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Abstract. This is a brief account of my results with George Boxer, Frank Calegari and Vincent Pilloni on
the (potential) modularity of abelian surfaces.

1 Introduction This article gives an overview of the proofs of the main results of [7, 8]. I have attempted
to complement the introductions to those papers, and to concentrate on aspects of the proofs that are not already
covered in other survey articles. Consequently, I devote little space to innovations in the Taylor–Wiles method (in
particular, the Calegari–Geraghty method), for which I refer the reader to Calegari’s excellent surveys [16, 15].

We begin by recalling the main theorems of the papers. Our first paper [7] proves the Hasse–Weil conjecture
for abelian surfaces (and genus 2 curves) over totally real fields. To recall what this means, let X be a smooth,
projective variety over a number field F with good reduction outside a finite set of primes S. Associated to X,
one may write down a global Hasse–Weil zeta function:

ζX(s) =
∏ 1

1−N(x)−s
,

where the product runs over all the closed points x of some (any) smooth proper integral model X/OF [1/S] for X.
(Different choices of S only change ζX(s) by a finite number of Euler factors. For curves and abelian varieties
there is a natural definition of the Euler factors at all places, and our modularity results are compatible with these
factors, but we ignore this point from now on.) The function ζX(s) is absolutely convergent for Re(s) > 1+dimX.
We have the following:

Conjecture 1.1 (Hasse–Weil Conjecture, cf. [43], in particular Conj. C9). The function ζX(s) extends to
a meromorphic function of C. There exists a positive real number A ∈ R>0, non-zero rational functions Pv(T )
for v|S, and infinite Gamma factors Γv(s) for v|∞ such that:

ξ(s) = ζX(s) ·As/2 ·
∏
v|∞

Γv(s) ·
∏
v|S

Pv(N(v)−s)

satisfies the functional equation ξ(s) = w · ξ(dimX + 1− s) with w = ±1.

(In Serre’s formulation of the conjecture, the Gamma factors are also given explicitly in terms of the Archimedean
Hodge structures of X.)

If F = Q and X is a point, then ζX(s) is the Riemann zeta function, and Conjecture 1.1 follows from
Riemann’s functional equation. By work of Hecke and Brauer, the conjecture is known if X is zero-dimensional,
or if more generally the Galois representations associated to the l-adic cohomology of X are potentially abelian
(e.g. an abelian variety with CM). All subsequent progress on Conjecture 1.1 has been via the Langlands program.
Write GalQ for the absolute Galois group of Q; more generally, for any field K, we write K for a separable closure,
and GalK := Gal(K/K) for the absolute Galois group. If K is a local field, then we write IK for the inertia
subgroup of GalK . Via the Grothendieck–Lefschetz trace formula, one writes for each prime ℓ (at least up to a
finite number of Euler factors)

ζX(s) =

2 dimX∏
n=0

L(Hn(XF ,Qℓ), s)
(−1)n

where L(Hn(XF ,Qℓ), s) is the L-function of the ℓ-adic representation Hn(XF ,Qℓ) of GalQ. The Langlands
conjectures predict that each L(Hn(XF ,Qℓ), s) is a product of automorphic L-functions; more precisely, we



have L(Hn(XF ,Qℓ), s) =
∏

j L(πj , s), where each πj is an automorphic representation of GLnj
(F ) for some

integers nj with
∑

j nj = dimQℓ
Hn(XF ,Qℓ). Since (completed) automorphic L-functions have meromorphic

(usually holomorphic) continuations and functional equations, this prediction implies the Hasse–Weil conjecture.

Definition 1.2. If X/F is a curve or an abelian variety, we write L(X, s) := L(H1(XF ,Qℓ), s), and we say
that X is modular if L(X, s) is a product of automorphic L-functions. We say that X is potentially modular if
there is a finite extension F ′/F such that XF ′ is modular. Similarly, we say that a representation ρ : GalF →
GLn(Qℓ) is modular if L(ρ, s) is a product of automorphic L-functions, and we say that a representation ρ :
GalF → GLn(Fl) is modular if it is the reduction modulo ℓ of a modular Galois representation.

Remark 1.3. The notion of potential modularity was introduced by Taylor [46], who observed that Brauer’s
methods apply in this setting, so that if X is potentially modular, then L(X, s) has the expected meromorphic
continuation and functional equations. However one cannot in general say anything about the poles (or lack
thereof) of this meromorphic continuation.

If X is a curve of genus zero, then (up to bad Euler factors) ζX(s) = ζF (s)ζF (s−1), and Conjecture 1.1 follows
immediately. The fundamental work of Wiles [49, 47] and the subsequent work of Breuil, Conrad, Diamond,
and Taylor [20, 12] proved Conjecture 1.1 for curves X/Q of genus one, since if we write E = Jac(X), then
ζX(s) = ζ(s)ζ(s− 1)/L(E, s) so the modularity of E implies the holomorphy and functional equation for L(E, s).
More generally, Taylor’s potential modularity results [46] prove Conjecture 1.1 for curves X/F of genus one over
any totally real field.

The methods used in these papers have been vastly generalized over the past 30 years due to the enormous
efforts of many people, and as a consequence one knows for example that if F is totally real and X is such that
the Hodge numbers hp,q = dimHp,q

dR (X) = dimHq(X,Ωp) of X are at most 1 for all p and q with p+ q = n, then
L(Hn(XF ,Qℓ), s) has the expected meromorphic continuation and functional equation (see [31, Cor. B]).

Unfortunately, this multiplicity one condition on Hodge numbers is fundamental to the original Taylor–Wiles
method, and there is a paucity of natural geometric examples satisfying this condition. In particular, it fails for
curves of genus g > 1 and for abelian varieties of dimension g > 1, where h1,0 = h0,1 = g. The main theorem
of [7] is the following.

Theorem 1.4. Let X be either a genus two curve or an abelian surface over a totally real field F . Then X
is potentially modular, and Conjecture 1.1 holds for X.

(The deduction of Conjecture 1.1 from potential modularity is straightforward in this case, using that the
cohomology of X is given by the wedge powers of the cohomology in degree 1, and known Langlands functoriality
results for wedge powers.)

While Theorem 1.4 resolves the Hasse–Weil conjecture for abelian surfaces A/Q, for many purposes (e.g.
applications to the Birch–Swinnerton-Dyer conjecture) one wishes to know modularity.

Modularity is known in some cases, using the results recalled above (in particular, the modularity of elliptic
curves). More precisely, by [8, Thm. 10.2.1], it is known unless A/Q is “challenging” in the sense of [7, §9.2],
which means that either

(1) End(AQ) = Z, or

(2) there exists a quadratic field K/Q so that End(A) = Z but End(AK)⊗Q is either Q⊕Q or a real quadratic
field.

A natural source of abelian surfaces of type (2) are those of the form ResK/Q(E) for a non-CM elliptic curve E
which is not isogenous to its Gal(K/Q)-conjugate. In this case the modularity of A would follow from the
modularity of E. If K/Q is real quadratic, then E is modular by Freitas–Le Hung–Siksek [23], while if K is
imaginary quadratic, then the modularity of E is known in many cases by work of Caraiani–Newton [18]. On the
other hand, the endomorphism algebra End(AK)⊗Q could also be a real quadratic field E rather than Q×Q,
in which case A/K will be a simple abelian surface of GL2-type, and the modularity of such abelian surfaces
remains open in general even for real quadratic fields K.

In view of this, we concentrate from now on the “typical” case that EndQ(A) = Z, where one has the
more precise expectation that L(A, s) = L(π, s) for some cuspidal automorphic representation π of GSp4 /Q,
and Brumer and Kramer [13] formulated the paramodular conjecture, which gives a precise prescription for the



“optimal” level structure for an automorphic form corresponding to a given abelian surface; in particular, this
in principle reduces the conjecture for a given A to an explicit computation of a (finite-dimensional) space of
Siegel modular forms. Using the Faltings–Serre method, and elaborate explicit computations of low weight Siegel
modular forms, developed in part by Poor and Yuen [36, 35, 11], the modularity of (finitely many, up to twist)
abelian surfaces A with EndQ(A) = Z was established in the papers [36, 14, 3].

If A/F is an abelian surface, we write ρA,p for the Galois representation associated to H1(AF ,Zp), which we
often think of as a representation

ρA,p : GalF → GSp4(Qp)

with multiplier given by the inverse cyclotomic character ε−1. By definition, A is modular if and only if ρA,p

is modular for some p (equivalently, for all p). We also let ρA,p denote the Galois representation associated to
H1(AF ,Fp). If A admits a principal polarization of degree prime to p, then we can and do think of ρA,p as a
representation

ρA,p : GalF → GSp4(Fp).

The main theorem of [8] is as follows.

Theorem 1.5. Let A/Q be an abelian surface with a polarization of degree prime to 3. Suppose the following
hold:

(1) The mod 3 representation
ρA,3 : GalQ → GSp4(F3)

is surjective.

(2) The representation ρA,3|GalQ2
is unramified, and the characteristic polynomial of ρA,3(Frob2) is not

(x2 ± x+ 2)2.

(3) A has good ordinary reduction at 3, and the characteristic polynomial of Frob3 does not have repeated roots.

Then A is modular.
More precisely, there exists a cuspidal automorphic representation π of GL4 /Q (the transfer of a cuspidal

automorphic representation of GSp4 /Q of weight 2) such that L(s,H1(A)) = L(s, π). Consequently, L(s,H1(A))
has a holomorphic continuation to C and satisfies the expected functional equation.

Remark 1.6. We claim that Theorem 1.5 applies to a positive proportion of abelian surfaces over Q, counted
in any reasonable sense. As one justification of this, suppose that one samples genus two curves

X : y2 + h(x)y = f(x)

with h(x), f(x) ∈ Z[x] of degrees ≤ 3 and ≤ 6 in any way in which the distributions modulo 2 and 3 are
equidistributed, and considers those curves X with the following properties:

(1) ρJacX,3 : GalQ → GSp4(F3) is surjective,

(2) X has good reduction at 2,

(3) X has good ordinary reduction at 3,

(4) ρJac(X),3(Frob2) does not have characteristic polynomial (x2 ± x+ 2)2,

(5) The characteristic polynomial of Frob3 has distinct eigenvalues.

Theorem 1.5 proves the modularity of Jac(X) for any such X, and one can check [8, §10.1] that these X form
a subset of density 5551

46656 = 0.1189 . . . Another point of comparison is with the curves in the database [48] (see
also [6]). This contains 63107 genus two curves X/Q with End Jac(X)Q = Z, and Theorem 1.5 applies to 11384
of them.



2 The 2–3 switch The proof of Theorem 1.5 follows Wiles’s strategy for proving the modularity of
semistable elliptic curves, and in particular, we make use of an analogue of the 3-5 switch used by Wiles [49] to
prove residual modularity. That switch exploited the rationality of certain twists of the modular curve X(5)/Q.
In our case, we use a rational moduli space of abelian surfaces to carry out a 2-3 switch.

In outline, the 2-3 switch proving Theorem 1.5 divides into three steps as follows.

Step 1 Show that ρB,2 is modular for many abelian surfaces B/Q. (See Lemma 2.3.)

Step 2 Show that for any abelian surface A as in Theorem 1.5, there exists B as in (Step 1) with ρB,3
∼= ρA,3. (See

Lemma 2.4.)

Step 3 Prove the following (imprecisely stated) modularity lifting theorem, which applies in particular to the
representations ρB,2 and ρA,3 for A,B as in the previous two steps:

Theorem 2.1. Suppose that ρ : GalQ → GSp4(Zp) is unramified at all but finitely many primes and de
Rham at p, and:

(i) ρ : GalQ → GSp4(Fp) is modular.
(ii) ρ(GalQ) is large.
(iii) ρ is pure.
(iv) ρ|GalQp

is ordinary, p-distinguished, and has Hodge–Tate weights 0, 0, 1, 1.

Then ρ is modular.

Proof of Theorem 1.5, given these steps. Suppose that A satisfies the hypotheses of Theorem 1.5, and let B
be as in Step 2. Then ρB,2 is modular by Step 1, so that ρB,2 is modular by Theorem 2.1. Equivalently, ρB,3

is modular, so that ρB,3 is modular. Since ρA,3
∼= ρB,3 by assumption, we can apply Theorem 2.1 to deduce

that ρA,3 is modular, as required.

Remark 2.2. Hypothesis (ii) of Theorem 2.1 is responsible for assumption (1) in Theorem 1.5, while the more
serious hypothesis (iv) corresponds to assumption (3) there (and is also responsible for (2)).

Our supply of abelian surfaces B/Q for Step 1 will be certain Jacobians B = Jac(X), where X/Q is a
genus two curve. Let ri for i = 1, . . . , 6 be the Weierstrass points of X over Q; then the non-zero elements
of B[2] are given by the ri − rj for i < j. Considering the action of GalQ on the ri, one has an identification
S6

∼−→ Sp4(F2) = GSp4(F2). There are two conjugacy classes of subgroup S5 ⊂ S6; we denote by S5(b) the
standard copy of S5 in S6 (and below we write A5(b) for the copy of A5 in S5(b)). Thus X has a rational
Weierstrass point (so that X can be written in the form y2 = f(x) with f quintic) if and only if ρA,2 factors
through a conjugate of S5(b).

The following lemma, which exploits some coincidences in the representation theory of A5, allows us to find
many X for which we know that ρB,2 is modular.

Lemma 2.3. Suppose that X/Q is a genus two curve with a rational Weierstrass point, and that B := Jac(X)
has semistable ordinary or good ordinary reduction at 2. Suppose also that

ρB,2 : GalQ → GSp4(F2) ≃ S6

has image S5(b), and that the image of complex conjugation has conjugacy class (∗∗)(∗∗). Then ρB,2 is modular,
arising from an ordinary weight 3 Siegel modular form.

Proof. If F+ is the quadratic field given by the kernel of the composite GalQ → S5(b) → Z/2Z, then
ρ(GalF+) = A5(b), and F+ is real by the assumption on complex conjugation. Let

ϱ : GalF+ → SL2(F4) ≃ A5

denote the residual 2-dimensional Galois representation associated to this A5-extension. (There are two such
representations which are permuted by the outer automorphism; choose either.) Either by an easy Brauer
character computation, or as a consequence of the Steinberg tensor product theorem for SL2(F4), we have

ρB,2
∼= Sym3ϱ.



By a theorem of Tate the composite ϱ : GalF+ → A5 ↪→ PGL2(C) lifts to an odd representation
ϱ : GalF+ → GL2(C) with finite image (which will be some central extension of A5). By the odd Artin conjecture
for GL2 (i.e. by the main results of [34] or [40]), ϱ is modular. By Hida theory, it follows that ϱ is modular,
coming from an ordinary Hilbert modular eigenform of parallel weight 2. By symmetric cube functoriality [27],
ρB,2|GalF+ is modular, arising from an ordinary weight 3 Hilbert–Siegel modular form. By solvable base change
and a standard use of the Khare–Wintenberger method [26], ρB,2 itself is modular, arising from an ordinary
weight 3 Siegel modular form, as required.

Step 2 is provided by the following lemma (see [8, Lem. 9.4.2]).

Lemma 2.4. Let A/Q be an abelian surface with a polarization of degree prime to 3. Assume that ρA,3|GalQ2

is unramified, and the characteristic polynomial of ρA,3(Frob2) is not (x2 ± x+ 2)2.
Then there exists a genus two curve X/Q with a rational Weierstrass point, with B = Jac(X) having the

following properties:

(1) ρB,3
∼= ρA,3.

(2) B has good ordinary or semistable ordinary reduction at 2, and is 2-distinguished.

(3) B has good ordinary reduction at 3.

(4) End(BQ) = Z.

(5) The representation
ρB,2 : GalQ → GSp4(F2)

has image S5(b), and the image of complex conjugation has conjugacy class (∗∗)(∗∗).

Proof. We consider the moduli space M(ρA,3)/Q of genus-two curves X equipped with a fixed rational
Weierstrass point and a symplectic isomorphism ρJac(X),3

∼= ρA,3. By definition, any Q-point of M(ρA,3) gives
B = Jac(X) satisfying ((1)), and ρB,2(GalQ) ⊆ S5(b) (due to the rational point).

By [7, Lem. 10.2.4], the variety M(ρA,3)/Q is rational. (The proof of this lemma is very similar to that
of [45, Lem. 1.1]: namely, a Galois cohomology argument reduces to checking that the corresponding moduli
space for the representation 1 ⊕ 1 ⊕ ε−1 ⊕ ε−1 is PGL4(F3)-equivariantly rational over Q, which is known by
[5, Theorem 0.0.1].) In particular, by weak approximation (combined with Hilbert irreducibility as in [44, §3.4,
§3.5]), for any finite set of places S and any nonempty open subsets Ωℓ ⊂ M(ρA,3)(Ql) (in the ℓ-adic topology) for
each ℓ ∈ S, we can find a Q-point of M(ρA,3) lying in Ωℓ for each ℓ ∈ S, for which ρB,2(GalQ) = S5(b) (which in
turn implies that End(BQ) = Z). We then take S = {2, 3,∞}; the hypothesis that the characteristic polynomial
of ρA,3(Frob2) is not (x2 ± x+ 2)2 is used to guarantee the existence of suitable points over Q2, by writing down
appropriate abelian surfaces over Q2 for each of the other possibilities for this characteristic polynomial.

For Theorem 1.4, we use a variant of the above strategy, where we choose primes p, q splitting completely
in our totally real field F , with the further properties that A admits a polarization of degree prime to pq, the
representations ρA,p and ρA,q have large image, and A has good ordinary reduction at all places dividing pq. Then
we have:

Lemma 2.5. Let A/F be a challenging abelian surface over a totally real field. Then there is a finite Galois
extension of totally real fields F ′/F such that p and q split completely in F ′, and an abelian surface B/F ′ with
good ordinary reduction at all places dividing pq, such that ρB,p

∼= ρA,p|GalF ′ , while ρB,q is modular of parallel
weight 2, and has large image.

Proof. We consider the moduli space Y of abelian surfaces B equipped with isomorphisms B[p]
∼−→ A[p] and

B[q] ∼= ρq, for any choice of ρq : GalF → GSp4(Fq). There is no reason that Y (F ) should be nonempty, but a
theorem of Moret-Bailly [28] guarantees that we can find F ′ as above so that Y (F ′) is nonempty, and satisfies the
required local conditions at primes dividing pq. Choosing ρq to be induced from a 2-dimensional representation,
we are able to arrange (using the (known) potential modularity of elliptic curves) that after a further extension
of F ′, ρB,q is modular.



Remark 2.6. As well as the (important!) difference between modularity and potential modularity, another
significant difference between the Lemma 2.5 and Lemmas 2.3 and 2.4 is that Lemma 2.5 shows residual potential
modularity in weight 2, while Lemma 2.3 shows residual modularity in weight 3. (which is regular).

The Galois representations associated to Siegel modular eigenforms of weight k ≥ 2 have Hodge–Tate
weights 0, k − 2, k − 1, 2k − 3 (see Section 3.1 below for the definition of Hodge–Tate weights), while the Galois
representations associated to abelian surfaces have Hodge–Tate weights 0, 0, 1, 1. It follows that if an abelian
surface is modular, corresponding to a Siegel modular form, that modular form must be of weight 2; so when we
have residual modularity in weight 3, we have to “change weight” in some way (see Remark 2.7 below for more
discussion of this). On the other hand, if k > 2 then the Hodge–Tate weights 0, k − 2, k − 1, 2k − 3 are pairwise
distinct, and we say that k is a “regular weight”, while k = 2 is an “irregular weight”. The irregular weight cases
behave quite differently (and are in general much more complicated than the regular weight cases) on both the
automorphic and Galois sides of the Langlands correspondences, as we will see below.

The remainder of this survey is devoted to Step 3 (and its analogue in [7]). This step divides into two parts.
Firstly, we use the Taylor–Wiles method to show that ρ is p-adically modular, in the sense that it contributes to a
Hida family of Siegel modular forms. This is relatively standard, although the need to consider the primes p = 2, 3
causes some pain. Secondly, we prove a classicality criterion for weight 2 ordinary Siegel p-adic modular forms.
It is in this step that the difference mentioned in Remark 2.6 becomes significant. In [7], the relevant classicality
theorem is a “small slope implies classical” theorem in the style of Coleman, but this approach does not suffice
in the situation considered in [8]. In this case the proof, building upon work of Rodríguez Camargo [38], is a
generalisation from GL2 to GSp4 of a part of Lue Pan’s remarkable work [30]. In the remainder of this survey,
we concentrate on the classicality theorems, before briefly returning to the Taylor–Wiles method in Section 5.

Remark 2.7. It was well-known for many years that Theorem 1.4 could be deduced from strong enough
modularity lifting theorems; we refer the reader to [2, §6] and [16, §11.2] for some of the history. The paper [7]
was posted online at the end of 2018, and we found the strategy outlined above for proving Theorem 1.5 in March
2019. At that time, we imagined that we would need to prove a “low weight mod p companion form” result to show
that the weight 3 Siegel modular form in Lemma 2.3 is congruent to a weight 2 Siegel modular form, and then
apply the modularity lifting theorems of [7]. We still do not know how to prove such companion form theorems,
but the situation changed in 2020 with Lue Pan’s paper [30]. By the spring of 2022, we were confident that it was
possible to use Pan’s techniques to prove an appropriate classicality result, but we had not yet proved (regular
weight) modularity lifting theorems for GSp4 which could applied to the representations ρB,2. After some false
starts, we managed to do this in spring 2023, and we wrote [8] over the following two years.

3 Galois representations

3.1 Sen theory Let Qp(ζp∞) := ∪nQp(ζpn) be the cyclotomic extension of Qp. Then GalQp(ζp∞ ) is the

kernel of the cyclotomic character ε : GalQp
→ Z×

p . By the Ax–Sen–Tate theorem, we have C
GalQp(ζp∞ )

p =

Q̂p(ζp∞), the completion of Qp(ζp∞). Let V/Qp be a finite-dimensional Qp-vector space equipped with a
continuous action of GalQp , so that ρ : GalQp → GL(V ) is a Galois representation. Then V ⊗Qp Cp has a
semilinear action of GalQp

, and Sen showed that it descends to Q̂p(ζp∞), in the sense that

(V ⊗Qp
Cp)

GalQp(ζp∞ ) ⊗ ̂Qp(ζp∞ )
Cp

∼= V ⊗Qp
Cp.

Furthermore, it descends to Qp(ζp∞): there is a unique Gal(Qp(ζp∞)/Qp)-stable Qp(ζp∞)-subspace DSen(V ) of
V ⊗Qp

Cp such that
DSen(V )⊗Qp(ζp∞ ) Cp

∼= V ⊗Qp
Cp.

In fact, DSen(V ) is the union of the finite-dimensional Gal(Qp(ζp∞)/Qp)-stable Qp(ζp∞)-subspaces of V ⊗Qp
Cp.

The Qp(ζp∞)-vector space DSen(V ) has an action of Gal(Qp(ζp∞)/Qp), and thus a linear action of
Lie (Gal(Qp(ζp∞)/Qp)). More explicitly, we have the Sen operator ΘV , which is the Qp(ζp∞)-linear map given
by ΘV := log(γ)/ logp(ε(γ)) for any γ ∈ Gal(Qp(ζp∞)/Qp) sufficiently close to 1.

By definition, V is Hodge–Tate, with Hodge–Tate weights h1, . . . , hn ∈ Z, if there exists an isomorphism of
Cp[GalQp

]-modules
V ⊗Qp Cp

∼= ⊕n
i=1Cp(−hi),



where Cp(n) is the nth Tate twist; thus V is Hodge–Tate if and only if the Sen operator ΘV is semisimple and
has eigenvalues in Z, in which case the Hodge–Tate weights are the negatives of the eigenvalues of ΘV .

3.2 Ordinary Galois representations There are various definitions in the literature of ordinary Galois
representations; the following will be convenient for us.

Definition 3.1. We say that ρ : GalQp
→ GL(V ) is ordinary if there are integers h1 ≤ h2 · · · ≤ hn such

that ρ is conjugate to an upper-triangular representation
χ1 ∗ . . . ∗
0 χ2 . . . ∗
...

...
. . .

...
0 0 . . . χn


where each χi : GalQp

→ Q×
p is a character with χi|IQp

= ε−hi .

It is straightforward to check that an ordinary Galois representation is de Rham if and only if it is Hodge–Tate, i.e.
if and only if the Sen operator ΘV is semisimple. If h1 < · · · < hn, this is automatic (e.g. because the eigenvalues
of the Sen operator are distinct), but in general it need not hold. Indeed, a standard example of a representation
which is not Hodge–Tate but whose Sen operator has integral eigenvalues is the ordinary representation(

1 logp ε
0 1

)
,

which by definition has Sen operator ( 0 1
0 0 ).

4 p-adic modular forms and classicality We now review the approach to p-adic modular forms and
classicality theorems taken in [8], which relies on the work of Pan [30] and its generalisations to other Shimura
varieties by Rodríguez Camargo [38], as well as the higher Coleman and Hida theories of Boxer–Pilloni [9, 10].
There is a long history of such classicality theorems, going back in the case of Coleman theory to [19]; we highlight
in particular Kassaei’s paper [24], and its generalisation in [4]. Another important ingredient is the families of
p-adic automorphic forms introduced by Andreatta–Iovita–Pilloni [1] (see [2] for a survey).

For simplicity we say almost nothing below about compactifications of Shimura varieties, or about the
distinction between cuspidal and usual cohomology. These both play an important role in the foundations of
the theory, but disappear in our main results, as we always localise at a non-Eisenstein maximal ideal of a Hecke
algebra. Similarly, we will sometimes elide the difference between functors on the abelian and derived level where
it makes no difference for our final statements. We will also only work with p-adic modular forms of integral
weight, as this is all that is needed for our main theorems and allows us to simplify the exposition in places.
We say very little about families of p-adically varying weight, although these are an important ingredient in the
proofs of some results that we state.

We will also be extremely informal in our treatment of p-adic functional analysis and condensed mathematics.
A justification for this is that at the time of writing, the “correct” foundations for the constructions we discuss
are not yet available. In particular, the arguments below use a p-adic version of Beilinson–Bernstein localisation;
ideally, this should be defined in the framework of the analytic de Rham stack of Rodríguez Camargo [39],
similarly to Scholze’s treatment of classical Beilinson–Bernstein localisation in [42]. This formalism is expected
to be available soon, but in the meantime [8] proceeds in a somewhat ad hoc fashion.

While the only Shimura varieties considered here are the Siegel threefolds associated to the group GSp4, many
of the results that we explain below are proved in [8] for Hodge-type Shimura varieties, or (in the case of results
requiring a non-Eisenstein localisation) are expected to hold in this generality. Accordingly, where possible we
phrase our results without reference to specific features of GSp4, although we caution the reader that they should
turn to [8] to see the precise hypotheses under which each result is proved.

Accordingly, from now on we write G = GSp4; when we eventually need to be concrete, we will realise G
as the subgroup of GL4 acting on the free Z-modules of rank 4, with basis e1, · · · , e4 and preserving up to a
similitude factor the symplectic form with matrix

J =

(
0 S
−S 0

)



where S is the 2 × 2 anti-diagonal matrix with only 1’s on the anti-diagonal. We take P to be the (“block
lower-triangular”) Siegel parabolic stabilising e3, e4, and B the Borel inside it which is upper-triangular in each
of the diagonal 2× 2 blocks. We let M be the Levi quotient of P , and let U,UP be the unipotent radicals of B,P
respectively. We let T be the diagonal torus. The sets of M -dominant and G-dominant characters are respectively
denoted by X∗(T )M,+ and X∗(T )+. We let µ ∈ X∗(T ) be the minuscule dominant cocharacter t 7→ diag(1, 1, t, t).

We let W be the Weyl group of G, with length function ℓ : W → Z≥0, and write w0 for the longest element
of W . Let Φ+ be the set of positive roots of G, and let ρ be half the sum of the positive roots. Write WM for
the Weyl group of M , and let MW ⊆ W be the set of Kostant representatives of WM\W (i.e. those w ∈ W with
wX∗(T )+ ⊆ X∗(T )M,+; this is a set of coset representatives of minimal length).

We denote by g, b, h, p,m, up the Lie algebras of G,B, T, P,M,UP respectively. For each w ∈ W , we
let Pw := w−1Pw, with Lie algebra pw := w−1pw, and similarly we define upw , mw, and so on. For w ∈ MW ,
bmw

:= b ∩mw is a Borel in mw.

4.1 Modular forms and the Hodge–Tate period map We fix throughout a tame level Kp ⊂
GSp(A∞,p) (which we ultimately choose in order to guarantee that various spaces of p-adic modular forms
are 1-dimensional, using the theory of newforms developed in [37]), and for each open compact subgroup
Kp ⊂ GSp4(Qp), we let ShKp

/Cp be the analytic adic space attached to (a toroidal compactification of) the
Siegel Shimura variety of level KpK

p.
For each κ ∈ X∗(T )M,+ and each finite level Shimura variety ShKp , we have the usual sheaf ωκ of modular

forms of weight κ on ShKp
. The coherent cohomology RΓ(ShKp

, ωκ) has an action of a Hecke algebra T (generated
by the Hecke operators at the places where Kp is hyperspecial), and the corresponding eigenclasses can be
computed in terms of automorphic forms on G. More precisely, cuspidal automorphic representations contribute
according to their Archimedean components π∞, and the essentially tempered π∞ which contribute to coherent
components are the so-called non-degenerate limits of discrete series. The upshot for us is that in order to prove
that a Galois representation is modular, it suffices to show that its corresponding system of Hecke eigenvalues
contributes to some RΓ(ShKp

, ωκ).
We let Sh∞ = limKp

ShKp
, which is a perfectoid space with an action of GalQp

, admitting a GalQp
-equivariant

Hodge–Tate period map
πHT : Sh∞ → FL,

where FL is the base change to Cp of the (partial) flag variety P\G. This was introduced by Scholze [41], and has
revolutionised the study of p-adic modular forms. As a first illustration of this, let Lκ be the G-equivariant sheaf
on FL whose fibre at e is the inflation from M to P of the irreducible representation of M of highest weight κ, and
we set ωκ,sm := (π∗

HTLκ)
sm. By the definition of πHT, one finds that the sheaf ωκ,sm descends to ωκ on each ShKp .

Thus RΓ(Sh∞, ωκ,sm) is a complex of smooth admissible G(Qp)-representations, equal to colimKp
RΓ(ShKp

, ωκ).
This suggests the possibility of proving results about modular forms by working on the flag variety FL, an idea
exploited to great effect by Scholze in [41].

Returning to the problem of the modularity of Galois representations, a basic difficulty now presents itself:
there is no Galois action on RΓ(Sh∞, ωκ,sm), thus no direct connection to Galois representations. This difficulty
was resolved in the case of the modular curve by Pan [30], who invented geometric Sen theory and combined
it with Scholze’s ideas to prove remarkable new “p-adic Eichler–Shimura” results, relating the RΓ(Sh∞, ωκ,sm)
to étale cohomology groups, which naturally have an action of GalQ. Furthermore, as we will see below, Pan’s
theory often allows one to reduce to questions on the flag variety, and thus to explicit computations.

In fact, the spaces of classical modular forms RΓ(Sh∞, ωκ,sm) do not directly show up in p-adic Eichler–
Shimura theory; rather, one sees spaces of p-adic modular forms which are defined using the flag variety, and are
closely related to the higher Coleman theory of Boxer–Pilloni [9]. From our point of view, this is a feature rather
than a bug: it is these spaces of p-adic modular forms to which we can apply the Taylor–Wiles method in order
to prove our modularity lifting theorems, and we then consider separately the problem of proving the classicality
of a p-adic modular form. This classicality problem is solved by a generalisation of Pan’s ideas, in combination
with results of Boxer–Pilloni.

4.2 Completed cohomology By Scholze’s primitive comparison theorem, the cohomology of the structure
sheaf RΓan(Sh∞,OSh∞) is naturally identified with R̃Γ(Sh∞,Qp)⊗QpCp, where

R̃Γ(Sh∞,Qp) := lim
n

colimKp
RΓ(ShKp

,Zp/p
n)⊗Zp

Qp



denotes Emerton’s completed étale cohomology (with Qp coefficients). As well as the action of GalQp
and of

the Hecke algebra T, this has an action of GSp4(Qp), and we can consider the (derived) locally analytic vectors
R̃Γ(Sh∞,Qp)

la⊗Qp
Cp, which have an action of the Lie algebra g. We can define subsheaves of smooth and locally

analytic vectors for the GSp4(Qp)-action:

Osm
Sh∞

⊆ Ola
Sh∞

⊆ OSh∞ ,

and by results of Rodríguez Camargo (following Pan), we have a natural identification

(4.1) R̃Γ(Sh∞,Qp)
la⊗Qp

Cp = RΓan(Sh∞,Ola
Sh∞

).

Fix λ ∈ X∗(T ), and write Mλ for the Verma module for g with highest weight λ. By (4.1) we have

(4.2) RHomb(λ, R̃Γ(Sh∞,Qp)
la)⊗Qp

Cp = RΓan(Sh∞,RHomg

(
Mλ,Ola

Sh∞
)
)
.

We think of the left hand side of (4.2) as a space of p-adic modular forms of weight λ; the goal of p-adic Eichler–
Shimura theory is to understand it in terms of the RΓ(Sh∞, ωκ,sm).

The formula (4.2) motivates the following definitions. Write O(g, b) for the usual category O of finitely
generated left U(g)-modules with locally finite b-action and semisimple h-action, and O(g, b)alg for the full
subcategory of objects all of whose weights are in X∗(T ); this category contains the Verma modules of integral
highest weight. The action of b on an object of O(g, b)alg can naturally be integrated to an action of B, so
from now on we regard these objects as (g, B)-modules (and we we regard the left hand side of 4.2 as a smooth
B(Qp)-representation). Writing ModsmB(Qp)(O

sm
Sh∞

) for the derived category of solid Osm
Sh∞

-modules with a smooth
action of B(Qp), the right hand side of (4.2) suggests that we should consider the functor

O(g, b)alg → ModsmB(Qp)(O
sm
Sh∞

),

M 7→ RHomg

(
M,Ola

Sh∞
).

(4.3)

4.3 Localisation to the partial flag variety A key point is that the functor RHomg

(
−,Ola

Sh∞
) factors

through a natural analogue of Beilinson–Bernstein localisation for the partial flag variety FL, as we now explain
(see Theorem 4.1 below). From now on we regard G an an affinoid analytic group over Cp. There is a natural
action of G on FL by right multiplication, which induces an action of g by derivations on OFL. We have a
filtration of G-equivariant coherent sheaves: u0p ⊆ p0 ⊆ g0 = OFL ⊗ g, whose fibres at a point x ∈ FL are
upx

= x−1upx ⊆ px = x−1px ⊆ g. We let Gr be the analytic subgroup of G consisting of elements reducing to the
identity e modulo pr, and we set OG,e := colimr OGr

. Then we define Û(g) := O∨
G,e; this is a completion of the

universal enveloping algebra U(g). We also write Ge = limr Gr, the limit being taken in the category of locally
ringed spaces; this has a single point e (the identity element of G), with structure sheaf OG,e.

We now define the ring of universal twisted differential operators

D̃la = (OFL⊗Û(g))/u0p(OFL ⊗ Û(g)),

and we let Cla = (OG,e ⊗OFL)
u0
p where the invariants are for the diagonal action on the two factors, where the

action on OG,e is by left translation. Then Cla is a D̃la-module, and it carries an action of g (by right translation
on OG,e) which commutes with the D̃la-module structure. We define a localisation functor from the (derived)
category of solid U(g)-modules to the (derived) category of solid D̃la-modules (i.e. twisted D-modules):

Loc : Mod(U(g)) → Mod(D̃la)

M 7→ RHomg(M, Cla).

For any M , the sheaf Loc(M) admits a natural “horizontal” action of the centre Z(m) of the universal enveloping
algebra U(m), via the natural injection OFL ⊗ Z(m) ↪→ U(m0) (with m0 = g0/u0p), and in particular it admits
an action of µ ∈ Z(m). If M ∈ O(g, b)alg then we regard Loc(M) as a (g, B)-equivariant sheaf on FL; the
B-equivariant structure comes from the action of B on M , while the g-action comes from the D̃la-module
structure.

The following theorem is a consequence of the geometric version of Sen theory introduced by Pan and
generalized by Rodríguez Camargo. Its formulation is a generalisation of Pilloni’s interpretation [33] of Pan’s
work for the modular curve.



Theorem 4.1. The functor (4.3) factors through the functor Loc; more precisely, for M ∈ O(g, b)alg we have

RHomg

(
M,Ola

Sh∞

)
=

(
π∗
HT Loc(M)

)sm
,

and

(4.4) RHomg(M, R̃Γ(Sh∞,Qp)
la)⊗Qp

Cp = RΓan(Sh∞,RHomg

(
M,Ola

Sh∞
)
)
.

Furthermore, the action of µ ∈ Z(m) on Loc(M) via the horizontal action induces the Sen operator on the left
hand side of (4.4).

In view of Theorem 4.1, we will sometimes refer to the horizontal action of µ as “the Sen operator” in the following.

4.4 p-adic Eichler–Shimura To go further, we use excision with respect to the Bruhat stratification
of FL, i.e. the decomposition into B-orbits FL = P\G =

∐
w∈MW P\PwB, indexed by the Kostant

representatives MW ; the dimension of P\PwB is ℓ(w). We write jw : Cw = P\PwB ↪→ FL for the locally
closed immersion of the Bruhat cell corresponding to w, and C†

w for the dagger neighbourhood of Cw in FL. We
write jw,Sh∞ : π−1

HT(Cw) ↪→ Sh∞ for the morphism induced by jw.
For each w ∈ MW , we can consider the composite of Loc with restriction to C†

w. Let M be an object of
O(g, b)alg, so that Loc(M) is a (g, B)-equivariant sheaf; since Cw is a B-orbit, and Loc(M) is B-equivariant,
the sheaf Loc(M)|C†

w
is determined by its fibre at w, which is a representation of the stabiliser of w for the

(g, B)-action. This stabiliser admits an explicit description as follows. The action of (g, B) can be upgraded to
an action of the semi-direct product Ge⋊B, which acts on C†

w via (g, b) 7→ wgb. Write Stab(w) for the stabiliser
of w for this action; then it follows from the definitions that the map (g, b) 7→ (gb, b) is an injection

Stab(w) ↪→ Pw ×B.

It is then elementary to check that Stab(w) is generated by its subgroups Stab(w)e = Pw,e×Be and Pw ∩B ⊆ B,
and in fact

(4.5) (Pw ∩B)e\(Pw,e ×Be)⋊ (Pw ∩B).

The explicit description (4.5) allows us to construct a contravariant functor

HCSw : O(mw, bmw
)alg → Mod(g,B)(C

†
w)

u0
p

where O(mw, bmw
)alg is the algebraic category O for the pair (mw, bmw

), as defined above, and the target category
has the obvious meaning. (Here “HCS” stands for “higher Coleman sheaf”.) This functor is defined as follows: the
action of bmw

on V ∈ O(mw, bmw
)alg integrates to an action of BMw

= Mw ∩B, and thus determines an action of
Pw∩B. The admissible Û(g)-module (V ⊗U(g) Û(g))∨ therefore has actions of Pw∩B and of Pw,e (the latter action
factoring through the action of Mw,e, which comes from the action of mw), and one checks that by allowing Be

to act trivially, we obtain an action of Stab(w). The corresponding (g, B)-equivariant sheaf is HCSw(V ).
The reason for introducing this functor is that there is a commutative diagram

(4.6)
O(g, b)alg Mod(g,B)(C

†
w)

u0
p

O(mw, bmw
)alg

j−1
w Loc

Cp⊗L
upw

−
HCSw

where the functor Cp ⊗L
upw

− : Mod(U(upw
)) → Mod(Cp) is the functor of “Lie algebra homology”, with

Hi(upw
,M) = H−i(Cp ⊗U(g) M). To see that (4.6) commutes, one only has to check that the fibres at w of

the (g, B)-equivariant sheaves are isomorphic representations of Stab(w). This boils down to noting that the fibre
Cla
w is OUPw\G,e, with the action of Stab(w) being determined by the action of Pw,e by left translation, the action

of Be by right translation, and the action of Pw ∩B by conjugation.
We now return to the cohomology of Shimura varieties. For any sheaf F on a subset of Sh∞ containing

π−1
HT(Cw), we write

RΓw(Sh∞,F) := RΓ(Sh∞, jw,Sh,!F|π−1
HT(Cw)),



where jw,Sh,! is the extension by zero functor on abelian sheaves of solid abelian groups. Then we define the
functor

HCw : O(mw, bmw
)alg → ModsmB(Qp)(Cp),

M 7→ RΓw(Sh∞, (π∗
HTHCSw(M))sm).

(4.7)

Combining (4.6) with Theorem 4.1 and the spectral sequence for a filtered complex, we obtain the following
theorem, a basic form of the p-adic Eichler–Shimura decomposition.

Theorem 4.2. For any M ∈ O(g, b)alg, we have a spectral sequence:

Ep,q
1 = ⊕w∈MW,ℓ(w)=pH

p+q(HCw(Cp ⊗L
upw

M))

converging to Hp+q(RHomg(M, R̃Γ(Sh∞,Qp)
la)) ⊗Qp

Cp. The Sen operator is induced by the action of wµ ∈
Z(mw) on H∗(upw ,M).

4.5 The ordinary part Let T+(Qp) := {t ∈ T (Qp), ∀α ∈ Φ+, vp(α(t)) ≥ 0}. Given a smooth
representation V of B(Qp), there is a Hecke action of T+(Qp) on V U(Zp); as usual, the action of t ∈ T+(Qp)

is defined via the (normalised) trace V tU(Zp)t
−1 → V U(Zp). The finite slope part V fs of V is by definition

the subspace on which T+(Qp) acts invertibly. For any λ ∈ X∗(T )R, we say that the slopes of V fs are at
least λ (respectively, are equal to λ) if for every t ∈ T+(Qp) and every eigenvalue α of t acting on V fs, we have
vp(α) ≥ vp(λ(t)) (respectively, vp(α) = vp(λ(t))). The spaces HCw(M)fs are very closely related to the higher
Coleman theories of Boxer–Pilloni (see [8, Thm. 4.6.56] for a precise statement). The following key slope bound
was proved by Boxer–Pilloni (it is essentially [10, Cor. 6.2.16]). It is proved by a careful analysis of integral
models of Hecke correspondences (and in particular, it is not deduced from a statement on the flag variety). We
will see below that it immediately implies classicality theorems and p-adic Eichler–Shimura decompositions for
the ordinary part of the cohomology (and more generally for the “small slope” part, although we do not discuss
that here).

Theorem 4.3. Let w ∈ MW , and let M ∈ O(mw, bmw
)alg be a module generated by a highest weight vector

of weight ν. Then the slopes of HCw(M)fs are at least −ν + w−1w0,Mρ+ ρ.

We fix from now on a character λ ∈ X∗(T )M,+, and assume that V is a smooth representation of B(Qp) such
that the slopes of V fs are at least −λ. Then the ordinary part V ord of V is by definition the subspace of V fs

whose slopes are equal to −λ.
In particular, by Theorem 4.3, the slopes of HCw(Mλ)

fs are all at least −λ, so we may consider the ordinary
part HCw(Mλ)

ord. Write d = dim up = dimShKp
. The homology groups Hi(upw

,Mλ) all belong to O(mw, bmw
),

and they can (at least in principle) be computed by a Chevalley–Eilenberg complex. Write L(mw)ν for the
simple quotient of the Verma module for mw of highest weight ν. Then an analysis of this complex shows that
Hd−ℓ(w)(upw ,Mλ) has a unique subquotient isomorphic to L(mw)λ+w−1w0,Mρ+ρ, and that every other Jordan–
Hölder factor of any Hi(upw ,Mλ) is generated by a highest weight vector of the form

(4.8) λ+ w−1w0,Mρ+ ρ−
∑

α∈Φ+

nαα,

where nα ∈ Z≥0 and nα > 0 for some α. Applying Theorem 4.3 to (4.8), it follows that for any such Jordan–Hölder
factor, say X, the slopes of HCw(X)fs are at least −λ +

∑
α∈Φ+ nαα > −λ, so that HCw(X)ord = 0. Going

back to Theorem 4.2, we see that the slopes of Hp+q(RHomg(Mλ, R̃Γ(Sh∞,Qp)
la))⊗Qp Cp are all at least −λ,

and that there is a spectral sequence

(4.9) Ep,q
1 = ⊕w∈MW,ℓ(w)=pH

2p+q−d(HCw(L(mw)λ+w−1w0,Mρ+ρ))
ord

converging to Hp+q(RHomg(Mλ, R̃Γ(Sh∞,Qp)
la))ord ⊗Qp Cp.

Let m be a maximal ideal of T with corresponding Galois representation ρm : GalQ → GSp4(Fp). We say that
m is non-Eisenstein if ρm is irreducible. Then a comparison of the cuspidal and non-cuspidal versions of HCw,
and an analysis of the cohomology of the boundary of the toroidal compactification (which we have only carried



out for G = GSp4, although we expect the analogous results to hold more generally) together show that after
localising at a non-Eisenstein m, each HCw only has cohomology in degree ℓ(w), and Hi(RHomg

(
Mλ,Ola

Sh∞
))ordm

vanishes outside of degree i = 3 (i.e. outside of middle degree). Thus the spectral sequence (4.9) degenerates,
proving the following theorem.

Theorem 4.4. Suppose that λ ∈ X∗(T ), and that m is non-Eisenstein. Then

RHomb(λ, R̃Γ(Sh∞,Qp)
la)ordm ⊗Qp

Cp = RΓan(Sh∞,RHomg

(
Mλ,Ola

Sh∞
)
)ord
m

is concentrated in degree 3, and there is a decreasing filtration on H3(Sh∞,RHomg

(
Mλ,Ola

Sh∞
)
)ord
m

with ith graded
piece given by

(4.10) ⊕w∈MW,ℓ(w)=iH
i(HCw(L(mw)λ+w−1w0,Mρ+ρ))

ord
m .

Under appropriate dominance hypotheses, the summands in (4.10) can be described in terms of the
sheaves ωκ,sm. Indeed, recall that Lκ is the G-equivariant sheaf on FL corresponding to the irreducible
representation of M of highest weight κ. Unwinding the definitions, one finds that for each w ∈ MW , we
have

(4.11) Lκ|C†
w
= HCSw(L(mw)−w−1w0,Mκ).

Set
κw := −w0,Mw(λ+ ρ)− ρ,

so that
−w−1w0,Mκw = λ+ w−1w0,Mρ+ ρ.

Provided that κw ∈ X∗(T )M,+, it follows from (4.11) that

ωκw,sm|π−1
HTC†

w
= (π∗

HTHCSw(L(mw)λ+w−1w0,Mρ+ρ))
sm,

and (by (4.7), i.e. by the definition of HCw) the contribution from w to (4.10) is

(4.12) Hi(HCw(L(mw)λ+w−1w0,Mρ+ρ))
ord
m = Hi

w(Sh∞, ωκw,sm)ordm .

Additionally, considering the horizontal action of µ, we see that the Sen operator acts on ωκw,sm|π−1
HTC†

w
via ⟨µ, κw⟩.

We now consider the difference between the spaces of ordinary p-adic modular forms Hi
w(Sh∞, ωκw,sm)ordm and

of ordinary classical modular forms Hi(Sh∞, ωκw,sm)ordm . Bearing in mind (4.12), the slope bound of Theorem 4.3
shows that for each pair v, w ∈ MW , the slopes of Hi

v(Sh∞, ωκw,sm)fs are at least

(4.13) −λ+
(
(λ+ ρ)− v−1w(λ+ ρ)

)
.

If we assume that λ+ρ ∈ X∗(T )+, we see that these slopes are at least −λ, and that Hi
v(Sh∞, ωκw,sm)ordm vanishes

unless v−1w(λ+ ρ) = (λ+ ρ); equivalently, unless κv = κw. Accordingly, we now consider the subgroup Wλ of W
consisting of those w′ with w′(λ+ ρ) = (λ+ ρ). This subgroup corresponds to a standard parabolic subgroup Q
of G; for example, if λ ∈ X∗(T )+, then this subgroup is trivial and Q = B. Then P\PwQ is the union
of those Bruhat cells Cv for which Hi

v(Sh∞, ωκw,sm)ordm could be nonzero, and we let jw,Q : P\PwQ ↪→ FL,
jw,Q,Sh∞ : π−1

HT(P\PwQ) ↪→ Sh∞ be the corresponding locally closed immersions. Writing

RΓw,Q(Sh∞, ωκw,sm) := RΓ(Sh∞, jw,Q,Sh,!ω
κw,sm|π−1

HT(P\PwQ)),

we obtain the following classicality result.

Theorem 4.5. Suppose that κw ∈ X∗(T )M,+, and λ+ ρ ∈ X∗(T )+. Then

RΓw,Q(Sh∞, ωκw,sm)ordm = RΓ(Sh∞, ωκw,sm)ordm .

Proof. It suffices to note that for each v /∈ wWλ, we have RΓv(Sh∞, ωκw,sm)ordm = 0 by (4.13).



Remark 4.6. The cohomology RΓw,Q(Sh∞, ωκw,sm)ordm is supported in degrees [ℓ(wmin), ℓ(wmax)], where
wmin, wmax are respectively the minimal and maximal length representatives in MW for the double coset WMwWλ.

Remark 4.7. As noted above, if λ ∈ X∗(T )+ then Q = B, so that Hℓ(w)
w,Q (Sh∞, ωκw,sm) = H

ℓ(w)
w (Sh∞, ωκw,sm),

and the Eichler–Shimura decomposition in Theorem 4.4 takes a particularly simple form. However, a stronger
result (without taking ordinary parts or making a non-Eisenstein localisation) was already known in this case
(going back to Faltings–Chai [22] in the Siegel case); from our perspective, it can be obtained by replacing Mλ

above with Vλ, the algebraic representation of G of highest weight λ. Then Loc(Vλ) is G-equivariant, rather than
merely B-equivariant, and one can compute directly on the whole of FL, without needing to restrict to Bruhat
strata.

4.6 Sen equals Cousin We now make things more explicit in the case of interest to us, where λ is not
regular, i.e. λ ̸∈ X∗(T )+. We now introduce some more explicit notation for G = GSp4. We label the elements
of T by t = diag(zt1, zt2, zt

−1
2 , zt−1

1 ), and the characters X∗(T ) of T by tuples κ = (k1, k2;w) ∈ Z2 × Z with
w ≡ k1 + k2 (mod 2), whereκ(t) = zwtk1

1 tk2
2 . Thus a character (k1, k2;w) is M -dominant if k1 ≥ k2, and G-

dominant if 0 ≥ k1 ≥ k2. We have ρ = (−1,−2; 0).
The Weyl group W is generated by sα and sβ where sα(k1, k2;w) = (k2, k1;w) and sβ(k1, k2;w) = (−k1, k2;w),

so that w0 = sαsβsαsβ , and w0(k1, k2;w) = (−k1,−k2;w). We have WM = {Id, w0,M = sα}. The elements of
MW are 0w = Id, 1w = sβ ,

2w = sβsα,
3w = sβsαsβ , where ℓ(iw) = i. From now on we take λ = (1, 1;−2), so

that λ + ρ = (0,−1;−2). Then Wλ = {1, sβ}, and Q is the Klingen parabolic. We have two Q-orbits on FL,
namely C0w ∪ C1w and C2w ∪ C3w, with the corresponding κw being (2, 2; 2) and (1, 1; 2) respectively. This is
illustrated in Figure 4.1 (which draws a character (k1, k2;w) at (k1, k2)).

In our earlier paper [7], the input to our modularity lifting theorem is a class in H0(Sh∞, ω(2,2;2),sm)ordm ,
i.e. an ordinary Siegel modular form of weight 2 (see Remark 2.6). Accordingly in that paper we work with
RΓid,Q(Sh∞, ω(2,2;2),sm)ordm , which has cohomology in degrees 0, 1, and by Theorem 4.5 agrees with the classical
ordinary cohomology RΓ(Sh∞, ω(2,2;2),sm)ordm .

However in [8] our input is a class in weight 3, rather than weight 2. Using Hida theory, we can produce
a congruence to a class in H0

id(Sh∞, ω(2,2;2),sm)ordm , and ultimately the modularity lifting machinery produces
another class in the same cohomology group. We then need to understand when such a class extends to
H0

id,Q(Sh∞, ω(2,2;2),sm)ordm . We now briefly explain how we do this; in fact for technical reasons we found it more
convenient in [8] to study the problem of extending from H2

3w(Sh∞, ω(1,1;2),sm)ordm to H2
3w,Q(Sh∞, ω(1,1;2),sm)ordm ,

so we do the same here.
From now on we work on C3w,Q := C3w ∪C2w. We have a short exact sequence of sheaves over π−1

HT (C3w,Q),
corresponding to the stratification of C3w,Q into B-orbits, with j3w,Sh∞ : π−1

HT (C3w) ↪→ π−1
HT (C3w,Q):

(4.14) 0 → (j3w,Sh∞)!ω
(1,1;2),sm|π−1

HT (C3w) → ω(1,1;2),sm|π−1
HT (C3w,Q) → ω(1,1;2),sm|π−1

HT (C2w) → 0

Thus RΓ3w,Q(Sh∞, ω(1,1;2),sm)ordm is computed by the following complex in degrees 2, 3, where Cous is induced by
the class of the extension (4.14):

(4.15) [H2
2w(Sh∞, ω(1,1;2),sm)ordm

Cous−−−→ H3
3w(Sh∞, ω(1,1;2),sm)ordm ].

On the other hand, as noted just below (4.12), the Sen operator Θ on H3(RHomg

(
Mλ,Ola

Sh∞
))ordm acts

by ⟨µ, κ2w⟩ = ⟨µ, κ3w⟩ = 0 on each of H2
2w(Sh∞, ω(1,1;2),sm)ordm and H3

3w(Sh∞, ω(1,1;2),sm)ordm , so it induces a map:

(4.16) H2
2w(Sh∞, ω(1,1;2),sm)ordm

Sen−−→ H3
3w(Sh∞, ω(1,1;2),sm)ordm .

The key result is the following theorem, showing that “Sen equals Cousin”. It is proved by an explicit calculation
on the flag variety FL.

Theorem 4.8. The two maps

Cous, Sen : H2
2w(Sh∞, ω(1,1;2),sm)ordm → H3

3w(Sh∞, ω(1,1;2),sm)ordm

agree up to a non-zero scalar.



Figure 4.1: (Shifted) M -dominant Weyl chambers of weights (k1, k2). The G-dominant Weyl chamber is labelled
by 3w. The red hearts are at κ3w = κ2w = (1, 1) and κ1w = κ0w = (2, 2) for our λ = (1, 1), while the blue squares
represent the κw for a typical regular weight.

−ρ = (1, 2)

3w 2w

1w

0w



Combining Theorem 4.8 and (4.15), we see that a class c ∈ H2
2w(Sh∞, ω(1,1;2),sm)ordm extends to

H2
3w,Q(Sh∞, ω(1,1;2),sm)ordm (equivalently, to H2(Sh∞, ω(1,1;2),sm)ordm ) if and only if Sen(c) = 0. It only remains

to relate this condition to the Sen operator on the Galois representation associated to a p-adic modular form. We
do this using the Eichler–Shimura relations; more precisely, we use the following lemma, which is deduced from
results of Nekovář, [29].

Lemma 4.9. Let f ∈ H0
0w(Sh∞, ω(2,2;2),sm)ord be an ordinary overconvergent modular eigenform with

corresponding Galois representation ρf : GalQ → GSp4(Qp). Let mf be the corresponding maximal ideal of
the Hecke algebra T[1/p]. We assume that ρf is irreducible and the Zariski closure of ρf (GalQ) contains Sp4.
Then H3(RHomb(λ,RΓ(Sh∞,Qp)

la))ord[mf ] = ρf ⊗Qp
W for some finite-dimensional vector space W ̸= 0.

Finally, we deduce from this the following classicality theorem.

Theorem 4.10. Let f ∈ H0
0w(ShKp , ω(2,2;2),sm)ord be an ordinary overconvergent modular eigenform with

Galois representation ρf : GalQ → GSp4(Qp). Let mf be the corresponding maximal ideal. We assume that:

(1) the Zariski closure of ρf (GalQ) contains Sp4.

(2) The representation ρf |GalQp
is de Rham.

(3) We have dimCp
Hi

iw(Sh∞, ω(2,2;2),sm)ord[mf ] = 1 for i = 0, 1 and dimCp
Hi

iw(Sh∞, ω(1,1;2),sm)ord[mf ] = 1 for
i = 2, 3.

(4) The representation ρf is irreducible.

Then f is a classical Siegel modular form.

Proof. Assumption (3) guarantees that the passage to the mf torsion is exact, so that we have induced maps

(4.17) Cous, Sen : H2
2w(Sh∞, ω(1,1;2),sm)ord[mf ] → H3

3w(Sh∞, ω(1,1;2),sm)ord[mf ].

These two maps agree by Theorem 4.8. Since ρf |GalQp
is de Rham, the corresponding Sen operator is semisimple

(see Section 3.2), which by Lemma 4.9 implies that the maps (4.17) vanish. As noted above, this implies that
H2(Sh∞, ω(1,1;2),sm)ord[mf ] ̸= 0, which by Arthur’s multiplicity formula implies that H0(Sh∞, ω(2,2;2),sm)ord[mf ] ̸=
0, whence it is a one-dimensional Cp-vector space spanned by f , as required.

5 Modularity lifting Finally, we very briefly explain the use of modularity lifting theorems in our two
papers. In [8], we needed to prove Theorem 2.1, which we deduce from Theorem 4.10. We work with the ordinary
higher Coleman families RΓiw(Sh∞, ωκ,sm)ord, or rather their integral versions, the higher Hida theories of [10].
Since for each i, the complex RΓiw(Sh∞, ωκ,sm)ord has cohomology only in degree i, a standard application of the
usual Taylor–Wiles method is able to prove modularity lifting theorems for each of these higher Hida theories.
(In practice we find it useful to work with Hida families in which the weight varies, for example in proving local-
global compatibility, but this is again standard.) Furthermore, following Diamond [21], the Taylor–Wiles method
is able to prove multiplicity one theorems for spaces of modular forms, and we use it to verify hypothesis (3) in
Theorem 4.10. (It is here that we use the hypothesis of p-distinguishedness in assumption (iv) of Theorem 2.1.)
The only significant difficulty that we have to overcome in applying the Taylor–Wiles method is that we have
to consider residual Galois representations with rather small image, namely A5 (when p = 2) and GSp4(F3)
(when p = 3). This causes us considerable pain, but does not involve any significant innovations.

As we explained above, in our earlier paper [7] we worked with the complexes RΓid,Q(Sh∞, ω(2,2;2),sm)ordm ,
which have cohomology in degrees 0, 1. Again, there is an integral version, the higher Hida theory introduced by
Pilloni in [32]. Since there is cohomology in multiple degrees, the usual Taylor–Wiles method does not work in
this case, and instead we use the version of the Taylor–Wiles method introduced by Calegari–Geraghty [17]. Our
main difficulty now is that rather than working over Q, we are over an arbitrary totally real field F of degree d,
say, and the analogous complexes (constructed from the cohomology of Hilbert–Siegel Shimura varieties) now have
cohomology in degrees 0, . . . , d; but we do not know how to prove the local-global compatibility results needed for
the Calegari–Geraghty method unless d = 1. We get around this difficulty by working only with primes p which
split completely in F , and for each v|p, considering complexes which at v behave like RΓid,Q, and at the other
places above p behave like RΓid. We are able to compare these complexes, and we show that an appropriately
compatible set of cohomology classes combine to give a classical cohomology class.



6 Future directions It is hopefully clear that there is considerable scope for improving on Theorem 1.5.
Firstly, by working with Hilbert–Siegel Shimura varieties, it should be possible to extend Theorem 1.5 to abelian
surfaces over arbitrary totally real fields. By making a solvable base change to a totally real field with suitable
behaviour at the primes above 2, such an improvement would allow us to remove Hypothesis (2) in that theorem,
which arose due to the interaction between the local conditions at 2 and 3 in Lemma 2.4. Secondly, our theorems
should not require the full strength of the ordinarity condition, but only a suitable “small slope” condition, which
would allow us to relax Hypothesis (3) in Theorem 1.5. Finally, many of the arguments in [8] are written for
more general Shimura data, and it would be interesting to prove classicality theorems beyond the case of GSp4.
We intend to pursue all of these ideas in future sequels to [8]. Finally, one other possible route to the modularity
of abelian surfaces would be to deduce it from an appropriate version of Serre’s conjecture for GSp4. Such a
deduction would be analogous to Khare’s theorem [25], which showed that Serre’s conjecture implies the Artin
conjecture for odd 2-dimensional representations of GalQ. With this in mind, we use our theorems to prove the
following implication (see [8, Lem. 10.4.1]).

Lemma 6.1. Suppose that for every residual representation:

ρ : GalQ → GSp4(Fp)

satisfying the following conditions:

(1) ρ has multiplier ε−1,

(2) ρ is absolutely irreducible, and

(3) the semi-simplification of ρ|GalQp
is a direct sum of characters,

there exists an ordinary classical Siegel modular form f for GSp4 /Q of weight at least 3 such that

ρf,p
∼= ρ.

Then all abelian surfaces A/Q are modular.
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