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ABSTRACT. We prove the compatibility of the local and global Langlands cor-
respondences at places dividing [ for the l-adic Galois representations associ-
ated to regular algebraic conjugate self-dual cuspidal automorphic represen-
tations of GL, over an imaginary CM field, under the assumption that the
automorphic representations have Iwahori-fixed vectors at places dividing [
and have Shin-regular weight.
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INTRODUCTION.

In this paper we prove the compatibility at places dividing [ of the local and
global Langlands correspondences for the I-adic Galois representations associated to
regular algebraic conjugate self-dual cuspidal automorphic representations of GL,,
over an imaginary CM field in the special case that the automorphic representations
have Iwahori-fixed vectors at places dividing [ and have Shin-regular weight. In the
sequel to this paper [BLGGT11] we build on these results to prove the compatibility
in general (up to semisimplification in the case of non-Shin-regular weight).

Our main result is as follows (see Theorem 1.2 and Corollary 1.3).

Theorem A. Let m > 2 be an integer, | a rational prime and v : Q, = C. Let
F be an imaginary CM field and I1 a regular algebraic, conjugate self-dual cuspidal
automorphic representation of GLy,(Ar). If 11 has Shin-regular weight and v|l is a

place of F such that TI)"™" + {0}, then
WD (ry, ()| g, )™ 22 rec(TT, ® | det | 7)/2).
In particular WD(ry,(I)|ay, ) is pure.

(See Section 1 for any unfamiliar terminology.) The proof is essentially an imme-
diate application of the methods of [TYO07], applied in the setting of [Shil0] rather
than that of [HTO01], and we refer the reader to the introductions of those papers
for the details of the methods that we use. Indeed, if II is square-integrable at
some finite place, then the result is implicit in [TY07], although it is not explicitly
recorded there. For the convenience of the reader, we make an effort to make our
proof as self-contained as possible.

Notation and terminology. We write all matrix transposes on the left; so *A
is the transpose of A. We let B,, C GL,, denote the Borel subgroup of upper
triangular matrices and T, C GL,, the diagonal torus. We let I,, denote the
identity matrix in GL,,. We will sometimes denote the product GL,, x GL, by
GLyy .

If M is a field, we let M denote an algebraic closure of M and Gj; the absolute
Galois group Gal (M /M). Let ¢ denote the l-adic cyclotomic character

Let p be a rational prime and K/Q, a finite extension. We let O denote the
ring of integers of K, px the maximal ideal of Ok, k(vk) the residue field Ok /oK,
vi : K* — 7 the canonical valuation and | |k : K* — Q* the absolute value given
by |z|x = #(k(vi)) V5@, We let | |}{/2 : K* — RZ, denote the unique positive
unramified square root of | k. If K is clear from the context, we will sometimes
write | | for | [x. We let Frob denote the geometric Frobenius element of G, )
and I the kernel of the natural surjection G — Gp,). We will sometimes
abbreviate Frobg, by Frob,. We let Wk denote the preimage of Frob%( under the
map Gk — Gy (k)), endowed with a topology by decreeing that Iy C Wik with
its usual topology is an open subgroup of Wx. We let Art g : K* = W2P denote
the local Artin map, normalized to take uniformizers to lifts of Frobg.

Let Q be an algebraically closed field of characteristic 0. A Weil-Deligne repre-
sentation of Wi over 2 is a triple (V,r, N) where V is a finite dimensional vector
space over Q, 7 : Wx — GL(V) is a representation with open kernel and N : V. — V/
is an endomorphism with r(o)N7(o)~' = |Art ' (0)|x N. We say that (V,r, N) is



LOCAL-GLOBAL COMPATIBILITY FOR [ =p, 1. 3

Frobenius semisimple if r is semisimple and we let (V,r, N)¥*% denote the Frobe-
nius semisimplification of (V,r, N) (see for instance Section 1 of [TY07]) and we
let (V,r, N)® denote (V,7%,0). If 2 has the same cardinality as C, we have the
notions of a Weil-Deligne representation being pure or pure of weight k — see the
paragraph before Lemma 1.4 of [TYO07].

We will let reck be the local Langlands correspondence of [HT01], so that if
is an irreducible complex admissible representation of GL, (K), then reck () is a
Weil-Deligne representation of the Weil group Wi . We will write rec for recx when
the choice of K is clear. If p is a continuous representation of G over Q; with
[ # p then we will write WD(p) for the corresponding Weil-Deligne representation
of Wk. (See for instance Section 1 of [TY07].)

If m > 1is an integer, we let Iw,,, x C GL,,(Ok) denote the subgroup of matri-
ces which map to an upper triangular matrix in GL,,(k(vk)). If 7 is an irreducible
admissible supercuspidal representation of GL,,(K) and s > 1 is an integer we let
Sp ;(m) be the square integrable representation of GL,,(K) defined for instance
in Section 1.3 of [HT01]. Similarly, if r : Wx — GL,,, () is an irreducible repre-
sentation with open kernel and 7 is the supercuspidal representation 1rec;(1 (r), we
let Sp,(r) = reck (Spy(m)). If K'/K is a finite extension and if 7 is an irreducible
smooth representation of GL,,(K) we will write BC g/, () for the base change of
7 to K’ which is characterized by reck:(mx+) = recy (7)|w,. -

If p is a continuous de Rham representation of Gx over @p then we will write
WD(p) for the corresponding Weil-Deligne representation of W (its construction,
which is due to Fontaine, is recalled in Section 1 of [TY07]), and if 7 : K < Q, is a
continuous embedding of fields then we will write HT - (p) for the multiset of Hodge-
Tate numbers of p with respect to 7. Thus HT.(p) is a multiset of dim p integers.
In fact, if W is a de Rham representation of G over @p and if 7: K — @p then
the multiset HT (W) contains ¢ with multiplicity dim@p(W ®,.x K(i))¢%. Thus
for example HT,(¢;) = {—1}.

If F is a number field and v a prime of F', we will often denote Frobp,, k(vg,)
and Iw,, g, by Frob,, k(v) and Iw,, ,. If 0 : F — @p or C is an embedding of fields,
then we will write F,, for the closure of the image of o. If F'/F is a soluble, finite
Galois extension and if 7 is a cuspidal automorphic representation of GL,,(Ar) we
will write BC g/ p () for its base change to [, an automorphic representation of
GL,(Ag/). If R: Gp — GL,,(Q,) is a continuous representation, we say that R
is pure of weight w if for all but finitely many primes v of F', R is unramified at
v and every eigenvalue of R(Frob,) is a Weil (#k(v))”-number. (See Section 1 of
[TYO07].) If F is an imaginary CM field, we will denote its maximal totally real
subfield by F'™ and let ¢ denote the non-trivial element of Gal (F/Ft).

1. AUTOMORPHIC GALOIS REPRESENTATIONS

We recall some now-standard notation and terminology. Let F' be an imaginary
CM field with maximal totally real subfield F*. By a RACSDC (regular, algebraic,
conjugate self dual, cuspidal) automorphic representation of GL,,(Ar) we mean
that

e I is a cuspidal automorphic representation of GL,,(AFr) such that 1, has
the same infinitesimal character as some irreducible algebraic representation
of the restriction of scalars from F' to Q of GL,,,
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e and II¢ = IIV.
We will say that II has level prime to | (resp. level potentially prime to 1) if for
all v|l the representation II, is unramified (resp. becomes unramified after a finite
base change).
If © is an algebraically closed field of characteristic 0 we will write (Z™)
for the set of a = (a,;) € (Z™)Ho™ (D) satisfying

Hom (F,Q),+

ar1 2 2 Grm.
We will write (Zm)glom (B9 for the subset of elements a € (z2m)Hom (F.) ith
Q7+ Qroemy1—i = 0.
If F'/F is a finite extension we define ap: € (Z™)Hom (F'.Q).+ by

(ap)ri= Ar|p i

Following [Shil0] we will be interested, inter alia, in the case that either m is odd;
or that m is even and for some 7 € Hom (F, Q) and for some odd integer i we
have ar; > a,;11. If either of these conditions hold then we will say that a is
Shin-regular. (We warn the reader that this is often referred to as ‘slightly regular’
in the literature. However as this notion is strictly stronger than ‘regularity’ we
prefer to use the term Shin-regular.)

If a € (Zm)Hom (F.O):+ et Z, denote the irreducible algebraic representation of
G’LH;)In (7€) Wwhich is the tensor product over 7 of the irreducible representations of
GL,, with highest weights a,. We will say that a RACSDC automorphic represen-
tation II of GL,,(Ar) has weight a if Tl has the same infinitesimal character as
=Y. Note that in this case a must lie in (Zm)5o™ (50,

We recall (see Theorem 1.2 of [BLGHTO09]) that to a RACSDC automorphic
representation II of GL,,(Ar) and 2 : Q; = C we can associate a continuous

semisimple representation
Tl,z(H) : Gal (F/F) — GLm(@l)
with the properties described in Theorem 1.2 of [BLGHT09]. In particular
TI’Z(H)C . lez(H)v X Ellim.
For v|l a place of F, the representation r;,(II)|g., is de Rham and if 7: F — Q
then
HT, (r;, (7)) = {awr1+m—1,a,,2+mM—2, ..., a4rm }-
If v JI, then the main result of [Car10] states that

tWD(r,(I)| @, )Fs8 = rec(TT, ® | det |(1—m)/2).
We recall the following result which will prove useful.

Proposition 1.1. Let Q be an algebraically closed field of characteristic 0 and of
the same cardinality as C.
(1) Suppose K/Q, is a finite extension. Let (V,r,N) and (V',7',N’) be pure,
Frobenius semisimple Weil-Deligne representations of Wy over Q. If the
representations (V,r%) and (V',(r')*®) are isomorphic, then (V,r,N) =

V', N").
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(2) If F is an imaginary CM field and 11 is a RACSDC automorphic represen-
tation of GL,(AF), then for each 1: Q2 = C and each finite place v of F,

1 trec(Il,) is pure.

Proof. The first part follows from Lemma 1.4(4) of [TYO07]. For the second part,
Theorem 1.2 of [Carl0] states that II, is tempered for each finite place v of F. If
o is an automorphism of C, then there is a RACSDC automorphic representation
II' = 7TI*° @ 1T, of GL,(AF) (see Théoreme 3.13 of [Clo90]) and we deduce that
oll, is tempered. The second part then follows from this and Lemma 1.4(3) of
[TYO7]. O

We can now state our main results.

Theorem 1.2. Let m > 2 be an integer, | a rational prime and: Q, = C. Let L be
an imaginary CM field and I1 a RACSDC automorphic representation of G Ly, (ArL).

If 11 has Shin-regular weight and v|l is a place of L such that Iy # {0}, then
tWD(r,(IT)|a, )ESS = rec(IT, ® | det |1™)/2),
Before turning to the proof, we first record a corollary.

Corollary 1.3. Let m > 2 be an integer, | a rational prime and 1 : Q, = C.
Let L be an imaginary CM field and I a RACSDC automorphic representation of
GLn(Ar). IfI1 has Shin-regular weight and v|l is a place of L then WD(r;,(IT)|c, )
s pure.

Proof. Choose a finite CM soluble Galois extension F'/L such that for each prime
wlv of F, BCp, r, (IL,)™mw # {0}. Then WD(ry,(Il)|c,, ) is pure by Theorem
1.2 and Proposition 1.1. Lemma 1.4 of [TYO07] then implies that WD(r;,(IT)|g,, )
is pure. ([l

The rest of this paper will be devoted to the proof of Theorem 1.2.

2. NOTATION AND RUNNING ASSUMPTIONS

For the convenience of the reader, we recall here the following notation which
appears in [Shil0]:

e IfITis a RACSDC automorphic representation of GL,, (A ) for some integer
m > 2 and an imaginary CM field F', or if IT is an algebraic Hecke character
of A%, /M* for a number field M, then R;,(II) denotes r;,(IIV).

e If L/F is a finite extension of number fields, then Ramy,/p (resp. Unry, p,
resp. Sply, /) denotes the set of finite places of I which are ramified (resp.
unramified, resp. completely split) in L. We denote by Spl; /r,o the set of
rational primes p such that every place of F' above p splits completely in L.

e If F'is a number field and 7 is an automorphic representation of GL, r,
then Ramg(7) denotes the set of rational primes p such that there exists a
place v|p of F' with 7, ramified.

e If G is a group of the form H(F) for F/Q, finite and H/F a reductive
group; or H(AT) for F a number field, H/F a reductive group and T a
finite set of places of F' containing all infinite places; or a product of groups
of this form, then we let Irr(G) (resp. Irr;(G)) denote the set of isomorphism
classes of irreducible admissible representations of G on C-vector spaces
(resp. Q-vector spaces). We let Groth (G) (resp. Groth;(G)) denote the
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Grothendieck group of the category of admissible C-representations (resp.
Q,-representations) of G. (See Section 1.2 of [HT01].)

€:Z — {0,1} is the unique function such that ¢(n) =n mod 2.

(I)n is the matrix in GLn with ((I)n)ij = (—1)i+1(5i7n+1_]‘.

If R — S is a homomorphism of commutative rings, Rg/r denotes the
restriction of scalars functor.

If 7 is a representation of a group G with a central character, we denote
the central character by ;.

We now fix the following notations and assumptions which will be in force from
Section 3 to Section 6:
E is a quadratic imaginary field;
F is a totally real field with [F* : Q] > 2;
F = EF" and Ramp;q C Sply,p+ g
7: F < C is an embedding and 75 = 7|g;
®c = Hom (F,C) and ®¢ = Hom g ,,, (F, C);
n > 3 is an odd integer;
p € Splg g is a rational prime and ulp is a prime of E;
w is a prime of F' above u and wi; = w, wo, ..., w, denote all of the primes
of F' above u;
lp: @p 5 C is an isomorphism such that ty Lo 7 induces the place w;

e [ is a rational prime (possibly equal to p) and 2 : Q, = C.
Define algebraic groups G,, and G,, over Z by setting

Gn(R)={(\,g9) € R* x GL,(Of ®z R) : g®,%9¢ = \®,}, and
Gn(R) = Ro,z(Gn Xz Op)(R) = Go(Op ®z R)

for any Z-algebra R. Then G, Xz Q and G, xz Q are reductive. We let 6 denote
the action on G,, induced by (1,¢) on G,, xz Og.

If R is an F-algebra, then G,,(R) is a subgroup of R* x GL,(F ®g R) = R* x
GL,(F®gR)xGL,(F®pg,R) and the projection onto R* X GL,,(F ®g R) defines
an isomorphism

Gn(R) 2 R* x GL,(F ®g R).
It follows that G, xg E = Gy, x Rp/p(GLy).

If v € Unrp/g, then K, := Gn(Z,) (resp. K, := G,(Z,)) is a hyperspecial
maximal compact subgroup of G, (Q,) (resp. G,,(Q,)). In this case we say that a
representation of G, (Q,) (resp. G, (Qy)) is unramified if the space of K,-invariants
(resp. K,-invariants) is non-zero. Furthermore, we define the unramified Hecke
algebras H" (G, (Qy)) and H" (G, (Q,)) with respect to K, and K, respectively,
as in Section 1.1 of [Shil0]. (We note that these are C-algebras.) If T is a set of
places of Q with {oco} URamp/q C T, we let KT = [Togr Ko C Gn(AT).

We say that a representation I, of G,(Q,) is #-stable if 11, o0 § = II,, and we
let Irr? ~**(G,,(Q,)) C Irr(G,(Q,)) be the subset of 6-stable representations. For
v € Unrp g, we let Irr™ (G(Q,)) C Irr(G(Q,)) (resp. Irr™ (G, (Q,)) C Irr(Gr(Qy)),
resp. Irr"*%(G,,(Q,)) C G,(Q,)) denote the subset consisting of unramified
(resp. unramified, resp. unramified, -stable) representations.

Let # : Rp/g(GLyn) = Rpjg(GLy) denote the map g — ®,%g @, ! If vis a
rational prime, then

Gn(Qv) = Gn(E ®q @v) = (E ®q @v)x X GLn(F o) Qv)
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If (\,g9) € G,(Q,), then O(\, g) = (A, X°¢"). Let II, € Irr(G,(Q,)) and write
I, = v, ® I1 with respect to the above decomposition of G, (Q,). Then I, is
f-stable if and only if (IT,)¥ =11} o ¢, and Y1 [(pey0,)x = Vg/t-

We now recall the existence of local base change maps in the following cases (see
Section 4.2 of [Shil0] for details):

e Case 1: If v € Unrp/q, we have a map

BCU . II‘I‘ur(Gn(QU)) N II‘I‘IH’G_St(Gn(Qv)).

(Note that the assumption v € Ramg(w) in Case 1 of Section 4.2 of [Shil0]
plays no role there.) This is induced by a homomorphism of C-algebras
BC} : H(Gh(Qy)) = HY™(Gn(Qy)).

e Case 2: If v € Splp,p+ o, we have a map

BC, : Irr(Gn(Q,)) — I (G, (Q,)).

If in addition v € Unrg/q, then this map is compatible with the map in

Case 1.
In Case 2, the map BC, is described explicitly in [Shil0]. We recall the explicit
definition here, assuming v € Splg . Let ylv be a place of E, and regard Q, as an

E-algebra via Q, = E,. We get an isomorphism

Gn(Qy) = Q) x [[ GLa(Fy)
zly

where the product is over all places of F dividing y. Let 7, € Irr(G,(Q,)) and
decompose m, = m, ¢ ® m, with respect to the above decomposition of G,,(Q,). If
we decompose

Gn(Qy) = By x EJe x | [ GLn(Fy) x [ [ GLn(Fe)
x|y zly

then BC ,(my) = (¥y, ¥ye, 11, Ic ), where
(wya ¢yca Hy7 Hyc) = (7Tp707 ﬂ-p,O (quﬂy ‘E; o 0)7 7Ty7 ﬂ-#)

and 77 (g) := my(®,'g~°®, ). (In particular, 7/ = 7 o c.)

The discussion above can be carried out equally well in the setting of Q-
representations, and we define Trr! %(G,(Q,)), Irr}"(G(Q,)) etc. in the obvious
fashion. We also define a base change map BC,, in Case 1 (resp. Case 2) by setting
BC,(7) =+ 'BC,(ur) for m € Irr}" (G (Qy,)) (resp. 7 € Irr(G,(Qy)))-

Let &c denote an irreducible algebraic representation of G,, over C. There is an
isomorphism G, (C) = G,,(E ®g C) = G,(C) x G,,(C) induced by the isomorphism
E®gC 5 C x C which sends e ® z to (7(e)z,7¢(e)z). We associate to £ a f-stable
irreducible algebraic representation = of G,, over C by setting E := £ ® £&. Every
such = arises in this way.

We also fix the following data:

e V= F" as an F-vector space;

e () : VxV — Q is a non-degenerate pairing such that (fuvy,ve) =
(v1, fvq) for all v1,v3 € V and f € F}

e h:C — End p(V) ®g R is an R-algebra embedding such that the bilinear
pairing (V ®gR) x (V ®gR) — R; (v1, v2) — (v1, h(i)ve) is symmetric and
positive definite.
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Under the natural isomorphism End (V) ®g R = [, cg+ Mn(C) we assume that

h sends
L <zlpa 70 )
0 7z, ceal

for some p,, ¢s € Z>o With ps + g, = n.
Define a reductive algebraic group G/Q by setting

G(R) ={(\,9) € R*XGL,(F®qgR) : (gu1, gva) = X (v1,v9) for all v1,vy € VRgR}

for each Q-algebra R. Note that G, is a quasi-split inner form of G. Let v : G — G,
denote the homomorphism which sends (A, g) to .
By Lemma 5.1 of [Shil0] we can and do assume that (-, -) and h have been chosen
so that
e (§p, is quasi-split for each rational prime v;
e for each o € @E, we have (ps,q,) = (1,n—1) if 0 =7 and (ps,¢s) = (0,n)
otherwise.

As a consequence, we can and do fix an isomorphism

G xg A® 2 G, xg A™.
Using this isomorphism, we will henceforth identify the groups G, (Q,) and G(Q,)
for all primes v. Let Cq € Zsg be the integer | ker' (Q, G)| - 7(G) in the notation of
[Shi10].

Let T be a (possibly infinite) set of places of Q containing oo and let Th, =
T—{oo}. Let T be a Galois group with its Krull topology, or the Weil group of a local
field, or a quotient of such a group. We define an admissible Q;[G(A”) x I']-module
to be an admissible Q;[G(AT)]-module R with a commuting continuous action of
I (the continuity condition here means that for each compact open subgroup U C
G(AT), the induced map I' — Aut (RY) is continuous for the [-adic topology on
RY). We let Groth;(G(AT) x T') denote the Grothendieck group of the category of
admissible Q,[G(AT) x I'l-modules. If R is an admissible Q;[G(AT) x T'-module, we
let [R] denote its image in Groth ;(G(AT) x T'). We let Irr;(G(AT) x T') denote the
set of isomorphism classes of irreducible admissible Q;[G(AT) x I']-modules. (See
Section 1.2 of [HTO01].)

Now suppose that T is finite, that p € T' and let J/Q, be a reductive group. Let
G’ be a topological group which is of the form G(Ag,,) x T, or G(Aq, _qpy) x T, or
G(Ar,,—(p}) % J(Qp). Let [X] € Groth;(G(AT)xG") and write [X] = donT n(rT®
p) - [7T @ p] where n(r? @ p) € Z and 7T (resp. p) runs through Irr;(G(AT)) (resp.
Irr;(G")). For a given 71 € Irr;)(G(AT)), we let

(X][x"] = n(x" @p) - [v" @ p] € Groth ;(G(AT) x &).
P
If Ramp)g C T and 11" € Irr(G,,(A”)) is unramified at all v & T', then we define
(X]M") = [X][x"] € Groth,(G(AT) x G)
T

where the sum is over all 77 € Irr;(G(AT)) with «7 unramified at all v ¢ T and
BCT (1nT) := ®;€TBCU(M$) =117,

Finally, suppose G’ of the form G(Ar, _(,)) X T or G(Ar,, ) x T and let R be an
admissible Q;[G(AT) x G']-module. Suppose Ramp/qg C T and II" € Irr (G, (AT)) is



LOCAL-GLOBAL COMPATIBILITY FOR [ =p, 1. 9

unramified at all v & T. Let H™(G(AT)) = @M (G(Qy)), a commutative poly-
nomial algebra over C in countably many variables. Similarly, let H" (G, (AT)) =
@ erM™ (Gn(Qy)). Then T corresponds to a maximal ideal n of H™ (G, (AT))

with residue field C. Note that the space of K”-invariants RE" is a module over
(TIHE(G(AT)). We define

RE" ("} = PRE"), -1 € RE"
m
where m runs over the maximal ideals of H" (G(AT)) with residue field C and which
pull back to n under ®,¢7rBC . Then RKT{HT} is a G'-stable direct summand of

T

RE™.

3. SHIMURA VARIETIES

In this section we recall some results from [Shil0]. We begin with some definitions
and refer the reader to Section 5 of [Shil0] for more details. Let U be a compact
open subgroup of G(A*°) and define a functor Xy from the category of pairs (S, s),
where is S is a connected locally Noetherian F-scheme and s is a geometric point
of S, to the category of sets by sending a pair (S, s) to the set of isogeny classes of
quadruples (A, A, i,77) where
A/S is an abelian scheme of dimension [F't : Qn;

A: A — AV is a polarization;

i: F — End (4) ®z Q such that Aoi(f) =i(f¢)V o X;

7 is a w1 (S, s)-invariant U-orbit of isomorphisms of F ®g A*°-modules 7 :

V ®g A>® = V A, which take the pairing (-,-) on V to a (A>)*-multiple

of the A-Weil pairing on VA := Hy (A4, A™) (see Section 5 of [Kot92]);

e for each f € F there is an equality of polynomials detp,(f|Lie A) =
detz(f|V?1) in the sense of Section 5 of [Kot92] (here V! C VegE C V®oC
is the E-subspace where h(7g(e)) acts by multiplication by 1 ® e for all
e€ E);

e two such quadruples (4, \,7,7) and (A’, \,#,7’) are isogenous if there ex-
ists an isogeny A — A’ taking \,7,7 to y\,4i', 7’ for some v € Q*.

If s and s’ are two geometric points of a connected locally Noetherian F-scheme S
then there is a canonical bijection from Xy (S,s) to Xy (S, s’). We may therefore
think of Xy as a functor from connected locally Noetherian F-schemes to sets and
then extend it to a functor from all locally Noetherian F-schemes to sets by setting
Xu (11, S:) =11, Xu(Si). When U is sufficiently small the functor Xy is represented
by a smooth projective variety X/ F of dimension n—1. The variety Xy is denoted
Shy in [Shil0]. Let Ay be the universal abelian variety over Xp;.

If U and V are sufficiently small compact open subgroups of G(A*) and g €
G(A>) is such that ¢g~'Vg C U, then we have a map g : Xy — Xy and a quasi-
isogeny g* : Ay — ¢g* Ay of abelian varieties over Xy . In this way we get a right
action of the group G(A>) on the inverse system of the Xy which extends to an
action by quasi-isogenies on the inverse system of the Ay .

Let [ be a rational prime and let £ be an irreducible algebraic representation of
G over Q. Then ¢ gives rise to a lisse l-adic sheaf £¢ on each Xy. We let

H*(X, L) = ling(XU xp F,Le).
U
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This is a semisimple admissible representation of G(A*°) with a commuting con-
tinuous action of G and therefore decomposes as

H*(X, L¢) = @7 @ RE,(7™)

where 7 runs over Irr;(G(A>)) and each R’g,l(woo) is a finite dimensional contin-

uous representation of G over Q.
We now recall results of Shin on the existence of Galois representations in the
cohomology of the Shimura varieties in the following two cases:

3.1. The stable case. Assume we are in the following situation:
e II! is a RACSDC automorphic representation of GL,,(AF);
e ¢) : A, /E* — C* is an algebraic Hecke character such that 1/JH1|A§ =
ATE
e Il := ¢ ® [I' (an automorphic representation of G, (A) = GL;(Ag) x
GL,(Ar)) is E-cohomological for some irreducible algebraic representation
= of G, /C;
e Ramg(Il) C Splp, p+ -
Then = is #-stable and so comes from some irreducible algebraic representation &¢

of G,, over C as in Section 2. Let ¢ =17 ¢¢, regarded as a representation of G/Q;.
Let R;(IT) denote the set of #*° € Irr;(G(A>)) such that

o Rf,(m>) # (0) for some k;
e 7 is unramified at all v ¢ Ramp,g U Ramg(IT) and
BC > (1r™) =1I*°.
(We note that BC ,(vm,) is defined for all v foo.)
Let Rf () = @ cr, () REL(T).
Now, let 7" D {oo} be a finite set of places of Q with Ramz/qURamg(Il) C
Tﬁn C SplF/F*,Q' Note that

HX, LN "} = Py, © RE (™) C HY (X, Le)

where the sum is over all 7° = 77 ® 77, where 77 is unramified and BC (a7 =
7. We then define an admissible Q,;[G,,(Ar,, ) x Gr]-module

BC 1y, (H"(X, L)' {TI"}) := P BC 1y, (m1y,,) @ RE (7).

where 7°° runs over the same set.
Theorem 3.1. (1) Ifn> € R;(1I) then R§71(W“) # (0) if and only if k = n—1.

(2) We have

BCy, (Hnil(Xa LE)KT{HT}) = (ZilHTﬁn) ® Egl_l(n)'
(3) We have
R?,;l(ﬂ)ss = Rl,z(Hl)CG & Rl,l(w”GF'

Proof. The first part follows from Corollary 6.5 of [Shil0]. The second part follows
from the proof of Corollary 6.4 of op. cit.. The third part follows from the proof

of Corollary 6.8 of op. cit. (Note that the character rec;,, () which appears in the
proof of this corollary is equal to R ,(¢~1).) O
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3.2. The endoscopic case. We now assume we are in the following situation:

® m1, Mo are positive integers with m; > msy and m; + ms = n;

e for i = 1,2, II; is a RACSDC automorphic representation of GL,,,(Ar)
with Ramg(Il;) C Splpp+ o

e w:Aj/E* — C* is a Hecke character such that

— Ramg(w) C Splp/r+ g
— | A% /O is the quadratic character corresponding to the quadratic
extension E/Q by class field theory.

e ¢): Aj/E* — C* is an algebraic Hecke character such that

= (Y ¥m,) |y = (W@ mm))e /(YpewNimm)) where N (mi, mg) =
[FT:Q](mie(n —my) + mae(n —my))/2 € Z;
— Ramg(v) C Splp/p+ o

e fori= 1,27 HMJ = Hz &® (w o NF/E ] det)ﬁ(”_m");

e Il := ¢ ®n-Ind gf:ﬂ X GLm, (ITpr1 ® Hpz2) (an automorphic representation
of G, (A)) is E-cohomological for some irreducible algebraic representation
= of G,,/C. (We note that the normalized induction is irreducible as IIpsq
and IIpz o are unitary.)

As above, we let ¢ be the irreducible algebraic representation of G over Q; such
that Z is associated to €. Let R;(II) denote the set of 7°° € Irr;(G(A>)) such that

° RIECJ(T‘-OO) 7& (0) for some k;
e 7 is unramified at all v ¢ Ramp,g U Ramg(IT) U Ramg(w) and
BC (™) = II*°.

Let R (1) = @, er, (m REL(T)-
Let T' O {oo} be a finite set of places of Q with Ram g U Ramg (IT)URamg(w) C
Tan C SplF/F‘hQ' We define

BC 1., (HH(X, £o) {11 })
exactly as in the previous subsection.
Theorem 3.2. (1) If 7*° € Ry(II), then R’g’l(wo") # (0) if and only if k =
n— 1.
(2) We have
BC ry, (H*(X, L) {II"}) = (v~ "My, ) @ Re (1),
(3) There exists an integer eo(I1, G) € {£1} depending on I and G such that
(a) If eo(II,G) =1 then
REH I 2 Ry, ()% @ Ry (a0 [07m)/2)g,
(b) If eo(I,G) = —1 then
R () & Ry ()6 @ Ry (2] (722,

Proof. The first and second parts follow respectively from Corollary 6.5 and the
proof of Corollary 6.4 of [Shil0]. The third part follows from the proofs of Corollar-
ies 6.8 and 6.10 of op. cit. (Alternative 3a corresponds to the case when e; = e in
the notation of op. cit., while alternative 3b corresponds to the case when e; = —es.
Note however that by Corollary 6.5 of op. cit., e; = (—1)"~! = 1. We therefore
take ex(II, G) = e3.) O
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4. INTEGRAL MODELS

We now proceed to introduce integral models for the varieties Xy and to deduce
various results on these models, following the arguments of Section 3 of [TYO07].
Recall that we have fixed an isomorphism G XgA™ = G, X A™. Since p € Splg /q,
we have an isomorphism

G(Qy) = Q) x [[GLa(Fu,)
i=1
and we decompose G(A>) as

G(A™) = G(A™P) x Q) x H GLn(Fy,).

i=1

If m = (ma,...,m,) € ZL,', set

Uy (m) = [ [ ker(GLn(Opw,) = GLu(Opw, /w™)) C [ GLn(Fu,).

P
i=2 =2
We consider the following compact open subgroups of G(Q,):
Ma(m) = Z, x GLn(OFw) x Uy’ (m)
Iw(m) = Z; X Iwy x U (m).

Fix an m as above. If UP C G(A*P) is a compact open subgroup, we let Uy =
UP x Ma(m) and U = UP x Iw(m). Fori = 1,...,r,let A; C V ®p Fy, be a
GL,(OF,, )-stable lattice.

For each sufficiently small U? as above, an integral model of Xy, over Op,, is
constructed in Section 5.2 of [Shil0] (note that X, is denoted Shy» () in [Shil0]
with m = (0,mz,...,m,)). We denote this integral model also by Xy,. It repre-
sents a functor Xy, from the category of locally Noetherian Op ,,-schemes to sets
which, as in the characteristic 0 case, is initially defined on the category of pairs
(S, s) where S is a connected locally Noetherian O, ,,-scheme and s is a geometric
point of S. It sends a pair (S, s) to the set of equivalence classes of (r + 3)-tuples
(A’ )‘a ivﬁp’ {ai}§:2) where
A/S is an abelian scheme of dimension [F't : Qn;

A: A — AV is a prime-to-p polarization;

i: Op — End (A) ®z Z,) such that Ao i(f) =i(f°)Y o A;

7P is a w1 (S, s)-invariant UP-orbit of isomorphisms of F' ®g A>P-modules

NPV ®@g AP =5 VP A, which take the pairing (-,-) on V to a (A%P)*-

multiple of the A\-Weil pairing on VP Ag;

e for each f € Op there is an equality of polynomials detp,(f|Lie A) =
detz(f|V1!) in the sense of Section 5 of [Kot92];

o for2 <i<r a;:(w;™A;/A;) — A[w!"]is an isomorphism of S-schemes
with Op ,,,-actions;

and

e two such tuples (A, A, ¢, 7P, {a; }_y) and (A", N, ', (7P), {a}}i_,) are equiv-
alent if there is a prime-to-p isogeny A — A’ taking A, ¢, 7? and «; to v\,

', (m”)" and o for some v € Z(Xp).
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The scheme Xy, is smooth and projective over Op,,. As UP varies, the inverse
system of the Xy,’s has an action of G(A>P).

Given a tuple (A, A\, 4,77, {a;}_5) over S as above, we let G4 = A[w™], a
Barsotti-Tate Op ,-module over S. If p is locally nilpotent on S, then G4 has
dimension 1 and is compatible (which means that the two actions of Op, on
LieG4 (coming from the structural morphism S — Spec Op,, and from i : Op —
End (A) ®z Zy)) coincide). We let Ay, denote the universal abelian scheme over
Xu,, and we let G = gAU0~

Let Xy, denote the special fibre Xy, X0, k(w) of Xy, and for 0 < h <n—1,

let Ygﬂ denote the reduced closed subscheme of X, whose closed geometric points

s are those for which the maximal étale quotient of G, has O ,,-height at most h.
Let (h) [R] [h—1]
XU() - XU() - XU()

(where we set Yg;o U_ (). Then YS)D) is non-empty. [We exhibit an F,, point of Yg]o)

Consider the p-adic type (F,n) over F' where n,, = 1/(n[k(w) : Fp]) and 7,, = 0
for ¢ > 1. It corresponds to an isogeny class of abelian varieties with F-action over
F,. Let (A,i)/F, be an element of this isogeny class. Then
e A has dimension [F" : Q]n;
e Cy =End%(A) is the division algebra with centre F which is split outside
ww® and has Hasse invariant 1/n at w;
e and the p-divisible group A{w>] has pure slope 1/(n[F,, : Qp]), while AwS®]
is étale for i > 1.
(See section 5.2 of [HTO01].) Just as in the proof of Lemma V.4.1 of [HT01] one shows
that there is a polarization A\g : A — AV and an F-vector space Wy of dimension n
together with a non-degenerate alternating form ( , )¢ : Wy x Wy — Q such that
e Npoi(a) =1i(ca)V o) for all a € F;
o (ax,y)o = {(x,(ca)y)o for all a € F and z,y € Wy;
o VPAXW,®qgA>®P as A% P-modules with alternating pairings defined up
to (A°P)*-multiples (the pairing on V? A being the A\o-Weil pairing);
e Wy ®gR =2V ®gR as F ®p R-modules with alternating pairings up to
R*-multiples.
(In fact Wy will be the Betti cohomology of a certain lift of (A, ) to characteristic
0.) Let Go denote the denote the algebraic group of F-linear automorphisms of Wy
that preserve ( , )o up to scalar multiples, and let ¢g € H'(Q,Gy) represent the
difference between (W, ( , )o) and (V,( , )). So in fact

¢o € ker(H'(Q,Go) — H'(R, Gy)).
Let {, denote the Ag Rosati involution on Cy and define an algebraic group H{)W /Q
by
HyV(R) = {g € (Co @ R)* : gg* € R*}.
There is a natural isomorphism
HEY xg A®P =5 Gy xg AP

coming from the isomorphism VP A = Wy ®g A°P. As in Lemma V.3.1 of [HT01]
the polarizations of A which induce complex conjugation on i(F') are parametrized
by

ker(HY(Q, HYV) — H'(R, HZY)).
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Let A(Go) and A(H{YV) be the groups defined in Section 2.1 of [Kot86], so that
there are sequences

HY(Q,Go) — H'(Q,Go(A)) — A(Go)
and
HY(Q HyY) — HY(Q. Hy'V (A)) — A(Hp"),
which are exact in the middle. Note that as all primes of F'™ above p split in F
we have H'(Q,,Go) = (0) and H*(Q,, H3*V) = (0). Thus the image ¢°"" of ¢g in
HY(Q, GO(KOO’p)) maps to 0 in A(Gp). By Lemma 2.8 of [Kot92]

HYQ HZV(A™T) = HYQ Go(A™"))
\ \
A(HPY) = A(Go)

commutes. Thus thinking of 3> € H'(Q, HXV (A™")) we see that it can be lifted
to
0" €ker(H'(Q, HyY) — H'(R, Hp")).
Let A denote the corresponding polarization of (A, ). There is an isomorphism
'V ®gA®P =5 VPA
of A%’P-modules with alternating pairings up to (A°?)*-multiples. Moroever for
i = 2,..,r the p-divisible group A[w:°] is étale and so there are isomorphisms
(w;™ A /A = Alw!™]. Thus
. — [d 7(0) il
(AN 0,77 {aitis) € Xy, (Fp),
as desired.]
Just as in Section I11.4 of [HT01], one deduces that each Yg:] ) is non-empty and

. . —(h
smooth of pure dimension h. Over X éo)

05653660

where GO is a formal Barsotti-Tate OFw-module and G is an étale Barsotti-Tate
OF w-module of OF ,-height h.

We define an integral model for Xy over Op,, (for sufficiently small UP) as
on page 480 of [TY07]. It represents a functor Xy from the category of locally
Noetherian O ,,-schemes to sets which, as above, is initially defined on the category
of connected locally Noetherian O ,,-schemes with a geometric point. It sends a
pair (5, s) to the set of equivalence classes of (r + 4)-tuples (A, A, 4,77, C, {a; }1_s)
where (A, A\, 4,77, {a;}_5) is as in the definition of Xy, (S, s) and C is a chain of
isogenies

there is a short exact sequence

C:Ga=Go—G1 = =Gy =Ga/Galw]
of compatible Barsotti-Tate Op ,-modules, each of degree #k(w) and with com-
position equal to the canonical map G4 — Ga/Ga[w]|. By Lemma 3.2 of [TY07],
which holds equally well in our situation, the functor Xy is representable by scheme
Xy which is finite over Xy, .

Let UP be sufficiently small and let Xy = Xy XOp.,, k(w) denote the special
fibre of Xyy. By parts (1) and (2) of Proposition 3.4 of [TY07] (whose proof applies
in our situation), Xy has pure dimension n, it has semistable reduction over Op,,,,
it is regular and the natural map Xy — Xy, is finite and flat. We let Ay denote
the universal abelian variety over Xy .
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We say that an isogeny G — G’ of one-dimensional compatible Barsotti-Tate
Op w-modules of degree #k(w) over a scheme S of characteristic p has connected
kernel if it induces the zero map LieG — LieG’. Let Yy, denote the closed sub-
scheme of Xy over which G; 1 — G; has connected kernel. By part (3) of Propo-
sition 3.4 of [TYO07], each Yy ; is smooth over Spec k(w) of pure dimension n — 1,
Xy = Ul Yy, and for ¢ # j the schemes Yy ; and Yy ; have no common connected
component. It follows that X has strictly semistable reduction.

For each S C {1,...,n}, we let

YU,S = ﬂ YUﬂ' and YUO,S = YU7S - U YU,T-
icS T2S
Since Xy has strictly semistable reduction, each Yy g is smooth over k(w) of pure
dimension n — #S and the Yl?’ g are disjoint for different S.

The inverse systems Xy and Xy, for varying UP, have compatible actions of
G(A>P). For each S C {1,...,n}, the inverse systems Yy g and Yy g are stable
under this action. As in the characteristic zero case, the actions of G(A>?) extend
to actions on the inverse systems of the universal abelian varieties Ay and Ay, .
Here the action is by prime-to-p quasi-isogenies.

Let ¢ be an irreducible algebraic representation of G over Q;. If [ # p, then the
sheaf L; extends to a lisse sheaf on the integral models Xy and Xy,. There exist
non-negative integers m¢ and t¢ and an idempotent e¢ € Q;[Sm, x F™¢] (where
Sm, is the symmetric group on me-letters) such that

= vl @ee(VY ©g Q)%

This follows from the discussion on pages 97 and 98 of [HTO01] (applied in our
setting). Let N > 2 be prime to p and let

clme.N) = [T [T =57 e qiavzoy ey
r=1y#1

where [N], is the element of (N%20)™¢ with N in the 2-th entry and 1 in the
other entries and where y runs from 0 to 2[F" : Q]n but excludes 1. Thinking of
(NZz0)me C F™Me e set

ag = g N = EgE(f,N)2n_1 S @I[SW X Fmg].

Let proj denote the map A;¢ — Xy and for a = 1,...,mg, let proj, : Ay — Xu
denote the composition of the a-th inclusion Ay — A?}s with proj. Then we have
the following (see page 477 of [TY07]):

im - )0 (4 7# me)
L4 8(67 N)R]pI‘OJ*@l = m, . — . )
®a:§1 Rlproja,*(@l (] = mﬁ)
e ccc(§, N)R™eproj,Q, = Ly;
e a¢ acts as an idempotent on each HY(A* X g, Fu, Q;(t¢)) and moreover

(0) (5 <me)

agHj(A?& O Fu, Qulte)) = {Hj_mé (Xu xp, Fu,Le) (5> me).

Let A?;&S = A} xx,, Yu,s. As UP varies, the inverse system of the A?}&S inherits
an action of G(AP*°) by prime-to-p quasi-isogenies. We now make the following
definitions.
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e Define admissible Q;[G(A%?) x G r]-modules:
H (Xrw(m)» Le) = lim H (Xy xp F, L) = HI (X, L)™'
Ur

Hj(A?Zf(my@z) = hﬂHj(-A;]”ﬁ xr F,Qy).
Ur

e If | # p, we define admissible Q,[G(AP*) x Frob’]-modules:

Hj(}/iw(m),37 ‘Cﬁ) = liA’lHj(YU,S Xk(w) k(’LU),,Cg)
Ur

HI (Yo (), 50 L) = hﬂHﬁ(Y[ﬂS X (w) k(w), Le)
Ur

Hj(-AIW(m),Sv ‘Cf) = 1iérjl[{j(-AU,S Xk (w) k(w)v@l)
Us

e Ifl =pando: Wy — Q over Z, = Z;, where Wy is the Witt ring of k(w),
then we define the admissible Q;[G(A%?) x Frob”]-module

Hj(AIw(m),S/WO) ®W0,0' @l = %HH] (-AU,S/WO) ®W0,U @l-
Ur

(Here H’(Ay,s/Wo) denotes crystalline cohomology and Frob,, acts by the
[k(w) : Fp]-power of the crystalline Frobenius.)

We note that if [ # p, then a¢ acts as an idempotent on H” (Alw(m)ys,@l) and

(0) (4 <me)

HY Q) =1,
agH? (Ary(m),s, Q) {H]—m,g(}/lw(m)’s,l:&) (5 > me).

If | = p, then a¢ acts as an idempotent on Hj(AIW(m)’S/WO) ®w,.o Q. We also
note that Ip, acts trivially on WD (H7 (X1 (), Le)|ap, ) and thus the latter can

w

be regarded as a Frob”-module.

Proposition 4.1. Let T be a finite set of places of Q containing {p, oo} URampq
and let 1T € Trr(G,,(AT)) be unramified at allv € T. Ifl = p, let 0 : Wy — @,
over Z; = Z,. Then there is a spectral sequence in the category of admissible
QIG(Ary,—(p}) ¥ Frob”]-modules

7,7 T i+q T
By (Iw(m), )" {II"} = WD(H"™ (X1w(m), Le)lar, )™ {117}
where EZZLJ (Iw(m), 5) = @sZmax(O,fi) @#S:i+23+1 Hg',s7 and
L eI (AT Gt — ) = HI2 (Vi s Le(—5) (1 £D)
S,s aij+m5_28(A?;§(m),S/Wo) Owo.o Qulte — 5) (I =p).

Moreover, the monodromy operator N on WD(Hi+j(XIW(m),£§)|GFW)KT{HT} is
induced by the identity map

N: P ag H7Tme=22 (AL 6 Qu(te — 9))
#S=i+2s+1

AN @ afH(jiz)erEiz(Sil)(‘Aﬁf(m)ysv@l(tE _ (s . 1)))
#S=(i+2)+2(s—1)+1
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in the case when I # p (resp.

N - @ aij+m£728(A;::f(m),S/WO) W, @l(té —s))
#S=i+2s5+1
-~ @ agH(jf2)+mgf2(s71)(Agv&(m)?s/wo) Bwy.o Qulte — (s — 1))
#S5=(i+2)+2(s—1)+1

in the case when l =p).

Proof. The proof of Proposition 3.5 of [TY07] shows that we have a spectral se-
quence E}7 (Iw(m), &) = WD(H™I(X1y(m), L¢)|cy, ) and that the monodromy
operator N on WD(Hi+j(X1W(m),£5)|GFw) is induced by the maps above. The
result now follows from the fact that R — RK" {lI”'} is an exact functor from the
category of admissible Q;[G(A%?) x FrobZ]-modules to the category of admissible
Q[G(Agy,—py) % Frobl]-modules. 4

5. RELATING THE COHOMOLOGY OF Yy g TO THE COHOMOLOGY OF IGUSA
VARIETIES

Let U? C G(A*?) be sufficiently small and let m € Zg)l. Following Section 4
of [TY07], we can relate the cohomology of the open strata Y ¢ to the cohomol-
ogy of Igusa varieties of the first kind. For h = 0,...,n —1 and my € Z>q, let

s /Yﬁ}? denote the Igusa variety of the first kind defined as on page 121 of

Ur,(my,m)
[HTO01]. It is the moduli space of isomorphisms
Ofi}t : (wimIOF,w/OEw)hy(h) - get[wml}-
Uo

Let I ,(]h) /Yg:) be the Iwahori-Igusa variety of the first kind defined as on page 487
of [TY07]. It is the moduli space of chains of isogenies

=G~ G = —G,= get/get[w]

of étale Barsotti-Tate Op ,-modules, each of degree #k(w) and with composition

equal to the natural map G®* — G°'/G**[w]|. Then I,(]};) (mam)
(h)

étale over Y;Z ) and the natural map I ((]};) (1m) I;;” is finite étale and Galois with
h

Galois group By (k(w)). The inverse systems I[(]p) (mam)
inherit an action of G(A>P). Let £ be an irreducible algebraic representation of G

I(h) and I,(Jh).

Ur,(mq,m)

For S C {1,...,n} and h = n — #5S5, there is a natural map ¢ : Y[RS — I[(Jh)
which is defined by sending the chain of isogenies C to its étale quotient. By Lemma
4.1 of [T'Y07] this map is finite and bijective on geometric points. By Corollary 4.2
of op. cit. we have

and Ié,h) are finite

and T, ((]h)7 for varying UP,

over Q. If I # p, then & gives rise to a lisse sheaf L£¢ on

i AR ~. gric7(h AR
H(YO.s X ) kW), Le) — HAIT X gy k(w), L)

~ i h w
— HC(I[(]P)’(I’m) ><k(w) k(w)v ‘Ci)Bh(k( )

for each i € Z>( and these isomorphisms are compatible with the action of G(AP*°)
as UP varies.
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If I # p, set
Hi(I{yl,y Le) = lng 7 (I Xy W), Le)-

Iw(m)?
This is an admissible @;[G(A%*?) x Frob”]-module. Define
[H()/Iw(m),SW ‘CE)} = Z(_l)n_#s_iHi (}/iw(m),Sa [’5)
[HC(YIgv(m),Sv Lf)} = Z(il)n7#87in(}/Igv(m),Sv E&)
h IR ag)
(H(10 ) L) = S (-0 Hi(1l L)
i
in Groth ;(G(A>P) x FrobZ).
There is, up to isomorphism, a unique one-dimensional compatible formal

Barsotti-Tate Op ,-module Xp, ,—p over k(w) of Op,-height n — h. We have
End o, (Xp, n-n)®zQ = Dp, n—n, the division algebra with centre Fy, and Hasse

invariant 1/(n — h). For my € Zxq, let IgUp (mam) /(ngho) Xk (w) k(w)) denote the
moduli space of Op q,-equivariant isomorphisms

jEt : ( 7m10Fw/OFw) get[ ]

T (@)
O (Spynen[w™ ])X<L)><k(w)k(w) = GOlw™]

that extend étale locally to any level m{ > m;. (In the notation of [Shil0], for

each 0 < h < n — 1, there is a unique b € B(Ggq,,—u) corresponding to h (see

displayed equation (5.3) of op. cit.). If m = (my,...,m1), then Ig(h)(ml’m) is

denoted Igy, 175 ,,, in [ShilO] (see Section 5.2 of op. cit. and Section 4 of [Man05]).

We have simply extended the definition to ‘non-parallel’ (m,m) € Zx¢ x Z;Bl. We

also note that the notation Ig'™ is used in place of Ig, in Section 7.3 of [Shil0].)
If | # p and £ is an irreducible algebraic representation of G' over Q;, then ¢ gives

rise to a lisse sheaf £¢ on each Igglg (mam)” Let
i . i h
(g™, L) = lim  HI(Tgy) 0 00 Le):
UP myi,m

This is an admissible Q;[G(A>?) x J"(Q,)]-module where
JM(Qp) = Q) x (DF, _p X GLn(Fy)) X HGL

(see Section 5 of [Shil0], where J(")(Q,) is denoted J;,(Q,), with b being the element
of B(Q,, —u) corresponding to h; in Section 7.3 of op. cit., Jy, is denoted JM). We

have
XIwp, ) XUy (m)

Hé(Ig(h)7£E)Zp X(ODFU)’n—h ~ Hl(II(zzm)wCE%

where the latter is regarded as an admissible Q;[G(A?'*)]-module. Moreover, the
action of Frob,, on the right hand side corresponds to the action of

(1’ p_[k(w):]Fp]7 w_

Dpy,n—n’ 7

€ G(AP>)xQ) x Dy XGLp(Fy)X GL
Fy,n—h
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on the left hand side, where @wp,,  _, is any uniformizer in D, ,,—p. We let

[HC(Ig(h)v ‘Cf)] = Z(_l)hiiHé(Ig(h)v EE)

in Groth;(G(A>"?) x JM(Q,)). As on page 489 of [TY07], we have

[H (Yise(my. 5 Le)] = D (—1) = #=0=#D g (g0 D p)).
TOS

As there are (n _h#5> subsets T' D S with n — #71 = h, we deduce the following:

Lemma 5.1. Supposel #p and S C {1,...,n}. Then we have an equality

[H(lew(m),Sa £§)] =
el G (n _h#s) [Ho(1g®), £e)) X (OPr o I XU

in Groth ;(G(AP>) x Frob%).

6. COMPUTING THE COHOMOLOGY OF Yy g

In this section we deduce analogues of Proposition 4.4 of [TY07].

6.1. The stable case. Let II' be a RACSDC automorphic representation of the
group GL,(Ar). Suppose that IT! is Z'-cohomological where Z! is an irreducible
algebraic representation of Rp/qGL, over C. Assume that

e Ramg(IT") C Splp/p+ g
By Lemma 7.2 of [Shil0], we can and do choose an algebraic Hecke character
¢ : Af/E* — C* and an algebraic representation &c of G over C such that

o ¢H1|A§ = Y°/;

e If = is the representation of G,, over C corresponding to ¢ as in Section 2,

then E! is isomorphic to the restriction of E to (Rp/qGLy,) xq C;

. fC|];1x = S, (see below);

e Ramg() C Splp/p+ g

e ¢ is unramified at u (recall that u is the prime of FE below the w;).
(We note that Lemma 7.2 of [Shil0] does not guarantee that i) be unramified
at u, but the fact that this can be achieved follows from the proof of Lemma
VI1.2.10 of [HT01].) In the third bullet point, we consider EX embedded in G(R) C
R* x GL(V ®qg R) via the map z — (22, z). It then follows from the third bullet
point that R;,(1) is pure of weight mge — 2t¢. Set

I:=¢ .

Then II is a E-cohomological automorphic representation of G, (A) = GL,(Ag) x
GL,(Ar). Note that IT', 1 and II satisfy the assumptions of Section 3.1. Let £ =
171, an irreducible algebraic representation of G over Q;. Let 7, € Irr;(G(Q,))
be such that BC ,(sm,) = II, (note that 7, is unique as p splits in E).

The next result follows from Proposition 7.14 of [Shil0].
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Proposition 6.1. Suppose that l # p and ﬂzl,w(m) # (0). Let T D {oo} be a finite
set of places of Q with Ramp,qURamg(Il) U {p} C Thn C Splp/p+ g- Then for
every S C {1,...,n}, we have

. T
HI (Yiw(m),s, L&) {TT"} = (0)
forj#£n—#S.
The following corollary can be proved in the same way as Corollary 4.5 of [TYO07].

Corollary 6.2. Suppose that |l =p and o : Wy = Q; over Z, = Z;. Let T D {00}
be a finite set of places of Q with Ramp/qURamg(Il) U{l} C Thn C Splp/p+ g- If

ﬂ_lIw(m) # (0), then for every S C {1,...,n}, we have
. m — KT
a&(HJ_‘—m& (Alws(m),S/WO) Owy,o QZ)K {HT} = (0)
for j #n —#S.

In the next result we place no restriction on the primes [ and p.

Corollary 6.3. If w,l,w(m) # 0, then WD(ﬁg;l(H)\GFw) is pure of weight me —
2te +n — 1 and WD(R;,,(I" )|, ) is pure of weight n — 1.

Proof. Let T = {oo} U Ramp,g URamg(II) U {p} and let D = dimmy" ™ Let
T’ = Ty — {p}. By Theorem 3.1, we have an isomorphism of Q;[G,, (A7) x Gg]-
modules
. ~

BC 1 (H" ™ (X1w(m), L&) {T1"}) = (') @ RYH(IT))EP.
By proposition 4.1, there is a spectral sequence

i T ne T

By (Iw(m), " {II"} = WD(H" ™ (Xtw(m), Le)lar, )™ {1}

Using Proposition 6.1 (when [ # p) and Corollary 6.2 (when [ = p) we see that
E¥ (Iw(m), &)X {II”} = (0) unless i + j = n — 1, and thus the spectral se-
quence degenerates at Fy. Let mr denote the unique element of Irr;(G(Az)) with
BC 1/ (wg) = v . Then, for i +j = n — 1, EM(Iw(m),&)X {IIT} is of the
form 77 ® R; where R; is a finite dimensional Q, [Frob”]-module which is pure of
weight j 4+ mg — 2t¢ (and possibly zero). The first statement now follows from this
and the description of the monodromy operator N in Proposition 4.1. The second

statement follows from the first statement together with Theorem 3.1 and Lemma
1.7 of [TYO07]. (]

6.2. The endoscopic case. Suppose we are in the following situation:

I1; is a RACSDC automorphic representation of GL,,—1(AF);

RamQ(Hl) C SplF/F'*',Q;

IT; is cohomological for an irreducible algebraic representation =; of the
group Rp/g(GLy-1) over C;

II; has Shin-regular weight.

Lemma 6.4. We can find
e a continuous algebraic character Iy : AY/F* — C* with H;l =1l 0¢;
e a continuous algebraic character ¢ : A /E* — C*;
e a continuous character @ : Aj,/E* — C*; and
e an irreducible algebraic representation &c of G over C
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such that if we set

Mar1 :=1I ® (w o Np/p o det)
My := 1y

I =nInd G o, (Mara @y 2)

and let

o = be the irreducible algebraic representation of G,, over C which corresponds
to &c as in Section 2;

® =" = E|R,, 0 (GLn)xoC

then

e Ramg(Ilz) C Splp/p+ o5

e Il is unramified at u;

e Ramg(¢) C Splp/p+ g;

b £C|}_E§<o = Y5

e v is unramified at u;

e Ramg(w@) C Splp/p+ g

o w|yx factors through A*/Q*RZ, and equals the composite of Artg with
the surjective character G&* — Gal (E/Q) = {£1} (note that this implies
wl=woc);

e w is unramified at u;

o II' is cohomological for Z* (note that IT! is irreducible, as IMar and Iy o
are unitary, and also that (I1*)Y =TIt o ¢);

o Ym |A1§ = /1) (recall that P denotes the central character of T1).

Moreover, if we apply Theorem 3.2 to 11, then alternative (2)(a) holds. In other
words, the integer ex(I1, G) equals 1 and if € = 17 ¢, then

REVYID®™ = Ry, (1) @ Ry, (vl - [2)| 6y

Proof. This follows by combining Lemmas 7.1, 7.2 and 7.3 of [Shil0]. (More pre-
cisely, we first choose w using Lemma 7.1. The extra condition that o be unramified
at u is easily achieved — in the proof of Lemma 7.1 we add the primes v and u® to
the set R and insist that " takes value 1 on p € E* and on p € E,.. We then make
two candidate choices x and y’ for Il with x = = x o ¢, Ramg(x) C Splp/r+ (Q)
and x unramified at v and with x’ having the same properties. In addition, we
assume that the infinity type of ¥ and y’ are as prescribed in the paragraph be-
fore Lemma 7.2 of [Shil0]. (The fact that we can find such characters follows for
instance from Lemma 2.2 of [HSBT06].) Lemma 7.2 of [Shil0] then tells us that
we can choose pairs (¢, {c) and (¢, &) corresponding to the choice of IIy = x or
IT, = x’ and satisfying all the required properties except the requirement that 1
and ¢’ be unramified at u and the requirement that the integer es(Il, G) equal 1.
However, the proof of Lemma VI.2.10 of [HT01] shows that we may choose 1 and
1’ to be unramified at u and Lemma 7.3 of [Shil0] shows that for one of the choices
(X, ¥, &c) or (X', 9, &), the corresponding integer ex(II, G) equals 1.) O

Choose Ils, 1, @ and & as in the above lemma and keep all additional notation
introduced there. Let

I=y eIl
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an automorphic representation of G, (A). Let m, € Irr;(G(Q,)) be the unique
representation with BC (i) 2 II,,. Write ), = 70 @ 7y, @ (®]_y7w, ) corresponding
to the decomposition G(Q,) = QX x GL,(F,) X [li—y GL,(Fy,). Let marw1 =
’L_1HM71,w S Irrl(GLn_l(Fw)) and TMaw,2 = ’L_1HM727w S II“I"[(GLl(Fw)).
For a,b € Z>¢, let
n-Red™” : Groth (GLq4s(Fy)) — Groth(Df. , x GLy(Fy))

denote the composition

J yop
Groth;(GLays(Fu)) —2  Groth(GLa(Fy) x GLy(Fy))

LB, Groth (DY, , x GLy(F.))
where N, is unipotent radical of the parabolic subgroup of GL,, consisting of

block lower triangular matrices with an (a x a)-block in the upper left corner and
a (b x b)-block in the lower right corner;

Inor + Groth (GL (Fy)) = Groth(GLa(Fy) x GLy(Fu))
is the normalized Jacquet module functor; and
LJ, : Groth(GL(Fy)) — Groth(Dp. )

is the map denoted LJ; in Proposition 3.2 of [Bad07]. (See Section 2.4 of [Shil0].)
Let

—<1/2
S TM(Q,) - C
denote the character which sends (gy.0, (d,9),9:) € Q) x (Dg, ,,_, X GLy(Fy)) %
[Ty GLn(Fy,) to | det(d)" det(g)~ (=M [1/2.
Theorem 6.5. Suppose | # p. Let T D {oco} be a finite set of places of Q with
Ram ;g URamg(II) U Ramg (@) U {p} C Tin C Splp/p+ - Then
[He (18, £¢)][11"] = (0)
while for 1 < h <n —1, we have an equality
BCP([He(Ig™), Le)][TT]) = Cal™ ' TI™]x
[(ﬂp,o ®n-Ind gf:ff”l)(m)(n—Red"’h’h’l(rM,w,l) ® TMw,2) ® (®7i“:27rw,1)) ®v 0P, ]
in Groth ;(G,,(A>P) x JM(Q,)).

Proof. The result is essentially a rewording of part (ii) of Theorem 6.1 of [Shil0]. We
freely make use of the notation of op. cit. for the rest of this proof. Let 0 < h < n—1
and let b € B(Qy, —p) correspond to h (in the sense explained above). The constant
e1 which appears in the statement of Theorem 6.1 of [Shil0] is equal to (—1)"~! =1
by Corollary 6.5(ii) of op. cit. Lemma 6.4 above, and the choices made after it,
guarantee that the constant e also equals 1. Applying Theorem 6.1 of [Shil0], we
obtain
BCP([H. (1™, £6)][17)) =

Co(=1)" 7] x |1 (Red)(r)) + Red),_y , (7a1,) )|

(We remark that our definition of [HC(Ig(h),Lg)} differs from Shin’s definition of
H.(Ig,, L¢) by a factor of (—1)".) We have Redi_Ll(wH,p) = n—RedZ_lyl(wHyp) ®
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1_13;/’12 (see Section 5.5 of [Shil0]). By Lemma 5.9 of [Shil0] and the discussion
immediately preceding it, we have

H'Redl;(ﬁp) + n'RedZ—l,l(ﬂ'H,p) = ep(Jo)Tp,0 ® 2X1(h, TH p) ® (®j=gTw,)
where

P (h=0)
1 77TH7P - n- Ind GLy(Fy) n_Redn—h,h—l M .1 ® M 0.2 h O .
GLp_1,1(Fuw) ,W, ,w,

Moreover, e,(J,) = (—1)"""~1 = (=1)" (see Case 1 in Section 5.5 of [Shil0]). The
result follows. 0

In Remark 7.16 of [Shil0], Shin indicates that the following result can proved in
the same way as Proposition 7.14 of op. cit.. We give a self-contained proof here
for the benefit of the reader.

Proposition 6.6. Suppose | # p and 7TII,W ™) #(0). Let T D {oo} be a finite set of
places of Q with Ramp,q URamg(IT) U Ramg(w) U {p} C Thn C Splp/p+ - Then
for every S C {1,...,n} we have

H (Yig(my.s, £e)% {TIT} = (0)
for j #£n—#S.

Proof. Let D = Cg(dim(®7_ymy, )% ™). We deduce from Theorem 6.5 and
Lemma 5.1 that
n—+#S

BCP[H (Yiw(m),s, Le)][TT] = D[~ TI%7] x Z (—1)n—#5=h (n —h#s)

—h.h— 1/2 XIWh,w
|: p 0 ® (n Ind GLh(}IW)(F )(n—Red" h.h 1(71‘1%,11),1) ®7rM,w,2) 6132 ) Fw’n_h :|

in Groth ;(G,, (A?>°)xFrobZ) (recall that Frob,, acts via (p~ k(@) ¥l (wgi 1)
in QF x (Dp, . x GLy(Fy))). Since ™ £ (0), we can write TMuw1 =

Spg, (m1)8- - -BSpy, () where each 7; is an unramified character 7; : F;} — @lx As
ITnr,1 is generic, we know that mar,,,1 = n-Ind g(Lﬁ:)l(F“’)(Spsl (m1) ®--- @ Spy, (7))
where P C GL,_1 is an appropriate parabolic subgroup.

Using Lemma 1.3.9 of [HT01] and Théoreme 3.1 and Proposition 3.2 of [Bad07],

we see that for 1 < h <n — #585,
n-In dgif(Fw(F y(n-Red"™ P (A1) @ Tarw2) =
n—h—1)/2 GLi(Fy) _
Sl ot D2) o det] x [o-Tnd S8 (Spy, gy (il - [ )@
(®,£i 5P, (7)) © Tat,w,2)]
in Groth (D, ,_j, x GLu(F,)), where the sum is over all 4 such that s; > n — h,

and P’ C GLy, is an appropriate parabolic subgroup. (As pointed out in [TYO07],
there is a typo in Lemma 1.3.9 of [HT01] — ‘positive integers hq, ..., h;’ should be

replaced by ‘non-negative integers hq,...,h;’.) Moreover,
Iwp,w
dim (n—Ind GL(" (Fo )(Sps —(nen)(mi| - [ "M@ (®j Spy, (7)) ® 7TM,w,2))
h!

(s = (= ATz 85!
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(see page 490 of [TY07]). From this we deduce that

BC?[H (Yiw(m),s, L¢)][IT"] = D[~ "I %] x
n—#S

n—#S_p (M — F#S h!
Sy (UF) S

h=1 itsi>n—h ¢ ’ )

where V; = rec(m; b1 |S,1;")/2(7Tp70 oNpg,/p,)""). As on page 490 of [TY07], it
follows that
(n — #5)!

BCP[H (Yiw(m),g, Le)|[TT] = Dl TI°P] x ,
—45 HJ’#Z’ 55

7:8;

[Vil.

As II ,, is unitary and tempered (by Corollary 1.3 of [Shil0]) and rec(mp o) =
1 'rec(¢),,) is strictly pure of weight 2t — mg (since &c\;lx = <), we see that

rec(myy o @07 |§;1wfn)/2(7rp,0 oNp, /p,) ") is pure of weight me — 2te +n — 1. If
s; = #5, it follows that V; is strictly pure of weight me —2te +n—1— (#5—1) =
me — 2t¢ +n — #S. The Weil conjectures now imply that if j # n — #S then
[H? (Yis(m),s, L] = ag[H™ 7 (Arw(ny 5, Qu(t)][ITT] = (0)
in Groth ;(G(AP>°) x Frob%). Since
. T . T
[H? (Yiw(my,s0 L) ALY = ([H? (Yiw(m),s, L)) ™
in Groth ;(G(Aq,, —¢py) X FrobZ), the result follows. O

The proof of Corollary 4.5 of [TYO07] allows us to deduce the following.

Corollary 6.7. Suppose thatl =p and o : Wy — Q, over Zy=17;. Let T D {o0}
be a finite set of places of Q with Ramp, g URamg(IT) U{p} C Thn C Splp/pt - If

7TZl)vv(m) 7& (0); then for every S C {1, c ,n}, we have
. m —_— T
ag(HI M (AL 5/ Wo) @wee @) {TTT} = (0)
for j #£n—#S.
The next corollary follows from the previous two results combined with Theorem

3.2 and the proof of Corollary 6.3.

Corollary 6.8. If WZI,WU") # 0, then WD(ﬁg;l(H)\GFw) is pure of weight me —

2te +n —1 and WD(R;,(I11)|gy, ) is pure of weight n — 2.

7. PROOF OF THEOREM 1.2

We now complete the proof of Theorem 1.2. Suppose that v|l is a place of L
with TI," ™" {0}. Choose a finite CM soluble Galois extension F'/L such that
[F*: Q] is even;

F = EF* where E is a quadratic imaginary field in which [ splits;
F splits completely above v;

BC /. (IT) is cuspidal;

Ramp/Q URamQ(BC F/L(H)> - SplQ,F/F+'
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(See the argument in the penultimate paragraph of [Shil0].) Let [ and 2 : Q, = C
as given to us by the statement of Theorem 1.2. Choose another prime [’ # [ and
' : Qy = C. Recall that in Section 2 we introduced notation that was then in force
from Section 3 to Section 6. We will shortly apply the results of these sections in
two scenarios — one where the pair ([,2) of Section 2 is equal to the pair (,2) of
the statement of Theorem 1.2 and one where the (I,1) of Section 2 is equal to the
pair (I’,4") chosen above. The rest of the notation we fix as follows: we take E, F
and F* as chosen above. We take p = and let w be a prime of F' lying above the
prime v of L. This determines v and wi,...,w,. We choose some 7 : F' — C and
1 @p 5 C such that z;l o7 induces w. We take n = m if misodd and n =m+1
otherwise. Finally we choose a set of data (V,(-,-),h) satisfying the assumptions
of Section 2.

Suppose first of all that m is odd. Denote BC /1 (IIL) by II'. We choose
¢ and £c as in Section 6.1 and set 0=y, =1 e and & = (V) e
Define R” 1( ) and R”, l,l(H) as in Section 3.1. Then R?, l,l( ) = Ry (TN ®
Ry (¢ )\GF by Theorem 3.1 and hence
YWD(RE (I 6, ) 2 rec(T1,)Y @ | - |7™/% 0 det)“ @ rec(, " o Np, /i)
by Theorem 1.2 of [Shil0]. Let T" O {oc} be a finite set of places of Q with
Ramp,/q U Ramg (I1) U {p} C Tsn C Splp/p+ g and let 7" = Tgy — {p}. Let 77, be
the unique element of Irry (G(Ary, )) with BC 1, (/77,1 ) = Iz, . Choosem € Z™*
and a compact open subgroup Ur: C G(Agv) such that (zf, )Wm)xUr o£ {0}
Let ()T € Qu[KT\G(AT)/KT] be an idempotent with (¢/)TRE" = RK"{TIT}
whenever R is one of H7 (Xyy(m), Ler) or aE’Hj(A;:f(/m),sv@l/)- Then each of these
spaces is 7/, -isotypic. Let e = 17%/¢’. Then for each o € Wg,, j > 0, S C
{1,...,n} and o : Wy < Q, over Z;, we have

'tr (e’ ag |HI (ALY Iw(m) S’Ql/)KTXUT’) =

’H’Lg/

utr (ceag (I (AL o/ Wo) @wi.o Q)" ¥Vr)

by the main results of [KM74] and [GM8T]. For each j > 0, we have

’H'Lgl 7)’L§/

€ag (Hj (Alw(m),s/WO) Wy, @I)KT C ag (Hj (Alw(m),s/WO) QWo,o @l)KT{ﬁT}
e(Hj (XIw(m)/WO) OWo,o @Z)KT C (HJ (XIW(m)/WO) QWo,o @Z)KT {ﬁT}

We then deduce from the previous equality of traces together with Proposition 6.1,
Corollary 6.2, Proposition 4.1 and Theorem 3.1 that the two inclusions above are
equalities (for dimension reasons) and moreover that

Vo (a|WD(RE ) (Dlay, ) = r (o] WD(RE, (Mla, )
for each a € W, and hence
TWD(RY (D)6, )** & (rec((IT,)Y @ [ det |1 7/2)*)¢ @rec(d, ' o Np, /i, )-
Since ﬁg;l(ﬁ)b" >~ R ,(1')° ® Ry ,(¢)|Gy, by Theorem 3.1, we see that

tWD(Ry, (I |G, )™ = rec((IL,)Y @ | det [(177)/2)
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By Proposition 1.1, it suffices to show that WD(R;,(I')|¢,, ) is pure and this
is established in Corollary 6.3. As v splits completely in F', we have established
Theorem 1.2 in the case when m is odd.

Now suppose that m is even and denote BC /1, (II1) by IT;. We choose 9, &c, @,

IT, and IT' as in Lemma 6.4. Set II = ¢y @ IT* and £ = 1~ 1¢¢ and & = (¢/)"1¢c and

define E?l_

(1) and }N‘??,_l,l(ﬁ) as in Section 3.2. The proof now proceeds exactly

as in the case where m is odd except that we replace the appeals to Theorem
3.1, Proposition 6.1, Corollary 6.2 and Corollary 6.3 with appeals to Theorem 3.2,
Proposition 6.6, Corollary 6.7 and Corollary 6.8 respectively.
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