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Abstract. We prove the compatibility at places dividing l of the local and
global Langlands correspondences for the l-adic Galois representations associ-

ated to regular algebraic essentially (conjugate) self-dual cuspidal automorphic

representations of GLn over an imaginary CM or totally real field. We prove
this compatibility up to semisimplification in all cases, and up to Frobenius

semisimplification in the case of Shin-regular weight.

Résumé. (Compatibilité entre les correspondances de Langlands lo-
cale aux places divisant l, II.) Nous prouvons la compatibilité entre les

correspondances de Langlands locale et globale aux places divisant l pour
les représentations galoisiennes l-adiques associèes à des représentations auto-

morphes cuspidales algébriques régulières de GLn sur un corps CM ou tota-

lement réel qui sont duales de leur conjuguée complexe à un twist près. Nous
prouvons cette compatibilité à semi-simplification près dans tous les cas, et à

semi-simplification de Frobenius près lorsque le poids est régulier au sens de

Shin.
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Introduction.

Thanks to the work of (among others) Chenevier, Clozel, Harris, Kottwitz,
Labesse, Shin and R.T., given F an imaginary CM field or totally real field, and
(Π, χ) a regular, algebraic, essentially (conjugate) self-dual automorphic represen-

tation of GLm(AF ), if l is prime and we fix some ı : Ql
∼→ C, then there is a

semisimple l-adic Galois representation rl,ı(Π) : GF → GLm(Ql), where GF is the
absolute Galois group of F . This representation is uniquely determined by the re-
quirement that it satisfies local-global compatibility at the unramified places. It is
also expected to satisfy local-global compatibility at all finite places; this has been
established for the places not dividing l by Caraiani ([Car10]), building on the work
of Harris–Taylor, Taylor–Yoshida, Shin and Chenevier–Harris.

It is important in some applications to have this compatibility at places dividing
l; for example, our original motivation for considering this problem was to improve
the applicability of the main results of [BLGGT10]; in that paper a variety of
automorphy lifting theorems are proved via making highly ramified base changes,
and one loses control of the level of the automorphic representations under consid-
eration. This control can be recovered if one knows local-global compatibility at
primes dividing l, and this is important in applications to the weight part of Serre’s
conjecture (cf. [BLGG11a], [BLGG11b]).

Our main result is as follows (see Theorem 1.1 and Corollary 1.2).

Theorem A. Let F be an imaginary CM field or totally real field, let (Π, χ) be
a regular, algebraic, essentially (conjugate) self-dual automorphic representation of

GLm(AF ) and let ı : Ql
∼→ C. If v|l is a place of F , then

ıWD(rl,ı(Π)|GFv )ss ∼= rec(Πv ⊗ | det |(1−m)/2)ss.

Furthermore, if Π has Shin-regular weight, then

ıWD(rl,ı(Π)|GFv )F-ss ∼= rec(Πv ⊗ | det |(1−m)/2).

Here WD(r) denotes the Weil–Deligne representation attached to a de Rham l-
adic representation r of the absolute Galois group of an l-adic field; and rec denotes
the local Langlands correspondence; and F-ss denotes Frobenius semi-simplification.
(See Section 1 for details on the terminology.) In fact, we prove a slight refinement
of this result which gives some information about the monodromy operator in the
case where Π does not have Shin-regular weight; see Section 1 for the details of
this.

The proof of Theorem A is surprisingly simple, and relies on a generalisation of
a base change trick that we learned from the papers [Kis08] and [Ski09] (see the
proof of Theorem 4.3 of [Kis08] and Section 2.2 of [Ski09]). The idea is as follows.
Suppose that Π has Shin-regular weight. We wish to determine the Weil–Deligne
representation ıWD(rl,ı(Π)|GFv )F-ss. The monodromy may be computed after any
finite base change, and in particular we may make a base change so that Π has
Iwahori-fixed vectors, which is the situation covered by [BLGGT11]; so it suffices
to compute the representation of the Weil group WFv . It is straightforward to check
that in order to do so it is enough to compute the traces of the elements σ ∈ WFv

of nonzero valuation (that is, those elements which map to a nonzero power of
the Frobenius element in the Galois group of the residue field). This trace is then
computed as follows: one makes a global base change to a CM field E/F such that
there is a place w of E lying over v such that BCE/F (Π)w has Iwahori-fixed vectors,
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and σ is an element of WEw ≤WFv . By the compatibility of base change with the
local Langlands correspondence, the trace of σ on ıWD(rl,ı(Π)|GFv )F-ss may then
be computed over E, where the result follows from [BLGGT11].

The subtlety in this argument is that the field E/F need not be Galois, so one
cannot immediately appeal to solvable base change. However, it will have solvable
normal closure, so that by a standard descent argument due to Harris, together
with local-global compatibility for the p-adic Galois representations with p 6= l, it
is enough to know that for some prime l′, the global Galois representation rl′,ı′(Π) is
irreducible. Under the additional assumption that Π has extremely regular weight,
the existence of such an l′ is established in [BLGGT10]. Having thus established
Theorem A in the case that Π has extremely regular and Shin-regular weight, we
then pass to the general case by means of an l-adic interpolation argument of
Chenevier and Harris, [CH09] and [Che09]. The details are in Section 3.

Notation and terminology. We write all matrix transposes on the left; so tA
is the transpose of A. We let Bm ⊂ GLm denote the Borel subgroup of upper
triangular matrices and Tm ⊂ GLm the diagonal torus. We let Im denote the
identity matrix in GLm.

If M is a field, we let M denote an algebraic closure of M and GM the absolute
Galois group Gal (M/M). Let εl denote the l-adic cyclotomic character.

Let p be a rational prime and K/Qp a finite extension. We let OK denote the
ring of integers of K, ℘K the maximal ideal of OK , k(νK) the residue field OK/℘K ,
νK : K× � Z the canonical valuation and | |K : K× → Q× the absolute value given

by |x|K = #(k(νK))−νK(x). We let | |1/2K : K× → R×>0 denote the unique positive
unramified square root of | |K . If K is clear from the context, we will sometimes
write | | for | |K . We let FrobK denote the geometric Frobenius element of Gk(νK)

and IK the kernel of the natural surjection GK � Gk(νK). We will sometimes

abbreviate FrobQp by Frobp. We let WK denote the preimage of FrobZ
K under the

map GK � Gk(ν(K)), endowed with a topology by decreeing that IK ⊂ WK with

its usual topology is an open subgroup of WK . We let ArtK : K×
∼→ W ab

K denote
the local Artin map, normalized to take uniformizers to lifts of FrobK .

Let Ω be an algebraically closed field of characteristic 0. A Weil–Deligne repre-
sentation of WK over Ω is a triple (V, r,N) where V is a finite dimensional vector
space over Ω, r : WK → GL(V ) is a representation with open kernel and N : V → V
is an endomorphism with r(σ)Nr(σ)−1 = |Art−1

K (σ)|KN . We say that (V, r,N) is
Frobenius semisimple if r is semisimple. We let (V, r,N)F-ss denote the Frobe-
nius semisimplification of (V, r,N) (see for instance Section 1 of [TY07]) and we
let (V, r,N)ss denote (V, rss, 0). If Ω has the same cardinality as C, we have the
notions of a Weil–Deligne representation being pure or pure of weight k – see the
paragraph before Lemma 1.4 of [TY07]. (If N = 0 then the representation is pure
if the eigenvalues of Frobenius are Weil numbers of the same weight, but if N is
nonzero then the definition is more involved.)

We will let recK be the local Langlands correspondence of [HT01], so that if π
is an irreducible complex admissible representation of GLn(K), then recK(π) is a
Weil–Deligne representation of the Weil group WK . We will write rec for recK when
the choice of K is clear. If ρ is a continuous representation of GK over Ql with
l 6= p then we will write WD(ρ) for the corresponding Weil–Deligne representation
of WK . (See for instance Section 1 of [TY07].)
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If m ≥ 1 is an integer, we let Iwm,K ⊂ GLm(OK) denote the subgroup of matri-
ces which map to an upper triangular matrix in GLm(k(νK)). If π is an irreducible
admissible supercuspidal representation of GLm(K) and s ≥ 1 is an integer we let
Sp s(π) be the square integrable representation of GLms(K) defined for instance
in Section I.3 of [HT01]. Similarly, if r : WK → GLm(Ω) is an irreducible repre-
sentation with open kernel and π is the supercuspidal representation rec−1

K (r), we
let Sps(r) = recK(Sps(π)). If K ′/K is a finite extension and if π is an irreducible
smooth representation of GLn(K) we will write BCK′/K(π) for the base change of
π to K ′ which is characterized by recK′(πK′) = recK(π)|WK′ .

If ρ is a continuous de Rham representation of GK over Qp then we will write
WD(ρ) for the corresponding Weil–Deligne representation of WK (its construction,
which is due to Fontaine, is recalled in Section 1 of [TY07]), and if τ : K ↪→ Qp is a
continuous embedding of fields then we will write HTτ (ρ) for the multiset of Hodge–
Tate numbers of ρ with respect to τ . Thus HTτ (ρ) is a multiset of dim ρ integers.
In fact, if W is a de Rham representation of GK over Qp and if τ : K ↪→ Qp then

the multiset HTτ (W ) contains i with multiplicity dimQp(W ⊗τ,K K̂(i))GK . Thus

for example HTτ (εl) = {−1}.
If F is a number field and v a prime of F , we will often denote FrobFv , k(νFv )

and Iwm,Fv by Frobv, k(v) and Iwm,v. If σ : F ↪→ Qp or C is an embedding of fields,
then we will write Fσ for the closure of the image of σ. If F ′/F is a soluble, finite
Galois extension and if π is a cuspidal automorphic representation of GLm(AF ) we
will write BC F ′/F (π) for its base change to F ′, an automorphic representation of

GLn(AK′). If R : GF → GLm(Ql) is a continuous representation, we say that R
is pure of weight w if for all but finitely many primes v of F , R is unramified at
v and every eigenvalue of R(Frobv) is a Weil (#k(v))w-number. (See Section 1 of
[TY07].) If F is an imaginary CM field, we will denote its maximal totally real
subfield by F+ and let c denote the non-trivial element of Gal (F/F+).

1. Automorphic Galois representations

We recall some now-standard notation and terminology. Let F be an imaginary
CM field or totally real field. Let F+ denote the maximal totally real subfield of
F . By a RAECSDC (if F is imaginary) or RAESDC (if F is totally real) (regular,
algebraic, essentially (conjugate) self dual, cuspidal) automorphic representation of
GLm(AF ) we mean a pair (Π, χ) where

– Π is a cuspidal automorphic representation of GLm(AF ) such that Π∞ has
the same infinitesimal character as some irreducible algebraic representation
of the restriction of scalars from F to Q of GLm,

– χ : A×F+/(F
+)× → C× is a continuous character such that χv(−1) is indepen-

dent of v|∞,
– and Πc ∼= Π∨ ⊗ (χ ◦NF/F+ ◦ det).

If χ is the trivial character we will often drop it from the notation and refer to
Π as a RACSDC or RASDC (regular, algebraic, (conjugate) self dual, cuspidal)
automorphic representation. We will say that (Π, χ) has level prime to l (resp.
level potentially prime to l) if for all v|l the representation Πv is unramified (resp.
becomes unramified after a finite base change).
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If Ω is an algebraically closed field of characteristic 0 we will write (Zm)Hom (F,Ω),+

for the set of a = (aτ,i) ∈ (Zm)Hom (F,Ω) satisfying

aτ,1 ≥ · · · ≥ aτ,m.

Let w ∈ Z. If F is totally real or imaginary CM (resp. if Ω = C) we will write

(Zm)
Hom (F,Ω)
w for the subset of elements a ∈ (Zm)Hom (F,Ω) with

aτ,i + aτ◦c,m+1−i = w

(resp.

aτ,i + ac◦τ,m+1−i = w.)

(These definitions are consistent when F is totally real or imaginary CM and Ω =

C.) If F ′/F is a finite extension we define aF ′ ∈ (Zm)Hom (F ′,Ω),+ by

(aF ′)τ,i = aτ |F ,i.

Following [Shi10] we will be interested, inter alia, in the case that either m is odd;
or that m is even and for some τ ∈ Hom (F,Ω) and for some odd integer i we have
aτ,i > aτ,i+1. If either of these conditions hold then we will say that a is Shin-
regular. (This is often referred to as ‘slightly regular’ in the literature. However
as this notion is strictly stronger than ‘regularity’ we prefer the terminology ‘Shin-
regular’.) Following [BLGGT10], we say that a is extremely regular if for some τ
the aτ,i have the following property: for any subsets H and H ′ of {aτ,i + n− i}ni=1

of the same cardinality, if
∑
h∈H h =

∑
h∈H′ h then H = H ′. (The condition of

extreme regularity will be used in order to apply Theorem 5.5.2 of [BLGGT10],
in order to guarantee that a Galois representation associated to an automorphic
representation is irreducible.)

If a ∈ (Zm)Hom (F,C),+, let Ξa denote the irreducible algebraic representation of

GLHom (F,C)
m which is the tensor product over τ of the irreducible representations of

GLn with highest weights aτ . We will say that a RAECSDC automorphic repre-
sentation Π of GLm(AF ) has weight a if Π∞ has the same infinitesimal character

as Ξ∨a . Note that in this case a must lie in (Zm)
Hom (F,C)
w for some w ∈ Z.

We recall (see for example Theorem 1.2 of [BLGHT09]) that to a RAECSDC or

RAESDC automorphic representation (Π, χ) of GLm(AF ) and ı : Ql
∼→ C we can

associate a continuous semisimple representation

rl,ı(Π) : Gal (F/F ) −→ GLm(Ql)

This representation satisfies

rl,ı(Π)c ∼= rl,ı(Π)∨ ⊗ ε1−ml rl,ı(χ)|GF ,

where rl,ı(χ) : GF+ → Q×l is the de Rham character with the property that

ı

(rl,ı(χ) ◦Art F+)(x)
∏

τ∈Hom (F+,C)

(ı−1τ)(xl)
−aτ

 = χ(x)
∏

τ∈Hom (F+,C)

(τx)−aτ ,

where a ∈ ZHom (F+,C) is determined by the property that

χ|((F+)×∞)0 : x 7−→
∏

τ∈Hom (F+,C)

(τx)aτ .
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For v|l a place of F , the representation rl,ı(Π)|GFv is de Rham and if τ : F ↪→ Ql
then

HTτ (rl,ı(π)) = {aıτ,1 +m− 1, aıτ,2 +m− 2, ..., aıτ,m}.
If v 6 |l, then the main result of [Car10] states that

ıWD(rl,ı(Π)|GFv )F-ss ∼= rec(Πv ⊗ | det |(1−m)/2).

Let p be a prime number, K/Qp be a finite extension and let Ω be an algebraically
closed field of characteristic 0. Let J denote the set of equivalence classes of
irreducible representations of WK over Ω with open kernel, where s ∼ s′ if s ∼=
s′ ⊗ χ ◦ det for some unramified character χ : K× → Ω×. Let ρ = (V, r,N) be a
Weil–Deligne representation of WK over Ω. We decompose

V ∼=
⊕
σ∈J

V [σ]

where V [σ] is the largest WK-submodule of V with all its irreducible subquotients
lying in σ. Then each V [σ] is stable by N and ρ[σ] := (V [σ], r|V [σ], N |V [σ]) is a
Weil–Deligne subrepresentation of (V, r,N). For each σ ∈ J with V [σ] 6= (0), there
is a unique decreasing sequence of integers m1(ρ, σ) ≥ · · · ≥ mn(ρ,σ)(ρ, σ) ≥ 1 with

ρ[σ]F-ss ∼=
n(ρ,σ)⊕
i=1

Spmi(ρ,σ)(si)

si ∈ σ for each i. If ρ′ is another Weil–Deligne representation of WK over Ω, we
say that

ρ ≺ ρ′

if ρss ∼= (ρ′)ss and if for each σ ∈ J we have

m1(ρ, σ) + · · ·+mi(ρ, σ) ≤ m1(ρ′, σ) + · · ·+mi(ρ
′, σ)

for each i ≥ 1. The goal of this paper is to establish the following local-global
compatibility result at places dividing l, our main theorem.

Theorem 1.1. Let (Π, χ) be a RAECSDC automorphic representation of GLm(AF )

and let ı : Ql
∼→ C. If v|l is a place of F , then

ıWD(rl,ı(Π)|GFv )F-ss ≺ rec(Πv ⊗ | det |(1−m)/2).

Furthermore, if Π has Shin-regular weight, then

ıWD(rl,ı(Π)|GFv )F-ss ∼= rec(Πv ⊗ | det |(1−m)/2).

The following corollary follows immediately using base change as in Proposition
4.3.1 of [CHT08].

Corollary 1.2. Let (Π, χ) be a RAESDC automorphic representation of GLm(AF )

and let ı : Ql
∼→ C. If v|l is a place of F , then

ıWD(rl,ı(Π)|GFv )F-ss ≺ rec(Πv ⊗ | det |(1−m)/2).

Furthermore, if Π has Shin-regular weight, then

ıWD(rl,ı(Π)|GFv )F-ss ∼= rec(Πv ⊗ | det |(1−m)/2).
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2. The extremely regular, Shin-regular case

We start by treating the special case where, thanks to the irreducibility results
of [BLGGT10], we can give a direct argument. We use an analogue of the trick
of [Kis08] and [Ski09] (see the proof of Theorem 4.3 of [Kis08] and Section 2.2 of
[Ski09]), but in a situation where we need to use a non-abelian, indeed non-Galois,
base change. Because of this the argument makes essential use of the irreducibility
results of [BLGGT10], and hence at present can only be made in the extremely
regular case.

Theorem 2.1. Let m ≥ 2 be an integer, l a rational prime and ı : Ql
∼−→ C. Let

F be an imaginary CM field and (Π, χ) a RAECSDC automorphic representation
of GLm(AF ). If Π has extremely regular and Shin-regular weight and v|l is a place
of F , then

ıWD(rl,ı(Π)|GFv )F-ss ∼= rec(Πv ⊗ | det |(1−m)/2).

Proof. We first reduce to the RACSDC case: using Lemma 4.1.4 of [CHT08] we
choose an algebraic Hecke character ψ : A×F /F× → C× such that ψ · (ψ ◦ c) =

χ−1
F ◦NF/F+ . Then Π ⊗ ψ ◦ det is RACSDC and the theorem holds for Π if and

only if it holds for Π⊗ ψ ◦ det. We may therefore assume that Π is RACSDC.
To prove the theorem, it suffices to establish the weaker result that

ıWD(rl,ı(Π)|GFv )ss ∼= rec(Πv ⊗ | det |(1−m)/2)ss.

(Suppose this weaker result holds. By Proposition 1.1 of [BLGGT11], it suffices
to prove that WD(rl,ı(Π)|GFv ) is pure. This is established in Corollary 1.3 of
[BLGGT11].)

To establish the weaker result, it suffices to show that

tr (σ|ıWD(rl,ı(Π)|GFv )) = tr (σ|rec(Πv ⊗ | det |(1−m)/2))

for every σ ∈ WFv mapping to a non-zero power of Frobv ∈ Gk(v). (This follows
from the proof of Lemma 1 of [Sai97].) Fix such an element σ ∈WFv . We can and
do choose a finite extension Ev/Fv inside F v such that

– σ ∈WEv ⊂WFv and
– BCEv/Fv (Πv)

Iwm,Ev 6= {0}.
(If we write WD(rl,ı(Π)|GFv ) = (V, r,N), we could take Ev to be the fixed field
of the subgroup of WFv generated by σ and the kernel of r|IFv .) Let E′v/Ev de-
note the normal closure of Ev/Fv. Choose a finite CM soluble Galois extension
F ′/F such that for each place w|v of F ′, F ′w/Fv

∼= E′v/Fv. Let ΠF ′ = BC F ′/F (Π).
By Theorem 5.5.2 of [BLGGT10] we can and do choose a rational prime l′ and

ı′ : Ql′
∼−→ C such that rl′,ı′(ΠF ′) is irreducible. Choose a prime w|v of F ′

and an Fv-embedding F ′w ↪→ F v. Let E = F ′ ∩ Ev ⊂ F ′w be the fixed field
of Gal (F ′w/Ev) ⊂ Gal (F ′/F ). The inclusion E ↪→ Ev determines a prime u of
E. By Lemma 1.4 of [BLGHT09] (which we can apply because rl′,ı′(ΠF ′) is ir-
reducible), there exists a RACSDC automorphic representation ΠE of GLm(AE)
with rl′,ı′(ΠE) ∼= rl′,ı′(Π)|GE and hence rl,ı(ΠE) ∼= rl,ı(Π)|GE . Local-global com-
patibility for rl′,ı′(ΠE)|GEu and rl′,ı′(Π)|GFv (which is part of the main theorem
of [Shi10]) shows that ΠE,u = BCEv/Fv (Πv). Then Theorem 1.2 of [BLGGT11]

(which we can apply by our assumption above that BCEv/Fv (Πv)
Iwm,Ev 6= {0})
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implies that

tr (σ|ıWD(rl,ı(Π)|GFv )) = tr (σ|ıWD(rl,ı(ΠE)|GEu ))

= tr (σ|rec(ΠE,u ⊗ | det |(1−m)/2))

= tr (σ|rec(Πv ⊗ | det |(1−m)/2)),

and the result follows. �

3. The general case

We will prove the next result using Theorem 2.1 and the methods of [Che09] and
[BC09a]. It establishes the first statement of Theorem 1.1.

Theorem 3.1. Let m ≥ 2 be an integer, l a rational prime and ı : Ql
∼→ C. Let F

be an imaginary CM field and (Π, χ) a RAECSDC automorphic representation of
GLm(AF ). If v|l is a place of F , then

ıWD(rl,ı(Π)|GFv )F-ss ≺ rec(Πv ⊗ | det |(1−m)/2).

Before giving the proof, we first deduce the second statement of Theorem 1.1 as
a corollary.

Corollary 3.2. Let m ≥ 2 be an integer, l a rational prime and ı : Ql
∼→ C. Let

F be an imaginary CM field and (Π, χ) a RAECSDC automorphic representation
of GLm(A). If Π has Shin-regular weight and v|l is a place of F , then

ıWD(rl,ı(Π)|GFv )F-ss ∼= rec(ΠF,v ⊗ | det |(1−m)/2).

Proof. This follows immediately from Theorem 3.1 together with Corollary 1.3 of
[BLGGT11] and Proposition 1.1 of [BLGGT11]. �

Let p be a prime number, K/Qp be a finite extension and let Ω be an algebraically
closed field of characteristic 0. In Section 1, we introduced a relation ρ ≺ ρ′ on
Weil–Deligne representations of WK over Ω. Following [Che09, §3.10], we now
introduce another such relation ≺I which will play a role in the proof below. See
[Che09, Lemme 3.14] for the relationship between ≺ and ≺I . Let JI denote the set
of equivalence classes of irreducible representations of IK over Ω with open kernel.
Let ρ = (V, r,N) be a Weil–Deligne representation of WK over Ω. We decompose

V ∼=
⊕
σ∈JI

V [σ]

where V [σ] is the σ-isotypical component of V |IK . Then each V [σ] is stable by
N and IK . For each σ ∈ JI we let pI(ρ, σ) denote the partition of the integer
dimV [σ]/ dimσ which determines the conjugacy class of the operator N on V [σ].
(See [BC09b, §7.8.1].) If ρ′ = (V ′, r′, N ′) is another Weil–Deligne representation of
WK over Ω, we say that

ρ ≺I ρ′

if V |IK ∼= V ′|IK and if for each σ ∈ JI we have pI(ρ, σ) ≺ pI(ρ
′, σ). (If p = (m1 ≥

m2 ≥ . . . ) and p′ = (m′1 ≥ m′2 ≥ . . . ) are partitions of some integer d, we say p ≺ p′
if m1 + · · ·+mi ≤ m′1 + · · ·+m′i for all i ≥ 1.)

Proof of Theorem 3.1. As in the proof of Theorem 2.1, we may assume that Π is
RACSDC. Replacing F by a suitable finite soluble CM Galois extension in which
v splits we may also assume that:
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– [F+ : Q] is even;
– F/F+ is unramified at all finite places;
– all places of F+ dividing l are split in F ;
– if Πw is ramified, then w|F+ is split in F ;

– if w 6= v then Π
Iwm,w
w 6= {0}.

Since [F+ : Q] is even,we can and do choose a unitary group U/F+ such that:
– U ×F+ F ∼= GLm /F ;
– U ×F+ F+

u is quasi-split for each prime u of F+;
– U(F+

σ ) is compact for each σ : F+ ↪→ R.
(We write F+

σ for the completion of F+ with respect to the absolute value induced
by σ.) For each place u of F+ which splits in F and w|u a prime of F , we fix an

isomorphism ıw : U(F+
u )

∼−→ GLm(Fw) such that ıwc = tı−cw . If σ : F+ ↪→ R and
σ̃ : F ↪→ C extends σ, we fix an embedding ıσ̃ : U(F+

σ ) ↪→ GLn(Fσ̃) which identifies
U(F+

σ ) with the set of all g with tgc · g = 1m. By Corollaire 5.3 and Théorème 5.4
of [Lab09], there exists an automorphic representation π0 of U(AF+) such that:

– if u is a prime of F+ which splits as wwc in F , then π0,u
∼= Πw ◦ ıw;

– if u is a prime of F+ which is inert in F , then Πu is given by the local base
change of π0,u (see [Lab09]);

– if σ : F+ ↪→ R and σ̃ : F ↪→ C extends σ, then there is an irreducible algebraic
representation Wσ̃ of GLm(Fσ̃) such that π0,σ

∼= W∨σ̃ ◦ ıσ̃. Moreover, if Wσ̃

has highest weight aσ̃ = (aσ̃,1, . . . , aσ̃,m), then Π has weight a = (aσ̃)σ̃:F↪→C.
We now follow the arguments of [Che09]. We have chosen to closely follow

[Che09] even when we could somewhat simplify the argument in the case of interest
to us, in order to ease comparison with that paper. We note however that we
take the prime p of [Che09] to be the prime l of this paper. Make the following

definitions: let S̃l (resp. S̃v) denote the set of primes of F dividing l but not equal

to v or vc (resp. S̃v = {v, vc}). Let R̃ denote the set of primes w of F not dividing

l and with Πw ramified. Set S̃ = S̃v ∪ R̃. Let Sl, Sv, R and S denote the sets of

primes of F+ lying under S̃l, S̃v, R̃ and S̃ respectively. For each u ∈ Sl ∪ S, fix
a prime ũ of F dividing u such that ũ = v when u = v|F+ . We will henceforth
identify U(F+

u ) and GLm(Fũ) via ıũ for u ∈ Sl ∪ S.
Fix embeddings ı∞ : Q ↪→ C and ıl : Q ↪→ Ql such that ı ◦ ıl = ı∞. For u|l

a prime of F+, following [Che09], we let Σ(u) ⊂ Hom (F+,Ql) denote the set of
embeddings inducing u and let Σ∞(u) = ıΣ(u) ⊂ Hom (F+,R). Let W∞ denote
the representation ⊗σ∈Σ∞(v|F+ )π0,σ of

∏
σ∈Σ∞(v|F+ ) U(F+

σ ).

Let KS =
∏
u 6∈S Ku ⊂ U(A∞,SF+ ) be a compact open subgroup with

– Ku = Iwm,ũ if u ∈ Sl;
– Ku a hyperspecial maximal compact subgroup of U(F+

u ) otherwise.

LetHS∪Sl = Z[U(A∞,S∪SlF+ )//KS∪Sp ] denote the commutative spherical Hecke alge-
bra. For u a finite place of F+, letH(U(F+

u )) denote the Hecke algebra consisting of
smooth, compactly supported functions on U(F+

u ) with values in Z. For u 6∈ S∪Sl,
let eu = 1Ku ∈ H(U(F+

u )) be the idempotent corresponding to Ku.
Choose a finite Galois extension E/Q in Q such that Πũ can be defined over E

for each u ∈ S. For u ∈ S, let Bu denote the subcategory of the category of smooth
E-representations of GLm(Fũ) determined by the supercuspidal support of Πũ (see
Proposition-définition 2.8 of [Ber84]). Let zu denote the center of the category Bu.
For u ∈ R, let eu = 1Iwm,ũ denote the idempotent in H(GLm(Fũ)) corresponding
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to Iwm,ũ. For u ∈ Sv = {v|F+}, choose an idempotent eu in H(GLm(Fv)) such
that

– bueu = eu where bu ∈ H(GLm(Fv)) is the projector to Bu;
– euΠv 6= {0};
– for every irreducible π ∈ Bu ⊗E,ı∞ C, if euπ 6= {0}, then

rec(π) ≺I rec(Πv).

(We refer to Section 3.6 of [Che09] for the fact that one can choose such an
idempotent eu; the definition of the relation ≺I is recalled in the discussion
preceding this proof.)

Extending E if necessary, we may assume that eu is defined over E for each u ∈ S
and we set e = ⊗′u 6∈Sleu, an idempotent in the algebra

H := HS∪Sl ⊗Z (
⊗
u∈S

E zu).

Let LE denote the Galois closure (over Ql) of the closure of ıl(EF ) in Ql. Let T
denote the diagonal maximal torus in

∏
u∈Sl GLm(Fũ) and let T = Hom (T,Grig

m )
denote the rigid analytic space over Ql parametrizing continuous l-adic characters
of T .

Let A denote the set of automorphic representations π of U(AF+) for which
e(π∞)KSl 6= {0} and ⊗σ∈Σ∞(v|F+ )πσ ∼= W∞. If π ∈ A, then H acts on e(π∞,Sl)

through an E-algebra homomorphism ψC(π) : H → C (this follows from the fact
that πKuu is 1-dimensional for u 6∈ S ∪ Sl while zu acts on πu through a character
for u ∈ S). We define ψ(π) : H → Ql to be ı−1 ◦ ψC(π).

If π ∈ A, we now associate to it an algebraic character κ(π) ∈ T (LE) as in Section
1.4 of [Che09]; this character records the highest weights of the representations πσ
for σ ∈ Σ∞(u) and u ∈ Sl. If u ∈ Sl and σ : F ↪→ Ql is an embedding inducing ũ, let
κσ denote the highest weight of the representation W∨ισ. Thus κσ = (κσ,1, . . . , κσm)
with κσ1

≥ · · · ≥ κσm . We regard κσ as an L×E-valued character of T as follows:

κσ : t = (tu′)u′∈Sl 7→
m∏
i=1

(σtu,i)
κσ,i .

(Here we denote the extension of σ to an embedding Fũ ↪→ Ql again by σ.) We
then take κ(π) =

∏
κσ where the product is over all σ : F ↪→ Ql inducing ũ for

some u ∈ Sl. By definition, we may regard κ(π) as an element of T (LE).
If u ∈ Sl and πũ is an irreducible smooth representation of GLm(Fũ) with

π
Iwm,ũ
ũ 6= {0}, an accessible refinement of πũ is an unramified character χũ :

Tm(Fũ) → C×such that πũ embeds as a subrepresentation of n-Ind
GLm(Fũ)
Bm(Fũ) χũ.

(Such a character always exists.) If π ∈ A, then an accessible refinement of π is a

character χ =
∏
u∈Sl χũ : T =

∏
u∈Sl Tm(Fũ)→ Q×l where each χũ : Tm(Fũ)→ Q×l

is unramified and ıχũ is an accessible refinement of πũ ⊗ | det |(1−m)/2. Given such
a pair (π, χ), we associate to it the character

ν(π, χ) := κ(π)χδ
−1/2
Bm
|det |

m−1
2 ∈ T (Ql)

as in Section 1.4 of [Che09].
We let

Z ⊂ HomE(H,Ql)× T (Ql)
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denote the set of all pairs (ψ(π), ν(π, χ)) where π ∈ A and χ is an accessible
refinement of π.

By Théorème 1.6 of [Che09], the data (Sl,W∞,H, e) determines a four-tuple
(X,ψ, ν, Z) where:

– X is a reduced rigid analytic space over LE which is equidimensional of di-
mension m

∑
u∈Sl [F

+
u : Ql];

– ψ : H → O(X) is a ring homomorphism with ψ(HS∪Sl) ⊂ O(X)≤1;
– ν : X → T is a finite analytic morphism;
– Z ⊂ X(Ql) is a Zariski-dense accumulation subset of X(Ql) such that the map

X(Ql)→ HomE(H,Ql)× T (Ql)

which sends x 7→ (h 7→ ψ(h)(x), ν(x)) induces a bijection Z
∼−→ Z. (A subset

Z ⊂ X(Ql) is said to be an accumulation subset if for each z ∈ Z and each
open affinoid neighbourhood U in X of z, there exists an open affinoid V ⊂ U
containing z such that Z ∩ V is Zariski dense in V . (See [Che09, §1.5].)) We
henceforth identify Z and Z.

If π ∈ A, then by Corollaire 5.3 of [Lab09] there exists a partition m = m1 +
. . . + mr of m and conjugate self-dual discrete automorphic representations Πi of

GLmi(AF ) such that Π̃ := Π1� · · ·�Πr is a strong base change of π. Let Σ = S̃∪S̃l
and let FΣ denote the maximal extension of F which is unramified outside Σ. Let
GF,Σ = Gal (FΣ/F ). By Theorem 3.2.5 of [CH09] and the argument of Theorem
2.3 of [Gue09], there is a continuous semisimple representation rl,ı(π) : GF,Σ →
GLm(Ql) with

ıWD(rl,ı(π)|GFw )ss ∼= rec(Π̃w ⊗ | det |(1−m)/2)ss

for each prime w - l of F . Moreover, there is a unique continuous m-dimensional
pseudo-representation T : GF,Σ → O(X) such that Tz = tr (rl,ı(π)) for each z =

(ψ(π), ν(π, χ)) ∈ Z. (Here, for any x ∈ X(Ql), Tx denotes the composition of
T with the evaluation map O(X) → Ql; g 7→ g(x).) The existence of T follows
from the proof of Proposition 7.1.1 of [Che04] together with Proposition 7.2.11 of
[BC09a] (which shows that O(X)≤1 is compact, as T is nested and ν is finite) and

the fact that ψ(HS∪Sl) ⊂ O(X)≤1. By Theorem 1 of [Tay91], for any x ∈ X(Ql),
there is a unique continuous semisimple representation rx : GF,Σ → GLm(Ql) with
Tx = tr (rx).

Now, let u = v|F+ and recall that ũ = v. By Proposition 3.11 of [Che09], there
is a unique m-dimensional pseudo-character

TBu : WFũ → zu

such that for each irreducible smooth representation πũ of GLm(Fũ) in Bu⊗E,ı∞ C,

if TBuπũ denotes the composition of TBu with the character zu → C giving the action
of zu on πũ, then

TBuπũ = tr (rec(πũ ⊗ | det |(1−m)/2)).

Let z0 ∈ Z be a point corresponding to π0 together with the choice of some
accessible refinement. Let Zreg ⊂ Z denote the subset associated to pairs (π, χ)
where π∞ is Shin-regular and extremely regular. (If σ̃ : F ↪→ C and σ := σ̃|F+ , then
πσ ◦ ıσ̃ is the restriction of an irreducible algebraic representation of GLm(Fσ̃) of
highest weight bσ̃, say. We say π∞ is Shin-regular or extremely regular if b := (bσ̃)σ̃
has the corresponding property.) Then Zreg is a Zariski-dense accumulation subset
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of X(Ql). Choose an open affinoid Ω ⊂ X such that z0 ∈ Ω and Zreg ∩ Ω is
Zariski-dense in Ω. Let TΩ denote the restriction of T to Ω. By Lemme 7.8.11 of
[BC09a], there exists a reduced, separated, quasi-compact rigid analytic space Y
and a proper, generically finite, surjective morphism f : Y → Ω such that there
exists an OY -module M which is locally free of rank n and carries a continuous
action of GF,Σ whose trace is given by f∗TΩ.

By Proposition 3.16 of [Che09] (a result of Sen), the (generalized) Hodge–Tate
weights of My|GFũ are independent of y ∈ Y (Ql). (This follows from the quoted

result and the fact that the Hodge–Tate weights of rz|GFũ are independent of z ∈ Z.)

Moreover, by the improvement to Theorem C of [BC08] made in Corollary 3.19 of
[Che09], there exists a finite Galois extension F ′ũ/Fũ such that if F ′ũ,0 ⊂ F ′ũ denotes

the maximal subfield which is unramified over Ql, then the OY ⊗Ql F
′
ũ,0-module

D
F ′ũ
st (M) := (M ⊗Ql Bst)

GF ′
ũ

is locally free of rank m and satisfies the following: if y ∈ Y (Ql), then the natural

map D
F ′ũ
st (M)y → D

F ′ũ
st (My) is an isomorphism (and hence My|GF ′

ũ

is semistable).

The diagonal action of GFũ on M ⊗Ql Bst induces an OY -linear, F ′ũ,0-semilinear

action of GFũ on D
F ′ũ
st (M). We define an OY ⊗QlF

′
ũ,0-linear action rũ of WFũ ⊂ GFũ

on D
F ′ũ
st (M) by letting g ∈ WFũ act as g ◦ ϕw(g) where w(g) ∈ Z is the power of

Frobl to which g maps in GFũ/IFũ . We have that N ◦ rũ(g) = lw(g)rũ(g) ◦ N on

D
F ′ũ
st (M). For each continuous embedding τ : F ′ũ,0 ↪→ LE , we let

WDũ,τ = D
F ′ũ
st (M)⊗OY ⊗QpF

′
ũ
,1⊗τ OY .

Then WDũ,τ is locally free of rankm as anOY -module andN◦rũ(g) = lw(g)rũ(g)◦N
on WDũ,τ . Moreover, ϕ induces an isomorphism WDũ,τ◦Frobl

∼−→WDũ,τ compat-
ible with rũ and N . We let WDũ denote WDũ,τ for some choice of τ , regarded as

a WFũ -module with an operator N . We note that for each y ∈ Y (Ql), WDũ,y is
the Weil–Deligne representation associated to My|GFũ . It follows that Nm = 0 on
WDũ. Let

TY,ũ = tr (rũ(·)|WDũ) : WFũ → OY .
We claim that

TY,ũ = f∗ ◦ ψ ◦ TBu .

This is proved as follows: let y ∈ f−1(Zreg∩Ω) and let z = f(y). Then z corresponds
to a pair (π, χ) where π ∈ A is Shin-regular and extremely regular (and χ is an
accessible refinement of π). Theorem 2.1 together with the regularity conditions
satisfied by π and the construction of the representation rl,ı(π) in the proof of
Theorem 2.3 of [Gue09] show that

WD(rl,ı(π)|GFũ )F-ss ∼= ı−1rec(πu ◦ ı−1
ũ ⊗ | det |(1−m)/2).

Since M ss
y
∼= rz = rl,ı(π), we deduce that TY,ũ(g) and f∗(ψ(TBu(g))) agree on

y ∈ Y (Ql) for each g ∈ WFũ . The claimed result now follows from the Zariski-
density of f−1(Zreg ∩ Ω) in Y .

We now choose some y0 ∈ Y (Ql) with f(y0) = z0. Since rl,ı(Π) = rl,ı(π0) =
rz0
∼= M ss

y0 , the result just proved shows that

ıWD(rl,ı(Π)|GFũ )ss ∼= rec(Πũ ⊗ | det |(1−m)/2).
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We deduce from this that

ıWD(rl,ı(Π)|GFũ )F-ss ≺ rec(Πũ ⊗ | det |(1−m)/2),

as follows: By Lemma 3.14(ii) of [Che09], it suffices to show that

ıWD(rl,ı(Π)|GFũ )F-ss ≺I rec(Πũ ⊗ | det |(1−m)/2).

For each y ∈ f−1(Zreg ∩ Ω) with f(y) corresponding to a pair (π, χ), we have

ıWD(M ss
y |GFũ )F-ss ∼= rec(πu ◦ ı−1

ũ ⊗ | det |(1−m)/2) ≺I rec(Πũ ⊗ | det |(1−m)/2)

(where the last relation follows from the choice of idempotent eu). By the proof
of Proposition 7.8.19(iii) of [BC09a] and the Zariski-density of f−1(Zreg ∩Ω) in Y ,
we have ıWD(M ss

y |GFũ )F-ss ≺I rec(Πũ ⊗ | det |(1−m)/2) for all y ∈ Y (Ql). Taking y
above z0 gives the required result. �
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