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Abstract. We study the weight part of (a generalisation of) Serre’s conjecture

for mod l Galois representations associated to automorphic representations on
unitary groups of rank n for odd primes l. Given a modular Galois repre-

sentation, we use automorphy lifting theorems to prove that it is modular in

many other weights. We make no assumptions on the ramification or inertial
degrees of l. We give an explicit strengthened result when n = 3 and l splits

completely in the underlying CM field.
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1. Introduction

In recent years there has been considerable progress in formulating generalisa-
tions of Serre’s conjecture, and in particular of the weight part of Serre’s conjecture,
for higher-dimensional groups; cf. [ADP02], [Her09], [Gee11], [EGHS14]. There has
been rather less progress in proving cases of these conjectures; indeed, the only re-
sults that we are aware of are the essentially complete treatment of the ordinary
case for definite unitary groups in [GG12], and the results of [EGH13] for definite
unitary groups of rank 3.

In the present paper, we use the automorphy lifting theorems developed in
[BLGG11], [BLGG12] and [BLGGT14b] to prove that a modular Galois repre-
sentation, coming from an automorphic form on U(n), is necessarily modular in a
number of additional weights predicted by the conjectures of [Her09] and [EGHS14].
Rather complete results are available in the case n = 2, which are worked out in
detail in the papers [BLGG13, GLS14, GLS13], so we concentrate in this paper
on the case that n > 2. The additional complications are twofold. Firstly, we no
longer know that any modular Galois representation admits a potentially diagonal-
izable lift (in the case n = 2, this is proved in [BLGG13] as a consequence of the
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results of [Kis09] and [Gee06]). Secondly, the relationship between being modular
of some weight and having an automorphic lift of some weight is substantially more
complicated for n > 2 than it is for n = 2; in particular, it is no longer the case
that given an irreducible mod l representation F of GLn(Fl), there is necessarily an
irreducible characteristic zero algebraic representation W of GLn whose reduction
modulo l is F . Instead, one finds that F is the socle of the reduction modulo l of
some W , and this gives strictly weaker information.

As a result of these two difficulties, our main theorems have two restrictions.
Let F be a CM field, and let r̄ : GF → GLn(Fl) be our given modular Galois
representation. Firstly, we must assume that r̄ has a potentially diagonalizable
automorphic lift. This assumption is perhaps not as serious as it initially sounds,
as it is conjecturally always satisfied, and in particular is known to hold provided
that l is unramified in F and r̄ has an automorphic lift of sufficiently small weight.
Secondly, rather than prove that r̄ is modular of some particular weight, we typically
only provide a list of weights, and guarantee that r̄ is modular of some weight in this
list. In fact, it is often the case that only one weight on this list is predicted by the
conjectures of [Her09] and [EGHS14], and it should presumably be possible to prove
modularity in this weight in many cases using integral p-adic Hodge theory. We
carry out such an analysis in detail in the case n = 3, defining a list of conjectural
weights W obv(r̄), and obtaining the following result (Theorem 5.1.4).

Theorem A. Let F be an imaginary CM field with maximal totally real subfield
F+, and suppose that F/F+ is unramified at all finite places, and that l splits com-
pletely in F . Suppose that l > 2, and that r̄ : GF → GL3(Fl) is an irreducible
representation with split ramification. Assume that there is a RACSDC automor-

phic representation Π of GL3(AF ) of weight µ ∈ (Z3
+)

Hom (F,C)
0 and level prime to l

such that

• r̄ ∼= r̄l,ı(Π) (so in particular, r̄c ∼= r̄∨ε−2
l ).

• For each τ ∈ Hom (F,C), µτ,1 − µτ,3 ≤ l − 3.
• r̄(GF (ζl)) is adequate.

Let a ∈ (Z3
+)

∐
w|l Hom (kw,Fl)

0 be a generic Serre weight. Assume that a ∈ W obv(r̄).
Then r̄ is modular of weight a.

(See sections 2 and 4 for any unfamiliar terminology, and section 5 for the def-
inition of “generic” that we are using, which is extremely mild.) We should point
out that we do not expect that W obv(r̄) contains all the weights in which r̄ is mod-
ular; rather, it consists of those weights which are “obvious” in the terminology of
[EGHS14]. (It is perhaps worth remarking that despite the name, it is not obvious
that r̄ is modular in any of these weights!) In order to prove this theorem we make
use of Fontaine-Laffaille theory; it seems likely that if one could compute the possi-
ble reductions of crystalline Galois representations outside of the Fontaine-Laffaille
range then one could prove an analogous theorem for n > 3.

We now outline the structure of this paper. In Section 2 we define the spaces
of automorphic forms that we work with, and define what it means for r̄ to be
modular of some weight. In Section 3 we establish the main lifting theorem that
we need, a corollary of the results of [BLGGT14b]. In Section 4 we define the set of
weights W obv(r̄), recall some results from Fontaine-Laffaille theory, and prove our
main results for arbitrary n. Finally, in Section 5 we prove Theorem A.
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1.1. Notation. If M is a field, we let GM denote its absolute Galois group. We
write all matrix transposes on the left; so tA is the transpose of A. Let εl denote
the l-adic cyclotomic character, and ε̄l or ωl the mod l cyclotomic character. If M
is a finite extension of Qp for some p, we write IM for the inertia subgroup of GM .
If R is a local ring we write mR for the maximal ideal of R.

We fix an algebraic closure Q of Q. For each prime p we fix an algebraic closure
Qp of Qp, and we fix an embedding Q ↪→ Qp.

If W is a de Rham representation of GK over Ql and if τ : K ↪→ Ql then by
definition the multiset HTτ (W ) of Hodge-Tate weights of W with respect to τ

contains i with multiplicity dimQl(W ⊗τ,K K̂(i))GK . Thus for example HTτ (εl) =

{−1}.
If K is a finite extension of Qp for some p, we will let recK be the local Lang-

lands correspondence of [HT01], so that if π is an irreducible complex admissible
representation of GLn(K), then recK(π) is a Weil-Deligne representation of the
Weil group WK . We will write rec for recK when the choice of K is clear. We write
ArtK : K× → WK for the isomorphism of local class field theory, normalised so
that uniformisers correspond to geometric Frobenius elements.

Let K be a finite extension of Ql with residue field k. For each σ ∈ Hom (k,Fl)
we define the fundamental character ωσ corresponding to σ to be the composite

IKab/K

Art−1
K // O×K // k×

σ−1
// Fl
×
.

Note that if k = Fl then ωσ = ωl. For any algebraic extension L of Ql, we
often denote by Hom (K,L) the set of field homomorphisms from K to L which
are continuous for the l-adic topologies on K and L (or equivalently, which are
Ql-linear).

2. Definitions

2.1. Let l be a prime, and let F be an imaginary CM field with maximal totally
real field subfield F+. We assume throughout this paper that:

• F/F+ is unramified at all finite places.
• Every place v|l of F+ splits in F .
• If n is even, then n[F+ : Q]/2 is also even.

Under these hypotheses, there is a reductive algebraic group G/F+ with the fol-
lowing properties:

• G is an outer form of GLn, with G/F ∼= GLn/F .

• If v is a finite place of F+, G is quasi-split at v.
• If v is an infinite place of F+, then G(F+

v ) ∼= Un(R).

To see that such a group exists, one may argue as follows. Let B denote the matrix
algebra Mn(F ). An involution ‡ of the second kind on B gives a reductive group
G‡ over F+ by setting

G‡(R) = {g ∈ B ⊗F+ R : g‡g = 1}

for any F+-algebra R. Any such G‡is an outer form of GLn, with G‡/F ∼= GLn/F .
One can choose ‡ such that

• If v is a finite place of F+, G‡ is quasi-split at v.
• If v is an infinite place of F+, then G‡(F

+
v ) ∼= Un(R).
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To see this, one uses the argument of Lemma I.7.1 of [HT01]. We then fix some
choice of ‡ as above, and take G = G‡.

As in section 3.3 of [CHT08] we define a model for G over OF+ in the following

way. We choose an order OB in B such that O‡B = OB , and OB,w is a maximal
order in Bw for all places w of F which are split over F+ (see section 3.3 of [CHT08]
for a proof that such an order exists). Then we can define G over OF+ by setting

G(R) = {g ∈ OB ⊗OF+ R : g‡g = 1}

for any OF+ -algebra R.
If v is a place of F+ which splits as wwc over F , then we choose an isomorphism

ιv : OB,v
∼−→Mn(OF,v) = Mn(OFw)⊕Mn(OFwc )

such that ιv(x
‡) = tιv(x)c. This gives rise to an isomorphism

ιw : G(OF+
v

)
∼−→ GLn(OFw)

sending ι−1
v (x, tx−c) to x.

Let K be an algebraic extension of Ql in Ql which contains the image of every
embedding F ↪→ Ql, let O denote the ring of integers of K, and let k denote the
residue field of K. Let Sl denote the set of places of F+ lying over l, and for each
v ∈ Sl fix a place ṽ of F lying over v. Let S̃l denote the set of places ṽ for v ∈ Sl.

Let W be an O-module with an action of G(OF+,l), and let U ⊂ G(A∞F+) be a
compact open subgroup with the property that for each u ∈ U , if ul denotes the
projection of u to G(F+

l ), then ul ∈ G(OF+
l

). Let S(U,W ) denote the space of

algebraic modular forms on G of level U and weight W , i.e. the space of functions

f : G(F+)\G(A∞F+)→W

with f(gu) = u−1
l f(g) for all u ∈ U .

Let Ĩl denote the set of embeddings F ↪→ K giving rise to a place in S̃l. For any

ṽ ∈ S̃l, let Ĩṽ denote the set of elements of Ĩl lying over ṽ. Let Zn+ denote the set
of tuples (λ1, . . . , λn) of integers with λ1 ≥ λ2 ≥ · · · ≥ λn. For any λ ∈ Zn+, view
λ as a dominant character of the algebraic group GLn/O in the usual way, and let
M ′λ be the algebraic O-representation of GLn given by

M ′λ := Ind GLn
Bn

(w0λ)/O

where Bn is the standard upper-triangular Borel subgroup of GLn, and w0 is the
longest element of the Weyl group (see [Jan03] for more details of these notions).
Write Mλ for the O-representation of GLn(O) obtained by evaluating M ′λ on O.

For any λ ∈ (Zn+)Ĩṽ , let Wλ be the free O-module with an action of GLn(OFṽ ) given
by

Wλ := ⊗τ∈ĨṽMλτ ⊗OFṽ ,τ O.

We give this an action of G(OF+,v) via ιṽ. For any λ ∈ (Zn+)Ĩl , let Wλ be the free
O-module with an action of G(OF+,l) given by

Wλ := ⊗ṽ∈S̃lWλṽ .

If A is an O-module we let

Sλ(U,A) := S(U,Wλ ⊗O A).
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For any compact open subgroup U as above of G(A∞F+) we may write G(A∞F+) =∐
iG(F+)tiU for some finite set {ti}. Then there is an isomorphism

S(U,W )→ ⊕iWU∩t−1
i G(F+)ti

given by f 7→ (f(ti))i. We say that U is sufficiently small if for some finite place v
of F+ the projection of U to G(F+

v ) contains no element of finite order other than
the identity. Suppose that U is sufficiently small. Then for each i as above we have
U ∩ t−1

i G(F+)ti = {1}, so taking W = Wλ ⊗O A we see that for any O-module A,
we have

Sλ(U,A) ∼= Sλ(U,O)⊗O A.
We note when U is not sufficiently small, we still have Sλ(U,A) ∼= Sλ(U,O)⊗O A
whenever A is O-flat.

We now recall the relationship between our spaces of algebraic automorphic forms
and the space of automorphic forms on G. Write Sλ(Ql) for the direct limit of the
spaces Sλ(U,Ql) over compact open subgroups U as above (with the transition maps
being the obvious inclusions Sλ(U,Ql) ⊂ Sλ(V,Ql) whenever V ⊂ U). Concretely,
Sλ(Ql) is the set of functions

f : G(F+)\G(AF+)→Wλ ⊗O Ql
such that there is a compact open subgroup U of G(A∞,lF+ )×G(OF+,l) with

f(gu) = u−1
l f(g)

for all u ∈ U , g ∈ G(AF+). This space has a natural left action of G(A∞F+) via

(g · f)(h) := glf(hg).

Fix an isomorphism ı : Ql
∼−→ C. For each embedding τ : F+ ↪→ R, there

is a unique embedding τ̃ : F ↪→ C extending τ such that ı−1τ̃ ∈ Ĩl. Let σλ
denote the representation of G(F+

∞) given by Wλ ⊗O Ql ⊗Ql,ı C, with an element

g ∈ G(F+
∞) acting via ⊗τ τ̃(ιτ̃ (g)). Let A denote the space of automorphic forms

on G(F+)\G(AF+). From the proof of Proposition 3.3.2 of [CHT08], one easily
obtains the following.

Lemma 2.1.1. There is an isomorphism of G(A∞F+)-modules

Sλ(Ql)
∼−→ HomG(F+

∞)(σ
∨
λ ,A).

In particular, we note that Sλ(Ql) is a semi-simple admissible G(A∞F+)-module.
Following [CHT08], we say that a cuspidal automorphic representation of GLn(AF )

is RACSDC (regular, algebraic, conjugate self dual, and cuspidal) if

• π∞ has the same infinitesimal character as some irreducible algebraic rep-
resentation of ResF/Q GLn, and
• πc ∼= π∨.

We say that π has level prime to l if πv is unramified for all v|l. If Ω is an

algebraically closed field of characteristic 0 we write (Zn+)
Hom (F,Ω)
0 for the subset of

elements λ ∈ (Zn+)Hom (F,Ω) such that

λτ,i + λτ◦c,n+1−i = 0

for all τ , i.
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If λ ∈ (Zn+)Hom (F,C) we write Σλ for the irreducible algebraic representation of

GLHom (F,C)
n given by the tensor product over τ of the irreducible representations

with highest weights λτ . We say that a RACSDC automorphic representation π of
GLn(AF ) has weight λ ∈ (Zn+)Hom (F,C) if π∞ has the same infinitesimal character

as Σ∨λ . If this is the case then necessarily λ ∈ (Zn+)
Hom (F,C)
0 .

Theorem 2.1.2. If π is a RACSDC automorphic representation of GLn(AF ) of
weight λ, then there is a continuous semisimple representation

rl,ı(π) : GF → GLn(Ql)

such that

(1) rl,ı(π)c ∼= rl,ı(π)∨ ⊗ ε1−nl .
(2) The representation rl,ı(π) is de Rham, and is crystalline if π has level prime

to l. If τ : F ↪→ Ql then

HTτ (rl,ı(π)) = {λıτ,1 + n− 1, . . . , λıτ,n}.

(3) For each finite place v of l, we have

ıWD(rl,ı(π)|GFv )F−ss ∼= rec(π∨v ⊗ | det |(1−n)/2).

Here WD(rl,ı(π)|GFv )F−ss denotes the Frobenius semisimplification of the
Weil-Deligne representation associated to rl,ı(π)|GFv , as in section 1 of
[TY07].

Proof. This follows at once from the main results of [Shi11], [CH13], [Car12a],
[BLGGT14a] and [Car12b]. �

We say that a continuous irreducible representation r : GF → GLn(Ql) (respec-
tively r̄ : GF → GLn(Fl)) is automorphic if r ∼= rl,ı(π) (respectively r̄ ∼= r̄l,ı(π)) for
some RACSDC representation π of GLn(AF ). We say that a continuous irreducible

representation r : GF → GLn(Ql) is automorphic of weight λ ∈ (Zn+)
Hom (F,Ql)
0 if

r ∼= rl,ı(π) for some RACSDC representation π of GLn(AF ) of weight ıλ.
The theory of base change gives a close relationship between automorphic repre-

sentations of G(AF+) and automorphic representations of GLn(AF ). For example,
one has the following consequences of Corollaire 5.3 and Théorème 5.4 of [Lab09].

Theorem 2.1.3. Suppose that Π is a RACSDC representation of GLn(AF ) of

weight λ ∈ (Zn+)
Hom (F,C)
0 . Then there is an automorphic representation π of

G(AF+) such that

(1) For each embedding τ : F+ ↪→ R and each τ̃ : F ↪→ C extending τ , we have
πτ ∼= Σ∨λτ̃ ◦ ιτ̃ .

(2) If v is a finite place of F+ which splits as wwc in F , then πv ∼= Πw ◦ ιw.
(3) If v is a finite place of F+ which is inert in F , and Πv is unramified, then

πv has a fixed vector for some hyperspecial maximal compact subgroup of
G(F+

v ).

Theorem 2.1.4. Suppose that π is an automorphic representation of G(AF+).
Then either:

(1) There is an RACSDC automorphic representation Π of GLn(AF ) of some

weight λ ∈ (Zn+)
Hom (F,C)
0 , or:
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(2) There is a nontrivial partition n = n1 + · · ·+ nr and cuspidal automorphic
representations Πi of GLni(AF ) such that if Π := Π1 � · · · � Πr is the
isobaric direct sum of the Πi, then Π is regular, algebraic, and conjugate

self-dual of some weight λ ∈ (Zn+)
Hom (F,C)
0

such that in either case

(1) For each embedding τ : F+ ↪→ R and each τ̃ ↪→ C extending τ , we have
πτ ∼= Σ∨λτ̃ ◦ ιτ̃ .

(2) If v is a finite place of F+ which splits as wwc in F , then πv ∼= Πw ◦ ιw.
(3) If v is a finite place of F+ which is inert in F , and πv has a fixed vector

for some hyperspecial maximal compact subgroup of G(F+
v ), then Πv is

unramified.

We now wish to define what it means for an irreducible representation r̄ : GF →
GLn(Fl) to be modular of some weight. In order to do so, we return to the spaces
of algebraic modular forms considered before. For each place w|l of F , let kw
denote the residue field of Fw. If w lies over a place v of F+, write v = wwc. Let

(Zn+)
∐
w|l Hom (kw,Fl)

0 denote the subset of (Zn+)
∐
w|l Hom (kw,Fl) consisting of elements

a such that for each w|l, if σ ∈ Hom (kw,Fl) and 1 ≤ i ≤ n then

aσ,i + aσc,n+1−i = 0.

We say that an element a ∈ (Zn+)
∐
w|l Hom (kw,Fl)

0 is a Serre weight if for each w|l
and each σ ∈ Hom (kw,Fl) we have

l − 1 ≥ aσ,i − aσ,i+1

for all 1 ≤ i ≤ n − 1. Similarly, if F is a finite extension of Fl, we say that an

element a ∈ (Zn+)Hom (F,Fl) is a Serre weight if for each σ ∈ Hom (F,Fl) and each
1 ≤ i ≤ n− 1 we have

l − 1 ≥ aσ,i − aσ,i+1.

Given any a ∈ Zn+ with l − 1 ≥ ai − ai+1 for all 1 ≤ i ≤ n − 1, we define
the F-representation Pa of GLn(F) to be the representation obtained by evaluat-

ing Ind GLn
Bn

(w0a)F on F, and let Na be the irreducible sub-F-representation of Pa
generated by the highest weight vector (that this is indeed irreducible follows for
example from II.2.8(1) of [Jan03] and the appendix to [Her09]).

If a ∈ (Zn+)Hom (F,Fl) is a Serre weight then we define an irreducible Fl-representation
Fa of GLn(F) by

Fa := ⊗τ∈Hom (F,Fl)Naτ ⊗F,τ Fl.

We will also consider the Fl-representation Pa of GLn(F) given by

Pa := ⊗τ∈Hom (F,Fl)Paτ ⊗F,τ Fl.

We say that two Serre weights a and b are equivalent if and only if Fa ∼= Fb as
representations of GLn(F). This is equivalent to demanding that for each σ ∈
Hom (F,Fl), we have

aσ,i − aσ,i+1 = bσ,i − bσ,i+1,

for each 1 ≤ i ≤ n− 1, and the character F× → Fl
×

given by

x 7→
∏

σ∈Hom (F,Fl)

σ(x)aσ,n−bσ,n
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is trivial. Every irreducible Fl-representation of GLn(F) is of the form Fa for some
a (see for example the appendix to [Her09]).

If a ∈ (Zn+)
∐
w|l Hom (kw,Fl)

0 is a Serre weight, we define an irreducible Fl-representation
Fa of G(OF+,l) as follows: we define

Fa = ⊗FlFaṽ ,

an irreducible representation of
∏
ṽ∈S̃l GLn(kṽ), and we let G(OF+,l) act on Faṽ by

the composition of ιṽ and reduction modulo l. Again, we say that two Serre weights
a and b are equivalent if and only if Fa ∼= Fb as representations of G(OF+,l). This

is equivalent to demanding that for each place w|l and each σ ∈ Hom (kw,Fl) and
each 1 ≤ i ≤ n− 1 we have

aσ,i − aσ,i+1 = bσ,i − bσ,i+1,

and the character k×w → Fl
×

given by

x 7→
∏

σ∈Hom (kw,Fl)

σ(x)aσ,n−bσ,n

is trivial.
Note that the representation Fa is independent of the choice of S̃l (this fol-

lows easily from the condition that aσc,n+1−i = −aσ,i and the relation ιwc(x) =
t(ιw(x))−1).

For future use, if a ∈ (Zn+)
∐
w|l Hom (kw,Fl)

0 is a Serre weight, we also define an

Fl-representation Pa of G(OF+,l) as follows: we define

Pa = ⊗FlPaṽ ,

a representation of
∏
ṽ∈S̃l GLn(kṽ), and we let G(OF+,l) act on Paṽ by the compo-

sition of ιṽ and reduction modulo l. Note that Fa is a subrepresentation of Pa.

We say that a weight λ ∈ (Zn+)
Hom (F,Ql)
0 is a lift of a Serre weight a if for each

w|l and each σ ∈ Hom (kw,Fl) there is an element τ ∈ Hom (F,Ql) lying over w
and lifting σ such that λτ = aσ, and for all other τ ′ ∈ Hom (F,Ql) lying over w

and lifting σ we have λτ ′ = 0. If λ ∈ (Zn+)
Hom (F,Ql)
0 and w|l is a place of F , we

let λw ∈ (Zn+)Hom (Fw,Ql) be defined in the obvious way. If L is a finite extension

of Ql with residue field kL, we say that an element λ ∈ (Zn+)Hom (L,Ql) is a lift of

an element a ∈ (Zn+)Hom (kL,Fl) if for each σ ∈ Hom (kL,Fl) there is an element

τ ∈ Hom (L,Ql) lifting σ such that λτ = aσ, and for all other τ ′ ∈ Hom (L,Ql)
lifting σ we have λτ ′ = 0.

For the rest of this section, fix K = Ql.

Definition 2.1.5. We say that a compact open subgroup of G(A∞F+) is good if
U =

∏
v Uv with Uv a compact open subgroup of G(F+

v ) such that:

• Uv ⊂ G(OF+
v

) for all v which split in F ;

• Uv = G(OF+
v

) if v|l;
• Uv is a hyperspecial maximal compact subgroup of G(F+

v ) if v is inert in
F .

Let U be a good compact open subgroup of G(A∞F+). Let T be a finite set of finite
places of F+ which split in F , containing Sl and all the places v which split in F
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for which Uv 6= G(OF+
v

). We let TT,univ be the commutative O-polynomial algebra

generated by formal variables T
(j)
w for all 1 ≤ j ≤ n, w a place of F lying over a

place v of F+ which splits in F and is not contained in T . For any λ ∈ (Zn+)Ĩl , the

algebra TT,univ acts on Sλ(U,O) via the Hecke operators

T (j)
w := ι−1

w

[
GLn(OFw)

(
$w1j 0

0 1n−j

)
GLn(OFw)

]
for w 6∈ T and $w a uniformiser in OFw . Similarly, for any Serre weight a ∈
(Zn+)

∐
v|l Hom (kv,Fl)

0 , TT,univ acts on S(U,Fa).

Suppose that m is a maximal ideal of TT,univ with residue field Fl such that
Sλ(U,Ql)m 6= 0. Then (cf. Proposition 3.4.2 of [CHT08]) by Lemma 2.1.1, Theorem
2.1.4, and Theorem 2.1.2, there is a continuous semisimple representation

r̄m : GF → GLn(Fl)

associated to m, which is uniquely determined by the properties that:

• r̄cm ∼= r̄∨mε
1−n
l ,

• for all finite places w of F not lying over T , r̄m|GFw is unramified, and
• if w is a finite place of F which doesn’t lie over T and which splits over F+,

then the characteristic polynomial of r̄m(Frobw) is

Xn−T (1)
w Xn−1 + · · ·+(−1)j(Nw)j(j−1)/2T (j)

w Xn−j+ · · ·+(−1)n(Nw)n(n−1)/2T (n)
w .

Lemma 2.1.6. Suppose that U is sufficiently small, and let m be a maximal ideal

of TT,univ
λ with residue field Fl. Suppose that a ∈ (Zn+)

∐
v|l Hom (kv,Fl)

0 is a Serre

weight, and that λ ∈ (Zn+)Ĩl is a lift of a. Then

Sλ(U,Ql)m 6= 0

if and only if for some Jordan-Hölder factor F of the G(OF+,l)-representation Pa,

S(U,F )m 6= 0.

In particular if S(U,Fa)m 6= 0 then Sλ(U,Ql)m 6= 0.

Proof. We have Sλ(U,Ql)m = Sλ(U,OQl)m ⊗ Ql. Since U is sufficiently small, it

follows that Sλ(U,OQl)m is l-torsion free. Thus Sλ(U,Ql)m 6= 0 if and only if

Sλ(U,OQl)m 6= 0. However, using the fact that U is sufficiently small again, we

have Sλ(U,Fl)m 6= 0 if and only if Sλ(U,OQl)m 6= 0. Thus, Sλ(U,Ql)m 6= 0 if and

only if Sλ(U,Fl)m 6= 0.
But Sλ(U,Fl)m = S(U,Wλ⊗O Fl)m is nonzero if and only if S(U,F )m is nonzero

for some Jordan-Hölder factor F of Wλ ⊗O Fl. (This follows from the exactness of
the functor F 7→ S(U,F )m which in turn follows from the fact that U is sufficiently
small.) It then suffices to note that as an immediate consequence of the definitions,
we have Pa ∼= Wλ ⊗O Fl and Fa is a Jordan-Hölder factor of Wλ ⊗O F. �

We have the following definitions.

Definition 2.1.7. If R is a commutative ring and r : GF → GLn(R) is a repre-
sentation, we say that r has split ramification if r|GFw is unramified for any finite
place w ∈ F which does not split over F+.
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Definition 2.1.8. If π is a RACSDC automorphic representation of GLn(AF ), we
say that π has split ramification if πw is unramified for any finite place w ∈ F which
does not split over F+.

Definition 2.1.9. Suppose that r̄ : GF → GLn(Fl) is a continuous irreducible

representation. Then we say that r̄ is modular of weight a ∈ (Zn+)
∐
w|l Hom (kw,Fl)

0 if
there is a good, sufficiently small level U , a set of places T as above, and a maximal
ideal m of TT,univ with residue field Fl such that

• S(U,Fa)m 6= 0, and
• r̄ ∼= r̄m.

(Note that r̄m exists by Lemma 2.1.6 and the remarks preceding it.) We say that
r̄ is modular if it is modular of some weight.

Remark 2.1.10. Note that if r̄ : GF → GLn(Fl) is modular then r̄ must have split
ramification, and r̄c ∼= r̄∨ε1−nl . Note also that this definition is independent of

the choice of S̃l (because Fa is independent of this choice). We need to restrict
to split ramification and good level because a development of deformation theory
for local Galois representations valued in the group Gn of [CHT08] is currently
missing from the literature; in particular, this applies to the results that we use
from [BLGGT14b].

Lemma 2.1.11. Suppose that r̄ : GF → GLn(Fl) is a continuous irreducible

representation with split ramification. Let a ∈ (Zn+)
∐
w|l Hom (kw,Fl)

0 be a Serre

weight, and let λ ∈ (Zn+)
Hom (F,Ql)
0 be a lift of a. Then if r̄ is modular of weight

a ∈ (Zn+)
∐
w|l Hom (kw,Fl)

0 , there is a RACSDC automorphic representation π of
GLn(AF ) of weight ıλ and level prime to l which has split ramification, and which
satisfies r̄l,ı(π) ∼= r̄. Conversely, if there is a RACSDC automorphic representa-
tion π of GLn(AF ) of weight ıλ and level prime to l which has split ramification,

and which satisfies r̄l,ı(π) ∼= r̄, then r̄ is modular of weight b ∈ (Zn+)
∐
w|l Hom (kw,Fl)

0

for some b such that the G(OF+,l)-representation Pa has a Jordan-Hölder factor
isomorphic to Fb.

Proof. Suppose firstly that r̄ is modular of weight a. Then by definition there is
a good U and a T as above with U sufficiently small, and a maximal ideal m of
TT,univ with residue field Fl such that

• S(U,Fa)m 6= 0, and
• r̄ ∼= r̄m.

By Lemma 2.1.6, the first property implies that Sλ(U,Ql)m 6= 0. Define a compact
open subgroup U ′ =

∏
w U

′
w of GLn(A∞F ) by

• U ′w = GLn(OFw) if w is not split over F+.
• U ′w = ιw(Uw) if w splits over F+.

By Lemma 2.1.1, Theorem 2.1.4, and Theorem 2.1.2, there is a RACSDC automor-

phic representation π of weight λ which satisfies r̄l,ı(π) ∼= r̄, and π
U ′w
w 6= 0 for all

finite places w of F . Since U is good, we see that π has level prime to l, and it has
split ramification, as required.

Conversely, suppose that there is a RACSDC automorphic representation π of
GLn(AF ) of weight λ which has split ramification and level prime to l with r̄l,ı(π) ∼=
r̄. Then there is a compact open subgroup U ′ =

∏
w U

′
w of GLn(A∞F ) such that
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• for each finite place w of F , π
U ′w
w 6= 0,

• U ′w ⊂ GLn(OFw) for all w,
• U ′w = GLn(OFw) for all w|l and all w which are not split over F+,

• if v = wwc is a place of F+ which splits in F , then U ′wc = c(tU ′w
−1

),
• there is a finite place w of F which is split over F+ such that

– w lies above a rational prime p with [F (ζp) : F ] > n, and
– U ′w = ker(GLn(Ow)→ GLn(Ow/$w)).

Define a compact open subgroup U =
∏
v Uv of G(A∞F+) by

• if v is inert in F , then Uv is hyperspecial, and
• if v = wwc splits in F , then Uv = ι−1

w (U ′w) (which is well-defined by the
fourth bullet point above).

By the final bullet point in the list of properties of U ′ above, U is sufficiently small.
Then by Lemma 2.1.1 and Theorem 2.1.3 we have Sλ(U,Ql)m 6= 0. The result now
follows from Lemma 2.1.6. �

3. A lifting theorem

3.1. We recall some terminology from [BLGGT14b], specialized to the crystalline
(as opposed to potentially crystalline) case. Fix a prime l. Let K be a finite
extension of Ql, and O the ring of integers in a finite extension of Ql inside Ql,
with residue field k. Assume that for each continuous embedding K ↪→ Ql, the
image is contained in the field of fractions of O.

Let ρ : GK → GLn(k) be a continuous representation, and let R�
O,ρ be the

universal O-lifting ring. Let {Hτ} be a collection of n element multisets of integers
parametrized by τ ∈ Hom Ql(K,Ql). Then R�

O,ρ has a unique quotient R�
O,ρ,{Hτ},cris

which is reduced and without l-torsion and such that a Ql-point of R�
O,ρ factors

through R�
O,ρ,{Hτ},cris if and only if it corresponds to a representation ρ : GK →

GLn(Ql) which is crystalline and has HTτ (ρ) = Hτ for all τ : K ↪→ Ql. We will
write R�

ρ,{Hτ},cris⊗Ql for R�
O,ρ,{Hτ},cris⊗OQl. This definition is independent of the

choice of O. The scheme Spec (R�
ρ,{Hτ},cris ⊗ Ql) is formally smooth over SpecQl.

(See [Kis08].)
Let ρ1, ρ2 : GK → GLn(OQl) be continuous representations. We say that ρ1

connects to ρ2, which we denote ρ1 ∼ ρ2, if and only if

• the reduction ρ1 = ρ1 mod mOQl
is equivalent to the reduction ρ2 = ρ2 mod

mQl ;

• ρ1 and ρ2 are both crystalline;
• for each τ : K ↪→ Ql we have HTτ (ρ1) = HTτ (ρ2);
• and ρ1 and ρ2 define points on the same irreducible component of the

scheme Spec (R�
ρ1,{HTτ (ρ1)},cris ⊗Ql).

We note that ρ1 ∼ ρ2 in our sense if and only if both ρ1 and ρ2 are crystalline and
ρ1 ∼ ρ2 in the sense of [BLGGT14b]. As in section 2.3 of [BLGGT14b], we have
the following:

(1) The relation ρ1 ∼ ρ2 does not depend on the equivalence chosen between
the reductions ρ1 and ρ2, nor on the GLn(OQl)-conjugacy class of ρ1 or ρ2.

(2) ∼ is an equivalence relation.
(3) If K ′/K is a finite extension and ρ1 ∼ ρ2 then ρ1|GK′ ∼ ρ2|GK′ .
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(4) If ρ1 ∼ ρ2 and ρ′1 ∼ ρ′2 then ρ1 ⊕ ρ′1 ∼ ρ2 ⊕ ρ′2 and ρ1 ⊗ ρ′1 ∼ ρ2 ⊗ ρ′2 and
ρ∨1 ∼ ρ∨2 .

(5) If µ : GK → Q×l is a continuous unramified character with µ = 1 then
ρ1 ∼ ρ1 ⊗ µ.

(6) Suppose ρ1 is crystalline and ρ1 is semisimple. Let Fil i be a GK-invariant
filtration on ρ1 by OQl -direct summands. Then ρ1 ∼ ⊕igr i(Fil ).

We will call a crystalline representation ρ : GK → GLn(OQl) diagonal if it is of

the form χ1⊕· · ·⊕χn with χi : GK → O×Ql . We will call a crystalline representation

ρ : GK → GLn(OQl) diagonalizable if it connects to some diagonal representation.

We will call a representation ρ1 : GK → GLn(OQl) potentially diagonalizable if there

is a finite extension K ′/K such that ρ1|GK′ is diagonalizable. Note that if K ′′/K
is a finite extension and ρ1 is diagonalizable (resp. potentially diagonalizable) then
ρ1|GK′′ is diagonalizable (resp. potentially diagonalizable).

Suppose now that K is a finite extension of Qp for some prime p 6= l and

ρ1, ρ2 : GK → GLn(OQl)

are two continuous representations. We define the notion that ρ1 connects to ρ2

exactly as in [BLGGT14b]. Again, this will be denoted by ρ1 ∼ ρ2.
Recall the following definition from [Tho12] (for a discussion of the equivalence

of this definition to that formulated in [Tho12], see the appendix to [BLGG13]).

Definition 3.1.1. We call a finite subgroup H ⊂ GLn(Fl) adequate if the following
conditions are satisfied.

(1) H has no non-trivial quotient of l-power order (i.e. H1(H,Fl) = (0)).
(2) l 6 |n.
(3) The elements of H with order coprime to l span Mn×n(Fl) over Fl. (This

implies that Fnl is an irreducible representation of H.)
(4) H1(H, gln(Fl)) = (0).

In particular, we have the following useful result, an immediate consequence of
Theorem 9 of [GHTT10].

Theorem 3.1.2. Suppose that l ≥ 2(n + 1), and that H is a finite subgroup of
GLn(Fl) which acts irreducibly. Then H is adequate.

Fix an isomorphism ι : Ql → C. Let F be an imaginary CM field with maximal
totally real subfield F+.

Theorem 3.1.3. Let l > 2 be prime, and let F be a CM field with maximal totally
real subfield F+, with ζl /∈ F . Assume that the extension F/F+ is split at all places
dividing l. Suppose that

r̄ : GF → GLn(Fl)
is an irreducible representation which satisfies the following properties.

(1) There is a RACSDC automorphic representation Π of GLn(AF ) such that
• r̄ ∼= r̄l,ı(Π) (so in particular, r̄c ∼= r̄∨ε1−nl ).
• For each place w|l of F , rl,ı(Π)|GFw is potentially diagonalizable.

(2) The image r̄(GF (ζl)) is adequate.

Let S be a finite set of finite places of F+ which split in F . Assume that S contains
all the places of F+ dividing l, and all places lying under a place of F at which
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r̄ is ramified. For each v ∈ S choose a place ṽ of F above v, and a lift ρṽ :
GFṽ → GLn(OQl) of r̄|GFṽ . Assume that if v|l, then ρṽ is crystalline and potentially

diagonalizable, and if τ : Fṽ ↪→ Ql is any embedding, then HTτ (ρṽ) consists of
distinct integers.

Then there is a RACSDC automorphic representation π of GLn(AF ) of level
prime to l such that

• r̄ ∼= r̄l,ı(π).
• πw is unramified for all w not lying over a place of S, so that rl,ı(πw) is

unramified at all such w.
• rl,ı(π)|GFṽ ∼ ρṽ for all v ∈ S. In particular, for each place v|l, rl,ı(π)|GFṽ

is crystalline and for each embedding τ : Fṽ ↪→ Ql, HTτ (rl,ı(π)|GFṽ ) =

HTτ (ρṽ).

Proof. Let Gn be the group scheme over Z defined in section 2.1 of [CHT08]. Then
by the main result of [BC11], r̄ extends to a representation ρ : GF+ → Gn(Fl) with
multiplier ε1−nl .

We will now apply Theorem A.4.1 of [BLGG13]. In fact, we need a slight
strengthening of that theorem, where we remove the assumption that (π′, χ′) is
unramified outside of the set of primes above S. (After replacing (π′, χ′) with its
base change to a finite solvable extension of F ′, we may then assume that (π′, χ′)
is unramified outside of a set of primes S′ of F ′, which contains all primes above
S, and all of whose elements are split over (F ′)+.) The proof of Theorem A.4.1
of [BLGG13] goes over essentially unchanged to prove this stronger result: the first
(and longest) step in the proof is to show that after replacing F ′ by a finite solvable
extension F1/F

′, the representation π′ can be replaced by a representation π1 with
the property that π1 is ordinary and rl,ı(π)|GF1,v

∼ rl,ı(π1)|GF1,v
for all v not above

l. It is clear that the construction of π1 can be carried out without reference to
the subfield F of F ′. Once π1 has been obtained, then Proposition 1.5.1(ii) and
Theorems 2.3.1 and 2.3.2 of [BLGGT14b] are applied to produce an ordinary π′1
such that rl,ı(π

′
1)|GF1,v

∼ ρ|GF1,v
for all v not above l. The proof then continues

unchanged.
We now apply this strengthened version of Theorem A.4.1 of [BLGG13], with

• F , n and S as in the present setting.
• r̄ our present ρ.
• ρv our ρṽ.
• µ = ε1−nl .
• F ′ = F .

We conclude that r̄ has a lift r : GF → GLn(Ql) (the restriction to GF of the
representation r of Theorem A.4.1 of [BLGG13]) such that

• rc ∼= r∨ε1−nl .
• if v ∈ S then r|GFṽ ∼ ρṽ.
• r is unramified outside S.
• r is automorphic of level potentially prime to l, say r ∼= rl,ı(π).

By Theorem 2.1.2, we see that (since r|GFw is crystalline for all w|l, and unramified
at all places w not lying over a place in S) πw is unramified for all w|l and all w
not lying over a place in S, as required. �
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4. Serre weight conjectures

4.1. We now briefly discuss Serre weight conjectures for GLn. We refer the reader
to the forthcoming [EGHS14] for a far more detailed discussion. In particular, in
much of this section we restrict ourselves to the case that l splits completely in F ,
both for simplicity of notation and because in this case we can prove theorems with
cleaner conditions, as representations satisfying the Fontaine-Laffaille condition are
always potentially diagonalizable.

Let K be a finite extension of Ql, with ring of integersOK and residue field k. Let
ρ : GK → GLn(Fl) be a continuous representation. Then it is a folklore conjecture
that for each such ρ, there is a set W (ρ) of Serre weights of GLn(k) for each K
and each ρ with the following property: if F is a CM field, r̄ : GF → GLn(Fl) is an
irreducible modular representation (so in particular it is conjugate self-dual), w|l
is a place of F and σw is an irreducible Fl-representation of GLn(kw), then r̄ is
modular of Serre weight σw ⊗Fl σ

w for some σw if and only if σw ∈W (r̄|GFw ).

It is natural to believe that there is a description of W (ρ) in terms of the existence
of crystalline lifts with particular Hodge-Tate weights, as we now explain. This
is one of the motivations for the general Serre weight conjectures explained in
[EGHS14].

Definition 4.1.1. Let K/Ql be a finite extension, let λ ∈ (Zn+)Hom (K,Ql), and let

ρ : GK → GLn(Ql) be a de Rham representation. Then we say that ρ has Hodge
type λ if for each τ ∈ Hom (K,Ql), we have HTτ (ρ) = {λτ,1 + (n− 1), λτ,2 + (n−
2), . . . , λτ,n}.

Remark 4.1.2. As an immediate consequence of this definition and of Theorem
2.1.2, we see that if π is a RACSDC automorphic representation of weight λ ∈
(Zn+)

Hom (F,C)
0 , then for each place w|l, rl,ı(π)|GFw has Hodge type (ı−1λ)w.

Lemma 4.1.3. Let n be a positive integer, and let F be an imaginary CM field
with maximal totally real subfield F+, and suppose that F/F+ is unramified at all
finite places, that every place of F+ dividing l splits completely in F , and that if n
is even then n[F+ : Q]/2 is even. Suppose that r̄ : GF → GLn(Fl) is an irreducible

modular representation with split ramification. Let a ∈ (Zn+)
∐
w|l Hom (kw,Fl)

0 be a

Serre weight, and let λ ∈ (Zn+)
Hom (F,Ql)
0 be a lift of a. If r̄ is modular of weight a,

then for each place w|l there is a continuous lift rw : GFw → GLn(OQl) of r̄|GFw
such that rw is crystalline of Hodge type λw.

Proof. By Lemma 2.1.11 there is a RACSDC automorphic representation π of
GLn(AF ), which has level prime to l and weight ıλ, such that r̄l,ı(π) ∼= r̄. Then we
may take rw := rl,ı(π)|GFw , which has the required properties by Remark 4.1.2. �

This suggests the following definition.

Definition 4.1.4. Let K be a finite extension of Ql, with ring of integers OK and
residue field k. Let ρ : GK → GLn(Fl) be a continuous representation. Then we

let W cris(ρ) be the set of Serre weights a ∈ (Zn+)Hom (k,Fl) with the property that
there is a crystalline representation ρ : GK → GLn(OQl) lifting ρ, such that ρ has

Hodge type λ for some lift λ ∈ (Zn+)Hom (K,Ql) of a.

The results of section 3 suggest the following definition.
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Definition 4.1.5. Let K be a finite extension of Ql, with ring of integers OK and
residue field k. Let ρ : GK → GLn(Fl) be a continuous representation. Then we

let W diag(ρ) be the set of Serre weights a ∈ (Zn+)Hom (k,Fl) with the property that

there is a potentially diagonalizable crystalline representation ρ : GK → GLn(Ql)
lifting ρ, such that ρ has Hodge type λ for some lift λ ∈ (Zn+)Hom (K,Ql) of a.

Remark 4.1.6. If a and b are equivalent Serre weights, then a ∈ W cris(ρ) (respec-
tively W diag(ρ)) if and only if b ∈W cris(ρ) (respectively W diag(ρ)). This is an easy
consequence of Lemma 4.1.15 of [BLGG13], which provides a crystalline character
with trivial reduction with which one can twist the crystalline Galois representa-
tions of Hodge type some lift of a to obtain crystalline representations of Hodge
type some lift of b. The same remarks apply to the set W obv(ρ) defined below.

By definition we have W diag(ρ) ⊂ W cris(ρ). We “globalise” these definitions in
the obvious way:

Definition 4.1.7. Let r̄ : GF → GLn(Fl) be a continuous representation with r̄c ∼=
r̄∨ε1−nl . Then we let W cris(r̄) (respectively W diag(r̄)) be the set of Serre weights

a ∈ (Zn+)
∐
w|l Hom (kw,Fl)

0 such that for each place w|l, the corresponding Serre weight

aw ∈ (Zn+)Hom (kw,Fl) is an element of W cris(r̄|GFw ) (respectively W diag(r̄|GFw )).

The point of these definitions is the following Corollary and Theorem.

Corollary 4.1.8. Let n be a positive integer, let F be an imaginary CM field with
maximal totally real subfield F+, and suppose that F/F+ is unramified at all finite
places, that every place of F+ dividing l splits completely in F , and that if n is
even then n[F+ : Q]/2 is even. Suppose that r̄ : GF → GLn(Fl) is an irreducible

modular representation with split ramification. Let a ∈ (Zn+)
∐
w|l Hom (kv,Fl)

0 be a

Serre weight. If r̄ is modular of weight a, then a ∈W cris(r̄).

Proof. This is an immediate consequence of Lemma 4.1.3 and Definition 4.1.7. �

Theorem 4.1.9. Let F be an imaginary CM field with maximal totally real subfield
F+, and suppose that F/F+ is unramified at all finite places, that every place of
F+ dividing l splits completely in F , and that if n is even then n[F+ : Q]/2 is
even. Assume that ζl /∈ F . Suppose that l > 2, and that r̄ : GF → GLn(Fl) is an
irreducible representation with split ramification. Assume that

• There is a RACSDC automorphic representation Π of GLn(AF ) such that
– r̄ ∼= r̄l,ı(Π) (so in particular, r̄c ∼= r̄∨ε1−nl ).
– For each place w|l of F , rl,ı(Π)|GFw is potentially diagonalizable.
– r̄(GF (ζl)) is adequate.

Let a ∈ (Zn+)
∐
w|l Hom (kw,Fl)

0 be a Serre weight. Assume that a ∈ W diag(r̄). Then

there is a Serre weight b ∈ (Zn+)
∐
w|l Hom (kw,Fl)

0 such that

• r̄ is modular of weight b.
• There is a Jordan-Hölder factor of the G(OF+,l) representation Pa which

is isomorphic to Fb.

Proof. By the assumption that a ∈ W diag(r̄), there is a lift λ of a such that for
each w|l there is a potentially diagonalizable crystalline lift ρw : GFw → GLn(OQl)

of r̄|GFw of Hodge type λw.
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By Theorem 3.1.3, there is a RACSDC automorphic representation π of GLn(AF )
of weight ıλ, of level prime to l and with split ramification, such that r̄l,ı(π) ∼= r̄.
The result follows from Lemma 2.1.11. �

Since Fontaine–Laffaille representations are potentially diagonalizable, we obtain
the following Corollary.

Corollary 4.1.10. Let F be an imaginary CM field with maximal totally real sub-
field F+, and suppose that F/F+ is unramified at all finite places, that every place
of F+ dividing l splits completely in F , and that if n is even then n[F+ : Q]/2 is
even. Suppose that l > 2, and that r̄ : GF → GLn(Fl) is an irreducible representa-
tion with split ramification. Assume that

(1) l is unramified in F .
(2) There is a RACSDC automorphic representation Π of GLn(AF ) of weight

µ ∈ (Zn+)
Hom (F,C)
0 and level prime to l such that

• r̄ ∼= r̄l,ı(Π) (so in particular, r̄c ∼= r̄∨ε1−nl ).
• For each τ ∈ Hom (F,C), µτ,1 − µτ,n ≤ l − n.
• r̄(GF (ζl)) is adequate.

Let a ∈ (Zn+)
∐
w|l Hom (kw,Fl)

0 be a Serre weight. Assume that a ∈ W diag(r̄). Then

there is a Serre weight b ∈ (Zn+)
∐
w|l Hom (kw,Fl)

0 such that

• r̄ is modular of weight b.
• There is a Jordan-Hölder factor of the G(OF+,l) representation Pa which

is isomorphic to Fb.

Proof. By Theorem 4.1.9, it is enough to check that for each place w|l of F ,
rl,ı(Π)|GFw is potentially diagonalizable. This follows from the main result of [GL12].

�

As explained above, we now specialise to the case that l splits completely in F .
We further assume that r̄|GFw is semisimple for all w|l, and specify a set W obv(r̄)

of Serre weights. These weights will have the property that if a ∈W obv(r̄), and λ is

the unique lift of a to (Zn+)
Hom (F,Ql)
0 , then for each place w|l, r̄|GFw has a potentially

diagonalizable (indeed potentially diagonal) crystalline lift of Hodge type λw.
Since the situation is purely local, we change notation and work with GQl . Let

Qlm denote the unramified extension of Ql of degree m inside Ql, and let ωm :

GQlm → Fl
×

denote a choice of fundamental character of niveau m (this is given

by the action of GQlm on the (lm− 1)-st roots of l). Given λ ∈ Fl
×

and an m-tuple
of integers c = (c0, . . . , cm−1), we consider the representation

ρλ,c := nrλ ⊗ Ind
GQl
GQlm

ω−(c0+lc1+···+lm−1cm−1)
m ,

where nrλ is the unramified character taking a geometric Frobenius to λ. Given

a partition n = n1 + · · · + nr, elements λ = (λ1, . . . , λr) of Fl
×

, and a tuple c =
(c1, . . . , cr) of tuples ci = (ci,0, . . . , ci,ni−1) of integers, we define the representation

ρn,λ,c := ⊕ri=1ρλi,ci .

Note that we can we can think of c as the element (c1,0, c1,2, . . . , cr,nr−1) of Zn,
where n = n1 + · · ·+ nr.
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Definition 4.1.11. Let ρ : GQl → GLn(Fl) be a semisimple representation. Let
W obv(ρ) be the set of Serre weights a ∈ Zn+ for which there exists a permutation
σ ∈ Sn, a partition n of n and λ as above such that

ρ ∼= ρn,λ,σ(a1+n−1,a2+n−2,...,an).

Lemma 4.1.12. If ρ : GQl → GLn(Fl) is a semisimple representation and a ∈
W obv(ρ), then ρ has a potentially diagonalizable crystalline lift of Hodge type a.

Proof. By the definition of “Hodge type a”, it is enough to show that each rep-
resentation ρλ,c : GQl → GLm(Fl) defined above has a potentially diagonalizable

crystalline lift with Hodge–Tate weights c0, . . . , cm−1 (note that the direct sum of
potentially diagonalizable representations is again potentially diagonalizable). It

thus suffices to show that the character ω
−(c0+lc1+···+lm−1cm−1)
m of GQlm has a crys-

talline lift with Hodge–Tate weights c0, . . . , cm−1 (because the induction to GQl of
such a lift is certainly potentially diagonalizable). This follows at once from Lemma
6.2 of [GS11] (noting that the conventions on the sign of Hodge–Tate weights in
[GS11] are the opposite of those of this paper). �

Again we may globalise this definition in the obvious way.

Definition 4.1.13. Continue to assume that l splits completely in F , and let
r̄ : GF → GLn(Fl) be a continuous representation with r̄c ∼= r̄∨ε1−nl and such that

r̄|GFw is semisimple for each w|l. Then we let W obv(r̄) be the set of Serre weights

a ∈ (Zn+)
∐
w|l Hom (kw,Fl)

0 such that for each place w|l, the corresponding Serre weight

aw ∈ (Zn+)Hom (kw,Fl) is an element of W obv(r̄|GFw ).

Corollary 4.1.14. Let r̄ : GF → GLn(Fl) be a continuous representation satisfying
the assumptions of Definition 4.1.13. Then W obv(r̄) ⊂W diag(r̄).

Proof. This follows immediately from Lemma 4.1.12. �

In the case n = 2, which we explored more thoroughly in [BLGG13], W obv(r̄)
is precisely the set of weights for which r̄ is modular. We do not conjecture this
for n > 2; even for n = 3 one sees that the set of weights predicted in [Her09] is
larger than W obv(r̄). In fact, we expect (see [EGHS14] for a much more detailed
discussion) that the set of weights for which r̄ is modular is W cris(r̄), and it is
easy to see that this set is typically larger than W obv(r̄). Indeed, by Lemma 2.1.11
and Theorem 2.1.2, if r̄ is modular of some Serre weight b, and Fb is a Jordan-
Hölder factor of Pa for some Serre weight a, then a ∈ W cris(r̄). It is easy to find
examples of a, b for which b ∈ W obv(r̄) but a /∈ W obv(r̄). On the other hand,
as explained in [EGHS14] we believe that W cris(r̄) is determined by W obv(r̄) and
a simple combinatorial recipe, so that the weights in W obv(r̄) are in some sense
fundamental.

4.2. Fontaine-Laffaille theory. In applications of our results it is often useful to
have information in the opposite direction; namely one wishes to have information
about r̄|GFw at places w|p, given that r̄ is modular of some particular weight. In
the case that l is unramified in F and the weight is sufficiently far inside the lowest
alcove, this can be done by Fontaine–Laffaille theory. Again, we specialise to the
case that l splits completely in F .
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Lemma 4.2.1. Let F be an imaginary CM field with maximal totally real subfield
F+, and suppose that F/F+ is unramified at all finite places, and that l splits
completely in F . If n is even, assume that [F+ : Q]n/2 is even. Suppose that
l > 2, and that r̄ : GF → GLn(Fl) is an irreducible modular representation with

split ramification. Let a ∈ (Zn+)
∐
w|l Hom (kw,Fl)

0 be a Serre weight. If r̄ is modular of

weight a, and w|l is such that aw,1 − aw,n ≤ l − n, then aw ∈W obv(r̄|ssGFw ).

Proof. This is a standard application of Fontaine–Laffaille theory. By Corollary
4.1.8, r̄|GFw has a crystalline lift with Hodge–Tate weights aw,1 + n − 1, . . . , aw,n.
Since by assumption we have aw,1 + n − 1 − aw,n ≤ l − 1, the result follows im-
mediately from, for example, Proposition 3 of [Wor02] (note that while this refer-
ence assumes that the crystalline representation has Ql-coefficients, the proof goes
through unchanged with Ql-coefficients). �

5. Explicit results for GL3

5.1. We now show how one can obtain cleaner results in the case n = 3, making
use of the fact that the representation theory of GL3, while more complicated than
that of GL2, is rather simpler than that of GLn for n ≥ 4. The following Lemmas
are key to our approach.

Lemma 5.1.1. Let a ∈ Z3
+ be a Serre weight for GL3(Fl). Then

(1) if l − 1 ≤ a1 − a3 and a1 − a2, a2 − a3 ≤ l − 2, then there is a short exact
sequence

0→ Fa → Pa → Fb → 0

where b = (a3 + l − 2, a2, a1 − l + 2).
(2) In all other cases, Pa = Fa.

Proof. This is Proposition 3.18 of [Her09]. �

Lemma 5.1.2. Suppose that n = 3, and that a ∈ Z3
+ is a Serre weight for GL3(Fl).

If a ∈ W obv(r̄) for some representation r̄ : GQl → GL3(Fl), then either a1 − a3 =
l − 1 and

r̄|IQl
∼= ω−(a1+1) ⊕ ω−(a2+1) ⊕ ω−(a3+1),

or there is a permutation x, y, z of −(a1 + 2), −(a2 + 1), −a3 such that r̄|IQl is
isomorphic to one of

ωx ⊕ ωy ⊕ ωz,

ωx ⊕ ωy+lz
2 ⊕ ωly+z

2 ,

ωx+ly+l2z
3 ⊕ ωy+lz+l2x

3 ⊕ ωz+lx+l2y
3 ,

where in the second case we have (l + 1) - ly + z, and in the third case we have
(l2 + l + 1) - x+ ly + l2z.

Proof. This is a simple calculation (it is immediate from the definition that r̄|IQl is
of the given form if one ignores the divisibility condition, so the only thing to check
is when it can be the case that ly+ z is divisible by l+ 1 or x+ ly+ l2z is divisible
by l2 + l + 1). �
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Definition 5.1.3. Let a ∈ Z3
+ be a Serre weight for GL3(Fl). Then we say that a

is non-generic if it is in the upper alcove, and it is at distance exactly 1 from the
boundary. More precisely, it is non-generic if one of the following three conditions
hold: a1−a3 = l−1 and a1−a2, a2−a3 ≤ l−2; or a2−a3 = l−2 and a1−a2 ≥ 2;
or a1 − a2 = l − 2 and a2 − a3 ≥ 2. Otherwise we say that a is generic.

If l splits completely in F and a ∈ (Z3
+)

Hom (F,Ql)
0 is a Serre weight, we say that

a is generic if for each τ ∈ Hom (F,Ql) the corresponding Serre weight aτ ∈ Z3
+ is

generic.

We remark that this definition of generic is very mild; in particular, it is much
less restrictive than the notion of generic used in [EGH13]. (See also Remark 5.1.5
below.)

Theorem 5.1.4. Let F be an imaginary CM field with maximal totally real subfield
F+, and suppose that F/F+ is unramified at all finite places, and that l splits
completely in F . Suppose that l > 2, and that r̄ : GF → GL3(Fl) is an irreducible
representation with split ramification. Assume that

(1) There is a RACSDC automorphic representation Π of GL3(AF ) of weight

µ ∈ (Z3
+)

Hom (F,C)
0 and level prime to l such that

• r̄ ∼= r̄l,ı(Π) (so in particular, r̄c ∼= r̄∨ε−2
l ).

• For each τ ∈ Hom (F,C), µτ,1 − µτ,3 ≤ l − 3.
• r̄(GF (ζl)) is adequate.

Let a ∈ (Z3
+)

∐
w|l Hom (kw,Fl)

0 be a generic Serre weight. Assume that a ∈ W obv(r̄)
(so in particular, r̄|GFw is semisimple for all w|l). Then r̄ is modular of weight a.

Remark 5.1.5. In fact, the proof below shows that it suffices to assume that aw
is generic for all places w|l for which r̄|GFw has niveau 2, and that if r̄|GFw has
niveau 1, then we do not have both a1− a3 = l− 1 and a1− a2, a2− a3 ≤ l− 2. In
particular, if r̄|GFw is irreducible for all places w|l (which is the situation considered
in [EGH13]), then we do not need to assume that a is generic.

Proof of Theorem 5.1.4. By Corollaries 4.1.10 and 4.1.14, r̄ is modular of weight
b for some Serre weight b with the property that Fb is a Jordan-Hölder factor
of Pa. We wish to show that Fb ∼= Fa. Assume for the sake of contradiction
that Fb 6∼= Fa, so that there is a place w|l with Fbw 6∼= Faw . By Lemma 5.1.1,
we must have l − 1 ≤ aw,1 − aw,3 and aw,1 − aw,2, aw,2 − aw,3 ≤ l − 2, and
bw = (aw,3 + l − 2, aw,2, aw,1 − l + 2).

Since l − 1 ≤ aw,1 − aw,3, we have bw,1 − bw,3 = 2l − 4 − (aw,1 − aw,3) ≤ l − 3.
Thus the assumption that r̄ is modular of weight b, together with Lemma 4.2.1
gives an explicit description of the possibilities for r̄|GFw (which is assumed to be
semisimple) in terms of bw, and hence in terms of aw. We also have another such
description from the assumption that a ∈ W obv(r̄). We will now compare these
descriptions to obtain a contradiction.

It will be useful to note that since we are assuming that aw,1−aw,2, aw,2−aw,3 ≤
l − 2, and aw,1 − aw,3 ≥ l − 1 we have

(5.1.1) 1 ≤ aw,1 − aw,2, aw,2 − aw,3 ≤ l − 2,

(5.1.2) l − 1 ≤ aw,1 − aw,3 ≤ 2l − 4,
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so that

(5.1.3) aw,1 6≡ aw,2 (mod l − 1),

(5.1.4) aw,2 6≡ aw,3 (mod l − 1),

(5.1.5) aw,3 6≡ aw,1 + 1 (mod l − 1).

(5.1.6) aw,1 − aw,3 6≡ l − 2 (mod l + 1).

If aw,1−aw,2 = 1 then the condition that aw,1−aw,3 ≥ l−1 forces aw,2−aw,3 = l−2,
so that aw is not generic. Similarly if aw,2 − aw,3 = 1 then aw is not generic.
Therefore if we assume that aw is generic, we also have

(5.1.7) aw,1 6≡ aw,2 + 1 (mod l − 1),

(5.1.8) aw,2 6≡ aw,3 + 1 (mod l − 1).

By the second and third conditions in the definition of genericity, we also have

(5.1.9) aw,3 6≡ aw,2 + 1 (mod l − 1),

(5.1.10) aw,2 6≡ aw,1 + 1 (mod l − 1).

Niveau 1 Suppose firstly that r̄|GFw has niveau 1, i.e. that r̄|IFw is a direct sum

of powers of the mod l cyclotomic character ω. Then since a ∈ W obv(r̄) and a is
generic, we see from Lemma 5.1.2 that

r̄|IFw ∼= ω−(aw,1+2) ⊕ ω−(aw,2+1) ⊕ ω−aw,3 .
By Lemma 4.2.1 (applied to Fb), we see that we also have

r̄|IFw ∼= ω−(aw,3+1) ⊕ ω−(aw,2+1) ⊕ ω−(aw,1+1).

Thus aw,3 ≡ aw,1 + 1 (mod l − 1), contradicting (5.1.5).
Niveau 2 Suppose next that r̄|GFw has niveau 2, i.e. that r̄|IFw is a direct sum

of a power of the mod l cyclotomic character ω and characters ωn2 , ωln2 for some n
with (l + 1) - n, where ω2 is a choice of fundamental character of niveau 2. Then
since a ∈W obv(r̄), we see from Lemma 5.1.2 that r̄|IFw is isomorphic to one of the
following:

ω−(aw,1+2) ⊕ ω−(aw,2+1+law,3)
2 ⊕ ω−(l(aw,2+1)+aw,3)

2

ω−(aw,2+1) ⊕ ω−(aw,1+2+law,3)
2 ⊕ ω−(l(aw,1+2)+aw,3)

2

ω−aw,3 ⊕ ω−(aw,1+2+l(aw,2+1))
2 ⊕ ω−(l(aw,1+2)+aw,2+1)

2

By Lemma 4.2.1 (applied to Fb), we see that we also have that r̄|IFw is isomorphic
to one of the following:

ω−(aw,1+1) ⊕ ω−(aw,2+1+l(aw,3+l))
2 ⊕ ω−(l(aw,2+1)+aw,3+l)

2

ω−(aw,2+1) ⊕ ω−(aw,1−l+2+l(aw,3+l))
2 ⊕ ω−(l(aw,1−l+2)+(aw,3+l))

2

ω−(aw,3+1) ⊕ ω−(aw,1−l+2+l(aw,2+1))
2 ⊕ ω−(l(aw,1−l+2)+aw,2+1)

2

Comparing the powers of ω and using (5.1.3)–(5.1.10), the only possibility is that
we simultaneously have

r̄|IFw ∼= ω−(aw,2+1) ⊕ ω−(aw,1+2+law,3)
2 ⊕ ω−(l(aw,1+2)+aw,3)

2 ,

r̄|IFw ∼= ω−(aw,2+1) ⊕ ω−(aw,1−l+2+l(aw,3+l))
2 ⊕ ω−(l(aw,1−l+2)+(aw,3+l))

2 .
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There are now two possibilities to examine. Firstly it could be the case that

aw,1 + 2 + law,3 ≡ aw,1 − l + 2 + l(aw,3 + l) (mod l2 − 1);

but this implies that l2 − l ≡ 0 (mod l2 − 1), a contradiction. So we must have

aw,1 + 2 + law,3 ≡ l(aw,1 − l + 2) + (aw,3 + l) (mod l2 − 1).

This simplifies to aw,1 − aw,3 ≡ l − 2 (mod l + 1), contradicting (5.1.6).
Niveau 3 Suppose finally that r̄|GFw has niveau 3, i.e. that r̄|IFw is of the form

ωn3 ⊕ωln3 ⊕ωl
2n

3 for some n with (l2 + l+ 1) - n, where ω3 is a choice of fundamental
character of niveau 3. Then since a ∈ W obv(r̄), we see that r̄|IFw is isomorphic to
one of the following:

ω
−(aw,1+2+l(aw,2+1)+l2aw,3)
3 ⊕ω−(aw,2+1+law,3+l2(aw,1+2))

3 ⊕ω−(aw,3+l(aw,1+2)+l2(aw,2+1))
3

ω
−(aw,1+2+law,3+l2(aw,2+1))
3 ⊕ω−(aw,3+l(aw,2+1)+l2(aw,1+2))

3 ⊕ω−(aw,2+1+l(aw,1+2)+l2aw,3)
3

On the other hand, by Lemma 4.2.1 (applied to Fb) we also have that r̄|IFw is
isomorphic to one of the following:

ω
−(aw,1−l+2+l(aw,2+1)+l2(aw,3+l))
3 ⊕ω−(aw,2+1+l(aw,3+l)+l2(aw,1−l+2))

3 ⊕ω−(aw,3+l+l(aw,1−l+2)+l2(aw,2+1))
3

ω
−(aw,1−l+2+l(aw,3+l)+l2(aw,2+1))
3 ⊕ω−(aw,3+l+l(aw,2+1)+l2(aw,1−l+2))

3 ⊕ω−(aw,2+1+l(aw,1−l+2)+l2(aw,3+l))
3

Examining the exponents in these expressions, we obtain 12 possible congruences
(mod l3 − 1), each of which we will now show yields a contradiction. In each case
below we derive a congruence modulo l2 + l + 1 or l3 − 1, and it is easy to see in
each case that the inequalities (5.1.1) and (5.1.2) imply that the congruence has no
solutions.

(1) aw,1 + 2 + l(aw,2 + 1) + l2aw,3 ≡ aw,1 − l + 2 + l(aw,2 + 1) + l2(aw,3 + l)
(mod l3 − 1). This simplifies to l2 − 1 ≡ 0 (mod l3 − 1), a contradiction.

(2) aw,1 + 2 + l(aw,2 + 1) + l2aw,3 ≡ aw,1 − l + 2 + l(aw,3 + l) + l2(aw,2 + 1)
(mod l3 − 1). This simplifies to aw,2 − aw,3 + 2 ≡ 0 (mod l2 + l + 1), a
contradiction.

(3) aw,1+2+l(aw,2+1)+l2aw,3 ≡ aw,2+1+l(aw,1−l+2)+l2(aw,3+l) (mod l3−
1). This simplifies to aw,1 − aw,2 ≡ l (mod l2 + l + 1), a contradiction.

(4) aw,1 + 2 + l(aw,2 + 1) + l2aw,3 ≡ aw,2 + 1 + l(aw,3 + l) + l2(aw,1 − l + 2)
(mod l3 − 1). This simplifies to l(aw,1 − aw,3 + 3) + (aw,1 − aw,2 + 2) ≡ 0
(mod l2 + l + 1), which is easily seen to be impossible.

(5) aw,1 + 2 + l(aw,2 + 1) + l2aw,3 ≡ aw,3 + l + l(aw,1 − l + 2) + l2(aw,2 + 1)
(mod l3 − 1). This simplifies to (aw,1 − aw,3) + l(aw,2 − aw,3) + 2 ≡ 0
(mod l2 + l + 1), which is also impossible.

(6) aw,1 + 2 + l(aw,2 + 1) + l2aw,3 ≡ aw,3 + l + l(aw,2 + 1) + l2(aw,1 − l + 2)
(mod l3−1). This simplifies to (l+1)(aw,1−aw,3+2)+1 ≡ 0 (mod l2+l+1),
which is impossible.

(7) aw,1 + 2 + law,3 + l2(aw,2 + 1) ≡ aw,1 − l + 2 + l(aw,2 + 1) + l2(aw,3 + l)
(mod l3− 1). This simplifies to l(aw,2− aw,3 + 1) + 1 ≡ 0 (mod l2 + l+ 1),
a contradiction.

(8) aw,1 + 2 + law,3 + l2(aw,2 + 1) ≡ aw,1 − l + 2 + l(aw,3 + l) + l2(aw,2 + 1)
(mod l3 − 1). This simplifies to l2 − l ≡ 0 (mod l3 − 1), a contradiction.

(9) aw,1 + 2 + law,3 + l2(aw,2 + 1) ≡ aw,2 + 1 + l(aw,1 − l + 2) + l2(aw,3 + l)
(mod l3 − 1). This simplifies to l(aw,2 − aw,3 + 2) ≡ aw,1 − aw,2 (mod l2 +
l + 1), which is easily seen to be impossible.
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(10) aw,1 + 2 + law,3 + l2(aw,2 + 1) ≡ aw,2 + 1 + l(aw,3 + l) + l2(aw,1 − l + 2)
(mod l3 − 1). This simplifies to aw,1 − aw,2 + 2 ≡ 0 (mod l2 + l + 1), a
contradiction.

(11) aw,1 + 2 + law,3 + l2(aw,2 + 1) ≡ aw,3 + l + l(aw,1 − l + 2) + l2(aw,2 + 1)
(mod l3 − 1). This simplifies to aw,1 − aw,3 ≡ l − 2 (mod l2 + l + 1), a
contradiction.

(12) aw,1 + 2 + law,3 + l2(aw,2 + 1) ≡ aw,3 + l + l(aw,2 + 1) + l2(aw,1 − l + 2)
(mod l3 − 1). This simplifies to l(aw,1 − aw,2 + 1) + aw,1 − aw,3 + 3 ≡ 0
(mod l2 + l + 1), which is impossible.

As we have obtained a contradiction in every case, we see that Fb ∼= Fa, as required.
�
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