} for characters χ1, χ2 : Q×p →
F× such that χ1χ

−1
2 6= 1, ω±1,

(3) B = {IndGB(χ⊗ ω−1χ)} for a character χ : Q×p → F×, and

(4) B = {χ, χ⊗ StG, IndGB(ωχ⊗ ω−1χ)} for a character χ : Q×p → F×.

The following Proposition completes the classification of the blocks; the proof
makes use of Theorem 2.1.7 and [Paš13, Proposition 5.33], asserting that Exti com-
mutes with finite extensions of F for representations of finite length (see Proposi-
tion 2.5.13 for a generalization to Afg).

Proposition 2.2.1. Let σ = Symr ⊗dets be a Serre weight, and let f ∈ H(σ) be

an irreducible polynomial of degree n > 1. Let π = c-IndGKZ(σ)/f(T ), and let π′

be an irreducible object of A not isomorphic to π. Then π and π′ are in the same
block of Al.adm if and only if

π′ ∼= c-IndGKZ(σ′)/f∗(T )

for σ′ = Symp−3−r ⊗detr+s+1 and f∗(T ) = Tnf(1/T ).

Remark 2.2.2. By Lemma 2.1.3 we can assume without loss of generality that 0 ≤
r ≤ p− 2. If r = p− 2, the exponent p− 3− r denotes p− 2.

Proof of Proposition 2.2.1. Assume that π ∼ π′, and let π0 = π, π1, . . . , πm = π′

be irreducible objects of A such that Ext1(πj , πj+1) 6= 0 or Ext1(πj+1, πj) 6= 0 for
all j. Since the map (σ, f) 7→ (σ′, f∗) is an involution, by induction on m it suffices

1We note that it follows from the results of [BL94] and [Bre03a] that the irreducible objects of
A are automatically admissible, and hence lie in Al.adm. Thus we can equally well regard this as

an equivalence relation on the irreducible objects of A.
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to prove that π1
∼= π or π1

∼= c-IndGKZ(σ′)/f∗(T ). Passing to a finite extension
of F and using [Paš13, Proposition 5.33] this is immediate from the classification
of blocks containing principal series representations.

Conversely, assume that π′ ∼= c-IndGKZ(σ′)/f∗(T ). Again by [Paš13, Proposi-
tion 5.33] it suffices to prove that Ext1

AF′
(π ⊗F F′, π′ ⊗F F′) 6= 0, where F′ is a

splitting field of f over F. Since

Ext1
AF′

(c-IndGKZ(σ)/(T − λ), c-IndGKZ(σ′)/(T − λ−1)) 6= 0

for all roots λ of f in F′, this is immediate since F′/F is separable. �

Remark 2.2.3. In the more general case of Ak with coefficients in a field k of
characteristic p, it could be the case that the splitting field l of f is inseparable
over k. This situation can be treated using the fact that for all i, j > 0 we have

Ext1
Al(c-IndGKZ(σ)/(T − λ)i, c-IndGKZ(σ′)/(T − λ−1)j) 6= 0,

which follows from the long exact sequences in Ext associated to

0→ c-IndGKZ(σ′)/(T−λ−1)j−1 → c-IndGKZ(σ′)/(T−λ−1)j → c-IndGKZ(σ′)/(T−λ−1)→ 0

and

0→ c-IndGKZ(σ)/(T − λ)→ c-IndGKZ(σ)/(T − λ)j → c-IndGKZ(σ)/(T − λ)j−1 → 0.

Now we let X denote a chain of P1’s over F with ordinary double points, of
length (p ± 1)/2, where the sign is positive if and only if ζ is odd. We choose
coordinates on each irreducible component of X in such a way that each singular
point corresponds to 0 on one intersecting component and ∞ on the other. We
will refer to the points 0 and ∞ as marked points. We are going to label the
components of X by cuspidal types Θ(χ) with central character ζ = χp+1; note
that since Θ(χ) ∼= Θ(χ′) if and only if χ′ = χ or χ′ = χp, there are as many
cuspidal types with central character ζ as irreducible components of X. In order
to construct the labelling, it will be useful to have the following definition.

Definition 2.2.4. We will say that two cuspidal types τ1, τ2 are adjacent if there
exist σi ∈ JH(τ i) such that {σ1, σ2} is the set of Jordan–Hölder factors of a principal
series representation of F[GL2(Fp)].

Recall from [BP12, Corollary 5.6] that the extensions amongst irreducible F[GL2(Fp)]-
representations are classified by the following proposition.

Proposition 2.2.5. Let σ = Symb F2
p ⊗ deta. Then one of the following is true:

(1) there exist exactly two Serre weights σ1, σ2 such that Ext1(σ, σi) is nonzero.
One of these extensions is the mod p reduction of a lattice in a cuspidal type,
and the other is the mod p reduction of a lattice in a principal series type.

(2) b = p − 2, there exists a cuspidal type τ with τ = {σ}, and there exists a
unique Serre weight σ1 such that Ext1(σ, σ1) 6= 0. This nonsplit extension
is the mod p reduction of a lattice in a principal series type.

(3) b = 0, and there exists a unique Serre weight σ1 such that Ext1(σ, σ1) 6= 0.
This nonsplit extension is the mod p reduction of a lattice in a cuspidal
type.

(4) b = p− 1, and σ is a projective F[GL2(Fp)]-module.

Corollary 2.2.6. Let τ be a cuspidal type. Then one of the following is true:
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(1) there exist exactly two cuspidal types adjacent to τ , or
(2) τ contains a twist of Sym0 or Symp−2, and there exists precisely one cus-

pidal type adjacent to τ .

Proof. This is immediate from Proposition 2.2.5. �

Proposition 2.2.7. There exist exactly two bijections τ 7→ X(τ), from the set of
cuspidal types with central character ζ to the set of irreducible components of X,
with the following property: X(τ1)∩X(τ2) is not empty if and only if τ1 and τ2 are
adjacent.

Proof. Assume first that ζ is odd. Twisting by the determinant, we may assume
that ζ|µp−1(Qp) = ω−1. Then there exists a cuspidal type τ with central character ζ

such that τ ∼= Symp−2, which therefore needs to be sent to one of the components
with only one singular point. By Corollary 2.2.6, the bijection is determined by
choosing which one.

Similarly, if ζ is even we can twist and assume that ζ|µp−1(Qp) = 1. In this
case, the bijection is determined by the image of the cuspidal type whose reduction
contains the trivial F[GL2(Fp)]-representation. �

In what follows we will make an arbitrary choice amongst the two bijections
constructed in Proposition 2.2.7.

Remark 2.2.8. This ambiguity is related to the fact that the group Z/2 × Z/2
acts on the category A by autoequivalences arising from twisting by the quadratic
characters Q×p → F×, since twisting by ramified characters changes the K-socle of
an irreducible object of A. On the other hand, twisting by the unramified quadratic
character gives rise to an isomorphism

(c-IndGKZ Symr ⊗dets)/(T + λ) ∼= (nr−1 ◦ det)⊗ (c-IndGKZ Symr ⊗dets)/(T − λ).

We record an additional property of the map τ 7→ X(τ).

Lemma 2.2.9. If τ1, τ2 are adjacent cuspidal types, the pair (σ1, σ2) in Defini-
tion 2.2.4 is unique.

Proof. Let σ′1, σ
′
2 be the other Jordan–Hölder factors of τ i, if any exist. Let x =

dimσ1. Then dimσ2 = p + 1 − x, dimσ′1 = p − 1 − x, and dimσ′2 = x − 2. Since
σ2 is not isomorphic to σ′2, and there is a principal series extension between σ1

and σ2, there is no principal series extension between σ1 and σ′2. Similarly, there is
no principal series extension between σ′1 and σ2. Finally, dimσ′1 + dimσ′2 = p− 3,
so there is no principal series extension between σ′1 and σ′2. �

The following corollary is immediate (recalling that by definition, a principal
series type is irreducible).

Corollary 2.2.10. The map τ 7→ X(τ) induces a bijection from singular points
of X to isomorphism classes of principal series types.

2.3. Coordinates on X. Choose a Serre weight σ (with compatible central char-
acter). Recall that we have chosen coordinates on each irreducible component
of X in such a way that each singular point corresponds to 0 on one intersect-
ing component and ∞ on the other. We will use the isomorphism (2.1.2) and the
map τ 7→ X(τ) to construct morphisms from the spectra of various Hecke alge-

bras H(σ) to X. Thus we will be able to regard c-IndGKZ σ as “lying over” a copy of
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A1 = Spec F[T ] = SpecH(σ), which will form the basis of our localization theory
for AA.

Definition 2.3.1. Let σ be a Serre weight, and assume σ is not a twist of Symp−1.
Then σ is contained in a unique cuspidal type τ . Define a map fσ : SpecH(σ)→ X
in the following way.

(1) If σ is not a twist of Sym0,Symp−2, then it is contained in a unique principal
series type τ ′. Then fσ is the inclusion of SpecH(σ) ∼= A1 in X(τ) preserv-
ing the given coordinates and sending 0 to the point of X(τ) corresponding
to τ ′ under Corollary 2.2.10.

(2) If σ ∼= (χ◦det)⊗Sym0, then fσ is the inclusion of SpecH(σ) ∼= A1 in X(τ)
preserving the given coordinate and sending 0 to the nonsingular marked
point.

(3) If σ ∼= (χ◦det)⊗Symp−2, then fσ is the degree-two map A1 → X(τ), (x 7→
x+ x−1)±1. (The sign is chosen so that 0 is sent to the singular point.)

We extend this definition to the case σ ∼= (χ ◦ det)⊗ Symp−1 by letting fσ be the
same map as in Case (2) for σ ∼= (χ ◦ det)⊗ Sym0.

Remark 2.3.2. The definition in the case of twists of Symp−2 is motivated by the ex-
istence of extensions between nonisomorphic irreducible quotients of c-IndGKZ(σ)/(T−
λ), which does not happen for any other weights.

The definition for twists of Symp−1 and Sym0 is motivated by the isomorphism

c-IndGKZ(Symp−1)

[
1

T 2 − 1

]
∼= c-IndGKZ(Sym0)

[
1

T 2 − 1

]
constructed in Lemma 2.1.3. Furthermore, by Lemma 2.1.6 if T = ±1 we still have
an isomorphism after semisimplification: more precisely,

JH
(
c-IndGKZ(Symp−1)/(T ± 1)

)
= JH

(
c-IndGKZ(Sym0)/(T ± 1)

)
.

The key property of the maps fσ is given in the following proposition.

Proposition 2.3.3. Let x be a closed point of X. Define

Bx =
⋃

σ s.t. x∈fσ(A1)

JH
(
c-IndGK(σ)⊗H(σ) x

)
.

Then Bx is a block of AF, and the map x 7→ Bx is a bijection from the set of closed
points of X to the set of blocks of AF.

Proof. We begin with the case of F-rational points x ∈ X(F). Assume first that ζ
is even and x is not a marked point. There are two possibilities for the set of
weights σ such that fσ(A1) contains x: up to twist, it has the form

{Symi,Symp−3−i⊗deti+1}

for i 6= 0 (which are the factors of a cuspidal type), or

{Sym0,Symp−1,Symp−3⊗ det}

(which are the factors of a cuspidal type, together with a Steinberg weight). By
Remark 2.3.2 it follows that in either case there exists λ ∈ k× such that

Bx = JH
(
c-IndGKZ(Symi)/(T − λ)

)
∪JH

(
c-IndGKZ(Symp−3−i⊗ deti+1)/(T − λ−1

)
,
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which in the terminology of Section 2.2 is a block of type (2) if i 6= 0 and a block
of type (4) if i = 0.

Now assume that x is a marked point. Up to twist, the set of σ such that fσ(A1)
contains x has the form

{Symi,Symp−1−i⊗deti}
which are the factors of a principal series type. We have

Bx = JH
(
c-IndGKZ(Symi)/T

)
∪ JH

(
c-IndGKZ(Symp−1−i⊗deti)/T

)
,

but these are two isomorphic supersingular irreducible representations, so we get a
block of type (1).

The analysis in the case that ζ is odd is similar. The only new case is when x is a
point of a component indexed by a cuspidal type whose reduction is isomorphic to
a twist of σ = Symp−1 In this case, if x is a singular point of X then fσ(x)−1 = 0,
so again Bx is a block of type (1). On the other hand, if x is a regular point of X
then there exists λ ∈ F× such that f−1

σ (x) = {λ, λ−1}. The corresponding set

Bx =
{
c-IndGKZ(σ)/(T − λ), c-IndGKZ(σ)/(T − λ−1)

}
is a block of type (2) if λ 6∈ {±1} and a block of type (3) if λ ∈ {±1}.

This defines a map from X(F) to the set of blocks of Al.adm containing abso-
lutely irreducible representations, and the classification in Section 2.2 implies that
it is a bijection. There remains to treat the case where x is not F-rational. Then x
corresponds under fσ to a maximal ideal of H(σ) generated by an irreducible poly-
nomial f of degree n > 1, and

c-IndGKZ(σ)⊗H(σ) x = c-IndGKZ(σ)/(f)

is irreducible. Proposition 2.2.1 shows that Bx is a block consisting of two non-
isomorphic irreducible representations, neither of which is absolutely irreducible.
Again by Proposition 2.2.1, the map x 7→ Bx defines a bijection from the set of
closed points of X not defined over F to the set of blocks of AF not containing
absolutely irreducible representations. This completes the proof. �

2.4. Categories of representations. Recall that we assume throughout the pa-
per that A is a complete local Noetherian O-algebra with residue field of charac-
teristic p. We say that a representation of G on an A-module is finitely generated
if it is finitely generated as an A[G]-module. We note that a smooth representation
of G on an A-module, admitting a central character, is finitely generated if and
only if it is a quotient of a compactly induced representation c-IndGKZ V , for some
finite length A-module V endowed with a smooth action of KZ. Any object of
AA is thus a colimit of objects of the form c-IndGKZ V , where V is a finite length
A-module endowed with a smooth KZ-action.

We frequently use the following result:

Theorem 2.4.1. If A is a complete Noetherian local O-algebra, then any subrep-
resentation of a finitely generated smooth representation of G over A with fixed
central character ζ : Z → A× is again finitely generated. Equivalently, any finitely
generated smooth representation of G over A with central character ζ is Noetherian.

Proof. Let π be a finitely generated smooth A[G]-representation. By definition,

π is a quotient of c-IndGKZ(V ) for some smooth A[KZ]-module V of finite length
over A[KZ]. Since quotients, subobjects and extensions of Noetherian objects are
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Noetherian, it suffices to prove the theorem when π = c-IndGKZ(V ), and it further
suffices to prove it in the case that V has length one, hence is an irreducible k[KZ]-
module. In this case the result follows from Corollary 2.1.9. �

Remark 2.4.2. Theorem 2.4.1 does not hold in general for non-abelian p-adic re-
ductive groups. For example, it fails for GL2(Qp2), and presumably any time we’re
outside the case of GL2(Qp), or some essentially equivalent context.

The following Lemma (and its proof) goes through unchanged for general p-adic
reductive groups.

Lemma 2.4.3. If A is a complete Noetherian local O-algebra, then AA is a Grothendieck
category.

Proof. Since the category of A-modules is a Grothendieck category, it is enough
to show that AA has a generator. To form a generator of AA, let W run over a
set of isomorphism class representatives of smooth finite length A[KZ]-modules.
Since K has a cofinal countable system of open normal subgroups with finite quo-
tient, these representatives form a countable set. We can take the generator to
be
⊕

W c-IndGKZW. �

Corollary 2.4.4. If A is a complete Noetherian local O-algebra, the abelian cat-
egory AA is locally Noetherian. The Noetherian objects of AA are precisely the
finitely generated objects.

Proof. By Lemma 2.4.3, filtered colimits are exact in AA; so in order to see that AA
is locally Noetherian, we only need to exhibit a set of Noetherian generators of AA.
By Theorem 2.4.1, the compact inductions c-IndGKZ(V ) are Noetherian whenever V
is a finite length smooth A[KZ]-module, since the finite length quotients of A are
Artinian rings. To see that these are generators, let f : π1 → π2 be a nonzero
morphism between objects of AA. We need to find a morphism c-IndGKZ(V )→ π1

whose composition with f is nonzero. To do so, it suffices to choose v ∈ π1 such
that f(v) 6= 0, and then notice that it generates a finite length A[KZ]-module,
since π1 is a smooth representation. This concludes the proof of the first assertion.

By Theorem 2.4.1, the finitely generated objects of AA are Noetherian, and the
converse is immediate from the definition. �

2.5. Generalities about Ext’s in AA. The inclusion of AA into the category of
all A[G]-modules with central character ζ is exact and fully faithful, and admits
a right adjoint, given by passing to the submodule consisting of smooth vectors
annihilated by some power of mA. This right adjoint preserves injectives, and so
since the latter category admits enough injectives (being the category of modules
over a ring), so does the category AA. Of course, since AA is a Grothendieck
category, it also admits enough injectives for abstract reasons.

Recall that the functor c-IndGKZ is an exact functor from CA to AA. It is left
adjoint to the forgetful functor (i.e. restriction) from AA to CA, and so this latter
functor preserves injectives. Thus we have natural isomorphisms

(2.5.1) ExtiAA(c-IndGKZ V, π)
∼−→ ExtiCA(V, π)

whenever V is a object of CA and π is an object of AA. We will use (2.5.1) to
reduce some questions about Ext groups in AA to Ext groups in CA. We begin
with the following basic statement about these Ext groups, whose statement and
proof extend in an obvious way to arbitrary compact p-adic analytic groups.



LOCALIZATION OF SMOOTH REPRESENTATIONS OF GL2(Qp) 17

Lemma 2.5.2. Assume that (A,m, k) is a complete Noetherian local O-algebra and
that V,W are objects of CA which are finitely generated over A. Then

ExtiCA(V,W )

is finitely generated over A.

Proof. By induction on lengthK(V ), it suffices to prove the lemma when V is irre-
ducible. We begin by proving that ExtiCk(V,W ) is finite-dimensional over k when-
ever W is an object of Ck of finite dimension over k. By induction on lengthK(W ),
it suffices to prove this claim when W is irreducible. Let K1 be the first congruence
subgroup of K, which acts trivially on V and W . Since

HomCk(V,−) = Homk[KZ/K1]/Iζ (V, (−)K1)

there is a spectral sequence

(2.5.3) Extik[KZ/K1]/Iζ
(V,Hj(K1,W ))⇒ Exti+jCk (V,W ).

The group K1 acts trivially on W , which is a finite-dimensional k-vector space,
and so Hj(K1,W ) is also finite-dimensional for all j: see for example [SW00, Cor.
4.2.5, Thm. 5.1.2] for a discussion of this fact, which follows from Lazard’s results
on the structure of k[[K]]. Finally, since k[KZ/K1]/Iζ is a finite k-algebra, we see
that the groups on the E2-page are also finite-dimensional, completing the proof of
the claim.

Now let W be an A-finite object of CA. Since A is Noetherian we know that
ExtjA(k,W ) is a finite k-vector space for all j, hence the lemma follows from the
claim proved before and the spectral sequence (2.5.5) to follow. �

Lemma 2.5.4. Let (A,m, k) be a complete Noetherian local O-algebra, and let V,W
be objects of Ck. Then there is a spectral sequence

(2.5.5) ExtiCk(V,ExtjA(k,W ))⇒ Exti+jCA (V,W ).

The same is true with Ak replacing Ck and AA replacing CA.

Proof. Notice that

HomCA(V,−) = HomCk(V, (−)[m])

as functors from CA to k-vector spaces.
If I is an injective object of CA, then I[m] is injective in Ck, since (–)[m] is

right adjoint to the inclusion of Ck into CA, which is exact. Furthermore, I is also
injective as an A-module, so that the right derived functors of (–)[m] on CA coincide
with (the composite of the forgetful functor to A-modules and) the right derived
functors of (–)[m] on the category of A-modules. To see this A-module injectivity
of I, notice that if a → A is the inclusion of an ideal and ϕ : a → I is A-linear
then ϕ(a) is contained in IK0 for some open normal subgroup K0 ⊂ K, since A is
Noetherian. Viewing a and A as trivial K0-modules, it follows that ϕ extends to a
map A→ I, since I is also injective as a K0-representation.

Putting together the observations of the preceding paragraphs gives a Grothendieck
spectral sequence as in the statement of the lemma. The same proof works in the
case of AA. (To see that the forgetful functor from AA to A-modules preserves
injectives, we can factor this functor through the forgetful functor to CA, and then
combine what was proved above with the fact that restriction to a compact open
subgroup preserves injectives.) �
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Lemma 2.5.6. Assume A is a complete Noetherian local O-algebra. If π is a
finitely generated object of AA, then each ExtiAA(π, –) commutes with filtered col-
imits.

Proof. This follows from Corollary 2.4.4 and Proposition A.1.1 (3). �

Lemma 2.5.7. Assume that A is a complete Noetherian local O-algebra. If π
and π′ are objects of AA, with π being finitely generated and π′ being countably
generated, then each ExtiAA(π, π′) is a countably generated A-module.

Proof. Since A is Noetherian, every submodule of a countably generated A-module
is countably generated. Since π is finitely generated, and thus finitely presented
by Theorem 2.4.1, a standard dimension-shifting argument reduces us to checking
the claim in the case when π = c-IndGKZ V, for some finitely generated A-module V
endowed with a smooth KZ-action. We then consider the isomorphisms

ExtiAA(c-IndGKZ V, π
′)
∼−→ ExtiCA(V, π′)

∼−→ lim−→
W

ExtiCA(V,W ),

where W runs over the finitely generated A[KZ]-submodules of π′. (The first
isomorphism is by (2.5.1), and the last isomorphism is proved in the same way as
Lemma 2.5.6.) The directed set of such W contains a countable cofinal subset,
since π′ is countably generated, and thus the lemma follows from the fact that each
ExtiCA(V,W ) is finitely generated, by Lemma 2.5.2. �

We will sometimes make use of the following comparison (due to Paškūnas)
between Ext groups in the locally admissible and smooth categories.

Lemma 2.5.8. If π, π′ are objects of Al.adm, then ExtiAl.adm(π, π′) = ExtiA(π, π′).

Proof. This is immediate from [Paš13, Cor. 5.18]. �

A different (more elementary) comparison of Ext groups occurs if we consider
Afg inside A. The former category does not have enough injectives, but (as noted
in A.1.2) we can define Exti in Afg via Yoneda extensions. We then have the
following result.

Lemma 2.5.9. If π and π′ are objects of Afg, then ExtiAfg(π, π′)
∼−→ ExtiA(π, π′).

Proof. This follows from Corollary 2.4.4 and Lemma A.1.3. �

We next establish some base-change results about Ext groups.

Lemma 2.5.10. If A is a finite-dimensional associative algebra over a field k, if I
is an injective A-module, and if l is any extension of k, then l ⊗k I is an injective
l ⊗k A-module.

Proof. We begin with the case that I is finite-dimensional over k. It follows from
Baer’s criterion that I is injective if and only if I∨ is projective over Aop. Similarly
l ⊗k I is injective over l ⊗k A if and only if (l ⊗k I)∨ ∼= l ⊗k I∨ is projective over
l⊗kAop. Thus it suffices to prove the analogue of the lemma for projective modules,
and thus for free modules (using the characterization of projective modules as direct
summands of free modules). The case of free modules is clear, and thus the lemma
is proved in this case.

Since A and l⊗kA are Noetherian, the property of being injective over these rings
is preserved under the formation of filtered colimits. Since Aop is finite dimensional,
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we know that every simple Aop-module has a finite-dimensional projective envelope.
Thus any simple A-module has a finite-dimensional injective envelope. It follows
that any injective A-module is a filtered colimit of finite dimensional injective A-
modules, since it contains an injective envelope of any finite-dimensional submodule.
Hence the lemma follows from the finite-dimensional case. �

Corollary 2.5.11. If k ⊆ l is an extension of fields, and if V is a finite dimensional
object of Ck, then for any object W of Ck, the base-change map

l ⊗k ExtiCk(V,W )→ ExtiCl(l ⊗k V, l ⊗k W )

is a natural isomorphism.

Proof. The case i = 0 is true since V is finitely generated over a Noetherian quotient
of k[KZ]. By dimension shifting, it then suffices to prove that l ⊗k I is injective
if I is injective in Ck.

The usual argument for proving Baer’s criterion shows that a smooth KZ-
representation I over k, with fixed central character ζ, is injective if and only
Ext1

Ck(V, I) = 0 for each finite-dimensional object V of Ck. Since some open sub-
group H of K acts trivially on V , we deduce that I is injective if and only if its
submodule of invariants IH is injective as a k-representation of KZ/H, with fixed
central character, for each open subgroup H of K.

Assume that this holds. Then (l ⊗k I)H = l ⊗k IH , by the case i = 0, and
Lemma 2.5.10 shows that l ⊗k IH is injective as an l-representation of KZ/H,
with central character ζ. We conclude that l ⊗k I is an injective object of Cl, as
claimed. �

Corollary 2.5.12. If O ⊂ O′ is an unramified extension, and if V is a finite
dimensional object of CF, then for any object W of CF, the base-change map

F′ ⊗F ExtiCO (V,W )→ ExtiCO′ (F
′ ⊗F V,F

′ ⊗F W )

is a natural isomorphism.

Proof. For any i and j, there is a base-change isomorphism

F′ ⊗F ExtiCF
(
V,ExtjO(F,W )

) ∼−→ ExtiCF′
(
F′ ⊗F V,F

′ ⊗O Extj(F,W )
)

= ExtiCF′
(
F′ ⊗F V,ExtjO′(F

′,F′ ⊗F W )
)
,

the first isomorphism following from Corollary 2.5.11, and the equality holding
because O′ is unramified over O, so that the derived functors RHomO′(F

′,O′⊗O –)
and O′⊗ORHomO(F, –) coincide on the category of O-modules; both are computed
by the complex

O′ ⊗O (–)
$·−→ O′ ⊗O (–)

(where $ is a uniformizer of O).
If we now consider the spectral sequence (2.5.5) for each of O and O′, we find that

these base-change isomorphisms abut to the base-change morphism in the statement
of the present corollary, showing that this morphism is also an isomorphism, as
claimed. �

Proposition 2.5.13. If l is an extension of k, and if π and π′ are objects of Ak,
with π being finitely generated, then there is a natural isomorphism

l ⊗k ExtiAk(π, π′)
∼−→ ExtiAl(l ⊗k π, l ⊗k π

′),
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for each i ≥ 0.
Similarly, if π and π′ are objects of AF with π finitely generated, and O ⊂ O′ is

an unramified extension, then there is a natural isomorphism

F′ ⊗F ExtiAO (π, π′)
∼−→ ExtiAO′ (F

′ ⊗F π,F
′ ⊗F π

′)

Remark 2.5.14. If we were working in the category of all k[G]-modules (with fixed
central character ζ), then this result would be straightforward, since we would
be able to compute the Ext’s using a resolution of π by finite rank free k[G]/Iζ-
modules. It is the fact that we are working in the category Ak, i.e. that we have
imposed smoothness, which makes the result less obvious.

We also remark that in the case when π is assumed to be of finite length, the
result is proved by Paškūnas [Paš13, Proposition 5.33]

Proof of Prop. 2.5.13. Using Theorem 2.4.1 and dimension shifting, one easily re-
duces to the case when π = c-IndGKZ V for some finitely generated smooth KZ-
representation V . Since compact induction is compatible with extension of scalars,
the proposition follows from Corollary 2.5.11, Corollary 2.5.12 and (2.5.1). �

Remark 2.5.15. Our proof of Proposition 2.5.13 uses as input the fact that finitely
generated objects of Ak and AO are Noetherian (i.e. Theorem 2.4.1). Bearing in
mind Remark 2.4.2, we see that the argument, and perhaps also the result, won’t ex-
tend to more general p-adic Lie groups as stated. It seems plausible that it should at
least hold in general with “finitely generated” replaced by “finitely presented”, and
it’s likely that Shotton’s results [Sho20] about smooth finitely presented GL2(F )-
representations can be used to show this for GL2(F ), for arbitrary p-adic fields F .
(Note that for GL2(Qp) all finitely generated representations are finitely presented
by Theorem 2.4.1.)

2.6. Bernstein centres of blocks. The results in this section might be of inde-
pendent interest, but they are quite technical in nature and will only be applied in
Section 3.8. Let x denote a block of absolutely irreducible representations of Al.adm,
and write Ax for the category AY with Y = {x}. The paper [Paš13] describes an

equivalence of Ax with the category of modules over a ring Ẽx defined as follows.
Let πx =

⊕
π∈x π and choose an injective envelope πx → Jx, so that Px = J∨x

is a projective envelope of π∨x . Let Ẽx be the endomorphism ring of Jx, which is
naturally a topological ring. Then the functor HomG(−, Jx) is an equivalence of Ax
with the category of compact left Ẽx-modules, and so it defines an isomorphism

between the Bernstein centre of Ax and the centre Zx of Ẽx.

Remark 2.6.1. If τ ∈ Ax and J is an injective object in Ax, and E = EndG(J),
then E is a compact ring and HomG(τ, J) is a compact E-module: this follows
from [Gab62, Section IV.4]. Hence its Pontrjagin dual HomG(τ, J)∨ is a discrete
E-module.

On the other hand, HomG(τ, J) still makes sense for general τ ∈ A. If τ =

c-IndGKZ λ for a finite lengthKZ-representation λ then the action of E on HomG(τ, J)
is continuous for the discrete topology on this module. This follows from [Paš15,
Lemma 2.1]. Hence HomG(τ, J)∨ is a compact E-module.

If π ∈ x is an irreducible object we will write π → Jπ for an injective envelope
of π in Ax. It is often (but not always) the case that Zx is isomorphic to End(Jπ)
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for an irreducible object π ∈ x. More precisely, we have the following result of
Paškūnas.

Theorem 2.6.2. Let x be a block of absolutely irreducible objects of A, and choose π ∈
x. Then the natural map Zx → EndG(Jπ) is an isomorphism if x is a block of
type (1), (2) or (4).

Proof. This is [Paš13, Proposition 6.3] for type (1), [Paš13, Corollary 8.7] for
type (2), and [Paš13, Corollary 10.78, Theorem 10.87] for type (4). �

We will often apply this result together with the following proposition.

Proposition 2.6.3. Let π be an absolutely irreducible object of A. Let x be the
block of A containing π, and choose an injective envelope π → Jπ in Ax. If σ is a
Serre weight, then

HomA(c-IndGKZ σ, Jπ)∨

is a cyclic module over the endomorphism ring Eπ = EndAx(Jπ).

Proof. This is proved in most cases in [HT15, Proposition 2.9]. We give a different,
uniform proof as follows. Let mπ be the Jacobson radical of Eπ. By Nakayama’s
lemma for compact modules, it suffices to prove that HomA(c-IndGKZ σ, Jπ)∨/mπ is
at most one-dimensional. We know that

HomA(c-IndGKZ σ, Jπ)∨/mπ ∼= HomA(c-IndGKZ σ, Jπ[mπ])∨

and the representation Jπ[mπ] contains π as a subquotient with multiplicity one.

Then the proposition follows from the fact that c-IndGKZ σ has at most one locally
admissible quotient X with socle π appearing with multiplicity one in X.

To see this, observe that X is necessarily a quotient of c-IndGKZ σ/f(T ) for
some Hecke operator f(T ), and since the socle of X is absolutely irreducible we
have f(T ) = (T − λ)n for some n. Since X contains π as a subquotient with mul-
tiplicity one, we have n = 1. Hence X is irreducible except possibly in the case
that σ is a twist of Sym0 or Symp−1 and λ = ±1. However, in this case there are
only two possibilities for X, and they are distinguished by their G-socle. �

Now let σ be a Serre weight and choose λ ∈ F. In Section 3.8 we will be working
with the inverse system {τn} of finite length G-representations defined by

τn = c-IndGKZ σ/(T − λ)n.

These are all contained in the same block, which we will denote by x. There is
an action of the Hecke algebra H(σ) on τn for all n, and the transition maps are
equivariant for this action. In fact, the action extends to the completion of H(σ)
at the maximal ideal generated by (T − λ), which is isomorphic to a power series
ring in one variable. We will show that in most cases this action is induced by the
Bernstein centre of the block Ax.

Proposition 2.6.4. In the notation of the previous paragraph, if x has type (1),
(2) or (4) then there exists an element of the Bernstein centre Zx of Ax inducing
the Hecke operator T on τn for all n.

Proof. Assume first that π = τ1 is irreducible, so that every composition factor
of τi is isomorphic to π. If π′ is another irreducible object of Ax and π′ → Jπ′ is
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an injective envelope in Ax then the space HomA(τi, Jπ′) vanishes for all i, since
socG(Jπ′) ∼= τi is not a composition factor of τi. Hence the functor

Mπ(−) = HomA(−, Jπ)∨

is fully faithful on the full subcategory of Ax generated by the representations {τn}.
By Proposition 2.6.3 the Eπ-module Mπ(c-IndGKZ σ) is cyclic. Hence there ex-

ists Tπ ∈ Eπ such that T = Tπ as endomorphisms of Mπ(c-IndGKZ σ). By Theo-

rem 2.6.2 the natural map Zx → Eπ is an isomorphism. Since Mπ(c-IndGKZ σ) sur-
jects onto Mπ(τi) equivariantly for T and Tπ, we deduce that there exists Tπ ∈ Zx
such that T = Tπ as endomorphisms of Mπ(τi). Since the natural map

EndAx(τi)→ EndEπ (Mπ(τi))

is an isomorphism, the proposition follows in the case that τ1 is irreducible.
After twisting there remains to prove the proposition in the case that σ =

Sym0,Symp−1 and λ = 1. Hence τ1 is a nonsplit extension of 1 by St and the block
containing τ1 is x = {1,St, π}, where π = IndGB(ω ⊗ ω−1). We will follow [Paš13,
Section 10.4] and work in a quotient category of Ax. By [Paš13, Lemma 10.84] the
kernel of the functor

HomAx(−, Jπ ⊕ JSt)
∨

is the category T(k) of modules with trivial G-action. By [Gab62, IV.4, Théorème 4]
this functor defines an equivalence of the quotient category Q(k) = Ax/T(k)
with the category of left discrete EndG(Jπ ⊕ JSt)-modules. (Compare the proof
of [Paš13, Corollary 10.85], and note that our categories are opposite to those de-
noted in [Paš13] by the same symbols.) More precisely, the functor

HomQ(k)(−, Jπ ⊕ JSt)

is an equivalence, but by the equivalence of (b) and (c) in [Gab62, III.2, Lemme 1]
the natural map

HomAx(X, Jπ ⊕ JSt)→ HomQ(k)(X, Jπ ⊕ JSt)

is an isomorphism for every object X of Ax.
Since HomA(τi, Jπ) = 0 for all i, the functor MSt(−) = HomA(−, JSt)

∨ induces
a fully faithful functor on the full subcategory of Q(k) generated by the τi. By

Proposition 2.6.3 we know that MSt(c-IndGKZ σ) is cyclic over the endomorphism
ring ESt of JSt. Arguing as before, it follows from Theorem 2.6.2 that there ex-
ists Tx ∈ ESt

∼= Zx such that T = Tx as endomorphisms of HomAx(τi, JSt). The
faithfulness of MSt(−) implies that T = Tx as elements of EndQ(k)(τi). This implies
that the image in Ax of

(T − Tx) : τi → τi

has trivial G-action. This is true for all i, and the only submodule of τi with trivial
G-action has length at most one: this is an immediate consequence of Lemma 2.1.12.
Using this for τi+1 together with the fact that T −Tx commutes with the projection
τi+1 → τi it follows that T − Tx = 0 as elements of EndG(πi). �

Blocks of type (3) are an exception to Theorem 2.6.2 and Proposition 2.6.4 be-
cause the rings EndG(Jπ) are no longer commutative. The following weaker result
will suffice for our purposes; by a more detailed analysis of the endomorphism
rings Ex, taking into account their relationship with Galois pseudodeformation
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rings, it should actually be possible to compute explicit integral dependence equa-
tions for Hecke operators over the centre of the block.

Proposition 2.6.5. Let σ be a twist of Symp−2, let λ = ±1, and let

τi = c-IndGKZ σ/(T − λ)i.

Let x be the block of type (3) containing the irreducible representation π = τ1. Then
there exist a positive integer n and central elements z0, z1, . . . , zn ∈ Zx contained
in the unique maximal ideal mx ⊂ Zx such that

(T − λ)n+1 + zn(T − λ)n + · · ·+ z1(T − λ) + z0 = 0

holds in EndG(τi) for all i.

Proof. Fix an injective envelope π → Jπ in Ax and let Eπ = EndG(Jπ). The
functor

Mπ(−) = HomG(−, Jπ)∨

is defined on A, and it restricts to an equivalence of Ax with the category of discrete
left Eπ-modules. Hence the natural map Zx → Eπ induces an isomorphism Zx →
Z(Eπ). By [Paš13, Corollary 9.25], the ring Eπ is a free module of rank 4 over its
centre, which is a local ring. By Proposition 2.6.3, the module

M = Mπ(c-IndGKZ σ)

is cyclic over Eπ. It follows that M is finite over Zx. (See the proof of [San16,
Lemma 2.6] for more details.)

The Hecke algebra H(σ) acts on M by Zx-linear endomorphisms. The endo-
morphism induced by (T − λ) on M∨ is locally nilpotent, because every G-linear

map c-IndGKZ σ → Jπ factors through a representation of finite length, in fact
through one of the τi. The quotient M/mxM is a finite-dimensional vector space
over the residue field of Zx, and it is dual to M∨[mx], hence (T − λ) induces
a nilpotent endomorphism of M/mxM . It follows that there exists n > 0 such
that (T − λ)n(M) ⊂ mxM . This implies that there exist z0, z1, . . . , zn ∈ mx such
that

(T − λ)n+1 + zn(T − λ)n + · · ·+ z1(T − λ) + z0 = 0

as endomorphisms ofM . Hence the same relation holds as endomorphisms ofMπ(τi)
for all i, since they are quotients of M . Since the functor Mπ(−) is fully faithful
on Ax, this implies the proposition. �

3. Localization of smooth GL2(Qp)-representations

3.1. Localization. In this subsection we begin to explain how we localizeA overX.
The fundamental input is that the closed points of X are in bijection with the blocks
of Al.adm

O .

Definition 3.1.1. If Y is a closed subset of X, then we let AY denote the subcat-
egory of A consisting of those representations all of whose irreducible subquotients
lie in a block corresponding to a closed point of Y .

We refer to Appendix A for the basic definitions and properties of localizing
categories.

Lemma 3.1.2. The subcategory AY is localizing.
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Proof. To see that AY is a Serre subcategory, it suffices to check that given an
exact sequence

0→ π1 → π → π2 → 0

in A the set JH(π) of irreducible subquotients of π coincides with JH(π1)∪JH(π2).
Since it is immediate that JH(π1)∪JH(π2) ⊆ π, let V be an irreducible subquotient
of π. Then there are subspaces W1 ⊂ W2 ⊂ π such that V ∼= W2/W1, and V is a
subquotient of π2 unless W1 + π1 = W2 + π1. Similarly, V is a subquotient of π1

unless W1 ∩ π1 = W2 ∩ π1. Since W1 6= W2, these two equalities cannot hold at the
same time.

To see that AY is localizing it thus suffices to check that it is closed under direct
sums. Assume that πi ∈ AY and V is an irreducible submodule of a quotient
of
⊕

i∈I πi. Since V is cyclic over O[G], there exists a finite subset J ⊂ I such
that V is a submodule of a quotient of

⊕
i∈J πi. By the previous discussion, V ∈

∪i∈J JH(πi) ⊂ AY , implying the claim. �

Lemma 3.1.3. If Y = {y1, . . . , yn} is a finite closed subset of X, then AY is the
product of the finitely many blocks corresponding to the points yi. In particular, AY
is contained in Al.adm, and is an Artinian category.

Proof. If we write Y = {y1, . . . , yn}, thenAY consists of objects whose subquotients
lie in the blocks corresponding to one of the points yi. If π is such an object, let σ
be a Serre weight, and let c-IndGKZ σ → π be a morphism; then since c-IndGKZ σ has
subquotients lying in infinitely many different blocks, this morphism must factor
through a non-trivial, and hence finite length, quotient of c-IndGKZ(σ). Thus any
finitely generated subrepresentation of π is of finite length, and hence locally ad-
missible, so that AY ⊆ Al.adm. The lemma then follows from the theory of blocks
for Al.adm. �

Definition 3.1.4. If U is an open subset of X, then we write AU := A/AY , where
Y := X \ U .

Since AY is localizing there is a fully faithful right adjoint (jU )∗ : AU → A to the
canonical quotient functor (jU )∗ : A → AU . Where U is understood, we write j∗
for (jU )∗, and j∗ for (jU )∗.

Lemma 3.1.5.

(1) The right adjoint j∗ commutes with filtered colimits.
(2) The category AU is locally Noetherian.

(3) If we let Afg
U denote the essential image of Afg under the localization functor,

then Afg
U is precisely the subcategory of Noetherian objects in AU .

Proof. This follows from Lemma A.2.8 and the fact that A and AY are both gen-
erated by finitely generated objects, which are Noetherian objects in A by Corol-
lary 2.4.4. �

Lemma 3.1.6. Let σ be a Serre weight, let Y be a closed subset of X, and choose
g ∈ H(σ) such that f−1

σ (Y ) = V (g) (a closed subset of SpecH(σ)). Then for any

object π of AY , we have ExtiA
(
π, (c-IndGKZ σ)[1/g]

)
= 0 for all i.

Proof. Applying Lemma A.2.7, we see that it suffices to prove the claimed vanishing
in the case when π is finitely generated, which we assume from now on. By dévissage
we can furthermore assume that the maximal ideal of O acts trivially on π. Using
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the spectral sequence (2.5.5) and the fact that O is a DVR, it suffices to prove

that ExtiAF

(
π, (c-IndGKZ σ)[1/g]

)
= 0 for all i. The formation of this Exti-module is

compatible with extension of scalars, by Proposition 2.5.13, and so we may and do
replace F by some uncountable extension. We thus assume that F is uncountable
for the remainder of the argument. Also, if g = 0 then (c-IndGKZ σ)[1/g] = 0, and
the claimed vanishing follows immediately. Thus we may and do assume for the
remainder of the proof that g 6= 0.

We first suppose that Y is a finite union of closed points. In this case, Lemma 3.1.3
shows that any object π of AY decomposes as a direct sum of objects lying in the
various blocks corresponding to the points of Y . It will be useful in this case to
prove a slightly stronger statement, namely that ExtiA

(
π, (c-IndGKZ σ)[1/h]

)
= 0 for

any non-zero multiple h of g. To this end, we note that if f ∈ H(σ) is coprime

to h (and so in particular coprime to g), then (c-IndGKZ σ)/f(c-IndGKZ σ) is of fi-
nite length, and has no Jordan–Hölder factor lying in AY (this last claim following
from the relationship between the morphisms fσ and the blocks of Al.adm). Thus

by Lemma 2.5.8 we have ExtiA
(
π, (c-IndGKZ σ)/f(c-IndGKZ σ)

)
= 0 for all i, and a

consideration of the long exact Ext sequence arising from the short exact sequence

0→ (c-IndGKZ σ)[1/h]
f ·−→ (c-IndGKZ σ)[1/h]→ (c-IndGKZ σ)/f(c-IndGKZ σ)→ 0

shows that f acts invertibly on ExtiA
(
π, (c-IndGKZ σ)[1/h]

)
. Certainly h also acts

invertibly, and so this Ext module is a vector space over the fraction field of H(σ),
which is isomorphic to F(T ), a field of uncountable dimension over F. On the other
hand, Lemma 2.5.7 shows that this Ext module is of countable dimension over F.
Thus it must vanish, as claimed.

We now consider the general case. Since we are assuming that π is finitely
generated, it is a quotient of a representation of the form c-IndGKZ V , for some
finite dimensional KZ-representation V . A dévissage using the long exact Ext
sequence reduces to the case when π is a quotient of c-IndGKZ τ , for some Serre

weight τ . We consider two cases: (i) π is equal to c-IndGKZ τ , or (ii) π is a proper

quotient of c-IndGKZ τ . In this latter case, π is of finite length, and so lies in AY0

for some finite closed subset Y0 of Y . The claimed vanishing then follows from the
special case already proved, and so we now put ourselves in case (i).

The assumption that c-IndGKZ τ is an object of AY implies that for each non-

zero element q ∈ H(τ), the (finite length) quotient (c-IndGKZ τ)/q(c-IndGKZ τ) lies
in AY0 for some finite closed subset Y0 of Y . The result we already proved then

shows that ExtiA
(
(c-IndGKZ τ)/q(c-IndGKZ τ), (c-IndGKZ σ)[1/g]

)
= 0 for each i, and a

consideration of the long exact Ext sequence arising from the short exact sequence

0→ c-IndGKZ τ
q·−→ c-IndGKZ τ → (c-IndGKZ τ)/q(c-IndGKZ)→ 0

shows that q acts invertibly on ExtiA
(
c-IndGKZ τ, (c-IndGKZ σ)[1/g]

)
. This Ext mod-

ule is thus a vector space over the fraction field ofH(τ), while also being a countable
dimensional F-vector space, by Lemma 2.5.7. Since the fraction field of H(τ) is iso-
morphic to F(T ), which is of uncountable F-dimension when F itself is uncountable,
we find that this Ext module vanishes, as claimed. �

Proposition 3.1.7. Let Y be a closed subset of X, and write U := X \ Y .
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(1) If σ is a Serre weight, and if f−1
σ (Y ) = V (g) (a closed subset of SpecH(σ))

for some g ∈ H(σ), then the natural map

c-IndGKZ σ → (c-IndGKZ σ)[1/g]

can be identified with the unit morphism

c-IndGKZ σ → jU∗j
∗
Uc-IndGKZ σ.

(2) The functor jU∗ is exact.

Proof. We first put ourselves in the situation of (1). If g = 0 then c-IndGKZ σ is an

object of AY , and both (c-IndGKZ σ)[1/g] and j∗j
∗(c-IndGKZ σ) vanish, so that (1)

follows immediately. If g 6= 0, then the embedding

(3.1.8) c-IndGKZ σ ↪→ (c-IndGKZ σ)[1/g]

is the colimit of the embeddings

c-IndGKZ σ →
1

gn
(c-IndGKZ σ).

The cokernel of this latter morphism is isomorphic to
(
c-IndGKZ σ

)
/gn
(
c-IndGKZ σ

)
,

which is of finite length, and lies in AY . Thus each of these inclusions induces
an isomorphism after applying j∗j

∗(–), and hence the colimiting inclusion (3.1.8)
also induces an isomorphism after applying this functor. Thus it suffices to show
that (c-IndGKZ σ)[1/g] is in the image of j∗, or equivalently, by Lemma A.2.2, that

ExtiA
(
π, (c-IndGKZ σ)[1/g]

)
= 0 for i = 0, 1, whenever π is an object of AY . This

follows from Lemma 3.1.6.
To prove (2), it suffices, by Corollary A.2.6, along with Lemmas 2.5.6 and 3.1.5,

to show that Ext2
A(π, j∗j

∗π′) = 0, as π runs over the objects of AY and π′ runs over

a collection of generators of A. We let π′ range over the representations c-IndGKZ V,
where V is a finite length smooth O[KZ]-representation. A dévissage then reduces
us to checking the required vanishing when V = σ is a Serre weight. In this case,
the required vanishing again follows from Lemma 3.1.6. �

Corollary 3.1.9. Let Y be a closed subset of X, and write U := X \ Y . If π is an
object of AY , and π′ is any object of A, then Exti(π, jU∗j

∗
Uπ
′) = 0 for all i.

Proof. This follows directly from Proposition 3.1.7 (2), together with Corollary A.2.6.
In fact, it was essentially proved directly in the course of proving Proposition 3.1.7 (2).

�

Lemma 3.1.10. If σ is a Serre weight, and if c-IndGKZ σ ↪→ π is an essential
embedding whose cokernel is of finite length, then there exists a non-zero g ∈ H(σ)

such that π (thought of as an overmodule of c-IndKZ σ) is contained in 1
g ·c-IndGKZ σ.

Proof. Consider the short exact sequence 0 → c-IndGKZ σ → π → π′ → 0. Since
π′ is of finite length, it is supported on some finite closed subset Y of X. Write
U := X\Y . Then jU∗j

∗
Uπ = 0, and so jU∗c-IndGKZ σ

∼−→ jU∗π. Proposition 3.1.7 (1)

shows that jU∗c-IndGKZ σ = (c-IndGKZ σ)[1/g] for some non-zero element g of H(σ).
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Consider the commutative square

c-IndGKZ σ //

��

π

��

(c-IndGKZ σ)[1/g] jU∗j
∗
Uπ

Since the left-hand vertical arrow is injective, and since the upper horizontal arrow is
an essential embedding, we find that the right-hand vertical arrow is injective. Thus
we find that π embeds as a submodule of (c-IndGKZ σ)[1/g] containing c-IndGKZ σ.
Since π is finitely generated (being an extension of a finite length module by a
finitely generated module), we see that if we replace g by a sufficiently large power,

then in fact π ⊆ 1
g · c-IndGKZ σ, as claimed. �

Remark 3.1.11. An immediate consequence of Lemma 3.1.10 is that if c-IndGKZ σ →
π is an essential embedding with cokernel of finite length then the maximal ideal
of O acts trivially on π. This can also be seen directly: if πE ∈ O is a uniformizer,
the image of πE : π → π has finite length, and so intersects c-IndGKZ σ trivially.

Since the embedding c-IndGKZ σ → π is essential, this implies that πE : π → π is
the zero map.

Remark 3.1.12. Note that if σ is not isomorphic to a twist of Sym0 or Symp−1,
then (c-IndGKZ σ)/h(c-IndGKZ σ) is irreducible, for each irreducible h ∈ H(σ). In
this case, by choosing g in Lemma 3.1.10 appropriately, we may even assume that
π = 1

g · c-IndGKZ σ. In the exceptional cases, we get a counterexample from the

exact sequence (3.2.2) below.

Remark 3.1.13. Another way to prove Lemma 3.1.10 is to use the isomorphism

Hom(π′, (c-IndGKZ σ)[1/g]/c-IndGKZ σ)
∼−→ Ext1(π′, c-IndGKZ σ)

of Section 3.6 below.

3.2. Čech resolutions. If {U0, . . . , Un} is any finite open cover of X, then for any
object π of A, we obtain a functorial Čech resolution

(3.2.1) 0→ π →
∏
i

(ji)∗(ji)
∗π → · · · → (j0,...,n)∗(j0,...,n)∗π → 0

where as usual we write Ui...k for Ui ∩ · · · ∩ Uk, we have written ji...k for jUi...k ,
and the differentials are given by the usual formulas (see e.g. [Sta, Tag 01FG]).
(In the terminology of the Stacks Project, we are working with the ordered Čech
complex.) We are going to prove that the complex (3.2.1) is always exact. To
do so we will use another resolution of smooth GL2(Qp)-representations, arising
from the Bruhat–Tits tree of PGL2(Qp). Let N be the normalizer of the Iwahori
subgroup Iw. Write δ : N → O× for the orientation character, which is trivial

on IwZ and takes value −1 at

(
0 1
p 0

)
. We identify the representation space of δ

with O. Then we have an exact sequence of O[G]-representations

(3.2.2) 0→ c-IndGN (δ)
∂−→ c-IndGKZ(triv)

sum−−→ triv→ 0,

see for example [Dot, Section 2.4.14].

https://stacks.math.columbia.edu/tag/01FG
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Proposition 3.2.3. For any object π of A, and any finite open cover {Ui} of X,
the resolution (3.2.1) is acyclic.

Proof. By Frobenius reciprocity there is a short exact sequence

0→ c-IndGN δπ → c-IndGKZ π → π → 0

where δ is the nontrivial quadratic character of N/IwZ.

Since p > 2, c-IndGN δπ is a direct summand of c-IndGIwZ π = c-IndGKZ(c-IndKZIwZ π).
Since the formation of each of the terms in (3.2.1) is exact, we reduce to verifying

the claim of the proposition in the case when π is of the form c-IndGKZ V for some
smooth O[KZ]-representation V . Since both compact induction, and the forma-
tion of the terms in (3.2.1), are compatible with passing to filtered colimits (use
Lemma A.2.8 (1)), we then reduce to the case when V is finitely generated. Fi-
nally, since compact induction is exact, we reduce to the case when π is of the form
c-IndGKZ σ for some Serre weight σ.

The open cover {Ui} pulls back via fσ to an open cover D(gi) of SpecH(σ).
Proposition 3.1.7 then implies that (3.2.1) may be identified with the tensor product

(3.2.4) (c-IndGKZ σ)⊗H(σ) K
•(g0, . . . , gn),

where K•(g0, . . . , gn) denotes the usual Čech complex for a finite open cover of
Spec of a ring by distinguished opens associated to the sequence {g0, . . . , gn}. Since
{D(gi)} is an open cover of the affine scheme SpecH(σ), the complex K•(g0, . . . , gn)
is acyclic, and remains acyclic after tensoring with any H(σ)-module. We conse-
quently find that (3.2.4) is acyclic, and thus that (3.2.1) is acyclic, as claimed. �

Corollary 3.2.5. If Y ⊂ U is an inclusion of a closed subset of X in an open subset
of X, and if π is an object of AY , then the natural morphism π → (jU )∗(jU )∗π is
an isomorphism; in other words, π lies in the essential image of (jU )∗.

Proof. This follows from the acyclicity of the Čech resolution of π with respect to
the open cover {U, V := X \ Y } of X, together with the fact that, by definition,
(jV )∗π = (jU∩V )∗π = 0. �

Corollary 3.2.6. Let Y and W be disjoint closed subset of X. If π is an object of
AY , and π′ is an object of AW , then Exti(π, π′) = 0 for all i.

Proof. This follows immediately from Corollaries 3.1.9 and 3.2.5 (the latter being
applied to the inclusion W ⊆ X \ Y ). �

Lemma 3.2.7. Let Y be a closed subset of X, let σ be a Serre weight, and write
f−1
σ (Y ) = V (g) (a closed subset of SpecH(σ)) for some g ∈ H(σ). Then for any

object π of AY , each element of ExtiA(c-IndGKZ σ, π) is annihilated by some power
of g.

Proof. By Lemma 2.5.6 we can assume that π is finitely generated, and by dévissage
we can assume that the maximal ideal of O acts trivially on π. Using (2.5.5) it
suffices to prove the claim for ExtiAF

instead of ExtiA. By Proposition 2.5.13, we
may verify this after extending scalars to an uncountable extension of F. Thus we
may and do assume that F is uncountable.

If h ∈ H(σ) is coprime to g, then (c-IndGKZ σ)/h(c-IndGKZ σ) is of finite length,
and lies in AW , for some finite closed subset W of X \ Y . If we set U :=
X \ W , then π = (jU )∗(jU )∗π, by Corollary 3.2.5 (note that Y ⊆ U). Thus
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ExtiA
(
(c-IndGKZ σ)/h(c-IndGKZ σ), π

)
vanishes for every i, by Corollary 3.1.9, and so

a consideration of the long exact sequence of Ext’s arising from the short exact
sequence

0→ c-IndGKZ σ
h·−→ c-IndGKZ σ → (c-IndGKZ σ)/h(c-IndGKZ σ)→ 0

shows that h acts invertibly on ExtiA(c-IndGKZ σ, π); thus the H(σ)-module struc-

ture on ExtiA(c-IndGKZ σ, π) extends to a H(σ)S-module structure, where S de-
notes the multiplicative subset of elements coprime to g. Since F is uncount-
able, the ring H(σ)S has uncountable F-dimension, while Lemma 2.5.7 shows that

ExtiA(c-IndGKZ σ, π) has countable F-dimension. Thus ExtiA(c-IndGKZ σ, π) cannot
contain any H(σ)S torsion-free submodule. The lemma follows. �

Remark 3.2.8. We explain an alternate proof of Lemma 3.2.7 in the case when Y
is finite. In this case Lemma 3.1.3 shows that AY is a product of blocks in Al.adm,
and it follows from [Paš13, Cor. 5.18] that any injective resolution of π in AY also
provides an injective resolution in A. But if I• is such a resolution in AY , then
any element of HomA(c-IndGKZ σ, I

•) factors through (c-IndGKZ σ)/gn(c-IndGKZ σ),
for some n.

3.3. A stack of abelian categories. For each open subset U of X we have the
localized category AU , and for each open subset V ⊂ U we have the natural local-
ization functor j∗UV : AU → AV .

Theorem 3.3.1. The collection {AU} together with the localization functors j∗UV :
AU → AV for V ⊂ U forms a stack (of abelian categories) over the Zariski site
of X.

Remark 3.3.2. By a stack in abelian categories over X we simply mean a stack
over the Zariski site of X whose fiber categories are abelian. There are further
properties one could ask of such an object, such as exactness of all the pullback
functors, and indeed the stack determined by the {AU} has a lot more structure,
such as pushforward functors and acyclic Čech resolutions. This is very similar
to the formalism underlying cohomological descent [Sta, Tag 0D8D], as might be
expected taking into account the connection between the categories AU and sheaves
over a stack of (ϕ,Γ)-modules explained in the introduction.

Proof of Theorem 3.3.1. Since the localization functors j∗UV : AU → AV are the
identity on objects, it is straightforward to check that U 7→ AU defines a pseudo-
functor in the sense of [Vis05, Definition 3.10]. More precisely, the universal prop-
erty of localization specifies a natural isomorphism j∗UW

∼= j∗VW j
∗
UV associated to

any composite inclusion W ⊂ V ⊂ U of subsets of V , such that j∗UU is the identity
and Properties (a) and (b) in [Vis05, Definition 3.10] are satisfied. By the procedure
explained in [Vis05, Section 3.1.3] we obtain a fibered category A• → X.

Following [Vis05, Definition 4.6] we need to prove that for any covering {Ui →
U}i∈I the functor from AU to the category A•({Ui → U}) of objects with descent
data is an equivalence. Since X is quasicompact, we can assume without loss of
generality that the indexing set is equal to {0, 1 . . . , n}. We will deduce the result
from Proposition 3.2.3. In what follows we will write Uij = Ui ∩Uj and abbreviate
the pullback and pushforward associated to the inclusion Uij ⊂ Ui by j∗i,ij and ji,ij∗,
and those associated to the inclusion Uij ⊂ U by j∗ij and jij∗.

https://stacks.math.columbia.edu/tag/0D8D
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Choose objects πi ∈ AUi and isomorphisms

(3.3.3) j∗i,ijπi
∼−→ j∗j,ijπj

in AUij for all i, j, satisfying the cocycle condition after pullback to Uijk. Fix
indices i < j and define πij = j∗i,ijπi. The adjunction between pullback and push-
forward defines a map uij : πi → ji,ij∗πij , and pushing forward to U we find a
map

uij : ji∗πi → jij∗πij .

Similarly, the isomorphism (3.3.3) yields a map

u+
ij : jj∗πj → jij∗πij .

Putting these together we obtain

(3.3.4) u+
ij − uij :

∏
i

ji∗πi →
∏
i<j

jij∗πij .

If we are in the special case that Ui0 = U for some index i0, the cocycle condition
implies that the maps j∗i0,i0iπi0 → πi = j∗i,i0iπi define an isomorphism in A•({Ui →
U}). Since the formation of (3.3.4) defines a functor on A•({Ui → U}), it follows
that the complex (3.3.4) is isomorphic to the first truncation of the Čech resolu-
tion of πi0 . Furthermore, the formation of (3.3.4) is compatible with pullback for
any open inclusion V ⊂ U . It follows from this discussion together with Proposi-
tion 3.2.3 and the exactness of pullback functors that if we define π by the exact
sequence

0→ π →
∏
i

ji∗πi
(3.3.4)−−−−→

∏
i<j

jij∗πij

then j∗i (π) ∼= πi, proving essential surjectivity of AU → A•({Ui → U}).
Now let α : π1 → π2 be a morphism in AU . It follows immediately from Propo-

sition 3.2.3 and functoriality of the Čech resolutions that if j∗i (α) = 0 for all i
then α = 0, which proves that AU → A•({Ui → U}) is faithful. To prove that it is
full we begin with representations π, τ ∈ AU together with morphisms of descent
data αi : j∗i π → j∗i τ . The argument for essential surjectivity implies that the αi
induce a morphism on the first-truncated Čech resolutions of π and τ , and so a
morphism α : π → τ . Since the formation of the Čech resolution commutes with j∗i
we deduce that that j∗(α) = αi, which concludes the proof. �

3.4. Further results about j∗. As we see from part (1) of Proposition 3.1.7, it is
not typically the case that j∗j

∗π is finitely generated, even if π is. Indeed we have
the following result.

Lemma 3.4.1. If U is an open subset of X, and if jU∗j
∗
Uπ is finitely generated for

some object π of A, then the natural morphism π → jU∗j
∗
Uπ is surjective.

Proof. We may write π as the filtered colimit of its finitely generated submodules πi,
and then Lemma 3.1.5 shows that j∗j

∗π is the filtered colimit of the j∗j
∗(πi).

Since j∗j
∗π is finitely generated, and so Noetherian, by assumption, we find that

j∗j
∗(πi) = j∗j

∗π for some value of i. Replacing π by πi, we may thus assume that
π is finitely generated.

Choose a surjection c-IndGKZ V → π, for some finite lengthO[KZ]-representation V .
We proceed by induction on the length of V (the case V = 0 being trivial). Let σ

be an irreducible subrepresentation of V , and let π′ denote the image of c-IndGKZ σ
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in π. If π′ = 0 then we replace V by V/π′, and we are done by induction. Oth-
erwise, since j∗ is exact, we see that j∗j

∗(π/π′) is a quotient of j∗j
∗π, and so is

finitely generated. Thus our inductive hypothesis shows that (π/π′) → j∗j
∗(π/π′)

is surjective. Also, since j∗j
∗π′ is a subobject of j∗j

∗π, and since finitely generated
G-representations are Noetherian, we see that j∗j

∗π′ is finitely generated.
Now either c-IndGKZ σ

∼−→ π′, or else π′ is a proper quotient of c-IndGKZ σ, in
which case it is of finite length. In the latter case, it is automatic that π′ → j∗j

∗π′ is
surjective. In the former case, a consideration of the formula of Proposition 3.1.7 (1)

shows that since j∗j
∗π′ = j∗j

∗(c-IndGKZ σ) is finitely generated, the natural mor-
phism π′ → j∗j

∗π′ is an isomorphism, and so in particular is surjective. Again
using the fact that j∗ is exact, we see that we have a morphism of short exact
sequences

0 // π′ //

��

π //

��

(π/π′) //

��

0

0 // j∗j
∗π′ // j∗j

∗π // j∗j
∗(π/π′) // 0

in which the outer two vertical arrows are surjections. The middle vertical arrow
is thus a surjection as well. �

Corollary 3.4.2. If π is finitely generated and lies in the essential image of j∗,
then the same is true for any subquotient of π.

Proof. The assumption on π is equivalent to asking that π
∼−→ j∗j

∗π and that
j∗j
∗π be finitely generated (see the proof of Lemma A.2.2). Bearing this in mind,

since j∗ is exact, it suffices to prove the statement of the lemma for subobjects
of π, since it then follows for quotients, and so also for subquotients. If π′ is any
subobject of π, we see that j∗j

∗π′ is a subobject of j∗j
∗π, and so finitely generated;

thus Lemma 3.4.1 implies that the natural morphism

(3.4.3) π′ → j∗j
∗π′

is surjective. The left-exactness of j∗, and the fact that the corresponding map for
π is an isomorphism, implies that (3.4.3) is also injective. Thus in fact (3.4.3) is an
isomorphism, and so π′ also lies in the essential image of j∗. �

Remark 3.4.4. The preceding corollary is not true in general without the assumption
of finite generation. Indeed, if π is finitely generated while j∗j

∗π is not finitely
generated (Proposition 3.1.7 provides plenty of examples of such π), then if we let
π′ denote the image of π in j∗j

∗π, we have that π′ ( j∗j
∗π, while j∗j

∗π′ = j∗j
∗π.

Thus j∗j
∗π is an object in the essential image of j∗, while its subobject π′ is not in

this essential image.

Corollary 3.4.5. Let Y be a closed subset of X, and write U := X \ Y . If π is a
finitely generated object lying in the essential image of jU∗, and if π′ is an object
of AY , then ExtiA(π, π′) = 0 for all i.

Proof. Arguing by dévissage, and taking into account Corollary 3.4.2, we may as-
sume that π is a quotient of c-IndGKZ σ, for some Serre weight σ. If it is a proper
quotient, then it is of finite length, and so lies in AW , for some finite closed sub-
set of W of U , while π′ = (jV )∗(jV )∗π, if V = X \W (by Corollary 3.2.5; note
that Y ⊆ V ). In this case the lemma follows from Corollary 3.1.9. Otherwise, we
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may assume that π = c-IndGKZ σ, in which case the claimed vanishing follows from
Lemma 3.2.7. �

We may use the preceding result to strengthen Lemma 3.4.1.

Corollary 3.4.6. Let Y be a closed subset of X, and write U := X \Y . If jU∗j
∗
Uπ

is finitely generated, then the natural morphism π → jU∗j
∗
Uπ is a split surjection.

Proof. Lemma 3.4.1 ensures that the morphism π → j∗j
∗π is surjective. If we

denote its kernel by π′, then π′ lies in AY . The short exact sequence

0→ π′ → π → j∗j
∗π → 0

represents an element of Ext1
A(j∗j

∗π, π′), and Corollary 3.4.5 shows that this Ext
module vanishes. Thus the short exact sequence splits, as claimed. �

3.5. Completion. If Y is a closed subset of X, then AY is an abelian subcategory
(indeed a localizing subcategory) of A. Thus the discussion of Section A.3.17 ap-
plies, and shows that the inclusion Pro(AY ) ↪→ Pro(A) admits a left adjoint, which
we denote by π 7→ π̂Y . Being a left adjoint, this functor preserves colimits when
they exist. In particular, it is right exact. We sometimes write simply π̂ if Y is
understood from the context.

The following lemma describes π̂Y explicitly when π ∈ A.

Lemma 3.5.1. If π is an object of A, there is a natural isomorphism

π̂Y
∼−→ “ lim←− ”π′,

where π′ runs over the cofiltered directed set of quotients of π lying in AY .

Proof. This is a particular instance of Lemma A.3.18. �

Recall that Afg denotes the full subcategory of A consisting of finitely generated

objects. Similarly, for any closed subset Y of X, we write Afg
Y to denote the full

subcategory of AY consisting of finitely generated objects. If Y is a finite closed

subset of X, then Lemma 3.1.3 shows that Afg
Y may equally well be described as

the subcategory of AY consisting of finite length objects.

Corollary 3.5.2. If π is an object of Afg, then π̂Y is an object of Pro(Afg
Y ).

Proof. This follows immediately from Lemma 3.5.1. �

Proposition 3.5.3. Let Y be a closed subset of X, and suppose that

0→ π′ → π → π′′ → 0

is a short exact sequence in Afg, with π′ being an object of Afg
Y . Then we may find

a commutative diagram

0 // π′ // π //

��

π′′ //

��

0

0 // π′ // π̃ // π̃′′ // 0

in which the right-hand (and hence also the middle) vertical arrow is surjective, and

in which π̃′′ (and hence also π̃) are objects of Afg
Y .
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Proof. By assumption we may find a surjection c-IndGKZ τ → π′′, for some finite
length representation τ of O[KZ], and we argue by induction on the KZ-length
of τ . Thus, to begin with, we assume that τ = σ is a Serre weight. If the surjection
c-IndGKZ σ → π′′ is not an isomorphism, then π′′ is of finite length, and so it is
an object of AW , for some finite closed subset W of X. Write W ′ = W ∩ Y and
W ′′ = W \ Y , so that W is the disjoint union of its closed subsets W ′ and W ′′.
Correspondingly, we may write π′′ = π′′1 ⊕ π′′2 , where π′′1 is an object of AW ′ ⊆
AY , and π′′2 is an object of AW ′′ . Since Y and W ′′ are disjoint, it follows from
Corollary 3.2.6 that Ext1

A(π′′2 , π
′) = 0. Thus the natural map

Ext1
A(π′′1 , π

′)→ Ext1
A(π′′, π′)

given by pullback along the surjection π′′ → π′′1 , is an isomorphism, and so π is
pulled back from an extension π1 of π′′1 by π′.

Suppose, then, that c-IndGKZ σ
∼−→ π′′. Write f−1

σ (Y ) = V (g), for some g ∈
H(σ). If g = 0, then π′′ itself is an object of Afg

Y , and there is nothing to prove.

Otherwise, g is non-zero. The extension π represents a class of Ext1
A(c-IndGKZ σ, π

′),
and Lemma 3.2.7 shows that some power gn of g annihilates this class. A consid-
eration of the long exact Ext sequence associated to the short exact sequence

0→ c-IndGKZ σ
gn·−→ c-IndGKZ σ → (c-IndGKZ σ)/gn(c-IndGKZ)→ 0

then shows that the class of π arises by pullback along the surjection c-IndGKZ σ →
(c-IndGKZ σ)/gn(c-IndGKZ), whose target is an object of AY .

We now turn to the general case, when τ is not necessarily irreducible. Our
inductive hypothesis allows us to choose a subrepresentation π′′0 of π′′ such that the
statement of the proposition holds for each of π′′0 and π′′/π′′0 in place of π′′. Pulling
back the extension given by π along the inclusion π′′0 ⊆ π′′, we obtain a short exact
sequence

0→ π′ → π0 → π′′0 → 0,

and by assumption we may find a subrepresentation π2 ⊆ π0 such that π′ ∩π2 = 0,

and such that π0/π2 is an object of Afg
Y . Next consider the short exact sequence

0→ π0/π2 → π/π2 → π/π0(
∼−→ π′′/π′′0 )→ 0.

Again by assumption, we may find a subrepresentation π1 of π containing π2 such

that π0 ∩ π1 = π2, and such that π/π1 (= (π/π2)/(π1/π2)) is an object of Afg
Y .

Then π′∩π1 = π′∩π0∩π1 = π′∩π2 = 0, and so setting π̃ = π/π1 does the job. �

Corollary 3.5.4. The restriction to Afg of the functor π 7→ π̂Y is exact.

Proof. If π′ ⊆ π is an inclusion of finitely generated objects of A, we must prove

that the induced morphism π̂′Y → π̂Y is a monomorphism. By Lemma A.3.9 and

the definition of the functor (̂–)Y as an adjoint, it suffices to show any morphism
π′ → π′ whose target lies in AY can be placed in a commutative diagram

π′ //

��

π

��

π′ // π,

where π also lies in AY and in which the bottom arrow is a monomorphism. In
fact, it suffices to do this with π′ replaced by the image π̃′ of π′ in π′. (Indeed, if
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we then find a requisite monomorphism embedding π̃′ ↪→ π̃, we can take π to be
the coproduct of π̃ and π′ over π̃′.)

If we pushout the short exact sequence

0→ π′ → π → π/π′ → 0

along the surjection π′ → π̃′, and then apply Proposition 3.5.3, we obtain the
required quotient π̃ of π. �

If π is an object of A, and π′ is an object of AY , and if we write π̂Y = “ lim←−I ”πi,

then the adjunction property of completion can be expressed as

HomPro(AY )(π̂Y , π
′)
∼−→ lim−→

I

HomAY (πi, π
′)
∼−→ HomAY (π, π′).

(The first isomorphism is an instance of (A.3.1), and the second isomorphism is
induced by the maps π → πi induced by the unit of adjunction π → π̂Y .) The
following lemma extends this result to higher Ext.

Lemma 3.5.5. Let π be an object of Afg, and write π̂Y = “ lim←−
I

”πi, where (by

Corollary 3.5.2) the πi are objects of Afg
Y . If π′ is an object of AY , then, for any

value of n, the natural morphism

ExtnPro(AY )(π̂Y , π
′)
∼−→ lim−→

I

ExtnAY (πi, π
′)→ ExtnA(π, π′)

is an isomorphism.

Proof. We note that the first isomorphism in the displayed chain of isomorphisms
is an instance of Lemma A.3.13.

We may write π′ as the filtered colimit of its finitely generated subobjects.
Lemma 2.5.6, along with its analogue for AY , shows that each side of the nat-
ural morphism under consideration commutes with the passage to filtered colimits
in π′, and thus we may and do assume for the remainder of the proof that π′ is
finitely generated.

Lemma 2.5.9 shows that any object of ExtnA(π, π′) may be represented as a length
n Yoneda extension involving finitely generated objects of A. Taking completions
along Y , and taking into account Corollary 3.5.4, we obtain a length n Yoneda Ext
in Pro(AY ) between π̂Y and π′. Thus we find that the morphism

ExtnPro(AY )(π̂Y , π
′)→ ExtnA(π, π′)

is surjective, for every n. It now follows by a formal argument that this map is in
fact an isomorphism for every n.

In more detail, since the formation of filtered colimits is exact, we obtain a
morphism

Ext•Pro(AY )(π̂Y , –)→ Ext•A(π, –)

of δ-functors on AY . This morphism is an isomorphism in degree zero, is surjective
in every degree, and its source is an effaceable δ-functor. (If π′ is an object of
AY , we can embed it into an injective object of AY , which by Lemma A.3.11
remains injective in Pro(AY ) and so effaces the higher ExtnPro(AY )(π̂Y , –).) An easy
dimension-shifting argument shows that this morphism is then an isomorphism, as
claimed. �
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We have the following corollary, which in the case of finite Y also follows di-
rectly from Lemma 3.1.3 together with [Paš13, Cor. 5.18] (as was already noted in
Remark 3.2.8).

Corollary 3.5.6. The inclusion AY ↪→ A preserves injectives. Consequently, if π
and π′ are objects of AY , then the natural morphism

ExtnAY (π, π′)→ ExtnA(π, π′)

is an isomorphism, for every value of n.

Proof. To show that an object π′ ofA is injective, it suffices to show that ExtiA(π, π′) =
0 for all i > 0, for finitely generated objects π. If π′ is an injective object of AY ,
and if π is finitely generated, it follows from Lemma 3.5.5 that indeed these higher
Ext do vanish. Thus π′ is an injective object of A. The claimed isomorphism of
Ext groups follows immediately. �

3.5.7. Ind-completion. Corollary 3.5.4 shows that (̂–)Y is particularly well-behaved
on Afg, and this suggests the following modification of its definition. Namely, we
recall (see e.g. Section A.1.2) the equivalence Ind(Afg)

∼−→ A, and then extend

the exact (by Corollary 3.5.4) functor (̂–)Y : Afg → Pro(Afg
Y ) formally to an exact

colimit-preserving functor Ind(Afg) → Ind Pro(Afg
Y ). We continue to denote this

functor by (̂–)Y , relying on context to distinguish it from the functor defined on A
earlier.

There is a canonical functor Ind Pro(Afg
Y )→ Pro Ind(Afg

Y ), while the equivalence

Ind(Afg
Y )→ AY induces an equivalence Pro Ind(Afg

Y )
∼−→ Pro(AY ); composing these

gives a functor

(3.5.8) Ind Pro(Afg
Y )→ Pro(AY ).

We then have the following commutative diagram comparing our “redefined” (̂–)Y
to our original definition:

Ind(Afg)

∼
��

(̂–)Y // Ind Pro(Afg
Y )

(3.5.8)

��

A
(̂–)Y // Pro(AY )

3.5.9. Further results for finite Y . We present some additional results that hold in
the case when Y is finite.

Lemma 3.5.10. Assume that Y is finite. If π is an object of Afg
Y , and if “ lim←−m ”πm

is a countably indexed object of Pro(Afg
Y ), then the natural map

Extn
Pro(Afg

Y )
(π, “ lim←−

m

”πm)→ lim←−
m

ExtnC(π, πm)

is an isomorphism for every n.

Proof. This follows from Lemma A.3.14 and the fact that all Hom modules in Afg
Y

are of finite length. �



36 A. DOTTO, M. EMERTON, AND T. GEE

Our next result has some formal similarity to Lemma 3.5.5, but seems to lie
deeper: its proof relies on Propositions 2.6.5 and 2.6.4 above, and these results
require Paškūnas’ work [Paš13] on the p-adic local Langlands correspondence for
their proof.

Proposition 3.5.11. Let Y be a finite subset of X. If π is an object of Afg
Y and π′

is an object of Afg, then passing to the completion along Y induces isomorphisms

ExtiAfg(π, π′)
∼−→ Exti

Pro(Afg
Y )

(π, π̂′Y ).

Proof. Although the category Afg does not have enough injectives or projectives,
the map in the statement of the proposition is well-defined by Corollary 3.5.4,
viewing the Exti-groups as morphisms in the derived category, or equivalently as
groups of Yoneda extensions.

Since Y is finite, Afg
Y is a finite length category, and so it decomposes as a direct

product of blocks. Writing π as a direct sum according to this decomposition we
see that it suffices to prove the proposition when Y = {x} consists of a single closed
points of X, possibly not defined over F.

On the other hand, every object of Afg has a finite filtration whose graded pieces
are either finite length representations or isomorphic to c-IndGKZ(σ) for a Serre
weight σ. Since π′ 7→ π̂′Y is exact, it follows by dévissage that it suffices to prove

the claim when π is irreducible, and either π′ = c-IndGKZ(σ) or π′ has finite length.
When π′ has finite length the result is immediate from Lemma A.3.12.

Assume now that π′ = c-IndGKZ(σ). By the discussion in Section 2.1, there exists
a polynomial fx(T ) ∈ HG(σ) ∼= F[T ] such that the inverse system{

π′n =
(
c-IndGKZ σ

)
/fnx

}
is cofinal in the diagram defining π̂′Y . By construction, π′1 is the largest multiplicity-

free quotient of c-IndGKZ σ contained in Afg
Y .

It follows from the above and Lemma 3.5.10 that it suffices to prove that the
map

Exti(π, c-IndGKZ(σ))→ lim←−
n

Exti(π, π′n)

induced by the projections c-IndGKZ(σ) → π′n is an isomorphism. Notice further-
more that fx is regular on the compact induction, and so we have short exact
sequences

0→ π′m → π′n+m → π′n → 0

for all positive integers m,n.
As explained at the end of Section 3.6, it follows from Corollary 3.1.9 that we

have an isomorphism

lim−→
n

ExtiA(π, π′n)
∼−→ Exti+1

A (π, c-IndGKZ(σ))

induced by connecting homomorphism of the exact sequence

(3.5.12) 0→ c-IndGKZ(σ)→ c-IndGKZ(σ)[1/fx]→ lim−→π′n → 0

and the fact (proved in Lemma 2.5.6) that Exti commutes with filtered colimits.
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Pulling back (3.5.12) along π′m → lim−→π′n, and then pushing forward along c-IndGKZ(σ)→
π′n, we rephrase our goal as proving that the map

lim−→ExtiA(π, π′m)→ lim←−Exti+1
A (π, π′m)

induced by the connecting homomorphisms of the exact sequences

0→ π′m → π′n+m → π′n → 0

is an isomorphism.
Making a finite unramified extension O′/O and applying Proposition 2.5.13, and

noting that all terms of the inverse limit have finite O-length, we can furthermore
assume that Y = {x} is a block of absolutely irreducible representations. Hence
the polynomial fx can be taken to be linear in almost all cases: the only exception
is for blocks of type (2) consisting of quotients of c-IndGKZ(σ) when σ is a twist

of Symp−2. Indeed, when λ 6= ±1 the representation c-IndGKZ(σ)/(T −λ)(T −λ−1)
is multiplicity-free and contained in a single block, and so we need to take fx =
(T − λ)(T − λ−1), which is quadratic in T . However, the representation π′m is a
direct sum

π′m = c-IndGKZ(σ)/(T − λ)m ⊕ c-IndGKZ(σ)/(T − λ−1)m,

and the exact sequence 0 → π′m → π′n+m → π′n → 0 is also a direct sum of exact
sequences. Hence the proposition follows from the next result. �

Proposition 3.5.13. Let σ be a Serre weight and λ ∈ F. Define

τn = c-IndGKZ(σ)/(T − λ)n

and let π be an irreducible object of the block x containing τn. Then the connecting
homomorphisms of the exact sequence

0→ τm
(T−λ)n−−−−−→ τn+m → τn → 0

induces an isomorphism

lim−→ExtiA(π, τm)→ lim←−Exti+1
A (π, τn)

for all i ≥ 0.

Proof. Let Jx =
⊕

π∈x Jπ be the direct sum of injective envelopes of all the irre-
ducible objects of Ax. Then the functor

Mx(−) = HomA(−, Jx)∨

is an equivalence of Ax with the category of discrete left modules over Ex =
EndA(Jx). Hence it suffices to prove the proposition after applying Mx(−).

Define M = lim←−iMx(τi), which is a module over Ex (in fact, since the Mx(τi)

have finite length, this is actually a compact Ex-module). The Hecke operator (T −
λ) induces compatible endomorphisms of all the M(τi), hence also of M . There is
an exact sequence

0→M →M [1/(T − λ)]→ lim−→
i

Mx(τi)→ 0.

Since the groups

ExtiEx(Mx(π),Mx(τj)) ∼= ExtiAx(π, τj)
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have finite dimension over k, the same argument as in Lemma A.3.14 implies that
the natural map

Exti+1
Ex

(Mx(π),M)
∼−→ lim←−

j

Exti+1
Ex

(Mx(π),Mx(τj))

is an isomorphism. So we obtain a connecting homomorphism

lim−→
k

ExtiEx(Mx(π),Mx(τk))→ lim←−
j

Exti+1
Ex

(Mx(π),Mx(τj))

which can be checked to coincide with the map induced by the connecting homo-
morphisms of the short exact sequences

0→Mx(τm)→Mx(τn+m)→Mx(τn)→ 0

So it suffices to prove that

(3.5.14) Ei = ExtiEx(Mx(π),M [1/(T − λ)]) = 0

for all i. We are going to deduce this from Propositions 2.6.4 and 2.6.5, using the
fact that this Exti-group is a module over the centre Zx of Ex in a unique way
under the actions on either factor.

Assume first that x is a block of type (1), (2) or (4). Then it follows from
Proposition 2.6.4 that there exists an element Tx−λ ∈ Zx inducing the operator T−
λ on Mx(τi) for all i, and so on M too. Since π is an absolutely irreducible object
of Ax and Tx − λ = 0 on τ1, we also have Tx − λ = 0 on π. Hence the vanishing
of (3.5.14) follows from the fact that Tx − λ is simultaneously invertible and zero
on Ei.

Assume now that x has type (3). Then Ei has an invertible endomorphism T −λ
arising from the second factor. Furthermore, by Proposition 2.6.5 there are central
elements z0, . . . , zn ∈ Zx such that

(T − λ)n+1 + zn(T − λ)n + · · ·+ z1(T − λ) + z0 = 0

as endomorphisms of Mx(τi), hence as endomorphisms of M and Ei. In addition,
the zi are contained in the maximal ideal mx, and so they are zero on Mx(π),
which is the only irreducible object of the block. So they are zero on Ei. It follows
that (T − λ)n+1 is simultaneously invertible and zero on Ei, and so Ei = 0. �

3.5.15. From formal to literal completions. When Y is finite, since the objects of

Afg
Y are Artinian when regarded as objects of A, it follows that the functor

lim←− : Pro(Afg
Y )→ O[G]-Mod,

given by mapping a pro-object “ lim←−I ”πi to its literal projective limit lim←−i πi in the

category of O[G]-modules, is faithful and exact [Jen72, Cor. 7.2].
If we compose this with the exact (by Corollary 3.5.4) completion functor Afg →

Pro(Afg
Y ), we obtain the exact “literal completion along Y ” functor

lim←− (̂–)Y : Afg → O[G]-Mod,

which we denote by π 7→ lim←− π̂Y ,

Lemma 3.5.16. For any object π of Afg, there is a natural morphism of O[G]-
modules π → lim←− π̂Y .
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Proof. As discussed in A.3.17, the unit of adjunction induces a morphism π → π̂Y
in Pro(A). Regarding this as a morphism in the larger category Pro(O[G])-Mod,
and them passing to literal projective limits in O[G]-Mod (and recalling that π is
constant as a pro-object), we obtain the desired morphism. �

The discussion at end of A.3.17 shows that, if we apply Lemma 3.5.1 to write
π̂Y

∼−→ “ lim←− ”π′, where π′ runs over the cofiltered directed set of quotients of π′, so

that lim←− π̂Y = lim←−π
′, then the morphism of the preceding lemma is the one induced

by the collection of quotient morphisms π → π′.
If we pass to Ind-categories, then “literal projective limit” formally extends to

an exact and faithful functor lim←− : Ind Pro(Afg
Y ) → IndO[G]-Mod. Thus if π is an

object of A ∼−→ IndAfg, we may form the “literal completion” lim←− π̂, which is an

object of IndO[G]-Mod. There is again a natural morphism π → lim←− π̂.

3.5.17. Some analogues for AU . Suppose that Y ⊆ U for some open subset U of X.
Write Z := X \ U. If π and π′ are objects of AZ and AY respectively, then

HomAY (π̂Y , π
′) = HomA(π, π′) = 0

by Corollary 3.2.6. Thus (̂−)Y vanishes on AZ , and so the functor π̂Y factors
through AU , and then extends canonically to a functor Pro(AU ) → Pro(AY ) pre-

serving cofiltered limits. We use the same notation (̂–)Y for this induced functor,
so that by definition we have

(3.5.18) ĵ∗UπY = π̂Y ,

for objects π of Pro(A).

Lemma 3.5.19. If πU is an object of Pro(AU ), then there is a natural isomorphism

ĵ∗(πU )Y
∼−→ (̂πU )Y .

Proof. Since the functors (̂–)Y and j∗ are extended from AU to ProAU via the

universal property of the latter, and similarly (̂–)Y is extended from A to Pro(A) via
the universal property of the latter, it suffices to construct the natural isomorphism
for objects πU of AU .

Now the counit of adjunction gives an isomorphism j∗U jU∗πU
∼−→ πU , and the

required isomorphism follows from (3.5.18). �

Recall from Corollary 3.2.5 that the unit of adjunction id → jU∗j
∗
U restricts to

an isomorphism on AY , so that j∗U embeds AY fully faithfully into AU . Thus, if
πU is an object of Pro(AU ) and π′ is an object of Pro(AY ), we find that

HomPro(AY )((̂πU )Y , π
′)
∼−→ HomPro(AY )((̂j∗πU )Y , π

′)

= HomPro(A)(j∗πU , π
′)
∼−→ HomPro(A)(j∗πU , j∗j

∗π′)

= HomPro(AU )(πU , j
∗π′).

(The first isomorphism is given by Lemma 3.5.19, while, as already noted, the sec-
ond isomorphism follows from (3.5.18). The equalities are instances of the various

adjunctions that we’ve established.) Thus (̂–)Y on Pro(AU ) satisfies an analogous

adjunction to the one satisfied by (̂–)Y on Pro(A).
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We now show that (̂–)Y on AU satisfies analogues of the results we proved for

(̂–)Y on A.

Corollary 3.5.20. If π is an object of Afg
U , then π̂Y is an object of Pro(Afg

Y ).

Proof. This follows directly from Lemma 3.1.5(3) and Corollary 3.5.2. �

Lemma 3.5.21. The restriction of (̂–)Y to Afg
U is exact.

Proof. Any exact sequence in Afg
U may be written as the image under j∗U of an exact

sequence in Afg. The claim then follows from Corollary 3.5.4 and (3.5.18). �

Lemma 3.5.22. Let πU be an object of Afg
U , and (via Corollary (3.5.20))write

(̂πU )Y = “ lim←−
I

”πi, where the πi are objects of Afg
Y . If π′ is an object of AY , then,

for any value of n, there are natural isomorphisms

ExtnPro(AY )((̂πU )Y , π
′)
∼−→ lim−→

I

ExtnAY (πi, π
′)→ ExtnAU (πU , j

∗π′).

Proof. If we write πU = j∗π for some object π of A, take into account (3.5.18) and
apply Lemma 3.5.5, then the lemma follows from the chain of isomorphisms and
adjunctions

ExtnA(π, π′)
∼−→ ExtnA(π, j∗j

∗π′) = ExtnAU (j∗π, j∗π′) = ExtnAU (πU , j
∗π′)

(the isomorphism being the consequence of Corollary 3.2.5 that we’ve already
noted). �

3.6. The functors ΓY and R1ΓY . If Y is a closed subset of X, then we define
the functor ΓY : A → AY as follows: ΓY (π) is the maximal subobject of π lying in
AY . Equivalently, ΓY (π) is the kernel of the natural morphism π → j∗j

∗π (where,
as usual, we write U := X \ Y ). The functor ΓY is right adjoint to the inclusion of
AY in A; since this latter functor is exact, we see that ΓY takes injectives in A to
injectives in AY . Corollary 3.5.6 then shows that ΓY in fact takes injectives in A
to injectives in A.

We may consider the derived functors RiΓY of ΓY . Their computation is facili-
tated by the following result.

Lemma 3.6.1. If I is an injective object of A, then the natural map I → j∗j
∗I is

surjective.

Proof. As already noted, it follows from Corollary 3.5.6 that ΓY (I) is again an
injective object of A. Thus the inclusion ΓY (I) ↪→ I is split, and so the image J of
I in j∗j

∗I is yet again injective. The inclusion J ↪→ j∗j
∗I is thus also split. The

characterization given by Lemma A.2.2 then shows that J lies in the essential image
of j∗, and thus that J = j∗j

∗J . Thus the surjection I → J induces an identification
j∗j
∗I → j∗j

∗J = J, and the lemma is proved. �

Corollary 3.6.2. For any object π of A, the derived functors of ΓY are computed
by the complex

π → j∗j
∗π.

In particular, the only non-trivial higher derived functor is R1ΓY .
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Proof. If I• is an injective resolution of π, then the various R•ΓY (π) are com-
puted as the cohomology of the kernel of the morphism of complexes I• → j∗j

∗I•.
Lemma 3.6.1 shows that this kernel coincides with the cone (up to a shift). Now
since j∗ is exact, the complex j∗j

∗I• resolves j∗j
∗π, and so this shifted cone is

quasi-isomorphic to the complex π → j∗j
∗π, proving the lemma. �

Since ΓY preserves injectives, we obtain, for any objects π of AY and π′ of A, a
spectral sequence

(3.6.3) Ep,q2 := ExtpAY
(
π,RqΓY (π′)

)
=⇒ Extp+qA (π, π′).

In the case when π′ → j∗j
∗π′ is injective, i.e. when ΓY (π′) = 0, this simplifies to

the formula

ExtpAY
(
π,R1ΓY (π′)

)
= Extp+1

A (π, π′),

which can be obtained directly by computing the long exact sequence of Ext’s
arising from the short exact sequence

0→ π′ → j∗j
∗π′ → R1ΓY (π′)→ 0,

and taking into account Corollary 3.1.9.
Lemma 3.4.1 shows that if π and R1ΓY (π) are both finitely generated, then in

fact R1ΓY (π) = 0. Thus R1ΓY (π) is typically not finitely generated. Nevertheless,
we can gain some control over it, using the following results. (By contrast, if π is
finitely generated then so is ΓY (π), by Theorem 2.4.1, since it is a submodule of π.)

Lemma 3.6.4. Suppose that Y is a closed subset of X, and that σ is a Serre weight.
As in the statement of Proposition 3.1.7, write f−1

σ (Y ) = V (g) for some g ∈ H(σ).

If g = 0, then ΓY (c-IndGKZ σ) = c-IndGKZ σ and R1ΓY (c-IndGKZ σ) = 0, while if g 6=
0, then ΓY (c-IndGKZ σ) = 0, while R1ΓY (c-IndGKZ σ) = (c-IndGKZ σ)[1/g]/(c-IndGKZ σ).

Proof. Proposition 3.1.7 shows that the exact sequence

0→ ΓY (c-IndGKZ σ)→ c-IndGKZ σ → j∗j
∗c-IndGKZ σ → R1ΓY (σ)→ 0

reduces to either

0→ c-IndGKZ σ → c-IndGKZ σ → 0→ 0→ 0

or

0→ 0→ c-IndGKZ σ → (c-IndGKZ σ)[1/g]→ (c-IndGKZ σ)[1/g]/(c-IndGKZ σ)→ 0,

depending on whether g = 0 or not. �

Lemma 3.6.5. If Y is a closed subset of X and π is of finite length, then RΓ1
Y (π) =

0.

Proof. Since π is of finite length, it is an object of AZ for some finite closed set Z
of X, which we write in the form Z := Z1

∐
Z2, where Z1 = Y ∩Z and Z2 = Z \Z1.

Correspondingly we may write π = π1⊕π2 with πi an object of Afl
Yi

. The complexes

0→ ΓY (πi)→ πi → j∗j
∗πi → R1ΓY (πi)→ 0

then reduce to

0→ π1 → π1 → 0→ 0→ 0,

respectively

0→ 0→ π2 → π2 → 0→ 0,
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in the case i = 1, respectively 2. In particular, in either case we have R1ΓY (πi) = 0,
and so R1ΓY (π) = 0. �

We may now prove the following result.

Lemma 3.6.6. If Y is a closed subset of X and π is finitely generated, then RΓ1
Y (π)

is an Artinian object of AY .

Proof. By the usual dévissage, we reduce to the case when either π is of finite
length, or π is of the form c-IndGKZ σ. In the finite length case, Lemma 3.6.5 shows

that R1ΓY even vanishes. In the case of c-IndGKZ σ, Lemma 3.6.4 reduces us to

showing that if g is a non-zero element of H(σ), then (c-IndGKZ σ)[1/g]/(c-IndGKZ σ)
is Artinian, which is Lemma 2.1.10. �

Definition 3.6.7. If π is any object of A, then we let πf.l. denote the maximal
subobject of π which is locally of finite length; equivalently, this is the maximal
subobject of π which is locally admissible.

We may write πf.l. = lim−→Y
ΓY (π), where Y runs over all finite closed subsets

of X. We then see that this functor has a single non-vanishing higher derived
functor, namely lim−→Y

R1ΓY .

3.7. More on Pro(Afg
Y ). We now extend some of the preceding constructions to the

context of Pro(Afg
Y ), since we will need them for the Beauville–Laszlo-type results

of the following section.

We may form the quotient category Pro(Afg
Y )U := Pro(Afg

Y )/Afg
Y , and just as

in the case of A considered above, we let j∗ : Pro(Afg
Y ) → Pro(Afg

Y )U denote the
canonical functor. Since this functor is exact, its Ind-extension admits a right
adjoint (applying the Ind-analogue of the discussion of A.3.7), which we denote

by j∗ : Ind Pro(Afg
Y )U → Ind Pro(Afg

Y ). We will only consider the restriction of

this functor to Pro(Afg
Y )U . (But note that the target of this restriction is still

Ind Pro(Afg
Y ).)

The completion functor (̂–) : Afg → Pro(Afg
Y ) induces a corresponding functor

Afg
U := Afg/Afg

Y → Pro(Afg
Y )/Afg

Y =: Pro(Afg
Y )U ,

which we again denote by (̂–). By construction, then, the diagram

(3.7.1) Afg

j∗

��

(̂–)
// Pro(Afg

Y )

j∗

��

Afg
U

(̂–)
// Pro(Afg

Y )U

commutes up to natural transformation.
We also have a diagram

(3.7.2) Afg
U

(̂–)
//

j∗

��

Pro(Afg
Y )U

j∗

��

A ∼ // IndAfg
(̂–)
// Ind Pro(Afg

Y )
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(where we have extended (̂–) : Afg → Pro(Afg
Y ) to the corresponding Ind-categories,

as in 3.5.7 above), but the commutativity of this diagram is less obvious, and in
fact we only establish it under the additional hypothesis that Y is finite. In that
case, it is more-or-less the content of the following proposition.

Proposition 3.7.3. Assume that Y is finite. If π is an object of Afg, then there

is a natural isomorphism ĵ∗j∗π
∼−→ j∗j

∗π̂.

Proof. From (3.7.1) (and its formal extension to Ind-objects), we obtain the first
and third of the following sequence of isomorphisms

j∗ĵ∗j∗π
∼−→ ̂j∗j∗j∗π

∼−→ ĵ∗π
∼−→ j∗π̂,

the second being clear. Thus, by adjunction, we obtain a morphism

(3.7.4) ĵ∗j∗π → j∗j
∗π̂,

which we must show is an isomorphism.
Completing the natural (unit to the adjunction) morphism π → j∗j

∗π induces a

morphism π̂ → ĵ∗j∗π. There is also the natural (unit to the adjunction) morphism
π̂ → j∗j

∗π̂. The resulting diagram

(3.7.5) π̂ // ĵ∗j∗π

(3.7.4)

��

π̂ // j∗j
∗π̂

is easily checked to commute. (By its construction, it suffices to check commutativ-

ity after applying j∗, in which case all the vertices become ĵ∗π and all the arrows

become the identity morphism of ĵ∗π to itself.)
Our next step is to embed (3.7.5) in a larger commutative diagram. To begin

with, we consider the tautological exact sequence

0→ ΓY (π)→ π → j∗j
∗π → R1ΓY (π)→ 0,

with ΓY (π) an object of Afg
Y , π an object of Afg, j∗j

∗π an object of A ∼−→ IndAfg,

and R1ΓY (π) an object of AY
∼−→ IndAfg

Y . Applying the completion functor (in its
Ind-category incarnation following 3.5.7 above), which is exact by Corollary 3.5.4,
we obtain the exact sequence

0→ ΓY (π)→ π̂ → ĵ∗j∗π → R1ΓY (π)→ 0,

where we still have ΓY (π) being an object of Afg
Y , we have π̂ being an object of

Pro(Afg
Y ), we have ĵ∗j∗π being an object of Ind Pro(Afg

Y ), and we have R1ΓY (π)

being an object of IndAfg
Y .

We next define V and W to be the kernel and cokernel respectively of the natural
morphism π̂ → j∗j

∗π̂. The diagram (3.7.5) can then be placed in the commutative
diagram with exact rows

(3.7.6) 0 // ΓY (π) //

��

π̂ // ĵ∗j∗π //

(3.7.4)

��

R1ΓY (π) //

��

0

0 // V // π̂ // j∗j
∗π̂ // W // 0
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Now, by its construction, ΓY (π) can be characterized as the object of Afg
Y that

represents the functor HomAfg(–, π) onAfg
Y . Similarly, V can be characterized as the

object of Afg
Y that represents the functor HomPro(Afg

Y )(–, π̂) on Afg
Y . The Ext0 case of

Proposition 3.5.11 then implies that the morphism ΓY (π)→ V is an isomorphism.
A similar argument shows that the morphism R1ΓY (π)→W is an isomorphism.

Indeed, the long exact Ext sequences attached to the short exact sequences

0→ π/ΓY (π)→ j∗j
∗π → R1ΓY (π)→ 0

and

0→ π̂/V → j∗j
∗π̂ →W → 0

give rise to the horizontal arrows of the commutative square of functors (on Afg
Y )

HomA
(
–, R1ΓY (π)

)
//

��

Ext1
A
(
–, π/ΓY (π)

)
��

HomInd Pro(Afg
Y )(–,W ) // Ext1

Ind Pro(Afg
Y )

(–, π̂/V )

in which the horizontal arrows are monomorphisms. In fact, the discussion following
Corollary 3.6.2 shows that the upper horizontal arrow is an isomorphism, and the
Ext1 case of Proposition 3.5.11 shows that the right-hand vertical arrow is also
an isomorphism. It follows that the other two arrows — in particular, the left-
hand vertical arrow — are isomorphisms. This implies that R1ΓY (π) → W is an
isomorphism.

We have now seen that the outer vertical arrows in (3.7.6) are isomorphisms.
The five lemma then implies that (3.7.4) is an isomorphism, as required. �

We finish this section by stating a result related to the proof of the preceding
proposition. In order to make the statement, we first recall (continuing to assume
that Y is finite) from 3.5.15 that we have the “literal projective limit” functor

lim←− : Ind Pro(Afg
Y )→ IndO[G]-Mod, and there is a natural morphism π → lim←− π̂.

Lemma 3.7.7. Assume Y is finite. If π is an object of Afg, then there is a natural
short exact sequence

0→ π → π̂ × j∗j∗π → ĵ∗j∗π → 0

Proof. As in the proof of Proposition 3.7.3, we may complete the tautological exact
sequence

0→ ΓY (π)→ π → j∗j
∗π → R1ΓY (π)→ 0

to obtain an exact sequence

0→ ΓY (π)→ π̂ → ĵ∗j∗π → R1ΓY (π)→ 0.

Now formation of literal projective limits is exact; also both ΓY (π) and R1ΓY (π)

are in IndAfg
Y (i.e. are trivial in the Pro-aspect), and so lim←− acts identically on each

of them. Thus we obtain an exact sequence in IndO[G]-Mod

0→ ΓY (π)→ lim←− π̂ → lim←− ĵ∗j
∗π → R1ΓY (π)→ 0.
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Now consider the square

π //

��

j∗j
∗π

��

π̂ // ĵ∗j∗π

If we regard this as a morphism (in the vertical direction) of complexes (in the
horizontal direction), then the discussion of the preceding paragraph shows that
the vertical morphisms induce a quasi-isomorphism of complexes. Passing to the
associated total complex yields the required exact sequence. �

3.8. Beauville–Laszlo-type gluing. The results of this section are not used else-
where in this paper, but they are crucially applied in [DEG]. The categorical p-adic
Langlands correspondence developed in [DEG] relates smooth representations of
GL2(Qp) to sheaves on stacks, and the arguments made in [DEG] rely on being
able to glue representations in the same way that we can glue sheaves. In fact,
in order to make use of the results of [Paš13], we need an analogue of Beauville–
Laszlo gluing of sheaves (i.e. of gluing sheaves over formal completions at closed
loci to sheaves on the complementary open substack). Theorem 3.8.1 provides such
a result.

Theorem 3.8.1. Suppose that Y is a finite closed subset of X, with open comple-
ment U . The canonical functor

Afg −→ Pro(Afg
Y )×Pro(Afg

Y )U
Afg
U ,

induced by completion along Y and by localization over U , is an equivalence of
categories.

Proof. As usual, it suffices to show that the functor is fully faithful and essentially
surjective. We begin by showing faithfulness. To this end, suppose that f, g :
π1 ⇒ π2 are morphisms in Afg, for which the induced morphisms π̂1 → π̂2 and
j∗π1 → j∗π2 coincide. We then find that the morphisms

lim←− π̂1 × j∗j∗π1 → lim←− π̂2 × j∗j∗π2

coincide. The injectivity aspect of Lemma 3.7.7 shows that f and g in fact coincide.
We turn to proving fullness. Thus we suppose given a pair π1, π2 of objects of

Afg, together with morphisms g : π̂1 → π̂2 and h : j∗π1 → j∗π2, such that j∗g = ĥ
as morphisms

ĵ∗π1 = j∗π̂1 → j∗π̂2 = ĵ∗π2.

Applying j∗, we then find that j∗j
∗g and j∗ĥ coincide as morphisms

ĵ∗j∗π1 = j∗j
∗π̂1 → j∗j

∗π̂2 = ĵ∗j∗π2

(where we are using the identifications given by Proposition 3.7.3).
“Literal projective limit” formally extends to an exact and faithful functor lim←− :

Ind Pro(Afg
Y ) → IndO[G]-Mod. Thus if π is an object of A ∼−→ IndAfg, we may

form the “literal completion” lim←− π̂, which is an object of IndO[G]-Mod. There is
a natural morphism π → lim←− π̂.
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We now make use of the “literal projective limit” of 3.5.15, and the natural
morphism π → lim←− π̂, where π is an object of A. We will apply this with π = j∗j

∗πi
(i = 1, 2), and so obtain a commutative square

(3.8.2) j∗j
∗π1

//

j∗h

��

lim←− ĵ∗j
∗π1

lim←− j∗j
∗g=lim←− ĵ∗h

��

j∗j
∗π2

// lim←− ĵ∗j
∗π2

We may also apply lim←− to the natural morphisms π̂i → ĵ∗j∗πi = j∗j
∗π̂i, to obtain

a commutative square

(3.8.3) lim←− π̂1
//

lim←− g

��

lim←− ĵ∗j
∗π1

lim←− j∗j
∗g=lim←− ĵ∗h

��

lim←− π̂2
// lim←− ĵ∗j

∗π2

We may then “glue” the two squares (3.8.2) and (3.8.3) into the following com-
mutative square, in which the horizontal arrows are given by taking the difference
of the horizontal arrows in those preceding two squares:

lim←− π̂1 × j∗j∗π1
//

lim←− g×j∗h

��

lim←− ĵ∗j
∗π1

lim←− j∗j
∗g=lim←− ĵ∗h

��

lim←− π̂2 × j∗j∗π2
// ̂lim←− j∗j

∗π
2

Now Lemma 3.7.7 shows that the vertical morphisms in this square induce a mor-
phism f : π1 → π2, which in turn gives rise to the morphisms lim←− g and j∗h after
literally completing, respectively applying j∗j

∗. Since the formation of literal pro-
jective limits is faithful, we see that f gives rise to g after completion. We also see
that

j∗f = j∗j∗j
∗f = j∗j∗h = h.

Thus f : π1 → π2 induces (g, h) : (π̂1, j∗π1)→ (π̂2, j∗π2), and fullness is proved.
It remains to prove essential surjectivity. To this end, suppose that we are given

a pair
(
π̂1, (π2)U

)
, where π̂1 is an object of Pro(Afg

Y ) and π2 is an object of Afg,

with image (π2)U := j∗π2 in the quotient category Afg
U . We are furthermore given

an isomorphism of these objects in the quotient category Pro(Afg
Y )U , which we can

represent by a “roof”, i.e. a pair of morphisms π̂1, π̂2 ⇒ π̂3, where π̂2 denotes

the completion of π2 along Y , and π̂3 is another object of Pro(Afg
Y ). This pair of

morphisms has the property that their kernels and cokernels lie in Afg
Y . (This is

why they give rise to an isomorphism in Pro(Afg
Y )U .)

In order to show that the pair
(
π̂1, (π2)U

)
is in the image of the functor, we need

in particular to find some object π1 of A whose completion along Y is π̂1. We will
do this by repeatedly applying Proposition 3.5.11, and it will turn out that our
construction also guarantees that (π1)U = (π2)U .
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The kernel π′ of π̂2 → π̂3 is supported on Y by assumption, and so lies in ΓY (π̂2),
which by Proposition 3.5.11 is equal to ΓY (π2). In other words, π′ is actually a
subobject of π2, and the exactness of completion ensures that (π2/π

′)̂ = π̂2/π
′.

Again by assumption, the cokernel π′′ of the morphism π̂2 → π̂3 is supported
on Y . Thus π̂3 represents an element of Ext1

Pro(Afg
Y )

(π′′, π̂2/π
′). By Proposition 3.5.11,

this corresponds to an element of Ext1
Afg(π′′, π2/π

′), i.e. we can find an object π3

of Afg that contains π2/π
′, with (π3/(π2/π

′) = π′′, and whose completion along Y
coincides with π̂3.

Now let π′′′ denote the cokernel of the morphism π̂1 → π̂3, which is yet again
supported on Y . By Lemma 3.5.5, the surjection π̂3 → π′′′ then induces and is
induced by a surjection π3 → π′′′. We denote the kernel by π4. If we let π(4) denote
the kernel of π̂1 → π̂3, then we get a short exact sequence

0→ π(4) → π̂1 → π̂4 → 0,

which (by an application of Proposition 3.5.11 as in the preceding paragraph) arises
by completing a short exact sequence

0→ π(4) → π1 → π4 → 0

of objects in Afg. In other words, π̂1 is the completion of an object π1, admitting
a morphism to π3, which induces the given morphism π̂1 → π̂3 after completion.

We claim that the functor of the proposition takes π1 to the pair
(
π̂1, (π2)U

)
.

Indeed the completion of π1 is π̂1 by construction, while chasing through the con-
struction above we find in turn that

(π1)U = (π4)U = (π3)U = (π2)U ,

as required. �

Remark 3.8.4. It is likely that Theorem 3.8.1 holds for arbitrary closed subsets
Y of X, and indeed a proof in this case should reduce to the finite case via an
appropriate application of the gluing result for the (finite!) closed subset U ∩ Y .
Since the case of finite Y suffices for our envisaged applications, we haven’t tried
to write up the details of this reduction.

4. Applications and examples

4.1. The structure of smooth representations. In many of our arguments we
have used dévissage to reduce to the cases of irreducible representations, and repre-
sentations of the form c-IndGKZ σ. We can use our results to make more precise the
way in which these representations interact. We begin with the following structural
results.

Proposition 4.1.1. Every object of A/Al.adm is locally of finite length.

Proof. Since Al.adm is localizing, the quotient functor A → Al.adm preserves col-
imits. It follows that it suffices to prove that π = c-IndGKZ(σ) is irreducible in the
quotient category for all Serre weights σ. In order to do this, it suffices to prove
that every nonzero arrow X → π in the quotient category is surjective. Writing X
as a colimit of finitely generated representations, it suffices to prove this when X
is finitely generated.

We can represent the arrow by a “roof diagram” in A, i.e. a pair of arrows
X → Z, π → Z for some object Z, such that π → Z has locally admissible kernel
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and cokernel. Replacing Z with the subrepresentation generated by the images
of X and π, we can assume that Z is finitely generated. Hence π → Z has kernel
and cokernel of finite length.

Since π has no subobjects of finite length, it follows that π → Z is injective.
Quotienting out by Zf.l., we can assume that π → Z is furthermore an essential
embedding. It follows from Lemma 3.1.10 that Z is isomorphic to a submodule
of π. Since every nonzero submodule of π has cofinite length in π, it follows that
every nonzero submodule of Z has cofinite length in Z. Hence the map X → Z has
cokernel of finite length, and so it is surjective in the quotient category A/Al.adm,
which was to be proved. �

Remark 4.1.2. By definition (see e.g. [Kan21, §2.4]), Proposition 4.1.1 says that the
Krull–Gabriel dimension of A is 1.

We have the following more concrete variant of Proposition 4.1.1. Recall from
Definition 3.6.7 that we write πf.l. for the maximal subobject of π which is locally
of finite length (equivalently, locally admissible).

Proposition 4.1.3. If π ∈ A is finitely generated, then π/πf.l. is a successive

extension of representations isomorphic to submodules of c-IndGKZ σ, for various
Serre weights σ.

Proof. We suppose that πf.l. = 0, and show that π is a successive extension of
submodules of representations of the form c-IndGKZ σ. We write π as the quotient

of c-IndGKZ V for some smooth O[KZ]-representation V of finite O[KZ]-length, and
argue by induction on the length of V . Let σ be an irreducible subrepresentation of
V , and consider the induced morphism c-IndGKZ σ → π. If this morphism is zero, we
may replace V by V/σ, and thus we may assume it is non-zero. Since πf.l. = 0 by
assumption, it is then furthermore injective. Now consider the short exact sequence

0→ c-IndGKZ σ → π → π/c-IndGKZ σ → 0

Pulling back along the finite length part of the target, we obtain a short exact
sequence

0→ c-IndGKZ σ → π′ → (π/c-IndGKZ σ)f.l. → 0

which is furthermore essential, since π′f.l. ⊆ πf.l. = 0. Lemma 3.1.10 and Re-

mark 3.1.12 then show that π′ is isomorphic to a submodule of c-IndGKZ σ
′ for

some σ′. By construction, (π/π′)f.l. = 0, and π/π′ is a quotient of c-IndGKZ(V/σ).
The result follows by induction. �

Remark 4.1.4. If σ is not isomorphic to a twist of Sym0 or Symp−1, it follows from
Lemma 2.1.3 that every submodule of c-IndGKZ(σ) is isomorphic to c-IndGKZ(σ), and
in fact coincides with the image of a Hecke operator in H(σ).

4.2. Extensions between irreducible representations and compact induc-
tions. It is possible to use our results to compute Ext groups between irreducible
representations and compact inductions in complete generality. We begin with
the following qualitative statement, whose proof depends upon the main results
of [Paš13].

Lemma 4.2.1. If π is of finite length, and π′ is finitely generated, then the O-
module ExtiA(π, π′) is of finite length for all i ≥ 0.
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Proof. By dévissage it suffices to prove the claim when π′ has finite length or π′ is
the compact induction of a weight. The first case is a consequence of [Paš13], so we

assume that π′ = c-IndGKZ(σ). The representation π is an object of AY for some
finite Y , and the spectral sequence (3.6.3) implies that

Exti+1
A (π, π′) ∼= ExtiAY (π,R1ΓY (π′)).

By Lemma 3.6.4 and Lemma 2.1.10 we know that R1ΓY (π′) is Artinian, and so it
suffices to prove that ExtiAY (π, τ) has finite O-length whenever τ is an Artinian
object of AY . However, the socle of τ has finite length, hence by Proposition 2.1.11
there exists an exact sequence

0→ τ → J → τ ′ → 0

where J is an injective Artinian object of AY . It follows that τ ′ is also Artinian, and
so by dimension shifting and induction it suffices to prove that HomAY (π, τ ′) has
finite O-length whenever τ ′ is Artinian. This follows again from Proposition 2.1.11.

�

For extensions of absolutely irreducible representations and compact inductions
of Serre weights we can be a lot more precise, as in the following proposition.

Proposition 4.2.2. Let σ be a Serre weight and π an absolutely irreducible object
of A. Then dim Ext1

A(π, c-IndGKZ(σ)) ≤ 1, and if it is not zero then one of the
following is true:

(1) π is a quotient of c-IndGKZ(σ) by some T−λ, and the extension is isomorphic
to

0→ c-IndGKZ(σ)
T−λ−−−→ c-IndGKZ(σ)→ π → 0.

(2) π = χ ◦det, σ ∼= Symp−1⊗(χ ◦det)|KZ , and the extension is isomorphic to

0→ c-IndGKZ(σ)→ c-IndGN (χ ◦ det)→ π → 0.

(3) π = (χ ◦ det)⊗ StG, σ ∼= (χ ◦ det)|KZ , and the extension is isomorphic to
the preimage of π under

0→ c-IndGKZ(σ)→ c-IndGKZ(Symp−1⊗(χ ◦ det)|KZ)→ π⊕ (π⊗ (nr−1 ◦ det))→ 0.

Proof. Let x be the block of π and write Y = {x}. Since ΓY (c-IndGKZ(σ)) = 0 the
spectral sequence (3.6.3) yields an isomorphism

Hom(π,R1ΓY (c-IndGKZ(σ)))
∼−→ Ext1(π, c-IndGKZ(σ)).

By Lemma 2.1.10 we know that the socle of R1ΓY (c-IndGKZ(σ)) has multiplicity
one, which implies the assertion on dimensions.

Assume that π is not a character or a Steinberg twist. Then Lemma 2.1.10 im-
plies that the socle of R1ΓY (c-IndGKZ(σ)) is isomorphic to a quotient of c-IndGKZ(σ),

and so if Ext1(π, c-IndGKZ(σ)) does not vanish then π is a quotient of c-IndGKZ(σ).
Since we have already proved that there is only one isomorphism class of nonsplit
extensions, it follows that it must be the one given in the proposition.

Assume now that π is a character; the case of Steinberg twists is treated similarly.
Twisting by χ−1 ◦det we can assume that π = 1 is trivial and then we deduce from
Lemma 2.1.10 that

soc(R1ΓY (c-IndGKZ(Symp−1))) = soc(c-IndGKZ(Symp−1)/(T − 1)) ∼= 1

soc(R1ΓY (c-IndGKZ(1))) = soc(c-IndGKZ(1)/(T − 1)) ∼= StG
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hence if Ext1(π, c-IndGKZ(σ)) does not vanish then σ = Symp−1. To find a repre-
sentative for the extension class it suffices to start from the exact sequences

0→ c-IndGKZ Symp−1 β−→ c-IndGKZ 1→ 1⊕ nr−1 → 0

0→ c-IndGN (δ)→ c-IndGKZ 1→ 1→ 0

defined in Lemma 2.1.3 and (3.2.2), and to twist the second one by nr−1. �

Remark 4.2.3. Let Y be the block of the trivial representation ofG. Using Lemma 2.1.12
we can refine the conclusion of Proposition 4.2.2: if τ is an extension of 1 by π which
is not a quotient of c-IndGKZ(1) then

HomG(τ,R1ΓY (c-IndGKZ(1))) = 0

and so there are no extensions of τ by c-IndGKZ(1).

Using our results in Section 2.6 it is also possible to compute the Ext1-groups
in the other direction. For simplicity, we will only deal with compact inductions of
generic Serre weights.

Proposition 4.2.4. Let σ be a Serre weight, let π be an absolutely irreducible
object of A, and assume that σ is not a twist of Sym0,Symp−2 or Symp−1. Then
Ext1

A(c-IndGKZ σ, π) is not zero if and only if the completion of c-IndGKZ(σ) at the
block of π is not zero. If this is the case then

dim Ext1
A(c-IndGKZ σ, π) = 2 if π is supersingular

= 1 otherwise.

Proof. If the completion is zero then

ExtiA(c-IndGKZ(σ), π) = 0

for all i by Lemma 3.5.5. Otherwise, let τ = c-IndGKZ(σ)/(T − λ) be the only irre-

ducible quotient of c-IndGKZ(σ) in the same block of π, and let τi = c-IndGKZ(σ)/(T−
λ)i. By Lemma 3.5.5 there is an isomorphism

lim−→
i

Ext1
AY (τi, π)

∼−→ Ext1
A(c-IndGKZ(σ), π)

which is equivariant for the action of (T − λ) on the first factor. However, by
Proposition 2.6.4 the Hecke operator (T − λ) is induced by an element of the
Bernstein centre of AY , which must act by zero on π since it does so on τ . It
follows that (T − λ) is zero on Ext1

A(c-IndGKZ(σ), π), and so we have an exact
sequence

0→ HomA(τ, π)→ Hom(c-IndGKZ(σ), π)→ Hom(c-IndGKZ(σ), π)→

→ Ext1
A(τ, π)→ Ext1(c-IndGKZ(σ), π)→ 0.

The proposition follows from this together with the computation of Ext1-groups be-
tween absolutely irreducible objects ofA. More specifically, we know that Ext1

A(π, π)
has dimension 3 if π is supersingular [Paš10, Theorem 10.13] and dimension 2 oth-
erwise [Paš13, Section 8]. On the other hand, if τ is in the same block of π but is not
isomorphic to π then π is not supersingular, and dim Ext1

A(τ, π) = 1, see [Paš13,
Section 8]. �
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4.3. Extensions between compact inductions. We can also consider the Ext
groups between full compact inductions. We have the following general result.

Lemma 4.3.1. Let σ0 and σ1 be Serre weights, and assume they are not twists
of Symp−1. If Exti(c-IndGKZ σ1, c-IndGKZ σ0) is non-zero for some i, then either σ0

and σ1 are isomorphic, or they are the Jordan–Hölder factors of the reduction of a
tame type.

Proof. For i = 0, 1 let τi be the unique cuspidal type containing σi in its semisim-
plified mod p reduction. If τ0 = τ1 then σ0 = σ1 or, by definition, there exists a
tame type whose reduction has Jordan–Hölder factors equal to σ0 and σ1.

Assume that τ0 6= τ1. If τ0 and τ1 are not adjacent then the intersection X(τ0)∩
X(τ1) is empty, by Proposition 2.2.7. Let ji be the inclusion of the complement
of X(τi) in X. By Proposition 3.1.7 (1), the natural maps

c-IndGKZ(σ0)→ j1∗j
∗
1c-IndGKZ(σ0)(4.3.1)

c-IndGKZ(σ1)→ j0∗j
∗
0c-IndGKZ(σ1)(4.3.1)

are isomorphisms. On the other hand, c-IndGKZ(σi) is an object of AX(τi) by Defi-
nition 3.1.1. Hence

Exti(c-IndGKZ σ1, c-IndGKZ σ0) = 0

by Corollary 3.1.9 and Corollary 3.4.5.
Finally, if τ0 and τ1 are adjacent but σ0 and σ1 are not constituents of a principal

series type then the same argument as above shows that Exti(c-IndGKZ σ1, c-IndGKZ σ0)
vanishes. Indeed, the image of fσ0

does not intersect X(τ1), and similarly the image
of fσ1

does not intersect X(τ0). Hence the localization morphisms (4.3.1) are still
isomorphisms. �

Remark 4.3.2. The same argument proves that if Exti(c-IndGKZ Symp−1, c-IndGKZ σ)
is non-zero for some i then σ ∈ {Sym0,Symp−1,Symp−3⊗det}.

The computation of Ext0 (i.e. of Hom) is due to Barthel and Livné [BL94] and
is treated in Lemma 2.1.3. In the remainder of this section we explicitly compute
some instances of the H(σ0)⊗kH(σ1)-module Ext1(c-IndGKZ σ1, c-IndGKZ σ0). If we
write H(σ0) = F[S] and H(σ1) = F[T ], then H(σ0) ⊗F H(σ1) = F[S, T ]. (Note
that even if σ0 and σ1 are isomorphic, the Hecke operators S and T give distinct
actions on Exti, at least a priori.)

Lemma 4.3.3. Suppose that σ0 and σ1 are the Jordan–Hölder factors of the re-
duction of an irreducible principal series type. Then Ext1(c-IndGKZ σ1, c-IndGKZ σ0)

is one-dimensional, spanned by the class of c-IndGKZ τ , where τ denotes the non-
split extension of σ1 by σ0. As an H(σ0) ⊗k H(σ1)-module it is isomorphic to
F[S, T ]/(S, T ).

Proof. Corollary 3.1.9 shows that Exti
(
c-IndGKZ σ1, (c-IndGKZ σ0)[1/S]

)
= 0 for all i,

while Lemma 2.5.6 shows that

Exti
(
c-IndGKZ σ1, (c-IndGKZ σ0)[1/S]

)
= Exti(c-IndGKZ σ1, c-IndGKZ σ0)[1/S];

thus we see that Exti(c-IndGKZ σ1, c-IndGKZ σ0) consists of S-torsion elements.
The long exact Ext sequence associated to the short exact sequence

0→ c-IndGKZ σ0
Sn·−→ c-IndGKZ σ0 → (c-IndGKZ σ0)/Sn(c-IndGKZ σ0)→ 0
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yields an isomorphism

Hom
(
c-IndGKZ σ1, (c-IndGKZ σ0)/Sn(c-IndGKZ σ0)

)
∼−→ Sn-torsion in Ext1(c-IndGKZ σ1, c-IndGKZ σ0).

When n = 1, the quotients (c-IndGKZ σ1)/T (c-IndGKZ σ1) and (c-IndGKZ σ0)/S(c-IndGKZ σ0)
are isomorphic to the same supersingular irreducible representation π, but the thick-
enings

(c-IndGKZ σ1)/Tn(c-IndGKZ σ1)

and

(c-IndGKZ σ0)/Sn(c-IndGKZ σ0)

don’t coincide to any higher order. More precisely, the elements of Ext1(π, π) classi-
fying these extensions for n = 2 are linearly independent: see [AB15, Theorem 1.2,
Section 7.3] for a proof of this fact.

Hence

Hom
(
c-IndGKZ σ1, (c-IndGKZ σ0)/Sn(c-IndGKZ σ0)

)
is one-dimensional, no matter what the value of n is, because these morphisms have
to factor through c-IndGKZ σ1/T

n(c-IndGKZ σ1), and so through c-IndGKZ σ1/T (c-IndGKZ σ1)

by the discussion above. We find that Ext1(c-IndGKZ σ1, c-IndGKZ σ0) is one-dimensional,
and annihilated by S.

If g ∈ H(σ1) is coprime to T (i.e. does not vanish at T = 0), then Corollary 3.1.9

shows that Exti
(
(c-IndGKZ σ1)/g(c-IndGKZ σ1), c-IndGKZ σ0) = 0 for all i. A consid-

eration of the long exact Ext sequence associated to the short exact sequence

0→ c-IndGKZ σ1
g·−→ c-IndGKZ σ1 → (c-IndGKZ σ1)/g(c-IndGKZ σ1)→ 0

then shows that g acts invertibly on Ext1(c-IndGKZ σ1, c-IndGKZ σ0). Thus this Ext
module is annihilated by T as well, since it has dimension one over k.

It remains to show that c-IndGKZ τ is a non-split extension. Suppose otherwise.
Then the surjection

c-IndGKZ σ0 → (c-IndGKZ σ0)/T (c-IndGKZ σ0)

would extend to a surjection

c-IndGKZ τ → (c-IndGKZ σ0)/T (c-IndGKZ σ0),

inducing a KZ-equivariant embedding τ ↪→ (c-IndGKZ σ0)/T (c-IndGKZ σ0). However,

there is no such embedding, so c-IndGKZ τ is indeed non-split. �

Remark 4.3.4. Here is another viewpoint on this computation. If we let τ ′ denote
the non-split extension of σ0 by σ1, then there is an isomorphism c-IndGKZ τ

∼−→
c-IndGKZ τ

′: indeed, the source is isomorphic to c-IndGIZ χ (for some character χ) and

the target is isomorphic to c-IndGIZ χ
s, and these are well-known to be isomorphic.

Furthermore, the composite

0→ c-IndGKZ σ0 → c-IndGKZ τ
∼−→ c-IndGKZ τ

′ → c-IndGKZ σ0 → 0

is equal to the Hecke operator S. Thus we see that the element of the extension
group Ext1(c-IndGKZ σ1, c-IndGKZ σ0) classified by c-IndGKZ τ is annihilated by S.
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Remark 4.3.5. Let πi = c-IndGKZ(σi) where σ0, σ1 are as in Lemma 4.3.3. If we

push out the extension c-IndGKZ τ along the inclusion

π0 ↪→ π0[1/T ],

then the resulting extension does split. Indeed, if ρ is the cuspidal type contain-
ing σ1, then π1 lies in AX(ρ). On the other hand, Proposition 3.1.7 shows that
π0[1/T ] = jU∗j

∗
U (π0), where U denotes the complement in X of X(ρ). So we see

that Ext1(π1, π0[1/T ]) = 0.
Concretely, this means that there is a KZ-equivariant embedding τ ↪→ π0[1/T ]

extending the canonical embedding σ0 ↪→ π0 ↪→ π0[1/T ]. This corresponds to the
fact that π0[1/T ] is a family of principal series representations of Serre weight σ0.

Suppose now that σ0, σ1, are the constituents of a tame cuspidal type, and again
write τ for the non-split extension of σ1 by σ0.

Lemma 4.3.6. If σ0, σ1, are the constituents of a tame cuspidal type, then there
are isomorphisms

Ext1(c-IndGKZ σ1, c-IndGKZ σ0)
∼−→ Ext1

(
(c-IndGKZ σ1)[1/T ], c-IndGKZ σ0

)
∼−→ Ext1

(
c-IndGKZ σ1, (c-IndGKZ σ0)[1/S]

)
∼−→ Ext1

(
(c-IndGKZ σ1)[1/T ], (c-IndGKZ σ0)[1/S]

)
.

Proof. The usual argument shows that ExtiA
(
(c-IndGKZ σ1)/T (c-IndGKZ σ1), c-IndGKZ σ0

)
=

0 for all i, so that multiplication by T induces an isomorphism from Ext1
A(c-IndGKZ σ1, c-IndGKZ σ0)

to itself. Writing (c-IndGKZ σ1)[1/T ] as the colimit of c-IndGKZ σ1 under multiplica-
tion by T , and using the spectral sequence

Ep,q2 := lim←−
T ·

(p) Extq(c-IndGKZ σ1, c-IndGKZ σ0)

=⇒ Extp+q
(
(c-IndGKZ σ1)[1/T ], c-IndGKZ σ0

)
(and recalling that for an inverse system of isomorphisms, the higher derived inverse
limits all vanish), we obtain the first claimed isomorphism of the lemma. The
remaining isomorphisms are proved similarly. �

Notice that the localizations (c-IndGKZ σi)[1/T ] are algebraic families of principal
series over the multiplicative group Gm, a fact that goes back to [BL94]. It follows
that the Ext groups in Lemma 4.3.6 can be computed using the techniques of [BP12,
§6-7] to relate these Ext1 of compact inductions to certain Ext1 of Hecke modules.
The result is the following analogue of Lemma 4.3.3, which would also follow by
the method of [Eme10b, Section 4] if the δ-functor of derived ordinary parts had
an extension to non-admissible representations. However, a more natural way to
prove Lemma 4.3.7 (at least from the optic of this paper) is as a consequence of
our expected results on Bernstein centres explained in Section 1.3, so we don’t give
a proof here.

Lemma 4.3.7. If σ0, σ1, are the constituents of a tame cuspidal type, then as an
F[S, T ]-module, Ext1(c-IndGKZ σ1, c-IndGKZ σ0) is free of rank one over F[S, T ]/(ST−
1), generated by the class of c-IndGKZ τ .
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Remark 4.3.8. In the context of Lemma 4.3.7 both compact inductions are ob-
jects of AX(τ) for the same cuspidal type τ . The compact induction c-IndGKZ τ is

supported on the entirety of X(τ) ∼= P1, in the sense that it lies in AX(τ) and
has irreducible quotients lying in every block parameterized by the closed points of
X(τ). Indeed, its quotient c-IndGKZ σ1 has irreducible quotients lying over the whole
of fσ1

(A1); the remaining point X(τ) \ fσ1
(A1) corresponds to the supersingular

quotient (c-IndGKZ σ0)/T (c-IndGKZ σ0), which contains a copy of τ and is thus also

a quotient of c-IndGKZ τ .
If we let U ∼= Gm denote the complement of the marked points in X(τ), then

jU∗j
∗
U (c-IndGKZ τ) “lies over” U in an intuitive sense, and gives a family of atomes

automorphes. It is an extension of

jU∗j
∗
U (c-IndGKZ σ1) = (c-IndGKZ σ1)[1/T ]

by
jU∗j

∗
U (c-IndGKZ σ0) = (c-IndGKZ σ0)[1/S].

(Both the equalities follow from Proposition 3.1.7.)
To see the relationship between Lemma 4.3.7 and the Bernstein centre, notice

that the equality ST = 1 in the endomorphism ring of

Ext1(c-IndGKZ σ1[1/T ], c-IndGKZ σ0[1/S])

implies that there exists an automorphism T+ of jU∗j
∗
U (c-IndGKZ τ) which induces S−1

on the subobject and T on the quotient. We expect the automorphism T+ to be
induced by the Bernstein centre of AU . Taking the cokernel of T+ − λ for λ ∈ k×
corresponds to taking the fibre at λ ∈ Gm, and yields the corresponding atome
automorphe.

Appendix A. Category-theoretic background

In this appendix we recall various results about abelian categories and their
localizations. Much of this material goes back to Gabriel’s thesis [Gab62], and
most of the rest of it can be found in [KS06]. Many of the results that we need
from the previous two references are collected in [Kan21, §2], which we frequently
refer to for convenience.

In order to be able to use these references we need to fix a Grothendieck universe,
which we do without further comment. Sets are small if they belong to this fixed
universe, and all limits and colimits are assumed to be small, i.e. can be written as
(co)limits over small indexing sets.

A.1. Grothendieck and locally Noetherian categories. We recall that an
abelian category A is a Grothendieck category if it satisfies (AB5) (which is to say
that A is cocomplete and that the formation of filtered colimits in A is exact), and
it furthermore admits a set of generators (i.e. a small set of objects Gi with the
property that for any nonzero morphism f : X → Y in A, there is a morphism
g : Gi → X for some Gi such that fg 6= 0). Every object in a Grothendieck
category admits an injective envelope [Gab62, §II.6 Thm. 2].

Recall that an object X of an abelian category is Noetherian if it satisfies the
ascending chain condition on subobjects, and is compact if Hom(X,−) commutes
with filtered colimits.

An abelian category is called locally Noetherian if it is Grothendieck, and fur-
thermore admits a set of generators that are Noetherian.
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Proposition A.1.1. Suppose that A is a locally Noetherian category. Then

(1) An object of A is compact if and only if it is Noetherian.
(2) A filtered colimit of injective objects of A is injective.
(3) If X is a Noetherian object of A, then for each n ≥ 0 the functor ExtnA(X,−)

commutes with filtered colimits.

Proof. For (1), note that any Noetherian object of A is compact by [Gab62, §2.4
Cor. 1]. Conversely if X is compact then by writing X = lim−→i

Xi as a filtered

colimit of Noetherian objects, we see that we can factor the identity morphism
1X through some Xi; so X is a retract of a Noetherian object and is thus itself
Noetherian. Part (2) is part of [Gab62, §2.4 Cor. 1]. Part (3) is [Kan21, Prop.
2.7]. �

A.1.2. A vs. Afg. If A is a locally Noetherian abelian category, we write Afg for the
full subcategory of compact (or equivalently, by the preceding result, Noetherian)
objects. The canonical functor Ind(Afg) → A given by evaluating inductive limits
in A is an equivalence.

We can’t expect the category Afg to have enough injectives, but can compute
Exts in it via Yoneda Exts. We then have the following result.

Lemma A.1.3. Suppose that A is locally Noetherian. If X and Y are objects of
Afg, then ExtiAfg(X,Y )

∼−→ ExtiA(X,Y ) for all i.

Proof. If i = 1, this reduces to the statement that Afg is closed under extensions
in A. If i > 1, then we may write a class in ExtiA(X,Y ) as a Yoneda product c∪ d
for c ∈ Exti−1

A (X,X ′) and d ∈ Ext1
A(X ′, Y ) for some object X ′ of A.

Writing X ′ as the filtered colimit of its compact subobjects, and taking into ac-
count Proposition A.1.1 3, we find an inclusion i : X ′′ ↪→ X of a compact object X ′′

and a class c′ ∈ Exti−1
A (X,X ′′) such that c = i∗c

′. Then c ∪ d = i∗c
′ ∪ d = c′ ∪ i∗d,

where now i∗d ∈ Ext1
A(X ′′, Y ). The surjectivity of the morphism in the lemma

follows by induction on i. The fact that it is an isomorphism follows by an easy
δ-functor argument. �

A.2. Localizing categories. Suppose that A is a Grothendieck category. If B is a
Serre subcategory ofA (i.e. a non-empty full subcategory closed under the formation
of subquotients and extensions in A), then we may form the quotient category A/B.
We are interested in the question of when the natural functor A → A/B has a right
adjoint; if such a right adjoint exists, we say that B is a localizing subcategory. This
right adjoint, if it exists, is necessarily left-exact: indeed, being a right adjoint,
it preserves all limits. Furthermore, the counit of the adjunction is necessarily an
isomorphism [Gab62, §III.2 Proposition 3], hence the right adjoint is fully faithful
if it exists.

Since left adjoints necessarily preserve colimits, we see that for such a right
adjoint to exist, the Serre subcategory B must be closed under the formation of
(small) colimits in A. (Since B is closed under forming quotients in A, this is
equivalent to asking that B be closed under the formation of arbitrary direct sums
in A.) It turns out that this condition is also sufficient for B to be localizing. The
quotient category A/B is then also a Grothendieck category. (See e.g. [Kan21, Rem.
2.21] for these facts.)
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We note that the construction of the adjoint is not too difficult, modulo set-
theoretic issues. Namely, if A is an object of A, we consider the category of mor-
phisms A→ A′ which project to an isomorphism in A/B (equivalently, whose kernel
and cokernel both lie in B). Then taking the colimit of A′ over this category gives
the value of the adjoint on A.

We assume throughout the rest of this appendix that B is a localizing subcategory
of A, let j∗ : A → A/B denote the natural projection, and let j∗ : A/B → A
denote the right adjoint to j∗. As already noted, since j∗ is a right adjoint, it is
automatically left-exact. However, it needn’t be exact in general. Another way to
think of this is that the essential image of j∗ is a full subcategory of A which is
intrinsically an abelian category, but is not necessarily an abelian subcategory of A.
Indeed, this essential image will be an abelian subcategory of A if and only if j∗ is
actually exact.

Remark A.2.1. Our notation is motivated by the following example. If j : U ⊆ X is
the inclusion of a retrocompact open subset in a scheme X, then we have the adjoint
pair (j∗, j∗) : QCoh(U) → QCoh(X), which realizes QCoh(U) as a Serre quotient
category of QCoh(X): it is the quotient of QCoh(X) by the Serre subcategory
QCohZ(X) consisting of quasicoherent sheaves, all of whose sections are supported
on Z := X \ U . (Cf. [Sta, Tag 01PD].)

The essential image of j∗ admits the following characterization:

Lemma A.2.2. An object A of A lies in the essential image of j∗ if and only if
Hom(B,A) = Ext1(B,A) = 0 for any object B of B.

Proof. The identity j∗A = j∗A induces a morphism

(A.2.3) A→ j∗j
∗A

We note two basic facts:

(i) applying j∗ to (A.2.3) recovers the identity morphism j∗A = j∗A;
(ii) the object A is in the essential image of j∗ if and only if (A.2.3) is an

isomorphism.

From (i), we see that the kernel and cokernel of (A.2.3) lie in B. Thus if A satisfies
the two conditions appearing in the statement of the lemma, we see that this
morphism is indeed an isomorphism, so that by (ii), the object A lies in the essential
image of j∗. (More precisely: the vanishing of the Hom gives that there is no kernel,
and then the vanishing of the Ext1 gives that j∗j

∗A = A⊕B, with B an object of B.
But Hom(B, j∗j

∗A) = Hom(j∗B, j∗A) = 0 (because j∗B = 0); thus the inclusion
of B in j∗j

∗A is the zero map, so B = 0.)
Conversely, suppose that A lies in the essential image of j∗. Consider any mor-

phism B → A whose source is an object of B. We have a commutative diagram

B //

��

A

��

j∗j
∗B // j∗j

∗A

By assumption, the right-hand vertical arrow is an isomorphism, while j∗B = 0,
since B is an object of B, and thus also j∗j

∗B = 0. Consequently the morphism
B → A is equal to zero.

https://stacks.math.columbia.edu/tag/01PD
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Now consider a short exact sequence 0 → A → E → B → 0, with B an object
of B. We have a commutative diagram

0 // A //

��

E //

��

B //

��

0

0 // j∗j
∗A // j∗j

∗E // j∗j
∗B // 0

Again, the left-hand vertical arrow is an isomorphism, and thus the top extension
is pulled back from the bottom one. But also j∗j

∗B = 0, so the bottom extension
is trivial. Hence so is the top extension. �

Remark A.2.4. It is not hard to prove this result in a more constructive fashion,
using the construction of j∗ given above.

We now have the following result, which relates higher Ext’s to higher direct
images of j∗.

Lemma A.2.5. Let A′ be an object of A/B, and fix some n ≥ 2. Then the following
are equivalent:

(1) Exti(B, j∗A
′) = 0 for all objects B of B, and all 0 ≤ i ≤ n.

(2) Rij∗A
′ = 0 for all 1 ≤ i ≤ n− 1.

Proof. Let A′ ↪→ I• be an injective resolution (in the category A/B). Then j∗I
•

computes the various Rij∗A
′. Since j∗j∗I

• ∼−→ I•, we find that j∗Rij∗A
′ = 0 for

all i > 0, and thus that Rij∗A
′ is an object of B for i > 0. In particular, we see

that Rij∗A
′ = 0 if and only if HomA(B,Rij∗A

′) = 0 for all objects B of B.
Now since j∗ is right adjoint to an exact functor, it preserves injectives, and thus

HomA(B, j∗I
•) computes RHomA(B, j∗I

•), for any object B of B. But this Hom
is identically zero, by Lemma A.2.2, and so RHomA(B, j∗I

•) = 0. On the other
hand, we have the usual E2 spectral sequence computing this RHom, which thus
becomes

Ep,q2 := ExtpA(B,Rqj∗A
′) =⇒ 0.

It is now easy to prove the lemma by analyzing this spectral sequence. In more
detail, to see that the first condition implies the second, note that by the conclusion
of the preceding paragraph, it is enough to prove that E0,q

2 vanishes for 1 ≤ q ≤
n − 1; and if this holds for some q, then actually Ep,q2 = 0 for all p. In fact,

if E0,q
2 = 0 for some q and for all objects B of B then Rqj∗A

′ = 0, again by the
conclusion of the preceding paragraph, and this implies that Ep,q2 = 0 for all p. �

As a corollary, we have the following result.

Corollary A.2.6. The following are equivalent:

(1) The functor j∗ is exact.
(2) The derived functor R1j∗ is identically zero.
(3) For all objects A lying in the essential image of j∗, and for all objects B

of B, we have Ext2(B,A) = 0.

If these equivalent conditions hold, then in fact all the derived functors Rij∗ (i ≥ 1)
vanish, and Exti(B,A) = 0 for all i ≥ 0 and objects A lying in the essential image
of j∗ and B lying in B.
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Proof. The equivalence of (1) and (2) is immediate. Lemma A.2.5 with n = 2 yields
that (2) implies (3), and the converse implication follows from Lemma A.2.5 and
Lemma A.2.2. �

We also note the following result, which in practice can simplify the checking of
the various vanishing conditions introduced in the preceding results.

Lemma A.2.7. If {Bj} is a system of generators of B, and A is an object of A,
then the following are equivalent:

(1) Exti(Bj , A) = 0 for all Bj and all i ≤ n.

(2) Exti(B,A) = 0 for all objects B of B, and all i ≤ n.

Proof. Clearly (2) implies (1), and so we focus on proving the converse. To say that
{Bj} is a system of generators of B is to say that for any object B of B, we may

find an epimorphism
⊕

j B
⊕Ij
j → B. Since B is a Serre subcategory which is closed

under the formation of colimits in A, the kernel of this epimorphism is again an
object of B. A straightforward dimension-shifting argument reduces us to checking

the vanishing of (2) in the case when B =
⊕

j B
⊕Ij
j . In this case, we immediately

compute that Exti(B,A) =
∏
j Exti(Bj , A)Ij . The vanishing claimed in (2) thus

follows from the vanishing assumed in (1). �

Lemma A.2.8. Suppose that A is locally Noetherian. Then:

(1) j∗ commutes with filtered colimits.
(2) Both B and A/B are locally Noetherian.
(3) An object of B is Noetherian if and only if it is Noetherian as an object

of A, while an object of A/B is Noetherian if and only if it is isomorphic
to the image of a Noetherian object of A.

Proof. The first two statements are [Gab62, §III.4 Cor. 1]. The third statement is
immediate from [Kan21, Prop. 2.22]. �

A.3. Pro-categories (and Ind-categories). We now recall some standard prop-
erties of Pro- and Ind-categories. It suffices to develop the theory of Pro-categories,
because for any category C, there is an equivalence Ind(C) ∼= Pro(Cop)op; in the
body of the paper we make far more use of Pro-categories than Ind-categories, so
we do not explicitly state results for Ind-categories in this appendix. (Note also
that some of our references, in particular [KS06], take the opposite approach, so
the corresponding statements for Ind-categories are often more readily available in
the literature.)

If C is a category, one can define its associated pro-category Pro(C) to be the
category whose objects are the diagrams F : I → C indexed by a cofiltered small
category I, with the morphisms between two diagrams F : I → C, G : J → C being
defined by the formula

HomPro(C)(F,G) = lim←−
J

lim−→
I

HomC(F (i), G(j)).

We will sometimes denote the diagram F : I → C via “ lim←−I ”F (i), and refer to it as

a pro-object of C. The point of this notation is to distinguish the pro-object from
the limit lim←−I F (i) in C itself, if this limit happens to exist. Often, when employing

this notation, we write Xi rather than F (i), and so denote the object F of Pro(C)
as “ lim←−I ”Xi.
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As a special case of the definition of morphisms, we note that if X ∈ C and
F : I → C is a cofiltered diagram, then the definitions imply that

(A.3.1) HomPro(C)(“ lim←−
I

”Xi, X) = lim−→
I

HomC(Xi, X)

and

(A.3.2) HomPro(C)(X, “ lim←−
I

”Xi) = lim←−
I

HomC(X,Xi).

There is an equivalent definition of Pro(C), in which the object “ lim←−I ”F (i) is

interpreted as the functor

(A.3.3) lim−→
i

HomC
(
F (i), –)

on C. To give a little more detail: C admits its co-Yoneda embedding C ↪→
Fun(C,Sets)op via X 7→ HomC(X, –). If F : I → C is a diagram indexed by a
cofiltered small category, then we can form the actual projective limit lim←−I F (i) in

Fun(C,Sets)op; this yields precisely the functor (A.3.3). In this way we obtain a
functor Pro(C)→ Fun(C,Sets)op, which is fully faithful.

This functor Pro(C)→ Fun(C,Sets)op is an instance of a more general construc-
tion, coming from the universal mapping property that Pro(C) satisfies: namely, if
D is a category that admits all cofiltered limits, then pullback of functors along the
embedding C ↪→ Pro(C) induces an equivalence of categories of functors

(A.3.4) Fun′
(
Pro(C),D)

∼−→ Fun(C,D),

where the domain denotes the full subcategory of Fun
(
Pro(C),D) consisting of

those functors that preserve cofiltered limits. (See e.g. [Lur09, Prop. 5.3.5.10].)
The quasi-inverse generalizes the preceding construction: if F : C → D is a functor
whose target admits cofiltered limits, we extend F to Pro(C) via

F (“ lim←−
I

”Xi) := lim←−
I

F (Xi).

A.3.5. Finite limits. One useful fact [KS06, Cor. 6.1.14] is that any morphism in
Pro(C) can be written as a cofiltered limit, over some small category I, of mor-
phisms Xi → Yi in C. Similarly, any pair of morphisms having the same domain
and codomain may be written as a cofiltered limit, over some small category I, of
morphism pairs Xi ⇒ Yi in C (see [KS06, Cor. 6.1.15]). Then, if C admits equaliz-
ers, the same is true of Pro(C), and furthermore we can compute the equalizer of
“ lim←−I ”(Xi ⇒ Yi) as the limit in Pro(C) of the equalizers of the morphisms Xi ⇒ Yi
(see [AM69, Appendix, Prop. 4.1]). Likewise, if C admits finite products, then so
does Pro(C), and these are computed “pointwise” in the same way as equalizers. It
follows that if C admits finite limits then so does Pro(C), and then Pro(C) admits
all small limits (since it admits finite limits and cofiltered limits). Compare [KS06,
Proposition 6.1.18].

A.3.6. Finite colimits. If C admits finite colimits, the same is true of Pro(C), and
finite coproduct and coequalizers can be computed “pointwise”, as for equalizers:
this follows again from an application of [AM69, Appendix, Prop. 4.1]. More pre-
cisely, the coequalizer of “ lim←−I ”Xi ⇒ Yi is the limit in Pro(C) of the coequalizers
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of the various Xi ⇒ Yi, while

“ lim←−
I

”Xi

∐
“ lim←−

J

”Yj = “ lim←−
I×J

”Xi

∐
Yj .

In particular, the inclusion C → Pro(C) preserves finite colimits. Furthermore, finite
colimits commute with cofiltered limits: compare [KS06, Proposition 6.1.19].

A.3.7. Pro-adjoints. Suppose that F : C1 → C2 is a functor preserving finite limits,
between categories each of which admits finite limits. Then we obtain an induced
functor Pro(F ) : Pro(C1) → Pro(C2), which, by the discussions of Section A.3.5,
also preserves equalizers and finite products, hence finite limits. The functor Pro(F )
can also be regarded as corresponding, under the equivalence (A.3.4), to the com-
posite C1 → C2 → Pro(C2), and so is seen to preserve cofiltered limits. Thus Pro(F )
preserves arbitrary limits, and hence admits a left adjoint G : Pro(C2) → Pro(C1).
(This is a consequence of the special adjoint functor theorem, which applies be-
cause Pro(Ci) is complete, by A.3.5, and has a cogenerator, see e.g. [Kan21, Thm.
2.39].)

A.3.8. The abelian case. We assume throughout this subsection that C is an abelian
category (so that in particular all of the discussions above hold, in particular those
of Section A.3.5). Then one can alternatively define Pro(C) as the opposite of the
category of left-exact covariant functors C → Ab, the point being that (A.3.3) is
now abelian group-valued and left exact.

The category Pro(C) is again abelian and has exact cofiltered limits. (See e.g.
[Kan21, Thm. 2.39].)

The following lemma provides a criterion for testing if a morphism in Pro(C) is
a monomorphism.

Lemma A.3.9. Suppose given a morphism Y → Z in Pro(C) with the property
that, for any morphism Y → Y ′ with Y ′ an object of C, we may find a commutative
square

(A.3.10) Y //

��

Z

��

Y ′ // Z ′

in Pro(C) in which the bottom horizontal arrow is a monomorphism; then the given
morphism Y → Z is a monomorphism.

Proof. If we let X denote the kernel of the morphism Y → Z in Pro(C), and write
Y = “ lim←−

I

”Yi with the Yi being objects of C — so that in fact Y = lim←−
I

Yi in Pro(C)

— then the exact sequence 0→ X → Y → Z in Pro(C) induces exact sequences

0→ Xi → Yi → Zi := Z
∐
Y

Yi

in Pro(C), where Xi is defined to be the image (again, in Pro(C)) of X in Yi. We
have X = lim←−

I

Xi and Z = lim←−
i

Zi, the limits being taken in Pro(C). (The second

isomorphism is an instance of a finite colimit commuting with a cofiltered limit.
The first isomorphism then follows from the second.) Thus we see that X = 0 if
and only each Xi = 0.
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Now form a diagram of the form (A.3.10) with Y ′ = Yi. The morphism Yi =
Y ′ → Z ′ then factors through Zi, and since the former morphism is a monomor-
phism by hypothesis, the morphism Yi → Zi must also be. Hence we find that
Xi = 0, as required. �

Lemma A.3.11. If X ∈ C is an injective object then it remains injective in Pro(C).

Proof. Let α : F → G be a monomorphism in Pro(C). By [AM69, Appendix, Prop.
4.6] one can represent F and G by diagrams F : I → C, G : I → C from the same
index category I in such a way that α is represented by a natural transformation
α : F → G such that αi : Fi → Gi is a monomorphism for all i ∈ I.

Assume given a map λ : F → X. By definition, it arises from a map λ : Fi → X
for some i. Since αi is a monomorphism and X is injective, we can extend λ to a
map Gi → X, which proves that X is injective in Pro(C). �

Lemma A.3.12. Suppose that C has enough injectives. If X,Y ∈ C, then the
natural map ExtiC(X,Y )→ ExtiPro(C)(X,Y ) is an isomorphism for all i ≥ 0.

Proof. This is a direct consequence of Lemma A.3.11 and the fact that C → Pro(C)
is fully faithful and exact. Indeed, Lemma A.3.11 and our assumption that C has
enough injectives implies that Y admits an injective resolution Y → I• in C which is
simultaneously an injective resolution in Pro(C), and then HomC(X, I

•) computes
both ExtiC(X,Y ) and ExtiPro(C)(X,Y ). �

The preceding result admits the following evident extension.

Lemma A.3.13. Assume that C has enough injectives. Let “ lim←−I ”Xi be an object

of Pro(C), and Y be an object of C. Then the natural map

lim−→
I

ExtnC(Xi, Y )→ ExtnPro(C)(“ lim←−
I

”Xi, Y ),

obtained by pullback and Lemma A.3.12, is an isomorphism for each n ≥ 0.

Proof. Choose an injective resolution Y → J• in C. By Lemma A.3.11 this is an
injective resolution in Pro(C), and we have

lim−→
I

HomPro(C)(Xi, J
•)
∼−→ HomPro(C)(“ lim←−

I

”Xi, J
•).

Since the passage to cohomology commutes with lim−→, the lemma follows. �

In general, it’s harder to say anything about Ext groups computed in the other
direction, i.e. of the form ExtnPro(C)(X, “ lim←−I ”Yi), but we have the following result

which treats a special case.

Lemma A.3.14. Assume that C is Artinian and O-linear, for some commutative
ring O. If X is an object of C such that the O-modules Extn(X,Y ) are of finite
length for all n and all objects Y of C, and if “ lim←−m ”Ym is a countably indexed

object of Pro(C), then the natural map

(A.3.15) ExtnPro(C)(X, “ lim←−
m

”Ym)→ lim←−
m

ExtnC(X,Ym)

is an isomorphism for every n.
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Proof. Replacing each Ym by the “infimum” of the collection of images of transi-
tion morphisms Ym′ → Ym for m′ ≥ m (by Artinianness, this descending sequence
of images stabilizes) — which replaces “ lim←−n ”Ym by an isomorphic pro-object —

we may, and do, assume that the transition morphisms between the Ym are epi-
morphisms. Since Pro(C) has enough projectives ([Oor64, p. 229]), we can com-
pute ExtnPro(C)(X, “ lim←−

m

”Ym) by taking a projective resolution P• → X.

The projectivity of the terms of P•, together with the fact that the transition
maps between the Ym are epic, implies that the transition maps in the inverse
system of complexes HomPro(C)(P•, Ym) are surjective, and hence have vanishing

R1 lim←− . We thus find that

(A.3.16)

HomPro(C)(P•, “ lim←−
m

”Ym)
∼−→ lim←−

m

HomPro(C)(P•, Ym)
∼−→ R lim←−

m

HomPro(C)(P•, Ym)

The composite isomorphism gives rise to a spectral sequence

Ep,q2 := Rp lim←−
m

ExtqC(X,Ym) =⇒ Hp+q
(
HomPro(C)(P•, “ lim←−

m

”Ym)
)

= Extp+qPro(C)(X, “ lim←−
m

”Ym).

Of course the Rp lim←−m vanish automatically for p ≥ 2, but they also vanish for

p = 1, since the inverse sytems ExtqC(X,Ym) are inverse systems of finite length
O-modules by assumption, and so satisfy the Mittag–Leffler condition. This proves
the lemma. �

A.3.17. Completion along an abelian subcategory. Suppose that C0 ↪→ C is an
abelian subcategory (i.e. a full subcategory which is also abelian and for which
the inclusion is exact). Then we may apply the discussion of Section A.3.7 to see
that the induced inclusion Pro(C0) ↪→ Pro(C) (which is evidently fully faithful,
and by the discussions of (A.3.5) and (A.3.6) is again exact) admits a left adjoint
Pro(C) → Pro(C0), which we refer to as the functor of completion of C along C0,

and which we denote by X 7→ X̂.

The identity map from X̂ to itself induces, by the adjunction that defines X̂, a

canonical morphism (the unit of the adjunction) X → X̂ in Pro(C).
The following lemma describes X̂ explicitly for objects X of C, in the case when

C0 is furthermore closed under the formation of subobjects in C (e.g. a Serre sub-
category of C).

Lemma A.3.18. If C0 is closed under the formation of subobjects in C, then there
is a natural isomorphism

(A.3.19) X̂
∼−→ “ lim←− ”X ′,

where X ′ runs over the cofiltered directed set of quotients of X lying in C0.

Proof. If X → X ′ is a surjection with X ′ lying in C0, then by adjunction there is

an induced morphism X̂ → X ′. These induced morphisms collectively give rise to
the morphism (A.3.19), which we claim is an isomorphism. To see this, it suffices
to show that the induced morphism of functors

(A.3.20) HomPro(C0)(“ lim←− ”X ′, –)
∼−→ HomPro(C0)(X̂, –)
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on C0 is an isomorphism, and this is what we will show.
This morphism is injective by construction. To see that it is surjective, write

X̂ = “ lim←−I ”Xi, with Xi an object of C0, Each of the projection morphisms X̂ → Xi

(in Pro(C0)) induces a morphism X → Xi in C. If we let X ′i denote the image of X
(which is again an object of C0, by assumption), then the factorization X → X ′i →
Xi induces a corresponding factorization X̂ → X ′i → Xi, so that the projection

X̂ → Xi factors through the morphism (A.3.19). This shows that (A.3.20) is
indeed surjective, and thus is an isomorphism. �

In the context of the preceding lemma, the unit of the adjunction X → X̂ =
“ lim←− ”X ′ is the morphism induced by the various quotient morphisms X → X ′.

Concretely, if X is an object of C and if X̂ in Pro(C0) is its image under the

adjoint, then there is a canonical morphism X → X̂ (in Pro(C)) through which any
morphism X → X0, with X0 an object of C0, uniquely factors.
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