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Abstract. This is a brief account of my results with George Boxer, Frank Calegari and Vincent Pilloni on
the (potential) modularity of abelian surfaces.

1 Introduction This article gives an overview of the proofs of the main results of [7, 8]. T have attempted
to complement the introductions to those papers, and to concentrate on aspects of the proofs that are not already
covered in other survey articles. Consequently, I devote little space to innovations in the Taylor—Wiles method (in
particular, the Calegari-Geraghty method), for which I refer the reader to Calegari’s excellent surveys [16, 15].

We begin by recalling the main theorems of the papers. Our first paper [7] proves the Hasse-Weil conjecture
for abelian surfaces (and genus 2 curves) over totally real fields. To recall what this means, let X be a smooth,
projective variety over a number field F' with good reduction outside a finite set of primes S. Associated to X,
one may write down a global Hasse-Weil zeta function:

1
Cx(s) = HW7

where the product runs over all the closed points z of some (any) smooth proper integral model X' /Op[1/S5] for X.
(Different choices of S only change (x(s) by a finite number of Euler factors. For curves and abelian varieties
there is a natural definition of the Euler factors at all places, and our modularity results are compatible with these
factors, but we ignore this point from now on.) The function (x (s) is absolutely convergent for Re(s) > 1+dim X.
We have the following:

CONJECTURE 1.1 (Hasse-Weil Conjecture, cf. [43], in particular Conj. C9). The function (x(s) extends to
a meromorphic function of C. There exists a positive real number A € R>°, non-zero rational functions P,(T)
for v|S, and infinite Gamma factors T',(s) for v|oo such that:

£(s) = Cx(s) - A2 T Tuls) - [ Po (N (0))

v|oo v|S

satisfies the functional equation £(s) = w - £(dim X + 1 — s) with w = £1.

(In Serre’s formulation of the conjecture, the Gamma factors are also given explicitly in terms of the Archimedean
Hodge structures of X.)

If F = Q and X is a point, then (x(s) is the Riemann zeta function, and Conjecture 1.1 follows from
Riemann’s functional equation. By work of Hecke and Brauer, the conjecture is known if X is zero-dimensional,
or if more generally the Galois representations associated to the [-adic cohomology of X are potentially abelian
(e.g. an abelian variety with CM). All subsequent progress on Conjecture 1.1 has been via the Langlands program.
Write Galg for the absolute Galois group of Q; more generally, for any field K, we write K for a separable closure,
and Galg = Gal(K/K) for the absolute Galois group. If K is a local field, then we write Ix for the inertia
subgroup of Galg. Via the Grothendieck—Lefschetz trace formula, one writes for each prime ¢ (at least up to a

finite number of Euler factors)
2dim X

()= [ LH"(X7Qp), )"
n=0

where L(H"(X,Qy),s) is the L-function of the (-adic representation H" (X, Q,) of Galg. The Langlands
conjectures predict that each L(H"(X%,Q,),s) is a product of automorphic L-functions; more precisely, we



have L(H"(X7,Qy),s) = I1; L(mj, 8), WhEI“G each 7; is an automorphic representation of GL,,(F) for some
integers n; with }°,n; = dimg H" (X7, Q). Since (completed) automorphic L-functions have meromorphic
(usually holomorphic) continuations and functional equations, this prediction implies the Hasse-Weil conjecture.

DEFINITION 1.2. If X/F is a curve or an abelian variety, we write L(X, s) .= L(H' (X%, Qy), s), and we say
that X is modular if L(X,s) is a product of automorphic L-functions. We say that X is potentially modular if
there is a finite extension F'/F such that Xp: is modular. Similarly, we say that a representation p : Galp —
GL,(Qy) is modular if L(p,s) is a product of automorphic L-functions, and we say that a representation p :
Galp — GL,,(F;) is modular if it is the reduction modulo £ of a modular Galois representation.

Remark 1.3. The notion of potential modularity was introduced by Taylor [46], who observed that Brauer’s
methods apply in this setting, so that if X is potentially modular, then L(X,s) has the expected meromorphic
continuation and functional equations. However one cannot in general say anything about the poles (or lack
thereof) of this meromorphic continuation.

If X is a curve of genus zero, then (up to bad Euler factors) {x(s) = (r(s){r(s—1), and Conjecture 1.1 follows
immediately. The fundamental work of Wiles [49, 47] and the subsequent work of Breuil, Conrad, Diamond,
and Taylor [20, 12] proved Conjecture 1.1 for curves X/Q of genus one, since if we write E = Jac(X), then
Cx(s) =((s){(s—1)/L(E,s) so the modularity of FE implies the holomorphy and functional equation for L(E, s).
More generally, Taylor’s potential modularity results [46] prove Conjecture 1.1 for curves X/F of genus one over
any totally real field.

The methods used in these papers have been vastly generalized over the past 30 years due to the enormous
efforts of many people, and as a consequence one knows for example that if F' is totally real and X is such that
the Hodge numbers h?? = dim HY} (X) = dim H?(X, Q) of X are at most 1 for all p and ¢ with p+ ¢ = n, then
L(H"(X%,Qy), s) has the expected meromorphic continuation and functional equation (see [31, Cor. B]).

Unfortunately, this multiplicity one condition on Hodge numbers is fundamental to the original Taylor—Wiles
method, and there is a paucity of natural geometric examples satisfying this condition. In particular, it fails for
curves of genus ¢ > 1 and for abelian varieties of dimension ¢ > 1, where A" = h®! = g. The main theorem
of [7] is the following.

THEOREM 1.4. Let X be either a genus two curve or an abelian surface over a totally real field F. Then X
is potentially modular, and Conjecture 1.1 holds for X.

(The deduction of Conjecture 1.1 from potential modularity is straightforward in this case, using that the
cohomology of X is given by the wedge powers of the cohomology in degree 1, and known Langlands functoriality
results for wedge powers.)

While Theorem 1.4 resolves the Hasse-Weil conjecture for abelian surfaces A/Q, for many purposes (e.g.
applications to the Birch-Swinnerton-Dyer conjecture) one wishes to know modularity.

Modularity is known in some cases, using the results recalled above (in particular, the modularity of elliptic
curves). More precisely, by [8, Thm. 10.2.1], it is known unless A/Q is “challenging” in the sense of [7, §9.2],
which means that either

(1) End(Ag) =Z, or

(2) there exists a quadratic field K/Q so that End(A) = Z but End(Ax ) ® Q is either Q® Q or a real quadratic
field.

A natural source of abelian surfaces of type (2) are those of the form Resg/q(F) for a non-CM elliptic curve £
which is not isogenous to its Gal(K/Q)-conjugate. In this case the modularity of A would follow from the
modularity of E. If K/Q is real quadratic, then E is modular by Freitas—Le Hung—Siksek [23], while if K is
imaginary quadratic, then the modularity of E is known in many cases by work of Caraiani-Newton [18]. On the
other hand, the endomorphism algebra End(Ax) ® Q could also be a real quadratic field E rather than Q x Q,
in which case A/K will be a simple abelian surface of GLa-type, and the modularity of such abelian surfaces
remains open in general even for real quadratic fields K.

In view of this, we concentrate from now on the “typical” case that Enda(A) = Z, where one has the
more precise expectation that L(A,s) = L(m,s) for some cuspidal automorphic representation m of GSp, /Q,
and Brumer and Kramer [13] formulated the paramodular conjecture, which gives a precise prescription for the



“optimal” level structure for an automorphic form corresponding to a given abelian surface; in particular, this
in principle reduces the conjecture for a given A to an explicit computation of a (finite-dimensional) space of
Siegel modular forms. Using the Faltings—Serre method, and elaborate explicit computations of low weight Siegel
modular forms, developed in part by Poor and Yuen [36, 35, 11|, the modularity of (finitely many, up to twist)
abelian surfaces A with Endg(A) = Z was established in the papers [36, 14, 3].

If A/F is an abelian surface, we write pa , for the Galois representation associated to H'(Az, Z,), which we
often think of as a representation
pap: Galp = GSp,(Qp)
with multiplier given by the inverse cyclotomic character e~!. By definition, A is modular if and only if pa,
is modular for some p (equivalently, for all p). We also let p, , denote the Galois representation associated to
H'(A#,F,). If A admits a principal polarization of degree prime to p, then we can and do think of p Ap AS A
representation

Pap: Galp — GSpy(F,).
The main theorem of [8] is as follows.

THEOREM 1.5. Let A/Q be an abelian surface with a polarization of degree prime to 3. Suppose the following
hold:

(1) The mod 3 representation
Pas : Galg = GSpy(F3)

18 surjective.

(2) The representation pa slGalq, @ unramified, and the characteristic polynomial of p4 3(Frobs) is not
(22 £z +2)2.

(8) A has good ordinary reduction at 3, and the characteristic polynomial of Frobs does not have repeated roots.

Then A is modular.

More precisely, there exists a cuspidal automorphic representation © of GL4 /Q (the transfer of a cuspidal
automorphic representation of GSp, /Q of weight 2) such that L(s, H'(A)) = L(s, ). Consequently, L(s, H'(A))
has a holomorphic continuation to C and satisfies the expected functional equation.

Remark 1.6. We claim that Theorem 1.5 applies to a positive proportion of abelian surfaces over Q, counted
in any reasonable sense. As one justification of this, suppose that one samples genus two curves

Xy +h(z)y = f(x)

with h(z), f(z) € Z[z] of degrees < 3 and < 6 in any way in which the distributions modulo 2 and 3 are
equidistributed, and considers those curves X with the following properties:

(1) Pjacx.3 : Galq — GSpy(F3) is surjective,

(2) X has good reduction at 2,

(3) X has good ordinary reduction at 3,

(4) Pac(x),3(Frobz) does not have characteristic polynomial (22 £ 2 +2)2,
(5) The characteristic polynomial of Frobs has distinct eigenvalues.

Theorem 1.5 proves the modularity of Jac(X) for any such X, and one can check [8, §10.1] that these X form
a subset of density 56565516 = 0.1189... Another point of comparison is with the curves in the database [48] (see
also [6]). This contains 63107 genus two curves X/Q with End Jac(X)g = Z, and Theorem 1.5 applies to 11384

of them.




2 The 2-3 switch The proof of Theorem 1.5 follows Wiles’s strategy for proving the modularity of
semistable elliptic curves, and in particular, we make use of an analogue of the 3-5 switch used by Wiles [49] to
prove residual modularity. That switch exploited the rationality of certain twists of the modular curve X (5)/Q.
In our case, we use a rational moduli space of abelian surfaces to carry out a 2-3 switch.

In outline, the 2-3 switch proving Theorem 1.5 divides into three steps as follows.

Step 1 Show that pp 5 is modular for many abelian surfaces B/Q. (See Lemma 2.3.)

Step 2 Show that for any abelian surface A as in Theorem 1.5, there exists B as in (Step 1) with pg 3 =D 3. (See
Lemma 2.4.)

Step 3 Prove the following (imprecisely stated) modularity lifting theorem, which applies in particular to the
representations pp 2 and pa 3 for A, B as in the previous two steps:

THEOREM 2.1. Suppose that p : Galq — GSp4(Z,) is unramified at all but finitely many primes and de
Rham at p, and:

(i) p: Galg — GSp,(F,) is modular.
(it) p(Galg) is large.
(iti) p is pure.
(iv) p|Galqp is ordinary, p-distinguished, and has Hodge—Tate weights 0,0,1, 1.

Then p is modular.

Proof of Theorem 1.5, given these steps. Suppose that A satisfies the hypotheses of Theorem 1.5, and let B
be as in Step 2. Then pg 5 is modular by Step 1, so that pp o is modular by Theorem 2.1. Equivalently, pp 3
is modular, so that pp 3 is modular. Since py 3 = pp 5 by assumption, we can apply Theorem 2.1 to deduce
that pa 3 is modular, as required. 0

Remark 2.2. Hypothesis (ii) of Theorem 2.1 is responsible for assumption (1) in Theorem 1.5, while the more
serious hypothesis (iv) corresponds to assumption (3) there (and is also responsible for (2)).

Our supply of abelian surfaces B/Q for Step 1 will be certain Jacobians B = Jac(X), where X/Q is a
genus two curve. Let r; for i+ = 1,...,6 be the Weierstrass points of X over Q; then the non-zero elements
of B[2] are given by the r; —r; for i < j. Considering the action of Galg on the r;, one has an identification
Se — Spy(F2) = GSp,(F3). There are two conjugacy classes of subgroup S5 C Sg; we denote by Ss(b) the
standard copy of S5 in Sg (and below we write As(b) for the copy of As in S5(b)). Thus X has a rational
Weierstrass point (so that X can be written in the form y? = f(z) with f quintic) if and only if 7, 5 factors
through a conjugate of S5(b).

The following lemma, which exploits some coincidences in the representation theory of As, allows us to find
many X for which we know that pg 5 is modular.

LEMMA 2.3. Suppose that X/Q is a genus two curve with a rational Weierstrass point, and that B = Jac(X)
has semistable ordinary or good ordinary reduction at 2. Suppose also that
Pp2: Galg — GSpy(F2) =~ Sg
has image Ss(b), and that the image of complex conjugation has conjugacy class (xx)(x*). Then pp 5 is modular,
arising from an ordinary weight 3 Siegel modular form.
Proof. If F™ is the quadratic field given by the kernel of the composite Galq — S5(b) — Z/2Z, then
p(Galp+) = As(b), and F'™ is real by the assumption on complex conjugation. Let

0: GalF+ — SLQ(F4) ~ A5

denote the residual 2-dimensional Galois representation associated to this As-extension. (There are two such
representations which are permuted by the outer automorphism; choose either.) Either by an easy Brauer
character computation, or as a consequence of the Steinberg tensor product theorem for SLo(F,), we have

Pp,2 = Sym’o.



By a theorem of Tate the composite g : Galp+ — As; — PGLy(C) lifts to an odd representation
0 : Galp+ — GLy(C) with finite image (which will be some central extension of As). By the odd Artin conjecture
for GLy (i.e. by the main results of [34] or [40]), ¢ is modular. By Hida theory, it follows that p is modular,
coming from an ordinary Hilbert modular eigenform of parallel weight 2. By symmetric cube functoriality [27],
ﬁB,2|Ga1F . is modular, arising from an ordinary weight 3 Hilbert-Siegel modular form. By solvable base change
and a standard use of the Khare-Wintenberger method [26], pp o itself is modular, arising from an ordinary
weight 3 Siegel modular form, as required. ]

Step 2 is provided by the following lemma (see [8, Lem. 9.4.2]).

LEMMA 2.4. Let A/Q be an abelian surface with a polarization of degree prime to 3. Assume that ﬁA’3|GalQ2
is unramified, and the characteristic polynomial of p 4 3(Frobs) is not (2? £+ 2)%.

Then there exists a genus two curve X/Q with a rational Weierstrass point, with B = Jac(X) having the
following properties:

(1) Pp3=Das-

(2) B has good ordinary or semistable ordinary reduction at 2, and is 2-distinguished.
(8) B has good ordinary reduction at 3.

(4) End(Ba) =7

(5) The representation
P2 Galg — GSp,(F2)

has image S5(b), and the image of complex conjugation has conjugacy class (xx)(xx).

Proof. We consider the moduli space M(p, 3)/Q of genus-two curves X equipped with a fixed rational
Weierstrass point and a symplectic isomorphism pj,.(x) s = pa,3- By definition, any Q-point of M(p, 3) gives
B = Jac(X) satisfying ((1)), and pp 5(Galg) C S5(b) (due to the rational point).

By [7, Lem. 10.2.4], the variety M(p, 3)/Q is rational. (The proof of this lemma is very similar to that
of [45, Lem. 1.1]: namely, a Galois cohomology argument reduces to checking that the corresponding moduli
space for the representation 1® 1 @z ! @ z~1 is PGL4(F3)-equivariantly rational over Q, which is known by
[5, Theorem 0.0.1].) In particular, by weak approximation (combined with Hilbert irreducibility as in [44, §3.4,
§3.5]), for any finite set of places S and any nonempty open subsets 2, C M(p4 3)(Q:) (in the £-adic topology) for
each £ € S, we can find a Q-point of M(p, 3) lying in Q, for each £ € S, for which pg ,(Galg) = S5(b) (Which in
turn implies that End(Ba) = 7). We then take S = {2, 3, 00}; the hypothesis that the characteristic polynomial
of p 4 3(Froby) is not (2® + 2 +2)? is used to guarantee the existence of suitable points over Qg, by writing down
appropriate abelian surfaces over Qs for each of the other possibilities for this characteristic polynomial. 0

For Theorem 1.4, we use a variant of the above strategy, where we choose primes p, g splitting completely
in our totally real field F, with the further properties that A admits a polarization of degree prime to pq, the
representations p 4 , and p, , have large image, and A has good ordinary reduction at all places dividing pg. Then
we have:

LEMMA 2.5. Let A/F be a challenging abelian surface over a totally real field. Then there is a finite Galois
extension of totally real fields F'/F such that p and q split completely in F’', and an abelian surface B/F' with
good ordinary reduction at all places dividing pq, such that pg , = P ,|cal,., , while pg , is modular of parallel
weight 2, and has large image.

Proof. We consider the moduli space Y of abelian surfaces B equipped with isomorphisms B[p] — A[p] and
Blq] = p,, for any choice of p, : Galp — GSp,(F;). There is no reason that Y (F') should be nonempty, but a
theorem of Moret-Bailly [28] guarantees that we can find F’ as above so that Y (F") is nonempty, and satisfies the
required local conditions at primes dividing pg. Choosing p, to be induced from a 2-dimensional representation,
we are able to arrange (using the (known) potential modularity of elliptic curves) that after a further extension
of F', pg , is modular. 0



Remark 2.6. As well as the (important!) difference between modularity and potential modularity, another
significant difference between the Lemma 2.5 and Lemmas 2.3 and 2.4 is that Lemma 2.5 shows residual potential
modularity in weight 2, while Lemma 2.3 shows residual modularity in weight 3. (which is regular).

The Galois representations associated to Siegel modular eigenforms of weight & > 2 have Hodge—Tate
weights 0,k — 2,k — 1,2k — 3 (see Section 3.1 below for the definition of Hodge—Tate weights), while the Galois
representations associated to abelian surfaces have Hodge-Tate weights 0,0,1,1. It follows that if an abelian
surface is modular, corresponding to a Siegel modular form, that modular form must be of weight 2; so when we
have residual modularity in weight 3, we have to “change weight” in some way (see Remark 2.7 below for more
discussion of this). On the other hand, if £ > 2 then the Hodge—Tate weights 0,k — 2,k — 1,2k — 3 are pairwise
distinct, and we say that k is a “regular weight”, while k = 2 is an “irregular weight”. The irregular weight cases
behave quite differently (and are in general much more complicated than the regular weight cases) on both the
automorphic and Galois sides of the Langlands correspondences, as we will see below.

The remainder of this survey is devoted to Step 3 (and its analogue in [7]). This step divides into two parts.
Firstly, we use the Taylor-Wiles method to show that p is p-adically modular, in the sense that it contributes to a
Hida family of Siegel modular forms. This is relatively standard, although the need to consider the primes p = 2,3
causes some pain. Secondly, we prove a classicality criterion for weight 2 ordinary Siegel p-adic modular forms.
It is in this step that the difference mentioned in Remark 2.6 becomes significant. In [7], the relevant classicality
theorem is a “small slope implies classical” theorem in the style of Coleman, but this approach does not suffice
in the situation considered in [8]. In this case the proof, building upon work of Rodriguez Camargo [38], is a
generalisation from GLg to GSp, of a part of Lue Pan’s remarkable work [30]. In the remainder of this survey,
we concentrate on the classicality theorems, before briefly returning to the Taylor—Wiles method in Section 5.

Remark 2.7. It was well-known for many years that Theorem 1.4 could be deduced from strong enough
modularity lifting theorems; we refer the reader to 2, §6] and [16, §11.2] for some of the history. The paper [7]
was posted online at the end of 2018, and we found the strategy outlined above for proving Theorem 1.5 in March
2019. At that time, we imagined that we would need to prove a “low weight mod p companion form” result to show
that the weight 3 Siegel modular form in Lemma 2.3 is congruent to a weight 2 Siegel modular form, and then
apply the modularity lifting theorems of [7]. We still do not know how to prove such companion form theorems,
but the situation changed in 2020 with Lue Pan’s paper [30]. By the spring of 2022, we were confident that it was
possible to use Pan’s techniques to prove an appropriate classicality result, but we had not yet proved (regular
weight) modularity lifting theorems for GSp, which could applied to the representations pp 5. After some false
starts, we managed to do this in spring 2023, and we wrote [8] over the following two years.

3 Galois representations

3.1 Sen theory Let Q,((p) == U, Q,((pn) be the cyclotomic extension of Q,. Then Galq, (¢,~) is the
Gal -
kernel of the cyclotomic character € : Galg, — Z,. By the Ax-Sen-Tate theorem, we have deQP(CP -

L —

Q,(Cpe), the completion of Q,((pe). Let V/Q, be a finite-dimensional Q,-vector space equipped with a
continuous action of Galg,, so that p : Galg, — GL(V) is a Galois representation. Then V' ®q, C, has a

semilinear action of Galqg,, and Sen showed that it descends to Q,((p~), in the sense that

(V @q, C,) "% g ——  C, =V 8q, Cp.

2 (Cpoe)
Furthermore, it descends to Qp((p~): there is a unique Gal(Q((p=)/Qp)-stable Q,((p)-subspace Dge, (V) of
V ®q, C, such that

Dsen(V) QQy (¢poe) Cp,=V ®Q, Cp.

In fact, Dgen (V') is the union of the finite-dimensional Gal(Q,((p=)/Qp)-stable Q,((pe )-subspaces of V ®q, Cp.
The Q,((pe)-vector space Dgen(V) has an action of Gal(Qp(¢p<)/Qp), and thus a linear action of
Lie (Gal(Qp(¢p==)/Qp)). More explicitly, we have the Sen operator Oy, which is the Q,((p)-linear map given
by Oy = log(v)/log,(e(7)) for any v € Gal(Q,((p=)/Q,) sufficiently close to 1.
By definition, V' is Hodge-Tate, with Hodge-Tate weights h1,...,h, € Z, if there exists an isomorphism of
C,[Galq,|-modules
V &q, Cp = &7, Cy(—hi),



where C,(n) is the nth Tate twist; thus V is Hodge-Tate if and only if the Sen operator Oy is semisimple and
has eigenvalues in Z, in which case the Hodge—Tate weights are the negatives of the eigenvalues of ©y .

3.2 Ordinary Galois representations There are various definitions in the literature of ordinary Galois
representations; the following will be convenient for us.

DEFINITION 3.1. We say that p : Galg, — GL(V) is ordinary if there are integers hy < hg--- < hy such
that p is conjugate to an upper-triangular representation

X1 Ok
0 X2 .- *
0 0 ... xXn

where each x; : Galq, — Q, is a character with Xi|IQp =€~

It is straightforward to check that an ordinary Galois representation is de Rham if and only if it is Hodge—Tate, i.e.
if and only if the Sen operator ©y is semisimple. If hy < - -+ < h,,, this is automatic (e.g. because the eigenvalues
of the Sen operator are distinct), but in general it need not hold. Indeed, a standard example of a representation
which is not Hodge—Tate but whose Sen operator has integral eigenvalues is the ordinary representation

1 log,e
0 1 ’

4 p-adic modular forms and classicality We now review the approach to p-adic modular forms and
classicality theorems taken in [8], which relies on the work of Pan [30] and its generalisations to other Shimura
varieties by Rodriguez Camargo [38], as well as the higher Coleman and Hida theories of Boxer—Pilloni [9, 10].
There is a long history of such classicality theorems, going back in the case of Coleman theory to [19]; we highlight
in particular Kassaei’s paper [24], and its generalisation in [4]. Another important ingredient is the families of
p-adic automorphic forms introduced by Andreatta—Tovita—Pilloni [1] (see [2] for a survey).

For simplicity we say almost nothing below about compactifications of Shimura varieties, or about the
distinction between cuspidal and usual cohomology. These both play an important role in the foundations of
the theory, but disappear in our main results, as we always localise at a non-Eisenstein maximal ideal of a Hecke
algebra. Similarly, we will sometimes elide the difference between functors on the abelian and derived level where
it makes no difference for our final statements. We will also only work with p-adic modular forms of integral
weight, as this is all that is needed for our main theorems and allows us to simplify the exposition in places.
We say very little about families of p-adically varying weight, although these are an important ingredient in the
proofs of some results that we state.

We will also be extremely informal in our treatment of p-adic functional analysis and condensed mathematics.
A justification for this is that at the time of writing, the “correct” foundations for the constructions we discuss
are not yet available. In particular, the arguments below use a p-adic version of Beilinson—Bernstein localisation;
ideally, this should be defined in the framework of the analytic de Rham stack of Rodriguez Camargo [39],
similarly to Scholze’s treatment of classical Beilinson—Bernstein localisation in [42]. This formalism is expected
to be available soon, but in the meantime [8] proceeds in a somewhat ad hoc fashion.

While the only Shimura varieties considered here are the Siegel threefolds associated to the group GSp,, many
of the results that we explain below are proved in [8] for Hodge-type Shimura varieties, or (in the case of results
requiring a non-Eisenstein localisation) are expected to hold in this generality. Accordingly, where possible we
phrase our results without reference to specific features of GSp,, although we caution the reader that they should
turn to [8] to see the precise hypotheses under which each result is proved.

Accordingly, from now on we write G = GSp,; when we eventually need to be concrete, we will realise G
as the subgroup of GL4 acting on the free Z-modules of rank 4, with basis ej,---,e4 and preserving up to a
similitude factor the symplectic form with matrix

7= (5% 9)

which by definition has Sen operator () }).



where S is the 2 x 2 anti-diagonal matrix with only 1’s on the anti-diagonal. We take P to be the (“block
lower-triangular”) Siegel parabolic stabilising ez, e4, and B the Borel inside it which is upper-triangular in each
of the diagonal 2 x 2 blocks. We let M be the Levi quotient of P, and let U, Up be the unipotent radicals of B, P
respectively. We let T be the diagonal torus. The sets of M-dominant and G-dominant characters are respectively
denoted by X*(T)M:+ and X*(T)*. We let u € X.(T) be the minuscule dominant cocharacter ¢ — diag(1,1,t,1).

We let W be the Weyl group of G, with length function ¢ : W — Z>(, and write wy for the longest element
of W. Let ®* be the set of positive roots of G, and let p be half the sum of the positive roots. Write Wy, for
the Weyl group of M, and let MWW C W be the set of Kostant representatives of Wy, \W (i.e. those w € W with
wX*(T)t C X*(T)M*; this is a set of coset representatives of minimal length).

We denote by g, b, h,p,m,u, the Lie algebras of G,B,T,P,M,Up respectively. For each w € W, we
let P, = w~'Pw, with Lie algebra p,, = w™!'pw, and similarly we define Up,,, My, and so on. For w € My
by, = bMNm, is a Borel in m,,.

4.1 Modular forms and the Hodge—Tate period map We fix throughout a tame level K? C
GSp(A°>P) (which we ultimately choose in order to guarantee that various spaces of p-adic modular forms
are 1-dimensional, using the theory of newforms developed in [37]), and for each open compact subgroup
K, C GSp,(Q,), we let Shg, /C, be the analytic adic space attached to (a toroidal compactification of) the
Siegel Shimura variety of level K,K?.

For each k € X*(T)™ T and each finite level Shimura variety Shg,, we have the usual sheaf w" of modular
forms of weight x on Shg,. The coherent cohomology RI'(Shg,,w") has an action of a Hecke algebra T (generated
by the Hecke operators at the places where KP is hyperspecial), and the corresponding eigenclasses can be
computed in terms of automorphic forms on G. More precisely, cuspidal automorphic representations contribute
according to their Archimedean components 7., and the essentially tempered 7o, which contribute to coherent
components are the so-called non-degenerate limits of discrete series. The upshot for us is that in order to prove
that a Galois representation is modular, it suffices to show that its corresponding system of Hecke eigenvalues
contributes to some RI'(Shg,,w").

We let Shy, = limg, Shg,, which is a perfectoid space with an action of Galg,, admitting a Galg,-equivariant
Hodge-Tate period map

TuT : Shee — .FE,

where FL is the base change to C, of the (partial) flag variety P\G. This was introduced by Scholze [41], and has
revolutionised the study of p-adic modular forms. As a first illustration of this, let £, be the G-equivariant sheaf
on FL whose fibre at e is the inflation from M to P of the irreducible representation of M of highest weight x, and
we set w™™™ = (mp L), By the definition of 7y, one finds that the sheaf w™™ descends to w" on each Shg, .
Thus RT'(Shee, w™™™) is a complex of smooth admissible G(Q,)-representations, equal to colimg, RI'(Shg,,w").
This suggests the possibility of proving results about modular forms by working on the flag variety FL, an idea
exploited to great effect by Scholze in [41].

Returning to the problem of the modularity of Galois representations, a basic difficulty now presents itself:
there is no Galois action on RI'(Sheo,w™*™), thus no direct connection to Galois representations. This difficulty
was resolved in the case of the modular curve by Pan [30], who invented geometric Sen theory and combined
it with Scholze’s ideas to prove remarkable new “p-adic Eichler—-Shimura” results, relating the RT'(Shy, w™™)
to étale cohomology groups, which naturally have an action of Galg. Furthermore, as we will see below, Pan’s
theory often allows one to reduce to questions on the flag variety, and thus to explicit computations.

In fact, the spaces of classical modular forms RI'(Sheo,w™*™) do not directly show up in p-adic Eichler—
Shimura theory; rather, one sees spaces of p-adic modular forms which are defined using the flag variety, and are
closely related to the higher Coleman theory of Boxer—Pilloni [9]. From our point of view, this is a feature rather
than a bug: it is these spaces of p-adic modular forms to which we can apply the Taylor—Wiles method in order
to prove our modularity lifting theorems, and we then consider separately the problem of proving the classicality
of a p-adic modular form. This classicality problem is solved by a generalisation of Pan’s ideas, in combination
with results of Boxer—Pilloni.

4.2 Completed cohomology By Scholze’s primitive comparison theorem, the cohomology of the structure
sheaf RI'an(Sheo, Osh,, ) is naturally identified with RI'(She, Qp)®q, Cp, where

ﬁf‘(Shw, Q) = li7rln colimg, RI'(Shg,, Z,/p") ®z, Qp



denotes Emerton’s completed étale cohomology (with Q,, coefficients). As well as the action of Galg, and of
the Hecke algebra T, this has an action of GSp,(Q,), and we can consider the (derived) locally analytic vectors
f{\f‘(Sho07 Qp)la@)Qp C,, which have an action of the Lie algebra g. We can define subsheaves of smooth and locally
analytic vectors for the GSp,(Q,)-action:

o C 0§, COsh,
and by results of Rodriguez Camargo (following Pan), we have a natural identification
(4.1) RI(Shee, Qp)"*®q, Cp = Rl an(Shee, OF, ).
Fix A € X*(T), and write M) for the Verma module for g with highest weight A. By (4.1) we have
(4.2) RHomy (A, RT(Sheo, Q)"™) ®q, Cp = Rl an(Shoo, RHomg (M, 08, ).

We think of the left hand side of (4.2) as a space of p-adic modular forms of weight A; the goal of p-adic Eichler—
Shimura theory is to understand it in terms of the RI'(Shyo, w™™).

The formula (4.2) motivates the following definitions. Write O(g, b) for the usual category O of finitely
generated left U(g)-modules with locally finite b-action and semisimple h-action, and O(g,b)as for the full
subcategory of objects all of whose weights are in X*(7T'); this category contains the Verma modules of integral
highest weight. The action of b on an object of O(g,b)a, can naturally be integrated to an action of B, so
from now on we regard these objects as (g, B)-modules (and we we regard the left hand side of 4.2 as a smooth
B(Qp)-representation). Writing Mod(q )(Og ) for the derived category of solid Ogj! -modules with a smooth
action of B(Q,), the right hand side of (4.2) suggests that we should consider the functor

0(97 b)alg - MOdSBH(lQ,,)( %r}rlloo)7

M — RHOmg (M, OShoo ).

4.3 Localisation to the partial flag variety A key point is that the functor RHomg (7, Olsiloo) factors
through a natural analogue of Beilinson—Bernstein localisation for the partial flag variety FL, as we now explain
(see Theorem 4.1 below). From now on we regard G an an affinoid analytic group over C,. There is a natural
action of G on FL by right multiplication, which induces an action of g by derivations on Ox;. We have a
filtration of G-equivariant coherent sheaves: uj C p° C g° = Oz, ® g, whose fibres at a point © € FL are
up, =z tupr Cp, =z pr C g. We let G, be the analytic subgroup of G consisting of elements reducing to the
identity e modulo p”, and we set Og . = colim, O¢,. Then we define U (g) = (’)é’e; this is a completion of the
universal enveloping algebra U(g). We also write G, = lim, G, the limit being taken in the category of locally
ringed spaces; this has a single point e (the identity element of G), with structure sheaf Og .

We now define the ring of universal twisted differential operators

D = (0500 (9)) /up(OFc @ U(g)),

and we let C1* = (Og,e ® (9;5)“2 where the invariants are for the diagonal action on the two factors, where the
action on Og . is by left translation. Then C' is a D'*-module, and it carries an action of g (by right translation
on O¢ ) which commutes with the D"-module structure. We define a localisation functor from the (derived)
category of solid U(g)-modules to the (derived) category of solid D'*-modules (i.e. twisted D-modules):

Loc : Mod(U(g)) — Mod(D')
M + RHomg(M,C').

For any M, the sheaf Loc(M) admits a natural “horizontal” action of the centre Z(m) of the universal enveloping
algebra U(m), via the natural injection Or, ® Z(m) < U(m®) (with m® = g°/u}), and in particular it admits
an action of p € Z(m). If M € O(g,b)a, then we regard Loc(M) as a (g, B)-equivariant sheaf on FL; the
B-equivariant structure comes from the action of B on M, while the g-action comes from the D-module
structure.

The following theorem is a consequence of the geometric version of Sen theory introduced by Pan and
generalized by Rodriguez Camargo. Its formulation is a generalisation of Pilloni’s interpretation [33] of Pan’s
work for the modular curve.



THEOREM 4.1. The functor (4.3) factors through the functor Loc; more precisely, for M € O(g, b)alz we have
Ritomny (M. 08, )  (rjys Loe(A0) ™
and
(4.4) RHomg (M, RT(She, Q,)'*) ©q, Cpp = R an(Sheo, RHomg (M, OF, ).

Furthermore, the action of p € Z(m) on Loc(M) via the horizontal action induces the Sen operator on the left
hand side of (4.4).

In view of Theorem 4.1, we will sometimes refer to the horizontal action of 1 as “the Sen operator” in the following.

4.4 p-adic Eichler—Shimura To go further, we use excision with respect to the Bruhat stratification
of FL, ie. the decomposition into B-orbits FL = P\G = [[,cmy P\PwB, indexed by the Kostant
representatives ¥ W; the dimension of P\PwB is ¢(w). We write j, : C,, = P\PwB < FL for the locally
closed immersion of the Bruhat cell corresponding to w, and Cj, for the dagger neighbourhood of C,, in FL£. We
write ju sho, wﬁ% (Cw) = Shy for the morphism induced by jy,.

For each w € MW, we can consider the composite of Loc with restriction to C’;L. Let M be an object of
O(g,b)alg, so that Loc(M) is a (g, B)-equivariant sheaf; since Cy, is a B-orbit, and Loc(M) is B-equivariant,
the sheaf Loc(M)|; is determined by its fibre at w, which is a representation of the stabiliser of w for the
(g, B)-action. This stabiliser admits an explicit description as follows. The action of (g, B) can be upgraded to
an action of the semi-direct product G x B, which acts on C} via (g,b) — wgb. Write Stab(w) for the stabiliser
of w for this action; then it follows from the definitions that the map (g,b) — (gb,b) is an injection

Stab(w) < P, X B.

It is then elementary to check that Stab(w) is generated by its subgroups Stab(w), = P, . X Be and P, N B C B,
and in fact

(4.5) (Py N B)\(Py,e X Be) x (P, N B).
The explicit description (4.5) allows us to construct a contravariant functor
HCS,, : O(my, b, )atg — Mod(g ) (Ch)"

where O(my,, by, )alg is the algebraic category O for the pair (my,, by, ), as defined above, and the target category
has the obvious meaning. (Here “HCS” stands for “higher Coleman sheaf”.) This functor is defined as follows: the
action of by, on V € O(my,, by, )alg integrates to an action of By, = M, N B, and thus determines an action of
P,NB. The admissible U(g)-module (V®u(g) U(g))" therefore has actions of P,,NB and of P, . (the latter action
factoring through the action of M, ., which comes from the action of m,,), and one checks that by allowing B,
to act trivially, we obtain an action of Stab(w). The corresponding (g, B)-equivariant sheaf is HC'S,, (V).

The reason for introducing this functor is that there is a commutative diagram

i~ Loc
O(ga b)alg % NIOd(g,B)(6(111-))11'[3

Pw HCS,

(@) (mw ’ bmw )alg

where the functor C, ®£”w — : Mod(U(uy,)) — Mod(C,) is the functor of “Lie algebra homology”, with
H;(up,, M) = H™"(C, ®u(q) M). To see that (4.6) commutes, one only has to check that the fibres at w of
the (g, B)-equivariant sheaves are isomorphic representations of Stab(w). This boils down to noting that the fibre
Cla is Oup,\G,e» With the action of Stab(w) being determined by the action of P, . by left translation, the action
of B, by right translation, and the action of P, N B by conjugation.

We now return to the cohomology of Shimura varieties. For any sheaf F on a subset of Sh,, containing
T (Cuw), We write

RT, (She, F) = RF(ShOO,jw,Sh’!}-MQ%(Cw)),



where j, sn, is the extension by zero functor on abelian sheaves of solid abelian groups. Then we define the
functor

HCy : O(my, b, )alg — Modiq ) (Cp),

4.7
(4.7 M — R, (Sheo, (miyp HC Sy (M))*™).

Combining (4.6) with Theorem 4.1 and the spectral sequence for a filtered complex, we obtain the following
theorem, a basic form of the p-adic Eichler—-Shimura decomposition.

THEOREM 4.2. For any M € O(g,b)a1, we have a spectral sequence:
Ef’q = @weMW,Z(w):pHp+q<HCw(Cp ®£Pw M))

converging to H”+q(RHomg(M,ﬁ(Shoo,Qp)l‘"*)) ®q, Cp. The Sen operator is induced by the action of wu €
Z(my) on Hy(up, ,M).

4.5 The ordinary part Let 77(Q,) = {t € T(Q,), Va € &, v,(a(t)) > 0}. Given a smooth
representation V' of B(Q,), there is a Hecke action of T%(Q,) on VU(Zr); as usual, the action of ¢ € TH(Qp)
is defined via the (normalised) trace V!U(Z»)t™" _ YU(Zs)  The finite slope part V/* of V is by definition
the subspace on which 77 (Q,) acts invertibly. For any A € X*(T)r, we say that the slopes of V/* are at
least A (respectively, are equal to A) if for every t € T+ (Q,) and every eigenvalue « of ¢ acting on V/*, we have
vp (@) > vy(A(t)) (respectively, v,(a) = v,(A(t))). The spaces HC,,(M)'* are very closely related to the higher
Coleman theories of Boxer—Pilloni (see 8, Thm. 4.6.56] for a precise statement). The following key slope bound
was proved by Boxer—Pilloni (it is essentially [10, Cor. 6.2.16]). It is proved by a careful analysis of integral
models of Hecke correspondences (and in particular, it is not deduced from a statement on the flag variety). We
will see below that it immediately implies classicality theorems and p-adic Eichler—Shimura decompositions for
the ordinary part of the cohomology (and more generally for the “small slope” part, although we do not discuss
that here).

THEOREM 4.3. Let w € MW, and let M € O(m,,, b, )alg be a module generated by a highest weight vector
of weight v. Then the slopes of HCy,(M)'* are at least —v +w ™ wo prp + p-

We fix from now on a character A € X*(T)™*, and assume that V is a smooth representation of B(Q,) such
that the slopes of V7/* are at least —\. Then the ordinary part Vo' of V is by definition the subspace of V¢
whose slopes are equal to —A.

In particular, by Theorem 4.3, the slopes of HC,,(My)/* are all at least —\, so we may consider the ordinary
part HC,,(My)°"d. Write d = dim up = dim Shg,. The homology groups H;(uy,,, M) all belong to O(my, by, ),
and they can (at least in principle) be computed by a Chevalley-Eilenberg complex. Write L(m,), for the
simple quotient of the Verma module for m,, of highest weight v. Then an analysis of this complex shows that
Hg_g(w)(up,,, My) has a unique subquotient isomorphic to L(Muy)x4w-1wo pp+p, a0d that every other Jordan—
Hélder factor of any H;(uy,,My) is generated by a highest weight vector of the form

(4.8) )\—i—w_le’Mp—&—p— Z N,

acdt

where ng, € Z>¢ and n, > 0 for some o. Applying Theorem 4.3 to (4.8), it follows that for any such Jordan-Holder
factor, say X, the slopes of HC,,(X)%* are at least —\ + Y acat Mal > —A, so that HC\,(X)d = 0. Going

back to Theorem 4.2, we see that the slopes of HP™9(RHomg (M, RT'(Shee, Qp)'*)) ®q, C, are all at least —A,
and that there is a spectral sequence

(49) E{),q = ®wEMW,Z(w):pHZp#kqid(HCw (L(mw))\+w*1wo,Mp+p))ord

converging to HP?T?(RHomg(My, RT(Sha, Q,)'))ord ®q, Cp.

Let m be a maximal ideal of T with corresponding Galois representation 5, : Galqg — GSp,(Fp). We say that
m is non-Fisenstein if p,, is irreducible. Then a comparison of the cuspidal and non-cuspidal versions of HC),,
and an analysis of the cohomology of the boundary of the toroidal compactification (which we have only carried



out for G = GSp,, although we expect the analogous results to hold more generally) together show that after
localising at a non-Eisenstein m, each HC,, only has cohomology in degree £(w), and H'(RHomg (M, Og, ))od
vanishes outside of degree i = 3 (i.e. outside of middle degree). Thus the spectral sequence (4.9) degenerates,

proving the following theorem.

THEOREM 4.4. Suppose that A € X*(T), and that m is non-Eisenstein. Then

ord
m

RHomp (A, RT(Shao, Q,)®)% @q, Cp) = Rlan(Sheo, RHomg (My, 0%, )
is concentrated in degree 3, and there is a decreasing filtration on H®(Shs, RHomg (MA, OISEL(X,))::
piece given by

(4.10) Duwerw,o(w)=iH' (HCuw(L(Mw) w10y yrptp) S m-

Under appropriate dominance hypotheses, the summands in (4.10) can be described in terms of the
sheaves w"*™. Indeed, recall that L, is the G-equivariant sheaf on FL corresponding to the irreducible
representation of M of highest weight x. Unwinding the definitions, one finds that for each w € MW, we
have

4 with ith graded

(411) £K|CL = HCSM(L(mm)fw’lwo,Mn)'
Set
R = —UJO,M’UJ()\ + p) - P
so that
—w_lwo’Mﬁw =+ w_le,Mp + p.

Provided that k,, € X*(T):*, it follows from (4.11) that

sm

wﬁw7sm|ﬂ—;{;ciy = (WETHCS’ID(L(m’LU)/\—&-w_lwo,Mp-‘rp)) )
and (by (4.7), i.e. by the definition of HC,,) the contribution from w to (4.10) is

(4-12) Hi(ch(L(mw))\er*lwo,Mprp))ord = H;(Shooa an’sm)cr:fd'

m

Additionally, considering the horizontal action of 11, we see that the Sen operator acts on w"= ™| _1 .+ via (i, Ky).
arCi

We now consider the difference between the spaces of ordinary p-adic modular forms H{ (She,w™=s™)o'd and
of ordinary classical modular forms H'(She,,w"= ™)' Bearing in mind (4.12), the slope bound of Theorem 4.3
shows that for each pair v,w € MW, the slopes of H(Shy,,w"s™)/* are at least

(4.13) A+ (A +p) — v "w(A +p)).

If we assume that A\+p € X*(T)*, we see that these slopes are at least —\, and that H} (Shy,, w®» ™)' vanishes
unless v tw (X + p) = (A + p); equivalently, unless k, = k. Accordingly, we now consider the subgroup W of W
consisting of those w’ with w’(A + p) = (A + p). This subgroup corresponds to a standard parabolic subgroup @
of G; for example, if A € X*(T)*, then this subgroup is trivial and Q@ = B. Then P\Pw(Q is the union
of those Bruhat cells C, for which H!(Shu.,w"=**™)%'d could be nonzero, and we let j, o : P\PwQ — FL,
Ju,0.5he © T (P\PwQ) < Shy, be the corresponding locally closed immersions. Writing

RFw,Q(Shooawnw’sm) = RF(Shomjw,Q,Sh,!wﬁw’sm ﬂ-l}}(p\PwQ))a

we obtain the following classicality result.
THEOREM 4.5. Suppose that k,, € X*(T)™F, and A+ p € X*(T)*. Then

RFw,Q(ShOOan,sm)?nrd _ RF(ShOO, w'{“”sm)g{d_

Proof. Tt suffices to note that for each v ¢ wWy, we have RI', (Shy, w"esm)°rd = () by (4.13). 0



Remark 4.6. The cohomology RTy, o (Shao,w™s™)%' is supported in degrees [£(wmin), (Wmax)], Where
Winin, Wimax are respectively the minimal and maximal length representatives in M W for the double coset Wy, wWy.

Remark 4.7. As noted above, if A\ € X*(T')* then @ = B, so that Hi(,g)(Shoo,w“w’sm) = Hfu(w)(Shoo, whw S
and the Eichler—Shimura decomposition in Theorem 4.4 takes a particularly simple form. However, a stronger
result (without taking ordinary parts or making a non-Eisenstein localisation) was already known in this case
(going back to Faltings—Chai [22] in the Siegel case); from our perspective, it can be obtained by replacing M)
above with V), the algebraic representation of G of highest weight A. Then Loc(V)) is G-equivariant, rather than
merely B-equivariant, and one can compute directly on the whole of FL, without needing to restrict to Bruhat
strata.

4.6 Sen equals Cousin We now make things more explicit in the case of interest to us, where A is not
regular, i.e. A ¢ X*(T)". We now introduce some more explicit notation for G = GSp,. We label the elements
of T by t = diag(zty, zta, 2ty ', 2t7 "), and the characters X*(T) of T by tuples x = (ki,ko;w) € Z? x Z with
w = k1 + ko (mod 2), wherex(t) = zwtlflt§2. Thus a character (kq, ko;w) is M-dominant if ky > ko, and G-
dominant if 0 > k; > ky. We have p = (—1,—2;0).

The Weyl group W is generated by s, and sg where sq (k1, k2; w) = (kz2, k1;w) and sg(k1, ko w) = (—ky, ka3 w),
so that wy = s4885483, and wo(k1, ko; w) = (—k1, —ke;w). We have Wiy = {Id, wo.pr = S} The elements of
MW are Ow = Id,'w = sg,%w = 8484, W = $sa55, where £(*w) = i. From now on we take A\ = (1,1;—2), so
that A+ p = (0,—1;—2). Then Wy = {1,sg}, and @ is the Klingen parabolic. We have two Q-orbits on FL,
namely Co,, U C1,, and C2,, U Cs,,, with the corresponding k., being (2,2;2) and (1,1;2) respectively. This is
illustrated in Figure 4.1 (which draws a character (k1, ko;w) at (k1, k2)).

In our earlier paper [7], the input to our modularity lifting theorem is a class in H(Shy,w(?%2)sm)ord
i.e. an ordinary Siegel modular form of weight 2 (see Remark 2.6). Accordingly in that paper we work with
RIq.0(Sha, w@%2)smyord “which has cohomology in degrees 0,1, and by Theorem 4.5 agrees with the classical
ordinary cohomology RI'(Shy,, w(%22):sm)ord,

However in [8] our input is a class in weight 3, rather than weight 2. Using Hida theory, we can produce
a congruence to a class in H%(Shoo7w(272‘2)’sm)§fd, and ultimately the modularity lifting machinery produces
another class in the same cohomology group. We then need to understand when such a class extends to
H&Q(Shoo,w@’mm’sm)?,fd. We now briefly explain how we do this; in fact for technical reasons we found it more
convenient in [8] to study the problem of extending from H2, (Shuo,w(1i2)sm)ord ¢ ng’Q(Shoo,w(1’1?2)7sm)gfd,
so we do the same here.

From now on we work on Cs,, ¢ = Cs,, U C2,,. We have a short exact sequence of sheaves over W;I;(Csw’Q),
corresponding to the stratification of Cs,, ¢ into B-orbits, with js,, gn_ : WBIT(CSU,) — ﬂ'I_JlT(C’sw,Q):

. 1,1;2), 1,1;2), 1,1;2),
(414) 0 — (]3w,Shw)!w( ) Sml”?;lT(Csw) — W€ ) Sm|7r;,1T(Csw,Q) — Wb ),sm =l (o) =0

Thus RI's,, g (She, w<1»1;2>’sm)gfd is computed by the following complex in degrees 2, 3, where Cous is induced by
the class of the extension (4.14):

(4_15) [ng(Shom w(l,l;z),sm)&rd Cous ng(Shw w(1,1;2)7sm)$d]_

On the other hand, as noted just below (4.12), the Sen operator © on H?*(RHom, (MA,OIS%OC))‘;fd acts
by <Ma H2w> = <Ma 53w> = 0 on each of ng(Shomw(l,l;Q),sm)gfd and ng(Shoo;W(Ll;Q)’sm)gfd, so it induces a map:

(4.16) H2,(Shoo, w2 smyord S, pr3 (Sh (112 smyord,

The key result is the following theorem, showing that “Sen equals Cousin”. It is proved by an explicit calculation
on the flag variety FL.

THEOREM 4.8. The two maps

Cous, Sen : H22w<Shoo,w(1,1;2),sm)glrd - ng(Shoo7w(1,1;2),sm)g1rd

agree up to a non-zero scalar.



Figure 4.1: (Shifted) M-dominant Weyl chambers of weights (k1, k2). The G-dominant Weyl chamber is labelled
by w. The red hearts are at ss,, = k2,, = (1,1) and K1,, = ko,, = (2,2) for our A = (1, 1), while the blue squares
represent the k,, for a typical regular weight.
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Combining Theorem 4.8 and  (4.15), we see that a class ¢ € HZ, (Sheo,w12sm)ord extends to
H?w’Q(Shomw(l’lﬂ)’sm)ﬁfd (equivalently, to H?(Sheo,w®12)sm)ord) if and only if Sen(c) = 0. It only remains
to relate this condition to the Sen operator on the Galois representation associated to a p-adic modular form. We
do this using the Eichler—-Shimura relations; more precisely, we use the following lemma, which is deduced from
results of Nekovar, [29].

LEMMA 4.9. Let f € H(?w(Shoo,w(2’2?2)’sm)°rd be an ordinary overconvergent modular eigenform with

corresponding Galois representation py : Galq — GSpy(Q,). Let my be the corresponding mazimal ideal of
the Hecke algebra T[1/p]. We assume that p; is irreducible and the Zariski closure of ps(Galq) contains Spy.

Then H3(RHomg (X, RT'(Shao, Q,)')) " [mys] = py ®g W for some finite-dimensional vector space W # 0.
P

Finally, we deduce from this the following classicality theorem.

THEOREM 4.10. Let f € ng(Sth,w(2’2;2)’sm)°rd be an ordinary overconvergent modular eigenform with

Galois representation py : Galqg — GSp,(Q,,). Let my be the corresponding mazimal ideal. We assume that:
(1) the Zariski closure of py(Galg) contains Spy.

(2) The representation pflcayq, s de Rham.

(3) We have dimg, H! (Shoo,w®%2sm)ordim ] =1 for i = 0,1 and dimg, HY  (Shee, wt 12 sm)ord[m ] = 1 for
i=2,3.

(4) The representation p; is irreducible.

Then f is a classical Siegel modular form.

Proof. Assumption (3) guarantees that the passage to the m torsion is exact, so that we have induced maps
(4.17) Cous, Sen : HZ, (Shug, wtl2smyord (i ) s F2 (Sh,, w1i2)hsmyord [ o,

These two maps agree by Theorem 4.8. Since p f|GaIQp is de Rham, the corresponding Sen operator is semisimple
(see Section 3.2), which by Lemma 4.9 implies that the maps (4.17) vanish. As noted above, this implies that
H?(She, wti2hsmyordm o] =£ (0, which by Arthur’s multiplicity formula implies that H°(Shy,,w(22%2)sm)ord iy ] £
0, whence it is a one-dimensional C,-vector space spanned by f, as required. 0

5 Modularity lifting Finally, we very briefly explain the use of modularity lifting theorems in our two
papers. In [8], we needed to prove Theorem 2.1, which we deduce from Theorem 4.10. We work with the ordinary
higher Coleman families RT, (Sha,w"™s™)°™  or rather their integral versions, the higher Hida theories of [10].
Since for each 4, the complex RI'i,,(Shso, w™*™)°' has cohomology only in degree i, a standard application of the
usual Taylor—Wiles method is able to prove modularity lifting theorems for each of these higher Hida theories.
(In practice we find it useful to work with Hida families in which the weight varies, for example in proving local-
global compatibility, but this is again standard.) Furthermore, following Diamond [21], the Taylor—Wiles method
is able to prove multiplicity one theorems for spaces of modular forms, and we use it to verify hypothesis (3) in
Theorem 4.10. (It is here that we use the hypothesis of p-distinguishedness in assumption (iv) of Theorem 2.1.)
The only significant difficulty that we have to overcome in applying the Taylor-Wiles method is that we have
to consider residual Galois representations with rather small image, namely As (when p = 2) and GSp,(F3)
(when p = 3). This causes us considerable pain, but does not involve any significant innovations.

As we explained above, in our earlier paper [7] we worked with the complexes RI'jq o (Sheo,w(?%2)sm)ord,
which have cohomology in degrees 0, 1. Again, there is an integral version, the higher Hida theory introduced by
Pilloni in [32]. Since there is cohomology in multiple degrees, the usual Taylor—Wiles method does not work in
this case, and instead we use the version of the Taylor—-Wiles method introduced by Calegari-Geraghty [17]. Our
main difficulty now is that rather than working over Q, we are over an arbitrary totally real field F' of degree d,
say, and the analogous complexes (constructed from the cohomology of Hilbert—Siegel Shimura varieties) now have
cohomology in degrees 0, ..., d; but we do not know how to prove the local-global compatibility results needed for
the Calegari-Geraghty method unless d = 1. We get around this difficulty by working only with primes p which
split completely in F, and for each v|p, considering complexes which at v behave like RI'iq ¢, and at the other
places above p behave like RI'jg. We are able to compare these complexes, and we show that an appropriately
compatible set of cohomology classes combine to give a classical cohomology class.



6 Future directions It is hopefully clear that there is considerable scope for improving on Theorem 1.5.
Firstly, by working with Hilbert—Siegel Shimura varieties, it should be possible to extend Theorem 1.5 to abelian
surfaces over arbitrary totally real fields. By making a solvable base change to a totally real field with suitable
behaviour at the primes above 2, such an improvement would allow us to remove Hypothesis (2) in that theorem,
which arose due to the interaction between the local conditions at 2 and 3 in Lemma 2.4. Secondly, our theorems
should not require the full strength of the ordinarity condition, but only a suitable “small slope” condition, which
would allow us to relax Hypothesis (3) in Theorem 1.5. Finally, many of the arguments in [8] are written for
more general Shimura data, and it would be interesting to prove classicality theorems beyond the case of GSp,.
We intend to pursue all of these ideas in future sequels to [8]. Finally, one other possible route to the modularity
of abelian surfaces would be to deduce it from an appropriate version of Serre’s conjecture for GSp,. Such a
deduction would be analogous to Khare’s theorem [25], which showed that Serre’s conjecture implies the Artin
conjecture for odd 2-dimensional representations of Galg. With this in mind, we use our theorems to prove the
following implication (see [8, Lem. 10.4.1]).

LEMMA 6.1. Suppose that for every residual representation:
p: Galg — GSpy(F,)

satisfying the following conditions:
(1) p has multiplier 71,
(2) p is absolutely irreducible, and

(3) the semi-simplification of plcalg, is a direct sum of characters,

there exists an ordinary classical Siegel modular form f for GSp, /Q of weight at least 3 such that

Prp =P

Then all abelian surfaces A/Q are modular.
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