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Abstract

We prove a companion forms theorem for mod l Hilbert modular forms.
This work generalises results of Gross and Coleman–Voloch for modular
forms over Q, and gives a new proof of their results in many cases.

1 Introduction

If f ∈ Sk(Γ1(N);Fp)(ε) is a mod l cuspidal eigenform, where l - N , there is a
continuous, odd, semisimple Galois representation

ρf : Gal(Q/Q) −→ GL2(Fl)

attached to f . A famous conjecture of Serre predicts that all continuous odd
irreducible mod l representations should arise in this fashion. Furthermore, the
“strong Serre conjecture” predicts a minimal weight kρ and level Nρ, in the
sense that ρ ∼= ρg for some eigenform g of weight kρ and level Nρ (prime to l),
and if ρ ∼= ρf for some eigenform f of weight k and level N prime to l then
Nρ|N and k ≥ kρ. The question as to whether all continuous odd irreducible
mod l Galois representations are modular in this sense is still open, but the
implication “weak Serre ⇒ strong Serre” is essentially known (aside from a few
cases where l = 2).

In solving the problem of weight optimisation it becomes necessary to con-
sider the companion forms problem; that is, the question of when it can occur
that we have f =

∑
anq

n of weight 2 ≤ k ≤ l with al 6= 0, and an eigenform
g =

∑
bnq

n of weight k′ = l + 1 − k such that nan = nkbn for all n. Serre
conjectured that this can occur if and only if the representation ρf is tamely
ramified above l. This conjecture has been settled in most cases in the papers
of Gross ([Gro90]) and Coleman-Voloch ([CV92]).

Our earlier paper [Gee04] generalised these results to the case of parallel
weight Hilbert modular forms over totally real fields F in which l splits com-
pletely, by generalising the methods of [CV92]. In this paper we take a com-
pletely different and rather more conceptual approach; we construct our com-
panion form by using a method of Ramakrishna to find an appropriate charac-
teristic zero Galois representation, and then use recent work of Kisin ([Kis04])
to prove that the representation is modular. Note that our companion form is
not necessarily of minimal prime-to-l level, but that this is irrelevant for applica-
tions to Artin’s conjecture, and that in many cases a form of minimal level may
be obtained from ours by the methods of [Jar99], [SW01], [Raj01] and [Fuj99].
In the case of weight l forms, we avoid potential difficulties with weight 1 forms
by constructing a companion form in weight l.
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2 Statement of the main results

Let l > 2 be a prime, and let F be a totally real field. We assume that if
l > 3, [F (ζl) : F ] > 3 (note that this is automatic if l is unramified in F ). Let
ε denote both the l-adic and mod l cyclotomic characters; this should cause no
confusion. Let ρ : GK → GL2(O) be a continuous representation, where is K
a finite extension of Ql, and O is the ring of integers in a finite extension of
Ql. We say that ρ is ordinary if it is Barsotti-Tate, coming from an l-divisible
group which is an extension of an étale group by a multiplicative group, each
of rank one as O-modules. We say that it is potentially ordinary if it becomes
ordinary upon restriction to an open subgroup of GK . We say that a Hilbert
modular form of parallel weight 2 is (potentially) ordinary at a place v|l if its
associated Galois representation is (potentially) ordinary at v. These definitions
agree with those in [Kis04]; they are slightly non-standard, but note that if the
level is prime to l then this is equivalent to the Uv-eigenvalue being an l-adic
unit. We say that a Hilbert modular form of parallel weight k, 3 ≤ k ≤ l is
ordinary at a place v|l if its Uv-eigenvalue is an l-adic unit. Finally, we say
that a modular form is (potentially) ordinary if it is (potentially) ordinary at
all places v|l.

Our main theorem is the following:

Theorem 2.1. Let g be an ordinary Hilbert modular eigenform of parallel weight
k, 2 ≤ k ≤ l, and level coprime to l. Let its associated Galois representation be
ρg : GF → GL2(Ql), so that (by Theorem 2 of [Wil88]) we have, for all places
v|l,

ρg|Gv
'

(
εk−1ψv,1 ∗

0 ψv,2

)
for unramified characters ψv,1, ψv,2. Suppose that the residual representation
ρg : GF → GL2(Fl) is absolutely irreducible. Assume further that for all v|l we
have that εk−1ψv,1 6= ψv,2, and that the representation ρg|Gv is tamely ramified,
so that

ρg|Gv
'

(
εk−1ψv,1 0

0 ψv,2

)
.

Assume in addition that if εk−2ψv,1 = ψv,2, then the absolute ramification index
of Fv is less than l− 1. If k = l then let k′ = l, and otherwise let k′ = l+ 1− k.
Then there is a Hilbert modular form g′ of parallel weight k′ and level coprime
to l satisfying

ρg′ ' ρg ⊗ εk
′−1

and the Uv-eigenvalue of g′ is a lift of ψv,1(Frobv).

In fact, we work throughout with forms of parallel weight 2, and we use Hida
theory to treat forms of more general (parallel) weight. In the case where ρg(GF )
is soluble the Langlands-Tunnell theorem makes the proof straightforward, so
we concentrate on the insoluble case, where we prove:

Theorem 2.2. Let ρf : GF → GL2(Fl) be an absolutely irreducible modular
representation, coming from a Hilbert eigenform f of parallel weight 2, with
associated Galois representation ρf : GF → GL2(Ql). Suppose that ρf (GF ) is
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insoluble. Suppose also that for every place v of F dividing l ρf |Gv
is potentially

ordinary, and we have

ρf |Gv
'

(
εk−1ψv,1 0

0 ψv,2

)
where ψv,1, ψv,2 are unramified characters, with εk−1ψv,1 6= ψv,2. Assume in
addition that if εk−2ψv,1 = ψv,2, then the absolute ramification index of Fv is
less than l − 1.

If k = l then let k′ = l, and otherwise let k′ = l + 1 − k. Then there is an
eigenform f ′ of parallel weight 2 which is potentially ordinary at all places v|l
such that the mod l Galois representation ρf ′ associated to f ′ satisfies

ρf ′ ' ρf ⊗ εk
′−1,

and such that at all places v|l we have

ρf ′ |Gv
'

(
εωk

′−2ψv,2 ∗
0 ψv,1

)
with ψv,i an unramified lift of ψv,i for i=1, 2, and ω the Teichmuller lift of ε.

3 Lifting theorems

Firstly, we prove a straightforward generalisation of the results of [Ram02] and
[Tay03] to totally real fields. We begin by analysing the local representation
theory at primes not dividing l. The next lemma is essentially contained in
[Dia97]:

Lemma 3.1. Let p 6= l be a prime, and let K be a finite extension of Qp.
Let IK denote the inertia subgroup of GK . Let σ : GK → GL2(k) be a con-
tinuous representation, with k a finite field of characteristic l, and assume that
l|#σ(IK).

Then either p = 2, l = 3, and projσ(GK) ' A4 or S4, or

σ '
(
εχ ∗
0 χ

)
with respect to some basis for some character χ.

Proof. Note that l|#σ(IK) if and only if l|# projσ(IK). We must have σ|IK

indecomposable. If σ is reducible, then σ is a twist of a representation
(
ψ u
0 1

)
for

some character ψ, with u a cocycle representing a class in H1(GK , k(ψ)) whose
image in H1(IK , k(ψ))GK is non-zero; but the latter group is zero unless ψ = ε.

If instead σ is irreducible but σ|IK
is reducible, then σ|IK

, being indecom-
posable, must fix precisely one element of P1(k). But then σ would also have
to fix this element, a contradiction.

Assume now that σ|IK
is irreducible, and that σ|PK

is reducible, where PK
is the wild inertia subgroup of IK . Then PK must fix precisely two elements of
P1(k) (as σ|IK

is irreducible), so σ is induced from a character on a ramified
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quadratic extension of K, and thus σ(IK) has order 2pr for some r ≥ 1, a
contradiction.

Finally, if σ|PK
is irreducible we must have p = 2. That projσ(GK) ' A4 or

S4 follows from the same argument as in the proof of Proposition 2.4 of [Dia97].
That l = 3 follows from l|#σ(IK).

Let ρ : GF → GL2(k) be continuous, odd, and absolutely irreducible, with
k a finite field of characteristic l. Let S denote a finite set of finite places of F
which contains all places dividing l and all places where ρ is ramified, and let
GS denote the Galois group of the maximal extension of F unramified outside
S. A deformation of ρ is a complete noetherian local ring (R,m) with residue
field k and a continuous representation ρ : GS → GL2(R) such that (ρ mod
m) = ρ and ε−1 det ρ has finite order prime to l. We define deformations of ρ|Gv

in a similar fashion.
Suppose that for each v ∈ S we have a pair (Cv, Lv) satisfying the properties

P1-P7 listed in section 1 of [Tay03]. Define H1
{Lv}(GS , ad0 ρ) and H1

{L⊥v }(GS , ad0 ρ)
in the usual way.

Lemma 3.2. If H1
{L⊥v }(GS , ad0 ρ) = (0) then there is an S-deformation (W (k), ρ)

of ρ such that for all v ∈ S we have (W (k), ρ|Gv ) ∈ Cv.

Proof. Identical to the proof of Lemma 1.1 of [Tay03].

Lemma 3.3. Suppose that
∑
v∈S dimLv ≥

∑
v∈S∪{∞} dim H0(Gv, ad0 ρ). Then

we can find a finite set of places T ⊃ S and data (Cv, Lv) for v ∈ T−S satisfying
conditions P1-P7 and such that H1

{L⊥v }(GT , ad0 ρ) = (0).

Proof. The proof of this lemma is almost identical to that of Lemma 1.2 of
[Tay03]. We sketch a few of the less obvious details. In the case l = 5,
ad0 ρ(GF ) ' A5, we choose w /∈ S such that Nw ≡ 1 mod 5 and ad0 ρ(Frobw)
has order 5 (such a w exists by Cebotarev’s theorem). Adding w to S with
the pair (Cw, Lw) of type E3 (see below), we may assume H1

{L⊥v }(GS , ad0 ρ) ∩
H1(ad0 ρ(GF ), ad0 ρ) = (0).

From here on, almost exactly the same argument as in [Tay03] applies, the
only difference being that one must replace every occurence of “Q” with “F”.
Let K = F (ad0 ρ, µl). The argument is essentially formal once one knows that
there is an element σ ∈ Gal(K/F ) such that ad0 ρ(σ) has an eigenvalue ε(σ) 6≡
1 mod l, that ad0 ρ is absolutely irreducible, and that ad0 ρ is not isomorphic to
(ad0 ρ)(1). All of these assertions follow from our assumption that [F (ζl) : F ] >
3 if l > 3, with the proofs being similar to those in [Ram99] (note that one may
replace the assumption that ρ(GQ) ⊇ SL2(k) in [Ram99] with the assumption
that proj ρ(GQ) ⊇ PSL2(k) without affecting the proofs). For example, to check
that ad0 ρ is not isomorphic to (ad0 ρ)(1) it is enough to prove that there is an
element σ′ ∈ Gal(K/F ) such that all of the eigenvalues of ad0 ρ are 1, and
ε(σ′) 6= 1. The existence of σ and σ′ follows exactly as in the proof of Theorem
2 of [Ram99].

We now give examples of pairs (Cv, Lv). Again, our pairs are very similar
to those in section 1 of [Tay03], and the verification of the required properties
is almost identical. We use the notation of [Tay03] for ease of comparison with
that paper.
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• E1. Suppose that v - l and that l - #ρ(Iv). Take Cv to be the class of lifts of
ρ|Gv

which factor throughGv/(Iv∩ker ρ) and let Lv be H1(Gv/Iv, (ad0 ρ)Iv ).
Then it is straightforward to see that properties P1-P7 are satisfied, and
that

– H2(Gv/(Iv ∩ker ρ), ad0 ρ) ' H2(Gv/Iv, (ad0 ρ)Iv ) = (0), (as Gv/Iv '
Ẑ has cohomological dimension 1),

– H1(Gv/(Iv ∩ ker ρ), ad0 ρ) = Lv ⊂ H1(Gv, ad0 ρ),

– dimLv = dim H0(Gv, ad0 ρ) (by the local Euler characteristic for-
mula).

• E2. (Note that our definitions here differ slightly from those in [Tay03];
we thank Richard Taylor for explaining this modification to us.) Suppose
that l = 3, that v|2, and that (ad0(ρ)(Gv)

∼−→ S4. Take Cv to be the
class of lifts of ρ|Gv which factor through Gv/(Iv ∩ ker ρ) and let Lv be
H1(Gv/Iv, (ad0 ρ)Iv ). The verification of properties P1-P7 is then as in
[Tay03], except that to check that Hi(ρ(Iv), ad0 ρ) = (0) for all i ≥ 0 one
uses the Hochschild-Serre spectral sequence and the fact that Hi(C2 ×
C2, ad0 ρ) = (0) for all i ≥ 0.

• E3. Suppose that v 6= l, that either Nv 6≡ 1 (mod l) or l|#ρ(Gv), and
that with respect to some basis e1, e2 of k2 the restriction ρ|Gv

has the
form (

εχ ∗
0 χ

)
.

Take Cv to be the class of deformations of the form (with respect to some
basis) (

εχ ∗
0 χ

)
with χ lifting χ, and take Lv to be the image of

H1(Gv,Hom(ke2, ke1)) → H1(Gv, (ad0 ρ)).

That the pair (Cv, Lv) satisfies the properties P1-P7 follows from an iden-
tical argument to that in [Tay03]. An identical calculation to that in
[Tay03] shows that dimLv = dim H0(Gv, ad0 ρ).

• E4. Suppose that v|l and that with respect to some basis e1, e2 of k2 ρ|Gv

has the form (
εχ1 0
0 χ2

)
.

Suppose also that χ1 6= χ2 and that εχ1 6= χ2. Take Cv to consist of all
deformations of the form (

εχ1 ∗
0 χ2

)
where χ1, χ2 are tamely ramified lifts of χ1, χ2 respectively. Let U0 =
Hom(ke2, ke1), and let Lv be the kernel of the map H1(Gv, ad0 ρ) →
H1(Iv, ad0 ρ/U0)Gv/Iv . The verification of properties P1-P7 follows as
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in [Tay03], and we may compute dimLv via a similar computation to that
in the proof of Lemma 5 of [Ram02].

Note firstly that by local duality and the assumption that χ1 6= χ2 we
have H2(Gv, U0) = 0. Thus the short exact sequence

0 → U0 → ad0 ρ→ ad0 ρ/U0 → 0

yields an exact sequence

H1(Gv, ad0 ρ) → H1(Gv, ad0 ρ/U0) → 0.

Inflation-restriction gives us an exact sequence

0 → H1(Gv/Iv, (ad0 ρ/U0)Iv ) → H1(Gv, ad0 ρ/U0) → H1(Iv, ad0 ρ/U0)Gv/Iv → 0,

and combining these two sequences shows that the map H1(Gv, ad0 ρ) →
H1(Iv, ad0 ρ/U0)Gv/Iv is surjective. Thus

dimLv = dim H1(Gv, ad0 ρ)− dim H1(Iv, ad0 ρ/U0)Gv/Iv

= dim H1(Gv, ad0 ρ)− dim H1(Gv, ad0 ρ/U0) + dim H1(Gv/Iv, (ad0 ρ/U0)Iv )

= dim H1(Gv, ad0 ρ)− dim H1(Gv, ad0 ρ/U0)

+ dim H0(Gv, ad0 ρ/U0) (by Lemma 3 of [Ram02])

= dim H0(Gv, ad0 ρ) + dim H2(Gv, ad0 ρ)− dim H2(Gv, ad0 ρ/U0)
+ [Fv : Ql] (local Euler characteristic)

= [Fv : Ql] + dim H0(Gv, ad0 ρ).

• BT. Suppose that v|l and that with respect to some basis e1, e2 of k2 ρ|Gv

has the form (
εχ 0
0 χ

)
for some unramified character χ. Assume also that ε is not trivial (that is,
that Fv does not contain Ql(ζl)). Take Cv to consist of all flat deformations
of the form (

εχ1 ∗
0 χ2

)
where χ1, χ2 are unramified lifts of χ, Then it follows from Corollary 2.5.16
of [Kis04] that there is an Lv of dimension [Fv : Ql] + dimH0(Gv, ad0 ρ)
so that properties P1-P7 are all satisfied.

Set ρ = ρf ⊗ εk
′−1. We are now in a position to prove:

Theorem 3.4. There is a deformation ρ of ρ to W (k) such that at all places
v|l we have ρ|Gv

potentially ordinary, and

ρ|Gv
'

(
εωk

′−2ψv,2 ∗
0 ψv,1

)
with ψv,i an unramified lift of ψv,i for i=1, 2, and ω the Teichmuller lift of ε.
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Proof. This follows almost at once from Lemma 3.3. By Lemma 3.1 we can
choose (Cv, Lv) for all v - l, with dimLv = dim H0(Gv, ad0 ρ) (simply choose as
in examples E1 or E3). At places v|l, we choose (Cv, Lv) as in examples E4 or BT,
so that dimLv = [Fv : Ql]+dim H0(Gv, ad0 ρ). Then as

∑
v|l[Fv : Ql] = [F : Q],

we have
∑
v∈S dimLv =

∑
v∈S∪{∞} dim H0(Gv, ad0 ρ), so a deformation as in

Lemma 3.3 exists. That the ψv,i are unramified follows from the fact that they
are tamely ramified lifts of unramified characters.

It remains to check that ρ|Gv is potentially ordinary. By the remarks in
section 2.4.15 of [Kis04] it suffices to check that it is potentially Barsotti-Tate.
This is immediate if we are in the case BT, so suppose we are considering
deformations as in E4. By the proposition in section 3.1 of [PR94], ρ|Gv

is
potentially semistable, and it clearly has Hodge-Tate weights in {0, 1}, so by
Theorem 5.3.2 of [Bre00] it suffices to check that it is potentially crystalline.
In order to check this, we consider the Weil-Deligne representation WD(ρ|Gv )
(see Appendix B of [CDT99] for the definition of WD(σ) for any potentially
semistable p-adic representation σ of Gv). We need to check that the associated
nilpotent endomorphism N is zero. As is well-known, N = 0 unless WD(ρ|Gv

)
is a twist of the Steinberg representation, which cannot happen because of our
assumption that we are not in the BT case.

Theorem 2.2 now follows immediately from:

Theorem 3.5. The representation ρ is modular.

Proof. This is an easy application of Theorem 3.5.5 of [Kis04]. We need to
check that ρ is strongly residually modular. The representation ρf ⊗ ωk

′−1

(where ω is the Teichmuller lift of ε) is certainly modular, with residual repre-
sentation ρ; furthermore, it is automatically potentially ordinary at all places
v|l with εk−2ψv,1 6= ψv,2. By Theorem 6.2 of [Jar04] and our assumption that if
εk−2ψv,1 = ψv,2 the absolute ramification index of Fv is less than l− 1, we may
replace ρf ⊗ ωk

′−1 with a modular lift of ρ which is potentially ordinary at all
places v|l. By construction, ρ is potentially ordinary at all places v|l, so we are
done.

We now prove Theorem 2.1. Firstly, suppose that ρg(GF ) is insoluble. Then
Hida theory (see [Wil88] or [Hid88]) provides us with a weight 2 form f which
satisfies the hypotheses of Theorem 2.2, and which has ρf ' ρg (that f is
potentially ordinary follows as in the proof of Theorem 3.4). Then Theorem
2.2 provides us with a Hilbert modular form f ′ of parallel weight 2 with ρf ′ '
ρf ⊗ εk

′−1 and

ρf ′ |Gv
'

(
εωk

′−2ψv,2 ∗
0 ψv,1

)
for all places v|l, with ψv,1 an unramified lift of ψv,1. Then Lemma 3.4.2 of
[Kis04] shows that f ′ has Uv-eigenvalue ψv,1(Frobv), an l-adic unit. The exis-
tence of g′ now follows from Hida theory.

Now suppose that ρf (GF ) is insoluble. Then there is a lift of ρf ⊗ εk
′−1 to

a characteristic zero representation, which comes from a Hilbert modular form
of parallel weight 1 by the Langlands-Tunnell theorem (see for example Lemma
5.2 of [Kha05]). Such a form is necessarily ordinary in the sense of Hida theory,
and the theorem follows by Hida theory as in the insoluble case.
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