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Abstract. We prove the Ramanujan and Sato–Tate conjectures for Bianchi
modular forms of weight at least 2. More generally, we prove these conjectures

for all regular algebraic cuspidal automorphic representations of GL2(AF ) of

parallel weight, where F is any CM field. We deduce these theorems from a
new potential automorphy theorem for the symmetric powers of 2-dimensional

compatible systems of Galois representations of parallel weight.
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1. Introduction

Let f =
∑∞

n=1 anq
n be a cuspidal modular form of weight k ≥ 2 and level Γ1(N) ⊂

SL2(Z) which is an eigenform for all the Hecke operators Tp for (p,N) = 1 and nor-
malized so that a1 = 1. The Ramanujan conjecture for f —proved by Deligne [Del71]
as a consequence of the Weil conjectures — is the claim that

|ap| ≤ 2 · p(k−1)/2.

Suppose that the coefficients of f are real. The Sato–Tate conjecture (proved in a se-
quence of papers [CHT08, Tay08, HSBT10, BLGHT11]) is the theorem that the nor-
malized values ap/2p

(k−1)/2 ∈ [−1, 1] are equidistributed with respect to the Sato–

Tate measure 2/π ·
√
1− x2dx unless f is a so-called CM form, in which case the

corresponding measure is the average of the atomic measure with support zero and
the measure 1/π ·1/

√
1− x2dx (the proof in this CM case is much easier and follows

from [Hec1920]). (If the coefficients ap are not real, some minor modifications are
required to formulate the conjecture properly.) These conjectures were originally
made for the particular (non-CM) form f = ∆ = q

∏∞
n=1(1− qn)24 =

∑∞
n=1 τ(n)q

n

of level SL2(Z) and weight k = 12 studied by Ramanujan; this particular case turns
out to be no easier than the general case.

Both of these conjectures have an equivalent reformulation in the language of
automorphic representations. Associated to a cuspidal modular eigenform f (as
above) is an automorphic representation π for GL(2)/Q. The data of π includes
irreducible admissible infinite dimensional complex representations πp of GL2(Qp)
for all p. For (p,N) = 1, the representations πp satisfy the additional property
of being so-called spherical, and are in particular classified by a pair of complex
numbers {αp, βp} known as Satake parameters, which are related to the original
coefficients ap via the equation

x2 − apx+ pk−1χ(p) = (x− αp)(x− βp),

where χ : (Z/NZ)× → C× is the Nebentypus character of f . The Ramanujan con-
jecture is equivalent to the equality |αp| = |βp| = p(k−1)/2, which can be reformu-
lated as saying that the representation πp is tempered. The Sato–Tate conjecture
is equivalent (for non-CM forms) to the claim that the conjugacy classes of the
matrices

1

p(k−1)/2
·
(
αp 0
0 βp

)
are equidistributed in SU(2)/conjugacy with respect to the probability Haar mea-
sure.

One advantage of these reformulations is that they can be generalized; the orig-
inal Ramanujan conjecture becomes the statement that if π is a regular algebraic
cuspidal automorphic representation for GL(2)/Q, then πp is tempered for all p.
The general Ramanujan conjecture is the statement that if π is a cuspidal auto-
morphic representation for GL(n)/F for any number field F , then πv is tempered
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for all primes v of F . (One can generalize further to groups beyond GL(n) but then
the formulation becomes more subtle.) This conjecture is still open in the case
of GL(2)/Q; after one drops the adjectives “regular algebraic” (or even just “reg-
ular”), one then allows Maass forms, which seem beyond the reach of all current
techniques. On the other hand, one can consider regular algebraic automorphic
representations π for GL(2)/F for number fields F . If F is a totally real field, then
these correspond to Hilbert modular forms of weight (ki)

d
i=1 (with d = [F : Q]) with

all weights ki at least 2, and parity independent of i; the theory here is close to the
original setting of classical modular forms. One point of similarity is that Hilbert
modular forms can also be written as q-series (now in more variables). Moreover,
just as for classical modular forms, there is a direct link between Hilbert modular
forms and the étale cohomology of certain algebraic (Shimura) varieties, which al-
lows one to deduce the Ramanujan conjecture in these cases as a consequence of
the Weil conjectures ([BL84, Bla06]). The Sato–Tate conjecture can also be proved
in these cases by arguments generalizing those used for modular forms [BLGG11].

In this paper, we consider the Ramanujan and Sato–Tate conjectures for reg-
ular algebraic cuspidal automorphic representations for GL(2)/F where F is now
an imaginary quadratic field (or more generally an imaginary CM field). In this
case, the classical interpretation of these objects (sometimes called Bianchi modu-
lar forms when F is imaginary quadratic) looks quite different from the familiar q-
expansions associated to classical or Hilbert modular forms; for example, if F is an
imaginary quadratic field, they can be thought of as vector valued differential one-
forms on arithmetic hyperbolic three manifolds. The Eichler–Shimura map allows
one to relate classical modular forms of weight k ≥ 2 to the cohomology of local
systems for congruence subgroups of SL2(Z); the analogous theorem also allows one
to relate Bianchi modular forms to the cohomology of local systems for subgroups
of SL2(OF ). However, what is missing in this setting is that there is now no longer
any direct link to the cohomology of algebraic varieties. Despite this, in this pa-
per, we prove the Ramanujan conjecture for regular algebraic cuspidal automorphic
representations in full for all quadratic fields and with the parallel weight condition
for arbitrary imaginary CM fields.

For a precise clarification of what parallel weight k means, see Definition 1.6.1.
The meaning of ‘regular algebraic’ is also recalled immediately before this defini-
tion. When F is imaginary quadratic, all regular algebraic cuspidal automorphic
representations for GL(2)/F have parallel weight.

Theorem A (Ramanujan Conjecture, Theorem 7.1.1). Let F/Q be an imaginary
CM field. Let π be a cuspidal algebraic automorphic representation for GL(2)/F of
parallel weight k ≥ 2. Then πv is tempered for all finite places v; in particular, for
places v prime to the level of π, the Satake parameters {αv, βv} of πv satisfy |αv| =
|βv| = N(v)(k−1)/2.

Theorem B (Sato–Tate Conjecture, Theorem 7.2.3). Let F/Q be an imaginary
CM field. Let π be a cuspidal algebraic automorphic representation for GL(2)/F
of parallel weight k ≥ 2. Assume that π does not have CM, equivalently, π is
not the automorphic induction of an algebraic Hecke character from a quadratic
CM extension F ′/F . For each finite place v prime to the level of π, let av =
(αv+βv)/(2N(v)(k−1)/2) denote the normalized parameter, and suppose that the av
are real. Then the av are uniformly distributed with respect to the Sato–Tate mea-
sure 2/π ·

√
1− x2dx.
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As in the case F = Q, a minor modification of the statement is needed when
the av are not real; we relegate the details of this to Section 7.2. We also discuss
some alternate formulations of Theorem A when F/Q is an imaginary quadratic
field in Section 1.3.

To prove Theorems A and B, we prove the potential automorphy of the sym-
metric powers of the compatible systems of Galois representations associated to a
cuspidal, regular algebraic automorphic representation π of GL2(AF ). Here again
is a simplified version of our main result in this direction. (To orient the reader,
the integer k ≥ 2 parametrizing the weight in this discussion above is related the
integer m ≥ 1 below via the relation m = k − 1. This mirrors the fact that the
Hodge–Tate weights of p-adic Galois representations associated to modular forms
of weight k are equal to {0, k − 1}.)

Theorem C (Potential automorphy of symmetric powers, Theorem 7.2.1). Let F
be a CM field, let M be a number field, and let m ≥ 1 be an integer. Suppose we
have a system of Galois representations

ρλ : GF → GL2(Mλ)

indexed by primes λ of M with the following compatibilities:

(1) ρλ is unramified outside a finite set of primes {v ∈ S} ∪ {v|N(λ)} where S
is independent of λ. For any v not in this set, the characteristic polynomial
Pv(X) = X2+avX+bv of ρλ(Frobv) lies in M [X] and is independent of v.

(2) For all but finitely many λ, the representations ρλ|Gv for primes v|N(λ)
and v /∈ S are crystalline with Hodge–Tate weights H = {0,m} for every
embedding of F into Qp.

Assume that at least one ρλ is irreducible. Then:

(1) Purity: for any embedding ofM ↪→ C, the roots αv and βv of X2+avX+bv
have absolute value qm/2 where q = N(v).

(2) Potential automorphy: There is a number field F ′/F such that the re-
strictions ρλ|GF ′ are all automorphic and associated to a fixed cuspidal
algebraic π for GL(2)/F ′.

(3) Potential automorphy of symmetric powers: Fix n− 1 ≥ 2. Either:
(a) The ρλ are all induced from a compatible system associated to an alge-

braic Hecke character χ of some quadratic extension F ′/F . Then Symn−1 ρλ
is reducible and decomposes into representations of dimension two and
one which are all automorphic over F .

(b) There is a number field F ′/F such that the representations Symn−1 ρλ|GF ′

are all irreducible and automorphic, associated to a fixed cuspidal al-
gebraic Π for GL(n)/F ′.

The Galois representations associated to cuspidal, regular algebraic automorphic
representations of GL2(AF ) are not yet known to satisfy the conditions of Theorem
C, but rather a weaker condition (they form a ‘very weakly compatible system’).
We establish potential automorphy of symmetric powers also under this weaker
condition. Once again, we refer to the statement of Theorem 7.2.1 in the main
body of the paper for the precise statement that is used to deduce Theorems 7.1.1
and 7.2.3 (and therefore Theorems A and B above).

1.1. The new ideas in this paper. When m = 1, Theorems A, B and C were
proved in [ACC+23] (see [ACC+23, Thm 1.01, Thm 1.0.2, Thm 7.1.14]). The
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deduction of Theorems A and B from Theorem C exactly parallels the arguments
in [ACC+23], so we now focus on explaining the proof of Theorem C.

Unsurprisingly, our arguments build on those of [ACC+23]: in particular, we
prove the potential automorphy of the compatible system of symmetric powers
Symn−1 R = {Symn−1 ρλ} by checking the residual automorphy over some exten-
sion F ′/F and then applying an automorphy lifting theorem. We would like to
highlight three new ingredients which appear here:

(1) A result on generic reducedness of special fibres of weight 0 (local) crys-
talline deformation rings (see §1.2 for a further introductory discussion).
Using the local-global compatibility result of [CN23], this leads to a new
automorphy lifting theorem in the setting of arbitrary ramification (Theo-
rem 3.2.1).

(2) An application of a theorem of Drinfeld and Kedlaya [DK17], showing
generic ordinarity of families of Dwork motives (Proposition 4.2.6). This
makes it possible to verify the potential residual automorphy of certain
residual representations by an automorphic motive which is crystalline or-
dinary at some set of p-adic places.

(3) A “p-q-r” switch including a version of the “Harris tensor product trick”
which incorporates an additional congruence between two tensor products
of compatible families. One is a tensor product of Symn−1 R with an in-
duction of a character, as usual. The other is a tensor product of Symn−1 R
with a different auxiliary compatible family, which gives us more flexibility
to realise different local properties at places related by complex conjuga-
tion. We discuss in the remainder of the introduction the need for this
argument, and give a more detailed sketch in §6.2 below.

To explain in more detail the need for these innovations, suppose given a compatible
system R = {ρλ} as in the statement of Theorem C, therefore of Hodge–Tate
weights {0,m} for some m ≥ 1 (and with m ≥ 2 if we hope to go beyond the cases
treated in [ACC+23]). The general strategy for proving potential automorphy (the
so-called “p-q switch”) is as follows:

(1) After making some CM base extension H/F (depending on n), find an
auxiliary n-dimensional compatible system S = {sλ} such that:
(a) For one prime λ, the residual representations Symn−1 ρλ|GH

and sλ
coincide, and moreover satisfy a number of standard “Taylor–Wiles”
conditions.

(b) For a second prime λ′, the residual representation sλ′ is induced from
a character and is thus residually automorphic.

(c) The Hodge–Tate weights of the compatible system S coincide with
those of Symn−1 R|GH

.
(2) Apply an automorphy lifting theorem at λ′ to deduce that the compat-

ible system S is automorphic. Then deduce that the residual represen-
tation sλ is automorphic, and use automorphy lifting theorems again to
deduce that Symn−1 R|GH

is automorphic.

In our setting, both of these steps cause problems, but those affecting the second
step are more serious.

The issue in the first step is the requirement (1)(c) on the Hodge–Tate weights.
The most natural source of compatible systems S are those arising from motives,
and a geometrically varying family of motives cannot have Hodge–Tate weights
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0,m, . . . ,m(n − 1) with m ≥ 2 by Griffiths transversality. (This difficulty is al-
ready present if F = Q and one wants to prove the Sato–Tate conjecture for a
classical modular form of weight greater than 2, such as ∆.) The now-standard
resolution to this problem is to employ the “Harris tensor product trick” [Har09],

and replace Symn−1 R by Symn−1 R⊗ IndGF

GL
X for some cyclic CM extension L/F ,

where X is a compatible system of algebraic Hecke characters chosen sufficiently
carefully so that this new compatible system has consecutive Hodge–Tate weights.
Now in the second step, one wants to prove this new compatible system is poten-
tially automorphic (using for S a compatible system coming from the cohomology
of the Dwork family). The potential automorphy of Symn−1 R can then be deduced
using cyclic base change [AC89].

For the second step, applying an automorphy lifting theorem typically requires
that the compatible systems S and Symn−1 R⊗IndGF

GL
X have “the same” behaviour

at places v|p. There are two problems with this. Firstly, we will need an automor-
phy lifting theorem that applies to arbitrarily ramified F , including non-ordinary
representations. Secondly, the compatible system of characters X has a restricted
form, and in particular its local behaviour can’t be chosen arbitrarily at a pair
of conjugate places. We explain more about these difficulties and their resolution
below.

For context, we first recall the situation when F = Q. For example, one might
try to demand that the p-adic representations in the compatible systems S and
Symn−1 R⊗ IndGF

GL
X are both ordinary, and indeed it is straightforward (at least

after a ramified base change) to find ordinary representations in the Dwork family,
and presumably difficult to understand the non-ordinary representations in any
generality. This means that one would like to show that many of the representations
in the compatible system R are ordinary.

For a weight 2 modular form, it is relatively easy to prove that there are infinitely
many primes p for which the p-adic Galois representation is ordinary at p. However,
the existence of infinitely many ordinary primes for ∆ (or for any non-CM form of
weight k ≥ 4) remains an open question, so one also has to consider the possibility
that the residual representation rλ|GFv

is locally of the form ωm
2 ⊕ ωmp

2 on inertia
at p. This problem was resolved for classical modular forms in [BLGHT11], via
a further study of the Dwork family; in particular, showing that certain residual
representations of the shape Symn−1(ω2 ⊕ ωp

2) arise (locally on inertia) as residual
representations in that family.

We now consider the case of an imaginary CM field F , and explain why we
need an automorphy lifting theorem allowing ramification at non-ordinary places.
Given the automorphy lifting theorems for CM fields proved in [ACC+23], the most
serious difficulty in adapting the strategy of [BLGHT11] is that there is no way to
avoid the possibility that a representation ρλ can be simultaneously ordinary at one
prime v|p and non-ordinary at the complex conjugate place vc. (One might hope to
avoid this by considering places with v = vc, but then we would have to show that
certain residual representations of GQp2

occur in the Dwork family which seemed

to us to be a difficult task.) This is a problem because the automorphy lifting
theorems in [ACC+23] for non-ordinary representations require F to be unramified
at our non-ordinary prime vc; while at the ordinary prime v, we need to be able
to make a highly ramified base change of (imaginary) CM fields F ′/F to find an
appropriate representation in the Dwork family. It is however impossible to arrange
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that such an extension of CM fields is unramified at vc and ramified at v. One of
the key innovations in this paper is to prove an automorphy lifting theorem that
allows us to make a ramified base change at vc (Theorem 3.2.1). This was done
in the two-dimensional case in [CN23]; we discuss the difficulties in extending this
result to higher dimensions and how we overcome them in Section 1.2 below. Note
that, even when making a ramified base change, it is still important for us to keep
track of the inertial type of residual representations in the Dwork family in order to
show that the representations of interest are connected in the deformation space.

There turns out to be one final wrinkle, where the second problem mentioned
above arises. The p-adic representations in our compatible system S will satisfy
one of two, mutually exclusive, local conditions at each p-adic place: they are
crystalline at p and are either ordinary or are (on the same component of a local
crystalline deformation ring as) a symmetric power of an induction of a Lubin–
Tate character of GQp2

. It turns out that we can’t always arrange for a tensor

product Symn−1 R ⊗ IndGF

GL
X to have local p-adic representations of this shape.

The problem is that algebraic Hecke characters have a very restricted form, and
the fact that F is an imaginary CM field implies that a suitable choice of X will
exist only if ρλ is either both ordinary or non-ordinary at each pair of places {v, vc}
permuted by complex conjugation in Gal(F/F+).

Our solution is to instead consider tensor products of the form (Symn−1 R) ⊗
Raux, where Raux is a compatible system coming from (part of) the cohomology
of the Dwork hypersurface [Qia23]. We will be able to choose Raux so that one
of the local conditions mentioned in the previous paragraph will be satisfied by
Saux = (Symn−1 R) ⊗ Raux at each p-adic place. It is now no longer possible to
directly deduce the potential automorphy of Symn−1 R from the potential auto-
morphy of this product. This is not necessary to prove the Ramanujan conjecture
— already the automorphy of this tensor product combined with the Jacquet–
Shalika bounds (and the fact that Raux is pure) is enough to deduce purity —
but it is necessary to prove the Sato–Tate conjecture. However, once the potential
automorphy of Saux is established, we can (having chosen Raux carefully to begin
with) find a third compatible system RCM such that Saux = (Symn−1 R) ⊗ Raux

and SCM = (Symn−1 R)⊗RCM are residually the same at a third prime r, and RCM

is induced from a character. Even though we do not have any control over the r-adic
representation associated to Symn−1 R locally at v|r, the fact that it occurs as the
same tensor factor in the r-adic representations of both Saux and SCM means we
can still put ourselves in a situation where both r-adic Galois representations lie on
the same component of a local deformation ring at v|r. From this p-q-r switch, we
can show that SCM = (Symn−1 R)⊗RCM is potentially automorphic, from which
we deduce that Symn−1 R is potentially automorphic.

One might also ask whether for general CM fields F one can drop the hypothesis
that R has parallel weight. The difficulty in doing so is as follows: in order to
pass from Symn−1 R to a compatible system with consecutive Hodge–Tate weights,
one needs to tensor this compatible system with a second compatible system with
certain prescribed local properties. If R does not have parallel weight, this auxiliary
compatible system cannot have consecutive Hodge–Tate weights and for reasons
explained above also cannot be induced from a compatible system of characters.
It is very hard to construct such compatible systems because of the constraints
on families of geometric local systems imposed by Griffiths transversality. The
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existence of even a single regular algebraic cuspidal automorphic representation
for GL2(AF ) for some CM field F which is neither of parallel weight 2, nor of CM
type, nor arising from base change from the totally real subfield F+ was only found
(by a computation) in [CM09, Lemma 8.11(2)] (see also [RŞ13]).

1.2. Ihara avoidance and the Emerton–Gee stack. There are two main dif-
ficulties in proving automorphy lifting liftings for p-adic representations with p
ramified in F . One is having local–global compatibility theorems at the places
dividing p; this was resolved in the recent work of Caraiani–Newton [CN23]. The
other difficulty was alluded to above: the usual Taylor–Wiles method for automor-
phy lifting only allows us to deduce the automorphy of a p-adic representation r
from the automorphy of a congruent representation r′ if we know that for all finite
places v, the representations r|GFv

and r′|GFv
are “connected”, in the sense that

they lie on the same component of the appropriate local deformation ring.
As we have sketched above, in the particular cases that we consider in this pa-

per, we have arranged this property at the places v|p by considering the ordinary
and non-ordinary cases separately. (It was this construction that required us to
pass to a situation where p is highly ramified in F .) We are not, however, able to
arrange that our representations are connected at all the places v ∤ p. Fortunately,
Taylor [Tay08] found a way to prove automorphy lifting theorems when the rep-
resentations fail to be connected at some places v ∤ p, using his so-called “Ihara
avoidance” argument. This argument makes an ingenious use of two different local
deformation problems at places v ∤ p, which are congruent modulo p, and relates
two corresponding patched modules of automorphic forms. The key point which
makes this argument possible is to work with local deformation rings having the fol-
lowing “unique generalization” property: any generic point of their special fibre has
a unique generalization to the generic fibre. More geometrically, we need to avoid
having two distinct irreducible components in characteristic zero which specialize
to a common irreducible component in the special fibre.

In order to apply this argument one also needs the unique generalization property
for the deformation rings at the places v|p. This was previously only known in the
Fontaine–Laffaille and ordinary contexts, in which case the crystalline deformation
rings can be understood completely explicitly (and in the former case, there is even
a unique irreducible component). (This problem was sidestepped to some extent
in [BLGG11, BLGGT14], but the approach there combines the Ihara avoidance
argument with the Khare–Wintenberger lifting argument to produce characteristic
zero lifts of residual representations of the prescribed weight and level. In our ℓ0 > 0
situation (in the language of [CG18]) such lifts do not always exist.)

One way to establish the unique generalization property (when it holds) would
be to explicitly compute the irreducible components of the generic fibres of the
deformation rings, but this appears to be hopeless for crystalline deformation rings
in any generality. However, as was already observed in [Tay08, §3] in the case v ∤ p,
an alternative approach is to consider an appropriate moduli stack of Galois repre-
sentations, for which the deformation rings are versal rings at closed points. One
shows that its special fibre is generically reduced (or even generically smooth), for
example by showing that the deformation rings for generic choices of the residual
Galois representation are formally smooth. It then follows that for an arbitrary
residual representation, the special fibres of the (Zp-flat quotients of) the deforma-
tion rings are generically reduced, which implies the unique generalization property.
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(While [Tay08, §3] does not explicitly work with moduli stacks of Galois represen-
tations, [Tay08, Lem. 3.2] is easily reformulated in these terms; and while [Tay08,
Prop. 3.1(3)] does not explicitly state that the Zp-flat quotient of the deforma-
tion ring has generically reduced special fibre, this follows from the argument, as
in [ANT20, Prop. 3.1].)

The unique generalization property has subsequently been used by Thorne in a
context with v ∤ p in the proof of [Tho12, Thm. 8.6] (in order to avoid any addi-
tional hypotheses when introducing an auxiliary prime to make the level structure
sufficiently small), and in the case that v|p by Caraiani–Newton [CN23], who used
the results of [CEGS22a], which establish the generic reducedness of the special
fibres of the crystalline deformation rings in the 2-dimensional (tamely potentially)
Barsotti–Tate case, by an analysis of the corresponding Emerton–Gee stacks.

Unfortunately an (unconditional) argument with the Breuil–Mézard conjecture
shows that generic reducedness is extremely rare when v|p (see Remark 2.5.6). We
are however able to prove the following theorem.

Theorem D (Theorem 2.5.5). Suppose that p > n, that K/Qp and F/Fp are finite
extensions, and that ρ : GK → GLn(F) is a continuous representation. Let Rcrys,0

be the universal lifting ring for crystalline lifts of ρ of parallel Hodge–Tate weights
0, 1, . . . , n− 1. Then the special fibre of SpecRcrys,0 is generically reduced.

We refer the reader to the introduction to Section 2 for a detailed overview of the
proof of Theorem D, which as above relies on proving the corresponding property
of the relevant Emerton–Gee stacks [EG23] (whose versal rings are the crystalline
lifting rings). The irreducible components of the special fibres of these stacks were
described in [EG23], and we prove our result by combining this description with
a computation of extensions of rank 1 Breuil modules. An amusing feature of
this argument is that we prove a result about the deformation rings of arbitrary
n-dimensional mod p representations by reducing to a calculation for reducible
2-dimensional representations.

1.3. Bianchi Modular Forms. Let us specialize to the case when F/Q is an
imaginary quadratic field. Let π be a regular algebraic cuspidal automorphic rep-
resentation of GL2(AF ). Let χ be the central character of π. By definition, the
representation π occurs in L2

cusp(GL2(F )\GL2(AF )). Let g be the Lie algebra
of GL2(C) as a real group. The assumption that π is regular algebraic is equiva-
lent to the condition that the infinitesimal character of π∞ is the same as V ∨ for
an algebraic representation V of ResF/Q GL2. The assumption that π is cuspidal
places a restriction on V corresponding to the fact (noted earlier) that such π has
parallel weight; the corresponding representations are parametrized (up to twist)
by an integer k ≥ 2, where k = 2 corresponds to the case when V is trivial. This
choice of k determines the action of Z(g) on π∞, and by taking functions which
are suitable eigenvectors under Z(g), we may arrive at certain vector valued Hecke
eigenfunctions Φ on GL2(AF ) with Fourier expansions ([Wil17, §1.2], [Hid94, §6])

f

[(
t z
0 1

)]
= |t|F

∑
α∈F×

c(αtδF , f)W (αt∞)eF (αz),

where δ = δF is the different, αtδ can be interpreted as a fractional ideal of OF ,
c(I, f) is a Fourier coefficient which vanishes unless I ⊂ OF and which we may
assume is normalized so that c(OF , f) = 1, W is an explicit Whittaker function
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which is vector valued in some explicit representation of SU(2) depending on k,
and eF is an explicit additive character of F\AF . This has a direct translation into
more classical language, and can be interpreted as a collection of hF functions on
a finite union of hyperbolic spaces H3. The explicit functions f (either adelically
or classically) are known as Bianchi modular forms. For a normalized Bianchi
eigenform f of weight k and level prime to p, Theorem 7.1.1 implies the following
bound:

Theorem E. Let f be a cuspidal Bianchi modular eigenform of level n and weight k.
Let p be a prime ideal of OF not dividing n, and let c(p, f) be an eigenvalue of Tp
on H. Then

(1.3.0) |c(p, f)| ≤ 2N(p)(k−1)/2.

This connects our theorem with the more classical version of the Ramanujan
conjecture for modular forms [Del71] as discussed earlier in the introduction.

The eigenvalues c(p, f) associated to f have a second interpretation in terms
of the cohomology of arithmetic groups and arithmetic hyperbolic 3-manifolds.
The algebraic representations V of ResF/Q GL2 are all, up to twist, given on real

points ResF/Q GL2(R) = GL2(C) by the representations Symk−2 C2 ⊗ Syml−2 C2

for a pair of integers k, l ≥ 2. Let n ≤ OF be a non-zero ideal. Having fixed k
and l, we can form the group cohomology

H = H1(Γ1(n),Sym
k−2 C2 ⊗ Syml−2 C2)

of the standard congruence subgroup Γ1(n) ≤ GL2(OF ). Then H is a finite-
dimensional C-vector space. Let Hpar ⊂ H denote the subgroup consisting of

classes which vanish under the restriction of H to H1(P,Symk−2 C2 ⊗ Syml−2 C2)
for any parabolic subgroup P ⊂ Γ1(n). More geometrically, one can interpret H
as the cohomology of a local system on the Bianchi manifold Y1(n) = H3/Γ1(n).
If X1(n) is the Borel–Serre compactification of Y1(n), then parabolic cohomology
consists of classes which are trivial on the boundary X1(n) ∖ Y1(n); this bound-
ary may be identified (when Γ1(n) is torsion free) with a finite disjoint union of
complex tori. The spaces H and Hpar are equipped with a commuting family
of linear operators, the unramified Hecke operators Tp, indexed by the principal
ideals p ≤ OF not dividing n. More precisely, if one writes p = (π), then the
group AΓ1(n)A

−1 ∩ Γ1(n) = Γ1(n, p) has finite index in Γ1(n), where

A =

(
π 0
0 1

)
;

the map Tp is induced by composing (in a suitable order) a restriction map, a
conjugation by A map, and a trace map respectively. Note that the existence of (a
large family of) such operators comes from the fact that Γ = GL2(OF ) has infinite
index inside its commensurator in GL2(F ); as shown by Margulis [Mar91, Thm.
IX.1.13], this characterizes the arithmeticity of Γ.

In order to obtain an action of Tp for more general prime ideals p, one needs to
replace Y1(n) by a disconnected union of hF commensurable arithmetic hyperbolic
manifolds Y1(n; a) = H/Γ1(n; a) indexed by ideals a in the class group Cl(OF ) of F
prime to n, and where Y1(n;OF ) = Y1(n). The group Γ(OF ; a) is the automorphism
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group of the OF -module OF ⊕ a, which consists explicitly of matrices of the form(
OF a−1

a OF

)
∩GL2(F )

with determinant in O×
F . The space Hpar vanishes unless k = l ([Har87, 3.6.1]),

which we now assume. If hF = 1, the Eichler–Shimura isomorphism ([Har87, §3.6])
gives a map from Bianchi cuspidal modular eigenforms f of weight k as described
above and cohomology classes ηf ∈ Hpar which are simultaneous eigenforms for
all the Hecke operators. Moreover, the eigenvalues of Tp on ηf are given exactly
by c(p, f). If hF > 1, one must replace H and hpar by the direct sum of the
corresponding cohomology groups over Y1(n; a) for a ∈ Cl(OF ). Theorem E now
implies:

Theorem F. Let p be a principal prime ideal of OF not dividing n, and let ap be

an eigenvalue of Tp on Hpar. Then |ap| ≤ 2N(p)(k−1)/2.

These explicit formulations of our theorems can be generalized in a number of
ways. Remaining in the setting of arithmetic hyperbolic 3-manifolds (or orbifolds),
we can replace GL2(OF ) by a congruence subgroup Γ of the norm one units in a
maximal order O of a division algebra D/F where F ↪→ C is a number field with
one complex place and D is definite at all real places of F . When [F : Q] = 2,
we obtain the Bianchi manifolds as above (when D/F is split) but also certain
compact hyperbolic arithmetic three manifolds; our theorem applies equally well in
the latter case (note that H = Hpar in this setting). On the other hand, suppose
that F has at least one real place; for example, take F = Q[θ]/(θ3 − θ + 1), let
k = 2, let D/F be ramified at the real place and the unique prime of norm 5.
Now H = Hpar is the first cohomology group of a congruence cover of the Weeks
manifold. The generalized Ramanujan conjecture still predicts a bound of the
shape |ap| ≤ 2N(p)1/2 for the eigenvalues of the Hecke operators Tp. However, our
methods do not apply in this situation, and the best current bounds remain those
of the form |ap| ≤ 2N(p)1/2+7/64 proved using analytic methods (see [Sar05]).

We finish with an application of a different sort. Let Γ = SL2(OF ). The quo-
tients Γ\H3 were first investigated by Bianchi [Bia1892], and for that reason they
are known as Bianchi orbifolds. For a Bianchi modular form f of level one, one
may [Mar11, §3] associate to f a normalized measure µf on Γ\H3. One then has
the following [Mar11, Cor 3]:

Theorem G. Assume that F has class number one1. For any sequence of Bianchi
modular eigenforms f of weight tending to ∞, the measures µf converge weakly to
the hyperbolic volume on Y = SL2(OF )\H3.

Proof. As noted in [Mar12], the proof given in [Mar11] assumes the Ramanujan
conjecture for Bianchi modular forms — this is now a consequence of Theorem E.

□

1The paper [Mar11] has the following to say about this assumption: “For simplicity, we assume

our fields to have narrow class number one throughout the paper, but this is not essential.” One
might therefore expect it to be possible to prove the more general adelic statement for all imaginary

quadratic F under the additional hypothesis (as explained in [Nel12, §1]) that, when hF is even,

one avoids certain dihedral forms which vanish identically on half of the connected components
of the adelic quotient. Similarly, concerning the assumption on the level, the paper [Mar11] says

“The proof may easily be modified to allow a nontrivial level in any case.”



12 G. BOXER, F. CALEGARI, T. GEE, J. NEWTON, AND J. A. THORNE

1.4. Recent work of Matsumoto. A few months after the first preprint version
of this work was circulated, a remarkable new work by Matsumoto appeared [Mat24]
which proves Theorems A and B with no parallel weight condition. Matsumoto’s
approach introduces several new ideas of a global nature, whilst our approach here
is based on refining our understanding of the local ingredients in the potential
automorphy argument. For this reason, one might hope that the two approaches
could be profitably combined in the future.

1.5. Acknowledgements. Some of the ideas in Section 2 were found in joint dis-
cussions with Matthew Emerton, and we are grateful to him for allowing us to
include them here, as well as for his assistance in proving Theorem 2.4.3 (4). We
would also like to thank Patrick Allen and Matthew Emerton for their comments on
an earlier version of the paper, together with an anonymous referee whose careful
reading and many comments were very helpful. Thanks to Dat Pham for pointing
out that the assertion made in Remark 2.1.1 of the published version of the paper
is incorrect.

1.6. Notation. Let K/Qp be a finite extension. If σ : K ↪→ Qp is a continuous
embedding of fields then we will write HTσ(ρ) for the multiset of Hodge–Tate
numbers of ρ with respect to σ, which by definition contains i with multiplicity

dimQp
(W ⊗σ,K K̂(i))GK . We write ε for the p-adic cyclotomic character, which is

a crystalline representation with HTσ(ε) = {−1} for each σ.
We say that ρ has weight 0 if for each σ : K ↪→ Qp we have HTσ(ρ) =

{0, 1, . . . , d − 1}. We often somewhat abusively write that a representation ρ :
GK → GLd(Zp) is crystalline of weight 0 if the corresponding representation

ρ : GK → GLd(Qp) is crystalline of weight 0.
LetO be the ring of integers in some finite extension E/Qp, and suppose that E is

large enough that it contains the images of all embeddings σ : K ↪→ Qp. Writeϖ for

a uniformizer of O, and O/ϖ = F for its residue field. We write ArtK : K× →W ab
K

for the isomorphism of local class field theory, normalized so that uniformizers
correspond to geometric Frobenius elements.

Let ρ : GK → GLd(Fp) be a continuous representation. Then after enlarg-
ing E and thus F if necessary, we may assume that the image of ρ is contained

in GLd(F). We write R□,O
ρ for the universal lifting O-algebra of ρ; by defini-

tion, this (pro-)represents the functor D□,O
ρ given by lifts of ρ to representations

ρ : GK → GLd(A), for A an Artin local O-algebra with residue field F. The precise
choice of E is unimportant, in the sense that if O′ is the ring of integers in a finite

extension E′/E, then by [BLGGT14, Lem. 1.2.1] we have R□,O′

ρ = R□,O
ρ ⊗O O′.

We write R
crys,0,O
ρ for the unique O-flat quotient of R□,O

ρ with the property

that if B is a finite flat E-algebra, then an O-algebra homomorphism R□,O
ρ → B

factors through Rcrys,0,O
ρ if and only if the corresponding representation of GK is

crystalline of weight 0.
We will let recK be the local Langlands correspondence of [HT01], so that if

π is an irreducible complex admissible representation of GLn(K), then recK(π) is
a Frobenius semi-simple Weil–Deligne representation of the Weil group WK . We
write recTK for the arithmetic normalization of the local Langlands correspondence,



RAMANUJAN AND SATO–TATE FOR BIANCHI MODULAR FORMS 13

as defined in e.g. [CT14, §2.1]; it is defined on irreducible admissible representations
of GLn(K) defined over any field which is abstractly isomorphic to C (e.g. Ql).

Let F be a number field. If v is a finite place of F then we write k(v) for the
residue field of Fv. We identify dominant weights λ of ResF/Q GLn with sets of
tuples of integers (λτ,1 ≥ λτ,2 ≥ · · · ≥ λτ,n)τ :F↪→C indexed by complex embeddings
of F (cf. [ACC+23, §2.2.1]). If π is an irreducible admissible representation of
GLn(AF ) and λ is a dominant weight, we say that π is regular algebraic of weight
λ if the infinitesimal character of π∞ is the same as that of V ∨

λ , where Vλ is the
algebraic representation of ResF/Q GLn of highest weight λ. We say that π is
regular algebraic if it is regular algebraic of some weight.

Definition 1.6.1 (Parallel Weight). Suppose π is regular algebraic of weight λ.
We say that π is of parallel weight if λτ,1−λτ,2 is independent of τ ; equivalently, if
π admits a regular algebraic twist of weight µ = (m− 1, 0)τ for some m ≥ 1 in Z.
We say that π has parallel weight k for some integer k ≥ 2 if µ = (k − 2, 0)τ .

Let F be an imaginary CM field, and let π be a cuspidal, regular algebraic
weight λ automorphic representation of GL2(AF ). The weight λ = (λτ,1, λτ,2)τ ∈
(Z2)Hom(F,C) satisfies:

• There is an integer w ∈ Z such that for all τ , we have λτ,1 + λτc,2 = w. In
particular, for all τ we have λτ,1 − λτ,2 = λτc,1 − λτc,2.

This is a consequence of Clozel’s purity lemma [Clo90, Lemma 4.9]. In particular,
if F is imaginary quadratic, π is necessarily of parallel weight.

2. The special fibres of weight 0 crystalline lifting rings are
generically reduced

The goal of this section is to prove Theorem 2.5.5, which shows that if p > n,
then for any finite extension K/Qp and any ρ : GK → GLn(Fp), the special fibre
of the corresponding weight 0 crystalline lifting ring is generically reduced. We
deduce this from the corresponding statement for the special fibre of the weight 0
crystalline Emerton–Gee stack. This stack was introduced in [EG23]. We recall the
results from [EG23] that we need in Section 2.4 below, but for this introduction
the key points are as follows: the full Emerton–Gee stack X is a stack of (φ,Γ)-
modules which sees all ρ at once, and whose versal ring at any ρ is the corresponding
unrestricted lifting ring; and the weight 0 crystalline Emerton–Gee stack X 0 is a
closed substack whose versal ring at any ρ is the corresponding weight 0 crystalline
lifting ring.

Generic reducedness for the (special fibre of the) stack X 0 is equivalent to the
generic reducedness for the special fibres of the crystalline lifting rings, as we show
by a direct argument below (in the proofs of Theorem 2.5.2 and Theorem 2.5.5).
Working on the stack allows us to argue more geometrically, and in particular
one of the main theorems of [EG23] classifies the irreducible components of the
underlying reduced substack of X , and shows that the underlying reduced substack

of the special fibre X 0
of X 0 is a union of these irreducible components.

In order to show that the X 0
is generically reduced, it therefore suffices to deter-

mine which irreducible components are contained in this special fibre, and to show

that X 0
is reduced at a generic point of each such component.
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The classification in [EG23] of the irreducible components is via a description of
the generic ρ which occur on that component. These are all of the form

ρ ∼=


χ1 ∗ . . . ∗
0 χ2 . . . ∗
...

. . .
...

0 . . . 0 χn


where the χi : GK → F

×
p are characters and the extension classes ∗ are in generic

position (in particular nonsplit). The characters χi|IK are fixed on each irreducible
component, and the components are usually determined by the data of the χi|IK
(see Theorem 2.4.3 (3) for a precise statement).

In order to prove our results, we show that the condition that a generic such ρ has
a crystalline lift of weight 0 seriously constrains the possible χi. We use a theorem
of Tong Liu [Liu08], which in particular shows (under the assumption that p > n)
that ρ is obtained from a (crystalline) Breuil module. In the case n = 2, we can
then argue as follows: we can compute the possible extensions of rank 1 Breuil
modules, and we find that a sufficiently generic extension of χ2 by χ1 can only
have a crystalline lift of weight 0 if it is ordinary, in the sense that χ1 is unramified
and χ2 is an unramified twist of ε−1, where ε is the mod p cyclotomic character.

Furthermore, a generic such extension arises from a unique Breuil module, which
is ordinary. (Since two-dimensional weight 0 crystalline representations are given
by the generic fibres of p-divisible groups, we can alternatively phrase this result
as showing that ρ comes from a unique finite flat group scheme over OK , which is
ordinary in the sense that it is an extension of a multiplicative by an étale group
scheme.) By an argument of Kisin [Kis09, Prop. 2.4.14], the deformations of this
Breuil module are also ordinary, so that the weight 0 crystalline lifting rings for these
generic ρ’s are also ordinary. It is then easy to show that the crystalline ordinary
lifting ring for a generic ρ is formally smooth, and thus has reduced special fibre,
which completes the argument.

Perhaps surprisingly, we are able to make a similar argument for general n,
without making any additional calculations. For each i, we apply our computation
of extension classes of Breuil modules to the extension of χi+1 by χi arising as a
subquotient of ρ. If all of these extensions are sufficiently generic, we show that ρ
can only admit crystalline lifts of weight 0 if χi|IK = ε1−i for all i. Furthermore,
we also see that a generic such ρ can only arise from an ordinary Breuil module,
and again deduce that all weight 0 crystalline lifts of ρ are ordinary. From this we
deduce the formal smoothness of the corresponding lifting rings for generic ρ, and
conclude as above.

The organization of the proof is as follows. In Section 2.1 we recall Liu’s re-
sults [Liu08] on strongly divisible modules and lattices in semistable representations,
and deduce the results that we need on crystalline Breuil modules. In Section 2.2
we compute extensions of rank one Breuil modules. This is essentially elementary,
using only semilinear algebra and some combinatorics. We deduce from this in
Section 2.3 that sufficiently generic crystalline representations of weight 0 are ordi-
nary. In Section 2.4 we give a brief introduction to Emerton–Gee stacks, and prove
some slight generalizations of some results of [EG23], before deducing our generic
reducedness results in Section 2.5.
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2.1. Breuil modules and strongly divisible modules. We begin by recalling
some standard results about Breuil modules and Breuil–Kisin modules. The results
we use are largely due to Breuil, Kisin and Liu, but for convenience we mostly cite
the papers [EGH13, HLM17] which deduce versions of these results with coefficients
and prove some exactness properties of the functors to Galois representations which
we will make use of in our main arguments. (Note that [HLM17, App. A] makes a
running assumption on the ramification of the field K/Qp, but this is only made in
order to discuss tame descent data and compare to Fontaine–Laffaille theory, and
it is easy to check that all of the results we cite from there are valid for general
K/Qp with trivial descent data, with identical proofs (or often with simpler proofs,
as there is no need to consider the descent data).)

Let K/Qp be a finite extension for some p > 2, with ring of integers OK and
residue field k. Write e for the absolute ramification degree of K, and f for its
inertial degree [k : Fp]. Fix a uniformizer π ∈ K with Eisenstein polynomial E(u),

which we choose so that E(0) = p. Fix also a compatible choice (π1/pn

)n≥1 of

p-power roots of π in Qp, and set Kn := K(π1/pn

) and K∞ := ∪n≥1Kn.
Let E/Qp be a finite extension containing the normal closure of K, with ring of

integers O and residue field F. We will consider various semilinear algebra objects
with coefficients in a finite O-algebra A, and it is trivial to verify that all of our
definitions are compatible with extension of scalars of A in an obvious way. In
particular, we often take A = F, but we are free to replace F by an arbitrary finite
extension, or (after passing to a limit in an obvious fashion) by Fp.

For any finite O-algebra A we let SA := (W (k) ⊗Zp
A)JuK, equipped with the

usual A-linear, W (k)-semilinear Frobenius endomorphism φ, with φ(u) = up. For
any integer h ≥ 0, a Breuil–Kisin module with A-coefficients of height at most h is a
finite free SA-module M equipped with a φ-semilinear map φ : M → M such that

the cokernel of the linearized Frobenius φ∗M
1⊗φ−−−→ M is killed by E(u)h, where

as usual φ∗M denotes the Frobenius pullback SA ⊗φ,SA
M. (Here we indulge in

a standard abuse of notation in writing φ for both the endomorphism of SA and
of M, which should not cause any confusion.)

Suppose that A = F, and let SF := SF/u
ep. If h ≤ p − 2, then a quasi-Breuil

module with F-coefficients M of height h is a finite free SF module M equipped
with a SF-submodule

uehM ⊆ Mh ⊆ M
and a φ-semilinear map φ : Mh → M such that

SF · φ(Mh) = M.

(The morphism φ is usually denoted φh in the literature, but we will shortly fix
the choice h = p− 2 for the rest of the paper, so we have omitted the subscript for
the sake of cleaner notation.)

For each 0 ≤ h ≤ p−2, there is by [Bre99, Thm. 4.1.1] an equivalence of categories
between the category of Breuil–Kisin modules with F-coefficients of height at most h
and the category of quasi-Breuil modules with F-coefficients of height at most h.
Explicitly, a Breuil–Kisin module M of height h ≤ p− 2 determines a quasi-Breuil
module as follows. Write Mh := (1 ⊗ φ)−1(uehM) ⊆ φ∗M. Set M := φ∗M/upe,
and Mh = Mh/upeφ∗M. Then φ : Mh → M is defined by the composite

Mh 1⊗φ−−−→ uehSF ⊗SF
M

φh⊗1−−−→ SF ⊗φ,SF
M = M,
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where φh : uehSF → SF is the φ-semilinear morphism φh(u
ehx) := φ(x). (Note

that this is well-defined because if x is divisible by ue(p−h), then φ(x) is divisible
by uep(p−h) and in particular by uep = 0.) We will often say that the Breuil–Kisin
module M underlies the quasi-Breuil module M.

We define c ∈ (SF)
× to be the image of φ(E(u))/p in SF. We note that c = φ(d)

for d ∈ (SF)
×.

Remark 2.1.1. The equivalence between Breuil–Kisin modules and quasi-Breuil
modules recalled above is usually defined with the map φh(u

ehx) := chφ(x). It
is easily checked that multiplying by dh gives an isomorphism between the quasi-
Breuil modules with differently scaled φ.

Write N : SF → SF for the (k ⊗Fp
F)-linear derivation −u ∂

∂u . A Breuil mod-
ule with F-coefficients M of height h is a quasi-Breuil module equipped with the
additional data of a map N : M → M which satisfies:

• N(sx) = sN(x) +N(s)x for all s ∈ SF, x ∈ M,
• ueN(Mh) ⊆ Mh,
• and φ(ueN(x)) = cN(φ(x)) for all x ∈ Mh.

We say that a Breuil module M is crystalline if N(M) ⊆ uM.

Remark 2.1.2. While we will not explicitly need this below, it can be checked
that if M is crystalline, then ueN(Mh) ⊆ uN(Mh). To see this, note that since
SF · φ(Mh) = M, there is an induced Fp-linear surjection Mh/uMh → M/uM,
which is in fact an isomorphism (comparing dimensions as in [Bre98, Lem. 2.2.1.1]).
If M is crystalline then N acts by 0 on M/uM, and the commutation relation
between N and φ then shows that ueN acts by 0 on Mh/uMh, as required.

We now define the Galois representations associated to Breuil modules and
to Breuil–Kisin modules, beginning with the latter. An étale φ-module with F-
coefficients is by definition a finite free (k⊗Fp

F)((u))-module M with a semilinear

endomorphism φ : M → M such that the linearized Frobenius φ∗M
1⊗φ−−−→ M is

an isomorphism. Note that by definition, if M is a Breuil–Kisin module with F-
coefficients, then M[1/u] is an étale φ-module with F-coefficients. Let k((u))sep

denote a separable closure of k((u)). By the results of [Fon90] (see e.g. [Kis09,
1.1.12]), the functor

T∞ :M 7→ (M ⊗k((u)) k((u))
sep)φ=1

is an equivalence of categories between the category of étale φ-modules with F-
coefficients and the category of continuous representations of GK∞ on F-vector
spaces, and we have dimF T∞(M) = rank(k⊗FpF)((u))M . We also write T∞ for

the induced functor from Breuil–Kisin modules to GK∞ -representations given by
M 7→ T∞(M[1/u]). Similarly, if M is the Breuil–Kisin module underlying a quasi-
Breuil module M, we write T∞(M) for T∞(M).

Similarly, there is a functor T from the category of Breuil modules of height at
most h with F-coefficients to the category of continuous representations of GK on
F-vector spaces defined by

T (M) := Homk[u]/uep,φ,N (M, Â)∨,

where Â := Âst ⊗S k[u]/u
ep is defined for example in [HLM17, (A.3.1)]. Again we

have dimF T (M) = rankSF
M. Furthermore, by [HLM17, Prop. A.3.2] the forgetful
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functor from Breuil modules to quasi-Breuil modules induces an isomorphism

T (M)|GK∞

∼−→ T∞(M).

From now on all of our Breuil modules will be crystalline and have height (p−2).
We write FBrModcr for the category of crystalline Breuil modules of height (p −
2) with F-coefficients, and FqBrMod for the category of quasi-Breuil modules of
height (p − 2) with F-coefficients, which we identify with the category of Breuil–
Kisin modules of height at most (p− 2) with F-coefficients. We say that a complex

(2.1.3) 0 → M1 → M → M2 → 0

in FBrModcr or FqBrMod is exact if it induces exact sequences of SF-modules
0 → M1 → M → M2 → 0 and

0 → Mp−2
1 → Mp−2 → Mp−2

2 → 0.

It is easily checked that a complex of quasi-Breuil modules is exact if and only
if the corresponding complex of Breuil–Kisin modules is exact (as a complex of
SF-modules).

If M is an object of FBrModcr, then an SF-submodule N ⊆ M is a Breuil
submodule of M if it is a direct summand of M as a k[u]/uep-module, and we
furthermore have N(N ) ⊆ N and φ(N ∩Mr) ⊆ N . Then N inherits the structure
of a crystalline Breuil module from M, as does the quotient M/N , and by [HLM17,
Lem. 2.3.2], the complex of crystalline Breuil modules

0 → N → M → M/N → 0

is exact; and conversely if (2.1.3) is exact, then M1 is a Breuil submodule of M.

Theorem 2.1.4.

(1) The categories FBrModcr and FqBrMod are exact categories in the sense
of [Qui10], and the functors T and T∞ are exact.

(2) For any object M of FBrModcr, there is an order preserving bijection Θ be-
tween the Breuil submodules of M and the GK-subrepresentations of T (M),
taking N to the image of T (N ) ↪→ T (M). Furthermore if M1 ⊆ M2 are
Breuil submodules of M, then Θ(M2)/Θ(M1) ∼= T (M2/M1).

Proof. The statement for quasi-Breuil modules is [Car11, Thm. 2.1.2]. The rest of
the theorem for not-necessarily-crystalline Breuil modules is [HLM17, Prop. 2.3.4,
2.3.5]. The case of crystalline Breuil modules follows formally, because (as noted
above) a Breuil submodule of a crystalline Breuil module is automatically crystalline
(as is the corresponding quotient submodule). Alternatively, it is straightforward
to check that the proofs of [HLM17, Prop. 2.3.4, 2.3.5] go through unchanged, once
one notes that the duality on Breuil modules [EGH13, Defn. 3.2.8] by definition
preserves the subcategory of crystalline Breuil modules. □

We now show that any Galois representation obtained as the reduction mod p of a
lattice in a crystalline representation with Hodge–Tate weights in the range [0, p−2]
comes from a crystalline Breuil module. This is essentially an immediate conse-
quence of the main theorem of Liu’s paper [Liu08], which proves an equivalence of
categories betweenGK-stable lattices inside semistable representations with Hodge–
Tate weights in the range [0, p − 2] and strongly divisible modules. From this one
can easily deduce an equivalence of categories between GK-stable lattices inside
crystalline representations with Hodge–Tate weights in the range [0, p− 2] and an



18 G. BOXER, F. CALEGARI, T. GEE, J. NEWTON, AND J. A. THORNE

appropriate category of “crystalline strongly divisible lattices”, but since we do not
need this, we avoid recalling the definitions of strongly divisible lattices and leave
it to the interested reader.

Recall that by the results of [Kis06], if ρ : GK → GLn(O) is a lattice in a
crystalline representation with non-negative Hodge–Tate weights, there is a Breuil–
Kisin module with O-coefficients MO associated to ρ|GK∞

(see e.g. [GLS14, Thm.
3.2(3), Prop. 3.4(3)] for a precise reference allowing O-coefficients).

Theorem 2.1.5. Let ρ : GK → GLn(O) be a lattice in a crystalline representation
with Hodge–Tate weights in [0, h] for some integer 0 ≤ h ≤ p − 2, and write ρ :
GK → GLn(F) for its reduction modulo mO. Then there is a crystalline Breuil
module M with F-coefficients such that ρ ∼= T (M). Furthermore, the underlying
Breuil–Kisin module of M has height at most h, and is the reduction modulo mO
of the Breuil–Kisin module MO with O-coefficients associated to ρ|GK∞

.

Proof. Since crystalline representations are in particular semistable, it is imme-
diate from [EGH13, Prop. 3.1.4, Lem. 3.2.2] that there is a not-necessarily crys-
talline Breuil module M with F-coefficients such that ρ ∼= T (M), whose underlying
Breuil–Kisin module has height at most h (note that our h is the integer r in the
statement of [EGH13, Prop. 3.1.4]). We claim that the Breuil module provided by
these results is necessarily crystalline. To see this, note first that (in the case at
hand, with no descent data) [EGH13, Prop. 3.1.4] is a trivial consequence of the
main result [Liu08, Thm. 2.3.5] of Liu’s paper [Liu08], and gives an equivalence of
categories between GK-stable O-lattices inside semistable E-representations of GK

with Hodge–Tate weights in the range [0, p − 2] and strongly divisible modules
with O-coefficients. In particular, there is a strongly divisible module with O-

coefficients M̂ corresponding to ρ.
We do not recall the notion of a strongly divisible module here, but we note that

they are by definition modules over a coefficient ring SO, equipped with a Frobenius,
a filtration and a monodromy operator N , and by [EGH13, Lem. 3.2.2], the Breuil

module M is obtained from the strongly divisible module M̂ by tensoring over SO
with SF. By the commutative diagram at the end of [Liu08, §3.4], the strongly

divisible module M̂ has underlying Breuil–Kisin module MO (via the fully faithful
functor of [Liu08, Cor. 3.3.2]). It follows immediately that the underlying Breuil–
Kisin module of M is the reduction modulo mO of MO, as claimed.

It remains to show that if ρ is crystalline, the monodromy operator N on M
vanishes mod u. This follows immediately from the compatibility between M̂ and
the weakly admissible module D associated to ρ, for which see [Liu08, §3.2]. □

2.2. Extensions of rank one Breuil modules. In this section we make a com-
putation of the possible extensions of rank one Breuil modules, and prove the
crucial Lemma 2.2.19, which gives a constraint on the Breuil modules which can
witness sufficiently generic extensions of characters. A key input to the proof of
this Lemma is Lemma 2.2.7, which constrains the shapes of extensions of rank one
Breuil modules. To prove Lemma 2.2.19, we simply write down an explicit exten-
sion of characters (after restriction to GK∞) and show that it cannot arise from
a Breuil module satisfying these constraints. These calculations are elementary,
but are complicated in the case of a general field K/Qp, and the reader may find
it helpful to firstly work through the case that K/Qp is totally ramified, where
the calculations simplify dramatically; if furthermore n = 2, then the monodromy
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condition is automatic and the calculations simplify further to a basic exercise with
Breuil–Kisin modules.

Let σ0 : k ↪→ F be a fixed embedding. Inductively define σ1, . . . , σf−1 by
σi+1 = σi ◦ φ−1, where φ is the arithmetic Frobenius on k; we will often consider
the numbering to be cyclic, so that σf = σ0. There are idempotents ϵi ∈ k ⊗Fp

F
such that if M is any k ⊗Fp

F-module, then M =
⊕

iMi, where Mi := ϵiM is the
subset of M consisting of elements m for which (x ⊗ 1)m = (1 ⊗ σi(x))m for all
x ∈ k. Note that (φ⊗ 1)(ϵi) = ϵi+1 for all i.

As explained above, we are free to work with coefficients in Fp rather than F,
and for convenience we do so throughout this section. (To be precise, this means
that we apply the definitions above with SF replaced by (k ⊗Fp Fp)[u]/u

ep.) It
will be clear to the reader that the coefficients do not intervene in any way in the
calculations, and we could equally well work with coefficients in any finite extension
of F.

Definition 2.2.1. Let s0, . . . , sf−1 be non-negative integers, and let a ∈ F
×
p . Let

M(s; a) be the rank one Breuil–Kisin module with Fp coefficients such thatM(s; a)i
is generated by ei with

φ(ei−1) = (a)iu
siei.

Here and below, (a)0 = a and (a)i = 1 if i ̸= 0.

By [GLS14, Lem. 6.2], any rank one Breuil–Kisin module is isomorphic to (ex-
actly) one of the form M(s; a).

Definition 2.2.2. Set αi(M(s; a)) := 1
pf−1

∑f
j=1 p

f−jsj+i.

By [GLS15, Lem. 5.1.2], there exists a nonzero map M(s; a) → M(t; b) if and
only if αi(M(s; a)) − αi(M(t; b)) ∈ Z≥0 for all i, and a = b. We now show that
each rank one Breuil–Kisin module of height at most (p − 2) underlies a unique
rank one (crystalline) Breuil module. (In particular, all rank one Breuil modules
are crystalline.)

Lemma 2.2.3. If each si ∈ [0, e(p − 2)] then the rank one Breuil–Kisin module
M(s; a) underlies a unique height (p− 2) Breuil module M = M(s; a) with

Mp−2
j = ⟨ue(p−2)−sj (1⊗ ej−1)⟩,

φ(ue(p−2)−sj (1⊗ ej−1)) = (a)j(1⊗ ej),

N((1⊗ ej−1)) = 0.

Proof. We begin by noting that since (φ∗M(s; a))i is generated by (1 ⊗ ei−1), the
quasi-Breuil module M = φ∗M(s; a)/uep corresponding to M(s; a) has the given
form. It is easy to see that takingN((1⊗ej−1)) = 0 givesM the structure of a Breuil
module. To see that this is the only possibility, write N((1⊗ ej−1)) = νj(1⊗ ej−1).
Then we have

N(ue(p−2)−sj (1⊗ ej−1)) = ue(p−2)−sj (sj − e(p− 2) + νj) (1⊗ ej−1) ∈ Mp−2
j ,

so that

φ(ueN(ue(p−2)−sj (1⊗ ej−1))) ∈ uepφ(Mj) = 0,

and the equation φ(ueN(ue(p−2)−sj (1⊗ ej−1))) = cNφ(ue(p−2)−sj (1⊗ ej−1)) gives
νj+1 = 0 for each j, as required. □
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The extensions of rank one Breuil–Kisin modules are computed as follows.

Proposition 2.2.4. Let M be an extension of M(s; a) by M(t; b). Then we can
choose bases ei, fi of the Mi so that φ has the form

φ(ei−1) = (b)iu
tiei(2.2.5)

φ(fi−1) = (a)iu
sifi + yiei

with yi ∈ FJuK a polynomial with deg(yi) < si, except that when there is a nonzero
map M(s; a) → M(t; b) we must also allow yj to have a term of degree sj +
αj(M(s; a))− αj(M(t; b)) for any one choice of j.

Proof. This is [GLS15, Prop. 5.1.3]. □

Remark 2.2.6. (1) In our application to ‘generic’ ρ, we could avoid consider-
ing the special case where there is a nonzero map M(s; a) → M(t; b) (for
example by ensuring that a ̸= b), but we have included it for completeness.

(2) While this is not claimed in [GLS15, Prop. 5.1.3], we expect that it is pos-
sible to show that distinct choices of the yi in 2.2.4 give distinct extensions
of Breuil–Kisin modules.

We now compute a constraint on extension classes of rank 1 Breuil modules.

Lemma 2.2.7. Let M be a crystalline Breuil module which is an extension of
M(s; a) by M(t; b), with underlying Breuil–Kisin module M as in Proposition 2.2.4.

For each i we set

(2.2.8) ni :=
1

pf − 1

f∑
j=1

pf−j(sj+i−1 − tj+i−1 − e) ∈ Q.

Then the yj in Proposition 2.2.4 cannot have any terms of degree l < sj − e +
max(nj+1, 1) with l ̸≡ tj (mod p).

Proof. The quasi-Breuil module corresponding to M has Mj generated by (1 ⊗
ej−1), (1⊗ fj−1) and Mp−2

j generated by Ej := ue(p−2)−tj (1⊗ ej−1) and

Fj := ue(p−2)−sj (1⊗ fj−1)− ue(p−2)−sj−tj (b−1)jyj(1⊗ ej−1).

The map φ : Mp−2 → M is given by

φ(Ej) = (b)j(1⊗ ej), φ(Fj) = (a)j(1⊗ fj).

(Note that M must have height at most (p− 2), since it underlies a Breuil module,
so yj is indeed divisible by usj+tj−e(p−2).)

We have N(1 ⊗ ej−1) = 0, and we write N(1 ⊗ fj−1) = µj(1 ⊗ ej−1) with

µj ∈ uFp[u] (since M is crystalline), where for each j we must have

ueN(Fj) ∈ Mp−2
j

by the second property of N required in the definition of a Breuil module. Given
this, the third property of N gives the commutation relation

φ(ueN(Fj)) = cNφ(Fj)

= cN((a)j(1⊗ fj))

= c(a)jµj+1(1⊗ ej).
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We have

N(Fj) = (sj − e(p− 2))ue(p−2)−sj (1⊗ fj−1) + ue(p−2)−sjµj(1⊗ ej−1)

+N(−ue(p−2)−sj−tj (b−1)jyj)(1⊗ ej−1)

= (sj − e(p− 2))(ue(p−2)−sj (1⊗ fj−1)− ue(p−2)−sj−tj (b−1)jyj(1⊗ ej−1))

+ (ue(p−2)−sjµj +N(−ue(p−2)−sj−tj (b−1)jyj))(1⊗ ej−1)

+ ((sj − e(p− 2))ue(p−2)−sj−tj (b−1)jyj)(1⊗ ej−1),

so we need the quantity

ue(ue(p−2)−sjµj+N(−ue(p−2)−sj−tj (b−1)jyj)+(sj−e(p−2))ue(p−2)−sj−tj (b−1)jyj)

to be divisible by ue(p−2)−tj ; assuming this holds, the commutation relation with φ
reads

c(a)jµj+1 = (b)ju
p(e−e(p−2)+tj)φ

(
ue(p−2)−sjµj

+N(−ue(p−2)−sj−tj (b−1)jyj) + (sj − e(p− 2))ue(p−2)−sj−tj (b−1)jyj

)
.

In particular, since c = φ(d) ∈ im(φ), we see that µj+1 ∈ imφ. Writing µj+1 =
φ(µ′

j+1) and rearranging, we obtain

(2.2.9) ue−sj+tj
(
(b)jφ(µ

′
j)− u−tj (tjyj +N(yj))

)
= d(a)jµ

′
j+1.

(Strictly speaking, since φ(ue) = uep = 0, this is only an equation modulo ue; but
it is easily checked that all terms have degree less than e, so it holds literally.)

Examining the left hand side of (2.2.9), we note that there can be no cancellation
between the terms in φ(µ′

j) and u
−tj (tjyj +N(yj)), as the exponents of u in φ(µ′

j)

are all divisible by p, while none of the exponents of u in u−tj (tjyj + N(yj)) are
divisible by p (the terms in tjyj with exponent ≡ tj mod p cancel with terms in
N(yj)). Let dj ≥ 1 be the u-adic valuation of µ′

j (setting dj = e if µ′
j is divisible

by ue). Then, since d is a u-adic unit, (2.2.9) gives us the inequality

(2.2.10) pdj − (sj − tj − e) ≥ dj+1.

(To see this, note that if the left hand side is at least e, there is nothing to prove;
and if dj = e, then since sj − tj − e ≤ e(p− 3), the left hand side is at least 3e > e.
Otherwise the term ue−sj+tj (b)jφ(µ

′
j) means that the left hand side of (2.2.9) has

a term of degree pdj−(sj−tj−e), because of the lack of cancellation.) Multiplying
the inequalities (2.2.10) by suitable powers of p and summing, we have

f∑
j=1

pf−j(pdj+i−1 − dj+i) ≥
f∑

j=1

pf−j(sj+i−1 − tj+i−1 − e),

which simplifies to di ≥ ni, where ni is as in (2.2.8). Since M is crystalline by
assumption, we also have di ≥ 1, so that di ≥ max(1, ni) for all i.

Returning to (2.2.9), since the right hand side has valuation dj+1, the lack of
cancellation implies that the term ue−sj (tjyj + N(yj)) on the left hand side is

divisible by umax(1,nj+1); equivalently, the terms in yj of degree less than sj − e +
max(1, nj+1) and not congruent to tj modulo p vanish, as claimed. □
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Remark 2.2.11. It follows easily from the definitions that if we have two extensions
of M(s; a) by M(t; b) as in Lemma 2.2.7, then their Baer sum corresponds to the
extension obtained by summing the yj (and has N given by summing the µj).

In the following arguments it will be useful to note that by the definition of
the nj in (2.2.8), we have

(2.2.12) nj + (sj−1 − tj−1 − e) = pnj−1

for all j.

Lemma 2.2.13. Write

(2.2.14) ri := si − ti − e+ ⌊ni+1⌋ − p⌊ni⌋+ 1.

Then ri ∈ [1, p] for each i.

Proof. Using (2.2.12), we have ri− 1 = p(ni−⌊ni⌋)− (ni+1−⌊ni+1⌋) and since for
any real number x we have (x − ⌊x⌋) ∈ [0, 1) we have ri − 1 ∈ (−1, p). Since ri is
an integer, the result follows. □

Write
Ext1BrModcr(M(s; a),M(t; b))

for the Ext1 group computed in the exact category FpBrModcr. Write

χ1 := T (M(t; b)),

χ2 := T (M(s; a)).

Then the restriction maps

Ext1BrModcr(M(s; a),M(t; b))
resK−−−→ Ext1GK

(χ2, χ1)
resK∞−−−−−→ Ext1GK∞

(χ2, χ1)

are homomorphisms of Fp-vector spaces. Regarding elements of Ext1GK∞
(χ2, χ1)

as étale φ-modules, we have the following description of the image of the restric-
tion map resK∞ . (In our key Lemma 2.2.19, we will show that the composition
resK∞ ◦ resK has smaller image.)

Lemma 2.2.15.

(1) The restriction map resK∞ is injective unless χ1χ
−1
2 = ε, in which case its

kernel is 1-dimensional, and is generated by the très ramifiée line given by
the Kummer extension corresponding to the chosen uniformizer π of K.

(2) The image of resK∞ has dimension [K : Qp], unless χ1 = χ2, in which case
it has dimension [K : Qp] + 1.

(3) The étale φ-modules M in the image of resK∞ are precisely those for which
we can choose a basis ei, fi of Mi so that φ has the form

φ(ei−1) = (b)iu
tiei(2.2.16)

φ(fi−1) = (a)iu
sifi + yiei

where yi ∈ Fp[u, u
−1] has nonzero terms only in degrees [si + ⌊ni+1⌋ − e+

1, . . . , si + ⌊ni+1⌋]; except that when χ1 = χ2 we also allow yi to have a
term of degree

si +
1

pf − 1

f∑
j=1

pf−j(sj+i − tj+i)

(necessarily an integer in this case) for any one choice of i.
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Proof. The first part is [GLS15, Lem. 5.4.2]. The second part then follows from the
usual computation of the dimension of Ext1GK

(χ2, χ1) via Tate’s Euler characteristic
formula and local duality.

The final part can presumably be proved in an elementary way, but for conve-
nience we explain how to deduce it from the results of [GLS15] on the Breuil–Kisin
modules associated to certain crystalline representations with small Hodge–Tate
weights. This was first explained in [CEGM17, Thm. 3.3.2] in the case K/Qp

unramified (which employed the earlier results [GLS14]), and in general [Ste22,
Thm. 4.2], under the assumption that χ1χ

−1
2 ̸= ε. However the comparison to

the notation used in [Ste22, Thm. 4.2] is not immediate, and we need to treat the
case χ1χ

−1
2 = ε, so for the convenience of the reader we explain in our notation

how to extract the claim from [GLS15].
It is easy to check that the étale φ-modules in (2.2.16) span a space of the di-

mension computed in part (2). In particular, in the case when χ1 = χ2, considering
the change of basis adding on a suitable multiple of ei to fi shows that the ad-
ditional φ-modules in that case do not depend on the choice of i for which yi is
allowed to have an extra term. It now suffices to show that all of the possibilities
in (2.2.16) do indeed arise from GK-representations. We can and do twist so that
that ti = 0 for all i. (This has the effect of replacing si by si − ti, and leaving ni
unchanged, so the general statement follows immediately by twisting back.) Then
our strategy is to show that our étale φ-modules arise from the reductions of certain
crystalline representations. In fact, we will see that they arise from the reductions
of crystalline extensions of p-adic characters.

We make the change of variables f ′i = u−⌊ni+1⌋fi, and write y′i := u−p⌊ni⌋yi.
Then we have

φ(ei−1) = (b)iei,

φ(f ′i−1) = (a)iu
ri+e−1f ′i + y′iei.

By (2.2.14) and our assumption that ti = 0, we have

ri + p⌊ni⌋ = ri + ti + p⌊ni⌋ = si − e+ ⌊ni+1⌋+ 1,

so we need to show that every choice of y′i having nonzero terms in degrees [ri, ri+e−
1] occurs (together with the additional term in the statement in the case that χ1 =
χ2). If we make a further change of variables to replace f ′i with f ′i + ziei for all i,
with zi ∈ Fp, then we may exchange the terms in y′i of degree ri + e− 1 with terms
in yi−1 of degree 0 (cf. (2.2.23)), so it suffices in turn to show that every choice
of y′i having nonzero terms in degrees 0 and [ri, ri + e − 2] occurs in the image
of resK∞ (again, together with the additional term in the statement in the case
that χ1 = χ2).

Recall [GLS15, Defn. 2.3.1] that a pseudo-Barsotti–Tate representation of weight {ri}
is a 2-dimensional crystalline representation whose labelled Hodge–Tate weights
are {0, 1}, except at a chosen set of f embeddings lifting the embeddings σi : k ↪→
Fp, where they are {0, ri}. By [GLS15, Defn. 4.1.3], these are the representations

which have σr−1,0 := ⊗i Sym
ri−1 k2 ⊗k,σi

Fp as a Serre weight.
Now consider [GLS15, Thm. 5.1.5], taking the ti there to be zero, the xi to

be e−1, and the si there to be our ri+e−1 (which are not necessarily equal to our si
– we apologize for this temporary notation). Note that with this choice, the Breuil–
Kisin modules spanned by our basis ei, f

′
i are precisely the extensions of Breuil–

Kisin modules in [GLS15, Thm. 5.1.5], for the rank one Breuil–Kisin modules which



24 G. BOXER, F. CALEGARI, T. GEE, J. NEWTON, AND J. A. THORNE

are the minimal and maximal models of χ1, χ2 as in the statement of [GLS15, Prop.
5.3.4]. So by [GLS15, Prop. 5.3.4, Thm. 5.1.5], if ψ ∈ Ext1GK

(χ2, χ1) comes from the
reduction of a pseudo-Barsotti–Tate representations of weight {ri}, then resK∞(ψ)
is given by an étale φ-module as in (2.2.16). It therefore suffices to show that these
classes resK∞(ψ) span the image of resK∞ .

To see this, we consider the reductions of reducible crystalline representations.
As in the proof of [GLS15, Thm. 5.4.1], we choose crystalline characters χ1,min, χ2,max

which lift χ1, χ2 respectively. More precisely, these characters are determined (up
to unramified twist, which we do not specify) by their Hodge–Tate weights, which
(recalling that ti = 0 for all i) we can and do choose so that χ2,max is unramified,
and so that any crystalline extension of χ2,max by χ1,min is pseudo-Barsotti–Tate
of weight {ri}.

The space of crystalline extensions of χ2,max by χ1,min is identified with the

Galois cohomology group H1
f (GK , χ1,minχ

−1
2,max), and as in the proof of [GLS15,

Thm. 5.4.1], one immediately computes that the dimension of the image of the
reduction map

(2.2.17) H1
f (GK , χ1,minχ

−1
2,max) → H1(GK , χ1χ

−1
2 )

is [K : Qp], unless χ1 = χ2 in which case it is [K : Qp] + 1; so by part (2), this
image has the same dimension as the image of resK∞ .

In particular we see that we are done if the restriction of resK∞ to the image
of (2.2.17) is injective. If χ1χ

−1
2 ̸= ε then this is automatic by part (1), so we

may suppose that χ1χ
−1
2 = ε. If some ri ̸= p, then by [CEGS22b, Lem. A.4] the

image of (2.2.17) is contained in the peu ramifiée subspace, so we again conclude
by part (1). Finally if ri = p for all i, then as in the proof of [GLS15, Thm.
6.1.18], the union of the images of (2.2.17) as χ1,min, χ2,max range over their twists

by unramified characters with trivial reduction is all of H1(GK , χ1χ
−1
2 ), so we are

done. □

Lemma 2.2.18. Suppose that
∑f

j=1(sj − tj − e) < 0. Then either there exists an i

with ⌊ni+1⌋ = −1 and ri ̸= p, or there exists an i with ⌊ni+1⌋ ≤ −2.

Proof. Summing (2.2.14) over all j, we have

f∑
j=1

(sj − tj − e) =

f∑
j=1

((p− 1)⌊nj+1⌋+ (rj − 1)) .

If this is negative, there exists an i with

(p− 1)⌊ni+1⌋+ (ri − 1) < 0.

Since ri ≥ 1, we must have ⌊ni+1⌋ < 0. If ⌊ni+1⌋ = −1 then we have 1−p+ri−1 < 0,
so ri < p, as required. □

Lemma 2.2.19. Suppose that
∑f

j=1(sj − tj − e) < 0. Then the restriction map

Ext1BrModcr(M(s; a),M(t; b))
resK−−−→ Ext1GK

(χ2, χ1)

is not surjective.

Proof. It suffices to show that im(resK∞ ◦ resK) is a proper subspace of im(resK∞).
Viewing classes in Ext1GK∞

(χ2, χ1) as étale φ-modules, it therefore suffices to exhibit
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an étale φ-module as in the statement of Lemma 2.2.15 (3) which is not in the image
of resK∞ ◦ resK .

By Lemma 2.2.18, we may assume that for some i we either have ⌊ni+1⌋ = −1
and ri ̸= p, or we have ⌊ni+1⌋ ≤ −2. If ri ̸= p then we set xi = si + ⌊ni+1⌋ − e+1,
while if ri = p (so that ⌊ni+1⌋ ≤ −2) we set xi = si + ⌊ni+1⌋ − e + 2. It follows
from (2.2.14) that si + ⌊ni+1⌋ − e+ 1 ≡ ti + ri (mod p), so we have

(2.2.20) xi ̸≡ ti (mod p).

We claim that we also have

(2.2.21) si + ⌊ni+1⌋ − e+ 1 ≤ xi ≤ si + ⌊ni+1⌋.

Indeed by definition we have xi = si + ⌊ni+1⌋− e+1 or xi = si + ⌊ni+1⌋− e+2, so
the lower bound is immediate, and the upper bound is also automatic unless e = 1.
If e = 1, we need to rule out the possibility that we are in the case xi = si+⌊ni+1⌋−
e + 2. In this case we assumed that ⌊ni+1⌋ ≤ −2, so in particular ni+1 < −1; but
since we have sj − tj − e ≥ −e(p− 1) for all j, it follows from (2.2.8) that we have
nj ≥ −e for all j, and in particular if e = 1 we have ni+1 ≥ −1, as required.

We also have xi ≤ si− e (because if ⌊ni+1⌋ = −1 then xi = si+ ⌊ni+1⌋− e+1 =
si − e, and otherwise ⌊ni+1⌋ ≤ −2 and we have xi = si + ⌊ni+1⌋ − e+ 2 ≤ si − e),
i.e.

(2.2.22) xi < si − e+ 1 = si − e+max(ni+1, 1).

(We have written the inequality in this form so that we can apply Lemma 2.2.7.)
Set y′i = uxi and y′j = 0 for all j ̸= i. By (2.2.21) and Lemma 2.2.15, it suffices to
show that the étale φ-module M arising from taking the yj in (2.2.16) to be our y′j
is not of the form M[1/u] for any Breuil–Kisin module M satisfying the constraints
of Lemma 2.2.7.

Suppose on the contrary that M as in (2.2.5) has M[1/u] ∼=M . This means that
there is a change of variables e′j = ej , f

′
j = fj + λjej with λj ∈ Fp((u)) having the

property that for all j, we have

φ(f ′j−1) = (a)ju
sjf ′j + yjej .

Equivalently, for each j we must have

(2.2.23) yj = y′j + (b)ju
tjφ(λj−1)− (a)ju

sjλj .

Recall that we chose y′i = uxi , where xi satisfies (2.2.20) and (2.2.22), so the
coefficient of uxi in yi is zero by Lemma 2.2.7. The coefficient of uxi in utiφ(λi−1) is
also zero (again by (2.2.20)), so it follows from (2.2.23) with j = i that the coefficient
of uxi in usiλi is nonzero. Thus λi has a term of degree xi − si. By (2.2.22) we
have xi − si ≤ −e.

We claim that this implies that every λj has a term of degree at most −e. To
see this we rewrite (2.2.23) for j replaced by j + 1 in the form

(2.2.24) (a)j+1u
sj+1λj+1 = (y′j+1 − yj+1) + (b)j+1u

tj+1φ(λj).

If j + 1 ̸= i then y′j+1 − yj+1 ∈ Fp[[u]], so if λj has a term of degree at most −e,
then utj+1φ(λj) has a term of degree at most tj+1 − ep, which must cancel with
a term in usj+1λj+1. Thus λj+1 has a term of degree at most tj+1 − ep − sj+1 ≤
e(p− 2)− ep = −2e < −e, so the claim follows from induction (beginning with the
case j = i).
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Now vj ≤ −e denote the u-adic valuation of λj . Then u
tj+1φ(λj) has a nonzero

term of degree tj+1 + pvj , which again must cancel with a term in usj+1λj+1.
(Indeed, we have tj+1 + pvj ≤ e(p− 2)− ep < 0, and the only possible term in any
y′j+1 − yj+1 of negative degree is the term uxi in y′i, which cannot cancel with a
term of degree ti + pvi−1 by (2.2.20)). We therefore have

vj+1 ≤ tj+1 − sj+1 + pvj ≤ tj+1 + pvj ≤ e(p− 2) + pvj ,

i.e.

(2.2.25) pvj − vj+1 ≥ −e(p− 2).

Summing these inequalities multiplied by appropriate powers of p, we have

f∑
j=1

pf−j(pvj+i−1 − vj+i) ≥ −e(p− 2)(pf − 1)/(p− 1),

so that vj ≥ −e(p− 2)/(p− 1) > −e for each j. Since we already saw that vj ≤ −e
for all j, we have a contradiction, and we are done. □

Definition 2.2.26. Let χ1, χ2 : GK → F
×
p be two characters. We say that an

element of Ext1GK
(χ2, χ1) is generic if it is not in the image of the restriction map

Ext1BrModcr(M(s; a),M(t; b))
resK−−−→ Ext1GK

(χ2, χ1)

for any rank 1 Breuil modulesM(s; a) andM(t; b)) with T (M(t; b)) = χ1, T (M(s; a)) =

χ2 and
∑f

j=1(sj − tj − e) < 0.

Remark 2.2.27. Note that by Lemma 2.2.19, the generic extensions in Ext1GK
(χ2, χ1)

are the complement of the union of finitely many proper subspaces.

Remark 2.2.28. Definition 2.2.26 may seem a little ad hoc, but it is closely related
to the condition of being a generic Fp-point on an irreducible component of the
2-dimensional Emerton–Gee stack (which we recall in Section 2.4). To make this
precise, we would need to work simultaneously with arbitrary unramified twists
of the characters χ1, χ2. While it is clear that the arguments above are uniform
across such unramified twists, and we could presumably formulate and prove our
results in the context of stacks of Breuil modules (and Breuil–Kisin modules), there
does not seem to be any benefit in doing so. Indeed, while working with Fp-
points occasionally leads to slightly clumsy formulations, we view it as a feature
of the structural results proved in [EG23] (see e.g. Theorem 2.4.3) that we can
prove statements about families of Galois representations (e.g. lifting rings) by only
thinking about representations valued in Fp.

Remark 2.2.29. While it may be possible to use other integral p-adic Hodge theories

(e.g. (φ, Ĝ)-modules) to prove a version of Lemma 2.2.19 which could apply to the
reductions of crystalline representations in a greater range of Hodge–Tate weights
than [0, p−2], it is unlikely that it can be significantly improved. Indeed already for
K = Qp, there are irreducible 2-dimensional crystalline representations of GQp with
Hodge–Tate weights 0, p+2 whose corresponding mod p Breuil–Kisin modules are of

the form

(
bup x
0 au2

)
where a, b ∈ F

×
p and x ∈ Fp are arbitrary, and consequently

give all extensions of the corresponding characters of GQp
when a ̸= b. (In addition,
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it is not clear to us whether the analogue of Lemma 2.2.7 holds for (φ, Ĝ)-modules,
even in height [0, p− 2], although we have not seriously pursued this question.)

2.3. Generic weight 0 crystalline representations. In this subsection and the
next, in order to be compatible with the notation of [EG23], we work with d-
dimensional rather than n-dimensional representations.

Definition 2.3.1. We say that a representation ρ : GK → GLd(F) is generic if it
has the form

ρ ∼=


χd ∗ . . . ∗
0 χd−1 . . . ∗
...

. . .
...

0 . . . 0 χ1


and for i = 1, . . . , d−1, the off diagonal extension class in Ext1GK

(χi, χi+1) is generic
in the sense of Definition 2.2.26.

Theorem 2.3.2. Suppose p > d and let ρ : GK → GLd(O) be a weight 0 crystalline
representation such that ρ is generic in the sense of Definition 2.3.1. Then

ρ ≃


urλd

∗ . . . ∗
0 urλd−1

ε−1 . . . ∗
...

. . .
...

0 . . . 0 urλ1ε
1−d


for some λ1, . . . , λd ∈ O×.

Proof. The proof will be by induction on d. The base case d = 1 is trivial. For the
inductive step, we claim that ρ fits in an exact sequence

0 → ρ′ → ρ→ urλ1
ε1−d → 0.

Admitting this for the moment, ρ′ is a d−1 dimensional crystalline representation of
weight 0, and ρ′ is generic (since ρ has a unique d−1 dimensional subrepresentation,
which is generic). We conclude by induction on d.

We now prove the key claim above. As the Hodge–Tate weights of ρ are contained
in the interval [0, d− 1] ⊆ [0, p− 2], by Theorem 2.1.5 there is a crystalline Breuil
module M of rank d with ρ ∼= T (M), whose underlying Breuil–Kisin module has
height at most (d − 1). By Theorem 2.1.4 (2), the unique maximal filtration on ρ
determines a filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Md = M by crystalline Breuil
submodules. Write Mi/Mi−1 ≃ M(s(i); ai) in the notation of Lemma 2.2.3.

It follows from Lemma 2.2.19 and the definition of genericity that for each 1 ≤
i ≤ d− 1 we have

f∑
j=1

(s(i+ 1)j − s(i)j − e) ≥ 0.

Summing these inequalities over i, we obtain

f∑
j=1

(s(d)j − s(1)j) ≥ ef(d− 1).

Since the underlying Breuil–Kisin module of M has height at most (d−1), we have
s(i)j ≤ e(d−1) for all i, j, and hence s(d)j−s(1)j ≤ e(d−1) for all j. Since we also
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have the reverse inequality summed over f this implies that s(d)j−s(1)j = e(d−1)
for all j, and hence s(1)j = 0 and s(d)j = e(d− 1) for all j.

Now let M/SO be the Breuil–Kisin module associated to ρ, and M = M⊗O F.
This is the Breuil–Kisin module underlying M by Theorem 2.1.5. Since s(d)j =

e(d− 1) for all j, we have shown that M has a rank 1 quotient M → SF · v where
φ(v) = λue(d−1)v for some λ ∈ (k ⊗ F)×. It follows from [Kis09, Prop. 1.2.11]
(or rather its obvious generalization from height 1 to height (d − 1) Breuil–Kisin
modules) that this lifts to a quotient M → SO · v where φ(v) = λE(u)d−1v for
some λ ∈ (W (k)⊗O)×. Indeed, using height (d− 1) duality [Liu07, §3.1], we need

to lift a rank one ‘multiplicative’ submodule of M
∗
to M∗, where multiplicative

means that the linearization of φ is an isomorphism. As in [Kis09, Prop. 1.2.11],
we have a maximal multiplicative submodule M∗,m of M∗ which lifts the maximal

multiplicative submodule of M
∗
and therefore has rank at least one. Since ρ is

weight 0 crystalline, its maximal unramified subrepresentation has dimension at
most one. It follows that M∗,m has rank one and is the desired lift.

Finally it follows from the full faithfulness of the functor from lattices in crys-
talline representations to Breuil–Kisin modules (see [Kis06, Prop. 1.3.15], or for the
precise statement we are using here [Kis10, Thm. 1.2.1]) that there is a nonzero
map ρ→ urλ1

ε1−d. □

Corollary 2.3.3. Let ρ : GK → GLd(F) be a generic representation. Suppose that
ρ has a crystalline lift of weight 0. Then ρ has the form

ρ ∼=


urλd

∗ . . . ∗
0 urλd−1

ε−1 . . . ∗
...

. . .
...

0 . . . 0 urλ1
ε1−d


and moreover the off-diagonal extensions are peu ramifiée.

Proof. The first statement is immediate from Theorem 2.3.2, while the claim about
the extensions follows from the fact that the reduction of a crystalline representation(

urλ2 ∗
0 urλ1

ε−1

)
is peu ramifiée (e.g. by [CEGS22b, Lem. A.4]; the reduction of such a representation
is finite flat, hence peu ramifiée). □

2.4. Recollections on Emerton–Gee stacks. We now recall some of the main
results of [EG23], and prove a slight extension of them. We use the notation
of [EG23], and in particular we continue to work with d-dimensional rather than
n-dimensional representations.

As above, we let E/Qp be a finite extension containing the Galois closure of K,
with ring of integers O, uniformizer ϖ, and residue field O/ϖ = F. The stack Xd

over Spf O is defined in [EG23, Defn. 3.2.1]. It is a stack of (φ,Γ)-modules, but if
F′/F is a finite extension (or if F′ = Fp), then the groupoid of points x ∈ Xd(F

′) is
canonically equivalent to the groupoid of Galois representations ρ : GK → GLd(F

′)
[EG23, §3.6.1], and we use this identification without comment below. The stack Xd

is a Noetherian formal algebraic stack [EG23, Cor. 5.5.18], and it admits closed
substacks cut out by (potentially) crystalline or semistable conditions. In particular
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there is a closed substack X crys,0
d of Xd corresponding to crystalline representations

of weight 0, which has the following properties.

Proposition 2.4.1.

(1) X crys,0
d is a p-adic formal algebraic stack, which is flat over Spf O and of

finite type. In particular, the special fibre X crys,0

d := X crys,0
d ×Spf O SpecF

is an algebraic stack.
(2) If A◦ is a finite flat O-algebra, then X crys,0

d (A◦) is the subgroupoid of Xd(A
◦)

consisting of GK-representations which after inverting p are crystalline of
weight 0.

(3) The special fibre X crys,0

d := X crys,0
d ×Spf O SpecF is equidimensional of di-

mension [K : Qp]d(d− 1)/2.

(4) For any finite extension F′ of F and any point x : SpecF′ → X crys,0

d ,

there is a versal morphism Spf Rcrys,0,O′

ρ → X crys,0
d at x, where ρ : GK →

GLd(F
′) is the representation corresponding to x, O′ := W (F′) ⊗W (F) O,

and Rcrys,0,O′

ρ is the weight 0 crystalline lifting ring.

Proof. We define X crys,0
d to be the stack X crys,λ,τ

K,d of [EG23, Defn. 4.8.8], taking λ
to be given by λσ,i = d− i for all σ, i, and τ to be trivial. Then the first two claims
are [EG23, Thm. 4.8.12], the third is [EG23, Thm. 4.8.14], and the final claim is
[EG23, Prop. 4.8.10]. □

We now recall some definitions from [EG23, §5.5]. By a Serre weight k we mean
a tuple of integers {kσ,i}σ:k↪→Fp,1≤i≤d with the properties that

• p− 1 ≥ kσ,i − kσ,i+1 ≥ 0 for each 1 ≤ i ≤ d− 1, and
• p− 1 ≥ kσ,d ≥ 0, and not every kσ,d is equal to p− 1.

For each σ : k ↪→ F, we define the fundamental character ωσ to be the composite

ωσ : IK −→W ab
K

Art−1
K−−−−→ O×

K −→ k×
σ−→ F×.

As in [EG23, §5.5], for each Serre weight k we choose characters ωk,i : GK → F×

(i = 1, . . . , d) with

ωk,i|IK =
∏

σ:k↪→F

ω
−kσ,i

σ ,

in such a way that if kσ,i − kσ,i+1 = p− 1 for all σ, then ωk,i = ωk,i+1. (In [EG23,
§5.5] it was erroneously claimed that we could impose further constraints on the ωk,i,

but as explained in [EG], these properties are all that we require.) For any ν ∈ Fp

we write urν : GK → F
×
p for the unramified character taking a geometric Frobenius

to λ.
We say that a representation ρ : GK → GLd(Fp) is maximally nonsplit of

niveau 1 if it has a unique filtration by GK-stable Fp-subspaces such that all of
the graded pieces are one-dimensional representations of GK . We assign a unique
Serre weight k to each such ρ in the following way: we say that ρ is of weight k if
and only we can write

(2.4.2) ρ ∼=


urνd

ωk,d ∗ . . . ∗
0 urνd−1

ε−1ωk,d−1 . . . ∗
...

. . .
...

0 . . . 0 urν1
ε1−dωk,1

 ;
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this uniquely determines k, except that if ωk,i = ωk,i+1 then we need to say whether
kσ,i − kσ,i+1 = p − 1 for all σ or kσ,i − kσ,i+1 = 0 for all σ. We distinguish these
possibilities as follows: if ωk,i = ωk,i+1, then we set kσ,d−i − kσ,d+1−i = p − 1 for
all σ if and only if νi = νi+1 and the element of

Ext1GK
(urνiε

i−dωk,i,urνi+1ε
i+1−dωk,i+1) = H1(GK , ε)

determined by ρ is très ramifiée.
Let (Gm)dk denote the closed subgroup scheme of (Gm)d parameterizing tu-

ples (x1, . . . , xd) for which xi = xi+1 whenever kσ,i − kσ,i+1 = p − 1 for all σ.
By the definition that we just made, if ρ is maximally nonsplit of niveau 1 and
weight k, then the tuple (ν1, . . . , νd) is an Fp-point of (Gm)dk (where the νi are as

in in (2.4.2)).
We have the following slight variant on [EG23, Thm. 5.5.12].

Theorem 2.4.3.

(1) The Ind-algebraic stack Xd,red is an algebraic stack, of finite presentation
over F.

(2) Xd,red is equidimensional of dimension [K : Qp]d(d− 1)/2.
(3) The irreducible components of Xd,red are indexed by the Serre weights k.

More precisely, for each k there is an irreducible component X k
d,red con-

taining a dense open substack Uk, all of whose Fp-points are maximally

nonsplit of niveau one and weight k; and the X k
d,red exhaust the irreducible

components of Xd,red.
(4) There is an open subscheme T of (Gm)dk such that for all (t1, . . . , td) ∈

T (Fp), there is an Fp-point of Uk corresponding to a representation (2.4.2)
with νi = ti for all i, and which is generic in the sense of Definition 2.3.1.

Proof. Everything except for part (4) is part of [EG23, Thm. 5.5.12, Thm. 6.5.1].
Part (4) follows from the version of [EG23, Thm. 5.5.12] proved in [EG], as we
explain below.

We begin by taking T to be an open contained in the image of the eigenvalue
morphism Uk → (Gm)dk, and then further shrink it so that for any m < n and

(t1, . . . , td) ∈ T (Fp) either:

• we have kσ,i − kσ,i+1 = p− 1 for all σ and all m ≤ i < n, or

• we have (urtnε
n−dωk,n)/(urtmε

m−dωk,m) ̸= ε.

We then fix (t1, . . . , td) ∈ T (Fp), and regard each Ext1GK
(urtiε

i−dωk,i,urti+1
εi+1−dωk,i+1)

as an affine space over Fp, and as in [EG] we define

Ext1(t1,...,td),k ⊆
d−1∏
i=1

Ext1GK
(urtiε

i−dωk,i,urti+1
εi+1−dωk,i+1)

to be the closed subvariety of tuples of extension classes (ψ1, . . . , ψd−1) determined
by the condition that for each i = 1, . . . , d− 2, the cup product ψi ∪ψi+1 vanishes.

The version of [EG23, Thm. 5.5.12] proved in [EG] states in particular that for
a dense Zariski open subset U of Ext1(t1,...,td),k, the corresponding extension classes

are realized by some ρ ∈ Uk(Fp); so it suffices to show that U contains a point

(ψ1, . . . , ψd−1) with each ψi generic. As the locus of generic classes in Ext1(t1,...,td),k
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is open, and U is dense, it suffices in turn to exhibit a single generic class in
Ext1(t1,...,td),k.

To do this, first note that ψi ∪ ψi+1 is an element of the Ext2 group

Ext2GK
(urtiε

i−dωk,i,urti+2ε
i+2−dωk,i+2).

This group vanishes unless (urti+2ε
i+2−dωk,i+2)/(urtiε

i−dωk,i) = ε, which by our
choice of T can only occur when kσ,i − kσ,i+1 = kσ,i+1 − kσ,i+2 = p − 1 for all σ
and ε = 1. Thus if ε ̸= 1, we can just choose each ψi to be any generic extension
class, and the cup product condition is automatically satisfied.

We assume from now on that ε = 1 and fix a maximal interval m < n such that
kσ,i − kσ,i+1 = p − 1 for all σ and all m ≤ i < n. The characters urtiε

i−dωk,i for
m ≤ i ≤ n are all equal, and we write χ for their common value. The cup product
pairing is a perfect pairing

Ext1GK
(χ, χ)× Ext1GK

(χ, χ) → Ext2GK
(χ, χ) = H2(GK , ε) ≃ F.

The generic classes are the complement of the union of finitely many proper sub-
spaces Lj ⊂ Ext1GK

(χ, χ), with annihilators L⊥
j under the pairing. Pick a generic

class ψm which is not in any L⊥
j . Then the annihilator ⟨ψm⟩⊥ cannot be contained

in
⋃

j Lj∪
⋃

j L
⊥
j (otherwise ⟨ψm⟩⊥ is contained in one of the Lj or L

⊥
j which implies

that Lj or L⊥
j is contained in ⟨ψm⟩). So we can find a generic class ψm+1 ∈ ⟨ψm⟩⊥

which is also not in any L⊥
j . Repeating, we can find a sequence ψm, ψm+1, . . . ψn−1

of generic classes such that ψi ∪ ψi+1 = 0 for m ≤ i < n. □

2.5. Generic reducedness. We now compute the underlying cycle of the weight 0
crystalline stack, and deduce our main result on generic reducedness (Theorem 2.5.5).

This underlying cycle is defined as follows. By Theorem 2.4.3, the special fi-

bre X crys,0

d is a closed substack of the special fibre X d, and its irreducible com-
ponents (with the induced reduced substack structure) are therefore closed sub-
stacks of the algebraic stack X d,red (see [Sta13, Tag 0DR4] for the theory of ir-
reducible components of algebraic stacks and their multiplicities). Furthermore,

X crys,0

d and X d,red are both algebraic stacks over F which are equidimensional of

dimension [K : Qp]d(d− 1)/2. It follows that the irreducible components of X crys,0

d

are irreducible components of X d,red, and are therefore of the form X k

d,red for some
Serre weight k.

For each k, we write µk(X
crys,0

d ) for the multiplicity of X k

d,red as a component

of X crys,0

d . We write Zcrys,0 = Z(X crys,0

d ) for the corresponding cycle, i.e. for the
formal sum

(2.5.1) Zcrys,0 =
∑
k

µk(X
crys,0

d ) · X k

d,red,

which we regard as an element of the finitely generated free abelian group Z[Xd,red]

whose generators are the irreducible components X k

d,red.

Theorem 2.5.2. Suppose that p > d. Then we have an equality of cycles

Zcrys,0 = X 0

d,red,

where 0 is the Serre weight k with kσ,i = 0 for all σ, i. In particular, the special

fibre X crys,0

d is generically reduced.

https://stacks.math.columbia.edu/tag/0DR4
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Proof. Suppose (in the notation of Theorem 2.4.3 (3)) that X k

d,red is an irreducible

component of Xd,red contained in the X crys,0

d . We begin by showing that k = 0. By
Theorem 2.4.3 (4) after possibly enlarging F, we can pick a point x : SpecF → Uk

so that the corresponding representation ρ : GK → GLd(F) is generic in the sense
of Definition 2.3.1 (it is also maximally nonsplit of niveau one and weight k, since

it comes from a point of Uk). Since x is in X crys,0

d , ρ has a crystalline lift of weight
0. We can now apply Corollary 2.3.3 to conclude that k = 0.

We have now shown that the support of Zcrys,0 is indeed X 0

d,red, i.e. that the un-

derlying reduced substack of X crys,0

d is equal to X 0

d,red, and it remains to determine
the generic multiplicity. To do this, we modify our choice of point x as follows: by
definition, we have (Gm)d0 = (Gm)d, so we can and do choose our point x such that
if i ̸= j, then

(2.5.3) (urνiε
i−d)/(urνjε

j−d) ̸= 1, ε.

We will show that X crys,0

d is reduced in some open neighbourhood of x. Since

the reduced locus is open, and X crys,0

d is irreducible, this implies that X crys,0

d is
generically reduced.

We claim that the crystalline lifting ring Rcrys,0,O
ρ is formally smooth, where ρ

corresponds to our chosen point x. Indeed, by Theorem 2.3.2, crystalline lifts of ρ

of weight 0 are ordinary, and so Rcrys,0,O
ρ is the weight 0 ordinary lifting ring of ρ.

Since ρ is maximally nonsplit (i.e. has a unique filtration with rank 1 graded pieces)

and satisfies (2.5.3), the deformation problem represented by Rcrys,0,O
ρ coincides

with the one considered in [CHT08, 2.4.2] (taking Fṽ there to be our K, n to be
our d, and χv,i to be ε−i), and the formal smoothness is [CHT08, Lem. 2.4.7].

By Theorem 2.4.1 we have a versal morphism SpecRcrys,0,O
ρ /ϖ → X crys,0

d at x,

where Rcrys,0,O
ρ /ϖ is formally smooth and in particular reduced. By [Sta13, Tag

0DR0] we may find a smooth morphism V → X crys,0

d with source a finite type O/ϖ-
scheme, and a point v ∈ V with residue field F, such that there is an isomorphism

ÔV,v
∼= Rcrys,0,O

ρ /ϖ, compatible with the given morphism to X crys,0

d . By [Sta13,

Tag 00MC] and [Sta13, Tag 033F], the local ring OV,v is reduced. Since being
reduced is an open condition, we see that V is reduced in an open neighbourhood
of v; and since it is also a smooth local condition (see [Sta13, Tag 04YH]) it follows

that X crys,0

d is reduced in an open neighbourhood of x, and we are done. □

Remark 2.5.4. Since the algebraic representation of GLd of highest weight 0 is
the trivial representation, Theorem 2.5.2 shows that if p > d, the cycle Z0 in
the geometric Breuil–Mézard conjecture [EG23, Conj. 8.2.2] is necessarily equal to

X 0

d,red. As far as we are aware, this is the only instance in which such a cycle has
been computed for d > 2 and K/Qp arbitrary.

Theorem 2.5.5. Suppose that p > d, that K/Qp is a finite extension, and that
E/Qp is a finite extension containing the Galois closure of K, with ring of inte-
gers O and residue field F.

Then for any ρ : GK → GLd(F), the special fibre Rcrys,0,O
ρ /ϖ of the weight 0

crystalline lifting ring is generically reduced.

https://stacks.math.columbia.edu/tag/0DR0
https://stacks.math.columbia.edu/tag/0DR0
https://stacks.math.columbia.edu/tag/00MC
https://stacks.math.columbia.edu/tag/033F
https://stacks.math.columbia.edu/tag/04YH
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Proof. We follow the proof of [CEGS22a, Thm. 4.6]. By Proposition 2.4.1, we have

a versal morphism Spf Rcrys,0,O
ρ /ϖ → X crys,0

d at the F-point of Xd,red corresponding

to ρ. By [Sta13, Tag 0DR0] we may find a smooth morphism V → X crys,0

d with
source a finite type F-scheme, and a point v ∈ V with residue field F, such that

there is an isomorphism ÔV,v
∼= Rcrys,0,O

ρ /ϖ, compatible with the given morphism

to X crys,0

d .

By Theorem 2.5.2, there is a dense open substack U of X crys,0

d such that U is
reduced. Since being reduced is a smooth local property, the pullback of U to V is a
reduced open subscheme of V ; and this pullback is furthermore dense in V , because

the formation of the scheme-theoretic image of U in X crys,0

d commutes with flat base
change [Sta13, Tag 0CMK]. Thus V is generically reduced, and the complete local
rings of V at finite type points are generically reduced by [CEGS22a, Lem. 4.5]. In

particular Rcrys,0,O
ρ /ϖ ∼= ÔV,v is generically reduced, as required. □

Remark 2.5.6. The case d = 2 of Theorem 2.5.5 is a special case of [CEGS22a, Thm.
4.6]. In both cases the statement is deduced from the corresponding statement for

the stack X crys,0

d , and indeed in the case d = 2, Theorem 2.5.2 is a special case
of [CEGS22a, Thm. 7.1, 7.6] (although the generic reducedness statement is proved
earlier in [CEGS22a, Prop. 4.1]).

The argument that we use to prove Theorem 2.5.2 is necessarily rather differ-
ent from the proof of [CEGS22a, Thm. 4.6], which was written before [EG23],
and in particular could not use the structure of generic points on the irreducible
components of X2,red. Instead, the proof in [CEGS22a] uses the Kisin resolution

of X crys,0
2 (originally defined for lifting rings in [Kis09]). By results on local models

for Shimura varieties, this Kisin resolution has reduced special fibre, and the argu-
ments in [CEGS22a] show that the map from the Kisin resolution is an isomorphism
on dense open substacks of the source and target. In dimension greater than 2 we
do not know of a candidate Kisin resolution for which we could expect to argue in
this way.

The result [CEGS22a, Thm. 4.6] is more general than Theorem 2.5.5 (as always,
in the special case d = 2), because it also proves the analogous statement for the
potentially crystalline lifting ring of weight 0 and any tame type. The Breuil–
Mézard conjecture implies that the analogous statement necessarily fails for d ≥ 4
(even if K = Qp), because the reductions modulo p of the corresponding inertial
types contain Serre weights with multiplicities greater than 1, even for generic
choices of type (see [LLHLM23, Rem. 8.1.4]). Similarly, Theorem 2.5.2 is best
possible in the sense that for any parallel Serre weight k greater than 0 (i.e. kσ,i
is independent of σ, and the kσ,i are not all equal), the stack X crys,k

d cannot have
generically reduced special fibre once K is sufficiently ramified. (While the Breuil–
Mézard conjecture is not known, standard arguments with Taylor–Wiles patching
give the expected lower bounds for Breuil–Mézard multiplicities, so it is presumably
possible to prove unconditionally that the special fibres of the corresponding stacks
are not generically reduced.)

Remark 2.5.7. Despite Remark 2.2.29, it seems plausible to us that Theorem 2.5.2
should also hold if p ≤ d, but any proof will necessarily be more complicated, and
presumably cannot rely only on an analysis of the successive extension classes of
characters of the kind that we have made here.

https://stacks.math.columbia.edu/tag/0DR0
https://stacks.math.columbia.edu/tag/0CMK


34 G. BOXER, F. CALEGARI, T. GEE, J. NEWTON, AND J. A. THORNE

3. An automorphy lifting theorem in weight 0

3.1. Preliminaries. Our goal in this section is to state and prove Theorem 3.2.1,
which is an automorphy lifting theorem for n-dimensional crystalline weight 0 p-adic
representations of GF , where F is an imaginary CM field in which p is arbitrarily
ramified. The key innovations that allow us to prove this theorem are the local-
global compatibility result of [CN23] and the generic reducedness result that we
proved in Theorem 2.5.5. Given these ingredients, the proof is very close to those
of [ACC+23, Theorem 6.1.1] and [MT23, Theorem 1.2], and we refer to those papers
for some of the details of the arguments, and for any unfamiliar terminology.

We begin by introducing some terminology and notation we will need for the
statement and proof.

3.1.1. Galois preliminaries. Fix a continuous irreducible representation ρ : GF →
GLn(Fp) for a number field F . We fix a coefficient field E/Qp such that ρ(GF ) ⊂
GLn(F).

We will use the notion of a decomposed generic representation ρ, defined in
[ACC+23, Definition 4.3.1]. We will also use the notion of an adequate subgroup of
GLn(F), see for example [MT23, Definition 1.1.1].

Let v be a finite place of F . As in [ACC+23, §6.2.1], a local deformation problem

is a P̂GLn-stable subfunctor of the lifting functorD□
v := D□,O

ρ|GFv

, (pro-)representable

by a quotient Rv of the lifting ring R□
v . The following local deformation problems

will be relevant:

• the lifting functor itself, D□
v ,

• for v|p, weight 0 crystalline lifts Dcrys,0
v , represented by R

crys,0,O
ρ|GFv

,

• the local deformation problem Dχ
v defined in [ACC+23, §6.2.15]. In this

case, we assume that qv ≡ 1 mod p, that ρ|GFv
is trivial, that p > n, and

we have a tuple (χi)i=1,...,n of characters χi : O×
Fv

→ O× which are trivial
modulo ϖ. Then Dχ

v classifies lifts ρ : GFv
→ GLn(A) such that

charρ(σ)(X) =

n∏
i=1

(X − χi(Art−1
Fv

(σ)))

for all σ ∈ IFv .

Let S be a finite set of finite places of F containing the p-adic places Sp and
all places at which ρ is ramified. Then we use the notion of a global deformation
problem from [ACC+23, Definition 6.2.2]. We will be able to restrict to the case
where Λv = Ov for all v ∈ S, so our global deformation problems will be tuples S =
(ρ, S, {O}v∈S , {Dv}v∈S). Each Dv is a local deformation problem, representable
by a quotient Rv of R□

v . There is an associated functor DS of deformations of ρ
satisfying the local condition Dv for each v ∈ S. It is representable by RS . More
generally, if T ⊂ S, we have a functor DT

S of T -framed deformations, which is
representatble by RT

S . The T -framed global deformation ring RT
S receives a natural

O-algebra map from RT,loc
S := ⊗̂v∈T,ORv.

3.1.2. Automorphic preliminaries. Now we assume that F is an imaginary CM
number field. On the automorphic side, we will be interested in cuspidal au-
tomorphic representations of GLn(AF ) which are regular algebraic of weight 0.
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This means that the infinitesimal character of π∞ matches the infinitesimal char-
acter of the trivial representation of GLn(F∞). These automorphic representations
contribute to the cohomology groups with trivial coefficients of locally symmetric
spaces.

Let X∞ = GLn(F∞)/R>0K∞ be the symmetric space, with K∞ a maximal
compact subgroup of GLn(F∞) (since F is totally imaginary, K∞ is connected).
Suppose we have a good subgroup K ⊂ GLn(A

∞
F ). In other words, K is neat,

compact, open, and factorizes as K =
∏

vKv for compact open subgroups Kv ⊂
GLn(Fv). Then we can define a smooth manifold

XK = GLn(F )\ (X∞ ×GLn(A
∞
F )/K) .

Fix a finite set of finite places S of F containing Sp, with Kv = GLn(Ov)
for v /∈ S. We factorize K = KSK

S . We have an abstract Hecke algebra

H(GLn(A
∞,S
F ),KS) with coefficients in Z, a tensor product of spherical Hecke

algebras over finite places v /∈ S.
Suppose that V is a finite O-module with an action of G(F ) × KS . Then, as

explained in [ACC+23, §2.1.2], V descends to a local system of O-modules V on
XK , and we have a natural Hecke action

H(GLn(A
∞,S
F ),KS)⊗Z O → EndD(O)(RΓ(XK ,V)).

The image of this O-algebra map is a finite O-algebra denoted by TS(K,V). If m is
a maximal ideal of TS(K,V), it has an associated semisimple Galois representation

ρm : GF,S′ → GLn(k(m))

for a suitable set of places S′ containing S [ACC+23, Theorem 2.3.5]. For v /∈ S′,
the characteristic polynomial of ρm(Frobv) equals the image of

Pv(X) = Xn − Tv,1X
n−1 + · · ·+ (−1)iqi(i−1)/2

v Tv,iX
n−i + . . .

+ qn(n−1)/2
v Tv,n ∈ H(GLn(Fv),GLn(OFv

))[X].

in the residue field k(m). We write Tv,i ∈ H(GLn(Fv),GLn(OFv
)) for the double

coset operator

Tv,i = [GLn(OFv
)diag(ϖv, . . . , ϖv, 1, . . . , 1)GLn(OFv

)],

where ϖv appears i times on the diagonal.
When ρm is absolutely irreducible, the cohomology groups Hi(XK ,O)m ⊗O E

can be described in terms of cuspidal automorphic representations which are regular
algebraic of weight 0 [ACC+23, Theorem 2.4.10].

3.2. An automorphy lifting theorem. The rest of this section is devoted to the
proof of the following theorem, which is a version of [ACC+23, Theorem 6.1.1] and
[MT23, Theorem 1.2] allowing arbitrary ramification at primes dividing p, at the
price of restricting to weight 0 automorphic representations.

Theorem 3.2.1. Let F be an imaginary CM or totally real field and let p > n be
a prime. Suppose given a continuous representation ρ : GF → GLn(Qp) satisfying
the following conditions:

(1) ρ is unramified almost everywhere.
(2) For each place v|p of F , the representation ρ|GFv

is crystalline of weight 0,
i.e. with Hodge–Tate weights HTτ (ρ) = {0, 1, 2, . . . , n − 1} for each τ :
Fv ↪→ Qp.
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(3) ρ is absolutely irreducible and decomposed generic. The image of ρ|GF (ζp)

is adequate (as a subgroup of GLn(F), for sufficiently large F).
(4) There exists σ ∈ GF −GF (ζp) such that ρ(σ) is a scalar.
(5) There exists a cuspidal automorphic representation π of GLn(AF ) satisfy-

ing the following conditions:
(a) π is regular algebraic of weight 0.

(b) There exists an isomorphism ι : Qp → C such that ρ ∼= rι(π).
(c) If v|p is a place of F , then πv is unramified and rι(π)|GFv

∼ ρ|GFv

(“connects to”, in the sense of [BLGGT14, §1.4]).
Then ρ is automorphic: there exists a cuspidal automorphic representation Π of
GLn(AF ) of weight λ such that ρ ∼= rι(Π). Moreover, if v is a finite place of F and
either v|p or both ρ and π are unramified at v, then Πv is unramified.

Remark 3.2.2. In assumption (5c), we are using [CN23, Theorem 4.3.1] which shows
that rι(π)|GFv

is crystalline with the same labelled Hodge–Tate weights as ρ|GFv
.

Choose a p-adic coefficient field E which contains the Galois closure of F and such
that ρ(GF ) ⊂ GLn(F). Then assumption (5c) is that rι(π)|GFv

and ρ|GFv
define

points on the same irreducible component of the weight 0 crystalline lifting ring

R
crys,0,O
ρ|GFv

⊗O Qp.

We begin by imposing some additional assumptions, under which we can use the
Calegari–Geraghty version of the Taylor–Wiles–Kisin patching method to prove an
automorphy lifting theorem. We then deduce Theorem 3.2.1 by a standard base
change argument. We refer the reader to [ACC+23] for any unfamiliar notation.

We let F be an imaginary CM field with maximal totally real subfield F+ and
complex conjugation c ∈ Gal(F/F+). We fix an integer n ≥ 1, an odd prime p > n
and an isomorphism ι : Qp

∼= C. We let π be a cuspidal automorphic representation
of GLn(AF ), which is regular algebraic of weight 0. We suppose we have a finite set
S of finite places of F , containing the set Sp of places of F above p, and a (possibly
empty) subset R ⊂ (S ∖ Sp).

Then we assume that the following conditions are satisfied:

(1) If l is a prime lying below an element of S, or which is ramified in F , then
F contains an imaginary quadratic field in which l splits. In particular,
each place of S is split over F+ and the extension F/F+ is everywhere
unramified.

(2) For each v ∈ Sp, let v denote the place of F+ lying below v. Then there
exists a place v′ ̸= v of F+ such that v′|p and∑

v′′ ̸=v,v′

[F+
v′′ : Qp] >

1

2
[F+ : Qp].

(3) The residual representation rι(π) is absolutely irreducible and decomposed

generic, and rι(π)|GF (ζp)
has adequate image.

(4) If v is a place of F lying above p, then πv is unramified.

(5) If v ∈ R, then πIwv
v ̸= 0, qv ≡ 1 mod p and rι(π)|GFv

is trivial.

(6) If v ∈ S−(R∪Sp), then πv is unramified, v /∈ Rc, and H2(Fv, ad rι(π)) = 0.
(7) S−(R∪Sp) contains at least two places with distinct residue characteristics.
(8) If v ̸∈ S is a finite place of F , then πv is unramified.

We define an open compact subgroup K =
∏

vKv of GLn(ÔF ) as follows:
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• If v ̸∈ S, or v ∈ Sp, then Kv = GLn(OFv
).

• If v ∈ R, then Kv = Iwv.
• If v ∈ S − (R ∪ Sp), then Kv = Iwv,1 is the pro-v Iwahori subroup of
GLn(OFv

).

By [ACC+23, Theorem 2.4.10], we can find a coefficient field E ⊂ Qp and a

maximal ideal m ⊂ TS(K,O) such that ρm
∼= rι(π). After possibly enlarging E, we

can and do assume that the residue field of m is equal to F, the residue field of E.
For each tuple (χv,i)v∈R,i=1,...,n of characters χv,i : k(v)

× → O× which are trivial
modulo ϖ, we define a global deformation problem

Sχ = (ρm, S, {O}v∈S , {Dcrys,0
v }v∈Sp

∪ {Dχ
v }v∈R ∪ {D□

v }v∈S−(R∪Sp)).

We will assume that either χv,i = 1 for all v ∈ R and all 1 ≤ i ≤ n, or that for each
v ∈ R the χv,i are pairwise distinct.

Extending O if necessary, we may assume that all irreducible components of
our local lifting rings and their special fibres are geometrically irreducible. We fix
representatives ρSχ

of the universal deformations which are identified modulo ϖ

(via the identifications RSχ/ϖ
∼= RS1/ϖ). We define an O[KS ]-module O(χ−1),

where KS acts by the composition of χ−1 with the projection

KS → KR =
∏
v∈R

Iwv →
∏
v∈R

(k(v)×)n.

Proposition 3.2.3. There exists an integer δ ≥ 1, depending only on n and [F :
Q], an ideal J ⊂ TS(RΓ(XK ,Vλ(χ

−1)))m such that Jδ = 0, and a continuous
surjective homomorphism

fSχ
: RSχ

→ TS(RΓ(XK ,O(χ−1)))m/J

such that for each finite place v ̸∈ S of F , the characteristic polynomial of fSχ
◦

ρSχ
(Frobv) equals the image of Pv(X) in TS(RΓ(XK ,O(χ−1)))m/J .

Proof. This is a version of [ACC+23, Proposition 6.5.3], using [CN23, Theorem
4.2.15] to verify that we satisfy the crystalline weight 0 condition at v ∈ Sp. □

This proposition means that it makes sense to talk about the support ofH∗(XK ,O)m
over RS1 , since fS1 realizes Spec(TS(K,O)m) as a closed subset of Spec(RS1).

Here are the essential properties of the (completed tensor products of) local
deformation rings in our situation:

Lemma 3.2.4. Fix a tuple χ = (χv,i)v∈R,i=1,...,n of characters χv,i : k(v)
× → O×

which are trivial modulo ϖ. We assume that either χv,i = 1 for all v ∈ R and all
1 ≤ i ≤ n, or that for each v ∈ R the χv,i are pairwise distinct.

(1) RS,loc
Sχ

is equidimensional of dimension 1+n2|S|+ n(n−1)
2 [F : Q] and every

generic point has characteristic 0.

(2) Each generic point of SpecRS,loc
Sχ

/ϖ is the specialization of a unique generic

point of SpecRS,loc
Sχ

.

(3) Assume that χv,1, . . . , χv,n are pairwise distinct for each v ∈ R. Then the

natural map SpecRS,loc
Sχ

→ SpecR
Sp,loc
Sχ

= SpecR
Sp,loc
S1

induces a bijection

on irreducible components.

(4) Each characteristic zero point of SpecR
Sp,loc
S1

lies on a unique irreducible
component.
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(5) Assume that χv,1, . . . , χv,n are pairwise distinct for each v ∈ R, and let C

be an irreducible component of SpecRS,loc
S1

. Write Cp for the image of C

in SpecR
Sp,loc
S1

(so that Cp is an irreducible component of SpecR
Sp,loc
S1

).

Then the generic points of C ∩ SpecRS,loc
S1

/ϖ generalize (via the equality

SpecRS,loc
S1

/ϖ = SpecRS,loc
Sχ

/ϖ) to the generic point of SpecRS,loc
Sχ

corre-

sponding to Cp via the bijection of part (3). (By part (2), each of these
points has a unique generalization.)

Proof. We begin by noting that [BLGHT11, Lemma 3.3] allows us to describe the

set of irreducible components of Spec(RS,loc
Sχ

) (respectively, its special fibre) as the

product over v ∈ S of the sets of irreducible components of the local deformation
rings (respectively, their special fibres). (Here we use that the irreducible com-
ponents of the local deformation rings that we consider are all in characteristic
zero)

The first part follows from [ACC+23, Lemma 6.2.25] (we have a different defor-

mation condition at p, but R
crys,0,O
ρ|GFv

is O-flat by definition and equidimensional of

dimension 1 + n2 + n(n−1)
2 [Fv : Qp] by [Kis08, Theorem 3.3.4]).

For the second part, for each v ∈ S and local deformation ring Rv we need to
check that the generic points of SpecRv/ϖ have unique generalizations to SpecRv.
For v|p, this follows from Theorem 2.5.5— see [CN23, Lemma 5.3.3] for the ar-
gument that generically reduced special fibre implies unique generalizations of its
generic points, and note that we are assuming p > n. For v ∈ R, the property we
need follows from [ACC+23, Props. 6.2.16, 6.2.17]. For v ∈ S − (R∪Sp), Rv = R□

v

is formally smooth over O.
The third part follows from the irreducibility of the local deformation rings for

v ∈ S − Sp when the χv,i are pairwise distinct [ACC+23, Prop. 6.2.17], and the

fourth part from the regularity of R
Sp,loc
S1

[1/p] [Kis08, Theorem 3.3.8].
For the final part, by the third part is enough to note that as we saw above, it fol-

lows from Theorem 2.5.5 that the generic points of the special fibre of SpecR
Sp,loc
S1

/ϖ =

SpecR
Sp,loc
Sχ

/ϖ uniquely generalize to generic points of SpecR
Sp,loc
S1

= SpecR
Sp,loc
Sχ

.

□

Theorem 3.2.5. Suppose we are given two homomorphisms f1, f2 : RS1 → O with
associated liftings ρ1, ρ2 : GF,S → GLn(O). Suppose ker(f1) ∈ SuppRS1

(H∗(XK ,O)m)

and ρ1|GFv
∼ ρ2|GFv

for each v ∈ Sp. Then ker(f2) ∈ SuppRS1
(H∗(XK ,O)m).

Proof. We patch, as in [ACC+23, §6.5] and [MT23, §8], replacing the Fontaine–
Laffaille local condition at v ∈ Sp with the crystalline weight 0 condition. Once
again, we use [CN23, Theorem 4.2.15] to ensure that we have the necessary maps
from deformation rings with these local conditions to our Hecke algebras. We record
the output of this patching process, complete details of which can be found in
[ACC+23, §6.4–6.5]. Fix a tuple χ = (χv,i)v∈R,i=1,...,n of characters χv,i : k(v)

× →
O× which are trivial modulo ϖ, and with χv,1, . . . , χv,n pairwise distinct for each
v ∈ R. Patching will provide us with the following:

(1) A power series ring S∞ = OJX1, · · · , XrK with augmentation ideal a∞ =
(X1, . . . , Xr).
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(2) Perfect complexes C∞, C
′
∞ of S∞-modules, an isomorphism

C∞ ⊗L
S∞

S∞/ϖ ∼= C ′
∞ ⊗L

S∞
S∞/ϖ

in D(S∞/ϖ) and an isomorphism

C∞ ⊗L
S∞

S∞/a∞ ∼= RHomO(RΓ(XK ,O)m,O)[−d]
in D(O).

(3) Two S∞-subalgebras

T∞ ⊂ EndD(S∞)(C∞)

and
T ′
∞ ⊂ EndD(S∞)(C

′
∞),

which have the same image in

EndD(S∞/ϖ)(C∞ ⊗L
S∞

S∞/ϖ) = EndD(S∞/ϖ)(C
′
∞ ⊗L

S∞
S∞/ϖ),

where these endomorphism algebras are identified using the fixed isomor-
phism in (2). Call this common image T∞. Note that T∞ and T ′

∞ are finite
S∞-algebras. The map

T∞ → EndD(O)(C∞ ⊗L
S∞

S∞/a∞) = EndD(O)(RΓ(XK ,O)m)
op

factors through a map T∞ → T(K,O)m.
(4) Two Noetherian complete local S∞-algebras R∞ and R′

∞, which are power

series algebras over RS,loc
S1

and RS,loc
Sχ

respectively. We have a surjective

RS,loc
S1

-algebra map R∞ → RS1 , which factors through an O-algebra map
R∞/a∞ → RS1 . We also have surjections R∞ ↠ T∞/I∞, R′

∞ ↠ T ′
∞/I

′
∞,

where I∞ and I ′∞ are nilpotent ideals. We write I∞ and I
′
∞ for the image

of these ideals in T∞. These maps fit into a commutative diagram

R∞

��

// RS1

��

T∞/I∞ // T(K,O)redm .

(5) An isomorphism R∞/ϖ ∼= R′
∞/ϖ compatible with the S∞-algebra struc-

ture and the actions (induced from T∞ and T ′
∞) on

H∗(C∞ ⊗L
S∞

S∞/ϖ)/(I∞ + I
′
∞) = H∗(C ′

∞ ⊗L
S∞

S∞/ϖ)/(I∞ + I
′
∞),

where these cohomology groups are identified using the fixed isomorphism.
(6) Integers q0 ∈ Z and l0 ∈ Z≥0 such that

H∗(XK , E)m ̸= 0,

and these groups are non-zero only for degrees in the interval [q0, q0 + l0].
Moreover, dimR∞ = dimR′

∞ = dimS∞ − l0.

With that out of the way, we let x ∈ SpecR∞ be the automorphic point coming
from ker(f1). By the first part of [CN23, Proposition 5.4.2], there is an irreducible
component Ca of SpecR∞, containing x, with Ca ⊂ SpecT∞. Let C be any
irreducible component of SpecR∞ containing ker(f2). Since ρ1|GFv

∼ ρ2|GFv
for

each v ∈ Sp, C and Ca map to the same irreducible component of SpecR
Sp,loc
S1

(we
are using part (4) of Lemma 3.2.4 here, which says that each characteristic 0 point

lies in a unique irreducible component of R
Sp,loc
S1

). By Lemma 3.2.4, the generic
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points of C∩SpecR∞/ϖ and Ca∩SpecR∞/ϖ all generalize to the same irreducible
component of SpecR′

∞. We can apply the second part of [CN23, Proposition 5.4.2]
to deduce that C ⊂ SpecT∞, and therefore ker(f2) is in the support of H∗(C∞).
It follows as in [ACC+23, Corollary 6.3.9] (see also [CN23, Corollary 5.4.3]) that
ker(f2) is in the support of H∗(XK ,O)m, as desired. □

Proof of Theorem 3.2.1. This is immediate from Theorem 3.2.5 via a standard base
change argument identical to the one found in [ACC+23, §6.5.12]. □

4. The Dwork family

4.1. Definitions. We begin by introducing the Dwork motives we need to consider.
For our purposes, we need to consider the non-self dual motives (with coefficients)
studied in [Qia21, Qia23] rather than the self-dual (generalized) symplectic motives
previously considered in [HSBT10, BLGHT11].

Let n > 2 and N > 100n + 100 be integers, with N odd and (N,n) = 1. Let
ζN ∈ Q be a primitive N th root of unity. Let R0 = Z[ζN , N

−1], T0 = SpecR0[t, (1−
tN )−1], and let Z ⊂ PN−1

T0
be the family of smooth hypersurfaces of degree N and

dimension N − 2 defined by the equation

XN
1 + · · ·+XN

N = NtX1 . . . XN .

We write π : Z → T0 for the natural projection. Let µN denote the group of
N th roots of unity in Z[ζN ]×. Then the group H = µN

N/∆(µN ) acts on PN−1 by
multiplication of coordinates, and the subgroup

H0 = ker(
∏

: H → µN )

preserves Z. The action of H0 extends to an action of H on the central fibre Z0

(which is a Fermat hypersurface).
Let M = Q(e2πi/N ) ⊂ C, and set

X = Hom(H,M×),

X0 = Hom(H0,M
×).

A choice of embedding τ : Q(ζN ) → C determines an isomorphism

fτ : X ∼= ker
(∑

: (Z/NZ)N → Z/NZ)
)
,

but we do not fix a preferred choice. We do choose a character χ ∈ (χ1, . . . , χN ) ∈ X
with the following properties:

• The trivial character of µN occurs n+1 times among χ1, . . . , χN , and each
other character appears at most once.

• Let ρ1, . . . , ρn be the n distinct non-trivial characters µN → M× which
do not appear in χ1, . . . , χN . Then the stabilizer of the set {ρ1, . . . , ρn} in
Gal(M/Q) is trivial.

The existence of such χ is established in [Qia23, Lem. 3.1], as a consequence of the
assumption N > 100n+ 100. The precise choice is not important.

For any place λ of M of characteristic l, we define Vλ = (π[1/l]∗OMλ
)H0=χ|H0 .

It is a lisse sheaf of finite free OMλ
-modules on T0[1/l]. If k is a perfect field which

is an R0[1/l]-algebra, and t ∈ T0(k), then we write Vt,λ = Vλ,t for the stalk at a
geometric point lying above t; it is an OMλ

[Gk]-module, finite free as OMλ
-module.
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Katz [Kat90, Kat09] defines hypergeometric sheaves on T1 = SpecR0[t, t
−1, (1−

t)−1]. We give the definition just in the case of interest. Let j : T1 → Gm,R0

be the natural open immersion, and let f : T1 → Gm,R0 be the map induced by
t 7→ 1− t. Fixing again a place λ of M of characteristic l, let Li denote the rank 1

lisseMλ-sheaf on Gm,R0 [1/l] associated to ρi and the µN -torsor Gm
(·)N−−−→ Gm, and

let Fi = j[1/l]!f [1/l]
∗Li. We set

Eλ = j[1/l]∗(F1 ∗! F2 ∗! · · · ∗! Fn)[n− 1],

where ∗! denotes multiplicative convolution with compact support.

4.2. Basic properties and good ordinary points. Associated to specializa-
tions of Eλ are compatible systems of Galois representations. In this section, we
establish some of their basic properties. Most importantly, we prove (in Propo-
sition 4.2.6) the existence of many specializations which have crystalline ordinary
reduction. (In [Qia21], Qian proves that specializations sufficiently close to t = ∞
are semistable ordinary, but that is not sufficient for our purposes where we need
to work with crystalline representations.)

Theorem 4.2.1.

(1) Eλ is a lisse Mλ-sheaf on T1[1/l] of rank n. The sheaf Eλ ⊗Mλ
Mλ is

geometrically irreducible. Moreover, Eλ is pure of weight n− 1 and there is
an isomorphism det Eλ ∼=Mλ(n(1− n)/2).

(2) Let k be an R0[1/l]-algebra which is a finite field of cardinality q, and let
x ∈ T1(k). Then we have

(4.2.2) tr(Frobk | Eλ,x) = (−1)n−1
∑

x1,...,xn∈k∏n
i=1 xi=x

n∏
i=1

ρi((1− xi)
(q−1)/N )

where we identify µN = k×[N ] and extend ρi by ρi(0) = 0.
(3) There exists a (unique) continuous character

Ψλ : π1(SpecR0[1/l]) → O×
Mλ

with the following property: let T ′
0 = T0[1/t], let j

′ : T ′
0 → T0 be the natural

open immersion, and let g : T ′
0 → T1 be the map induced by t 7→ t−N . Then

there is an isomorphism of Mλ-sheaves on T ′
0[1/l]:

(4.2.3) (j′[1/l])∗Vλ ⊗OMλ
Mλ

∼= g∗Eλ ⊗Mλ
Mλ(Ψλ).

Proof. The construction and properties of Eλ are summarized in [Kat09] (where it
is the sheaf denoted Hcan(1(n times), {ρi})) and given in detail in [Kat90, Ch. 8].
See also [DK17, §A.1.6]. The computation of the determinant follows from [Kat90,
Theorem 8.12.2(1a)], noting that

∏n
i=1 ρi = 1. Property (2) follows from the defini-

tion. The existence of Ψλ as in (3) follows from [Kat09, Theorem 5.3] (we have also
used the relation [−1]∗Hcan(1(n times), {ρi}) ∼= Hcan({ρ−1

i },1(n times))). The
uniqueness follows from geometric irreducibility and Schur’s lemma. □

Lemma 4.2.4. There exists a Hecke character Ψ : Q(ζN )×\A×
Q(ζN ) → C× of type

A0, unramified away from N , and with field of definition contained inside M , such
that Ψλ is associated to Ψ. In other words, Ψλ is ‘independent of λ’. Moreover, Ψ
is defined over M and we have Ψc(Ψ) = | · |N−n.



42 G. BOXER, F. CALEGARI, T. GEE, J. NEWTON, AND J. A. THORNE

Proof. We may argue as in [Kat09, Question 5.5] to see that almost all Frobenius
traces of Ψλ lie inM , and are independent of λ. The existence of the character Ψ, of
type A0, follows from the main result of [Hen82]. There are c-linear isomorphisms
Vc(λ)

∼= V∨
λ (1−N) and Ec(λ) ∼= E∨

λ (1− n), so the final part is again a consequence
of Schur’s lemma. □

For any place λ of M of characteristic l, we define Wλ = Vλ ⊗OMλ
OMλ

(Ψ−1
λ ),

a lisse sheaf of finite free OMλ
-modules on T0[1/l]. Thus Wλ ⊗OMλ

Mλ is a lisse
Mλ-sheaf of rank n which is pure of weight n − 1, geometrically irreducible, and
of determinant Mλ(n(1− n)/2). If k is a perfect field which is an R0[1/l]-algebra,
and t ∈ T0(k), then we write Wt,λ = Wλ,t for the stalk at a geometric point lying
above t; it is an OMλ

[Gk]-module, finite free as OMλ
-module. The local systems

Wλ are the ones we will use in building the moduli spaces used in the Moret-Bailly
argument in §6.2. In particular, let us write Wλ = Wλ ⊗OMλ

k(λ) and define W t,λ

similarly.

Proposition 4.2.5. Let F/Q(ζN ) be a number field.

(1) Let v be a finite place of F of characteristic l, and let λ be a place of
M of characteristic not equal to l. If l ∤ N and t ∈ T0(OFv

), then Wt,λ

is unramified, and the polynomial Qv(X) = det(X − Frobv | Wt,λ) has
coefficients in OM [X] and is independent of λ.

(2) Let v be a finite place of F of characteristic l, and let λ be a place of M
of the same characteristic. Let t ∈ T0(Fv). Then Wt,λ is de Rham and

for any embedding τ : Fv → Mλ, we have HTτ (Wt,λ) = {0, 1, . . . , n − 1}.
If l ∤ N and t ∈ T0(OFv ), then Wt,λ is crystalline and the characteristic
polynomial of Frobv on WD(Wt,λ) equals Qv(X). In particular, Wt,λ is

ordinary if and only if the roots of Qv(X) in Mλ have l-adic valuations
0, [k(v) : Fl], . . . , (n− 1)[k(v) : Fl].

(3) Let t ∈ T0(F ), and let S be the set of finite places v of F such that either
v|N , or v ∤ N and t ̸∈ T0(OFv

) ⊂ T0(Fv). Then

(M,S, {Qv(X)}v ̸∈S , {W ss
t,λ}λ, {{0, 1, . . . , n− 1}}τ )

is a weakly compatible system of l-adic representations of GF over M of
rank n, pure of weight n− 1, in the sense of [BLGGT14, §5.1].

Proof. For the first part, we note that Zt is smooth and proper over OFv
, so by

smooth proper base change H∗
ét(Zt,Fv

,OMλ
) is unramified and there is an isomor-

phism

HN−2
ét (Zt,Fv

,OMλ
) ∼= HN−2

ét (Z
t,k(v)

,OMλ
),

where t denotes the image of t in T0(k(v)). [KM74, Theorem 2(2)] shows that for
any h ∈ H the characteristic polynomial of h · Frobv on this group has coefficients
in OM and is independent of the choice of λ ∤ l, and this implies that Qv(X) also
has coefficients in OM [X] and is independent of λ.

For the second part, note that Wt,λ is de Rham because it is a subquotient

of HN−2
ét (Zt,Mλ) ⊗ Mλ(Ψ

−1
λ ), which is de Rham. To compute the Hodge–Tate

weights, we use [Qia23, Lemma 3.10], which implies that there is an integer Mτ

such that HTτ (Vt,λ) = {Mτ ,Mτ + 1, . . . ,Mτ + (n − 1)}. Since Wt,λ is a twist of
Vt,λ, there is an integerM ′

τ such that HTτ (Wt,λ) = {M ′
τ ,M

′
τ +1, . . . ,M ′

τ +(n−1)}.
Looking at determinants shows that nM ′

τ +n(n−1)/2 = n(n−1)/2, henceM ′
τ = 0.



RAMANUJAN AND SATO–TATE FOR BIANCHI MODULAR FORMS 43

If further l ∤ N and t ∈ T0(OFv
) then again Zt is smooth and proper, so

HN−2
ét (Zt,Mλ) is crystalline, and also Mλ(Ψ

−1
λ ) is crystalline, hence Wt,λ is crys-

talline. The crystalline comparison theorem implies that there is an isomorphism

Dcris(H
N−2
ét (Zt,Fv

,Ql)) ∼= HN−2
cris (Zt/Fv,0),

respecting the action of Frobenius ϕv and H0 on each side. Here Fv,0 denotes the
maximal absolutely unramified subfield of Fv. Choosing an embedding σ0 : Fv,0 →
Mλ, there is an isomorphism

Dcris(H
N−2
ét (Zt,Fv

,Ql))⊗Fv,0,σ0
Mλ

∼= HN−2
cris (Zt/Fv,0)⊗Fv,0,σ0

Mλ,

equivariant for the Mλ-linear action of ϕ
[k(v):Fl]
v . By definition, WD(Wt,λ) is the

unramified representation of WFv
over Mλ afforded by the Ψ−1

λ -twist of the χ|H0
-

isotypic subspace of the left-hand side. We therefore need to check that the char-

acteristic polynomial of ϕ
[k(v):Fl]
v on the Ψ−1

λ -twist of the χ|H0
-isotypic subspace of

the right-hand side equals Qv(X). This follows again from [KM74, Theorem 2(2)]
(applicable here by the main result of [GM87]). The characterization of ordinary
representations follows from [Ger19, Lemma 2.32].

The third part follows from the first two parts and the definition of a weakly
compatible system. □

We now apply the results of Drinfeld–Kedlaya [DK17] to deduce that the Wt,λ

are ordinary for generic choices of t.

Proposition 4.2.6. Let v be a place of Q(ζN ) of characteristic l ∤ N , and let λ
be a place of M of the same characteristic. Then there exists a non-empty Zariski
open subset U(v;λ) ⊂ T0,k(v) with the following property: for any finite extension

Fw/Q(ζN )v and any t ∈ T0(OFw
) such that t = t mod (ϖw) ∈ U(v;λ)(k(w)), Wt,λ

is a crystalline ordinary representation of GFw .

Proof. Fix an auxiliary place µ of M of characteristic not l. If k/k(v) is a finite
extension of cardinality q and x ∈ T0(k), we write Qx(X) ∈ OM [X], for the char-
acteristic polynomial of Frobx on Wx,µ. Let s1(x) ≥ s2(x) ≥ · · · ≥ sn(x) denote

[k : Fl]
−1 times the l-adic valuations of the roots of Qx(X) in Mλ. Observe that

these normalized slopes si(x) do not change if k is replaced by a larger extension
(leaving the point x unchanged). By Proposition 4.2.5, it suffices to show the exis-
tence of a non-empty Zariski open subset U ⊂ T0,k(v) such that if k/k(v) is a finite
extension and x ∈ U(k), then si(x) = n− i for each i = 1, . . . , n.

By [DK17, Theorem 1.3.3], we can find a non-empty Zariski open subset V ⊂
T0,k(v) such that the numbers si(x) are constant for x ∈ V (k), and moreover such
that si(x) ≤ si+1(x) + 1 for each i = 1, . . . , n − 1. To complete the proof, it
suffices to show that there is a non-empty Zariski open subset U ⊂ V such that
if x ∈ U(k), then sn(x) = 0. Indeed, consideration of determinants shows that
s1(x)+s2(x)+ · · ·+sn(x) = n(n−1)/2 for all x ∈ T0(k). If x ∈ V (k) and sn(x) = 0
then si(x) ≤ n − i for each i = 1, . . . , n, hence s1(x) + · · · + sn(x) ≤ n(n − 1)/2,
with equality if and only if si(x) = n− i for each i = 1, . . . , n.

Finally, by (4.2.3), it is enough to show the analogous statement for the pullback
of Eµ to T1,k(v). We will prove this by showing that there is a non-empty Zariski open
subset U1 ⊂ T1,k(v) such that if x ∈ T1,k(v)(k), then tr(Frobx | Eµ,x) ̸≡ 0 mod λ, or
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in other words (using (4.2.2)) that

∑
x1,...,xn∈k∏n

i=1 xi=x

n∏
i=1

ρi((1− xi)
(q−1)/N ) ̸≡ 0 mod λ.

We will produce this set U1 by a computation following [DK17, §A.3]. Let τ :
Q(ζN ) → M be an isomorphism identifying the place v with the place λ. The
character k(v)× → k(v)×, z 7→ τ−1ρi(z

(qv−1)/N ), is given by the formula z 7→ zci

for some integer ci with 1 ≤ ci ≤ qv − 2. If q = qdv then we find that the pre-image
under τ of the left-hand side of the displayed equation is given by

∑
x1,...,xn∈k∏n

i=1 xi=x

n∏
i=1

Nk/k(v)(1− xi)
ci =

∑
x1,...,xn∈k∏n

i=1 xi=x

n∏
i=1

(1− xi)
c̃i ,

where c̃i = ci · (q − 1)/(qv − 1) < q − 1. This we can in turn compute as

∑
x1,...,xn∈k∏n

i=1 xi=x

∑
0≤ri≤c̃i
i=1,...,n

n∏
i=1

(
c̃i
ri

)
(−xi)ri

=
∑

0≤ri≤c̃i
i=1,...,n

(−1)r1+···+rn

(
n∏

i=1

(
c̃i
ri

)) ∑
x1,...,xn−1∈k×

(
n−1∏
i=1

xri−rn
i

)
xrn .

We now use that if r ∈ Z and r ̸≡ 0 mod (q − 1), then
∑

z∈k× zr = 0. This
implies that the inner sum vanishes except if ri = rn for each i = 1, . . . , n− 1. We
obtain (noting that there are only finitely many non-zero terms in the sum on the
right-hand side):

∑
0≤r≤min(c̃i)

(−1)nr
n∏

i=1

(
c̃i
r

)
(−1)n−1xr = (−1)n−1

∑
r≥0

(−1)nr
n∏

i=1

(
c̃i
r

)
xr.

Define a polynomial u(T ) ∈ k(v)[T ]:

u(T ) =
∑
r≥0

(−1)nr
n∏

i=1

(
ci
r

)
T r.

We claim that there is an equality

∑
r≥0

(−1)nr
n∏

i=1

(
c̃i
r

)
xr = Nk/k(v)(u(x)).

This will complete the proof: indeed, it will imply that we can take U1 = T1,k(v)[1/u]
(noting that u is non-zero, since its constant term is 1, so U1 is indeed non-empty,
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and also u is independent of the field extension k/k(v)). To show this, we expand

Nk/k(v)(u(x)) =

∑
r≥0

(−1)nr
n∏

i=1

(
ci
r

)
xr

1+qv+···+qd−1
v

=
∑

r0,...,rd−1≥0

(−1)n(r0+···+rd−1q
d−1
v )

n∏
i=1

d−1∏
j=0

(
ci
rj

)
xr0+r1qv+···+rdq

d−1
v .

We now observe that a given tuple (r0, . . . , rd−1) can contribute a non-zero sum-
mand only if rj < qv − 1 for each j, so each value of r = r0 + r1qv + · · ·+ rd−1q

d−1
v

is represented at most once. Furthermore, since (1 + X)c̃i =
∏d−1

j=0(1 + Xqjv )ci in

Fl[X], we have in this case a congruence(
c̃i
r

)
≡

d−1∏
j=0

(
ci
rj

)
mod l,

showing that Nk/k(v)(u(x)) indeed equals∑
r≥0

(−1)nr
n∏

i=1

(
c̃i
r

)
xr,

as desired. □

4.3. Basics on unitary groups over finite fields. In order to discuss the possi-
ble (residual) images of the Galois representations associated to our Dwork family,
we recall here some basic facts about unitary groups over finite fields which will be
used in the sequel. (Nothing here is original but we include it for convenience of
exposition.)

Let l/k be a quadratic extension of finite fields. Let p be a prime and let M ∈
Mn(l). Let M t denote the transpose of M and M c the conjugate of M by the
generator of Gal(l/k). We define the adjointM† ofM to beM† := (M c)t = (M t)c.
Note that (AB)† = B†A†. We recall:

Definition 4.3.1. The unitary group GUn(l) is the subgroup of matrices M ∈
GLn(l) satisfying M

†M = λ ∈ k×. Let ν be the multiplier character ν : GUn(l) →
k× sending M to M†M and let SUn(l) denote the kernel of ν.

If V is a representation of a finite group G over l, let V c := V ⊗l,c l denote the
representation obtained by conjugating the coefficients by the generator of Gal(l/k).
If x ∈ V , we set xc := x⊗1 ∈ V c. If x ∈ l, we write either cx or xc for the conjugate
of x by c ∈ Gal(l/k).

Definition 4.3.2. If l/k is a quadratic extension of finite fields and Gal(l/k) ≃ ⟨c⟩,
then a Hermitian form on a vector space V over l is an l-valued pairing on V which
is k-bilinear, satisfies ⟨ax, y⟩ = a⟨x, y⟩ and ⟨x, ay⟩ = ca⟨x, y⟩ for a ∈ l, and moreover
satisfies ⟨y, x⟩ = ⟨x, y⟩c = c⟨x, y⟩.
Remark 4.3.3. Scaling the pairing by an element η ∈ l such that cη = −η, all the
conditions remain true except that now ⟨x, y⟩ = −c⟨x, y⟩.

The basic fact concerning unitary groups over finite fields is that there is es-
sentially only one non-degenerate Hermitian form. In practice, it will be useful to
formulate this in the following lemma.
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Lemma 4.3.4. Let V be a vector space over l with an absolutely irreducible repre-
sentation of a group G. Suppose that there is an l-linear isomorphism

(4.3.4) V ∨ ≃ V c ⊗ χ−1

for some multiplier character χ : G → k×. Then, after a suitable choice of basis
for V , the corresponding map G→ GLn(l) has image in GUn(l).

Proof. An isomorphism (4.3.4) is equivalent to the existence of a G-equivariant
non-degenerate bilinear pairing:

ψ : V × V c → χ,

where by abuse of notation we consider χ as a 1-dimensional vector space over l.
By Schur’s Lemma, the isomorphism in (4.3.4) is unique up to scaling and thus ψ
is also unique up to scaling. If we define ψ′ to be the map:

ψ′(x, yc) = ψ(y, xc)c,

then ψ′ is also a G-equivariant bilinear map from V ×V c to χ and hence ψ′ is equal
to ψ′ = λψ for some λ ∈ l×, that is,

ψ(y, xc)c = ψ(x, yc) · λ.
Applying this twice, we get ψ(x, yc) = λ · λc · ψ(x, yc), and thus Nl/k(λ) = 1. By
Hilbert Theorem 90, it follows that λ = cη/η for some η ∈ l. Replacing ψ(x, y)
by ψ(x, y)/η, we deduce that ψ(x, yc) = ψ(y, xc)c. It follows that

⟨x, y⟩ := ψ(x, yc)

defines a non-degenerate Hermitian form on V in the sense of Definition 4.3.2. Let A
denote the matrix associated to this Hermitian form, so that A† = A. Then G ⊂
GU(V,A), that is, matrices M such that M†AM = λ · A for some λ ∈ k×. But
now we use the fact that there is a unique non-degenerate equivalence class of
Hermitian forms associated to l/k, namely, they are all equivalent to A = I and
so G ⊂ GUn(l). (See, for example, [Lew82, §4].) □

4.4. Moduli spaces and monodromy. We shall now discuss a number of mod-
uli spaces related to finding Dwork motives with fixed residual representations,
and compute the corresponding monodromy groups. Since it will be important
to find such motives whose p-adic representations are related to symmetric pow-
ers of “niveau two” representations, for our applications we will have to take p ≡
−1 mod N , and thus be in cases excluded by [Qia23].

Definition 4.4.1. Let l1, l2 ∤ 2N be distinct primes and let λ1, λ2 be places of
Q(ζN ) of these characteristics. Suppose we are given the following data:

(1) A field F/Q(ζN ) and for each i = 1, 2 an étale sheaf Uλi on SpecF of
k(λi)-modules of rank n.

(2) For each i = 1, 2 an isomorphism ηi : ∧nWλi
→ ∧nUλi,T0,F

of sheaves of
k(λi)-modules.

(3) For each i = 1, 2, if −1 mod N ∈ ⟨li⟩ ≤ (Z/NZ)× (equivalently: if c ∈
Gal(k(λi)/Fli)), then we fix in addition a perfect Fl-bilinear morphism
⟨·, ·⟩Uλi

: Uλi × Uλi → k(λi)(1− n) satisfying the following conditions:

(a) For all x, y ∈ Uλi , a ∈ k(λi), we have ⟨ax, y⟩ = a⟨x, y⟩, ⟨x, ay⟩ =
c(a)⟨x, y⟩.

(b) For all x, y ∈ Uλi
, we have ⟨y, x⟩ = −c⟨x, y⟩ .
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That is, the pairing is Hermitian in the sense of Definition 4.3.2 up to a
scalar η with cη = −η, see Remark 4.3.3.

Note that if −1 mod N ∈ ⟨li⟩ then there is also a perfect Fl-bilinear morphism
⟨·, ·⟩Wλi

: Wλi
×Wλi

→ k(λi)(1 − n) satisfying the same two conditions, induced

by taking Poincaré duality on the relative cohomology with OM+
λ
-coefficients of the

hypersurface Z → T0 and extending sesquilinearly to OMλ
-coefficients. If k/F is

a field extension and t ∈ T0(k), then we write ⟨·, ·⟩W t,λi
for the induced perfect

pairing on W t,λi
.

Given such data, let us write F({Uλi
}) for the functor which sends a scheme

S → T0,F to the set of pairs of isomorphisms ϕi : Wλi,S → Uλi,S (i = 1, 2) satisfying
the following conditions:

• For each i = 1, 2, ∧nϕi = ηi.
• For each i = 1, 2, if −1 mod N ∈ ⟨li⟩, then ϕi intertwines ⟨·, ·⟩Wλi

,S and

⟨·, ·⟩Uλi
,S .

Then F({Uλi}) is represented by a finite étale T0,F -scheme T ({Uλi}).

We need the following variant of [Qia23, Proposition 3.8].

Proposition 4.4.2. With notation as above, T ({Uλi
}) is a geometrically irre-

ducible smooth F -scheme.

Proof. We need to show that the geometric monodromy group π1(T0,Q) acts tran-

sitively on the fibres of T ({Uλi}) over T0. The existence of the pairing ⟨·, ·⟩Wλi

shows that if −1 mod N ∈ ⟨li⟩, then the image of the geometric monodromy group
acting on the geometric generic fibre of Wλi may be identified with a subgroup of
SUn(k(λi)), and otherwise it may be identified with a subgroup of SLn(k(λi)).

We claim that it is enough to show that equality holds in either of these cases.
Indeed, let Hi denote the image at each prime li (which would then be either
SUn(k(λi)) or SLn(k(λi))). Since we are assuming l1, l2 ∤ 2 and n > 2, it follows
that the Hi are perfect and their associated projective groups (i.e. the Hi modulo
their subgroups of scalar matrices) are simple (Lemma 5.2.3), and moreover H1 ̸∼=
H2 (also by Lemma 5.2.3). Goursat’s lemma implies that the image of geometric
monodromy acting on Wλ1

×Wλ2
must be H1 ×H2, completing the proof.

If −1 mod N ̸∈ ⟨li⟩, then the required statement follows from [Qia23, Lemma
3.7]. Now suppose that −1 mod N ∈ ⟨li⟩. In this case, we can follow the proof of
[Qia23, Lemma 3.7] (now allowing the case −1 mod N ∈ ⟨li⟩, which is used there
to exclude the possibility of image a special unitary group) to conclude that Hi is
isomorphic to a subgroup of SUn(k(λi)) which maps to SUn(k(λi)) or SLn(k(λi))
with image a normal subgroup of index dividing N . Since N is coprime to n by
assumption, the only possibility is that this map is in fact an isomorphism and that
Hi

∼= SUn(k(λi)), as required. □

Remark 4.4.3. If l ≡ 1 mod N , so that l splits completely in Q(ζN ), and λ|l, then
the data of an étale sheaf Uλ on SpecF satisfying conditions (1), (2), and (3) of
Definition 4.4.1 is nothing more than a representation

rl : GF → GLn(Fl)
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with determinant ε−n(n−1)/2. If l ≡ −1 mod N , however, then (in light of Lemma 4.3.4)
these conditions correspond to a representation

rl : GF → GUn(Fl2)

with multiplier character ε1−n (and determinant ε−n(n−1)/2). In practice, we shall
only consider the moduli spaces T with primes l1, l2 that are either ±1 mod N . in
which case we sometimes write T ({Uλi

}) as T (rλ1
, rλ2

), replacing the étale sheaf
with the corresponding representations, which are always assumed to satisfy con-
ditions (1), (2), and (3) of Definition 4.4.1. We will also use the simpler variant
T (rλ) where there is a single prime l ≡ 1 mod N , a choice of place λ|l, and a rep-

resentation rλ : GF → GLn(Fl) of determinant ε−n(n−1)/2. The F -scheme T (rλ)
is geometrically irreducible.

The following lemma will be used to prove the existence of local points on
T ({Uλi

}) in certain cases.

Lemma 4.4.4. Let l > n be a prime such that l ≡ −1 mod N , and let v, λ be places
of Q(ζN ), M , respectively, of residue characteristic l. Let τ, cτ : k(v) → k(λ) be
the two distinct isomorphisms, and let ωτ : IQ(ζN )v → k(λ)× be the character

τ ◦Art−1
Q(ζN )v

. Then there is an isomorphism

W 0,λ
∼=

n⊕
i=1

ωi−1
τ ωn−i

cτ .

Proof. The action ofH0 on Z0 extends to an action ofH, leading to a decomposition

W 0,λ =

n⊕
j=1

W 0,λ,j ,

whereW0,λ,j is the Ψ
−1
λ -twist of theH-eigenspace inHN−1(Z0,Q,OMλ

) for the char-

acter (χ1ρ
−1
j , . . . , χNρ

−1
j ), and W 0,λ,j :=W0,λ,j ⊗OMλ

k(λ). Here we have used the

computation of [DMOS82, I.7.4], which moreover shows that each summand here
has rank 1 over k(λ). Moreover, this decomposition is orthogonal with respect to

⟨·, ·⟩W 0,λ
, showing that W 0,λ,j ⊗k(λ),c k(λ) ∼=W

∨
0,λ,jε

1−n as k(λ)[GQ(ζN )]-modules.

After permuting ρ1, . . . , ρn, we can assume that HTτ (W0,λ,j) = j − 1. Then we

have W 0,λ,j
∼= k(λ)(ωj−1

τ ω
aj
cτ ) for some integers aj with {a1, . . . , an} = {0, . . . , n−

1}. The last sentence of the previous paragraph shows that we must in fact have
j − 1 + aj = n− 1, completing the proof. □

4.5. A result of Moret-Bailly. We will use the following variant of the extensions
[Cal12, Theorem 3.1], [BLGGT14, Proposition 3.1.1] of the main result of [MB89].

Proposition 4.5.1. Let F be an imaginary CM field, Galois over Q, and let T/F
be a smooth, geometrically irreducible variety. Suppose given the following data:

(1) A finite extension F avoid/F and disjoint finite sets S0 of rational primes.
(2) For each l ∈ S0 and each place v|l of F , a Galois extension Lv/Fv. These

have the property that if σ ∈ GQl
then σ(Lv) = Lσ(v).

(3) For each l ∈ S0 and each place v|l of F , a non-empty open subset Ωv ⊂
T (Lv), invariant under the action of Gal(Lv/Fv).

Then we can find a finite CM extension F ′/F and a point P ∈ T (F ′) with the
following properties:
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(1) F ′/Q is Galois and F ′/F is linearly disjoint from F avoid/F .
(2) For each l ∈ S0 and each place v|l of F and w|v of F ′, there is an isomor-

phism F ′
w
∼= Lv of Fv-algebras such that P ∈ Ωv ⊂ T (F ′

w)
∼= T (Lv).

Suppose given further a finite group G and a surjective homomorphism f : πét
1 (T ) →

G. Then we can further choose P so that the image of f◦P∗ : GF ′ → G is surjective.

Proof. Without the last sentence, this is a special case of [BLGGT14, Proposition
3.1.1] (taking K0 = Q in the notation there), noting that (as in [Cal12, Theorem
3.1]) we can choose F ′ to be of the form F ′ = FE for a Galois, totally real extension
E/Q, and therefore in particular to be CM.

To get the last sentence, it suffices to add further local conditions at places of
sufficiently large norm, ensuring using a Chebotarev density theorem for schemes
of finite type over Z that the image of f ◦ P∗ meets every conjugacy class of G (in
close analogy with the argument of [Cal12, Proposition 3.2] – the surjectivity is
then a consequence of Jordan’s theorem). To define the necessary local conditions,
we can spread T out to a geometrically irreducible scheme T , smooth and of finite
type over OF , such that f factors through πét

1 (T ). Then [Ser12, Corollary 9.12]
shows that for any X > 0 and any conjugacy class C ⊂ G, we can find a finite
place v of F of norm qv > X and a point x ∈ T (k(v)) such that the image of
(arithmetic) Frobenius under f ◦ x∗ lies in C. For each conjugacy class C of G,
we choose one such place vC and point xC for each conjugacy class of G and take
ΩvC to be the pre-image of xC in T (OFvC

) ⊂ T (FvC ). We may assume that if

C ̸= C ′ then vC and vC′ have distinct residue characteristics lC ̸= lC′ , and then
replace S0 by S0 ∪ {lC | C ⊂ G}. Finally, if v|lC and v ̸= vC , we take Ωv = T (Fv).
Provided the norm qvC is sufficiently large, these sets Ωv will also be non-empty,
as required. □

5. Preliminaries on deformation rings and Galois theory

5.1. Lemmas on components of Galois deformation rings. We begin by
defining a certain local representation which shall appear repeatedly in the sequel.

Definition 5.1.1. For n,m ∈ Z≥1, let ε2, ε
′
2 : GQp2

→ Z
×
p be the two Lubin–Tate

characters trivial on ArtQp2
(p), and let ρn,m,0 denote the representation

(5.1.2) ρn,m,0 =

n⊕
i=1

ε
m(n−i)
2 (ε′2)

m(i−1) : GQp2
→ GLn(Zp).

We assume that p > nm, so the representation ρn,m,0 is Fontaine–Laffaille. If the
value of n is implicit, we often simply write ρ0 for ρn,1,0.

Lemma 5.1.3. Let K0/Qp2 be an unramified extension and let ρ : GK0
→ GLn(Zp)

be any crystalline representation of Hodge–Tate weights {0,m, 2m, . . . , (n − 1)m}
(with respect to any embedding K0 → Qp) such that ρ|IK0

= ρn,m,0|IK0
. Then:

(1) There is a finite unramified extension K1/K0 such that ρ|GK1
= ρn,m,0|GK1

.

(2) For any finite extension K/K0 such that ρ|GK
= ρn,m,0|GK

, we have ρ|GK
∼

ρn,m,0|GK
(“connects to”, in the sense of [BLGGT14, §1.4]).

Proof. The first claim is clear. For the second, choose K1/K0 minimal such that

ρ|GK1
= ρn,m,0|GK1

. Since p > nm andK1 is unramified, the lifting ringR
crys,{0,...,(n−1)m},O
ρ|GK1

is formally smooth by Fontaine–Laffaille theory. It follows that ρ|GK1
∼ ρ0|GK1

,
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and then these representations are still connected after passing to any further finite
extension. □

Lemma 5.1.4. Let K be a finite extension of Qp. Let ρ1, ρ2 be ordinary, crystalline
weight 0 representations of GK with ρ1 = ρ2 the trivial representation. Then ρ1 ∼
ρ2.

Proof. This follows immediately from [Ger19, Lemma 3.14] — the ordinary weight
0 crystalline lifting ring of the trivial representation is irreducible. □

Lemma 5.1.5. Let K be a finite extension of Qp, and let ρ : GK → GLn(Zp)
be crystalline of weight 0. Then there exists a constant c = c(K, ρ, n) with the
following property:

• if t : GK → GLn(Zp) is crystalline of weight 0, and t ≡ ρ|GK
mod pc,

then t ∼ ρ|GK
.

Proof. Up to conjugation, the image of ρ lands in GLn(OE) for some finite exten-

sion E/Qp with residue field k. Let R = R
crys,0
ρ|GK

⊗W (k)OE denote the weight 0 crys-

talline lifting ring of ρ|GK
: GK → GLn(k). By assumption, R has specializations

corresponding to ρ and to t. We may choose a finite set of elements {gk : 1 ≤ k ≤ d}
of GK such that

R = OEJXijk : 1 ≤ i, j ≤ n, 1 ≤ k ≤ dK/I

for an ideal I, and the universal lifting ρuniv : GK → GLn(R) of ρ satisfies

ρuniv(gk) = ρ(gk) + [Xijk]
n
i,j=1,

so that p = (Xijk) is the dimension one prime associated to ρ. The condition
that t ≡ ρ|GK

mod pc is then equivalent to the condition that the corresponding
homomorphism t : R→ Zp satisfies vp(t(Xijk)) ≥ c for all i, j, k.

The generic fibre of R is formally smooth at p by [Kis08, Theorem 3.3.8], and so
in particular there is a unique minimal prime P of R[1/p] contained in the prime p.
Suppose that Q is any minimal prime ideal of R[1/p] which is not contained in p.
Then Q contains an element P (Xijk) ∈ R[1/p] which doesn’t vanish at Xijk = 0
and hence has a non-zero constant term. After scaling if necessary, we may assume
that P ∈ R. But now any specialization of P with vp(Xijk) > vp(P (0, 0, . . . , 0)) for
every (i, j, k) will be non-zero, and hence, if c > vp(P (0, 0, . . . , 0)), then t cannot lie
on the irreducible component corresponding to Q. Since R has only finitely many
minimal prime ideals (it is Noetherian), there exists a choice of c which guarantees
that t lies on the component corresponding to P. □

5.2. Lemmas on big image conditions. In order to apply Theorem 3.2.1 to a p-
adic representation of GF , one needs first to establish that the image of the residual
representation (and its restriction to GF (ζp)) satisfies certain technical hypotheses,
in particular conditions (3) and (4). In this section, we prove some lemmas showing
that a number of representations of a form we shall encounter later have these
properties. We first combine these conditions into the following definition:

Definition 5.2.1. Say that a representation s : GF → GLn(Fp) satisfies the
Taylor–Wiles big image conditions if the following hold:

(1) The representation s is decomposed generic.
(2) The representation s|GF (ζp)

has adequate image.



RAMANUJAN AND SATO–TATE FOR BIANCHI MODULAR FORMS 51

(3) There exists σ ∈ GF −GF (ζp) such that s(σ) is scalar.

We have:

Lemma 5.2.2. Suppose that s : GF → GLn(Fp) satisfies the Taylor–Wiles big
image conditions. Suppose that F/Q is Galois. Let H/F be a finite extension
whose Galois closure over Q is linearly disjoint over F from the composite of F (ζp)
and the Galois closure over Q of the fixed field of ker(s). Then s|GH

satisfies the
Taylor–Wiles big image conditions.

Proof. Let H̃ be the Galois closure of H over Q. Since s|GH
satisfies the Taylor–

Wiles conditions if s|G
H̃

does, we assume that H = H̃ is Galois over Q. The

conditions ensure that the images of s and s|GH
coincide, and also the images

of s|GF (ζp)
and s|GH(ζp)

coincide. Thus condition (2) of Definition 5.2.1 holds. LetM

be the Galois closure of the fixed field of ker(s). Then we have an isomorphism

Gal(H ·M(ζp)/F ) ≃ Gal(M(ζp)/F )×Gal(H/F ),

and so Gal(M(ζp)/F ) ≃ Gal(H ·M(ζp)/H) via the map σ → (σ, 1). Moreover,

Gal(H ·M(ζp)/Q) ⊂ Gal(M(ζp)/Q)×Gal(H/Q)

is the subgroup of elements whose projection to Gal(F/Q) × Gal(F/Q) is the di-
agonal. There exists a conjugacy class ⟨σ⟩ ∈ Gal(M(ζp)/F ) such that any rational
prime unramified in H ·M(ζp) whose Frobenius element corresponds to σ is decom-
posed generic for s. Then (σ, 1) will be decomposed generic for s|GH

. Similarly,
if σ ∈ Gal(M(ζp)/F ) − Gal(M(ζp)/F (ζp)) is an element such that s(σ) is scalar,
then the same is true of (σ, 1) ∈ Gal(H ·M(ζp)/H). □

We shall also use the following group-theoretic fact.

Lemma 5.2.3. Consider the collection of groups G either of the form PSLn(Fpk)
or of the form PSUn(Fp2k) for all primes p and integers k ≥ 1, n ≥ 2. Then G is
simple unless (n, p) ∈ {(2, 2), (2, 3), (3, 2)}. These groups are all pairwise mutually
non-isomorphic as n and p both vary except for the following isomorphisms:

(1) PSL2(Fpk) ≃ PSU2(Fp2k),
(2) PSL2(F5) ≃ PSL2(F4),
(3) PSL2(F7) ≃ PSL3(F2).

If we restrict G to be of the form G = PSL2(Fpk) or PSUn(Fp2k), and A ∈ G is the
image of any matrix with eigenvalues in Fp, then any automorphism of G preserves
these eigenvalues up to scalar.

Proof. If n = 2, then there is an isomorphism PSU2(Fp2k) ≃ PSL2(Fpk). Oth-

erwise, PSLn(Fpk) ≃ An−1(p
k) and PSUn(Fp2k) ≃ 2An−1(p

2k) is the Steinberg
group. These groups are (twisted in the second case) Chevalley groups. The sim-
plicity statement follows from [Ste68, Thm 37(b)] (see also [Car72]). The list of
exceptional isomorphisms between (possibly twisted) simple Chevelley groups was
determined in [Ste68, Thm 37(a)].

By a theorem of Steinberg [Ste60] (and [Car72, Thm 12.5.1]), the outer au-
tomorphism group of either PSLn(Fpk) or PSUn(Fp2k) is generated by diagonal
automorphisms (conjugation by diagonal elements), by field automorphisms (act-
ing on Fpk or Fp2k respectively), and the graph automorphism coming from the
automorphism of the Dynkin diagram An−1 if n > 2 (associated to the inverse
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transpose map). Certainly diagonal automorphisms preserve eigenvalues and field
automorphisms act on the eigenvalues and so preserve eigenvalues in Fp. There
are no graph automorphisms for n = 2. For n > 2, the graph automorphism
M 7→ (M t)−1 = σ(M†)−1 = σM in the unitary group coincides with the field
automorphism, and so also preserves rational eigenvalues. □

Lemma 5.2.4. Let F/Q be Galois. Consider representations:

rA : GF → GL2(Fp),

rB : GF → GUm(Fp2) → GLm(Fp2),

such that the images rA(GF (ζp)) and rB(GF (ζp)) equal SL2(Fp) and SUm(Fp2) re-
spectively. Consider the representation:

s = Symn−1 rA ⊗ rB : GF → GLmn(Fp2)

Assume that p > 2mn + 1, and if m = 2 assume that the fixed fields of the ker-
nels of the projective representations associated to rA and rB are linearly disjoint
over F (ζp).

(1) The representation s satisfies conditions (1) and (2) of Definition 5.2.1.
(2) If det(rA) = ε−m and rB has multiplier character ε1−m, then s has image

in GUmn(Fp2) with multiplier character ε1−mn.
(3) If in addition to the assumptions in (2), one additionally assumes that ε(GF ) =

F×
p , then s also satisfies condition (3) of Definition 5.2.1 and thus satisfies

the Taylor–Wiles big image conditions.

Proof. Let HA and HB denote the extensions of F (ζp) corresponding to the fixed
fields of the kernels of the projective representations associated to rA and rB . Our
assumption on the images of rA and rB imply that

Gal(HA/F (ζp)) ≃ PSL2(Fp), Gal(HB/F (ζp)) ≃ PSUm(Fp2).

Let H̃A and H̃B denote the Galois closures of HA and HB over Q, and let H̃

denote the compositum of H̃A and H̃B . Since F/Q is Galois and PSL2(Fp)

and PSUn(Fp2) are simple (as p ≥ 5), we have isomorphisms Gal(H̃A/F (ζp)) ∼
PSL2(Fp)

r and Gal(H̃B/F (ζp)) ≃ PSUm(Fp2)s respectively for some positive inte-
gers r and s. Thus

Gal(H̃/F (ζp)) ≃ Gal(H̃A/F (ζp))×Gal(H̃B/F (ζp)),

since either m > 2 and the groups have no common quotients, or m = 2 and the
fields are linearly disjoint by assumption.

If G = PSL2(Fp) or G = PSUm(Fp2), then G is simple by Lemma 5.2.3. More-
over, by the same lemma, for any equivalence class of matrices A with eigenvalues
in Fp, any automorphism of G preserves the (unordered set of) eigenvalues of any
member of A up to scalars. We also have Aut(Gm) ≃ Aut(G)⋊ Sm.

Let α = β2 ∈ F×2
p be an element such that 1, α, . . . , αmn−1 are all distinct; such

an α exists because p− 1 ≥ 2mn. Let A be a matrix in PSL2(Fp) with eigenvalues

(up to scalars) 1 and α, and letB ∈ PSUm(Fp2) have eigenvalues 1, αn, . . . , αn(m−1).
Explicitly, let A = diag(β, β−1) ∈ SL2(Fp), and then construct B as follows. Cer-
tainly An ∈ SL2(Fp). The image of An under the m − 1th symmetric power map
lands in Spm(Fp) or SOm(Fp) depending on the parity ofm (here we mean the sym-
plectic or orthogonal groups defined using the bilinear form induced by the standard
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symplectic form on F2
p). These groups are conjugate to subgroups of SUm(Fp2) by

Lemma 4.3.4. By Chebotarev, we find a prime q unramified in H̃ and such that for

a fixed choice of q|q in H̃, Frobq ∈ Gal(H̃/F (ζp)) ⊂ Gal(H̃/Q) has the form

(A,A, . . . , A)× (B,B, . . . , B) ∈ PSL2(Fp)
r × PSUm(Fp2)s.

The eigenvalues (up to scalar) of A and B are preserved by the action of Gal(F/Q);
this follows from our description of the automorphism group of each factor.

The images of these elements in Gal(F (ζp)/Q) are trivial, so such a prime q
will split completely in F (ζp) and so satisfy q ≡ 1 mod p. Moreover, the Frobenius

elements at all other primes above q will be conjugate inside Gal(H̃/Q). Hence
the image of (any conjugate of) Frobq under s has eigenvalues (up to scalar) given
by 1, α, . . . , αmn−1. In particular, they are all distinct. Since q ≡ 1 mod p, this
implies that s is decomposed generic, which is property (1) of Definition 5.2.1.

To see that s|GF (ζp)
has adequate image, it suffices to show that the image is

absolutely irreducible and thus is also adequate by [Tho12, Theorem A.9] (using the
assumption p > 2mn+1). The irreducibility follows from the fact that the SL2(Fp)-

representation Symn−1 F
2

p and the standard representation of SUm(Fp2) are both
irreducible as long as p > n, since the image of s|GF (ζp)

is SL2(Fp) × SUm(Fp2).

This proves property (2)of Definition 5.2.1.
Assume that det(rA) = ε−m and that rB has multiplier character ε1−m. Then rA⊗

rB is absolutely irreducible and self-dual (i.e. there is an isomorphism of the form
(4.3.4)) with multiplier character

ε−m(n−1) · ε1−m = ε1−mn,

and so the image lies in GUmn(Fp2) with this multiplier character by Lemma 4.3.4.
This establishes condition (2).

Assume that ε(GF ) = F×
p . Let MA and MB denote the fixed fields of the

kernels of rA and rB , and let M be the compositum of MA and MB . By our
assumption on linear disjointness of HA and HB , Gal(M/F (ζp)) is the direct
product SL2(Fp) × SUm(Fp2), and Gal(M/F ) is the subgroup of matrices (A,B)
of GL2(Fp) × GUm(Fp2) with det(A) = η−m and ν(B) = η1−m for some η ∈ F×

p .

Hence the image certainly contains (βmI2, β
m−1Im), where In denotes the trivial

matrix in SLn(Fp) and β ∈ F×
p is a primitive root. Then, by Chebotarev, there ex-

ists σ ∈ GF whose image in Gal(M/F ) is this element. Since p > 2mn+1 ≥ 2m+1,
we have β2m ̸= 1. Since ε−m(σ) = β2m, the element σ is not contained in GF (ζp).
On the other hand, we see that s(σ) is also scalar, and we are done. □

We shall need the following well-known property of induced representations (spe-
cialized to the context in which we shall apply it in the proof of the following
lemma).

Lemma 5.2.5. Let E/Q be a cyclic Galois extension of degree m linearly disjoint

from F , and let L = E ·F . Let ψ : GL → F×
p be a character and let rB = IndGF

GL
ψ :

GF → GLm(Fp). Let q be a prime of Q such that rB is unramified at all v|q, q
splits completely in F , and Frobq generates Gal(E/Q). Then, for v|q in F , the
eigenvalues of rB(Frobv) are of the form λ, ζλ, . . . , ζm−1λ for some λ where ζ is a
primitive mth root of unity.
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Proof. The assumption that E is linearly disjoint from F ensures that Gal(L/F ) ≃
Gal(E/Q) is cyclic of order m. There is an isomorphism rB ≃ rB ⊗ χ where χ is a
character (factoring through Gal(L/F )) of order m.

Thus rB(Frobv) is conjugate to χ(Frobv)rB(Frobv) = ζ · rB(Frobv), where ζ is
a primitive mth root of unity and the result follows. □

We shall also need the following variant of Lemma 5.2.4:

Lemma 5.2.6. Let F/Q be Galois. Consider representations:

rA : GF → GL2(Fp),

rB : GF → GLm(Fp).

Assume that:

(1) The image of rA(GF (ζp)) equals SL2(Fp).
(2) There is a cyclic Galois extension E/Q of degree m and linearly disjoint

from F , such that, setting L = E · F , there is a character ψ : GL → F×
p

with rB ∼= IndGF

GL
ψ and rB |GF (ζp)

irreducible.

Consider the representation:

s = Symn−1 rA ⊗ rB : GF → GLmn(Fp).

Assume that p > 2mn+ 1. Then:

(1) The representation s satisfies conditions (1) and (2) of Definition 5.2.1.

(2) If det(rA) = ε−m and det(rB) = ε−m(m−1)/2 and the image of ε(GL) = F×
p ,

then s also satisfies condition (3) of Definition 5.2.1 and thus satisfies the
Taylor–Wiles big image conditions.

Proof. The representation rB has solvable image. The assumption that rB |GF (ζp)

is irreducible implies that F (ζp) and E are linearly disjoint. As in the proof of
Lemma 5.2.4, let HA and HB denote the extensions of F (ζp) corresponding to the
fixed fields of the kernels of the projective representations associated to rA and rB
and H̃A, H̃B their Galois closures overQ. Let H̃ be the compositum of H̃A and H̃B .
We deduce once more that

Gal(H̃A/F (ζp)) ≃ PSL2(Fp)
r

and, since PSL2(Fp) has no solvable quotients,

Gal(H̃/F (ζp)) ≃ Gal(H̃A/F (ζp))×Gal(H̃B/F (ζp)).

We have E ⊂ H̃B and, since r|GF (ζp)
is irreducible, Gal(H̃B/F (ζp)) → Gal(E/Q)

is surjective.
Let α ∈ F×

p be an element such that 1, α, . . . , αmn−1 are all distinct; such an α

exists because p−1 ≥ mn. By Chebotarev, we find a prime q unramified in H̃, split

in F (ζp), and such that for a fixed choice of q|q in H̃, Frobq ∈ Gal(H̃/F (ζp)) ⊂
Gal(H̃/Q) has the form

(A,A, . . . , A)× σ ∈ PSL2(Fp)
r ×Gal(H̃B/F (ζp)),

where A has eigenvalues with ratio α and σ projects to a generator of Gal(E/Q).
Hence, by Lemma 5.2.5, the image of (any conjugate of) Frobq under s has eigen-
values (up to scalar) given by:

αiζj , i = 0, . . . , n− 1, j = 0, . . . ,m− 1,
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and in particular all eigenvalues are distinct since otherwise αkm = 1 for some k < n.
Since q ≡ 1 mod p, this implies that s is decomposed generic, which is property (1).

Property (2) of Definition 5.2.1 follows exactly as in the proof of Lemma 5.2.4.

Now suppose that det(rA) = ε−m and det(rB) = ε−m(m−1)/2 and that ε(GL) =
F×

p . We now show that property (3) of Definition 5.2.1 holds. Let MA and MB

denote the fixed fields of the kernels of rA|GF (ζp)
and rB |GF (ζp)

respectively. Since

SL2(Fp) has no solvable quotients, the map GMB
→ Gal(MA/F (ζp)) is surjective.

Let β ∈ F×
p be a primitive root. We claim that we can find σ ∈ GF such that

rA(σ) = β−m2 · I2 and rB(σ) = βm(1−m) · Im. To see this, first choose g ∈ GL

such that ε(g) = β2, and let h =
∏

τ∈Gal(L/F )
τg. Then rB(h) = βm(1−m)Im, as∏

τ∈Gal(L/F )
τψ = det rB |GL

= ε−m(m−1)/2. We now choose σ of the form hγ

where γ ∈ GMB
; since rB(γ) is trivial, this means that rB(σ) = rB(h) is of

the correct form. On the other hand, we have det rA(h) = ε−m(g)m = β−2m2

.
Since GMB

→ Gal(MA/F (ζp)) ≃ SL2(Fp) is surjective, we choose γ ∈ GMB
so

that rA(γ) = β−m2 · rA(h)−1, and then rA(σ) = β−m2 · I2.
By construction, s(σ) is scalar. On the other hand, ε(σ) = β2m ̸= 1, as p− 1 >

2m because p > 2nm+ 1, so σ ∈ GF −GF (ζp), as required. □

5.3. Character building lemmas. In this section, we construct some induced
extensions with certain desirable local properties. We begin with the following
well-known lemma:

Lemma 5.3.1 (Globalizing local characters). Let F be a number field, and let S
be a finite set of places of F . Let ψv : GFv → Z/nZ be a collection of characters
for all v ∈ S. Assume that S does not contain any places v|2. Then there exists a
global character χ : GF → Z/nZ such that χ|GFv

= ψv for all v ∈ S.

Proof. This is a consequence of [AT09, §X Thm. 5] (see also [Con11, Appendix A]).
More precisely, the claim holds (without the hypothesis on S) if n is odd. If n is
even, there exists an explicitly defined element

aF,n ∈ (F×)n/2

which is a perfect nth power for all but a finite set (possibly empty) places SF,n of
primes v|2. Then the ψv come from a global character χ of order n if and only if
either SF ̸⊂ S, or SF ⊂ S and ∏

v∈SF

ψv(aF,n) = 1.

Since we have assumed that S contains no places above 2, either SF is empty
or SF ̸⊂ S, so the result follows. □

Remark 5.3.2. One cannot drop the hypothesis on S in general because of the
Grunwald–Wang phenomenon (e.g. F = Q, v = 2, n = 8, and ψ2 unramified with
order 8). If one considers general F , one cannot even globalize a local character ψv

up to a character ϕv which is unramified at v. Let F = Q(
√
−5), and consider a

character
χ : F×\A×

F → Z/8Z.

Since 16 ∈ F× is a perfect 8th power for all v|F of odd residue characteristic (this
is true even for F = Q) and also in F×

∞ ≃ C×, it follows that the restriction:

χ2 : F×
2 → Z/8Z
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satisfies χ2(16) = 1. Since F2/Q2 is ramified of degree 2, we find that 16 has
valuation 8 and hence ϕ2(16) = 1 for any unramified character F×

2 → Z/8Z.
Since neither 2 nor −1 is a square in F2 ≃ Q2(

√
−5), it follows that 16 is not

a perfect 8th power in F×
2 , and thus there exists a local character ψ2 : F×

2 →
Z/8Z such that ψ2(16) = −1. But from the above, we see that there is no global
character χ such that χ2 = ψ2ϕ2 for an unramified character ϕ2.

We now show that any character over a CM field can be written as an mth power
of another character over some finite CM extension satisfying certain properties.
The argument is essentially the same as in the proof of [ACC+23, Theorem 7.1.11].

Lemma 5.3.3. Let η be a finite order character of GF for a CM field F , let m
be an integer, and let F avoid/F be a finite extension. Then there exists a totally
real Galois extension M/Q linearly disjoint from F avoid and a character ψ of GM ·F
such that η|GMF

= ψm. Moreover, if η is unramified at all v dividing some finite
set of primes T of Q not including 2, then we may take M to be totally split at all
primes dividing those in T , and ψ to be unramified at primes dividing those in T .

Proof. By induction, it suffices to consider the case when m is prime. Assume
that η has order n. There is an exact sequence:

0 → Z/mZ → Z/mnZ → Z/nZ → 0.

The character η gives a class in H1(F,Z/nZ) which we want to write as an mth
power, which amounts to lifting this class to H1(F,Z/mnZ). The obstruction to
this is an element ∂η lying in

H2(F,Z/mZ) ↪→ H2(F (ζm), µm)) ≃ Br(F (ζm))[m],

where the injectivity of the first map follows from Hochschild–Serre and the fact
that [F (ζm) : F ] is prime to m (since m is prime). From the Albert–Brauer–Hasse–
Noether theorem, there is an injection

Br(F (ζm))[m] ↪→
⊕
v

Br(F (ζm)v)[m].

The image of the class ∂η is zero for all v not dividing a finite set of places S
of Q (the places where η is ramified), and is zero for v dividing places in T (since
η is unramified there and there is no obstruction to lifting an unramified local
character). Since F is totally imaginary and Br(C) = 0, we may assume S consists
only of finite primes and we may also assume that ∞ ∈ T . If K is a local field
and L/K has degree m then the map Br(K)[m] → Br(L) is trivial [CF86, §VI,
Thm. 3]. Hence any class in Br(F (ζm))[m] is trivial in F (ζm)·M whenever [Mv : Qv]
is divisible by m[F (ζm) : Q] for any prime v in S. Hence it suffices to find such
a Galois extension M/Q disjoint from F avoid, in which the places in T are totally
split (since ∞ ∈ T this implies that M is totally real). This is essentially done in
[AT09, §X Thm. 6] and we can appeal to [CHT08, Lemma 4.1.2] for the precise
statement we need. Since η is unramified at primes in T , for each v|T the image
of ψ|I(M·F )v

has order dividing m. Thus by Lemma 5.3.1 we may twist ψ by another

character of order m (which doesn’t change ψm) so that it is unramified at v|T . □

6. Automorphy of compatible systems

6.1. Compatible systems and purity. We recall the following definition from
[ACC+23, §7].
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Definition 6.1.1. Let F be a number field. A very weakly compatible system R
(of rank n representations of GF , with coefficients in M) is by definition a tuple

(M,S, {Qv(X)}, {rλ}, {Hτ}),

where:

(1) M is a number field;
(2) S is a finite set of finite places of F ;
(3) for each finite place v ̸∈ S of F , Qv(X) ∈ M [X] is a monic degree n

polynomial;
(4) for each τ : F ↪→M , Hτ is a multiset of integers;
(5) for each finite place λ of M (say of residue characteristic l),

rλ : GF → GLn(Mλ)

is a continuous, semi-simple representation satisfying the following condi-
tions:
(a) If v ̸∈ S and v ∤ l, then rλ|GFv

is unramified and the characteristic
polynomial of Frobv equals Qv(X).

(b) For l outside a set of primes of Dirichlet density 0, rλ is crystalline
and HTτ (rλ) = Hτ .

(c) For every l, we have HTτ (det rλ) =
∑

h∈Hτ
h.

If F ′/F is a finite extension then we may define the restricted very weakly
compatible system

R|GF ′ = (M,SF ′ , {Qw(X)}, {rλ|GF ′}, {H ′
τ}),

where SF ′ is the set of places of F ′ lying above S, Qw(X) = det rλ(X − Frobw)
(thus independent of λ), and H ′

τ = Hτ |F . If

R1 = (M,S1, {Q1,v(X)}, {r1,λ}, {H1,τ}), R2 = (M,S2, {Q2,v(X)}, {r2,λ}, {H2,τ})

are very weakly compatible systems with a common coefficient field M , then we
can define the tensor product

R1 ⊗R2 = (M,S1 ∪ S2, {Qv(X)}, {r1,λ ⊗ r2,λ}, {Hτ}),

where we take Qv(X) = det(r1,λ ⊗ r2,λ)(X − Frobv) (thus independent of λ) and
Hτ = {k + l | k ∈ H1,τ , l ∈ H2,τ} (sums taken with multiplicity).

The following definition summarizes some possible properties of very weakly
compatible systems. These were all defined in [ACC+23], with the exception of (3)
(‘weakly automorphic’). This condition arises for us because we consider tensor
products of compatible systems, one of which has poorly controlled ramification.
Lemma 6.1.4 gives conditions under which ‘weakly automorphic’ can be upgraded
to ‘automorphic’.

Definition 6.1.2. Let

R = (M,S, {Qv(X)}, {rλ}, {Hτ})

be a very weakly compatible system. We say that R is:

(1) pure of weight m ∈ Z, if it satisfies the following conditions:
(a) for each v ̸∈ S, each root α of Qv(X) in M , and each ι : M ↪→ C we

have

|ια|2 = qmv ;
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(b) for each τ : F ↪→M and each complex conjugation c in Gal(M/Q) we
have

Hcτ = {m− h : h ∈ Hτ}.
(2) automorphic, if there is a regular algebraic, cuspidal automorphic repre-

sentation π of GLn(AF ) and an embedding ι : M ↪→ C such that for
every finite place v ̸∈ S of F , πv is unramified and recTFv

(πv)(Frobv) has
characteristic polynomial ι(Qv(X)).

(3) weakly automorphic of level prime to T , if T is a finite set of finite places
of F , disjoint from S, and there is a regular algebraic, cuspidal automorphic
representation π of GLn(AF ) and an embedding ι : M ↪→ C such that for
all but finitely many finite places v ̸∈ S of F , and for every v ∈ T , πv is un-
ramified and recTFv

(πv)(Frobv) has characteristic polynomial ι(Qv(X)). We
will say that R is simply ‘weakly automorphic’ if it is weakly automorphic
of level prime to the empty set.

(4) irreducible, if for l outside a set of primes of Dirichlet density 0, and for all
λ|l of M , rλ is irreducible.

(5) strongly irreducible, if for every finite extension F ′/F , the compatible sys-
tem R|GF ′ is irreducible.

For a CM number field F , and a regular algebraic weight λ, cuspidal automor-
phic representation π of GL2(AF ), there is an associated automorphic very weakly
compatible system

R = (M,S, {Qv(X)}, rπ,λ, Hτ ),

where Hτ = {λτ,1 + 1, λτ,2} (see [ACC+23, Lemma 7.1.10]).
We now recall that the potential automorphy of symmetric powers ofR is enough

to imply purity.

Lemma 6.1.3. Let R = (M,S, {Qv(X)}, {rλ}, {Hτ}) be a very weakly compatible
system of rank 2 representations of GF such that Hτ = {0,m} for a fixed m ∈ N
for all τ . Fix a finite place v0 of F which is not in S, and let X0 = {v0}. Suppose
that for infinitely many n ≥ 1, we can find a finite Galois extension Fn/F such
that the very weakly compatible system Symn−1 R|Fn

is weakly automorphic of level
prime to X0,Fn

= {v|v0}. Then the roots α1, α2 of Qv0(X) in M satisfy

|ια|2 = qmv0

for each ι :M ↪→ C.

Proof. Choose a place vn|v0 in Fn and fix ι : M ↪→ C. We are assuming that
Symn−1 R|Fn is associated to a cuspidal automorphic representation Π of GLn(AFn)
and Πvn is unramified. Up to a finite order character, the determinant of our rank
n automorphic compatible system is given by the −mn(n − 1)/2th power of the
cyclotomic character, so the central character of Π is (again, up to a finite order
Hecke character) | · |n(m−1)(1−n)/2, and in particular Π| · |(m−1)(n−1)/2 is unitary.

Since we know that |ι(α1α2)| = qmv0 , it suffices to prove that |ιαi| ≤ q
m/2
v0 for

i = 1, 2. Let qvn = qfv0 . As in the proof of [ACC+23, Cor. 7.1.13], we can apply

the Jacquet–Shalika bound [JS81, Cor. 2.5] to deduce that that |ι
(
α
f(n−1)
i

)
| ≤

q
((m−1)(n−1)+n)/2
vn , so |ιαi| ≤ q

m/2+1/2(n−1)
v0 . Letting n tend to ∞ gives the desired

bound on |ιαi|. □
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Lemma 6.1.4. Let F be a CM number field, and let

R = (M,S, {Qv(X)}, {rλ}, {Hτ})

be a very weakly compatible system of rank n representations of GF which is weakly
automorphic, corresponding to a regular algebraic, cuspidal automorphic represen-
tation π of GLn(AF ), and pure of weight m ∈ Z. Then R is automorphic.

Proof. Choose some embedding of M in C. By assumption, there is a finite set
S′ ⊇ S of finite places of F such that for each v ̸∈ S′, πv is unramified and
recTFv

(πv)(Frobv) has characteristic polynomial Qv(X). We must show that this
holds for all v ̸∈ S. Choose v ∈ S′ − S, a rational prime p not lying under v, and
an isomorphism ι : Qp → C. Let λ denote the place of M induced by ι−1. Then
the Chebotarev density theorem implies that there is an isomorphism rλ ∼= rι(π).
By assumption, rλ|GFv

is unramified and pure of weight m. By [Var24, Theorem

1], there is an isomorphism rι(π)|ssWFv

∼= ι−1 recTFv
(πv)

ss. We deduce that πv is a

subquotient of an unramified principal series, namely the one with Satake parameter
determined by Qv(X). Since rλ|GFv

is pure, this principal series representation is
irreducible and πv is unramified, as desired. □

Lemma 6.1.5. Let F be a number field and let

R = (M,S, {Qv(X)}, {rλ}, {Hτ})

be a very weakly compatible system of rank 2 representations of GF which is strongly
irreducible. Let L(R) denote the set of primes l satisfying the following conditions:

(1) l ̸∈ S and for each place λ|l of M , rλ is crystalline of Hodge–Tate weights
Hτ .

(2) For each place λ|l of M , rλ(GF̃ ) contains a conjugate of SL2(Fl), where F̃
is the Galois closure of F/Q.

Then L(R) has Dirichlet density 1.

Proof. The set of primes l having property (1) has Dirichlet density 1, by definition
of a very weakly compatible system. The lemma therefore follows from [ACC+23,
Lemma 7.1.3]. □

6.2. Potential automorphy theorems. Our goal in this section is to prove The-
orem 6.2.1. The proof will occupy the whole section, but to keep the presentation
organized and somewhat motivated, we deduce it from Theorem 6.2.4 below, which
we will in turn deduce from Proposition 6.2.3.

Theorem 6.2.1. Let F be an imaginary CM number field, and let

R = (M,S, {Qv(X)}, {rλ}, {Hτ})

be a very weakly compatible system of rank 2 representations of GF . Let m ≥ 1 be
an integer, and suppose that the following conditions are satisfied:

(1) For each τ , Hτ = {0,m}.
(2) det rλ = ε−m.
(3) R is strongly irreducible.

Then R is pure of weight m, and for each n ≥ 1, there exists a finite CM extension
Fn/F such that Fn/Q is Galois and Symn−1 R|GFn

is automorphic.
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Proof. Wemay assume thatm ≥ 2, since otherwise the result follows from [ACC+23,
Cor 7.1.12]. Let v0 ̸∈ S be a place of F . Theorem 6.2.4 states that we can find,
for each n ≥ 1, a CM extension Fn/F , Galois over Q, such that Symn−1 R|GFn

is
weakly automorphic of level prime to {v|v0}. By Lemma 6.1.3, the roots of Qv0(X)
are qv0-Weil numbers of weight m. Since v0 ̸∈ S is arbitrary, this shows that the
compatible system R is pure of weight m. We can then apply Lemma 6.1.4 to
conclude that Symn−1 R|GFn

is automorphic, as required. □

Remark 6.2.2. We assume in our arguments below that m > 1. Our argument
certainly applies in principle to the case m = 1, but certain statements we make
through the proof assume thatm ≥ 2, and so this assumption avoids having to make
the necessary extra remarks to cover the casem = 1. Moreover, our argument in the
case m = 1 would involve tensoring R with auxiliary 1-dimensional representations,
and not so surprisingly can be simplified to the point where it becomes very similar
to the proof of [ACC+23, Cor 7.1.12].

Before giving our first technical result towards the proof of Theorem 6.2.4 (and
hence Theorem 6.2.1 above), we sketch the idea of the proof. We begin with the
strongly irreducible, very weakly compatible systemR of rank 2 and parallel Hodge–
Tate weights {0,m}, and wish to show that Symn−1 R is potentially (weakly) au-
tomorphic. This presents difficulties since the compatible system Symn−1 R has
parallel Hodge–Tate weights {0,m, 2m, . . . , (n− 1)m}, while the auxiliary motives
that we can construct to show potential automorphy have consecutive (and paral-
lel) Hodge–Tate weights (and moreover, our automorphy lifting theorem Theorem
3.2.1 applies only to Galois representations with consecutive Hodge–Tate weights).
To get around this, we construct auxiliary compatible systems as follows:

• An auxiliary compatible system Raux of rank m and with consecutive
(and parallel) Hodge–Tate weights {0, 1, . . . ,m − 1}. Then (Symn−1 R) ⊗
Raux has rank nm and consecutive (and parallel) Hodge–Tate weights
{0, 1, . . . , nm− 1}.

• A second auxiliary compatible system RCM of rank m and with consecu-
tive (and parallel) Hodge–Tate weights {0, 1, . . . ,m− 1} which is moreover
induced from a character.

• A third auxiliary compatible system SUA of rank nm with consecutive (and
parallel) Hodge–Tate weights {0, 1, . . . ,mn − 1}, and which is moreover
automorphic. We will construct SUA (andRaux) as a member of the families
of motives considered in §4. (The subscript ‘UA’ stands for ‘universally
automorphic’.)

These are chosen to behave well with respect to distinct primes p, r as follows:

• There is a congruence modulo p linking Saux := (Symn−1 R) ⊗ Raux and
SUA. We will apply Theorem 3.2.1 to conclude that Saux is automorphic.

• There is a congruence modulo r linking Raux and RCM, and therefore also
linking Saux and SCM := (Symn−1 R)⊗RCM. We will apply Theorem 3.2.1
a second time to conclude that SCM is automorphic.

• Since RCM is induced from a Hecke character, SCM is also induced (from an
n-dimensional compatible system). We will then be able to apply the de-
scription of the image of automorphic induction given in [AC89] to conclude
that Symn−1 R is itself automorphic.
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The most significant conditions that must be satisfied to apply Theorem 3.2.1 in
each case are the non-degeneracy of the residual images and the ‘connects’ relation
locally at the p-adic (resp. r-adic) places of F . The non-degeneracy of the residual
images will be easy to arrange by careful choice of data. It is the ‘connects’ relation
that is more serious and imposes the circuitous route followed here to prove the
theorem.

The statement of Proposition 6.2.3 below is long but is merely a precise formula-
tion of the properties required of the various auxiliary compatible systems needed
to carry out the above sketch. The main point in the proof of Theorem 6.2.4 will
be to show how to construct auxiliary compatible systems with these properties.

Proposition 6.2.3. Let F be an imaginary CM number field, let m ≥ 2 and n ≥ 1
be integers, and let X0 be a finite set of finite places of F . Let

R = (M,S, {Qv(X)}, {rλ}, {Hτ})
be a very weakly compatible system of rank 2 representations of GF satisfying the
following conditions:

(1) For each τ , Hτ = {0,m}.
(2) det rλ = ε−m.
(3) R is strongly irreducible.
(4) X0 ∩ S = ∅.
(5) F/Q is Galois and contains an imaginary quadratic field F0.

We fix an embedding M ↪→ C, and regard M as a subfield of C. Suppose we can
find the following additional data:

(6) A cyclic totally real extension E/Q of degree m, linearly disjoint from F ,
and a character Ψ : A×

L → M×, where L = E · F , satisfying the following
conditions:
(a) There is an embedding τ0 : F0 → C, and a labelling τ1, . . . , τm : E ·

F0 → C of the embeddings E · F0 → C which extend τ0 such that for
each α ∈ L×, we have

Ψ(α) =

m∏
i=1

τi(NL/E·F0
(α))m−icτi(NL/E·F0

(α))i−1.

We let {Ψλ} denote the weakly compatible system associated to Ψ, and let

RCM = {IndGF

GL
Ψλ} = (M,SCM, {QCM,v(X)}, {rCM,λ}, {HCM,τ})

denote the induced weakly compatible system. (Then HCM,τ = {0, 1, . . . ,m−
1} for all τ , and we take SCM to be the set of places of F ramified in L or
above which Ψ is ramified.)
(b) For all λ, det rCM,λ = ε−m(m−1)/2.

(7) Distinct primes p, r, not dividing any place of S, and places p, r of M lying
above them.

(8) A weakly compatible system of rank m representations of GF

Raux = (M,Saux, {Qaux,v(X)}, {raux,λ}, {Haux,τ}),
satisfying the following conditions:
(a) Raux is pure of weight m− 1 and Saux does not intersect X0 ∪ {v|pr}.
(b) For all λ, det raux,λ = ε−m(m−1)/2. For all τ , Haux,τ = {0, 1, . . . ,m−

1}.
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(9) A weakly compatible system

SUA = (M,SUA, {QUA,v(X)}, {sUA,λ}, {HUA,τ})

of rank nm representations of GF , satisfying the following conditions:
(a) SUA is pure of weight nm− 1 and SUA does not intersect X0 ∪{v|pr}.
(b) For all λ, det sUA,λ = ε−nm(nm−1)/2. For all τ , HUA,τ = {0, 1, . . . , nm−

1}.
(c) SUA is weakly automorphic of level prime to X0 ∪ {v|pr}.

Let Saux = {saux,λ} = (Symn−1 R) ⊗ Raux and SCM = {sCM,λ} = (Symn−1 R) ⊗
RCM. These compatible systems of rank nm have coefficients in the number field
M . Suppose that these data satisfy the following additional conditions:

(10) L/F is unramified at X0 ∪ {v|pr}, and Ψ is unramified at the places of L
lying above X0 ∪ {v|pr}. (Then SCM ∩ (X0 ∪ {v|pr}) = ∅.)

(11) p > 2nm+ 1, and [F (ζp) : F ] = p− 1.
(12) r > 2nm+ 1, r splits completely in E · F0, and [L(ζr) : L] = r − 1.
(13) Up to conjugation, there are sandwiches

SL2(Fp) ≤ rp(GF ) ≤ GL2(Fp)

and

SL2(Fr) ≤ rr(GF ) ≤ GL2(Fr).

If m > 2 then the image raux,p(GF ) is a conjugate of GUm(Fp2) and raux,p
has multiplier character ε1−m. If m = 2 then the image raux,p(GF ) is
a conjugate of GL2(Fp). The representation rCM,r|GF (ζr)

is irreducible. If

m = 2, then the extensions of F (ζp) cut out by the projective representations
associated to rp|GF (ζp)

and raux,p|GF (ζp)
are linearly disjoint.

(14) There are isomorphisms sUA,p
∼= saux,p and raux,r ∼= rCM,r.

(15) There is a decomposition Sp = Σord⊔Σss of the set Sp of p-adic places of F
such that for each place v|p of F , Fv contains Qp2 , rp|GFv

and ρ2,m,0|GFv

(cf. Definition 5.1.1) are trivial, and:
(a) if v ∈ Σord, then rp|GFv

is crystalline ordinary;
(b) if v ∈ Σss, then rp|GFv

∼ ρ2,m,0|GFv
.

(16) If v ∈ Σord, then raux,p|GFv
is trivial and raux,p|GFv

and sUA,p|GFv
are both

crystalline ordinary. If v ∈ Σss, then raux,p|GFv
is trivial, raux,p|GFv

and
sUA,p|GFv

are both crystalline, and raux,p|GFv
∼ ρm,1,0|GFv

and sUA,p|GFv
∼

ρnm,1,0|GFv
.

(17) For each place v|r of F , raux,r|GFv
∼= rCM,r|GFv

is trivial and raux,r|GFv
is

crystalline ordinary.

Then Symn−1 R is weakly automorphic of level prime to X0.

Proof. We first show that Saux is weakly automorphic of level prime to X0 ∪ {v|r}
by applying Theorem 3.2.1 to saux,p. To justify this, we need to check that saux,p ∼=
sUA,p satisfies the Taylor–Wiles conditions (as formulated in Definition 5.2.1) and
that for each place v|p of F , we have saux,p|GFv

∼ sUA,p|GFv
. The Taylor–Wiles

conditions hold by assumption (13) and Lemma 5.2.4. If v ∈ Σord, then saux,p|GFv

is trivial, and both saux,p ∼= (Symn−1 rp)⊗ raux,p|GFv
and sUA,p|GFv

are crystalline
ordinary, so Lemma 5.1.4 implies that saux,p|GFv

∼ sUA,p|GFv
. If v ∈ Σss, then

saux,p|GFv
is trivial and our assumptions imply that Symn−1 rp|GFv

∼ ρn,m,0|GFv
,
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raux,p|GFv
∼ ρm,1,0|GFv

and sUA,p|GFv
∼ ρnm,1,0|GFv

, hence

saux,p|GFv
∼ ρn,m,0|GFv

⊗ ρm,1,0|GFv
∼= ρnm,1,0|GFv

∼ sUA,p|GFv
.

Therefore Saux is weakly automorphic of level prime to X0 ∪ {v|r}.
We next show that SCM is weakly automorphic of level prime to X0 by applying

Theorem 3.2.1 to sCM,r. The Taylor–Wiles conditions for sCM,r
∼= saux,r hold by

assumption (13) and Lemma 5.2.6. To check the connectedness conditions, let v|r
be a place of F . Then rCM,r|GFv

∼= raux,r|GFv
is trivial and raux,r|GFv

is crystalline
ordinary, by assumption (17). Since r splits completely in E by assumption (12),
v splits completely in L, and we can label the places wi|v so that wi|E is the place
induced by the embedding τi. There is an isomorphism

rCM,r|GFv
∼= ⊕w|vαi,

where for each i = 1, . . . ,m, αi : GFv
→ M

×
r is a continuous character with the

property that for any u ∈ O×
Fv
, we have

αi(ArtFv
(u)) =

∏
τ∈Hom(Lwi

,Mr)

τ |F0
=τ0

τ(u)−(m−i)

if v lies above the place of F0 induced by τ0, and

αw,i(ArtFv
(u)) =

∏
τ∈Hom(Lwi

,Mr)

τ |F0
=cτ0

τ(u)−(i−1)

otherwise. It follows that rCM,r|GFv
is also crystalline ordinary, with Hodge–Tate

weights {0, . . . ,m − 1} matching those of raux,r|GFv
. By Lemma 5.1.4, we have

rCM,r|GFv
∼ raux,r|GFv

, and using [BLGGT14, p. 530, (5)] it follows that

sCM,r|GFv
= Symn−1 rr|GFv

⊗ rCM,r|GFv
∼ Symn−1 rr|GFv

⊗ raux,r|GFv
= saux,r|GFv

.

We can now show that Symn−1 R is weakly automorphic of level prime to X0.
Let π be the regular algebraic, cuspidal automorphic representation of GLnm(AF )
which is associated to the compatible system SCM. By construction, π is unramified
atX0. Let η : F×\A×

F → C× be the character of orderm associated to the inducing
field L/F of RCM. Then π ∼= π ⊗ (η ◦ det), so by cyclic base change [AC89,
Ch. 3, Thm 4.2], we deduce that π is the induction of a cuspidal automorphic
representation Π for GLn(AL), which by consideration of the infinity type of π
must also be regular algebraic. More precisely, for any place w of L lying above a
place v of F , we have

recFv (π)|WLw
= ⊕m−1

i=0 recLw(Π
σi

),

where σ is a generator for Gal(L/F ). Since L is CM and Π is regular algebraic, Π
has an associated compatible system of l-adic Galois representations. If l is a prime
and ι : Ql → C is an isomorphism, with ι−1 inducing the place λ of M , then we
find

rι(π)|GL
= ⊕m−1

i=0 Symn−1 rλ|GL
⊗Ψσi

λ
∼= ⊕m−1

i=0 rι(Π
σi

).

Choosing λ so that Symn−1 rλ is irreducible (e.g. λ = p), we find that Symn−1 rλ|GL

is a character twist of rι(Π). Undoing the twist and making cyclic descent (using
the irreducibility of Symn−1 rλ|GL

, as in [ACC+23, Proposition 6.5.13]) shows that
Symn−1 R is weakly automorphic over F of level prime to X0, as desired. □
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The next theorem is proved by constructing the data required by Proposition
6.2.3 (after possibly extending the base field F ).

Theorem 6.2.4. Let F be an imaginary CM number field, and let

R = (M,S, {Qv(X)}, {rλ}, {Hτ})

be a very weakly compatible system of rank 2 representations of GF . Let m ≥ 2 be
an integer, and suppose that the following conditions are satisfied:

(1) For each τ , Hτ = {0,m}.
(2) det rλ = ε−m.
(3) R is strongly irreducible.

Let v0 ̸∈ S be a place of F . Then for each n ≥ 1, there is a CM extension Fn/F ,
Galois over Q, such that Symn−1 R|GFn

is weakly automorphic of level prime to
{v|v0}.

Proof. We can fix n ≥ 1. Let p0 denote the residue characteristic of v0, let F0 be
an imaginary quadratic field, and let F1 denote the Galois closure of F ·F0 over Q.
Embed M in C arbitrarily, and let X1 denote the set of places of F1 lying above
v0. It suffices to prove the following statement:

• There exists a CM extension F ′/F1, Galois overQ, such that (after possibly
enlarging M) R|GF ′ satisfies the hypotheses of Proposition 6.2.3 with X0

taken to be the set of places of F ′ lying above X1.

Indeed, Proposition 6.2.3 will then imply that Symn−1 R|GF ′ is weakly automorphic
of level prime to X0 = {v|v0}, which is what we need to prove. To prove this
statement, we will consider a series of CM extensions Fj+1/Fj (j = 1, 2, . . . ), each
Galois over Q. For any such extension Fj/F1, R|GFj

satisfies Assumptions (1)–(5)

of Proposition 6.2.3 with respect to Xj , the set of places of Fj lying above v0. The
extensions Fj+1/Fj will be chosen in order to satisfy the remaining assumptions.

Let E/Q be any totally real cyclic extension of degreem linearly disjoint from F1,
in which p0 is unramified. (We can find such E by taking the degree m subfield
of Q(ζp′), where p′ is any sufficiently large prime ≡ 1 mod 2m.) Let L1 = E · F1.
For any extension Fj/F1, we will set Lj = E · Fj . Choose an odd prime q1 ∤ X0

which splits completely in L1 and a place v1|q1 of F1 which splits completely as
v1 = w1 . . . wm in L1. Fix an embedding τ0 : F0 → C, and a labelling τ1, . . . , τm :
E · F0 → C of the embeddings E · F0 → C which extend τ0. After enlarging M ,
using [HSBT10, Lemma 2.2], we can find a character Ψ0 : A×

L1
→M×, unramified

at the places above X1, such that for each α ∈ L×
1 , we have

Ψ0(α) =

m∏
i=1

τi(NL1/E·F0
(α))m−icτi(NL1/E·F0

(α))i−1,

and moreover such that the characters Ψ0|O×
Lwi

(i = 1, . . . ,m) are wildly ramified,

pairwise distinct, and satisfy
∏m

i=1 Ψ0|O×
Lwi

= 1 (where we identify Fv1 = Lwi

for each i). If λ is a place of M , then εm(m−1)/2 det Ind
GF1

GL1
Ψ0,λ is a character

of finite order which is unramified at v0 and v1. Using Lemma 5.3.3, and possibly
enlargingM further, we can find a CM extension F2/F1, linearly disjoint from E/Q
and Galois over Q, and a twist Ψ2 : A×

L2
→ M× of Ψ0 ◦ NL2/L1

by a character

of L×
2 \A

×
L2

of finite order, unramified above v0 and v1, such that for any place
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λ of M , det Ind
GF2

GL2
Ψ2,λ = ε−m(m−1)/2. (If v0|2, then the twist whose existence

is guaranteed from Lemma 5.3.3 may be ramified above X2; if so, it is certainly

ramified of finite order, and we enlarge F2 further so that Ind
GF2

GL2
Ψ2,λ is unramified

at all places above X2 and L2/F2 is unramified at all places above X2.) If Fj/F2

is a finite extension, then we set Ψj = Ψ2 ◦NFj/F2
. Let RCM = {IndGF2

GL2
Ψ2,λ} =

{rCM,λ}.
We now choose any primes N , p ∈ L(R|GF2

), r ∈ L(R|GF2
) (cf. Lemma 6.1.5)

not dividing v0v1 and satisfying the following conditions:

• N > 100nm+ 100 and N is unramified in L2 and M .
• p ≡ −1 mod N and p > 2nm+ 1.
• r ≡ 1 mod N and r > 2nm+ 1.
• p splits completely in L2 and M and r splits completely in L2(ζp) and M .
• The character Ψ2 is unramified at the places of L above p and r.

Choosing p|p and r|r arbitrarily, there will be sandwiches up to conjugation

SL2(Fp) ≤ rp(GF2
) ≤ GL2(Fp)

and

SL2(Fr) ≤ rr(GF2
) ≤ GL2(Fr),

and for each p-adic (resp. r-adic) place v of F , rp|GFv
(resp. rr|GFv

) is crystalline.
(Here we are using the definition of L(R|GF2

) and the fact that p, r split in M .)

The representation rCM,r can be chosen to take values in GLm(Fr). Since the
prime N is unramified in L2(ζr), E/Q is linearly disjoint from F2(ζN , ζr)/Q. The
different inertial behaviour of Ψ0 at places dividing v1 implies that rCM,r|GF2(ζN ,ζr)

is absolutely irreducible.
Let v be a p-adic place of F . Then F2,v =Mp = Qp. By [Ber10, Théorème 3.2.1],

either rp|GF2,v
is (crystalline) ordinary, or there is an isomorphism rp|GQ

p2

∼= ρ2,m,0

(notation as in Definition 5.1.1). In the latter case, Lemma 5.1.3 shows that for any
finite extension K/Qp2 , we have rp|GK

∼ ρ2,m,0|GK
. We write Σord

2 (resp. Σss
2 ) for

the set of p-adic places of F2 such that rp|GF2,v
is (resp. is not) ordinary. If Fj/F2

is a finite extension, then we write Σord
j for the set of places of Fj lying above a

place of Σord
2 (and define Σss

j similarly).
Let B/F2(ζN , ζp, ζr) be the extension cut out by rp × rr × rCM,r. We now

choose a solvable CM extension F3/F2(ζN ), Galois over Q and linearly disjoint
from B · F2/F2(ζN ). Since p ≡ −1 mod N , for each place v|p of F3, Fv contains
Qp2 . We moreover adjoin e2πi/N to M and extend p, r arbitrarily to places of this
enlarged M .

At this point we choose (for later use) a semistable elliptic curve A/Q with good
reduction at p, r, and p0. We choose a prime q with the following properties:

• q > 2nm+ 1 and q splits in M . In particular, q ≡ 1 mod N . We choose a
place q|q of M .

• ρA,q(GF3
) = GL2(Fq) and A has good ordinary reduction at q.

Let B′ denote the composite of B with the extension of F3 cut out by ρA,q.
Having chosen an integer N and extension F3/Q(ζN ), we have access to the

families of motives over T0 = P1
F3

− {µN ,∞} constructed in §4. We will use the
families of motives both of rank m and of rank nm. We write mWt,λ, nmWt,λ for
the OMλ

[GK ]-modules of ranks m, nm constructed in §4 associated to an extension
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K/F3 and point t ∈ T0(K). We claim that we can find a CM extension F4/F3,
Galois over Q and linearly disjoint from B′ ·F3/F3 such that for any place v|prp0q
of F4, the representations rp|GF4,v

, rr|GF4,v
, rCM,r|GF4,v

and ρA,q|GF4,v
are all trivial,

and the following additional data exists for k ∈ {m,nm}:

(i) If v ∈ Σord
4 , then there is a non-empty open subset kΩv ⊂ T0(OF4,v

) such

that if t ∈ kΩv, then kW t,p is trivial and kWt,p is crystalline ordinary.

Moreover, kW t,r and kW t,q are both trivial.
(ii) If v ∈ Σss

4 , then there is a non-empty open subset kΩv ⊂ T0(OF4,v
) such

that if t ∈ kΩv, then kW t,p and ρk,1,0|GF4,v
are trivial, kWt,p is crystalline,

and kWt,p ∼ ρk,1,0|GF4,v
. Moreover, kW t,r and kW t,q are both trivial.

(iii) If v|r is a place of F4, then there is a non-empty open subset kΩv ⊂
T0(OF4,v

) such that if t ∈ Ωv, then kW t,r is trivial and Wt,r is crystalline

ordinary. Moreover, kW t,q and kW t,p are both trivial.
(iv) If v|p0 is a place of F4, then there is a non-empty open subset kΩv ⊂

T0(OF4,v
) such that if t ∈ kΩv, then kW t,r, kW t,q and kW t,p are all trivial.

(v) If v|q is a place of F4, then there is a non-empty open subset kΩv ⊂
T0(OF4,v

) such that if t ∈ kΩv, then kW t,q is trivial and kWt,q is crys-

talline ordinary. Moreover, kW t,p and kW t,r are both trivial.

Indeed, we can take F4 = K+ · F3, where K
+/Q is a Galois, totally real extension

with K+
v large enough for each place v|prp0q, as we now explain, dropping the

subscript k which is fixed for the next two paragraphs. For (i), we claim that it
is enough to show that once F4,v is large enough, we can find a single point of

t ∈ T0(F4,v) such that W t,p, W t,r, and W t,q are all trivial and Wt,p is crystalline
ordinary. Indeed, by a version of Krasner’s Lemma due to Kisin [Kis99, Theorem
5.1], for any c > 0 there exists an open ball Ut around t in T0(OF4,v

), such that
for any t′ ∈ Ut, the pairs of representations Wp,t/(p

c), Wp,t′/(p
c) and Wr,t/(r

c),
Wr,t′/(r

c) and Wq,t/(q
c), Wq,t′/(q

c) are isomorphic. By Lemma 5.1.5, we can
choose c > 1 so that this forces Wp,t ∼ Wp,t′ , hence (by Lemma 5.1.4) that Wp,t′

is crystalline ordinary. The existence of a crystalline ordinary point t follows from
Proposition 4.2.6 and Proposition 4.2.5(2), after which we enlarge F4,v further if
necessary to force the residual representations to be trivial. Then we take Ωv = Ut.

For (iii) and (v), the argument is essentially the same as case (i), while for (iv),
it is even simpler. For (ii), we enlarge F4,v so that ρk,1,0|GF4,v

and W p,0|GF4,v

are trivial. By Lemma 5.1.3 and Lemma 4.4.4, we have Wp,0|GF4,v
∼ ρk,1,0|GF4,v

.

Employing the same argument as in the previous paragraph, using [Kis99, Theorem
5.1] and Lemma 5.1.5, we can find a non-empty open neighbourhood Ωv ⊂ T0(OF4,v

)
of 0 ∈ T0(OF4,v ) such that if t ∈ Ωv, then Wp,t is crystalline and Wp,t ∼Wp,0|GF4,v

.

Since ∼ is a transitive relation, this leads to a choice of Ωv with the desired property.
To construct the compatible systemRaux, we will apply Proposition 4.5.1. Ifm =

2 we can use a modular curve with level r-structure, and since the argument in this
case is a straightforward (and considerably simpler) variant on the argument that
we use if m > 2, we leave this case to the reader. In the case m > 2 we use the
moduli space T = T (rCM,r|GF4

) defined in Remark 4.4.3, which is defined since

r ≡ 1 mod N and rCM,r takes values in GLm(Fr), with determinant ε−m(m−1)/2.
We take F avoid = B′ · F4. We take the homomorphism πét

1 (TF4
) → GUm(Fp2) to

be the one associated to the local system Wp. We take S0 = {p, r, p0, q}. If v is
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a place lying above a prime in S0, we take Lv = F4,v and Ωv to be the pre-image
in T (F4,v) of the set mΩv. Note that Ωv is certainly open, and it is non-empty
because we have arranged that for each place v|S0 of F4, and for each t ∈ mΩv,
rCM,r|GF4,v

and W t,r are both trivial (hence isomorphic!).

Proposition 4.5.1 now yields an imaginary CM extension F5/F4, Galois over Q
and in which the places above S0 all split completely, and a weakly compatible
system {Wt,λ} of representations of GF5 with coefficients in Q(e2πi/N ) ⊂ M . We
take Raux = {raux,λ} = {Wt,λ} and note that the statement of Proposition 4.5.1
and the definition of the sets Ωv imply that Raux has the following properties:

• raux,p(GF5
) = GUm(Fp2) (note we are assuming that m > 2).

• If v ∈ Σord
5 , then raux,p|GF5,v

is trivial and raux,p|GF5,v
is crystalline ordinary.

• If v ∈ Σss
5 , then raux,p|GF5,v

is trivial and raux,p|GF5,v
∼ ρm,1,0|GF5,v

.

• Saux is disjoint from X5 ∪ {v|pr}. (Use Proposition 4.2.5.)
• There is an isomorphism raux,r ∼= rCM,r|GF5

. For each place v|r of F5,

raux,r|GF5,v
is trivial and raux,r|GF5,v

is crystalline ordinary.

We set Saux = (Symn−1 R|GF5
)⊗Raux, and now construct SUA. The places v|prp0q

split in F5/F4, so if v is a place of F5 dividing prp0q we may define kΩv = kΩv|F4

to keep in hand the data (i)–(v) defined above. We will apply Proposition 4.5.1 to
the moduli space

T = T (saux,p,Sym
nm−1 ρA,q|GF5

).

We take F avoid = B′ · F5. We do not specify a homomorphism f . We take S0 =
{p, r, p0, q}. If v is a place lying above a prime in S0, we take Lv = F5,v and Ωv

to be the pre-image in T (F5,v) of the set nmΩv. Once again, this pre-image is non-
empty because we have trivialized all of the relevant local residual representations.
(Since p ≡ −1 mod N , the definition of T involves a choice of Hermitian structure.
We are therefore invoking the fact here that over a finite field, any two Hermitian
spaces of the same dimension are isomorphic.) Proposition 4.5.1 then yields a CM
extension F6/F5, Galois over Q, and a point t ∈ T (F6) corresponding to a weakly
compatible system SUA = {sUA,λ} = {Wt,λ} of rank nm representations of GF6

with the following properties:

• There are isomorphisms sUA,p
∼= saux,p|GF6

and sUA,q
∼= Symnm−1 ρA,q|GF6

.

• If v ∈ Σord
6 , then sUA,p|GF6,v

is trivial and sUA,p|GF6,v
is crystalline ordinary.

• If v ∈ Σss
6 , then sUA,p|GF6,v

is trivial and sUA,p|GF6,v
∼ ρnm,1,0|GF6,v

.

• For each place v|q of F6, sUA,p|GF6,v
is trivial and sUA,q|GF6,v

is crystalline

ordinary.
• SUA is disjoint from X6 ∪ {v|pr}.

We now claim that Assumptions (1)–(17) of Proposition 6.2.3 are satisfied for the
compatible system R|GF6

, set X0 = X6 of places of F6, and auxiliary compatible

systems RCM|GF6
, Raux|GF6

, and SUA (defined over F6 by construction). Let us
verify these assumptions in turn.

• As already observed, (1)–(5) are automatically satisfied.
• We take Ψ = Ψ6. The extension E/Q is linearly disjoint from F6 because
E ≤ B, while Ψ has the given infinity type, so (6) is satisfied.

• The primes p, r are prime to S by construction, so (7) is satisfied.
• Raux|GF6

has the claimed properties by construction, so (8) is satisfied.
The same is true for SUA, except we need to justify the fact that SUA
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is weakly automorphic of level prime to X6 ∪ {v|pr}. Note that the q-
adic representation Symnm−1 ρA,q|GF6

is automorphic by the combination

of the main results of [BCDT01, Die15, NT22, AC89] (or alternately by
[CNT23]), associated to a regular algebraic, cuspidal automorphic repre-
sentation of GLnm(AF6) which is ι-ordinary with respect to any isomor-
phism ι : Qq → C. (We could also verify the automorphy, at the cost of
further extending the field F6, by a further application of Proposition 4.5.1
as is done in [ACC+23].) We would now like to apply [MT23, Theorem 1.3]
to conclude that SUA is weakly automorphic of level prime to X6 ∪ {v|pr}
(noting that the cited result includes the conclusion that the automorphic
representation witnessing the weak automorphy of SUA is unramified at
any place where both ρA,q and sUA,q are unramified). We must verify that

Symnm−1 ρA,q|GF6
satisfies the Taylor–Wiles conditions (as formulated in

Definition 5.2.1). By Lemma 5.2.2, it suffices to check that Symnm−1 ρA,q

satisfies these conditions (as a representation of GQ), and this follows from
the definitions, together with an application of [GHTT12, Theorem A.9]
(using our assumption q > 2nm+ 1).

• L/F and Ψ are unramified above X0 ∪ {v|pr} by construction, so (10) is
satisfied.

• We have chosen the primes p, r so that p > 2nm + 1 and r > 2nm + 1.
At each step the extension Fj+1/Fj has been chosen linearly disjoint from
Lj(ζp, ζr), so (11) and (12) are satisfied.

• The images rp(GF2
), rr(GF2

) and raux,p(GF5
) are large by construction,

and at each step the extension Fj+1/Fj has been chosen so that the image
does not change on restriction to the smaller Galois group. Moreover,
rCM,r|GF2(ζr)

is irreducible, and again the analogous property holds over F6

by construction. Therefore (13) is satisfied.
• Assumptions (14)–(17) hold by construction.

This completes the proof. □

7. Applications

7.1. The Ramanujan Conjecture. We are now in a position to prove the (more
general verisons of the) main theorems of the introduction as a consequence of
Theorem 6.2.1. Let F be an imaginary CM field, and let π be a regular algebraic
cuspidal automorphic representation of GL2(AF ). We write (aτ ≥ bτ )τ :F↪→C for the
weight of π. Recall that we say that π is of parallel weight if aτ − bτ is independent
of τ .

Theorem 7.1.1. Let F be an imaginary CM field, and let π be a regular algebraic
cuspidal automorphic representation of GL2(AF ) of parallel weight. Then, for all
primes v of F , the representation πv is (essentially) tempered.

Proof. Since π is assumed to have parallel weight, there is an integer m ≥ 1 such
that aτ − bτ = m − 1 for all τ : F ↪→ C. By Clozel’s purity lemma [Clo90,
Lemma 4.9], there is an integer w with aτ + bcτ = w for all τ . It follows that
bτ + bcτ = w −m + 1 is independent of τ . In particular, there exists an algebraic
Hecke character of A×

F with weight (bτ )τ :F↪→C, so after twisting we may assume
that (aτ , bτ ) = (m − 1, 0) for all τ . The central character of π is then of the form
ψ| · |1−m for a finite order Hecke character ψ.
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Exactly as in the proof of [ACC+23, Theorem 7.1.1], we can find a quadratic
CM extension F ′/F for which the character ψ ◦NF ′/F is a square. We can check
temperedness after base change to F ′. Twisting by a finite order Hecke character,
we may then assume that π has central character | · |1−m. Exactly as in the proof
of [ACC+23, Cor. 7.1.15], we can make a further solvable base change to reduce
to checking temperedness of the unramified πv. Hence it suffices to show that
the associated very weakly compatible system R (cf. [ACC+23, Lemma 7.1.10]) is
pure. By [ACC+23, Lemma 7.1.2], either R is strongly irreducible, Artin up to
twist, or induced from a quadratic extension. If R is induced, then purity follows
from the purity of rank one (very weakly) compatible systems. The compatible
family R cannot be Artin up to twist because that is incompatible with having
distinct Hodge–Tate weights. Thus R is strongly irreducible, and the result follows
from Theorem 6.2.1. □

7.2. The potential automorphy of compatible systems and the Sato–Tate
conjecture.

Theorem 7.2.1. Let F be a CM field, and let R = (M,S, {Qv(X)}, rλ, Hτ ) be
a very weakly compatible system of rank 2 representations of GF that is strongly
irreducible. Suppose there exists an integer m ≥ 1 such that Hτ = {0,m} for
each embedding τ : F → M . Then R is pure of weight m, and for each n ≥ 1,
there exists a finite CM extension F ′/F , Galois over Q, such that Symn−1 R|GF ′

is automorphic.
If one alternatively assumes that R is irreducible but not strongly irreducible,

then R is pure of weight m, and for each n ≥ 1, Symn−1 R decomposes as a direct
sum of compatible systems of dimension at most 2 which are automorphic.

Proof. Assume that R is strongly irreducible. As in the proof of Theorem 7.1.1,
we can reduce to the case where R has determinant ε−m. But now Theorem 7.2.1
follows directly from Theorem 6.2.1.

If R is not strongly irreducible, then from [ACC+23, Lemma 7.1.2] it follows
that R is induced from a compatible system of algebraic Hecke characters for some
quadratic extension F ′/F (the condition on the Hodge–Tate weights ensures that R
is not Artin up to twist). Then the symmetric powers Symn−1 R decompose as a
sum of two-dimensional induced compatible systems and (when n is odd) a one-
dimensional compatible system. In particular for any n, Symn−1 R decomposes
as a direct sum of automorphic compatible systems, and the purity statement fol-
lows from the purity of (the Galois representations associated to) algebraic Hecke
characters. □

We next give a statement of the Sato–Tate conjecture, including Theorem B as a
special case, before giving the proof when π has parallel weight. Let F be an imag-
inary CM field, and let π be a cuspidal automorphic representation of GL2(AF )
which is regular algebraic of weight λ and not CM (i.e. not automorphically in-
duced). Thus there is an integer w such that λτ,1+λτc,2 = w for all τ ∈ Hom(F,C).
The central character of π has the form ωπ = | · |−wψ, where ψ : F×\A×

F → C× is
a unitary Hecke character of type A0. We define the Sato–Tate group of π, ST(π),
as follows:

• If ψ has finite order a ≥ 1, then ST(π) = U2(R)a := {g ∈ U2(R) |
det(g)a = 1}.
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• If ψ has infinite order, then ST(π) = U2(R).

Lemma 7.2.2. ST(π) is a compact subgroup of GL2(C). If v is a finite place of
F such that πv is unramified and essentially tempered, then the GL2(C)-conjugacy

class of q
−w/2
v recFv (πv)(Frobv) intersects ST(π) in a unique conjugacy class of

ST(π).

Proof. The group ST(π) is compact since U2(R) is. It is well-known that two
elements of U2(R) which become conjugate in GL2(C) are conjugate by an element
of SU2(R). All we need to show then is that if v is a finite place of F such that πv is
unramified, and recFv

(πv)(Frobv) = diag(αv, βv), then αv, βv are complex numbers

of absolute value q
w/2
v , and further if ψ has finite order a then (q−w

v αvβv)
a = 1.

Since πv is essentially tempered, we have |αv| = |βv|. On the other hand, we
have αvβv = ψ(ϖv)q

w
v , hence |αvβv| = qwv (as ψ is unitary), and if ψ has finite

order a then (q−w
v αvβv)

a = 1. □

If v is a place such that πv is unramified and essentially tempered, then we write

[πv] ∈ ST(π) for a representative of the conjugacy class of q
−w/2
v recFv

(πv)(Frobv) ∈
GL2(C).

Theorem 7.2.3. Suppose that π has parallel weight. Let Sπ denote the set of
finite places of F at which π is unramified. With notation as above, the classes
of elements [πv] ∈ ST(π) (v ̸∈ Sπ) are equidistributed with respect to the Haar
probability measure µST of ST(π). More precisely, for any continuous, conjugation-
invariant function f : ST(π) → C, we have

lim
X→∞

∑
v ̸∈Sπ,qv<X f([πv])

#{v ̸∈ Sπ, qv < X}
=

∫
g∈ST(π)

f(g) dµST(π).

Proof. If ρ is a finite-dimensional irreducible representation of ST(π), let us define

LSπ (π, ρ, s) =
∏
v ̸∈Sπ

det(1− q−s
v ρ([πv]))

−1,

an Euler product which converges absolutely in the right half-plane Re(s) > 1.
According to the criterion of Serre [Ser98, Ch. I, Appendix], the theorem will
be proved if we can show that for each non-trivial such ρ, LSπ (π, ρ, s) admits a
meromorphic continuation to C which is holomorphic and non-vanishing on the line
Re(s) = 1. This may be deduced from the potential automorphy of the symmetric
powers Symn−1 R of the compatible system associated to π, exactly as in e.g.
[Gee09, §7] and [BLGHT11, §8], after noting that R is strongly irreducible (again
invoking [ACC+23, Lemma 7.1.2] and the assumption that π is not CM). Note also
that the list of non-trivial one-dimensional representations of ST(π) depends on the
order of the character ψ. □

References

[AC89] James Arthur and Laurent Clozel, Simple algebras, base change, and the advanced

theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton
University Press, Princeton, NJ, 1989.

[ACC+23] Patrick Allen, Frank Calegari, Ana Caraiani, Toby Gee, David Helm, Bao Le Hung,
James Newton, Peter Scholze, Richard Taylor, and Jack Thorne, Potential automor-

phy over CM fields, Ann. of Math. (2) 197 (2023), no. 3, 897–1113.



RAMANUJAN AND SATO–TATE FOR BIANCHI MODULAR FORMS 71

[ANT20] Patrick B. Allen, James Newton, and Jack A. Thorne, Automorphy lifting for resid-

ually reducible l-adic Galois representations, II, Compos. Math. 156 (2020), no. 11,

2399–2422.
[AT09] Emil Artin and John Tate, Class field theory, AMS Chelsea Publishing, Providence,

RI, 2009, Reprinted with corrections from the 1967 original.

[BCDT01] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modu-
larity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001),

no. 4, 843–939 (electronic).

[Ber10] Laurent Berger, Représentations modulaires de GL2(Qp) et représentations galoisi-
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pp. 1–21.

[Hec1920] Erich Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung
der Primzahlen, Math. Z. 6 (1920), no. 1-2, 11–51.

[Hen82] Guy Henniart, Représentations l-adiques abéliennes, Seminar on Number Theory,
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MA, 2009, pp. 89–126.

[Kis99] Mark Kisin, Local constancy in p-adic families of Galois representations, Math. Z.

230 (1999), no. 3, 569–593.
[Kis06] , Crystalline representations and F -crystals, Algebraic geometry and number
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