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Abstract. Under an assumption on the existence of p-adic Galois representations,
we carry out Taylor–Wiles patching (in the derived category) for the completed
homology of the locally symmetric spaces associated to GLn over a number field.
We use our construction, and some new results in non-commutative algebra, to
show that standard conjectures on completed homology imply ‘big R = big T’
theorems in situations where one cannot hope to appeal to the Zariski density of
classical points (in contrast to all previous results of this kind). In the case that
n = 2 and p splits completely in the number field, we relate our construction to the
p-adic local Langlands correspondence for GL2(Qp).
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1. Introduction

In this paper we give a common generalisation of two recent extensions of the
Taylor–Wiles patching method, namely the extension in [CG18] to cases where it
is necessary to patch chain complexes rather than homology groups, and the idea
of patching completed homology explained in [CEGGPS]. We begin by explaining
why this is a useful thing to do. Our main motivations come from the p-adic
Langlands program, which is well understood for GL2 /Q, but is very mysterious
beyond this case; and from the problem of proving automorphy lifting theorems
for p-adic automorphic forms (“big R = T theorems”) in situations where classical
automorphic forms are no longer dense (for example, GLn /Q for any n > 2).

The local p-adic Langlands correspondence for GL2(Qp) has been established
by completely local methods (see in particular [Col10; Paš13]), and local-global
compatibility for GL2 /Q was established in [Eme10a] (which goes on to deduce
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many cases of the Fontaine–Mazur conjecture). It has proved difficult to generalise
the local constructions for GL2 /Q, and the paper [CEGGPS] proposed instead (by
analogy with the original global proof of local class field theory) to construct a
candidate correspondence globally, by patching the completed homology of unitary
groups over CM fields.

This construction has the disadvantage that it seems to be very difficult to prove
that it is independent of the global situation, and of the choices involved in Taylor–
Wiles patching. However, in the case of GL2(Qp), the sequel [CEGGPS2] showed
(without using the results of [Col10; Paš13]) that the patching construction is inde-
pendent of global choices, and therefore uniquely determines a local correspondence.

It is natural to ask whether similar constructions can be carried out for GLn over
a number field F . Until recently it was believed that Taylor–Wiles patching only
applied to groups admitting discrete series (which would limit such a construction
to the case n = 2 and F totally real), but Calegari and Geraghty showed in [CG18]
that by patching chain complexes rather than homology groups one can overcome
this obstruction, provided that one admits natural conjectures on the existence and
properties of Galois representations attached to torsion classes in (uncompleted)
homology. For a general F these conjectures are open, but for F totally real or
CM the existence of the Galois representations is known by [Sch15], and most of
the necessary properties are expected to be established in the near future (with
the possible exception of local-global compatibility at places dividing p, which we
discuss further below).

The patching construction in [CG18] is sometimes a little ad hoc, and it was
refined in [KT17], where the patching is carried out in the derived category. The
construction of [CEGGPS] was improved upon in [Sch18], which uses ultrafilters to
significantly reduce the amount of bookkeeping needed in the patching argument.
We combine these two approaches, and use ultrafilters to patch complexes in the
derived category. In fact, we take a different approach to [KT17], by directly
patching complexes computing homology, rather than minimal resolutions of such
complexes; this has the advantage that our patched complex naturally has actions
of the Hecke algebras and p-adic analytic groups. The use of ultrafilters streamlines
this construction, and most of our constructions are natural, resulting in cleaner
statements and proofs. (We still make use of the existence of minimal resolutions
to show that our ultraproduct constructions are well behaved.)

To explain our results we introduce some notation. Write K0 =
∏
v|p PGLn(OFv

)

and let K1 denote a pro-p Sylow subgroup of K0. We consider locally symmetric
spaces XU for PGLn /F , with level U = UpU

p ⊂ PGLn(A∞F ) where Up is some
fixed tame level and Up is a compact open subgroup of K0. Let O be the ring of
integers in some finite extension E/Qp, and write k for the residue field of O. We
write O∞ for a power series ring over O and R∞ for a power series ring over the
(completed) tensor product of the local Galois deformation rings at the places v|p
of F . These power series rings are in some numbers of variables which depend on
the choice of Taylor–Wiles primes; these power series variables are unimportant for
the present discussion. For the purposes of this introduction, we will also ignore the
role of the local Galois deformation rings at places v - p where our residual Galois
representation is ramified.

The output of our patching construction is a perfect chain complex C̃(∞) of
O∞[[K0]]-modules, equipped with an O∞-linear action of

∏
v|p PGLn(Fv) and an
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O∞-algebra homomorphism

R∞ → EndD(O∞)(C̃(∞))

(where D(O∞) is the unbounded derived category of O∞-modules). The action

of R∞ on C̃(∞) commutes with the action of
∏
v|p PGLn(Fv) (and with that of

O∞[[K0]]). Reducing the complex C̃(∞) modulo the ideal a of O∞ generated by
the power series variables, we obtain a complex which computes the completed
homology groups

H̃∗(XUp ,O)m := lim←−
Up

H∗(XUpUp ,O)m

localised at a non-Eisenstein maximal ideal m of a ‘big’ Hecke algebra TS(Up) which
acts on completed homology.

Our first main result is to show that, assuming a vanishing conjecture of [CG18]
(which says that homology groups vanish outside of the expected range of de-
grees [q0, q0 + l0] after localising at m), and a conjecture of [CE12] on the codimen-

sion of completed homology, then the homology of C̃(∞) vanishes outside of a single

degree q0, and Hq0(C̃(∞)) is Cohen–Macaulay over both O∞[[K0]] and R∞[[K0]] of
the expected projective dimensions.

One novel feature of our work appears here: since we are working with finitely
generated modules over the non-commutative algebras O∞[[K0]] and R∞[[K0]] we
are forced to establish non-commutative analogues of the commutative algebra tech-
niques which are applied in [CG18]. The first crucial result is Lemma A.10 (a gen-
eralisation of [CG18, Lem. 6.2]) which, as in op. cit is used to establish vanishing
of the homology of the patched complex outside degree q0. The second is Corol-
lary A.29, which is used to deduce the Cohen–Macaulay property for the patched
module over R∞[[K0]] from the Cohen–Macaulay property over O∞[[K0]].

If A is a ring and M is an A-module, then we write pdA(M) for the projective
dimension of M over A, and jA(M) for its grade (also known as its codimension;
see Definition A.2 and Remark A.3).

Theorem A (Theorem 4.2.1). Suppose that

(a) Hi(XUpK1 , k)m = 0 for i outside the range [q0, q0 + l0].

(b) jO[[K0]]

(⊕
i≥0 H̃i(XUp ,O)m

)
≥ l0.

Then

(1) H̃i(XUp ,O)m = 0 for i 6= q0 and H̃q0(XUp ,O)m is a Cohen–Macaulay
O[[K0]]-module with

pdO[[K0]](H̃q0(XUp ,O)m) = jO[[K0]](H̃q0(XUp ,O)m) = l0.

(2) Hi(C̃(∞)) = 0 for i 6= q0 and Hq0(C̃(∞)) is a Cohen–Macaulay O∞[[K0]]-
module with

pdO∞[[K0]]

(
Hq0(C̃(∞))

)
= jO∞[[K0]]

(
Hq0(C̃(∞))

)
= l0.

(3) Hq0(C̃(∞)) is a Cohen–Macaulay R∞[[K0]]-module with

pdR∞[[K0]]

(
Hq0(C̃(∞))

)
= jR∞[[K0]]

(
Hq0(C̃(∞))

)
= dim(B)

where dim(B) = (n(n+1)
2 − 1)[F : Q].
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The conjectures of [CE12] and [CG18] are open in general, but they are known
if n = 2 and F is imaginary quadratic.

In Section 4.3 we take this analysis further. Here it is essential for us to assume
that R∞ is regular. Under a natural condition on the codimension (over k[[K0]]) of
the fibre of completed homology at m, we prove the following result, which shows
that the Hecke algebra TS(Up)m is isomorphic to a Galois deformation ring R (a
‘big R = T’ theorem), making precise the heuristics discussed in [Eme14, §3.1.1]
which compare the Krull dimensions of Hecke algebras and the Iwasawa theoretic
dimensions of completed homology modules and their fibres.

Theorem B (Proposition 4.3.1). Suppose that the assumptions of Theorem A hold,
that R∞ is a power series ring over O, and that we moreover have

jk[[K0]](H̃q0(XUp ,O)m/mH̃q0(XUp ,O)m) ≥ dim(B).

Then we have the following:

(1) Hq0(C̃(∞)) is a flat R∞-module.
(2) The ideal R∞a is generated by a regular sequence in R∞.
(3) The surjective maps

R∞/a→ R→ TS(Up)m

are all isomorphisms and H̃q0(XUp ,O)m is a faithfully flat TS(Up)m-module.
(4) The rings R ∼= TS(Up)m are local complete intersections with Krull dimen-

sion equal to 1 + dim(B)− l0.

We note here a crucial difference between our set-up and the situation in which
Taylor–Wiles patching (and its variants) is usually applied — the patched module

Hq0(C̃(∞)) is not finitely generated over R∞. The patched module is finitely gen-
erated over R∞[[K0]] but is not free over this Iwasawa algebra (it has codimension
dim(B)). So the usual techniques to establish ‘R = T’ do not apply.

Moreover, even if we could establish that Hq0(C̃(∞)) is a faithful R∞-module,
this would not be enough to conclude that the map R → TS(Up)m has nilpotent

kernel. Instead we need to establish the stronger result that Hq0(C̃(∞)) is a flat R∞-
module. The main novelty of Theorem B is that the simple codimension inequality
appearing in the statement is enough to guarantee this flatness. This follows from
a version of the miracle flatness criterion in commutative algebra (Prop. A.30 —
again we must modify things to handle the fact that our modules are only finitely
generated over a non-commutative algebra).

Establishing the codimension inequality seems to require substantial informa-
tion about the mod p representations of

∏
v|p PGLn(Fv) appearing in completed

cohomology. Even in l0 = 0 situations, we do not know how to establish this
codimension inequality (in contrast to the assumptions made in Theorem A, which
become trivial when working in an appropriate l0 = 0 setup) — if we did, our
methods would give a new approach to proving big R = T theorems in these situa-
tions. In the case n = 2, F = Q, the codimension inequality follows from Emerton’s
p-adic local–global compatibility theorem, together with known properties of the
p-adic local Langlands correspondence. In Section 5 we show that some conjectural
local–global compatibility statements when n = 2 and p splits completely in F also
imply that this codimension inequality holds.
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This strategy for establishing big R = T theorems seems to be the only way
known at present to handle the l0 > 0 situation (Emerton, in a personal communi-
cation, tells us that this was the initial motivation for him and Calegari to consider
the codimension of completed homology and compare it with dimensions of Galois
deformation rings and Hecke algebras). Existing results in the l0 = 0 case ([GM98;
Böc01; Che11; All19]) rely on establishing Zariski density of (characteristic 0) auto-
morphic points in the unrestricted Galois deformation ring R, using generalisations
of the Gouvêa–Mazur infinite fern. When l0 > 0 characteristic 0 automorphic
points are not expected to be Zariski dense in R, and they are not Zariski dense in
the relevant eigenvarieties (see [CM09] and work of Serban described in [Per]), so
this approach breaks down.

In Section 5 we specialise to the case that n = 2 and p splits completely in F ,
where we can relate our constructions to the p-adic local Langlands correspondence
for GL2(Qp). We formulate a natural conjecture (Conjecture 5.1.2) saying that

the patched module Hq0(C̃(∞)) is determined by (and in fact determines) this cor-
respondence; in the case F = Q this conjecture is proved in [CEGGPS2], and is
essentially equivalent to the local-global compatibility result of [Eme10a]. We show
that this conjecture implies a local-global compatibility result (in the derived cate-
gory) for the complexes computing finite level homology modules with coefficients
in an algebraic representation; this compatibility is perhaps somewhat surprising,
as it is phrased in terms of crystalline deformation rings, which are not obviously
well-behaved integrally.

Conversely, we show that if we assume (in addition to the assumptions made
in Section 4) that this local-global compatibility holds at finite level, then Con-
jecture 5.1.2 holds. Our proof is an adaptation of the methods of [CEGGPS2],
although some additional arguments are needed in our more general setting.

We moreover show that Conjecture 5.1.2 has as consequences an automorphy
lifting theorem and a ‘small R[1/p] = T[1/p]’ result (Corollary 5.1.8). Therefore,
our local-global compatibility conjecture entails many new cases of the Fontaine–
Mazur conjecture. The application to Fontaine–Mazur was established by [Eme10a]
in the case F = Q, and although our argument looks rather different it is closely
related to that of loc. cit. (but see also Remark 5.1.10).

While our main results are all conditional on various natural conjectures about
(completed) homology groups, in the case that n = 2 and F is an imaginary qua-
dratic field in which p splits it seems that the only serious obstruction is our finite
level local-global compatibility conjecture (Conjecture 5.1.12), as we explain in Sec-
tion 5.4.

We end this introduction by briefly explaining the contents of the sections that
we have not already described. In Section 2 we introduce the complexes that we will
patch and the Hecke algebras that act on them, and prove some standard results
about minimal resolutions of complexes. We also prove some basic results about
ultraproducts of complexes. In Section 3 we introduce the Galois deformation rings,
carry out our patching construction, and prove its basic properties (for example,
we establish its compatibility with completed homology).

In Appendix A we establish analogues for Iwasawa algebras of various classical
results in commutative algebra, which we apply to our patched complexes in Sec-
tion 4. Finally in Appendix B we prove some basic results about tensor products
and projective envelopes of pseudocompact modules that we use in Section 5.
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1.2. Notation. Let F be a number field, and fix an algebraic closure F of F ,
as well as algebraic closures F v of the completion Fv of F at v for each place v
of F , and embeddings F ↪→ F v extending the natural embeddings F ↪→ Fv. These
choices determine embeddings of absolute Galois groups GFv

↪→ GF . If v is a finite
place of F , then we write IFv

⊂ GFv
for the inertia group, and Frobv ∈ GFv

/IFv
for

a geometric Frobenius element; we normalise the local Artin maps ArtFv to send
uniformisers to geometric Frobenius elements. We write AF for the adele ring of F ,
and A∞F for the finite adeles.

We fix a prime p throughout, and write ε : GF → Z×p for the p-adic cyclotomic
character. Let O be the ring of integers in a finite extension E/Qp with residue
field k; our Galois representations will be valued in O-algebras (but we will feel free
to enlarge E where necessary). If R is a complete Noetherian local O-algebra with
residue field k, then we write CNLR for the category of complete Noetherian local
R-algebras with residue field k.

If R is a ring, we write Ch(R) for the abelian category of chain complexes of
R-modules. If C• ∈ Ch(R) then we write H∗(C•) := ⊕n∈ZHn(C•). We write D(R)
for the (unbounded) derived category of R-modules — for us, the objects of D(R)
are cochain complexes of R-modules, but we regard a chain complex C• ∈ Ch(R)
as a cochain complex C• by setting Ci = C−i. We write D−(R) for the bounded-
above derived category of R-modules. The objects of D−(R) are cochain complexes
of R-modules with bounded-above cohomology, or (equivalently) chain complexes
of R-modules with bounded-below homology. Similarly, we write D+(R) for the
bounded-below derived category.

An object C• of D(R) is called a perfect complex if there is a quasi-isomorphism
P • → C• where P • is a bounded complex of finite projective R-modules. In fact, C•

is perfect if and only if it is isomorphic in D(R) to a bounded complex P • of finite
projectives: if we have another complex D• and quasi-isomorphisms P • → D•,
C• → D•, then there is a quasi-isomorphism P • → C• ([Stacks, Tag 064E]).

If K is a compact p-adic analytic group, we have the Iwasawa algebra O[[K]] :=
lim←−U O[K/U ], where U runs over the open normal subgroups of K. This is a

(non-commutative) Noetherian ring, some of whose properties we recall in Ap-
pendix A. If R is a formally smooth (commutative) O-algebra, then we write
R[[K]] := R⊗̂OO[[K]]; note that if R has relative dimension d over O, then
R[[K]] ∼= O[[K × Zdp]], so general properties of O[[K]] are inherited by R[[K]].

For technical reasons, we will sometimes assume that K is a uniform pro-p group
in the sense explained in [Ven02, §1.2]; as explained there, this can always be
achieved by replacing K with a normal open subgroup. The group Zdp is uniform
pro-p, so properties of O[[K]] for K a uniform pro-p group are again inherited
by R[[K]].

IfM is a pseudocompact (i.e. profinite)O-module, we writeM∨ := Homcts
O (M,E/O)

for the Pontryagin dual of M .

http://stacks.math.columbia.edu/tag/064E
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2. Patching I: Completed homology complexes and ultrafilters

In this section and the following one we explain our patching construction. For
the convenience of the reader, we will generally follow the notation of [KT17].

2.1. Arithmetic quotients. We begin by introducing the manifolds whose homol-
ogy we will patch. We follow [CG18] in patching arithmetic quotients for PGLn,
rather than GLn; this is a minor issue in practice, as the connected components
of the arithmetic quotients are the same for either choice, and we are for the most
part able to continue to follow [KT17], although we caution the reader that be-
cause of this change, it is sometimes the case that we use the same notation to
mean something slightly different to the corresponding definition in [KT17].

Let G = PGLn,F , let G∞ = G(F ⊗Q R), and let K∞ ⊂ G∞ be a maximal
compact subgroup. Write XG := G∞/K∞. If U ⊂ G(A∞F ) is an open compact
subgroup, then we define

XU = G(F )\(G(A∞F )/U ×XG),

If U ⊂ G(A∞F ) is an open compact subgroup of the form U =
∏
v Uv, we say

that U is good if it satisfies the following conditions:

• For each g ∈ G(A∞F ), the group ΓU,g := gUg−1 ∩ G(F ) is neat, and in
particular torsion-free. (By definition, ΓU,g is neat if for each h ∈ ΓU,g, the
eigenvalues of h generate a torsion-free group.)
• For each finite place v of F , Uv ⊂ PGLn(OFv ).

We write U = UpU
p, where Up =

∏
v|p Uv, U

p =
∏
v-p Uv. If S is a finite set of

finite places of F , then we say that U is S-good if Uv = PGLn(OFv
) for all v /∈ S.

By the proof of [KT17, Lem. 6.1], if U is good, then XU is a smooth manifold, and
if V ⊂ U is a normal compact open subgroup, then V is also good, and XV → XU

is a Galois cover of smooth manifolds.
Let r1, r2 denote the number of real and complex places of F , respectively. Then

(2.1.1) dimXU =
r1

2
(n− 1)(n+ 2) + r2(n2 − 1).

The defect is

(2.1.2) l0 = rankG∞ − rankK∞ =

{
r1(n−2

2 ) + r2(n− 1) n even;
r1(n−1

2 ) + r2(n− 1) n odd,

and we also set

(2.1.3) q0 =
d− l0

2
=

{
r1(n

2

4 ) + r2
n(n−1)

2 n even;

r1(n
2−1
4 ) + r2

n(n−1)
2 n odd.

In particular, if F is an imaginary quadratic field and n = 2, then dimXU = 3,
l0 = 1, and q0 = 1. The notation l0, q0 comes from [BW00], and [q0, q0 + l0] is
the range of degrees in which tempered cuspidal automorphic representations of G
contribute to the cohomology of the XU .

Let CA,• denote the complex of singular chains with Z-coefficients which are
valued in G(A∞F ) × XG, where G(A∞F ) is given the discrete topology. We equip
G(A∞F )×XG with the right G(F )×G(A∞F ) action

(h∞, x) · (γ, g∞) = (γ−1h∞g∞, γ−1x)
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which makes CA,• a complex of right Z[G(F ) × G(A∞F )]-modules. If U is good
and M is a left Z[U ]-module, then we set

C(U,M) := CA,• ⊗Z[G(F )×U ] M.

As in [KT17, Prop. 6.2], there is a natural isomorphism

H∗(XU ,M) ∼= H∗(C(U,M)).

If U = UpU
p is good, then we have the completed homology groups in the sense

of [CE12] which by definition are given by

H̃∗(XUp ,O) := lim←−
U ′

p

H∗(XU ′
pU

p ,O),

the limit being taken over open subgroups U ′p of Up.
We note here that the homology groups H∗(XU ,O) are all finitely generated

O-modules. This follows from the existence of the Borel–Serre compactification
[BS73], or the earlier work of Raghunathan [Rag67].

2.1.4. Hecke operators. Our complexes have a natural Hecke action in the usual
way, as described in [KT17, §6.2]. We recall some of the details. Suppose that U, V
are good subgroups, that S is a finite set of places of F with Uv = Vv if v ∈ S, and

that M is a Z[G(A∞,SF )×US ]-module. Then for each g ∈ G(A∞,SF ) there is a Hecke
operator

[UgV ]∗ : C(V,M)→ C(U,M)

given by the formula

([UgV ]∗((h× σ)⊗m) =
∑
i

(hgi × σ)⊗ g−1
i m,

where h ∈ G(A∞F ), σ : ∆j → XG is a singular simplex, m ∈M , and UgV =
∐
i giV .

In practice, we will take S = Sp to be the set of places of F lying over p, and we
take M to be a finite Zp-module with a continuous action of

∏
v|p PGLn(OFv

), with

the action of G(A∞,SF )× US on M being via projection to US ⊂
∏
v|p PGLn(OFv

).

(In fact, we will usually take the action on M to be the trivial action.) If v /∈ Sp is
a finite place of F , then we choose a uniformiser $v of OFv , and for each 1 ≤ i ≤ n
we set αv,i = diag($v, . . . , $v, 1, . . . , 1) (with i occurrences of $v).

If v /∈ S is a place for which Uv = PGLn(OFv ), we set T iv := [Uαv,iU ]∗, where by

an abuse of notation we denote by αv,i the element of G(A∞,SF ) which is equal to
αv,i in the v component and the identity elsewhere; these operators are independent
of the choice of $v, and pairwise commute. We also consider places at which Uv is a
normal subgroup of the standard Iwahori subgroup which contains the standard pro-
$v-Iwahori subgroup. At these places we will set Ui

v = [Uαv,iU ]∗; these operators
now depend on the choice of $v, but (for the particular Uv that we use) they still
pairwise commute. They also commute with the diamond operators 〈α〉 = [UαU ]∗,
where α is an element of the standard Iwahori subgroup whose diagonal entries are
all equal modulo $v.

Note that it is immediate from the definitions that the actions of the opera-
tors T iv and Ui

v are equivariant for the natural morphisms of complexes arising
from shrinking the level U away from v.
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2.1.5. Minimal resolutions. We recall some standard material on minimal resolu-
tions of complexes. Since we work over non-commutative rings, there don’t seem
to be any standard references.

Let R be a Noetherian local ring (possibly non-commutative). We denote the
maximal ideal by m and assume that R/m = k is a field.

Definition 2.1.6. Let F• be a chain complex of finite free R-modules. The complex
F• is minimal if for all i the boundary map di : Fi+1 → Fi satisfies

di(Fi+1) ⊂ mFi.

Note that if F• is minimal, the complex k ⊗R F• has boundary maps equal to
zero.

Lemma 2.1.7. Let F• be a minimal complex of finite free R-modules with bounded
below homology, so that thinking of F• as an object of the derived category D−(R),
we have a well-defined object k ⊗L

R F• ∈ D−(k). Then for each n we have

rankR(Fi) = dimk(Hi(k ⊗R F•)) = dimk(Hi(k ⊗L
R F•)).

In particular, the ranks of the modules Fi depend only on the isomorphism class
of F• in D−(R).

Proof. We have rankR(Fi) = dimk(k ⊗R Fi), and since F is minimal we have

k ⊗R Fi = Hi(k ⊗R F•). �

Definition 2.1.8. Let C• ∈ Ch(R) with bounded below homology. If F• is a
minimal complex (necessarily bounded below) with a quasi-isomorphism F• → C•,
we say that F• is a minimal resolution of C•.

If F• is a minimal resolution of C•, then by Lemma 2.1.7 we have

rankR(Fi) = dimk(Hi(k ⊗L
R C•)).

Proposition 2.1.9. Let C• ∈ Ch(R) be a chain complex with bounded below ho-
mology, and assume further that Hi(C•) is a finitely generated R-module for all i.
Then there exists a minimal resolution F• of C•, and any two minimal resolutions
of C• are isomorphic (although the isomorphism is not necessarily unique).

Proof. By considering the canonical truncation τ≥NC• → C• (which is an isomor-
phism for sufficiently negative N), we may assume that the complex C• is bounded
below. The proof in the commutative case from [Rob80, §2, Theorem 2.4] applies
without change (the proof in loc. cit. assumes that the complex has bounded ho-
mology, but this is not necessary). For the reader’s convenience, we sketch the
proof.

First we check the uniqueness of the minimal resolution: suppose we have two
minimal resolutions F1,•,F2,• of C•. Then F1,•,F2,• are isomorphic in D(R). Since
F1,• is a bounded below chain complex of projective modules there is a quasi-
isomorphism F1,• → F2,• (by [Stacks, Tag 0649]). This map induces a quasi-
isomorphism k ⊗R F1,• → k ⊗R F2,•, and minimality implies that this quasi-
isomorphism is actually an isomorphism of complexes. Nakayama’s lemma now
implies that F1,• → F2,• is an isomorphism of complexes.

Now we show existence of the minimal resolution. First, by a standard argument
(see for example [Mum08, Lem. 1, pp.47–49]), there is a (not necessarily minimal)
bounded below complex of finite free modules G• with a quasi-isomorphism G• → C•.

http://stacks.math.columbia.edu/tag/0649
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We now inductively suppose that the complex G• satisfies dm(Gm+1) ⊂ mGm for
m < i. (Note that this is certainly true for i� 0.) We will construct a new bounded
below complex G′• of finite free modules with G′m = Gm for m < i, together with a
quasi-isomorphism G′• → G•, such that dm(G′m+1) ⊂ mG′m for m ≤ i. Iterating this
procedure constructs the minimal resolution F•.

So, we suppose that di(Gi+1) 6⊂ mGi. We let Y be a subset of Gi+1 which lifts
a linearly independent subset of k ⊗R Gi+1 mapping (injectively) to a basis for
di(k⊗R Gi+1) ⊂ k⊗R Gi. Then the acyclic complex (with non-zero terms in degree
i+ 1 and i)

C(Y ) = ⊕y∈Y
(

0→ Ry
di→ Rdi(y)→ 0

)
is a direct summand of G• (a splitting of ⊕y∈YRdi(y) ⊂ Gi induces a compatible
splitting of ⊕y∈YRy ⊂ Gi+1 and such a splitting exists since di(Y ) extends to a
basis of Gi by Nakayama’s lemma), and we set G′• = G•/C(Y ). Since G′• is a direct
summand of G• we may choose a splitting G′• → G• of the projection map. This
splitting is a quasi-isomorphism, since C(Y ) is acyclic. It is easy to check that G′•
has the other desired properties, so we are done. �

2.1.10. Big Hecke algebras. Write C(U, s) := C(U,O/$s).

Definition 2.1.11. Let S be a finite set of finite places of F which contains Sp. Let
U = UpU

p be an S-good subgroup, with Up a compact open normal subgroup of
K0. We define TS(U, s) to be the image of the abstract Hecke algebra TS (generated
over O by T iv for v /∈ S) in EndD(O/$s[K0/Up])(C(U, s)).

We let

TS(Up) = lim←−
Up,s

TS(UpU
p, s)

where the limit is over compact open normal subgroups Up of K0 and s ∈ Z≥1, and
the (surjective) transition maps come from the functorial maps

EndD(O/$s′ [K0/U ′
p])(C(U

′
pU

p, s′))→ EndD(O/$s[K0/Up])(O/$s[K0/Up]⊗O/$s′ [K0/U ′
p]C(U

′
pU

p, s′))

for s′ ≥ s and U ′p ⊂ Up and the natural identification

O/$s[K0/Up]⊗O/$s′ [K0/U ′
p] C(U

′
pU

p, s′) ∼= C(UpUp, s).

We equip TS(Up) with the inverse limit topology.

Remark 2.1.12. Now suppose that Up is any compact open subgroup of K0 (not nec-
essarily normal) and s ≥ 1. Let Vp be a compact open normal subgroup of Up which
is also normal inK0. Then the natural map TS(Up)→ EndD(O/$s[K0/Vp])(C(VpUp, s))
induces a map TS(Up) → EndD(O/$s[Up/Vp])(C(VpUp, s)) and therefore induces a

natural map TS(Up)→ EndD(O/$s)(C(UpUp, s)), using the identification

O/$s ⊗O/$s[Up/Vp] C(VpUp, s) ∼= C(UpUp, s).

For each U and s, TS(U, s) is a finite O-algebra, since C(U, s) is perfect as
a complex of O/$s[K0/Up]-modules. Moreover, the natural map TS(U, s) →
EndO(H∗(C(U, s))) has nilpotent kernel by [KT17, Lem. 2.5], and therefore TS(U, s)
is a finite ring.
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Remark 2.1.13. Similarly, for each compact open normal subgroup Up of K0, we
can define

TS(UpU
p) = lim←−

s

TS(UpU
p, s).

Then TS(UpU
p) is a finite O-algebra, and we have TS(Up) = lim←−Up

TS(UpU
p),

equipped with the inverse limit topology (where each TS(UpU
p) has its natural

p-adic topology).

The big Hecke algebra TS(Up) is naturally equipped with a map

TS(Up)→ EndO[[K0]](H̃i(XUp ,O))

which commutes with the action of
∏
v|pG(Fv).

Lemma 2.1.14. The profinite O-algebra TS(Up) is semilocal. Denote its finitely
many maximal ideals by m1, . . . ,mr and let J = J(TS(Up)) = ∩rj=1mj denote the

Jacobson radical. Then TS(Up) is J-adically complete and separated, and we have

TS(Up) = TS(Up)m1
× · · · × TS(Up)mr

.

For each maximal ideal m of TS(Up), the localisation TS(Up)m is an m-adically
complete and separated local ring with residue field a finite extension of k.

Proof. First we note that if Up is a pro-p group and Vp is a normal open subgroup
of Up, then for each s ≥ 1 the surjective map

TS(VpU
p, s)→ TS(UpU

p, 1)

induces a bijection of maximal ideals. Indeed, we have (by [Wei94, Thm. 5.6.4]) a
spectral sequence of TS(VpU

p, s)-modules

E2
i,j : Tor

O/$s[Up/Vp]
i (k,Hj(C(UpVp, s)))⇒ Hi+j(C(UpUp, 1)).

Localising at a maximal ideal m of TS(VpU
p, s) and considering the largest q such

that Hq(C(UpVp, s))m is non-zero shows that m is in the support of Hq(C(UpUp, 1)),
and therefore m is the inverse image of a maximal ideal in TS(UpU

p, 1). (Here we
have used that TS(U, s)→ EndO(H∗(C(U, s))) has nilpotent kernel.)

Now it is not hard to show that the maximal ideals of TS(Up) are in bijection
with the maximal ideals of TS(UpU

p, 1). Indeed, we have shown that for every open
Vp / Up and s ≥ 1 the kernel of

TS(VpU
p, s)→ TS(UpU

p, 1)

is contained in the Jacobson radical of TS(VpU
p, s). If x ∈ TS(Up) maps to a unit

in TS(VpU
p, s) for every open Vp / Up and s ≥ 1 then x is a unit. We deduce that

the kernel of

TS(Up)→ TS(UpU
p, 1)

is contained in the Jacobson radical J of TS(Up), and it follows that TS(Up) is
semilocal.

For every open Vp / Up and s ≥ 1 the image of J in TS(VpU
p, s) is nilpotent. It

follows that TS(Up) is J-adically complete and separated. The remainder of the
lemma follows from [Mat89, Theorem 8.15]. �
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2.2. Ultrafilters. In this section we let A be a commutative finite (cardinality)
local ring of characteristic p, denote the maximal ideal of A by mA, and let k =
A/mA. We let B be a finite (but possibly non-commutative) augmented A-algebra.
Denote the augmentation ideal ker(B → A) by a. The example we have in mind is
B = A[Γ] where Γ is a finite group.

Given an index set I, we define AI =
∏
i∈I A, and similarly BI =

∏
i∈I B. BI is

an augmented AI -algebra, with augmentation ideal aI =
∏
i∈I a = ker(BI → AI).

Note that aI is a finitely generated ideal of BI , so AI is finitely presented as a
BI -module. More generally, if b ⊂ B is a two-sided ideal which contains a, and
bI =

∏
i∈I b, then BI/bI = (B/b)I is finitely presented as a BI -module.

Remark 2.2.1. If B = A[Γ] then we have BI = AI [Γ].

Lemma 2.2.2. Spec(AI) can be naturally identified with the set of ultrafilters on
I. We have AI,x = A for each x ∈ Spec(AI). We also have AI,x ⊗AI

BI = B.

Proof. The bijection between ultrafilters and prime ideals is given by taking an
ultrafilter F to the ideal whose elements (ai) satisfy {i : ai ∈ mA} ∈ F. Since the
map AI → kI has nilpotent kernel, the fact that this gives a bijection follows from
the case when A is a field [Sch18, Lemma 8.1].

For x ∈ Spec(AI) the associated ultrafilter Fx induces a map BI → B by sending
(bi)i∈I 7→ b where b ∈ B is the unique element with the property that {i : bi = b} ∈
Fx. Since BI = AI ⊗A B (because B is finitely presented as an A-module), this
map induces an isomorphism AI,x ⊗AI

BI ∼= B. �

We have a natural inclusion I ⊂ Spec(AI) given by taking the principal ultrafilter
associated to an element of I. Given a point x ∈ Spec(AI)\I and a set of chain
complexes of B-modules {C(i)}i∈I , we define a chain complex of B-modules

C(∞) := AI,x ⊗AI

(∏
i∈I
C(i)

)
.

Lemma 2.2.3. Let {C(i)}i∈I be a set of chain complexes of flat B-modules. Then∏
i∈I C(i) is a chain complex of flat BI-modules and C(∞) is a chain complex of

flat B-modules.

Proof. The fact that
∏
i∈I C(i) is a chain complex of flat BI -modules follows from

[Swe82, Thm. 1.13] (condition (d) in Sweedler’s Theorem is automatically satisfied
because B is a finite ring). We deduce immediately that the localisation C(∞) is
also a chain complex of flat B-modules. �

Lemma 2.2.4. Let {C(i)}i∈I be a set of chain complexes of B-modules. Let b ⊂ B
be a two-sided ideal which contains a, and let {C(i)}i∈I = {(B/b) ⊗B C(i)}i∈I .
Then we have a natural isomorphism

(B/b)⊗B C(∞) = C(∞).

Proof. We have

(B/b)⊗B C(∞) = (B/b)I,x ⊗(B/b)I (B/b)I ⊗BI

∏
i∈I
C(i).

Since (B/b)I is finitely presented as a (right) BI -module, we have (by [Bou98, Ex.
I.§2.9])

(B/b)I ⊗BI

∏
i∈I
C(i) =

∏
i∈I
C(i)
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and we obtain the desired equality. �

In the rest of this subsection, we are going to assume that B is a local A-algebra.
The example we have in mind is B = A[Γ] where Γ is a finite p-group.

Definition 2.2.5. Suppose B is a local A-algebra and fix a set {C(i)}i∈I of perfect
chain complexes of B-modules. For each i fix a minimal resolution F(i) of C(i).
Suppose we have integers a ≤ b and D ≥ 0. We say that the set {C(i)}i∈I has
complexity bounded by (a, b,D) if the minimal complexes F(i) are all concentrated
in degrees between a and b and every term in these complexes has rank ≤ D.

If there exists some a, b,D such that {C(i)}i∈I has complexity bounded by
(a, b,D), we say that {C(i)}i∈I has bounded complexity.

Lemma 2.2.6. Suppose B is a local A-algebra, and let {C(i)}i∈I be a set of per-
fect chain complexes of B-modules with bounded complexity. Then the complex∏
i∈I C(i) is a perfect complex of BI-modules.

Proof. Fix a minimal resolution F(i) of each perfect complex C(i). Since products
are exact in the category of Abelian groups, it suffices to check that the complex∏
i∈I F(i) is a bounded complex of finite projective BI -modules. Boundedness

follows immediately from the bounded complexity assumption. It remains to show
that if we have a set {Fi}i∈I of finite free B-modules with ranks all ≤ D, then the
product

∏
i∈I Fi is a finite projective BI -module.

We have a decomposition I =
∐D
d=0 Id such that Fi ∼= Bd for i ∈ Id. Then

Md
∼=
∏
i∈Id B

d ∼= BdId is a finite free BId -module. Each Md is a finite projective

BI -module (they are direct summands of finite free modules), and we have∏
i∈I

Fi =

D⊕
d=0

Md,

so
∏
i∈I Fi is a finite projective BI -module, as required. �

Corollary 2.2.7. Let x ∈ Spec(AI)\I and suppose that {C(i)}i∈I is a set of perfect
chain complexes of B-modules with bounded complexity. Then C(∞) is a perfect
complex of B-modules.

Proof. This follows from Lemmas 2.2.2 and 2.2.6. �

Remark 2.2.8. In fact there is another way of phrasing the proof that this complex
is perfect. If we fix a, b and D then there are finitely many isomorphism classes of
minimal complex with complexity bounded by (a, b,D) (since B is a finite ring).
Let x ∈ Spec(AI)\I, corresponding to the non-principal ultrafilter F on I. Then
there is an I ′ ∈ F such that the minimal resolutions of C(i) are isomorphic for all
i ∈ I ′. We can therefore take a single minimal complex F(∞) which is a minimal
resolution of C(i) for all i ∈ I ′. We then have a quasi-isomorphism of complexes of
BI′-modules:

AI′ ⊗A F(∞)→ AI′ ⊗AI

(∏
i∈I
C(i)

)
=
∏
i∈I′
C(i)

which induces a quasi-isomorphism

F(∞)→ C(∞),

so that F(∞) is a minimal resolution of C(∞).
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3. Patching II: Galois representations and Taylor–Wiles primes

3.1. Deformation theory. We fix a continuous absolutely irreducible represen-
tation ρ : GF → GLn(k). We assume from now on that p > n ≥ 2. Fix also a
continuous character µ : GF → O× lifting det ρ, and a finite set of finite places S
of F , which contains the set Sp of places of F lying over p, as well as the places at
which ρ or µ are ramified.

For each v ∈ S, we fix a ring Λv ∈ CNLO, let D�
v : CNLΛv

→ Sets be the functor
associating to R ∈ CNLΛv

the set of all continuous liftings of ρ|GFv
to GLn(R)

which have determinant µ|GFv
. This is represented by the universal lifting ring

Rv ∈ CNLΛv
. We let Λ =

⊗̂
v∈S,OΛv ∈ CNLO.

Then as in [KT17, §4] we have the following notions.

• For v ∈ S, a local deformation problem for ρ|GFv
is a subfunctor Dv ⊂ D�

v

which is stable under conjugation by elements of ker(GLn(R) → GLn(k)),
and is represented by a quotient Rv of R�

v .
• A global deformation problem is a tuple

S = (ρ, µ, S, {Λv}v∈S , {Dv}v∈S)

consisting of the objects defined above.
• If R ∈ CNLΛ, then a lifting of ρ to a continuous homomorphism ρ : GF →

GLn(R) is of type S if it is unramified outside S, has determinant µ, and
for each v ∈ S, ρ|GFv

is in Dv(R).
• We say that two liftings are strictly equivalent if they are conjugate by an

element of ker(GLn(R)→ GLn(k)).
• If T ⊂ S and R ∈ CNLΛ, then a T -framed lifting of ρ to R is a tuple

(ρ, {αv}v∈T ) where ρ is a lifting of ρ to a continuous homomorphism ρ :
GF → GLn(R), and each αv is an element of ker(GLn(R)→ GLn(k)). Two
T -framed liftings (ρ, {αv}v∈T ), (ρ′, {α′v}v∈T ) are strictly equivalent if there
is an element a ∈ ker(GLn(R) → GLn(k)) such that ρ′ = aρa−1 and each
α′v = aαv.
• The functors of liftings of type S, strict equivalences of liftings of type S,

and strict equivalence classes of T -framed liftings of type S, are repre-
sentable by objects R�

S , RS , RTS respectively of CNLΛ. (See [KT17, Thm.
4.5].)

Write ΛT := ⊗̂v∈T,OΛv. For each v ∈ S, let Rv ∈ CNLΛv
denote the rep-

resenting object of Dv, and write RT,loc
S := ⊗̂v∈T,ORv. The natural transfor-

mation (ρ, {αv}v∈T ) 7→ (α−1
v ρ|GFv

αv)v∈T induces a canonical homomorphism of

ΛT -algebras RT,loc
S → RTS .

3.2. Enormous image. Let H ⊂ GLn(k) be a subgroup which acts irreducibly on
the natural representation. We assume that k is chosen large enough to contain all
eigenvalues of all elements of H.

Definition 3.2.1. We say that H is enormous if it satisfies the following conditions:

(1) H has no non-trivial p-power order quotient.
(2) H0(H, ad0) = H1(H, ad0) = 0 (for the adjoint action of H).
(3) For all simple k[H]-submodules W ⊂ ad0, there is an element h ∈ H with

n distinct eigenvalues and α ∈ k such that α is an eigenvalue of h and
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tr eh,αW 6= 0, where eh,α ∈ Mn(k) = ad denotes the unique h-equivariant
projection onto the α-eigenspace of h.

Remark 3.2.2. By definition, an enormous subgroup is big in the sense of [CHT08,
Defn. 2.5.1], and thus adequate in the sense of [Tho12, Defn. 2.3]. Indeed, the only
differences between these notions is that in the definition of big, the condition that
h has n distinct eigenvalues is relaxed to demanding that the generalised eigenspace
of α is one-dimensional, and in the definition of adequate, it is further relaxed to
ask only that α is an eigenvalue of h (but the definition of eh,α is now the projection
onto the generalised eigenspace for α).

Lemma 3.2.3. If n = 2, the notions of enormous, big and adequate are all equiv-
alent. In particular, if H acts irreducibly on k2, then H is enormous unless p = 3
or p = 5, and the image of H in PGL2(k) is conjugate to PSL2(Fp).

Proof. The second statement follows from the first statement and [BLGG13, Prop.
A.2.1]. By Remark 3.2.2, it is therefore enough to show that if we have a simple
k[H]-submodule W ⊂ ad0 and an element h ∈ H with an eigenvalue α such that
tr eh,αW 6= 0, then h necessarily has distinct eigenvalues. If not, then eh,α = 1 by
definition (as eh,α is projection onto the generalised eigenspace for α), which is a

contradiction as W ⊂ ad0. �

We now give two examples of classes of enormous subgroups of GLn(k) when n >
2, following [CHT08, §2.5] (which shows that the same groups are big).

Lemma 3.2.4. If n > 2 and there is a subfield k′ ⊂ k such that k×GLn(k′) ⊃
H ⊃ SLn(k′), then H is enormous.

Proof. Examining the proof of [CHT08, Lem. 2.5.6] (which shows that H is big),
we see that it is enough to check that SLn(k′) contains an element with n distinct
eigenvalues. Since we are assuming that p > n, we can use an element with char-
acteristic polynomial Xn + (−1)n (for example, the matrix (aij) with ai+1,i = 1,
a1,n = (−1)n−1, and all other aij = 0). �

Lemma 3.2.5. If p > 2n+1 and there is a subfield k′ ⊂ k such that k× Symn−1 GL2(k′) ⊃
H ⊃ Symn−1 SL2(k′), then H is enormous.

Proof. The proof of [CHT08, Cor. 2.5.4] (which shows that H is big) in fact shows
that H is enormous (note that in the proof of [CHT08, Lem. 2.5.2] it is shown that
the eigenspaces of the element denoted t are 1-dimensional). (Note also that as
explained after [BLGGT, Prop. 2.1.2], the hypothesis that p > 2n− 1 in [CHT08,
Cor. 2.5.4] should be p > 2n+ 1.) �

3.3. Taylor–Wiles primes. Suppose that v is a finite place of F such that #k(v) ≡
1 (mod p), that ρ|GFv

is unramified, and that ρ(Frobv) has n distinct eigenval-

ues γv,1, . . . , γv,n ∈ k. Let ∆v = (k(v)×(p))n−1 (where k(v)×(p) is the Sylow
p-subgroup of k(v)×), and let Λv = O[∆v].

We define DTW
v to be the functor of liftings over R ∈ CNLΛv

of the form

r ∼ χ1 ⊕ · · · ⊕ χn,
where χ1, . . . , χn : GFv

→ R× are continuous characters such that for each i =
1, . . . , n− 1, we have

• (χi (mod mR))(Frobv) = γv,i, and
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• χi|IFv
agrees, on composition with the Artin map, with the ith canonical

character k(v)×(p)→ R×.

(This definition depends on the ordering of the γv,i, but this does not affect
any of our arguments.) The functor DTW

v is represented by a formally smooth
Λv-algebra.

Suppose that S = (ρ, µ, S, {Λv}v∈S , {Dv}v∈S) is a deformation problem. Let Q
be a set of places disjoint from S of the form considered above (that is, #k(v) ≡ 1
(mod p) and ρ(Frobv) has n distinct eigenvalues). We refer to the tuple

(Q, (γv,1, . . . , γv,n)v∈Q)

as a Taylor–Wiles datum, and define the augmented deformation problem

SQ = (ρ, µ, S ∪Q, {Λv}v∈S ∪ {O[∆v]}v∈Q, {Dv}v∈S ∪ {DTW
v }v∈Q).

Let ∆Q =
∏
v∈Q ∆v =

∏
v∈Q k(v)×(p)n−1. Then RSQ is naturally a O[∆Q]-algebra.

If aQ ⊂ O[∆Q] is the augmentation ideal, then there is a canonical isomorphism
RSQ/aQ

∼= RS .
Recall that ρ is totally odd if if for each complex conjugation c ∈ GF , we have

ρ(c) ∼ diag(1, . . . , 1︸ ︷︷ ︸
a

,−1, . . . ,−1︸ ︷︷ ︸
b

),

with |a − b| ≤ 1. (Of course, if F is totally complex, this is a vacuous condition.)
Let l0 be the integer defined in (2.1.2) (which only depends on F and n).

Lemma 3.3.1. Let (ρ, µ, S, {Λv}v∈S , {Dv}v∈S) be a global deformation problem.
Suppose that:

• ρ is totally odd.
• ρ 6∼= ρ⊗ ε.
• ρ(GF (ζp)) is enormous.

Then for every q � 0 and every N ≥ 1, there exists a Taylor–Wiles datum
(QN , (γv,1, . . . , γv,n)v∈QN

) satisfying the following conditions:

(1) #QN = q.
(2) For each v ∈ QN , qv ≡ 1 (mod pN ).

(3) The ring RSSQN
is a quotient RS,loc

S -algebra of R∞ := RS,loc
S JX1, . . . , XgK,

where

g = (n− 1)q − n(n− 1)[F : Q]/2− l0 − 1 + #S.

Proof. This follows from [KT17, Lem. 4.12] and a standard argument using Poitou–
Tate duality, compare the proof of [KT17, Thm. 6.29]. �

Fix a choice of place v0 ∈ T and an integer q � 0 as in Lemma 3.3.1, and
set T = O[[Xi,j

v ]]v∈S,1≤i,j≤n/(X
1,1
v0 ). Set ∆QN

:=
∏
v∈QN

∆v, ON := T [∆QN
],

and O∞ := T [[∆∞]], where ∆∞ = Z(n−1)q
p . For each N we fix a surjection ∆∞ �

∆N , and thus a surjection of T -algebras O∞ � ON .
We now examine the behaviour of the Hecke operators at Taylor–Wiles primes.

Fix Up such that UpK0 is S-good. We begin by setting up some notation. Let
(Q, (γv,1, . . . , γv,n)v∈Q) be a Taylor–Wiles datum. We define compact open sub-
groups Up0 (Q) =

∏
v-p U0(Q)v and Up1 (Q) =

∏
v-p U1(Q)v of Up =

∏
v-p Uv by:

• if v /∈ Q, then U0(Q)v = U1(Q)v = Uv.
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• If v ∈ Q then U0(Q)v is the standard Iwahori subgroup of PGLn(OF,v),
and U1(Q)v is the minimal subgroup of U0(Q)v for which U0(Q)v/U1(Q)v
is a p-group.

In particular U1(Q)v contains the pro-v Iwahori subgroup of U0(Q)v, so we can
and do identify

∏
v∈Q U0(Q)v/U1(Q)v with ∆Q. We now introduce some natural

variants of the Hecke algebras that we introduced in Section 2.1.10.
For each compact open normal subgroup Up of K0 we define TS∪Q,Q(UpU

p
0 (Q), s)

to be the image in EndD(O/$s[K0/Up])(C(UpUp0 (Q), s)) of the abstract Hecke algebra

TS∪Q,Q generated by the operators T iv for v /∈ S∪Q and Ui
v for v ∈ Q, where the op-

erators Ui
v act as explained in Section 2.1.4. Similarly, we let TS∪Q,Q(UpU

p
1 (Q), s)

be the image of TS∪Q,Q in EndD(O/$s[∆Q×K0/Up])(C(UpUp1 (Q), s)) (as explained in

Section 2.1.4, the operators Ui
v commute with the action of ∆Q).

Note that we have a natural isomorphism of complexes

(3.3.2) C(UpUp1 (Q), s)⊗O[∆Q] O ∼= C(UpUp0 (Q), s).

We then set (for each compact open normal subgroup Up of K0)

TS∪Q,Q(UpU
p
i (Q)) = lim←−

s

TS∪Q,Q(UpU
p
i (Q), s),

TS∪Q,Q(Upi (Q)) = lim←−
Up,s

TS∪Q,Q(UpU
p
i (Q), s),

for i = 0, 1, equipped with their inverse limit topologies. We now need to assume
the existence of Galois representations associated to completed homology, as in the
following conjecture.

Conjecture 3.3.3. Let m ⊂ TS(Up) be a maximal ideal with residue field k.

(1) There exists a continuous semi-simple representation

ρm : GF,S → GLn(TS(Up)/m)

satisfying the following conditions: ρm is totally odd, and for any finite
place v /∈ S of F , ρm(Frobv) has characteristic polynomial

Xn−T 1
vX

n−1+· · ·+(−1)iqi(i−1)/2
v T ivX

n−i+· · ·+(−1)nqn(n−1)/2
v Tnv ∈ (TS(Up)/m)[X]

(2) Suppose that ρm is absolutely irreducible. Then there exists a lifting of ρm
to a continuous homomorphism

ρm : GF,S → GLn(TS(Up)m)

satisfying the following condition: for any finite place v /∈ S of F , ρm(Frobv)
has characteristic polynomial

Xn−T 1
vX

n−1 + · · ·+(−1)iqi(i−1)/2
v T ivX

n−i+ · · ·+(−1)nqn(n−1)/2
v Tnv ∈ TS(Up)m[X]

(In particular, since for each v /∈ S we have Tnv = 1, we have det ρm =
εn(1−n)/2.)

Remark 3.3.4. If F is a CM or totally real field, the first part of the conjecture
holds by the main results of [Sch15] and [CLH16]. It also follows from Scholze’s
work (again with the assumption that F is CM or totally real) that there is a lifting
of ρm valued in TS(Up)m/I for some nilpotent ideal I ⊂ TS(Up)m, and in fact we
may assume that I4 = 0 by [NT16, Theorem 1.3]. Moreover, the nilpotent ideal
has been eliminated entirely when F is CM and p splits completely in F [Car+18].
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Definition 3.3.5. Let m be a maximal ideal of TS(Up). For sufficiently small
Up (for example, if Up is pro-p), m is the inverse image of a maximal ideal of
TS(UpU

p, 1), which we also denote by m. The abstract Hecke algebra TS surjects
onto TS(UpU

p, 1) and we again denote by m the inverse image of m in TS .
Finally, for any module M for TS (or complex of such modules) we denote by Mm

the localisation TSm⊗TS M . Note that the idea of patching singular chain complexes
localised with respect to the action of the abstract Hecke algebra appears in [Han12].

We make an analogous definition for maximal ideals of the Hecke algebras
TS∪Q(Upi (Q)) and TS∪Q,Q(Upi (Q)).

We assume Conjecture 3.3.3 from now on, and recall that we have fixed Up such
that UpK0 is S-good. We now fix a maximal ideal m of TS(Up), and assume that

• ρm is absolutely irreducible
• ρm(GF (ζp) is enormous, and
• ρm 6∼= ρm ⊗ ε.

Enlarging our coefficient field E if necessary, we assume further that m has
residue field k, and that k contains the eigenvalues of all elements of the image
of ρm. We fix

S = (ρm, ε
n(1−n)/2, S, {O}v∈S , {D�

v }v∈S).

The following is the analogue of [KT17, Prop. 6.26] in our context, and the proof
is essentially identical.

Proposition 3.3.6. Let (Q, (γv,1, . . . , γv,n)v∈Q) be a Taylor–Wiles datum.

(1) There are natural inclusions TS∪Q(Up) ⊂ TS(Up) and TS∪Q(Up0 (Q)) ⊂
TS(Up0 (Q)), and natural surjections TS∪Q(Up0 (Q)) � TS∪Q(Up), TS∪Q(Up1 (Q)) �
TS∪Q(Up0 (Q)) and TS∪Q,Q(Up1 (Q)) � TS∪Q,Q(Up0 (Q)).

(2) Let mQ,0 ⊂ TS∪Q,Q(Up0 (Q)) denote the ideal generated by the pullback of m

to TS∪Q(Up0 (Q)) and the elements Ui
v−
∏i
j=1 γv,i. Then mQ,0 is a maximal

ideal.
(3) Write mQ,1 for the pullback of mQ,0 to TS∪Q,Q(Up1 (Q)), and m′ for the

pullback of m to TS∪Q(Up). Then there is a quasi-isomorphism

C(UpUp0 (Q), s)mQ,0
→ C(UpUp, s)m

and an isomorphism

C(UpUp1 (Q), s)mQ,1
⊗O[∆Q] O ∼= C(UpUp0 (Q), s)mQ,0

which are both equivariant for the actions of the operators T iv, v /∈ S ∪ Q.
Consequently, if we write TS∪Q(UpU

p
1 (Q), s)mQ,1

for the O[∆Q]-subalgebra

of EndD(O/$s[∆Q×K0/Up])(C(UpUp1 (Q), s)mQ,1
) generated by the operators T iv,

v /∈ S ∪Q, then there are natural maps

TS∪Q(UpU
p
1 (Q), s)mQ,1

� TS∪Q(UpU
p, s)m′ ∼= TS(UpU

p, s)m.

Proof. The inclusions TS∪Q(Up) ⊂ TS(Up) and TS∪Q(Up0 (Q)) ⊂ TS(Up0 (Q)) exist
by definition. The surjections TS∪Q(Up1 (Q)) � TS∪Q(Up0 (Q)) and TS∪Q,Q(Up1 (Q)) �
TS∪Q,Q(Up0 (Q)) are induced by (3.3.2), while the surjection TS∪Q(Up0 (Q)) � TS∪Q(Up)
comes from the splitting by the trace map of the natural map

C(UpUp0 (Q), s)→ C(UpUp, s)
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(note that for v ∈ Q, since p > n and #k(v) ≡ 1 (mod p), the index of U0(Q)v
in PGLn(OF,v) is congruent to n! mod p, by the Bruhat decomposition, and hence
this index is prime to p).

For the second part, we need to show that mQ,0 is in the support of C(UpUp0 (Q), 1).
As in the proof of [KT17, Lem. 6.25], it is enough to prove the corresponding state-
ment for cohomology groups, which follows from [KT17, Lem. 5.3].

The isomorphism C(UpUp1 (Q), s)mQ,1
⊗O[∆Q] O ∼= C(UpUp0 (Q), s)mQ,0

is induced
by (3.3.2). The quasi-isomorphism is the composite of quasi-isomorphisms

C(UpUp0 (Q), s)mQ,0
→ C(UpUp, s)m′ → C(UpUp, s)m

which are induced by the obvious natural maps of complexes (and the morphisms
of Hecke algebras from part (1)); to see that they are indeed quasi-isomorphisms,
one uses respectively [KT17, Lem. 5.4] and the argument of [KT17, Lem. 6.20].
Finally the isomorphism TS∪Q(UpU

p, s)m ∼= TS(UpU
p, s)m again follows from the

argument of [KT17, Lem. 6.20] and [CHT08, Cor. 3.4.5]. �

As usual, we set TS∪Q(Up1 (Q))mQ,1
:= lim←−Up,s

TS∪Q(UpU
p
1 (Q), s)mQ,1

,

TS∪Q(UpU
p
1 (Q))mQ,1

:= lim←−s T
S∪Q(UpU

p
1 (Q), s)mQ,1

, equipped with their inverse

limit topologies. (These are local rings, as can easily be checked as in the proof
of Lemma 2.1.14.) We will need to assume the following refinement of Conjec-
ture 3.3.3.

Conjecture 3.3.7. Suppose that ρm is absolutely irreducible, and let (Q, (γv,1, . . . , γv,n)v∈Q)
be a Taylor–Wiles datum. Then there exists a lifting of ρm to a continuous homo-
morphism

ρm,Q : GF,S∪Q → GLn(TS∪Q(Up1 (Q))mQ,1
)

satisfying the following conditions: for any finite place v /∈ S∪Q of F , ρm,Q(Frobv)
has characteristic polynomial

Xn−T 1
vX

n−1+· · ·+(−1)iqi(i−1)/2
v T ivX

n−i+· · ·+(−1)nqn(n−1)/2
v Tnv ∈ TS∪Q(Up1 (Q))mQ,1

[X]

and ρm,Q is of type SQ.

Remark 3.3.8. The requirement that ρm,Q be of type SQ is a form of local-global
compatibility at the places in Q. If F is CM, this property is verified in [All+18]
(under a technical assumption which permits the use of Shin’s unconditional base
change and up to a nilpotent ideal, see Remark 3.3.4).

We assume Conjecture 3.3.7 from now on, so that in particular ρm,Q determines
an O[∆Q]-algebra homomorphism

(3.3.9) RSQ → TS∪Q(Up1 (Q))mQ,1
,

and the choice of ρm,Q in its strict equivalent class determines an isomorphism

(3.3.10) RSSQ
∼−→ T ⊗̂ORSQ .

3.4. Patching. For each N ≥ 1, we let (QN , (γv,1, . . . , γv,n)v∈QN
be a choice of

Taylor–Wiles datum as in Lemma 3.3.1 (for some fixed choice of q � 0). We fix a

surjective RS,loc
S -algebra map R∞ → RSSQN

for each N . We also fix a non-principal

ultrafilter F on the set N = {N ≥ 1}.
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Remark 3.4.1. With the exception of Remark 3.4.17, the choice of F is the only
choice we make in our patching argument. This has the pleasant effect of making
many of the constructions below natural, although the reader should bear in mind
that they are only natural relative to our fixed choice of F.

Definition 3.4.2. Let Up be a compact open subgroup of K0, and let J be an
open ideal in O∞. Let IJ be the (cofinite) subset of N ∈ N such that J contains
the kernel of O∞ → ON . For N ∈ IJ , we define

C(Up, J,N) = O∞/J ⊗O[∆QN
] C(Up1 (QN )Up,O)mQN,1

.

Remark 3.4.3. (1) We have a mapR
Sp

SQN
→ T ⊗̂OTS∪QN (Up1 (QN ))mQN,1

by (3.3.9)

and (3.3.10), and a map

T ⊗̂OTS∪QN (Up1 (QN ))mQN,1
→ EndD(O∞/J)(C(Up, J,N))

by definition of TS∪QN (Up1 (QN ))mQN,1
together with Remark 2.1.12. In

particular, for all J and N ∈ IJ we have a ring homomorphism

R∞ → EndD(O∞/J)(C(Up, J,N))

which factors through our chosen quotient map R∞ → RSSQN
and the ON -

algebra map

RSSQN
→ T ⊗̂OTS∪QN (Up1 (QN ))mQN,1

.

(2) If U ′p is an open normal subgroup of Up, C(U ′p, J,N) is a complex of flat
O∞/J [Up/U

′
p]-modules.

(3) Let a = ker(O∞ → O). Suppose that a ⊂ J . Then C(Up, J,N) =

C(Up0 (QN )Up, s(J))mQN,0
where O∞/J ∼= O/$s(J) and the natural map

C(Up0 (QN )Up, s(J))mQN,0
→ C(UpUp, s(J))m is a quasi-isomorphism.

Definition 3.4.4. For d ≥ 1, J an open ideal in O∞ and N ∈ IJ , we define

R(d, J,N) =

(
RSSQN

/mdRS
SQN

)
⊗ON

O∞/J.

Remark 3.4.5. Each ring R(d, J,N) is a finite commutative local O∞/J-algebra,
equipped with a surjective O-algebra map R∞ → R(d, J,N). As in the beginning
of the proof of [KT17, Prop. 3.1], for d sufficiently large (depending on J and Up),
the map

R∞ → EndD(O∞/J)(C(Up, J,N))

factors through the quotient R(d, J,N) and the map

R(d, J,N)→ EndD(O∞/J)(C(Up, J,N))

is an O∞-algebra homomorphism. We have an isomorphism

R(d, J,N)/a ∼= RS/(m
d
RS
, $s(a+J))

induced by the canonical isomorphism RSQN
/aQN

∼= RS .

Lemma 3.4.6. (1) For all open ideals J ′ ⊂ J and open normal subgroups
U ′p ⊂ Up we have surjective maps of complexes

C(U ′p, J ′, N)→ C(Up, J,N)

inducing isomorphisms (of complexes)

O∞/J ⊗O∞/J′[Up/U ′
p] C(U ′p, J ′, N)→ C(Up, J,N).
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(2) Let K1 be a pro-p Sylow subgroup of K0 and let Up be an open normal
subgroup of K1. Then {C(Up, J,N)}N∈IJ is a set of perfect chain complexes
of O∞/J [K1/Up]-modules with bounded complexity.

Proof. The maps of complexes C(U ′p, J ′, N)→ C(Up, J,N) are those induced by the

natural maps O∞/J ′ → O∞/J and C(Up1 (QN )U ′p,O)→ C(Up1 (QN )Up,O).
To see that C(Up, J,N) is perfect, we first observe that by part (1) we have

an isomorphism k ⊗O∞/J[K1/Up] C(Up, J,N) ∼= C(K1,mO∞ , N) — note that k is
the residue field of the local ring O∞/J [K1/Up] and C(Up, J,N) is a bounded-
below complex of flat O∞/J [K1/Up]-modules with finitely generated homology. It
follows from Proposition 2.1.9 that C(Up, J,N) has a minimal resolution, and since
C(K1,mO∞ , N) has bounded homology we deduce that C(Up, J,N) is perfect.

It follows immediately from the quasi-isomorphism

C(UpUp1 (Q), s)mQ,1
⊗O[∆Q] O → C(UpUp, s)m

(which comes from Proposition 3.3.6 (3)) that the set of complexes has bounded
complexity, as required. �

Definition 3.4.7. Applying the construction of section 2.2, we let x ∈ Spec((O∞/J)IJ )
correspond to F (here we use that F is non-principal, and therefore defines an ul-
trafilter on IJ), and define

C(Up, J,∞) = (O∞/J)IJ ,x ⊗(O∞/J)IJ

( ∏
N∈IJ

C(Up, J,N)

)
.

Remark 3.4.8. (1) It follows from Lemma 2.2.3 that if U ′p is an open normal
subgroup of Up, C(U ′p, J,∞) is a complex of flat O∞/J [Up/U

′
p]-modules.

(2) It follows from Remark 3.4.3(3) that if a ⊂ J there is a natural quasi-
isomorphism C(Up, J,∞)→ C(UpUp, s(J))m.

Definition 3.4.9. Similarly, we define

R(d, J,∞) = (O∞/J)IJ ,x ⊗(O∞/J)IJ

( ∏
N∈IJ

R(d, J,N)

)
.

Remark 3.4.10. For d sufficiently large (depending on J and Up), the map

R∞ → EndD(O∞/J)(C(Up, J,∞))

factors through R(d, J,∞) and the map

R(d, J,∞)→ EndD(O∞/J)(C(Up, J,∞))

is an O∞-algebra homomorphism. By Lemma 2.2.4, we have an isomorphism

R(d, J,∞)/a ∼= RS/(m
d
RS
, $s(a+J))

induced by the isomorphisms R(d, J,N)/a ∼= RS/(m
d
RS
, $s(a+J)).

Lemma 3.4.11. (1) For all open ideals J ′ ⊂ J and open normal subgroups
U ′p ⊂ Up, the natural maps of complexes

C(U ′p, J ′,∞)→ C(Up, J,∞)

are surjective, and induce isomorphisms of complexes

O∞/J ⊗O∞/J′[Up/U ′
p] C(U ′p, J ′,∞)→ C(Up, J,∞).
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(2) Let Up be an open normal subgroup of K1, and let J be an open ideal in
O∞. Then C(Up, J,∞) is a perfect complex of O∞/J [K1/Up]-modules. If
Up is moreover normal in K0, then C(Up, J,∞) is a perfect complex of
O∞/J [K0/Up]-modules.

Proof. The surjectivity claim of the first part follows immediately from Lemma 3.4.6(1),
since taking the the direct product over N ∈ IJ and localising at x preserves sur-
jectivity. It follows from Lemma 2.2.4 and Lemma 3.4.6(1) that we obtain an
isomorphism of complexes

O∞/J ⊗O∞/J′[Up/U ′
p] C(U ′p, J ′,∞)→ C(Up, J,∞).

For the second part, the fact that C(Up, J,∞) is a perfect complex of O∞/J [K1/Up]-
modules follows from Lemma 2.2.6 and Lemma 3.4.6(2). To get perfectness over
O∞/J [K0/Up] we apply (an obvious variant of) Lemma 3.4.15. �

Definition 3.4.12. We define a complex of O∞[[K0]]-modules

C̃(∞) := lim←−
J,Up

C(Up, J,∞).

Remark 3.4.13. The complex C̃(∞) is naturally equipped with an O∞-linear ac-
tion of

∏
v|pG(Fv) (on each term of the complex), which extends the K0-action

coming from the O∞[[K0]]-module structure. Explicitly, for g ∈
∏
v|pG(Fv), right

multiplication by g gives a map of complexes

·g : C(Up, J,N)→ C(g−1Upg, J,N)

for each Up, J and N . Supposing that g−1Upg ⊂ K0, applying our (functorial)
patching construction gives a map

·g : C(Up, J,∞)→ C(g−1Upg, J,∞)

As Up runs over the cofinal subset of open subgroups of K0 with g−1Upg ⊂ K0,
the subgroups g−1Upg also run over a cofinal subset of open subgroups of K0, so

we can identify lim←−J,Up
C(g−1Upg, J,∞) with C̃(∞). Therefore, taking the inverse

limit over J and Up gives the action of g on C̃(∞).

To verify that C̃(∞) has good properties, we will need several technical Lemmas.

Lemma 3.4.14. Let I be a countable directed poset. Let C = (C(i))i∈I be an inverse
system with C(i) ∈ Ch(O). Suppose that the following two conditions hold:

(1) for every i ∈ I and m ∈ Z, the homology group Hm(C(i)) is an Artinian
O-module.

(2) Either the entries of C(i) are Artinian O-modules for every i ∈ I, or for
every pair i ≤ j in I the transition map C(j)→ C(i) is surjective.

Then for every m ∈ Z there are natural isomorphisms

Hm(lim←−
I

C) = lim←−
I

Hm(C(i)).

Proof. Since I is direct and countable, it has a cofinal subset which is isomorphic (as
a poset) to N with its usual ordering. So we can assume I = N. The proposition
is then a consequence of [Wei94, Theorem 3.5.8] (as assumption (1) guarantees
the Mittag-Leffler property for the Hm(C(i)), and assumption (2) guarantees it for
the C(i)). �
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Lemma 3.4.15. Let K be a compact p-adic analytic group, and let K1 be a pro-p
Sylow subgroup of K. Let C be a bounded below chain complex of O[[K]]-modules.
Suppose that C|K1 is perfect when regarded as a complex of O[[K1]]-modules. Then
C is a perfect complex of O[[K]]-modules.

Proof. We can assume that C is a bounded below complex of projective O[[K]]-
modules. Let F be a bounded complex of finite free O[[K1]]-modules with a quasi-
isomorphism α : F → C|K1 . We have a homotopy inverse β : C|K1 → F to α. We
obtain maps of complexes of O[[K]]-modules

α̃ : O[[K]]⊗O[[K1]] F → C

β̃ : C → O[[K]]⊗O[[K1]] F

where α̃ is given by the usual adjunction and β̃ is given by

β̃(x) =
∑

gK1∈K0/K1

[g]⊗ β(g−1x).

The composite α̃ ◦ β̃ is homotopic to [K0 : K1] idC , and [K0 : K1] is invertible
in Zp, so C is a retract (in the homotopy category) of O[[K]] ⊗O[[K1]] F . Since
O[[K]] ⊗O[[K1]] F is perfect, it follows that C is also perfect, since perfect com-
plexes form a thick (or épaisse) subcategory of D(O[[K]]) (this follows from [BN93,
Prop. 6.4], which identifies perfect complexes with compact objects in D(R)) and
therefore the retraction of a perfect complex is perfect (thick subcategories of tri-
angulated categories are closed under retraction, by definition). �

As promised, we can now show that C̃(∞) has various desirable properties.

Proposition 3.4.16. (1) For all open ideals J ⊂ O∞ and compact open sub-
groups Up of K0 we have surjective maps of complexes (induced by the maps
in Lemma 3.4.11(1))

C̃(∞)→ C(Up, J,∞)

inducing isomorphisms of complexes

O∞/J ⊗O∞[[Up]] C̃(∞)→ C(Up, J,∞),

and C̃(∞) is a complex of flat O∞[[Up]]-modules.

(2) C̃(∞) is a perfect complex of O∞[[K0]]-modules.

(3) There is a ring homomorphism R∞ → EndD(O∞)(C̃(∞)) which factors as
the composite of maps R∞ → lim←−J,dR(d, J,∞) and lim←−J,dR(d, J,∞) →
EndD(O∞)(C̃(∞)) (the latter map is an O∞-algebra map) given by the limit
of the maps discussed in Remark 3.4.10.

Proof. The first part follows from Lemma 3.4.11(1) and Lemma A.33. To see this,
fix an open uniform pro-p subgroup U ′p of Up, and note that if J is the two-sided
ideal in O∞[[Up]] generated by the maximal ideal of O∞[[U ′p]], where the J -adic
topology on O∞[[Up]] is equivalent to the canonical profinite topology. We set
K = Zgp × Up in Lemma A.33, where g is chosen so that O[[K]] = O∞[[Up]].

For m ≥ 1 we can define a complex of flat O∞[[Up]]/Jm-modules by choosing J
and Vp ⊂ Up sufficiently small so that Jm contains the kernel of the map

O∞[[Up]]→ O∞/J [Up/Vp]
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and considering the complex C(Vp, J,∞)⊗O∞/J[Up/Vp]O∞[[Up]]/Jm. This complex
is independent of the choice of J and Vp, by Lemma 3.4.11(1). In particular, by
choosing J and Vp sufficiently small, we get a natural surjective map

C(Vp, J,∞)⊗O∞/J[Up/Vp]O∞[[Up]]/Jm+1 → C(Vp, J,∞)⊗O∞/J[Up/Vp]O∞[[Up]]/Jm.

Taking the terms of these complexes in fixed degree as m varies gives a system of
modules to which Lemma A.33 applies, and taking the inverse limit over m gives

the complex C̃(∞).
For the second part, we first note that by Lemma 3.4.15 it suffices to show that

C̃(∞) is perfect over O∞[[K1]], where K1 is a pro-p Sylow subgroup of K0. For
each J and each Up open normal in K1, there is by Remark 2.2.8 a minimal resolu-
tion F(Up, J,∞) of C(Up, J,∞), which is isomorphic to the minimal resolutions of
C(Up, J,N) for all N ∈ I ′ where I ′ ∈ F. For each J ′ ⊂ J and U ′p open normal in Up,
we choose compatible maps F(U ′p, J

′,∞)→ F(Up, J,∞) which are also compatible
with the map

C(U ′p, J ′,∞)→ C(Up, J,∞)

and induce isomorphisms

O∞/J ⊗O∞/J′[Up/U ′
p] F(U ′p, J

′,∞) ∼= F(Up, J,∞).

In fact, rather than choosing maps for all J and Up, it suffices to choose maps be-
tween minimal resolutions Fm of the complexes C(Up, J,∞)⊗O∞/J[K1/Up]O∞[[K1]]/Jm
discussed in the proof of the first part. It follows from Lemma 3.4.14 that there is
a quasi-isomorphism

lim←−
m

Fm → C̃(∞)

and lim←−m Fm is a bounded complex of finite free O∞[[K1]]-modules by construction,

as required.
The third part follows from (the proof of) [KT17, Lemma 2.13(3)]. �

Remark 3.4.17. Since the image of the map α : R∞ → lim←−J,dR(d, J,∞) contains

(the image of) O∞, α(R∞) is naturally an O∞-algebra. Since O∞ is formally
smooth, we can choose a lift of the map O∞ → α(R∞) to a map O∞ → R∞. We
make such a choice, and regard R∞ as an O∞-algebra and α as an O∞-algebra
map.

Remark 3.4.18. With some more careful bookkeeping, it should be possible to show

that there is a natural map R∞ → EndD(O∞[[K0]])(C̃(∞)) lifting the map R∞ →
EndD(O∞)(C̃(∞)) which we have described above. However, in our applications

below, the complex C̃(∞) will have homology concentrated in a single degree, so
this doesn’t give any additional information.

The following Proposition shows that we can think of C̃(∞) as ‘patched com-
pleted homology’.

Proposition 3.4.19. If we let a = ker(O∞ → O), we have natural (in particular,∏
v|pG(Fv)-equivariant) isomorphisms

Hi(O∞/a⊗O∞ C̃(∞)) ∼= H̃i(XUp ,O)m.



PATCHING AND THE COMPLETED HOMOLOGY OF LOCALLY SYMMETRIC SPACES 25

There are surjective maps R∞/a→ RS → TS(Up)m and the above isomorphism
intertwines the action of R∞ on the left hand side with the action of TS(Up)m on
the right.

Proof. We have natural maps

C̃(∞) = lim←−
J,Up

C(Up, J,∞)→ lim←−
a⊂J,Up

C(Up, J,∞)→ lim←−
s,Up

C(UpUp, s)m.

It follows from Lemma 3.4.14 and Remark 3.4.8(2) that the natural map

lim←−
a⊂J,Up

C(Up, J,∞)→ lim←−
s,Up

C(UpUp, s)m

is a quasi-isomorphism and by Lemma 3.4.14 we have natural isomorphisms

Hn(lim←−
s,Up

C(UpUp, s)m) ∼= lim←−
s,Up

Hn(XUpUp
,O/$s)m.

The natural map

α : H̃n(XUp ,O)m → lim←−
s,Up

Hn(XUpUp
,O/$s)m

is also an isomorphism: indeed, we have short exact sequences

0→ Hn(XUpUp
,O)m/$

s → Hn(XUpUp
,O/$s)m → Hn−1(XUpUp

,O)m[$s]→ 0

so taking the limit over (Up, s) shows that the map α is an injection with $-divisible
cokernel. On the other hand, this cokernel is a finitely generated O[[K0]]-module,
so if it is $-divisible it must be zero.

To finish the proof, by Proposition 3.4.16 (1), it suffices to show that the map

O∞/a⊗O∞ C̃(∞)→ lim←−
a⊂J,Up

C(Up, J,∞) = lim←−
J,Up

O∞/(a + J)⊗O∞[[Up]] C̃(∞)

is an isomorphism of complexes. As in the proof of Proposition 3.4.16 (1), we
easily reduce to the following claim, where J = mO∞[[Up]]O∞[[K0]] for Up ⊂ K0

an open uniform pro-p subgroup: suppose we have flat O∞[[K0]]/Jm-modules Mm

for each m ≥ 1, with Mm = Mm+1/Jm. Let M = lim←−mMm. Then M/aM =

lim←−mMm/aMm.

This claim follows from Lemma A.33, taking K = Zgp ×K0 (where g is chosen
so that O[[K]] = O∞[[K0]]), and Q = O∞[[K0]]/a.

The final claim of the Proposition follows from the fact that the isomorphisms
R(d, J,∞)/a ∼= RS/(m

d
RS
, $s(a+J)) of Remark 3.4.10 induce an isomorphism(

lim←−
d,J

R(d, J,∞)

)
/a ∼= RS . �

Lemma 3.4.20. Let m ⊂ TS(Up) be a maximal ideal and suppose that H̃i(XUp ,O)m
is non-zero for a single i, which we denote by q. Then the map

α : TS(Up)m → EndO(H̃q(XUp ,O)m)

is an injection.
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Proof. The map α factors through the inclusion

EndO[[K0]](H̃q(XUp ,O)m) ⊂ EndO(H̃q(XUp ,O)m).

Suppose T is in the kernel of α. Then, as an endomorphism in D(O[[K0]]), T acts

on O∞/a ⊗O∞ C̃(∞) as 0 (by Proposition 3.4.19), and so for any s ≥ 1 and Up
compact open normal in K0 it acts, as an endomorphism in D(O/$s[K0/Up]), as
0 on

O/$s[K0/Up]⊗O[[K0]] O∞/a⊗O∞ C̃(∞).

By Proposition 3.4.16 and Remark 3.4.8, we deduce that T maps to 0 in TS(UpU
p, s)m.

Since Up and s were arbitrary, we deduce that T is equal to 0. Of course we

don’t require the patched complex C̃(∞) to prove this Lemma — we can replace

O∞/a⊗O∞ C̃(∞) by any suitable complex computing completed homology. �

4. Applications of noncommutative algebra to patched completed
homology

In this section we apply the non-commutative algebra developed in Appendix A
to the output of the patching construction in Section 3.

4.1. Formally smooth local deformation rings. We begin by recalling some of
the notation, assumptions and results of Section 3, and we then make an additional
assumption.

We assume Conjectures 3.3.3 and 3.3.7. We work with a fixed Up such that UpK0

is good, and we further assume that

• p > n ≥ 2,
• ρm(GF (ζp)) is enormous, and
• ρm 6∼= ρm ⊗ ε.

We have two rings O∞ and R∞. The former is a power series ring over O, and

the latter is a power series ring over RS,loc
S . More precisely, we have fixed an integer

q � 0, and O∞ is a power series ring in

n2#S − 1 + (n− 1)q

variables over O, while R∞ is a power series ring in

(n− 1)q − n(n− 1)[F : Q]/2− l0 − 1 + #S

variables over RS,loc
S .

Lemma 4.1.1. Suppose that for each place v|p of F there is no non-zero k[GFv
]-

equivariant map ρ|GFv
→ ρ|GFv

(1). Then R∞ is equidimensional of dimension
dimO∞ + (n(n+ 1)/2− 1)[F : Q]− l0.

Proof. For places v|p we have H2(GFv
, ad0 ρ) = 0 by Tate local duality, and a stan-

dard calculation shows that Rv is formally smooth of dimension 1 + (n2 − 1)[Fv :
Qp] + (n2 − 1) (see e.g. [All19, Lem. 3.3.1]). If v - p then Rv is equidimensional
of dimension n2 by [Sho18, Thm. 2.5]. The claim then follows immediately (us-

ing [BLGHT, Lem. 3.3] to compute the dimension of RS,loc
S ). �

Remark 4.1.2. Note that (n(n + 1)/2 − 1)[F : Q] is equal to the dimension of the
Borel subgroup B in G. It follows from Lemma 4.1.1 that we have

dimR∞ + dim(G/B) = dimO∞[[K0]]− l0.
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See [CE12, Equation (1.6)] and the surrounding discussion for the same numerology.

Under the assumptions of Lemma 4.1.1, the local deformation ring Rv are for-
mally smooth over O for v|p. We could make a similar assumption at places v - p,
but it seems more reasonable to instead make the following more general assump-
tion.

Hypothesis 4.1.3. • For each place v|p of F there is no non-zero k[GFv ]-
equivariant map ρ|GFv

→ ρ|GFv
(1).

• For each place v ∈ S with v - p, we let Rv be an irreducible component
of Rv which is formally smooth. Let Dv be the local deformation problem
corresponding to Rv. Let

S = (ρm, ε
n(1−n)/2, S, {O}v∈S , {D�

v }v|p ∪ {Dv}v∈S,v-p).
Then we further assume that for any set of Taylor–Wiles primes Q, the
representation ρm,Q of Conjecture 3.3.7 is of type SQ.

Remark 4.1.4. If v - p is such that there is no non-zero k[GFv
]-equivariant map ρ|GFv

→
ρ|GFv

(1), then Rv is formally smooth and we can take Rv = Rv. Under the ex-

pected local-global compatibility, the question of whether ρm,Q is of type SQ for a

given choice of components Rv is governed by the local Langlands correspondence,
and therefore depends on the choices of compact open subgroups Uv.

Since our primary interest is in the behaviour at the places v|p, we content
ourselves with mentioning one important example. For any v - p there is always at
least one choice of irreducible component Rv which is formally smooth, namely the
component corresponding to minimally ramified lifts; see [CHT08, Lem. 2.4.19]. In
general we do not expect to be able to make a choice of Uv compatible with the
minimally ramified lifts; this is not a problem, as instead one should be able to
consider a type (in the sense of Henniart’s appendix to [BM02]) at each place v - p.
Doing so would take us too far afield, so we content ourselves with noting that
if n = 2, and v is not a vexing prime in the sense of [Dia97] (so in particular
if #k(v) 6≡ −1 mod p), then we expect to be able to take Uv to be given by
the image in PGL2(OFv

) of the subgroup of matrices in GL2(OFv
) whose last row

is congruent to (0, 1) modulo vnv , where nv is the conductor of ρm|GFv
. As in

Remark 3.3.8, in the case that F is totally real or CM, this compatibility should
follow from forthcoming work of Varma.

We assume Hypothesis 4.1.3 from now on. If v|p then we set Rv = Rv; we then

write R
S,loc

S := ⊗̂v∈SRv, and set R∞ := R∞⊗RS,loc
S

R
S,loc

S . Under our assumptions,

R∞ is a power series ring over O, and has the same dimension as R∞ (indeed, it is
an irreducible component of R∞).

Remark 4.1.5. If v - p then Rv is in fact a reduced complete intersection, and is
flat over O ([Sho18, Thm. 2.5]). In particular Rv is Gorenstein. It seems reason-
able to imagine that these properties should be sufficient to carry out our analysis
below without making any assumption at the places v - p, but this would require a
substantial generalisation of the material in Appendix A (to Iwasawa algebras over
more general rings than O), so we have not pursued this. Note however that the
‘miracle flatness’ result used in the proof of Proposition 4.3.1 requires R∞ to be reg-
ular — moreover, in the GL2 /Q case the conclusion of part (1) of this Proposition
does not hold when Rp is not regular (see [CEGGPS2, Remark 7.7]).
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4.2. Patched completed homology is Cohen–Macaulay. We return to the
notation and set-up of section 3, and recall that we have a perfect chain complex

C̃(∞) of O∞[[K0]]-modules (see Definition 3.4.12 and Proposition 3.4.16), equipped
with an O∞-linear action of

∏
v|pG(Fv) and an O∞-algebra homomorphism

R∞ → EndD(O∞)(C̃(∞)).

The action of R∞ on C̃(∞) commutes with the action of
∏
v|pG(Fv) (and with

that of O∞[[K0]]). By Hypothesis 4.1.3 together with Remark 3.4.3 and Proposi-
tion 3.4.16 (3), this map factors through the quotient R∞ of R∞. Recall that R∞ is
a formal power series ring over O. The action of R∞ induces an O∞[[K0]]-algebra

homomorphism R∞[[K0]] → EndD(O∞)(C̃(∞)), and in particular each homology

group Hi(C̃(∞)) is a finitely generated R∞[[K0]]-module. We refer to Definition A.2
for the notion of the grade jA(M) of a module M over a ring A and to Definition A.5
for the notion of a Cohen–Macaulay module over O[[K0]]; this also gives us the def-
inition of a Cohen–Macaulay module over O∞[[K]] or R∞[[K]] for any compact
open K ⊂ K0.

We have natural isomorphisms (for every i ≥ 0)

Hi(O∞/a⊗O∞ C̃(∞)) ∼= H̃i(XUp ,O)m,

where a = ker(O∞ → O). Recall that K1 denotes a pro-p Sylow subgroup of K0,
and B is the Borel subgroup of G.

Proposition 4.2.1. Suppose that

(a) Hi(XUpK1
, k)m = 0 for i outside the range [q0, q0+l0] (note that H∗(XUpK1

, k)m
is non-zero).

(b) jO[[K0]]

(⊕
i≥0 H̃i(XUp ,O)m

)
≥ l0.

Then

(1) H̃i(XUp ,O)m = 0 for i 6= q0 and H̃q0(XUp ,O)m is a Cohen–Macaulay
O[[K0]]-module with

pdO[[K0]](H̃q0(XUp ,O)m) = jO[[K0]](H̃q0(XUp ,O)m) = l0.

(2) Hi(C̃(∞)) = 0 for i 6= q0 and Hq0(C̃(∞)) is a Cohen–Macaulay O∞[[K0]]-
module with

pdO∞[[K0]]

(
Hq0(C̃(∞))

)
= jO∞[[K0]]

(
Hq0(C̃(∞))

)
= l0.

(3) Hq0(C̃(∞)) is a Cohen–Macaulay R∞[[K0]]-module with

pdR∞[[K0]]

(
Hq0(C̃(∞))

)
= jR∞[[K0]]

(
Hq0(C̃(∞))

)
= dim(B)

where dim(B) = (n(n+1)
2 − 1)[F : Q].

If we moreover suppose that

(c) jk[[K0]]

(⊕
i≥0 H̃i(XUp , k)m

)
≥ l0,

then H̃i(XUp , k)m = 0 for i 6= q0 and both H̃q0(XUp ,O)m and Hq0(C̃(∞)) are $-
torsion free.
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Proof. We have Hi(k ⊗L
O∞[[K1]] C̃(∞)) ∼= Hi(XUpK1

, k)m by Proposition 3.4.16(1).

So the assumption that Hi(XUpK1
, k)m = 0 for i outside the range [q0, q0 + l0]

implies (Lemma 2.1.7) that the minimal resolution F of C̃(∞) (viewed as a complex
of O∞[[K1]]-modules) is concentrated in degrees [q0, q0 + l0].

Fix H ⊂ K1 a normal compact open subgroup of K0 which is uniform pro-p.
We now apply Lemma A.10 to the shifted complex O∞/a⊗O∞ F [−q0] of finite free

O[[H]]-modules to deduce that Hi(O∞/a⊗O∞ F) ∼= H̃i(XUp ,O)m vanishes for i 6=
q0 and pdO[[H]](H̃q0(XUp ,O)m) = jO[[H]](H̃q0(XUp ,O)m) = l0. Lemma A.7 gives

the first claim of the proposition: note that the perfect complex O∞/a⊗O∞ C̃(∞)

of O[[K]]-modules has homology equal to H̃q0(XUp ,O)m concentrated in a single

degree, so H̃q0(XUp ,O)m has finite projective dimension as a O[[K]]-module.
Now we move on to the second claim of the proposition. We begin by showing

that C̃(∞) has non-zero homology only in degree q0. As we will explain, this follows

from the fact (which we have just established) that O∞/a⊗O∞ C̃(∞) has non-zero
homology only in degree q0. To see this, we recall that O∞ = O[[x1, . . . , xg]], and

begin by showing that O∞/(x1, . . . , xg−1)⊗O∞ C̃(∞) has non-zero homology only
in degree q0. For each i we have an injective map (part of a short exact sequence
coming from a degenerating Tor spectral sequence)

Hi(O∞/(x1, . . . , xg−1)⊗O∞ C̃(∞))/xg ↪→ Hi(O∞/a⊗O∞ C̃(∞))

so it follows from Nakayama’s lemma, applied to the finitely generated O∞[[K1]]-

module Hi(O∞/(x1, . . . , xg−1)⊗O∞ C̃(∞)), that Hi(O∞/(x1, . . . , xg−1)⊗O∞ C̃(∞))

is zero for i 6= q0. Repeating this argument, we eventually deduce that Hi(C̃(∞))
is zero for i 6= q0.

Since F is a chain complex whose first nonzero term has degree q0, we have

O∞/a⊗O∞Hq0(F) = Hq0(O∞/a⊗O∞F) ∼= H̃q0(XUp ,O)m, so Lemma A.16 implies
that

jO∞[[H]](Hq0(F)) ≥ jO[[H]](H̃q0(XUp ,O)m) = l0.

Another application of Lemmas A.10 and A.7 gives us the second claim of the
proposition.

Next, we establish the third claim. It follows from Corollary A.29 and what

we have established above that Hq0(C̃(∞)) is a Cohen–Macaulay R∞[[H]]-module,
with grade and projective dimension as in the claim. Lemma A.7 and Lemma

3.4.15 establish the claim as stated once we verify that Hq0(C̃(∞)) has finite pro-

jective dimension over R∞[[K1]]. To verify this, let G be a minimal resolution

of Hq0(C̃(∞)), viewed as a complex of R∞[[K1]]-modules concentrated in degree

q0. The complex R∞ ⊗R∞[[K1]] G (we mod out by the augmentation ideal for

K1) has bounded and finitely generated homology, since Hi(R∞ ⊗R∞[[K1]] G) =

Hi(O∞⊗O∞[[K1]] C̃(∞)) and C̃(∞) is a perfect complex of O∞[[K1]]-modules. Since

R∞ is regular, R∞ ⊗R∞[[K1]] G is therefore a perfect complex of R∞-modules, so

k⊗R∞[[K1]] G also has bounded homology. We deduce that the minimal complex G
is itself bounded, so Hq0(C̃(∞)) has finite projective dimension over R∞[[K1]].
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For the last part of the Proposition, if we assume that

jk[[K0]]

⊕
i≥0

H̃i(XUp , k)m

 = l0

then we may apply Lemma A.10 to the shifted complex O∞/mO∞ ⊗O∞ F [−q0] of

finite free k[[H]]-modules to deduce that H̃i(XUp , k)m = 0 for i 6= q0. This shows
that

TorOi (O/$, H̃q0(XUp ,O)m) = H̃q0+i(XUp , k)m = 0

for i > 0, so H̃q0(XUp ,O)m is $-torsion free. Arguing as for the second part, we

deduce that Hi(C̃(∞)/$) = 0 for i 6= q0 and hence Hq0(C̃(∞)) is also $-torsion
free. �

Remark 4.2.2. (1) Hypothesis (b) that jO[[K0]]

(⊕
i≥0 H̃i(XUp ,O)m

)
≥ l0 of

the above Proposition is implied by the codimension conjecture of Calegari
and Emerton [CE12, Conjecture 1.5] (indeed equality is conjectured to hold
here). For PGL2 over an imaginary quadratic field, this hypothesis holds
(for example, by the argument of [CE12, Example 1.12]).

(2) Hypothesis (a), that Hi(XUpK1
, k)m = 0 for n outside the range [q0, q0 +

l0], is conjectured in [CG18, Conj. B(4)(a)]. Again, for PGL2 over an
imaginary quadratic field, the hypothesis holds: we have l0 = 1, q0 = 1
and the dimension of XUpK1

is equal to 3, so it suffices to check that
H0(XUpK1

, k)m = H3(XUpK1
, k)m = 0 which follows from the fact that m

is non-Eisenstein.
(3) In contrast to the other hypotheses, hypothesis (c) seems difficult to verify

even for PGL2 over an imaginary quadratic field. We cannot rule out (for

example) H̃1(XUp ,O)m containing a $-torsion submodule which is torsion

free over k[[K0]], in which case jk[[K0]]H̃1(XUp , k)m = 0.

Remark 4.2.3. It follows from the second part of the Proposition that the map

R∞ → EndD(O∞)(C̃(∞)) (which commutes with the G action) arises from a map

R∞ → EndO∞[G](Hq0(C̃(∞))). In particular, the action of R∞ on C̃(∞) can be
thought of as taking place in, for example, the derived category of O∞[[K0]]-
modules with compatible G-action.

4.3. Miracle flatness and ‘big R = T’. We have a surjective mapRS → TS(Up)m.
If this map is an isomorphism, the global Euler characteristic formula for Galois

cohomology gives an expected dimension of 1 + (n(n+1)
2 − 1)[F : Q] − l0 for both

these rings. See [Eme14, Conj. 3.1].
The following Proposition shows that this dimension formula, as well as the

isomorphism RS
∼= TS(Up)m, is implied by a natural condition on the codimension

(over k[[K0]]) of the fibre of the completed homology module H̃q0(XUp ,O)m at
the maximal ideal m of the Hecke algebra. The method of proof is in some sense
a precise version of the heuristics discussed in [Eme14, §3.1.1] which compare the

Krull dimension of TS(Up)m and the Iwasawa theoretic dimensions of H̃q0(XUp ,O)m
and its mod m fibre. A related argument was found independently by Emerton and
Paškūnas, and will appear in a forthcoming paper1 of theirs.

1This has now appeared: [EP18]



PATCHING AND THE COMPLETED HOMOLOGY OF LOCALLY SYMMETRIC SPACES 31

Proposition 4.3.1. Suppose that assumptions (a) and (b) of Proposition 4.2.1
hold, and that we moreover have

jk[[K0]](H̃q0(XUp ,O)m/mH̃q0(XUp ,O)m) ≥ dim(B).

Recall that we are assuming Hypothesis 4.1.3, which implies that R∞ is a power
series ring over O.

Then we have the following:

(1) Hq0(C̃(∞)) is a flat R∞-module.

(2) The ideal R∞a is generated by a regular sequence in R∞.
(3) The surjective maps

R∞/a→ RS → TS(Up)m

are all isomorphisms and H̃q0(XUp ,O)m is a faithfully flat TS(Up)m-module.
(4) The rings RS

∼= TS(Up)m are local complete intersections with Krull di-

mension equal to dim(R∞)− dim(O∞) + 1 = 1 + (n(n+1)
2 − 1)[F : Q]− l0.

(5) If assumption (c) of Proposition 4.2.1 holds, then TS(Up)m is $-torsion
free.

Proof. First we note that by Lemma A.16 and Proposition 4.2.1 we have

jk[[K0]](H̃q0(XUp ,O)m/mH̃q0(XUp ,O)m) ≤ jR∞[[K0]]

(
Hq0(C̃(∞))

)
= dim(B),

since

R∞/mR∞
⊗R∞

Hq0(C̃(∞)) = H̃q0(XUp ,O)m/mH̃q0(XUp ,O)m.

So our assumption implies that we have equality of codimensions here. The first
claim then follows immediately from Propositions 4.2.1 and A.30.

For the second part, write a = (x1, . . . , xg) where O∞ = O[[x1, . . . , xg]] (so
g = dim(O∞)− 1). Note that, by Proposition 4.2.1 (which in particular says that

the complexes C̃(∞) and O∞/a⊗O∞ C̃(∞) both have homology concentrated in a
single degree) we have

TorO∞
i (O∞/a, Hq0(C̃(∞))) = H̃q0+i(XUp ,O)m = 0

for i > 0. So (by considering the Koszul complex for (x1, . . . , xg)) we see that

(x1, . . . , xg) is a regular sequence on Hq0(C̃(∞)). Since Hq0(C̃(∞)) is a flat R∞-
module and its reduction mod mR∞

is non-zero (by Nakayama, since the module is

finitely generated over R∞[[K0]]), it follows from [Mat89, Thm. 7.2] that Hq0(C̃(∞))

is a faithfully flat R∞-module and we can conclude that (x1, . . . , xg) is a regular

sequence in R∞ — this can be seen by considering the Koszul homology groups

HR∞
∗ ((x1, . . . , xg), Hq0(C̃(∞))) ∼= HR∞

∗ ((x1, . . . , xg), R∞)⊗R∞
Hq0(C̃(∞)),

and by faithful flatness we have HR∞
i ((x1, . . . , xg), R∞) = 0 for i 6= 0 and therefore

(x1, . . . , xg) is a regular sequence in R∞. This gives the second part.

For the third part, since Hq0(C̃(∞)) is a flat R∞-module, H̃q0(XUp ,O)m =

O∞/a ⊗O∞ Hq0(C̃(∞)) is a flat R∞/a-module. As before, it follows from [Mat89,

Thm. 7.2] that H̃q0(XUp ,O)m is a faithfully flat R∞/a-module and is in particular
faithful. It follows that the surjective maps appearing in the third part must also be

injective, since the action of R∞/a on H̃q0(XUp ,O)m factors through these maps.
This completes the proof of the third part.
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The fourth part follows immediately from the second and third parts.

The fifth part follows from the fact that TS(Up)m acts faithfully on H̃q0(XUp ,O)m
(by Lemma 3.4.20), which is $-torsion free (under our additional assumption) by
Proposition 4.2.1. Alternatively, one can redo the argument of part (2) of the
Proposition to show that ($,x1, . . . , xg) is a regular sequence in R∞, and so in

particular $ is not a zero-divisor in R∞/a ∼= TS(Up)m. �

Remark 4.3.2. To explain the condition

jk[[K0]](H̃q0(XUp ,O)m/mH̃q0(XUp ,O)m) ≥ dim(B)

we first note that the parabolic induction of a k-valued character from B to G has
codimension dim(B) over k[[K0]]. We moreover expect this to be the codimension
of any ‘generic’ irreducible admissible smooth k-representation of G, with other ir-
reducibles having at least this codimension. In the case G = PGL2(Qp) this is true:
any infinite-dimensional irreducible smooth k-representation of G has codimension
dim(B) = 2 [SS16, Proof of Cor. 7.5], whilst the finite-dimensional representations
have codimension 3.

It seems reasonable to expect that the smooth representation(
H̃q0(XUp ,O)m/mH̃q0(XUp ,O)m

)∨
is a finite length representation of G, and therefore we expect it to have codimension
≥ dim(B) also.

We also point out that our assumption that R∞ is regular is essential in order
to apply Proposition A.30. See Remark 4.1.5.

5. The p-adic local Langlands correspondence for GL2(Qp)

In this section we specialise to the case that n = 2 and p splits completely in F ,
and use the techniques of [CEGGPS2] to study the relationship of our constructions
to the p-adic local Langlands correspondence for GL2(Qp).

5.1. A local-global compatibility conjecture. We continue to make the as-
sumptions made in Section 4, as well as assumptions (a) and (b) of Proposition 4.2.1.

In addition we assume that

• n = 2,
• p splits completely in F ,
• if ρm|Gv

is ramified for some place v - p, then v is not a vexing prime in the
sense of [Dia97], and
• for each place v|p, ρm|Gv is either absolutely irreducible, or is a non-split

extension of characters, whose ratio is not the trivial character or the mod p
cyclotomic character.

This last assumption allows us to use the results of [CEGGPS2]; it guarantees in
particular that each ρm|GFv

admits a universal deformation ring Rdef
v . Since n = 2,

l0 is just equal to r2, the number of complex places of F .
From now on in a slight abuse of notation for each place v|p we write Gv

for PGL2(Fv) andKv for PGL2(OFv
), and we writeG for

∏
v|pGv. Recall thatK0 =∏

v|pKv.

Since our interest is primarily in phenomena at places dividing p, we content
ourselves with the ‘minimal level’ situation at places not dividing p; that is, we
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choose R∞ and the level Up as in the second paragraph of Remark 4.1.4, and
assume Hypothesis 4.1.3 holds for this choice. (The reader may object that this
level is not necessarily S-good; as usual in the Taylor–Wiles method, this difficulty
is easily resolved by shrinking the level at an auxiliary place at which ρm admits
no ramified deformations, and for simplicity of exposition we ignore this point.)

We would like to understand the action of (⊗̂v|p,ORdef
v )[G] on Hq0(C̃(∞)). When

F = Q it follows from the local-global compatibility theorem of [Eme10a] that this
action is determined by the p-adic local Langlands correspondence for GL2(Qp),
and it is natural to expect that the same applies for general number fields F .

More precisely, for each place v|p, we can associate an absolutely irreducible k-
representation πv of GL2(Fv) to ρm|GFv

via the recipe of [CEGGPS2, Lem. 2.15 (5)];
note that by [CEGGPS2, Rem. 2.17], the central character of πv is trivial, so we
can regard it as a representation of Gv.

Definition 5.1.1. If H is a p-adic analytic group and A is a complete local Noe-
therian O-algebra, then we write CH(A) for the Pontryagin dual of the category of
locally admissible A-representations of H (cf. Appendix B and [CEGGPS2, §4.4]).

We let Pv � π∨v be a projective envelope of π∨v in CGv (O). By [Paš13, Prop. 6.3,
Cor. 8.7] there is a natural isomorphism Rdef

v → EndCGv (O)(Pv). (This is a large
part of the p-adic local Langlands correspondence for GL2(Qp).)

Write P := ⊗̂v|p,OPv which is naturally an Rloc
p := ⊗̂v|p,ORdef

v -module. For
each v|p we make a choice (in its strict equivalence class) of the universal deforma-
tion of ρm|GFv

to Rdef
v , so that we can regard R∞ as an Rloc

p -module. For some g ≥ 0

we can and do choose an isomorphism ofRloc
p -algebrasR∞ ∼= Rloc

p ⊗̂OO[[x1, . . . , xg]].

Conjecture 5.1.2. For some m ≥ 1 there is an isomorphism of R∞ [G]-modules

Hq0(C̃(∞)) ∼= R∞⊗̂Rloc
p
P⊕m.

Remark 5.1.3. We do not know what the value of m in Conjecture 5.1.2 should be
in general. The natural guess is that m = 2r1 where r1 is the number of real places
of F , since this is the dimension of the (g,K)-cohomology in degree q0 of the trivial
representation for the group ResF/Q PGL2. This guess is justified by Corollary 5.1.8.
Indeed, if Hq0(XK0Up , σ)m is non-zero for some irreducible E-representation of K0,
then Corollary 5.1.8 shows that m is equal to the multiplicity of a system of Hecke
eigenvalues (away from S) in Hq0(XK0Up , σ)m.

We now explain some consequences of this conjecture for completed homology
and homology with coefficients. In the proof of the following result we will briefly
need the notion of the atome automorphe κv associated to ρm|GFv

; recall that
if ρm|GFv

is irreducible, then κv = πv is an irreducible supersingular representation
of Gv, while if ρm|GFv

is reducible, κv is a non-split extension of irreducible principal
series representations with socle πv (see for example the beginning of [Paš13, §8]).

Proposition 5.1.4. Assume Conjecture 5.1.2. Then we have an isomorphism of
local complete intersections RS

∼= TS(Up)m with Krull dimension equal to 1 + 2[F :
Q]− l0. Furthermore, there is an isomorphism of TS(Up)m [G]-modules

H̃q0(XUp ,O)m ∼= TS(Up)m⊗̂Rloc
p
P⊕m.

If we moreover make assumption (c) of Proposition 4.2.1 then TS(Up)m is $-
torsion free.
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Proof. The isomorphism RS
∼= TS(Up)m and the properties of these rings will follow

immediately from Proposition 4.3.1 once we know that

jk[[K0]](H̃q0(XUp ,O)m/mH̃q0(XUp ,O)m) = 2[F : Q].

Now, since we are assuming Conjecture 5.1.2, we have

H̃q0(XUp ,O)m/mH̃q0(XUp ,O)m = R∞/mR∞
⊗R∞

Hq0(C̃(∞))

= P⊕m ⊗Rloc
p
Rloc
p /mRloc

p

= (⊗̂v|pPv⊗̂Rdef
v
k)⊕m

= (⊗̂v|pκ∨v )⊕m

(where in the last line we have used [Paš13, Prop. 1.12, 6.1, 8.3] and that Rdef
v =

EndCGv (O)(Pv)). By Lemma A.11 we are therefore reduced to showing that for
each v|p,

jk[[Kv ]](κ
∨
v ) = 2.

By the same argument as Lemma A.15 it is enough to show that jk[[GL2(OFv )]](κ
∨
v ) =

3 (we pass from k[[GL2(OFv
)]] to k[[PGL2(OFv

)]] by quotienting out by a central
regular element which acts trivially on κ∨v ). By Lemma A.8 we are reduced to the
same statement for irreducible principal series and supersingular representations
of GL2(Qp), which is proved in [SS16, Proof of Cor. 7.5].

Finally, we have

H̃q0(XUp ,O)m = R∞/aR∞ ⊗R∞
Hq0(C̃(∞))

= RS ⊗R∞
Hq0(C̃(∞))

= TS(Up)m ⊗R∞
Hq0(C̃(∞))

∼= TS(Up)m⊗̂Rloc
p
P⊕m,

as required. �

We recall from [CEGGPS2, §2] some notation for Hecke algebras and crystalline
deformation rings. (In fact our setting is slightly different, as we are working
with PGL2 rather than GL2, but this makes no difference in practice and we will
not emphasise this point below.) Let σ be an irreducible E-representation of K0.
Any such representation is of the form ⊗v|pσv, where σv is the representation of Gv
given by σv = detav ⊗Symbv E2 for integers av, bv satisfying bv ≥ 0 and 2av+bv = 0.
We write σ◦ for the K0-stable O-lattice ⊗v|pσ◦v , where σ◦v = detav ⊗Symbv O2. We

have Hecke algebras H(σ) := EndG(c-IndGK0
σ), H(σ◦) := EndG(c-IndGK0

σ◦).
A Serre weight is an irreducible k-representation of K0. These are of the

form ⊗v|pσv, where σv = detav ⊗Symbv k2 for integers av, bv satisfying 0 ≤ bv ≤
p−1 and 2av+bv = 0. Note that for any σ there is a unique σ with σ◦⊗O k = σ; we
say that σ◦ lifts σ. As explained in the proof of Lemma B.7, we have Hecke algebras
H(σ) ∼= ⊗v|pH(σv), where H(σv) := EndGv

(c-IndGv

Kv
σv) ∼= k[Tv] is a polynomial

ring in one variable by [BL94, Prop. 8].

5.1.5. Actions of Hecke algebras. We now describe how to define actions of the
Hecke algebras H(σ) and H(σ◦) on objects of certain derived categories.

Let σ be a Serre weight. Suppose M is a pseudocompact A[[K0]]-module with
a compatible action of G, where A is a complete Noetherian local O-algebra with
finite residue field which is flat over O. For example, A could be either O[∆Q] or
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O∞. Then the A-module σ ⊗O[[K0]] M has a natural action of H(σ). Indeed, we
have isomorphisms

(σ ⊗O[[K0]] M)∨ ∼= Homcts
O[[K0]](σ,M

∨) = HomG(c-IndGK0
σ,M∨)

by Lemma B.3 and Frobenius reciprocity (note that M∨ ∈ ModsmG (A), where the
definition of this category is recalled in Appendix B), and H(σ) naturally acts on

HomG(c-IndGK0
σ,M∨).

We have a similar story in the derived category. If we let M∨ → I• be an
injective resolution of M∨ in ModsmG (A), then each (Ii)∨ is projective as a pseu-
docompact A[[K0]]-module (by [Eme10c, Prop. 2.1.2]), and is in particular a flat
O[[K0]]-module, so we have a natural action of H(σ) on

σ ⊗L
O[[K0]] M = σ ⊗O[[K0]] (I•)∨

in D(A).
Similarly, if σ◦ is a lattice in σ, we have a natural action of H(σ◦) on

Homcts
O[[K0]](σ

◦, Ii) = lim−→
s

HomK0(σ◦/$s, Ii) = lim−→
s

HomG(c-IndGK0
(σ◦/$s), Ii)

for each n, where the first equality uses Lemma B.2, and therefore a natural action
of H(σ◦) on

σ◦ ⊗L
O[[K0]] M = σ◦ ⊗O[[K0]] (I•)∨

in D(A).
As a particular example of this construction, we get a natural action of H(σ◦)

on C(K0U
p, σ◦)m, in D(O), since we have an isomorphism

C(K0U
p, σ◦)m ∼= σ◦ ⊗L

O[[K0]] H̃q0(Up,O)m.

Here we are using the part of Prop. 4.2.1 which shows that H̃i(U
p,O)m = 0 for

i 6= q0. One can also define the action of H(σ◦) on C(K0U
p, σ◦) directly, similarly

to the definition of the Hecke action at places away from p, and this gives the same
Hecke action.

We say that a representation r : GFv → GL2(Qp) is crystalline of Hodge
type σv if it is crystalline with Hodge–Tate weights (1 − av,−av − bv), and we
write Rdef

v (σv) for the reduced, p-torsion free quotient of Rdef
v corresponding to

crystalline deformations of Hodge type σv. We write Rloc
p (σ) := ⊗̂v|pRdef

v (σv) and

R∞(σ) := R∞ ⊗Rloc
p
Rloc
p (σ). By [Kis08, Thm. 3.3.8], Rdef

v (σv) is equidimensional

of Krull dimension 2 less than Rdef
v , so by Lemma 4.1.1, R∞(σ) is equidimensional

of dimension dimO∞ − l0.

We have a homomorphism H(σ)
η→ Rloc

p (σ)[1/p], which is the tensor product

over the places v|p of the maps H(σv)→ Rdef
v (σv)[1/p] defined in [CEGGPS, Thm.

4.1], which interpolates the (unramified) local Langlands correspondence.

Proposition 5.1.6. Assume Conjecture 5.1.2. Then, for any irreducible E-representation
σ of K0, the action of Rloc

p on

C(K0U
p, σ◦)m ∈ D(O)

factors through Rloc
p (σ). Furthermore, if h ∈ H(σ◦) is such that η(h) ∈ Rloc

p (σ),
then h acts on C(K0U

p, σ◦)m via η(h).
In particular, we get the same statements for the action of Rloc

p and H(σ◦) on
the homology groups Hi(XK0Up , σ◦)m for any i.
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Proof. As in the proof of Proposition 3.4.19, it follows from Lemma A.33 that we
have a natural quasi-isomorphism (where we regard σ◦ as a right O∞[[K0]]-module)

σ◦ ⊗O∞[[K0]] C̃(∞)→ C(K0U
p, σ◦)m.

Conjecture 5.1.2 implies that Hq0(C̃(∞)) is a flat O[[K0]]-module, so we have an
isomorphism in D(O)

σ◦ ⊗O∞[[K0]] C̃(∞) = O ⊗L
O∞

(
σ◦ ⊗O[[K0]] Hq0(C̃(∞))

)
[+q0]

Taking Conjecture 5.1.2 into account, it now suffices to show that the action of
Rloc
p on σ◦ ⊗O[[K0]] P factors through Rloc

p (σ), and that if h ∈ H(σ◦) is such that

η(h) ∈ Rloc
p (σ), then h acts on σ◦ ⊗O[[K0]] P via η(h).

We have σ◦ ⊗O[[K0]] P = ⊗v|p(σ◦v ⊗O[[Kv ]] Pv), so it suffices to show that the

action of Rdef on σ◦v ⊗O[[Kv ]]Pv factors through Rdef
v (σv), and that if hv ∈ H(σ◦v) is

such that η(hv) ∈ Rdef
v (σv), then hv acts on σ◦v⊗O[[Kv ]]Pv via η(hv). By Lemma B.3

we have a natural isomorphism

(σ◦v ⊗O[[Kv ]] Pv)
∨ ∼= Homcts

O[[Kv]](Pv, (σ
◦
v)∨)

where we note that since σ◦v is a finitely generated O[[Kv]]-module we do not need
to take a completed tensor product. Lemma B.2 implies that this is isomorphic to
lim−→s

Homcts
O[[Kv ]](Pv, (σ

◦
v/$

s)∨) so we deduce that

(σ◦v ⊗O[[Kv]] Pv) ∼= lim←−
s

(
Homcts

O[[Kv ]](Pv, (σ
◦
v/$

s)∨)
)∨

.

[CEGGPS, Lem. 4.14] then shows that we have an isomorphism

σ◦v ⊗O[[Kv ]] Pv ∼= Homcts
O[[Kv]](Pv, (σ

◦
v)d)d

where (−)d denotes the Schikhof dual (as defined in loc. cit.). The result now
follows from [Paš15, Cor. 6.4, 6.5] and [CEGGPS2, Prop. 6.17]. �

Remark 5.1.7. It follows from the argument appearing at the end of the above proof
that if P is a projective pseudocompact O[[K0]]-module then we have a natural
isomorphism

σ◦ ⊗O[[K0]] P ∼= Homcts
O[[K0]](P, (σ

◦)d)d.

We can also deduce the following modularity lifting theorem from Conjecture 5.1.2.

Corollary 5.1.8. Assume (in addition to our running assumptions) Conjecture 5.1.2.
Then, for any irreducible E-representation σ of K0, Hq0(XK0Up , σ)m is a free mod-
ule of rank m (where m is the multiplicity in the statement of Conjecture 5.1.2)
over RS ⊗Rloc

p
Rloc
p (σ)[1/p] (if this ring is non-zero).

In particular, all characteristic 0 points of the global crystalline deformation ring
RS(σ) := RS ⊗Rloc

p
Rloc
p (σ) are automorphic, and the maximal $-torsion free quo-

tient of RS(σ) is isomorphic to a Hecke algebra acting faithfully on Hq0(XK0Up , σ)m.

Moreover, the annihilator of Hq0(XK0Up , σ◦)m in RS(σ) is nilpotent, and RS(σ)

is a finite O-algebra.

Proof. By [Paš15, Cor. 6.5], P (σ◦) = σ◦ ⊗O[[K0]] P is a maximal Cohen–Macaulay

module with full support over Rloc
p (σ). Since Rloc

p (σ)[1/p] is regular it follows that

P (σ◦)[1/p] is locally free with full support over Rloc
p (σ)[1/p]. In fact, as explained

in the proof of [CEGGPS2, Prop. 6.14], it follows from [Paš15, Prop. 4.14, 2.22]
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that P (σ◦)[1/p] is locally free of rank one over Rloc
p (σ)[1/p]. We deduce from

Conjecture 5.1.2 that σ◦ ⊗O[[K0]] Hq0(C̃(∞))[1/p] is locally free of rank m over

R∞⊗Rloc
p
Rloc
p (σ)[1/p]. Reducing mod a (and noting that R∞/a ∼= RS by Proposi-

tion 5.1.4) we deduce that σ◦ ⊗O[[K0]] H̃q0(XUp ,O)m[1/p] is locally free of rank m
over RS ⊗Rloc

p
Rp(σ)[1/p]. We complete the proof by noting that we have a natural

isomorphism

σ◦ ⊗O[[K0]] H̃q0(XUp ,O)m ∼= Hq0(XK0Up , σ◦)m

so RS⊗Rloc
p
Rp(σ)[1/p] is a finite–dimensional algebra (hence semi-local) and there-

fore the locally free module of rank m, Hq0(XK0Up , σ◦)m, is in fact free of rank
m.

The moreover part follows from [Tay08, Lem. 2.2], since σ◦ ⊗O[[K0]] Hq0(C̃(∞))

is a nearly faithful R∞(σ)-module so reducing mod a shows that Hq0(XK0Up , σ◦)m
is a nearly faithful RS(σ)-module, as well as a finite O-module. �

Remark 5.1.9. As discussed in Remark 5.1.14, we could work with general poten-
tially semistable types, and then the proof of Corollary 5.1.8 goes through un-
changed to give an automorphy lifting theorem for arbitrary potentially semistable
lifts of ρm with distinct Hodge–Tate weights, which satisfy the conditions imposed
by S at places v - p.

Remark 5.1.10. Using Proposition 5.1.4, we can give an alternative argument to
show that Conjecture 5.1.2 implies many cases of the Fontaine–Mazur conjecture,
in exactly the same way that Emerton deduces [Eme10a, Corollary 1.2.2] from his
local-global compatibility result. If we assume Conjecture 5.1.2 then any charac-
teristic zero point of RS whose associated Galois representation is de Rham with
distinct Hodge–Tate weights at each place v|p is automorphic, in the sense that its
associated system of Hecke eigenvalues appears in Hq0(XKUp , σ)m for some compact
open K ⊂ K0 and some irreducible E-representation σ of K0.

Moreover, again assuming Conjecture 5.1.2 and following Emerton’s argument,
we can show that any characteristic zero point of RS whose associated Galois rep-
resentation is trianguline at each place v|p arises from an overconvergent p-adic
automorphic form of finite slope, in the sense that its associated system of Hecke

eigenvalues appears in the Emerton–Jacquet module JB(((H̃q0(XUp ,O)m)d[ 1
p ])an).

Remark 5.1.11. Assuming Conjecture 5.1.2, we obtain an action of the graded

RS(σ)-algebra Tor
Rloc

p
∗ (RS , R

loc
p (σ)) = TorR∞

∗ (R∞/a, R∞(σ)) on the graded module

H∗(XK0Up , σ◦)m = H∗

(
R∞/a⊗L

R∞

(
σ◦ ⊗O[[K0]] Hq0(C̃(∞))

))
.

When Rloc
p (σ) is the representing object of a Fontaine–Laffaille moduli problem,

the groups Tor
Rloc

p

i (RS , R
loc
p (σ)) are the homotopy groups of a derived Galois defor-

mation ring (since RS is a complete intersection of the predicted dimension, see the
discussion in [GV18, §1.3]) and the action of the graded algebra on H∗(XK0Up , σ◦)m
is free. This is an example of the main theorem of [GV18]. Note that it is not ob-

vious that the action of Tor
Rloc

p
∗ (RS , R

loc
p (σ)) on H∗(XK0Up , σ◦)m is independent of

the choice of non-principal ultrafilter made to carry out the patching. Under some
additional hypotheses, this independence is shown in [GV18], by comparing the
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action of the derived Galois deformation ring with the action of a derived Hecke
algebra.

Proposition 5.1.6 shows that Conjecture 5.1.2 implies a local–global compati-
bility statement at p. We are now going to formulate a conjectural local–global
compatibility statement which will be sufficiently strong to imply Conjecture 5.1.2.

Note that for any Taylor–Wiles datum (Q, (γv,1, . . . , γv,n)v∈Q), (3.3.9) gives an
action of Rloc

p on the complex

C̃(Q) := lim←−
Up,s

C(UpUp1 (Q), s)mQ,1

in D(O[∆Q]). For any σ, the complex σ◦⊗O[[K0]] C̃(Q) is naturally quasi-isomorphic
(in particular, the quasi-isomorphism is O[∆Q]-equivariant) to C(K0U

p
1 (Q), σ◦)mQ,1

Again, this is deduced from Lemma A.33. We therefore obtain an action of Rlocp
on C(K0U

p
1 (Q), σ◦)mQ,1

in D(O[∆Q]). We also have a natural action of H(σ◦) on

σ◦⊗O[[K0]] C̃(Q) in D(O[∆Q]), as described in section 5.1.5. To apply the construc-

tion of that section, we must note that C̃(Q) has homology concentrated in degree
q0. Indeed, assumption (a) in Proposition 4.2.1 implies that the minimal resolu-

tion F of C̃(Q) as a complex of O[∆Q][[K1]]-modules is concentrated in degrees

[q0, q0 + l0]. We also have jO[[K0]](Hq0(C̃(Q)) ≥ l0 because the quotient module

O ⊗O[∆Q] Hq0(C̃(Q)) ∼= H̃q0(XUp ,O)m has grade l0 (by Proposition 4.2.1). Ap-

plying Lemma A.10 to the complex F [−q0], we deduce that C̃(Q) has homology
concentrated in degree q0.

Proposition 5.1.6 motivates the following conjecture, which is a further refine-
ment of Conjectures 3.3.3 and 3.3.7.

Conjecture 5.1.12. For any Taylor–Wiles datum (Q, (γv,1, . . . , γv,n)v∈Q), and any
irreducible E-representation of K0, σ, the action of Rloc

p on H∗(XK0U
p
1 (Q), σ

◦)mQ,1

factors through Rloc
p (σ). Furthermore, if h ∈ H(σ◦) is such that η(h) ∈ Rloc

p (σ),
then h acts on Hq0(XK0U

p
1 (Q), σ

◦)mQ,1
via η(h).

Remark 5.1.13. The reader may be surprised by Conjecture 5.1.12, which in par-
ticular implies that the factors at places dividing p of the Galois representations
associated to torsion classes in the homology groups H∗(XK0U

p
1 (Q), σ

◦)mQ,1
are con-

trolled by the crystalline deformation rings, which are defined purely in terms of
representations over p-adic fields (and are p-torsion free by fiat). Nonetheless, since
we believe that Conjecture 5.1.2 is reasonable, Proposition 5.1.6 gives strong evi-
dence for Conjecture 5.1.12; similarly, [Paš15, Cor. 6.5] shows that the crystalline
deformation rings can be reconstructed from P , and this alternative construction
makes it more plausible that they can also control integral phenomena. We are also
optimistic that the natural analogues of Conjecture 5.1.12 should continue to hold
beyond the case of GL2(Qp).

Remark 5.1.14. We have avoided the notational clutter that would result from al-
lowing non-trivial inertial types, but the natural generalisation of Proposition 5.1.6
to more general potentially crystalline (or even potentially semistable) representa-
tions can be proved in the same way. The axioms in Section 5.2 below only refer
to crystalline representations; accordingly, Corollary 5.3.2 below shows that (in
conjunction with our other assumptions) Conjecture 5.1.12 implies a local-global
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compatibility result for general potentially semistable representations. (It is per-
haps also worth remarking that rather than assuming Conjecture 5.1.12, we could
instead assume a variant for arbitrary potentially Barsotti–Tate representations,
or indeed any variant to which we can apply the “capture” machinery of [CDP14,
§2.4].)

In the rest of this section we will explain (following [CEGGPS2]) that Conjec-
ture 5.1.12 implies Conjecture 5.1.2.

5.2. Arithmetic actions. We now introduce variants of the axioms of [CEGGPS2,
§3.1], and prove Proposition 5.2.2, which shows that if the axioms are satisfied

for Hq0(C̃(∞)), then Conjecture 5.1.2 holds. We will show in Section 5.3 that

(under our various hypotheses) Hq0(C̃(∞)) indeed satisfies these axioms.

Fix an integer g ≥ 0 and set R∞ = Rloc
p ⊗̂OO[[x1, . . . , xg]]. (Of course, in our

application to Hq0(C̃(∞)) we will take g as in Section 5.1.)

Then an O[G]-module with an arithmetic action of R∞ is by definition a non-zero
R∞[G]-module M∞ satisfying the following axioms (AA1)–(AA4).

(AA1) M∞ is a finitely generated R∞[[K0]]-module.
(AA2) M∞ is projective in the category of pseudocompact O[[K0]]-modules.

Set

M∞(σ◦) := σ◦ ⊗O[[K0]] M∞.

This is a finitely generated R∞-module by (AA1). For each σ◦, we have a natural
action of H(σ◦) on M∞(σ◦), and thus of H(σ) on M∞(σ◦)[1/p].

(AA3) For any σ, the action of R∞ on M∞(σ◦) factors through R∞(σ). Further-
more, M∞(σ◦) is maximal Cohen–Macaulay over R∞(σ).

(AA4) For any σ, the action of H(σ) on M∞(σ◦)[1/p] is given by the composite

H(σ)
η→ Rloc

p (σ)[1/p]→ R∞(σ)[1/p].

Remark 5.2.1. Our axioms are not quite the obvious translation of the axioms
of [CEGGPS2, §3.1] to our setting. Firstly, our definition of M∞(σ◦) is different;
however, by Remark 5.1.7 it is equivalent to the definition given there. More sig-
nificantly, in (AA3) we do not require that M∞(σ◦)[1/p] is locally free of rank one
over its support.

SinceRloc
p (σ)[1/p] is equidimensional and regular (by [Kis08, Thm. 3.3.8] and [BLGHT,

Lem. 3.3]), M∞(σ◦)[1/p] is (being maximal Cohen–Macaulay by (AA3)) locally free
over its support. (This is standard, but for completeness we give an argument.
Write R = Rloc

p (σ)[1/p], M = M∞(σ◦)[1/p], and let p ∈ SuppR(M). By [EGAIV1,
Ch. 0, Cor. 16.5.10], Mp is Cohen–Macaulay over Rp and we have

dimR(M) = dimR(M/pM) + dimRp
(Mp).

By [EGAIV1, Ch. 0, Prop. 16.5.9] we have dimR(M/pM) = dimR/p and since M
is maximal Cohen–Macaulay over R we have dimR(M) = dimR. Since dimRp +
dimR/p ≤ dimR ([EGAIV1, Ch. 0, 16.1.4.1]) we deduce that dimRp

(Mp) ≥ dimRp

and therefore dimRp
(Mp) = dimRp. So Mp is maximal Cohen–Macaulay over Rp.

Since R is regular, and maximal Cohen–Macaulay modules over regular local rings
are free [Stacks, Tag 00NT], we deduce that M [1/p] is locally free over R(σ)[1/p].)

http://stacks.math.columbia.edu/tag/00NT
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We do not make any prescription on the rank of M∞(σ◦)[1/p] over its support
(or even require this rank to be constant), and this is reflected in the multiplicity m
in Proposition 5.2.2 below.

We now follow the approach of [CEGGPS2] to show that any O[G]-module with
an arithmetic action of R∞ is obtained from the p-adic local Langlands correspon-
dence for GL2(Qp). The following result shows that in order to establish Conjec-

ture 5.1.2, it is enough to show that the action of R∞[G] on Hq0(C̃(∞)) is arith-
metic. We will follow the proof of [CEGGPS2, Thm. 4.30] very closely, indicating
what changes are necessary to go from their G (which equals GL2(Qp)) to our G
(which is a product of copies of PGL2(Qp)). We also need to make some additional
adjustments due to the absence of a rank one assumption in axiom (AA3).

Proposition 5.2.2. Let M∞ be an O[G]-module with an arithmetic action of R∞.
Then for some integer m ≥ 1 there is an isomorphism of R∞ [G]-modules

M∞ ∼= R∞⊗̂Rloc
p
P⊕m.

Proof. As we have already remarked, we will closely follow the arguments of [CEG-
GPS2, §4]. To orient the reader unfamiliar with [CEGGPS2], we make some brief
preliminary remarks. As a consequence of the results of [Paš13; Paš15], it is not
hard to show that the natural action of R∞[G] on R∞⊗̂Rloc

p
P⊕m is an arithmetic

action. We show that M∞ is a projective object of CG(O), and that its cosocle
only contains copies of π∨ := ⊗̂v|pπ∨v . From this we can deduce the existence of
an isomorphism of O[[x1, . . . , xg]]-modules of the required kind, and we need only
check that it is Rloc

p -linear. By a density argument, we reduce to showing that the

corresponding isomorphism for M∞(σ) is Rloc
p (σ)-linear (for each σ). This in turn

follows from (AA4) (and the fact that η : H(σ)→ Rloc
p (σ)[1/p] becomes an isomor-

phism upon passing to completions at maximal ideals, cf. [CEGGPS2, Prop. 2.13];
this is due to the uniqueness of the Hodge filtration for crystalline representations,
which is a phenomenon unique to the case of GL2(Qp)).

We now begin the proof proper. Set π∨ := ⊗̂v|pπ∨v ; by Lemma B.8, P is a projec-
tive envelope of π∨ in CG(O). The argument of [CEGGPS2, Prop. 4.2] goes through
essentially unchanged, and shows that for each Serre weight σ with corresponding
lift σ◦, we have:

(1) if M∞(σ◦) 6= 0, then it is a free R∞(σ)-module of some rank m. Further-
more, the action ofH(σ) onM∞(σ) factors through the natural mapRloc

p (σ)/$ →
R∞(σ)/$, and M∞(σ) is a flat H(σ)-module.

(2) If M∞(σ◦) 6= 0, then there is a homomorphism H(σ) → k such that π ∼=
c-IndGK0

σ ⊗H(σ) k. Accordingly, HomG(π,M∨∞)∨ ∼= M∞(σ)⊗H(σ) k.
(3) If π′ is an irreducible smooth k-representation ofG then HomG(π′,M∨∞) 6= 0

if and only if π′ ∼= π.

Since H(σ) = ⊗v|pH(σv) ∼= k[Tv]v|p, the proofs of [CEGGPS2, Lem. 4.10, Lem.
4.11, Thm. 4.15] go through with only notational changes, so that M∞ is a projec-
tive object of CG(O).

Write A = O[[x1, . . . , xg]], and choose a homomorphism A → R∞ inducing an

isomorphism Rloc
p ⊗̂OA ∼= R∞. We claim that there is an isomorphism in CG(A)

(5.2.3) M∞ ∼= A⊗̂OP⊕m.
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By (3) above, all of the irreducible subquotients of cosocCG(O)M∞ are isomorphic
to π∨, so by [CEGGPS2, Prop. 4.19, Rem. 4.21] it is enough to show that HomG(π,M∨∞)∨

is a free A/$-module of rank m. To see this, note that by (2) above we have
HomG(π,M∨∞)∨ ∼= M∞(σ)⊗H(σ) k, which by (1) is a free R∞(σ)⊗H(σ) k-module of

rank m. By (1) again (together with [CEGGPS2, Lem. 2.14]), the map A → R∞
induces an isomorphism A/$ ∼= R∞(σ)⊗H(σ) k, as required.

It remains to show that (5.2.3) is Rloc
p -linear. We claim that the action of R∞

on A⊗̂OP⊕m is arithmetic; admitting this claim, the proofs of [CEGGPS2, Thm.
4.30, 4.32] go over with only minor notational changes to show the required Rloc

p -
linearity.

It is obviously enough to show that the action of Rloc
p on P is an arithmetic

action (with g = 0). (AA1) holds by the topological version of Nakayama’s lemma
(since ⊗̂v|pκ∨v is a finitely generated k[[K0]]-module), while (AA2) holds by [Paš15,
Cor. 5.3]. (AA3) holds by [Paš15, Cor. 6.4, 6.5], while (AA4) follows from the main
result of [Paš13] exactly as in the proof of [CEGGPS2, Prop. 6.17]. �

5.3. Local-global compatibility. We now discuss the axioms (AA1)–(AA4) in

the case M∞ = Hq0(C̃(∞)).

Proposition 5.3.1. Assume (in addition to our running assumptions) Conjec-

ture 5.1.12. Then the action of R∞[G] on Hq0(C̃(∞)) is arithmetic.

Proof. CertainlyHq0(C̃(∞)) is finitely generated overR∞[[K0]], by Proposition 3.4.16 (2)
and Remark 3.4.17, so axiom (AA1) holds.

Next we show that the R̄∞ action on Hi(σ
◦⊗O[[K0]] C̃(∞)) factors through R̄∞(σ)

for all i. Indeed, by 3.4.14, we have natural isomorphisms

Hi(σ
◦ ⊗O[[K0]] C̃(∞)) ∼= lim←−

Up,J

Hi(σ
◦ ⊗O[[K0]] C(Up, J,∞))

where the inverse limit is taken over pairs (J, Up) such that Up acts trivially on
σ◦⊗OO∞/J . Each homology group Hi(σ

◦⊗O[[K0]]C(Up, J,∞)) can be obtained by
applying the ultraproduct construction to the groups Hi(σ

◦ ⊗O[[K0]] C(Up, J,N)),

and it follows from Conjecture 5.1.12 that the action of R̄∞ on all these groups
factors through R̄∞(σ). It follows in the same way from Conjecture 5.1.12 that

if h ∈ H(σ◦) is such that η(h) ∈ Rloc
p (σ), then h acts on Hq0(σ◦ ⊗O[[K0]] C̃(∞))

via η(h), so axiom (AA4) holds.
We can now apply Lemma A.10 (or [CG18, Lem. 6.2]) to the complex of O∞-

modules σ◦ ⊗O[[K0]] C̃(∞) (more precisely, we replace C̃(∞) by a quasi-isomorphic
complex of finite projective modules in degrees [q0, q0 + l0], which we can do by
Proposition 4.2.1(2)). As in the proof of [CG18, Thm. 6.3], since the action of O∞
on H∗(σ

◦ ⊗O[[K0]] C̃(∞)) factors through R∞(σ), and dimR∞(σ) = dimO∞ − l0,

we have jO∞(H∗(σ
◦ ⊗O[[K0]] C̃(∞))) ≥ l0. We deduce that the complex σ◦ ⊗O[[K0]]

C̃(∞) has non-zero homology only in degree q0, and that Hq0(σ◦ ⊗O[[K0]] C̃(∞)) =

σ◦ ⊗O[[K0]] Hq0(C̃(∞)) is maximal Cohen–Macaulay over R̄∞(σ). We have now
established that axiom (AA3) holds.

Finally, it remains to check (AA2). By [Bru66, Prop. 3.1], it is enough to show

that for each Serre weight σ we have Tor
O[[K0]]
1 (σ,Hq0(C̃(∞))) = 0. Once again, we
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apply Lemma A.10 (or [CG18, Lem. 6.2]) — this time to the complex of O∞/$-

modules σ⊗O[[K0]] C̃(∞). We see that it suffices to prove that jO∞/$(H∗(σ⊗O[[K0]]

C̃(∞))) ≥ l0. We let σ◦ be the lift of σ. From what we have already shown about

the complex σ◦ ⊗O[[K0]] C̃(∞) we deduce that we have

Hq0(σ ⊗O[[K0]] C̃(∞)) = O/$ ⊗O Hq0(σ◦ ⊗O[[K0]] C̃(∞))

and

Hq0+1(σ ⊗O[[K0]] C̃(∞)) = TorO1 (O/$,Hq0(σ◦ ⊗O[[K0]] C̃(∞)))

with all other homology groups vanishing.
The action of O∞/$ on these two groups factors through R∞(σ)/$, since the

action on Hq0(σ◦ ⊗O[[K0]] C̃(∞)) factors through R∞(σ), and dimR∞(σ)/$ =

dimO∞/$−l0, so we deduce the desired inequality for jO∞/$(H∗(σ⊗O[[K0]]C̃(∞))).
�

Corollary 5.3.2. Assume (in addition to our running assumptions) Conjecture 5.1.12.
Then Conjecture 5.1.2 holds. In particular, we obtain as consequences the ‘big
R = T’ result of Proposition 5.1.4 and the automorphy lifting result of Corollary
5.1.8.

Proof. This is immediate from Propositions 5.2.2 and 5.3.1. �

5.4. The totally real and imaginary quadratic cases. We conclude by dis-
cussing the cases in which unconditional results seem most in reach. If F is totally
real, then l0 = 0, and the existence of Galois representations is known; the only
assumption that is not established is assumption (a) of Proposition 4.2.1, that the
homology groups Hi(XUpK1

, k)m vanish for i 6= q0. It might be hoped that a gener-
alisation of the results of [CS17] to non-compact Shimura varieties could establish
this. Of course the totally real cases where l0 = 0 are less interesting from the point
of view of this paper, as they could already have been studied using the methods
of [CEGGPS].

If F is imaginary quadratic, then the biggest obstacle to unconditional results
is Conjecture 5.1.12; indeed, as explained in Remarks 3.3.4 and 3.3.8, the other
hypotheses on the Galois representations seem to be close to being known, and as
explained in Remark 4.2.2, assumptions (a) and (b) of Proposition 4.2.1 are known
in this case.

Appendix A. Non-commutative algebra

In this section we make some definitions and establish some results for non-
commutative Iwasawa algebras which generalise standard facts about complete reg-
ular local rings. Section A.1 contains the basic definitions which will be needed for
discussing our results on patching completed homology.

A.1. Depth and dimension.

Definition A.2. Let A be a ring and let M be a left or right A-module. We denote
the projective dimension of M over A by pdA(M). We define the grade jA(M) of
M over A by

jA(M) = inf{i : ExtiA(M,A) 6= 0}.
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If all the ExtiA(M,A) vanish we have jA(M) =∞. If A is local with maximal ideal
mA, then we define the depth depthA(M) of M by

depthA(M) = inf{i : ExtiA(A/mA,M) 6= 0}.
Similarly, if all the ExtiA(A/mA,M) vanish we set depthA(M) =∞.

A Noetherian ring A is called Auslander–Gorenstein if it has finite left and right
injective dimension and if for any finitely generated left or right A-module M , any
integer m, and any submodule N ⊂ ExtmA (M,A), we have jA(N) ≥ m.

An Auslander–Gorenstein ring is called Auslander regular if it has finite global
dimension.

Finally, let A be an Auslander regular ring and let M be a finitely generated left
A-module. We define the dimension δA(M) of M over A by

δA(M) = gld(A)− jA(M),

where gld(A) is the global dimension of A.

Let K be a compact p-adic analytic group. We are going to apply the above
definitions for A = O[[K]], the Iwasawa algebra of K with coefficients in O. Note
that taking inverses of group elements induces an isomorphism between O[[K]] and
its opposite ring, so there is an equivalence between the categories of left and right
O[[K]]-modules.
O[[K]] is Noetherian, and when K is moreover a pro-p group, O[[K]] is a local

ring with O[[K]]/mO[[K]] = k.

Remark A.3. If M is an O[[K]]-module, then jO[[K]](M) is sometimes referred to
as the codimension of M (cf. [CE12, §1.2]).

When K is pro-p and torsion-free, Venjakob [Ven02] has established that O[[K]]
has nice homological properties, which are summarised in the next proposition.

Proposition A.4 (Venjakob). Let K be compact p-adic analytic group which is
torsion free and pro-p. Let Λ = O[[K]] and let M be a finitely generated Λ-module.

(1) Λ is Auslander regular with global dimension gld(Λ) and depth depthΛ(Λ)
both equal to 1 + dim(K).

(2) The Auslander–Buchsbaum equality holds for M :

pdΛ(M) + depthΛ(M) = depthΛ(Λ) = 1 + dim(K).

(3) We have

pdΛ(M) = max{i : ExtiΛ(M,Λ) 6= 0}.
In particular, we have pdΛ(M) ≥ jΛ(M).

Proof. All these statements are contained in [Ven02]. For the first part of the
proposition, Auslander regularity is [Ven02, Theorem 3.26]. The depth of Λ is
equal to its global dimension by [Ven02, Lemma 5.5 (iii)]. The computation of the
global dimension of Λ follows from results of Brumer [Bru66, Theorem 4.1], Lazard
[Laz65, Théorème V.2.2.8] and Serre [Ser65].

The Auslander–Buchsbaum equality is [Ven02, Theorem 6.2]. Finally, the for-
mula for pdΛ(M) is [Ven02, Corollary 6.3]. �

Definition A.5. If K is a compact p-adic analytic group, then a non-zero finitely
generated O[[K]]-module M is Cohen–Macaulay if ExtiO[[K]](M,O[[K]]) is non-zero
for just one degree i.
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Remark A.6. If K is furthermore torsion-free and pro-p, then by Proposition A.4, a
finitely generatedO[[K]]-moduleM is Cohen–Macaulay if and only if depthO[[K]](M) =

δO[[K]](M).

If K is an arbitrary compact p-adic analytic group, then O[[K]] is not necessarily
local (although it is semilocal), and is not necessarily Auslander regular. But the
notions of grade and projective dimension are still well-behaved, because we can
apply the following lemma with H a normal compact open subgroup of K which is
torsion free and pro-p.

Lemma A.7. Suppose K is a compact p-adic analytic group and let H ⊂ K be a
normal compact open subgroup. Let M be a O[[K]]-module.

• For all i ≥ 0 we have an isomorphism of O[[H]]-modules

ExtiO[[H]](M,O[[H]]) ∼= ExtiO[[K]](M,O[[K]]).

In particular, we have jO[[K]](M) = jO[[H]](M).
• Suppose M is finitely generated and of finite projective dimension over
O[[K]]. Suppose that H is torsion free and pro-p. Then

pdO[[K]](M) = pdO[[H]](M).

Proof. The first item follows from [AB07, Lemma 5.4]. The second item is a com-
bination of the first with the fact that we have

pdΛ(M) = max{i : ExtiΛ(M,Λ) 6= 0}

for Λ = O[[H]] by Proposition A.4 and we also have the same equality for Λ =
O[[K]] by [Ven02, Remark 6.4]. �

From now on in this subsection we fix a compact p-adic analytic group K and
assume that K is torsion free and pro-p. We let Λ = O[[K]], and let d = 1+dim(K),
so d is the global dimension of Λ.

We use the following fundamental fact (again due to Venjakob) in this section:

Lemma A.8. If we have a short exact sequence of finitely generated Λ-modules
0→ L→M → N → 0 then jΛ(M) = min(jΛ(L), jΛ(N)).

Proof. This is [Ven02, Proposition 3.6]. �

The next two lemmas are generalisations of [CG18, Lemmas 6.1, 6.2]:

Lemma A.9. If N is a finitely generated Λ-module with projective dimension j,
and 0 6= M ⊆ N , then jΛ(M) ≤ j.

Proof. Since Λ is Auslander regular, this follows immediately from [Ven02, Propo-
sition 3.10]. �

Lemma A.10. Suppose l0 is an integer with 0 ≤ l0 ≤ d. Let P• be a chain complex
of finite free Λ-modules, concentrated in degrees 0, . . . , l0. Assume that H∗(P•) 6= 0.
Then jΛ(H∗(P•)) ≤ l0 and if equality occurs then:

(1) P• is a projective resolution of H0(P•).
(2) We have pdΛ(H0(P•)) = jΛ(H0(P•)) = l0.

We have the same statements if we replace Λ with Ω := Λ/$ = k[[K]].
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Proof. Let m ≥ 0 be the largest integer such that Hm(P•) 6= 0. Consider the
complex

Pl0 → · · · → Pm+1
dm+1→ Pm.

By the definition ofm, this complex is a projective resolution ofKm := Pm/ im(dm+1).
It follows that pdΛ(Km) ≤ l0 −m.

Since Hm(P•) is a non-trivial submodule of Km, by Lemmas A.8 and A.9 we
have

jΛ(H∗(P•)) ≤ jΛ(Hm(P•)) ≤ pdΛ(Km) ≤ l0 −m ≤ l0,
as claimed.

If we have the equality jΛ(H∗(P•)) = l0, then equality holds in all the above
inequalities, so that in particular m = 0, Km = H0(P•), and the other claims
follow immediately.

The proof with Λ replaced by Ω is identical, using the fact that the relevant
lemmas all hold with Λ replaced by Ω (which is again Auslander regular). �

We finish this subsection with a Lemma computing the codimension of a tensor
product of two modules.

Lemma A.11. Let G,H be compact p-adic analytic groups. Let M,N be finitely
generated k[[G]]- and k[[H]]-modules. Then jk[[G×H]](M⊗̂kN) = jk[[G]](M)+jk[[H]](N).

Proof. By Lemma A.7 we can assume that G and H are torsion free pro-p.
Set Ω = k[[G × H]], Ω1 = k[[G]] and Ω2 = k[[H]]. Note that we can naturally

identify Ω with the completed tensor product Ω1⊗̂kΩ2. Let P• →M and Q• → N
be finite free resolutions of M and N respectively (they exist since Ω1 and Ω2 have
finite global dimension).

We denote by P•⊗̂kQ• the finite free complex of Ω modules obtained from to-
talizing the double complex (Pi⊗̂kPj)i,j . This is a finite free resolution of M⊗̂kN .
We have natural isomorphisms

HomΩ(P•⊗̂kQ•,Ω) = HomΩ1
(P•,Ω1)⊗̂k HomΩ2

(Q•,Ω2).

The equality jk[[G×H]](M⊗̂kN) = jk[[G]](M) + jk[[H]](N) follows immediately. In-
deed, we have a spectral sequence

ExtiΩ1
(M,Ω1)⊗̂k ExtjΩ2

(N,Ω2)⇒ Exti+jΩ (M⊗̂kN,Ω). �

A.12. Gelfand–Kirillov dimension. In this section we assume that K is a com-
pact p-adic analytic group which is uniform pro-p. (Note that any compact p-adic
analytic group contains a normal open subgroup which is uniform pro-p, so this will
not be a problematic assumption in our applications.) We again let Λ = O[[K]],
and set d = 1 + dim(K). We let Ω = Λ/$Λ. We denote by JΩ the Jacobson
radical of Ω. The ring Ω is again Auslander regular, and for finitely generated Ω
modules the dimension δΩ (or equivalently the grade jΩ) can be computed as a
Gelfand–Kirillov dimension:

Proposition A.13. Let M be a finitely generated Ω-module. We have

δΩ(M) = lim sup logn dimkM/JnΩM.

Proof. This is [AB06, Prop. 5.4 (3)]. �
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A.14. Comparing dimensions. We again assume that K is uniform pro-p and
let Λ = O[[K]]. Fix a topological generating set a1, . . . , am for K. We consider two
more Auslander regular rings A = Λ⊗̂OO[[x1, . . . , xr]] and B = Λ⊗̂OO[[y1, . . . , ys]]
together with a map A→ B induced from a (localO-algebra) mapO[[x1, . . . , xr]]→
O[[y1, . . . , ys]].

Note that we can think of A and B as the Iwasawa algebras ΛO[[K × Zrp]] for
appropriate r, and K × Zrp is uniform pro-p, so we can apply the results of the
previous subsections to A and B.

We set A = A/$A and B = B/$B. The goal of this subsection is Lemma
A.19 which shows that if M is a finitely generated B-module, which is also finitely
generated as an A-module, then δA(M) = δB(M). This generalises a well-known
fact in commutative algebra [EGAIV1, Ch. 0, Prop. 16.1.9].

Lemma A.15. Suppose M is a finitely generated A-module, and let x be one of
$,x1, . . . , xr. Then

• if M is killed by x, δA(M) = δA/x(M).
• if M is x-torsion free, δA(M) = 1 + δA/x(M/xM).

Proof. First we assume that M is killed by x. The base change spectral se-
quence [Wei94, Ex. 5.6.3] for Ext is

Ei,j2 : ExtiA/x(M,ExtjA(A/x,A)) =⇒ Exti+jA (M,A)

and ExtjA(A/x,A) is zero unless j = 1, when we have Ext1
A(A/x,A) = A/x. Since

M is killed by x, jA(M) > 0, and we have

ExtiA/x(M,A/x) = Exti+1
A (M,A)

for i ≥ 0. We deduce that jA(M) = 1+ jA/x(M), and therefore δA(M) = δA/x(M).
Now we assume thatM is x-torsion free. [Lev92, Thm. 4.3] implies that jA(M/xM) ≥

1 + jA(M), so we have an exact sequence

0→ Ext
jA(M)
A (M,A)

×x→ Ext
jA(M)
A (M,A)→ Ext

1+jA(M)
A (M/xM,A)

and Ext
jA(M)
A (M,A) is a non-zero finitely generated A-module. By Nakayama’s

lemma we see that Ext
jA(M)
A (M,A)/xExt

jA(M)
A (M,A) is non-zero, and so Ext

1+jA(M)
A (M/xM)

is also non-zero. This implies that jA(M/xM) = 1 + jA(M). The first part of the
lemma then gives jA/x(M/xM) = jA(M) and so δA(M) = 1 + δA/x(M/xM). �

Lemma A.16. Suppose M is a finitely generated A-module and let x be one of
$,x1, . . . , xr. Then

jA(M) ≥ jA/x(M/xM).

In particular,

jA(M) ≥ jΛ(M/(x1, . . . , xr)M)

and

jA(M) ≥ jΩ(M/($,x1, . . . , xr)M).

Proof. The ‘in particular’ part of the lemma follows from the first part by induction.
Applying Lemma A.15, we see that ifM is x-torsionfree, then jA(M) = jA/x(M/xM).

In general, we have an exact sequence

0→M [x∞]→M →M/M [x∞]→ 0
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where M/M [x∞] is x-torsionfree, so we have a short exact sequence

0→ A/x⊗AM [x∞]→ A/x⊗AM → A/x⊗A (M/M [x∞])→ 0.

By Lemma A.8, it now suffices to show that if M is killed by xN for some N ≥ 1,
then jA(M) ≥ jA/x(M/xM). Consider the filtration {0} = xNM ⊂ xN−1M ⊂
· · · ⊂ xM ⊂ M . We have jA(M) = mini(jA(xiM/xi+1M)) by a repeated applica-
tion of Lemma A.8 and we therefore have jA(M) = 1+mini(jA/x(xiM/xi+1M)) by

another application of Lemma A.15. Multiplication by xi gives a surjective A-linear
map M/xM → xiM/xi+1M , so jA/x(M/xM) ≤ jA/x(xiM/xi+1M) for all i (by
Lemma A.8 again). In particular we have jA(M) = 1 + jA/x(M/xM) which gives
the desired conclusion. �

Lemma A.17. We have JAB = BJA and JAJB = JBJA.

Proof. JA is the (right, left, two-sided) ideal of A generated by a1 − 1, . . . , am −
1, x1, . . . , xr and JB is the (right, left, two-sided) ideal of B generated by a1 −
1, . . . , am−1, y1, . . . , ys. The lemma is now easy, since the xi map to central elements
in B. �

The next lemma is a mild variation on [Wad07, Lemma 3.1].

Lemma A.18. Suppose M is a finitely generated B-module, which is also finitely
generated as an A-module. Then δA(M) = δB(M).

Proof. We show the lemma by comparing Gelfand–Kirillov dimensions. Since M is
a finitely generated A-module, M/JAM is a finite dimensional k-vector space. By

Lemma A.17, JAM is a B-submodule of M . So M/JAM is an Artinian B-module.

Therefore Jk
B

(M/JAM) = 0 for some positive integer k. So Jk
B
M ⊂ JAM ⊂ JBM .

Using the fact that JAJB = JBJA (Lemma A.17) an induction shows that

JkN
B
M ⊂ JN

A
M ⊂ JN

B
M

for all N ≥ 1. Using Proposition A.13 we conclude that δA(M) = δB(M). �

Lemma A.19. Suppose M is a finitely generated B-module, which is also finitely
generated as an A-module. Then δA(M) = δB(M).

Proof. M has a finite filtration by B-submodules {0} = M0 ⊂ M1 ⊂ · · · ⊂
Ml = M such that each Mi/Mi−1 is either $-torsionfree or killed by $. Each
Mi is also a finitely generated A-module. By Lemma A.8, we have δA(M) =
maxi(δA(Mi/Mi−1)) and δB(M) = maxi(δB(Mi/Mi−1)), so we may assume that
M is either $-torsionfree or killed by $. Applying Lemma A.15 and Lemma A.18
gives δA(M) = δB(M). �

A.20. Comparing depths. We retain the assumptions and notation of the pre-
vious subsection. Recall that we have two Λ-algebras A = Λ⊗̂OO[[x1, . . . , xr]]
and B = Λ⊗̂OO[[y1, . . . , ys]]. The goal of this subsection is Lemma A.28, which
shows that if M is a finitely generated B-module, which is also finitely gener-
ated as an A-module, then depthA(M) ≤ depthB(M). In fact, we can show that
depthA(M) = depthB(M) (which again generalises a well-known result in commu-
tative algebra [EGAIV1, Ch. 0, Prop. 16.4.8]) but proving the inequality suffices
for our applications and is already sufficiently painful.

We set R = k[[x1, . . . , xr]] = A/JΛA and S = k[[y1, . . . , ys]] = B/JΛB. We have
a map of local k-algebras R→ S.
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Lemma A.21. Suppose I is an injective left B-module. Then I is injective as a
left Λ-module.

Proof. Suppose 0→ L→M → N → 0 is a short exact sequence of left Λ-modules.
Since B is a flat right Λ-module, we have an exact sequence of left B-modules

0→ B ⊗Λ L→ B ⊗Λ M → B ⊗Λ N → 0

and hence an exact sequence

0→ HomB(B ⊗Λ N, I)→ HomB(B ⊗Λ M, I)→ HomB(B ⊗Λ L, I)→ 0.

Finally, the tensor-hom adjunction implies that

0→ HomΛ(N, I)→ HomΛ(M, I)→ HomΛ(L, I)→ 0

is exact. �

For any left B-module M , note that HomΛ(k,M) = {m ∈ M : JΛm = 0} is

naturally a left S-module. We denote by RHomS
Λ(k,M) the object of D+(S) given

by taking an injective A-module resolution of M and applying HomΛ(k,−) to get a
complex of S-modules. By Lemma A.21, we have natural isomorphisms of Abelian

groups Hi(RHomS
Λ(k,M)) = ExtiΛ(k,M).

Remark A.22. Note that the natural S-module structure on ExtiΛ(k,M) can also be
defined using the facts that ExtiΛ(k,M) = ExtiB(B ⊗Λ k,M) (extension of scalars)
and that B ⊗Λ k is a (B,S)-bimodule.

Remark A.23. For an A-module M , we can similarly define RHomR
Λ(k,M).

Lemma A.24. For a B-module M , there is a natural isomorphism

RHomR
Λ(k,M) = ιS

R
RHomS

Λ(k,M),

where ιS
R

is the derived functor of the (exact) forgetful functor from S-modules to

R-modules.

Proof. We can compute RHomR
Λ(k,M) using an injective B-module resolution of

M , since an injective B-module is acyclic for the functor HomΛ(k,−) from A-

modules to R-modules. Computing RHomS
Λ(k,M) using the same injective resolu-

tion gives the desired isomorphism. �

Lemma A.25. For B-modules M , we have natural isomorphisms

RHomB(k,M) = RHomS(k,RHomS
Λ(k,M))

and
RHomA(k,M) = RHomR(k, ιS

R
RHomS

Λ(k,M)).

Proof. Consider the functor HomΛ(k,−) from B-modules to S-modules. This takes
injectives to injectives, since for an S-module X we have HomS(X,HomΛ(k,M)) =
HomB(X,M).

The functor HomS(k,HomΛ(k,−)) from B-modules to Abelian groups is natu-
rally equivalent to the functor HomB(k,M). The derived functor of the composition

of functors is given by RHomS(k,RHomS
Λ(k,−)), and this gives the first collection

of natural isomorphisms.
Applying the same argument to A-modules, together with Lemma A.24, we get

the second collection of natural isomorphisms. �
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At this point we recall that for a commutative Noetherian local ring X with
maximal ideal mX there is a good notion of depth for objects in D+(X) [Iye99]2.

Definition A.26. For M ∈ D+(X) we define

depthX(M) = inf{i : ExtiX(X/mX ,M) 6= 0}.

Lemma A.27. Let M ∈ D+(S). We have

depthR(ιS
R
M) ≤ depthS(M).

Proof. Combine [Iye99, Thm. 6.1] (which shows that our definition of depth coin-
cides with the definition given in [Iye99, §2]) with [Iye99, Prop. 5.2 (2)]. �

Lemma A.28. Let M be a B-module. We have

depthA(M) ≤ depthB(M).

Proof. By Lemma A.25 and Lemma A.27 we have

depthA(M) = depthR(ιS
R

RHomS
Λ(k,M))

≤ depthS(RHomS
Λ(k,M)) = depthB(M). �

Corollary A.29. Suppose M is a finitely generated B-module, which is also finitely
generated as an A-module. Moreover, suppose that M is a Cohen–Macaulay A-
module. Then M is a Cohen–Macaulay B-module, with depthB(M) = δB(M) =
δA(M).

Proof. By Lemma A.28 we have δA(M) = depthA(M) ≤ depthB(M). We also have
depthB(M) ≤ δB(M), by parts (2) and (3) of Proposition A.4 (or by local duality).
Since δA(M) = δB(M) (by Lemma A.19), all these inequalities are equalities. �

Proposition A.30 (Miracle Flatness). Let M be a finitely generated Cohen–Macaulay
A-module.

Then M is a flat O[[x1, . . . , xr]]-module if and only if

jA(M) = jΩ(M/($,x1, . . . , xr)M).

Proof. We let R = O[[x1, . . . , xr]] and mR = ($,x1, . . . , xr) ⊂ R. First sup-
pose M is a flat O[[x1, . . . , xr]]-module. Then ($,x1, . . . , xr) is an M -regular
sequence (using Nakayama’s lemma for finitely generated A-modules to see that
M/($,x1, . . . , xr) 6= 0; we are assuming M 6= 0 since Cohen–Macaulay modules
are by definition non-zero). It follows from Lemma A.15 that we have the desired
equality of codimensions.

Conversely, suppose that jA(M) = jΩ(M/($,x1, . . . , xr)M). We claim that
($,x1, . . . , xr) is an M -regular sequence. To prove the claim, it suffices (by induc-
tion on r) to show that for x ∈ {$,x1, . . . , xr} we have the following

(1) jA(M) = jA/x(M/xM).
(2) x is M -regular.
(3) M/xM is a Cohen–Macaulay A/x-module.

2In fact one needn’t restrict to bounded complexes, see [FI03]
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By Lemma A.16, we have jA(M) ≥ jA/x(M/xM) ≥ jΩ(M/mRM), so our assump-
tion implies that (1) holds.

Next we check that x is M -regular. As in the proof of Lemma A.16, we have a
short exact sequence

0→M [x∞]→M →M/M [x∞]→ 0

where M/M [x∞] is x-torsion free. Suppose for a contradiction that M [x∞] is
nonzero. By [Ven02, Prop. 3.9, Prop. 3.5(v)] M has pure δ-dimension dimA(M).
By [Ven02, Prop. 3.5(vi)(b)] we therefore have jA(M [x∞]) = jA(M) (if a module
has pure δ-dimension, all its non-zero submodules have the same dimension). As
in the proof of Lemma A.16 we also have jA(M [x∞]) = 1 + jA/x(M [x∞]/xM [x∞]).
Combining the two equalities, we get jA/x(M [x∞]/xM [x∞]) = jA(M) − 1, which
(by Lemma A.8) contradicts (1), since M [x∞]/xM [x∞] is a submodule of M/xM .
This completes the proof that (2) holds.

Now we must show that M/xM is a Cohen–Macaulay A/x-module. By Lemma
A.15 we have jA(M/xM) = 1 + jA/x(M/xM) = 1 + jA(M). By (2), we have a
short exact sequence

0→M
×x→ M →M/xM → 0.

Considering the long exact sequence for HomA(−, A) we see that ExtiA(M/xM,A) =
0 for all i 6= 1+jA(M). The argument of the first paragraph of the proof of Lemma
A.15 now implies that ExtiA/x(M/xM,A/x) = 0 for all i 6= jA(M), and this shows

that M/xM is Cohen–Macaulay (by Remark A.6).
Finally, we have established the claim that ($,x1, . . . , xr) is an M -regular se-

quence. It follows that TorR1 (R/mR,M) = 0. If I is an ideal in R then I ⊗R M
is naturally a finitely generated A-module and is therefore separated for the mR-
adic topology. Now [Mat89, Theorem 22.3] implies that M is a flat R-module (the
previous sentence shows that M is mR-adically ideal-separated, in Matsumura’s
terminology). �

A.31. An application of the Artin–Rees lemma. We now recall a version of
the Artin–Rees Lemma.

Lemma A.32. Let K be a compact p-adic analytic group, and let M be a O[[K]]-
submodule of O[[K]]⊕t, for some t ≥ 1. Let K ′ be an open uniform pro-p subgroup of
K, and let J denote the two-sided ideal of O[[K]] generated by the maximal ideal m
of the local ring O[[K ′]]. Then there is a constant c ≥ 0 such that M ∩ (Jm+c)⊕t ⊂
JmM for all m ≥ 0.

Proof. The associated graded of O[[K]] for the J -adic filtration is finite over the
Noetherian ring grmO[[K ′]], so it is itself Noetherian. Now we can apply [LO96,
Prop. II.2.2.1, Thm. II.2.1.2(2)]. This shows that the J -adic filtration on O[[K]]
has the Artin–Rees property (defined in [LO96, Defn. II.1.1.1]), and the statement
of the Lemma is a special case of this property. �

Lemma A.33. Keep the same notation as in the previous Lemma. Suppose we
have flat O[[K]]/Jm-modules Mm for each n ≥ 1, with Mm = Mm+1/JmMm+1.
Then M := lim←−mMm is a flat O[[K]]-module and

Q⊗O[[K]] M = lim←−Q⊗O[[K]] Mm

for every finitely generated (right) O[[K]]-module Q.
In particular, we have M/JmM = Mm.
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Proof. This follows from [Stacks, Tag 0912]. The reference assumes that the rings
in question are commutative, so we will write out the proof in our setting. Set
A = O[[K]] to abbreviate our notation.

We first show that Q⊗AM = lim←−Q⊗AMm for every finitely generated (right)
A-module Q. Since A is Noetherian, we may choose a resolution F2 → F1 → F0 →
Q→ 0 by finite free A-modules Fi. Then

F2 ⊗AMm → F1 ⊗AMm → F0 ⊗AMm

is a chain complex whose homology in degree 0 is Q⊗AMm and whose homology
in degree 1 is

TorA1 (Q,Mm) = TorA1 (Q,A/Jm)⊗A/Jm Mm

as Mm is flat over A/Jm. Set K = ker(F0 → Q). We have

TorA1 (Q,A/Jm) = (K ∩ (JmF0))/JmK
so Lemma A.32 implies that there exists a c ≥ 0 such that the map

TorA1 (Q,A/J n+c)→ TorA1 (Q,A/Jm)

is zero for all m.
It follows from [Stacks, Tag 070E] that lim←−Q⊗AMm = coker(lim←−F1 ⊗AMm →

lim←−F0⊗AMm). Since the Fi are finite free this equals coker(F1⊗AM → F0⊗AM) =

Q⊗AM , as claimed. Taking Q = A/Jm, we obtain M/JmM = Mm.
It remains to show that M is flat. Let Q → Q′ be an injective map of finitely

generated right A-modules; we must show that Q ⊗A M → Q′ ⊗A M is injective.
By the above we see

ker(Q⊗AM → Q′ ⊗AM) = ker(lim←−Q⊗AMm → lim←−Q
′ ⊗AMm).

For each m we have an exact sequence

TorA1 (Q′,Mm)→ TorA1 (Q′′,Mm)→ Q⊗AMm → Q′ ⊗AMm

where Q′′ = coker(Q→ Q′). Above we have seen that the inverse systems of Tor’s
are essentially constant with value 0. It follows from [Stacks, Tag 070E] that the
inverse limit of the right most maps is injective, as required. �

Appendix B. Tensor products and projective covers

B.1. Tensor products. We recall from [Bru66, §2] that if R is a pseudocompact
ring and M,N are pseudocompact (right, resp. left) R-modules, then the completed
tensor product M⊗̂RN is a pseudocompact R-module, which satisfies the usual
universal property for the tensor product in the category of pseudocompact R-
modules. M⊗̂RN is the completion of M ⊗R N in the topology induced by taking
Im(M⊗R V +U⊗RN) as a fundamental system of open neighborhoods of 0, where
U (resp. V ) runs through the open submodules of M (resp. N).

If A and B are pseudocompact R-algebras, and M,N (respectively) are pseu-
docompact A and B-modules, then M⊗̂RN is naturally a pseudocompact A⊗̂RB-
module.

Lemma B.2. Let M , N be pseudocompact O-modules. Suppose M = lim←−iMi and

N = lim←−j Nj, where Mi and Nj are also pseudocompact O-modules. Suppose that

the transition maps Mj →Mi and Nj →Mi are surjective. Then the natural map

lim−→
i,j

Homcts
O (Mi, N

∨
j )→ Homcts

O (M,N∨)

http://stacks.math.columbia.edu/tag/0912
http://stacks.math.columbia.edu/tag/070E
http://stacks.math.columbia.edu/tag/070E
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is an isomorphism.
The natural map

M⊗̂ON → lim←−
i,j

Mi⊗̂ONj

is also an isomorphism.

Proof. The first claim is (a special case of) [Bru66, Lem. A.3]. The second claim is
a special case of [Bru66, Lem. A.4]. �

Lemma B.3. Let M,N be pseudocompact O-modules. There is a natural isomor-
phism (

M⊗̂ON
)∨ ∼= Homcts

O (M,N∨)

where N∨ has the discrete topology.

Proof. By Lemma B.2 we may assume that M and N are finite length O-modules.
By the universal property of the tensor product, we have

(M ⊗O N)∨ = HomO(M,N∨). �

We now recall some terminology about categories of smooth representations of
p-adic analytic groups from [Eme10b]. Let G be a p-adic analytic group, with a
compact open subgroup K0 (all the notions recalled below will be independent of
the choice of K0). We let A denote a complete Noetherian local O-algebra with
finite residue field and maximal ideal mA. In particular, A is a pseudocompact
O-algebra. ModsmG (A) denotes the abelian category of smooth G-representations
with coefficients in A [Eme10b, Defn. 2.2.5]. Pontryagin duality gives an anti-
equivalence of categories between ModsmG (A) and the category of pseudocompact
A[[K0]]-modules with a compatible G-action [Eme10b, (2.2.8)]. Here we write
A[[K0]] for A⊗̂OO[[K0]].

An object V ∈ ModsmG (A) is admissible if V ∨ is a finitely generated A[[K0]]-
module (we take this as the definition, but see [Eme10b, Lem. 2.2.11]). An element
v ∈ V is called locally admissible if the G-subrepresentation of V generated by
v is admissible, and V is called locally admissible if every element of V is locally
admissible.

Similarly, an element v ∈ V is called locally finite if the G-subrepresentation of
V generated by v is a finite length object in ModsmG (A), and V is called locally
finite if every element of V is locally finite.

Lemma B.4. Let G,H be p-adic analytic groups and suppose that V ∈ ModsmG (O)
and W ∈ ModsmH (O). Suppose that V and W are locally admissible. Then (V ∨⊗̂OW∨)∨ =
Homcts

O (V ∨,W ) is a locally admissible object of ModsmG×H(O).

Proof. Let M = V ∨ and N = W∨. Since V and W are locally admissible, we can
write M = lim←−iMi and N = lim←−j Nj where the M∨i and N∨j are admissible and the

transition maps in the inverse systems are surjective. It follows from Lemma B.2
that it suffices to prove the Lemma under the additional assumption that V and
W are admissible.

Let K1 and K2 be compact open subgroups of G and H respectively. We may
assume that M and N are finitely generated O[[K1]]- and O[[K2]]-modules re-
spectively. In particular, we have (continuous) surjections O[[K1]]⊕a → M and
O[[K2]]⊕b → N . Therefore, we have a surjective map of O[[K1]]⊗̂OO[[K2]] =
O[[K1 ×K2]]-modules:
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O[[K1]]⊕a⊗̂OO[[K2]]⊕b = O[[K1 ×K2]]⊕ab →M⊗̂ON.
In particular, (M⊗̂ON)∨ is admissible. �

We recall that an irreducible admissible object V of ModsmG (k) is called absolutely
irreducible if V ⊗k k′ is irreducible in ModsmG (k′) for every field extension k′/k (or
equivalently for every finite extension). See [Eme10c, §4.1] for this definition and the
following facts. If V is an admissible irreducible in ModsmG (k) then k′ = EndG(V )
is a finite extension of k and V ⊗k k′ is a finite direct sum of admissible absolutely
irreducible objects of ModsmG (k′).

Lemma B.5. Let G,H be p-adic analytic groups and suppose that V ∈ ModsmG (O)
and W ∈ ModsmH (O). Suppose that V and W are locally finite and locally admissi-
ble. Then (V ∨⊗̂OW∨)∨ = Homcts

O (V ∨,W ) is a locally finite object of ModsmG×H(O).

If V and W are abmissible absolutely irreducible then (V ∨⊗̂OW∨)∨ = V ⊗k W
is an admissible absolutely irreducible representation of G×H.

Proof. Let M = V ∨ and N = W∨. Since V and W are locally finite, we can
write M = lim←−iMi and N = lim←−j Nj where the M∨i and N∨j are finite length

and the transition maps in the inverse systems are surjective. It follows from
Lemma B.2 that it suffices to prove the Lemma under the additional assumption
that V and W are finite length. By induction on the length, we can assume that
V and W are irreducible admissible. In this case (since V and W are killed by
$), Homcts

O (M,N∨) = lim−→U
Homk(M/U,N∨) = V ⊗k W , where U runs over open

submodules of M , and the first equality follows from Lemma B.2.
Now it remains to show that if V and W are irreducible admissible then V ⊗kW

has finite length, and if moreover V and W are absolutely irreducible then V ⊗kW
is absolutely irreducible. By extending scalars to a finite extension of k over which
both V and W are direct sums of absolutely irreducible representations, we can
reduce to the case where V and W are absolutely irreducible (descending back, we
see that V ⊗k W is a finite direct sum of irreducibles which can be obtained by
Galois descent from a direct sum of absolutely irreducible represnetations in the
extension of scalars).

We have

HomG(V, V ⊗k W ) = HomG(V, V )⊗k W
since V has finite length. By Schur’s lemma we can identify HomG(V, V ⊗k W )
with W .

Suppose U ⊂ V ⊗kW is a nonzero G×H-subrepresentation. Then HomG(V,U)
is an H-subrepresentation of HomG(V, V ⊗k W ) = W . Since V ⊗k W is locally
finite as a G-representation, with every simple submodule isomorphic to V , we
have HomG(V,U) 6= 0 and therefore HomG(V,U) = W . This says that for all
w ∈W , the map v 7→ v ⊗ w lies in HomG(V,U). In other words, v ⊗ w ∈ U for all
v ∈ V,w ∈ W . So U = V ⊗W . The same argument applies after any extension of
scalars k′/k, so we deduce that V ⊗k W is absolutely irreducible. �

Lemma B.6. Let G,H be p-adic analytic groups. Suppose that both G and H have
the property that locally admissible representations are locally finite. Let X be an
admissible absolutely irreducible object of ModsmG×H(k). Then there is a finite ex-
tension k′/k such that the extension of scalars Xk′ ∈ ModsmG×H(k′) is isomorphic to
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V ⊗k′W , for some admissible absolutely irreducible representations V ∈ ModsmG (k′)
and W ∈ ModsmH (k′).

Proof. Since X is admissible as a G×H-representation, it is locally admissible as
a G-representation. Indeed for every x ∈ X there is a compact open subgroup
K2 ⊂ H such that x ∈ XK2 , and XK2 is a locally admissible G-representation. It
follows from our assumptions that X is a locally finite G-representation.

So, there is a simple admissible V ∈ ModsmG (O) with HomG(V,X) 6= 0. The H-
representation HomG(V,X) is admissible, and hence locally finite. Indeed, if K2 ⊂
H is compact open, thenXK2 is an admissibleG-representation and HomG(V,X)K2 =
HomG(V,XK2) is a finitely generated O-module by [Eme10b, Lem. 2.3.10]. We con-
clude that there is a simple admissible W ∈ ModsmH (O) with a injective H-linear
map W → HomG(V,X). It follows that we have a non-zero G × H-linear map
V ⊗k W → X. There is a finite extension k′/k such that the extensions of scalars
Vk′ and Wk′ are direct sums of absolutely irreducible representations. By Lemma
B.5, Xk′ is isomorphic to the tensor product of two of these absolutely irreducible
representations. �

Lemma B.7. Let G =
∏m
i=1Gi, where Gi = PGL2(Qp). Let V ∈ ModsmG (O)

be admissible and finitely generated over O[G]. Then V is of finite length. In
particular, locally admissible G-representations are locally finite.

If V is absolutely irreducible as a G-representation, there is a finite extension
k′/k such that Vk′ is isomorphic to ⊗mi=1Vi, where the Vi are absolutely irreducible
Gi-representations over k′.

Proof. LetK0 =
∏m
i=1 PGL2(Zp). Following the argument of [Eme10b, Thm. 2.3.8],

it suffices to show that every admissible quotient V of c-IndGK0
W is of finite

length, where W is a finite dimensional absolutely irreducible representation of
K0 over k. After extending scalars if necessary, W decomposes as a tensor prod-
uct W = ⊗mi=1Wi of representations of PGL2(Zp). As in loc. cit. we consider

Homk[G](c-IndGK0
W,V ) which is a finite dimensional k-vector space and a module

over H(W ) := Endk[G](c-IndGK0
W ). We have a surjective map

Homk[G](c-IndGK0
W,V )⊗H(W ) c-IndGK0

W → V.

The Hecke algebra H(W ) is isomorphic to the convolution algebra of compactly
supported functions f : G → Endk(W ) such that f(h1gh2) = h1 ◦ f(g) ◦ h2 for all
h1, h2 ∈ K0 and g ∈ G. With this description, one can show that

H(W ) ∼= ⊗mi=1Hi(Wi)

whereHi(Wi) = Endk[Gi](c-IndGi

PGL2(Zp)Wi). By [BL94, Prop. 8], we haveHi(Wi) ∼=
k[Ti] and therefore we have H(W ) ∼= k[T1, . . . , Tm].

Now it suffices to show that

X ⊗H(W ) c-IndGK0
W

is of finite length, where X is a finite dimensional H(W )-module. By induction
on the dimension of X, extending scalars if necessary, we may assume that X ∼=
H(W )/(T1 − λ1, . . . , Tm − λm), with λi ∈ k.

Since c-IndGK0
W ∼= ⊗mi=1 c-IndGi

PGL2(Zp)Wi we need to show that

⊗mi=1 c-IndGi

PGL2(Zp)Wi/(Ti − λi)
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has finite length, which follows from Lemma B.5 and the results of [BL94; Bre03].
Finally, we repeatedly apply Lemma B.6 to show that if V is absolutely irre-

ducible it factors as a tensor product after an extension of scalars. �

Lemma B.8. Let G =
∏m
i=1Gi, where Gi = PGL2(Qp). Let V = ⊗mi=1Vi be an

absolutely irreducible admissible representation of G (which factorises as shown).

Let Vi ↪→ Ii, i = 1, . . .m be injective envelopes of Vi in Modloc adm
Gi

(O) (the category
of locally admissible representations). Dually, set Mi = V ∨i and Pi = I∨i .

Then ⊗̂mi=1Pi → ⊗̂
m

i=1Mi is a projective envelope in CG(O) (see Definition 5.1.1).

Proof. First we show that P := ⊗̂mi=1Pi is projective in CG(O). Note that it follows
from Lemma B.4 and Lemma B.7 that P∨ is locally admissible and locally finite.
Let M = ⊗̂mi=1Mi ∈ CG(O). We induct on m. Let P ′ = ⊗̂mi=2Pi and G′ =

∏m
i=2Gi.

By the universal property of the completed tensor product we have

(B.9) Homcts
G1×G′(P1⊗̂P ′,M) = Homcts

G1
(P1,Homcts

G′ (P ′,M)),

so projectivity of P follows from projectivity of P ′ and P1.
Now we prove that P →M is an essential surjection. Since P∨ is locally finite, it

suffices to show that M = cosoc(P ) (see [CEGGPS2, Lem. 4.6]). Again we proceed

by induction on m. So we assume that cosoc(P ′) = ⊗̂mi=2Mi. Let N 6∼= M be
a simple object of CG(O). We want to show that Homcts

G (P,N) = 0. Extending
scalars to a field where N∨ is a direct sum of absolutely irreducible representations,
we reduce (using Lemma B.7) to the case where N∨ is absolutely irreducible and

we have a factorisation N ∼= ⊗̂mi=1Ni where the N∨i are absolutely irreducible. Let

N ′ = ⊗̂mi=2Ni. By (B.9), we have

Homcts
G (P,N) = Homcts

G1
(P1,Homcts

G′ (P ′, N)).

As an object of CG′(O), we have N = N1⊗̂ON ′ = (lim←−N1/U)⊗̂ON ′ where the limit

runs over open submodules of N1 and so N1/U is a finite length O-module. In fact,
since N1 is simple, N1/U is just a finite dimensional k-vector space. It follows from
Lemma B.2 that, in CG′(O), we have an isomorphism N ∼= lim←−(N1/U ⊗O N ′) and
so we obtain isomorphisms

Homcts
G′ (P ′, N) ∼= lim←−Homcts

G′ (P ′, N1/U ⊗O N ′) = lim←−Homcts
G′ (P ′, N ′)⊗O N1/U

Applying a similar argument, we conclude that

Homcts
G (P,N) ∼= Homcts

G1
(P1, N1)⊗̂O Homcts

G′ (P ′, N ′).

We immediately deduce (from our inductive hypothesis) that Homcts
G (P,N) = 0.

On the other hand, the same argument shows that we have

Homcts
G (P,M) = Homcts

G1
(M1,M1)⊗̂O Homcts

G′ (M ′,M ′) = Homcts
G (M,M) = k.

We deduce that cosoc(P ) = M , as desired. �
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