A MODULARITY LIFTING THEOREM FOR WEIGHT TWO HILBERT MODULAR FORMS - ERRATUM

Toby Gee

1. Introduction

Unfortunately, the proof of Theorem 3.2 of [Gee06] (and thus the main Theorem stated in the introduction to the paper) is incomplete; in particular, the proof of Lemma 3.3 is incorrect. Specifically, one cannot automatically assume that the type of $\rho_{f'}$ is $\tilde{\omega}_1 \oplus \tilde{\omega}_2$; to do so is to make a rather strong assumption about the Serre weights of $\overline{\rho}_f$. In addition one cannot conclude that the type determines the descent data on \mathcal{G}_1 and \mathcal{G}_2 , at least in the case where $\overline{\rho}_f|_{G_{F_v}}$ is split; either \mathcal{G}_1 can correspond to $\tilde{\omega}_1$ and \mathcal{G}_2 to $\tilde{\omega}_2$, or vice versa.

As a consequence, we are only able to obtain a slightly weaker modularity lifting theorem; the most general result we can obtain is:

Theorem 1.1. Let p > 2, let F be a totally real field, and let E be a finite extension of \mathbb{Q}_p with ring of integers \mathcal{O} . Let $\rho : G_F \to \operatorname{GL}_2(\mathcal{O})$ be a continuous representation unramified outside of a finite set of primes, with determinant a finite order character times the p-adic cyclotomic character. Suppose that

- (1) ρ is potentially Barsotti-Tate at each v|p.
- (2) There exists a Hilbert modular form f of parallel weight 2 over F such that $\overline{\rho}_f \sim \overline{\rho}$, and for each v|p, if ρ is potentially ordinary at v then so is ρ_f .
- (3) $\overline{\rho}|_{F(\zeta_p)}$ is absolutely irreducible, and if p = 5 and the projective image of $\overline{\rho}$ is isomorphic to $\mathrm{PGL}_2(\mathbb{F}_5)$ then $[F(\zeta_5):F] = 4$.

Then ρ is modular.

Proof. The proof is extremely similar to that of Theorem 3.1 of [Gee06]. Hypothesis (3) has been weakened because of a corresponding weakening of (3.2.3)(3) in the final version of [Kis07]. As for (2), we need only check that after making a base change, we may assume that at each place dividing p, ρ is potentially ordinary if and only if ρ_f is. This is easily achieved by employing Lemma 3.1.5 of [Kis07] at each place where ρ is not potentially ordinary.

Additionally, we would like to thank Fred Diamond and Florian Herzig for independently bringing to our attention a minor error in the proof of Proposition 2.3. The points D^j constructed in the proof are not necessarily points on $\mathcal{GR}_{V_{\mathbb{F}},0}$. However, their only use is in showing that the points D and D' lie on the same component, and this in fact follows immediately from an application of Lemma 2.4 with $N = (N_i)$,

$$N_i = \left(\begin{smallmatrix} 0 & -w_i u^{-b_i} \\ 0 & 0 \end{smallmatrix}\right)$$

²⁰⁰⁰ Mathematics Subject Classification. 11F33.

Toby Gee

References

- [Gee06] Toby Gee, A modularity lifting theorem for weight two Hilbert modular forms, Math. Res. Lett. 13 (2006), no. 5-6, 805–811.
- [Kis07] Mark Kisin, Moduli of finite flat group schemes, and modularity, to appear in Annals of Mathematics (2007).

 $E\text{-}mail \ address: \verb"toby.gee@ic.ac.uk"$

DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE LONDON