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ABSTRACT. We prove the classification of discrete automorphic representations
of GSp, explained in [Art04], as well as a compatibility between the local
Langlands correspondences for GSp, and Sp,.
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1. INTRODUCTION

1.1. In the paper [Art04], Arthur explained his classification of the discrete auto-
morphic spectrum for classical groups in the particular case of GSp, = GSpins.
Later, in [Art13] he proved this classification for quasi-split special orthogonal and
symplectic groups of arbitrary rank, but now with trivial similitude factor. The
classification stated in [Art04] is important for applications of the Langlands pro-
gram to arithmetic. In particular, it is used in [Mok14] to associate Galois repre-
sentations to Hilbert—Siegel modular forms, and these Galois representations have
been used to prove modularity lifting theorems relating to abelian surfaces, for ex-
ample in [BCGP]. It is therefore desirable to have an unconditional proof of this
classification. While it is expected that the methods of [ArtI3] could be used to
handle GSpin groups, the proofs involve a very complicated induction, which even
in the case of GSping would involve the use of groups of much higher rank, so

there does not seem to be any way to give a (short) direct proof of the classification
of by following the arguments of [Art13].

T.G. was supported in part by a Leverhulme Prize, EPSRC grant EP/L025485/1, ERC Starting
Grant 306326, and a Royal Society Wolfson Research Merit Award. O.T. was supported in part
by ERC Starting Grant 306326.
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In this paper, we fill this gap in the literature by giving a proof of the classification
announced in [Art04]. We also prove some new results concerning the compatibility
of the local Langlands correspondences for Sp, and GSp,. While, like Arthur, our
main technique is the stable (twisted) trace formula, and we make substantial use
of the results of [Art04] for the group Sp,, we also rely on a number of additional
ingredients that are only available in the particular case of GSp,; in particular, we
crucially use:

e the exterior square functoriality for GLy4 proved in [Kim03] (and completed
in [Hen09]);

o the results of [GT11al: the local Langlands correspondence for GSp, (es-
tablished using theta correspondences), and the generic transfer to GSp,
(with local-global compatibility at all places) for essentially self dual cusp-
idal automorphic representations of GL,4 of symplectic type;

e the results of [CG15], which check the compatibility of the local Langlands
correspondence of [GT11Db] with the predicted twisted endoscopic character
relations of [Art04] in the tempered case.

We now briefly explain the strategy of our proof, and the structure of the paper.
We begin in Section [2| with a precise statement of the results of [Art13] and of
their conjectural extension to GSpin groups. Roughly speaking, these statements
consist of:

(1) An assignment of global parameters (formal sums of essentially self-dual
discrete automorphic representations of GL,,) to discrete automorphic rep-
resentations of classical groups.

(2) A description of packets of local representations in terms of local versions
of the global parameters (which in particular gives the local Langlands
correspondence for classical groups).

(3) A multiplicity formula, precisely describing which elements of global pack-
ets are automorphic, and the multiplicities with which they appear in the
discrete spectrum.

In Arthur’s work these statements are all proved together as part of a complicated
induction, but in this paper (which of course uses Arthur’s results for Sp,) we are
able to prove the first two statements independently, and then use them as inputs
to the proof of the third statement.

In section [3| we study the local packets. In the tempered case, the work has
already been done in [CG15], and by again using that [Art13] has taken care of the
cases where the similitude character is a square, we are reduced to constructing the
local packets in two special non-tempered cases. We do this “by hand”, following
the much more general results proved in [MW06] and [AMgR18§].

As a consequence of the stabilisation of the twisted trace formula [MW16al
MW16b], we can apply the twisted trace formula for GLs; x GL; to associate
a global parameter to any discrete automorphic representation of GSping (which
is a twisted endoscopic group for GL; X GL; endowed with the automorphism
g — tg™1). We recall the details of this twisted trace formula in section {4} which
we hope can serve as an introduction to the results of [MW16al, MW16D] for the
reader not already familiar with them. In section [5| we briefly recall results about
the restriction of representations to subgroups, which we apply to the case of re-
striction from GSp, to Sp,.
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In section [6] we show that the global parameter associated to a discrete au-
tomorphic representation of GSp, by the stable twisted trace formula is of the
form predicted by Arthur, by making use of the symplectic/orthogonal alterna-
tive for GL2 and GLy, the (known) description of automorphic representations of
quasi-split forms of GSpin, in terms of Asai representations, and the tensor prod-
uct functoriality GLy x GLy — GL4 of [Ram00]. We also make use of [Art13] in
two ways: if the similitude character is a square, then by twisting we can immedi-
ately reduce to the results of [Art13]. If the similitude character is not a square,
then the possibilities for the parameter are somewhat constrained, and we are able
to further constrain them by using the fact that by restricting to Sp, and applying
the results of [Artl3], we know the possible forms of the exterior square of the
parameter.

In section [7], we prove the global multiplicity formula in much the same way
as [Art13], as a consequence of the stable (twisted) trace formulas for GLy x GL;
and GSpin;, together with the twisted endoscopic character relations already es-
tablished.

Finally, in section [§] we show that the local Langlands correspondences for Spy
established in [GT10] and [Artl3] coincide. The correspondence of [GTI10] was
constructed by restricting the correspondence for GSp, of [GT11a] to Sp,, which by
the results of [CG15] is characterised using twisted endoscopy for GLy4 x GL;. The
correspondence for Sp, obtained in [Art13] is characterised using twisted endoscopy
for GL5.

We postpone to the appendix two basic results concerning twisted endoscopy
for GLy x GL; which are slight generalizations of results of Arthur for GLy:
the classification of endoscopic data and the surjectivity of geometric endoscopic
transfer for “simple” endoscopic data.

In the discrete case we prove this by a global argument, by realising the parameter
as a local factor of a cuspidal automorphic representation, and using the exterior
square functoriality for GL4 of [Kim03] and [Hen09]. In the remaining cases the
parameter arises via parabolic induction, and we are able to treat it by hand.
We are also able to use these arguments to give a precise description in terms of
Arthur parameters of the restrictions to Sp, of irreducible admissible tempered
representations of GSp, over a p-adic field.

We end this introduction with a small disclosure, and a comparison to other
work. While we have said that the results of this paper are unconditional, they
are only as unconditional as the results of [ArtI3] and [MWI16a, MWI16b]. In
particular, they depend on cases of the twisted weighted fundamental lemma that
were announced in [CL10], but whose proofs have not yet appeared in print, as well
as on the references [A24], [A25], [A26] and [A27] in [Art13], which at the time of
writing have not appeared publicly.

The strategy of using restriction to compare the representation theory of reduc-
tive groups related by a central isogeny is not a new one; indeed it goes back at
least as far to the comparison of GL3 and SLy in [LL79]. In the case of symplectic
groups, there is the paper [GTL0] mentioned above; while this does not make any
use of trace formula techniques, we use some of its ideas in Section [8] when we
compare the different constructions of the local Langlands correspondence.

More recently, there is the work of Xu, in particular [Xul7, [Xul6], which also
builds on [Art13], using the groups GSp,, and GO,, where we use the groups GSpin,,
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(of course, these cases overlap for GSp,). However, the emphasis of Xu’s work is
rather different, and is aimed at constructing “coarse L-packets” (which in the case
of GSp, are unions of L-packets lying over a common L-packet for Sp,), and prov-
ing a multiplicity formula for automorphic representations grouped together in a
similar way. Xu’s results are more general than ours in that they apply to groups
of arbitrary rank, but are less precise in the special case of GSp,, and our proofs
are independent.

1.2. Acknowledgements. We would like to thank George Boxer, Frank Calegari,
Gaétan Chenevier, Matthew Emerton and Wee Teck Gan for helpful conversations,
and Florian Herzig for useful comments on the article.

1.3. Notation and conventions.

1.3.1. Algebraic groups. We will use the boldface notation G for an algebraic group
over a local field or a number field, and we use the Roman version G for reductive
groups over C, or their complex points. Thus for example if F' is a number field,
we will write GLy, for the general linear group over F, with Langlands dual group
GLn = GL,,, which we will also sometimes write as GLn = GL,(C).

For a real connected reductive group G, write g = C®gLie (G(R)), and let K be
a maximal compact subgroup of G(R). When working adelically we will sometimes
abusively call (g, K)-modules “representations of G(R)”. This should cause no
confusion as we will mostly be considering unitary representations in this global
setting (see [Wal88, Theorem 3.4.11], [War72, Theorem 4.4.6.6]), and distinguish
between (g, K)-modules and representations of G(R) when considering non-unitary
representations.

1.3.2. The local Langlands correspondence. 1f K is a field of characteristic zero then
we write Galg for its absolute Galois group Gal(K/K). If K is a local or global
field of characteristic zero, then we write Wy for its Weil group. If K is a local
field of characteristic zero, then we write WD for its Weil-Deligne group, which
is Wi if K is Archimedean, and Wk x SU(2) otherwise.

If 7 is an irreducible admissible representation of GLy (F) (F local) or GLy (AFr)
(F global), then w, will denote its central character. We write rec for the local
Langlands correspondence normalised as in [HTO01], so that if F' is a local field of
characteristic zero, then rec(r) is an N-dimensional representation of WDp. If F is
p-adic then for this normalisation a uniformiser of F' corresponds to the geometric
Frobenius automorphism.

1.3.3. The discrete spectrum. Let G be a connected reductive group over a number
field F'. Write

G(Ap)' = {g e G(Ap)|VB € X*(G)®r, |B(g)| =1},

so that G(F)\G(AFr)! has finite measure. Let Ag be the biggest central split
torus in Resp/g(G), and let Ag be the vector group Ag(R)?. Then G(Ap) =
G(Ap)! x Ag. We write

A%(G) = A(G(F)Ac\G(AF)) = A(G(F)\G(Ap)")

for the space of square integrable automorphic forms. This decomposes discretely,
i.e. it is canonically the direct sum, over the countable set Ilgs.(G) of discrete
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automorphic representations w for G, of isotypical components
A%(G),

which have finite length.
If xg is a character of g, we could more generally consider the space of xyg-
equivariant square integrable automorphic forms

A*(G) = A(G(F)\G(Ar), xG)-

Since we can reduce to the case xg@ = 1 considered above by twisting, we will
almost never use this more general definition.

2. ARTHUR’S CLASSIFICATION

2.1. GSpin groups. We now recall the results announced in [Art04] for GSp,,
as well as those for Sp, proved in [Art13]. In fact, for convenience we begin by
recalling the conjectural extension of Arthur’s results to GSpin groups of arbitrary
rank, and then explain what is proved in [Art13].
We work with the following quasi-split groups over a local or global field F' of

characteristic zero:

e The split groups GSpin,,, , ;.

e The split groups Spy,, X GL;.

e The quasi-split groups GSpins,,.
Here we can define the groups GSpin,, ,; and GSpinj, as follows. If o €
F*/(F*)?, we have the quasi-split special orthogonal group SO, , which is de-
fined as the special orthogonal group of the quadratic space given by the direct
sum of (n — 1) hyperbolic planes and the plane F[X]/(X? — a) equipped with the
quadratic form equal to the norm. We have the spin double cover

0 — pe — Sping,, — SO3, — 0,
and we set

GSpin3, := (Sping, x GL1)/uo
where p5 is embedded diagonally. Note that GSping,, is split if and only if a = 1.
We define the split group GSpiny,, ; in the same way. This expedient definition

is of course equivalent to the usual, more geometric one (see [Knu91, Ch. IV, §6]).
The spinor norm is induced by (g,A) + A2. It is convenient to let GSpin}, =

GSpin; = GL;.
The corresponding dual groups are as follows.
G | G
GSpiny,, GSp,, (C)
Sp2n X GL1 GSOQ7L+1((C) = SOQ7L+1(C) X GLl(C)
GSpinj, GSO,,(C)

Let u : GL; — Z(G) be dual to the surjective “similitude factor” morphism
7i : G = GL1(C). Note that in the case G = Sp,,, x GLy, 1 : GL; — Z(G) is
the map = — (1,2?), and it is the only case where it is not injective. Moreover the
image of p is Z(G)? except in the case G = GSpin3.

We set LG = G x Wpg, where the action of Wg on G is trivial except in
the case that G = GSping, with a # 1, in which case the action of Wg factors
through Gal(F(v/«)/F) = {1, 0}, and o acts by outer conjugation on GSOs,,. More
precisely, in this case we identify G x Gal(F(y/a)/F) with GOg,(C) as follows: if
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SOs, is obtained from the symmetric bilinear form B on Ce; & - -- & Cesg,, given
by B(ei,ej) = 6;.2n+1—j, then 1 x o is the element of Og,,(C) which interchanges e,
and e, 11 and fixes the other e;.

We have the standard representation

Stdg : “G — GLy(C) x GL(C),

~

where N = N(G) = 2n if G = GSpinj,, or G = GSpiny,,;, and N = 2n +1
if G = Sp,,, X GL;. In the first two cases the representation is trivial on W, and
is given by the product of the standard N-dimensional representation of G and
the similitude character. In the final case it is given by the product of the natural
inclusion Og;,41(C) C GLa,+1(C) and the identity on GL;(C). The standard rep-
resentation realises G as an elliptic twisted endoscopic subgroup of GLy x GL;,
as we will explain below.

We set sign(G) = 1 if G = GSping, or GL; x Sp,,,, and sign(G) = —1 if
G = GSpin,,, ; (equivalently, we set sign(G) = —1 if and only if G is symplectic).

2.2. Levi subgroups and dual embeddings. As in our description of the dual
group SOg, above, we may realise the groups SO3,, and SOs,, ;1 as matrix groups
using an antidiagonal symmetric bilinear form (block antidiagonal with a 2x 2 block
in the middle for SOF, with o # 1). Let B be the Borel subgroup consisting of
upper diagonal elements (block upper diagonal in the case of SO%,). Let T be the
subgroup of diagonal (resp. block diagonal) elements. This Borel pair being given,
we can now consider standard parabolic subgroups and standard Levi subgroups.
(We recall that we only need to consider Levi subgroups up to conjugacy; indeed,
given a Levi subgroup L of a parabolic P, we obtain an L-embedding “L — G,
which up to é—conjugacy is independent of the choice of P.)

It is well-known that the standard Levi subgroups are parametrised as follows.
Consider ordered partitions n = Y._, n; + m, where m > 0 if G = SO%, with
aZl,andm#1if G = SO%n. Such a partition yields a standard Levi subgroup
L of G isomorphic to GL,, X --- x GL,, x G, where G, is a group of the same
type as G of absolute rank m. Explicitly, an isomorphism is given by

(2.2.1)  (g1,--.,9r, h) — diag <917 ey Gy By S;Tl tg Sy S;ll tgflsnl) ,

where S,, denotes the antidiagonal n x n matrix with 1’s along the antidiagonal.
For G = SOj,, and m = 0 and n, > 1, there are two standard Levi subgroups of G
corresponding to the partition n = Y _;_, n;: the one described above and its image
under the outer automorphism of G. This completes the parameterisation of all
standard Levi subgroups of special orthogonal groups. Standard Levi subgroups
of Sp and GSp admit a similar description. In all three cases, two standard Levi
subgroups are conjugated under G(F) if and only if they have the same associated
family (|{7, | n; = k}|)k>1 (i.e. same associated multi-set {nq,...,n,}), except when
G = S0}, and m = 0 and all n;’s are even, in which case there are two G(F)-
conjugacy classes of Levi subgroups of G(F') corresponding to the same multi-set,
swapped by the non-trivial outer automorphism of G.

Denote G’ = GSpiny, if G = SO3, and G’ = GSpin,,, , if G = SOy, 4.
Parabolic subgroups of G’ correspond bijectively to parabolic subgroups of G, and
the same goes for their Levi subgroups. Consider L as above, and let L' be its
preimage in G’. An easy root-theoretic exercise shows that there exists a unique
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isomorphism
GL,, x---xGL,, x G/, ~L’

lifting such that for any 1 < ¢ < r, the composition of the induced embed-
ding of GL,,, in G’ with the spinor norm G’ — GL; is det. Alternatively, the
embeddings GL,,, — GSpinéni can be constructed geometrically using the defi-
nition of GSpin groups via Clifford algebras (see [Knu91, Ch. IV, §6.6]), and the
above parameterisation of L’ easily follows. The conjugacy class of L’ under G'(F)
is determined by the multi-set {nq,...,n,}.

Dually, this corresponds to identifligg the dual Levi subgroup Lof G = GSOg),
or GSp,,, with GL,, x -+ x GL,, xG/, via the block diagonal embedding:

(gl, <o Gry h) = dlag (gla <o 9ry hvﬁ(h)snr tg;lsgrl’ ce 7ﬁ(h)5n1 tgflsgll)

2.3. Endoscopic groups and transfer. Before stating the conjectural param-
eterisation, we need to recall some definitions and results about endoscopy. We
begin by recalling that an endoscopic datum for a connected reductive group G
over a local field F is a tuple (H, H, s,&) (almost) as in [KS99, §2.1]:

e H is a quasi-split connected reductive group over F,

o & H — G is a continuous embedding,

e H is a closed subgroup of G which surjects onto Wr with kernel f(ﬁ),
such that the induced outer action of Wr on & (ﬁ) coincides with the usual
one on H transported by &, and such that there exists a continuous splitting
WF — H,

e andse Gisa semisimple element whose connected centraliser in G is 13 (ﬁ)
and such that the map Wr — G induced by h € H + shs~'h™! takes
values in Z(G) and is trivial in H'(Wg, Z(G)).

Note that we modified the notation slightly: in [KS99] H is not contained in G
and instead ¢ is an embedding of H in “G. We choose this convention because in
contrast to the general case where z-extensions are a necessary complication, in all
cases that we will consider the embedding € : H — G will admit a (non-unique)
extension as “¢ : “H — L'G. Of particular importance are the elliptic endoscopic
data, which are those for which the identity component of £(Z(H)%2!r) is contained
in Z(G).

For G belonging to the three families introduced in Section [2.1] the groups H will
be products whose factors are either general linear groups, or quotients by GL; of
products of groups of the form considered in Section At this level of generality
we content ourselves with specifying the group H, for each equivalence class of
non-trivial (s & Z(G)) elliptic endoscopic datum of G. They are as follows.

e If G = GSpin,,,,, then H = (GSpin,,  ; xGSpiny,, ,)/GL; with a+b =
n, ab # 0, and the quotient is by GL; embedded as z — (u(2), u(2)71).
e If G = Sp,,, X GLy, then H = (Sp,, x GL; x GSping;)/GL; = Sp,, X
SO%, x GLy, where a+b=mn,ab#0, and a #1 if b= 1.
e If G = GSpin3,,, then H = (GSpinga x GSpiny,)/GL;, where a+b = n,
By=a,B#1lifa=1,and y#1ifb=1.
In this paper we will also need one case of twisted endoscopy. Recall [MW16al,
§1.1.1] that if F' is a local field of characteristic zero (in the paper we will also take
F to be a number field), and G is a connected reductive group defined over F', then
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a twisted space G for G is an algebraic variety over F' which is simultaneously a
left and right torsor for G. Consider the split group GL,, x GL; over a local or
global field of characteristic zero F', and let 6 be the automorphism of GL,, x GL;
given by 0(g,x) = (Jtg~'J 1 zdetg), where J is the antidiagonal matrix with
alternating entries —1,1,—1,... (that is, J;; = (=1)%; n4+1-j). The reason for
defining 6 in this way is that it fixes the usual pinning £ of G consisting of the upper-
triangular Borel subgroup, the diagonal maximal torus and ((; ¢0;,a+1)i,j)1<a<n—1-
Then G = GL,, x GL; x {0} is a twisted space which happens to be a connected
component of the non-connected reductive group GL,, x GLy x {1, 60}.

There is a notion of a twisted endoscopic datum (H, H, s, ) for the pair (GL,, x
GL,0), for which we again refer to [KS99. §2.1] (taking w there to be equal to 1,
as we will throughout this paper, and using the same convention as above for &)
and [MW16b, §VI.3.1]. In Appendix [A| we classify twisted endoscopic data (up to
isomorphism). We give slightly more details in the case n = 4 which is the main
focus of this paper in Section below. In the present section we shall only need
the fact that if H is one of the groups considered in Section (denoted G there),
then H is part of an elliptic twisted endoscopic subgroup of (GL N X GL4,0).

Remark 2.3.1. The definitions in [MWT16a] and [MWI6D], using twisted spaces
rather than a fixed automorphism of G (not fixing a base point), are more general
than those used in most of [KS99], due to an assumption in [KS99] that is only
removed in (5.4) there. Note in particular the notion of twisted endoscopic space
[MWT16al §1.1.7]. In the cases considered in this paper, where G is either G (stan-
dard endoscopy) or G x 6 where § € Aut(G) fixes a pinning £ of G (defined over
F, i.e. stable under Galg), this notion simplifies and we are under the assumption
of [KS99, (3.1)]. Namely, the torsor Z(G,&) under Z(G) := Z(G)/(1 — 6)Z(G)
defined in [MW16al 1.1.2] is trivial with a natural base point 1x6, and so for any en-
doscopic datum (H, H, §, &) for é, the twisted endoscopic space H:= HXZ(G)Z(G)
is trivial with natural base point 1 x 6, where # now acts trivially on H. For this
reason we can ignore twisted endoscopic spaces in the rest of the paper, and simply
consider endoscopic groups as in most of [KS99)].

We now very briefly recall the notion of (geometric) transfer in the setting of
endoscopy. Suppose that F' is a local field of characteristic zero, and that (G, é)
belongs to one of the four families of twisted spaces considered above, that is G =
GSpin,,,, , Sp,, x GL; or G = GSpinj, with G = G, or G = GL,, x GL;
with G = G x 0. Given an endoscopic datum ¢ = (H, H, s, &) for CN-I, and a choice
of an extension ¢ : “H — G of the embedding ¢, Kottwitz and Shelstad defined
transfer factors in [KS99], that is a function on the set of matching pairs of strongly
regular semisimple G (F)-conjugacy classes in G(F) and regular semisimple stable
conjugacy classes in H(F'). In general such a function is only canonical up to C*,
but in all cases considered in this paper there is a Whittaker datum w = (U, \)
of G fixed by an element of G(F) and this provides [KS99, §5.3] a normalisation
of transfer factors, which we denote by Ale, “¢, tw]. To be more precise we use the
transfer factors called Ap in [KS], corresponding to the normalisation of the local
Langlands correspondence identifying uniformizers to geometric Frobenii. In all
cases of ordinary endoscopy one can choose an arbitrary Whittaker datum of G.

In the case that G = GSping,,, there is an outer automorphism ¢ of G which
preserves the Whittaker datum. This § can be chosen to have order 2 and be induced
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by an element of the orthogonal group having determinant —1; if F'is Archimedean,
for simplicity we can and do choose the maximal compact subgroup K of G(F') to be
d-stable. To treat all cases at once we let 6 = 1 if G = GSpiny,, ;; or Spy,, X GL;.

In this paper we are particularly interested in the case G = GSpin;. By
Hilbert’s theorem 90 the morphism GSpin,, (F) — SOg,41(F) is surjective,
so GSpiny,,  is of adjoint type and there is up to conjugation by GSpin,,, ,,(F')
only one Whittaker datum in this case.

For G = (GL,, x GL;) x 6 we choose for U the subgroup of unipotent upper
triangular matrices in GL,, and A((gi;)i;) = k(31— gi.it1) where x : F — S'is
a non-trivial continuous character. This is the Whittaker datum associated to £
and . This Whittaker datum is fixed by € (this is the reason for the choice of this
particular 6 in its G(F)-orbit).

Definition 2.3.2. If F is p-adic, then we let H(é) denote the space of smooth
compactly supported distributions on G(F') with C-coefficients. Then H(G) =

thH(G(F)//K) where the limit is over compact open subgroups of G(F') and

H(G(F)//K) is the subspace of bi-K-invariant distributions. If F' is Archimedean,
then we fix a maximal compact subgroup K of G(F), and write H(G) for the
algebra of bi-K-finite smooth compactly supported distributions on é(F) with
C-coefficients.

Under convolution, the space #(G) is a bi-H(G)-module, where H(G) is the
usual (non-twisted) Hecke algebra for G.

In the case that G = GSping,, we let (G) denote the subalgebra of H(G)
consisting of d-stable distributions, and otherwise we set 7—~l(G) =H(G)and § = 1.

An admissible twisted representation of G is by definition a pair (7, 7) consisting
of an admissible representation 7 of G(F") and a map 7 from G to the automorphism
group of the underlying vector space of 7, which satisfies

T(gvg") = n(g)7(v)m(g')
for all g,¢' € G(F), v € G. (This is the special case w = 1 of the notion of an
w-representation of a twisted space, which is defined in [MW16al.) If ' =R or C
there is an obvious notion of (g, K)-module where K C G(F') is a torsor under K
normalising K.

We will consider (invariant) linear forms on ﬁ(é) In particular, for each ad-
missible representation 7 of G(F), there is the linear form

tr(m(f(g)dg)) = tx ( /G " f(g)w(g)dg> |

If F is Archimedean and 7 is an admissible (g, K )-module the action of H(G) is not
obviously well-defined but it is so when 7 arises as the space of K-finite vectors of
an admissible Banach representation of é(F ), independently of the choice of this
realisation (see [War72l p. 326, Theorem 4.5.5.2]). In this paper all (g, K)-modules
will naturally arise in this way, even with “Hilbert” instead of “Banach”, although
not all of them will be unitary.

We write I(G) for the quotient of 7(G) by the subspace of those distribu-
tions f(g)dg with the property that for any semisimple strongly regular v € é(F),
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the orbital integral O~ (f(g)dg) vanishes. There is a natural topology on I(G): see
[MWT16al 1.5.2]. Similarly, we write ST ((N}) for the quotient by the subspace for
which the stable orbital integrals SO, (f(g)dg) vanish. We say that a continuous
linear form on H(G) is stable if it descends to a linear form on SI(G).

Given an endoscopic datum (H,H,s,§) for (~}, and our choice of Whittaker
datum, there is a notion of transfer from I(G) to SI(H) (see [KS99, §5.5], [MW16al
§1.2.4 and IV.3.4]); this transfer is defined by the property that it relates the values
of orbital integrals on G to stable orbital integrals on H, using the transfer factors
recalled above. Most importantly, this transfer ezists ([Wal97], [Ng610], [Shel2]).
Dually, we may transfer stable continuous linear forms on ﬁ(H) to continuous linear
forms on H(G).

In the twisted case where G = (GLy x GL1) % 0 over a p-adic field F, the cho-
sen Whittaker datum yields a hyperspecial maximal compact subgroup K of G(F)
(see [CS80]), which is stable under 6, so it is natural to consider the hyperspecial
subspace (see [MW1I6a, §1.6]) K = K x 6 of G(F). For any unramified endoscopic
datum (H, H, 5,¢) for G (also defined in [MW16a) §1.6]), with the above trivialisa-
tion of H, the associated H.q(F)-orbit of hyperspecial subspaces of H is simply the
obvious one, that is the set of K’ x § where K’ is a hyperspecial maximal compact
subgroup of H(F).

By the existence of transfer and [LMW15], [LW15] ([Hal95)] in the case of stan-
dard endoscopy), the twisted fundamental lemma is now known for all elements of
the unramified Hecke algebra, with no assumption on the residual characteristic.
We formulate it in our situation, which is slightly simpler than the general case by
the above remarks.

Theorem 2.3.3. Let G be a twisted group over a p-adic field F' belonging to one
of the four families introduced at the beginning of this section. Assume that G
is unramified. Let (H,H,5,£) be an unramified endoscopic datum for G. Choose
an unramified L-embedding ¢ : PH — G extending &. Let K be the hyperspe-
cial subspace of é(F) associated to the chosen Whittaker datum for G. Let 1
be the characteristic function of K multiplied by the G(F)-invariant measure on
G(F) such that K has volume 1. Let b : H(G(F,)//K,) — H(H(F,)//K.) be the
morphism dual to

(ﬁ X Frob) : /H — conj — (é X Frob) - /é — conj

via the Satake isomorphisms (see [Bor79, §7]). Then for any f € H(G(F,)//K),
b(f) is a transfer of f* 1.

Remark 2.3.4. In the above setting, there is a natural notion of unramified twisted
representation: extend an unramified representation (w, V) of G(F') which is iso-
morphic to its twist by é(F) to a twisted representation by imposing that K acts
trivially on V.

2.4. Local parameters. Let F' be a local field of characteristic zero. Let U (G)
denote the set of G-conjugacy classes of continuous morphisms

¥ : WDp x SLy(C) —» LG
such that
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e the composite with the projection “G — Wy is the natural projection
WDF X SLQ(C) — WF,

e for any w € WDp, ¥(w) is semisimple, and

e the restriction gy, (c) is algebraic.

We let ¥(G) C U (G) be the subset of bounded parameters.

Lemma 2.4.1. Let G = GSpiny, |, Spy, x GL; or GSpinj,. Let S be the
automorphism of Y'G dual to the involution § of G defined in the previous sec-

tion. Then composition with Stdg induces an injective map {1,3}\@*((4) —
\IJ"’(GLN(@) x GLq).

Proof. The case G = GSpin,,, ,; is proved in [GT11al, Lem. 6.1]. The proof in the
other cases is almost identical. O

Let ¥(G) and UH(G) be the set of {1, g}—orbits of parameters as above.
For ¢ € U (G) let ¢, be the Langlands parameter associated to v, that is 9
composed with the embedding

w € WDp — (w,diag(|w\1/2, |w|*1/2)) € WD x SLa(C).
We write Cy, for the centraliser of ) in G, Sy = Z(é)0¢, and

Sy =m(Sy/Z(G)),

an abelian 2-group. We let S;f = Hom(S,,C*) be the character group of Sy.
Write sy for the image in Cy of —1 € SLy(C).

We can now formulate the conjectures on local Arthur packets in terms of endo-
scopic transfer relations.

Conjecture 2.4.2. Let G = GSpiny,, |, Sp,, X GL; or GSpinj,,. Then there

is a unique way to associate to each (Y) € W(G) a multi-set IL, of {1,8}-orbits of
irreducible smooth unitary representations of G(F), together with a map IL, — Sy,
which we will denote by m — (-, ), such that the following properties hold.

(1) Let WﬁL be the representation of GLy &, (F'YxGL1(F) associated to (Stdg opy)

by the local Langlands correspondence for GLN(G) x GL1, and let %g'l‘ be
its extension to (GLN(G)(F) X GLl(F)) x 0 recalled in Section . Then
Zwenw@d,,w) trm is stable and its transfer to GLy &, (F) x GL1(F) x 6
is tr%fpn‘, i.e. for any f € I( (GLN((;)(F) X GLl(F)> X 0) having transfer
f' e SI(G) we have
R = D sy, m)tra(f).
melly

(2) Consider a semisimple s € Cy, with image § in Sy. The pair (¢, s) deter-

mines an endoscopic datum (H,H, s,€) for G (with H = Cent (s, @)Ow(WDp)),

and if we fix an L-embedding ¢ : "H — LG extending & we obtain
Y WDp x SLy(C) — LH such that 1 = L& o4)’. Then for any f € I(G)
with transfer f' € SI(H), we have:

S (s mbtrn(f) = 3 (s m) e ().

melly TI"GHU,/
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(3) IfYlsry(c) = 1, then the elements of Iy, are tempered and 11y, is multiplicity
free, and the map I, — Sl 18 injective; if F' is non-Archimedean, then it
is bijective. FEvery tempered irreducible representation of G(F') belongs to
exactly one such Ily.

Remark 2.4.3. Note that the uniqueness of the classification is clear from prop-
erties (1) and (2) and Proposition below, as irreducible representations are
determined by their traces. This Proposition is the generalization of [Art13] Cor.

2.1.2] from (/}_E; to GLN/;/GLL Now that [MWT6al has appeared, it is clearer to
prove the Proposition following the constructions in [MW16a]. We give the proof
in the Appendix (Section [A.3)).

Proposition 2.4.4. In the situation of Conjecture[2.].3, the transfer map

I(GLy g, x GL1) = SI(G)’

18 surjective.

Remark 2.4.5. Part (3) of this conjecture gives the local Langlands correspon-
dence for tempered representations of G(F) (up to outer conjugacy in case G =
GSpinj,). It can be extended to give the local Langlands correspondence for
all local parameters ¢ € U (G) with ¢[gr,(c) = 1; indeed if Conjecture is
known for all G, then a version can be deduced for ¥+ (G) using the Langlands
classification (see [Lan89], [Sil78] and [SZ14]).

Remark 2.4.6. In the case where F' is Archimedean and for an arbitrary reduc-
tive group the local Langlands correspondence was established by Langlands and
Shelstad (see [Shel0], [She08]). Compatibility with twisted endoscopy was proved
by Mezo [Mez16] (under a minor assumption, see (3.10) loc. cit., which is satisfied
in all cases considered in the present article) up to a constant which a priori might
depend on the parameter (see [AMgRI8, Annexe C]).

Remark 2.4.7. If F' is p-adic and G is unramified over F', then there is a unique
G(F)-conjugacy class of hyperspecial maximal compact subgroups of G(F') which
is compatible with the Whittaker datum fixed above (in the sense of [CS80]), and
we will say that a representation of G(F) is unramified if it is unramified with
respect to a subgroup in this conjugacy class.

If v € ¥T(G) and ¥|wp, is unramified, then assuming the conjecture the
packet Uy, contains a unique unramified (orbit of) representation. It has Satake
parameter ¢, (up to outer conjugation if G = GSping,,) and corresponds to the
trivial character on Sy,. This follows from the fundamental lemma (Theorem [2.3.3).

Remark 2.4.8. By [McegI1] if F is p-adic and the conjecture holds then the packets
IT,; are sets rather than multi-sets.

2.5. Global parameters and the conjectural multiplicity formula. Now
let F' be a number field, and fix a continuous unitary character x : Ax/F* — C*.
If 7 is a cuspidal automorphic representation of GLy /F such that 7V ®(yodet) & ,
then we say that 7 is y-self dual. Note that this implies that w? = x~ (so in par-
ticular if N is odd, then x = (w,x*~N)/2)2 is a square).

If 7 is x-self dual and S is a big enough set of places of F' then precisely one of
the L-functions L5(s, x ' ® A*(w)) and L5(s, y ' ® Sym?(r)) has a pole at s = 1,
and this pole is simple (see [Sha97]). In the former case we say that (m,y) is of
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symplectic type, and set sign(w,x) = —1, and in the latter we say that it is of
orthogonal type, and we set sign(m, x) = 1.

We write U(GLy x GL1, x) for the set of formal unordered sums ¢ = H;m;[d,],
where the 7; are y-self dual automorphic representations for GLy, /F and the d; > 1
are integers (which are to be thought of as the dimensions of irreducible algebraic
representations of SLy(C)), with the property that >, N;d; = N. We refer to such
a sum as a parameter, and say that it is discrete if the (isomorphism classes of)
pairs (m;, d;) are pairwise distinct.

Remark 2.5.1.
(1) By the main result of [MWS89], a discrete automorphic representation 7 of

GLy/F with 7V ®(xodet) & 7 gives rise to an element of ¥(GLy X GL1, ).
Indeed, there is a Iﬂgal bijection between such representations 7 and the
elements of ¥(GLy x GLy, x) of the form 7[d] (that is, the elements where
the formal sum consists of a single term). We will use this bijection without
further comment below. o

(2) The set of formal parameters ¥(GLy x GL1, x) that we consider does not
contain all non-discrete y-self-dual parameters, for example those contain-
ing a summand of the form 7w ((xodet)®7") for a non-y-self-dual cuspidal
automorphic representation 7 for GL,,. Our ad hoc definition will turn out
to be convenient when we will consider the discrete part of (the stabilisation
of) trace formulas.

Definition 2.5.2. Let G = GSpin,,,,, Sp,,, X GL; or GSping, over F. We let
\T/diSC(G,X) be the subset of \T/(GLN(G),X) given by those ¢ = H;m;[d;] with the
properties that

e 1) is discrete,

e for each i, we have sign(m;, ) = (—1)% ~!sign(G),

e if G = GSpin3,,, then x " [], w® is the quadratic character corresponding

to the extension F,/F.

(Conditions analogous to this last bullet point could be formulated for the other
groups G, but in fact they are conjecturally automatically satisfied.)

If G # GSping, we also let Waiee(G, x) = Paise (G, x). The reason for writing
U in the case of even GSpin groups is that this set only sees orbits of (substitutes
for) Arthur-Langlands parameters under outer conjugation.

As a particular case of the above definition, for 7 a cuspidal automorphic repre-
sentation for GLy /F such that (x o det) ® 7V ~ 7 there is a unique group G as
above such that N(a) = N and 7[1] € Ugie(G).

Conjecture 2.5.3. For m and G as above and for each place v of F, the repre-
sentation (rec(m,),rec(x,)) factors through Stdg : LG — GLN(G)((C) x GL1(C), so
that by Lemma we can regard (m,, o) as an element of U+ (G(F,)).

Remark 2.5.4.

(1) This conjecture is the analogue of [Artl3] Theorem 1.4.1] (reformulated
using Theorem 1.5.3 loc. cit.). In particular it holds for G = Sp,,, x GL;.
(2) Since we do not know the generalised Ramanujan conjecture for GL,,, and
do not wish to assume it, we can at present only hope to establish that the
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local parameters 1), are elements of @*(G F,); they are, however, expected
to be elements of ¥(Gp, ).

Given a global parameter ¥ € Wgiec(G, x), we define groups Cy, Sy, Sy as fol-
lows. For each ¢, there is a unique group G; of the kind we are considering for
which m; € \T!diSC(GZ-, x). We let L, denote the fibre product of the LG, over Wp.
Then there is a map 1 : L, x SLy(C) — G such that Stdg oy is conjugate
to @; Stdg, ®v4,, where vy, is the irreducible representation of SLa(C) of dimen-
sion d;. The map 1 is well-defined up to the action of Aut(*G). We let C, be the
centraliser of ¢, and similarly define Sy, and Sy,

For each finite place v, under Conjecture (applied to the 7;’s) we may form
a local Arthur-Langlands parameter ¢) : WD, x SLy(C) — L,. Composing with
v, we obtain ¥, € \I"*‘(GF,U). The composition of 1, with Stdg is given by

e Y\, on the GL; factor,
e the direct sum of the representations ¢r, , ® va, on the GLy g, factor,
where ¢r, , = rec(m; p).

Conjecture below makes precise the expectation that the elements of the
corresponding multi-sets 11, of Conjecture are the local factors of the discrete
automorphic representations of G with multiplier y. Before stating it, we need to
introduce some more notation and terminology.

For each place v of F, write 7(G,) for the Hecke algebra defined after Definition
and write 7(G) for the restricted tensor product of the H(G,). Assuming
Conjecture we have an obvious map Sy — Sy, for each v, and we can
associate to 1 a global packet (a multi-set) of representations of H(G):

ﬁ¢ = {®)m, : m, € I, with 7, unramified for all but finitely many v}.

For each 7 € ﬁ¢, we have the associated character on Sy,

(@, m) = [ [ (20, m)
(note that by Remark we have (-, m,) = 1 for all but finitely many v, so this
product makes sense).

Associated to each ¢ is a character €y : Sy — {£1} which can be defined
explicitly in terms of symplectic e-factors. In the case xy = 1 this is defined in [Art13]
Theorem 1.5.2], and this definition can be extended to the case of general x without
difficulty. Since we will only need the case G = GSping in this paper, and in this
case the characters ¢, are given explicitly in [Art04] and are recalled below in
Remark we do not give the general definition here.

Definition 2.5.5. ﬁd,(ed,) is the subset of ﬁw consisting of those elements for
which (-, ) = ey.

This is the correct definition only because the groups Sy, are all abelian.

Recall that we have fixed a maximal compact subgroup Ko, of G(F ®g R) in
Section Let g = C ®g Lie (G(F ®qg R)). We write A*(G(F)\G(AFr), x) for
the space of x-equivariant (where the action of A% /F* is via p) square integrable
automorphic forms on G(F)\G(Ar). It decomposes discretely under the action
of G(Apy) x (8, Koo
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Conjecture 2.5.6. Assume that Conjectures and [2.5.3 hold. Then there is
an isomorphism of H(G)-modules

AGENGAr), Y P my @ =
PEWgise (G,X) weﬁw(aw)

where my, = 1 unless G = GSping,,, in which case my = 2 if and only if each N,d;
18 even.

2.6. The results of [Art13]. As we have already remarked, the conjectures above
are all proved in [Artl3] in the case that y = 1. As we now explain, the case
that x is a square follows immediately by a twisting argument. The main results
of this paper are a proof of Conjectures (Theorem [3.1.1)) and 2.5.6] (Theorem
in the case that G = GSping = GSp, for general x. Conjecture [2.5.3| for
G = GSpin; is a consequence of [GT11a], see Propositionm The case that x is
a square will be a key ingredient in our arguments, as if y is not a square, then it is
easy to see that there are considerably fewer possibilities for the parameters v, and
this will reduce the number of ad hoc arguments that we need to make. Moreover
in the remaining cases, the statements pertaining to local tempered representations
are covered by [CG15].

Theorem 2.6.1 (Arthur). If x = n? is a square, then Conjectures
and [225.8 hold.

Proof. Given a y-self dual cuspidal automorphic representation 7, the twist 7® (no
det)~! is self dual. Similarly, we may twist the local parameters by the restriction
to W, of the character corresponding to =%, and we can also twist representations
of G(F) and G(F,) by n~. All of the conjectures are easily seen to be compatible
with these twists, so we reduce to the case y = 1. In this case, representations
of GSpin,,, |, (resp. GSpin3,,, resp. Sp,, x GL;) with trivial similitude factor
(recall that this was defined in Section as the composition of the central char-
acter with p) are equivalent to representations of SOa,11, (resp. representations
of SO%,,, resp. pairs given by a representation of Sp,,, and a character of GL; of
order 1 or 2), so the conjectures are equivalent to the main results of [Art13]. O

In particular, since in the case G = Sp,,, X GL; the character x is always a
square, Theorem [2.6.1] always holds in this case.

2.7. Low rank groups. If N(é) < 3 then Conjectures [2.4.2] [2.5.3 and [2.5.6] also
hold unconditionally.

(1) If N =1 the results are tautological.

(2) if N =2 then G = GSping or G = GSping. In the first case G ~ GLs
and the results are also tautological. In the second case where G =
GSpin; ~ Resp(,/z)/r(GL1) we are easily reduced to the well-known The-
orem below, the symplectic/orthogonal alternative for GLs.

(3) If N = 3 then G = Sp, x GL; and we are reduced to a special case
of Theorem Note that the local Langlands correspondence and the
multiplicity formula in this case go back to Labesse-Langlands [LL79] and
[Ram00].

Theorem 2.7.1. Let m be a x-self dual cuspidal automorphic representation of
GL>. Then either
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(1) X = wx, and L5 (s, N> () ® x™Y) has a pole at s = 1; or

(2) wax"" is the quadratic character given by some quadratic extension E/F,
7 is the automorphic induction of a character of Af,/E* which is not fized
by the non-trivial element of Gal(E/F), and L°(s,Sym?*(7) ® x~') has a
pole at s = 1.

Proof. Certainly L5(s, A°(7) ® x~!) = L5(s,wyx"!) has a pole at s = 1 if and
only if ¥ = wy. So if L%(s,Sym?(7) ® x~!) has a pole at s = 1, we see that wyx "
is a non-trivial quadratic character corresponding to an extension E/F. Since we
always have 7V ® (w, o det) = 7, this implies that 7 = 7 ® (w,x ' o det), and it
follows (see [Lan80l end of §2]) that 7 is the automorphic induction of a character
of A} /E* which is not fixed by the non-trivial element of Gal(E/F). O

2.8. The local Langlands correspondence for GSp,. Let F' be a p-adic field.
The local Langlands correspondence for GSp,(F') was established in [GT11a], but
was characterised by relations with ~-factors, rather than endoscopic character
relations. The necessary endoscopic character relations were then proved in [CG15].
In particular, we have:

Theorem 2.8.1 (Chan—Gan). If F is a p-adic field then C’onjecture holds
for GSping and parameters 1 which are trivial on SLy(C), i.e. tempered Langlands
parameters.

Proof. Parts (1) and (2) of Conjecture are an immediate consequence of the
main theorem of [CG1H] (note that bounded parameters are automatically generic,
in the sense that their adjoint L-functions are holomorphic at s = 1). Part (3) then
follows from the main theorem of [GT11al. O

Remark 2.8.2. Recall from Remark 2.4.6]that over an Archimedean field the local
Langlands correspondence and (ordinary) endoscopic character relations are known
in complete generality, and the twisted endoscopic character relations are known
up to a constant (which might depend on the parameter).

If F is Archimedean and v is a tempered and non discrete Langlands parameter
for GSping, then the twisted endoscopic character relation was verified in [CGI15]
§6], which amounts to saying that the above constant (the only ambiguity in Mezo’s
theorem) is 1. In Proposition below we will show using a global argument as
in [AMgR18| Annexe C] that this also holds for the discrete tempered .

3. CONSTRUCTION OF MISSING LOCAL ARTHUR PACKETS FOR GSping

3.1. Local packets. Let F' be a local field of characteristic zero. In this section
we complete the proof of the following theorem, which completes the proof of Con-

jecture for GSpins.

Theorem 3.1.1. Let ¢ : WDp x SLa — GSp, be an element of ¥(GSpin;).

Then there is a unique multi-set 1Ly of irreducible smooth unitary representations

of GSping(F), together with a map II, — S, which we will simply denote by

7 (-, 7), such that the following holds:

(1) Let 7r11; be the representation of T'(F') associated to Stdgspin, 0@y by the lo-

cal Langlands correspondence, and let 7711; be its extension to T(F) (Whittaker-
normalised as explained in Section. Then the linear form Zwenw ($y,m)trm

on I(GSping(F)) is stable and its transfer to T s tr 71'11;.
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(2) Consider a semisimple s € Cent (v, GSp,), and denote by § its image in Sy,.
The pair (v, s) determines an endoscopic datum (H,H,s,€) for GSpins,
as well as ' : WDp x SLy — H such that ¢ = £ o4)'. Then for any
f € I(GSping(F)) we have

Z (8sy,mytrm(f) = Z (syr, 7'y tr o’ (f7).

melly ' €Ly,

Note that in the second point H is either GSpiny or a quotient of a product of
general linear groups by a split torus, and so Il is well-defined. In the latter case
it is a singleton and Sy is trivial.

As we recalled above (Theorems [2.6.1] and Remark [2.8.2) this theorem is

already known in the following cases:
e if o1 is a square,
e if F'is p-adic and ¢|sr,, = 1,
e if F'is Archimedean, 9|s,, and % is not discrete.

We will prove the case where F' is Archimedean, 1) tempered discrete and x not
a square later in Proposition [7.2.1] since we will use a global argument using the
stabilisation of the trace formula.

This section is devoted to the proof of Theorem [3.1.1] in the remaining cases,
where t|sr,, is not trivial and i o ¢ is not a square. It is easy to see that
Stdaspin, ©¥ =~ (¢[2],X), where ¢ : WDp — GLy is x-self-dual of orthogonal
type. Then ¢ factors through Wy and det ¢/(ji o ¢) has order 1 or 2. There are
two cases to consider.

(1) If ¢ isirreducible then det ¢/ (fioy) has order 2. Let E//F be the correspond-
ing quadratic extension and denote ¢ the non-trivial element of Gal(E/F).
We have ¢ ~ Indg/p pu for a character p : E* — C* such that u® # u
and p|px = x. Then Cent (¢, GSp,) = Z(GSp,) and so we simply have to
produce I, = {7} such that tr 7 transfers to the trace of 7r75 .

(2) If ¢ is reducible then ¢ = 1y @ ny with mm2 = x and 71 # n2. Then
Cent (1), GSp,) = {diag(uils,usl2)} and so we are led to define Il =
{IndSSpmf’((rec(m) odet) ®rec(x))} where L ~ GLy x GSpin;. Then the
second point in Theorem is automatically satisfied (see [CGI5 §6.6]),

and again we have to check that the twisted endoscopic character relation
holds.

We will prove these two cases separately, distinguishing between the cases where
F' is p-adic, real, or complex (in which case only the second case occurs). Before
doing so, we recall some material on Whittaker normalisations.

3.2. Whittaker normalisation for general linear groups. In this section F
denotes a local field of characteristic zero, G = GL, x GL; over F and G =
G x 0. Following [MWOG, §5], [ShalQ], [AMgR18| §8] we briefly recall the Whittaker
normalisation of extensions to G(F) of irreducible representations of G(F) fixed
by 6. Recall that we have fixed a @-stable Whittaker datum (U, ) for G. If F'
is Archimedean for simplicity we choose the maximal compact subgroup K to be
O, (F) x {£1} (resp. U(n) x U(1)) if F is real (resp. complex), so that 6(K) = K.

First consider the case of essentially tempered representations. Let 7w be an
essentially tempered (in particular, essentially unitary) irreducible representation
of G(F). By [Sha74] there exists a continuous Whittaker functional Q for 7. If F'
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is p-adic this is just an element of the algebraic dual of the space mx of smooth
vectors. If F' is Archimedean this is a continuous functional on the space m., of
smooth vectors for the topology defined by seminorms as in [Sha74l p. 183]. Now
if 7 is fixed by 6, define 7(#) as the unique element A € Isom(w,7%) such that
2o A = Q. This does not depend on the choice of {2. So we have an extension 7 of
7 to a representation of G(F), well-defined using the Whittaker datum (U, ).
Next consider representations parabolically induced from a 6-stable parabolic
subgroup. Fix the usual (diagonal) split maximal torus T of G, as well as the
usual (upper triangular) Borel subgroup B = TU of G. Both are 6-stable. Let wg
be the longest element of the Weyl group W(T, G). Let P = MN be a standard
parabolic subgroup of G, with standard Levi subgroup M D T. Assume that P is
@-stable, which means that M = (GLy, x ---x GL,, ) x GL; (block diagonal) with
n; = ny41—; for all i. Let o be an irreducible admissible representation of M(F)
fixed by 0, that is 0 ~ (01 ® - -+ ® 0,,) ® x with (x o det) ® 0 ~ 7,41, for all
1. Let Dpp be the largest split torus which is a quotient of M, so that we have a
canonical isogeny Apn; — Dy In the present case we have a natural identification
Dn ~ GLT x GL; via the determinants GL,, — GL;. For v € X*(Dp) ® C
inducing a character of M(F'), consider the parabolically induced (normalised)
representation 7, = Indg'((g)) o®v. We also assume that v = (14, ..., v, 1) is fixed
by 6, i.e. v; +vpy1-; = v for all i. Let wpg be the longest element of W (T, M) (for
BNM) and w = wgwm. Let P~ = MIN™ be the parabolic subgroup of G opposite
to P with respect to M, and let P = M/'N’ = wP~w™! = wgP_wél be the
standard parabolic subgroup conjugated to P~. Choose a lift @ of w in Ng(g)(T).
Let A% : (MNU)(F) — S be the generic character defined by A&y (u) = A(wuw ).
Assume that the space Homninuy(r) (0, A of Whittaker functionals for o with
respect to )\& is non-zero and thus one-dimensional, and fix a basis €, of this line.
In the p-adic case, according to a theorem of Rodier ([Rod73], [CS80], explained in

[Shal0) §3.4]) we then have that Homyz) (Indg((g))(a ® v), A) also has dimension

one. A basis {2, can be made explicit: for f in the space of Indg o ® v whose
support is contained in the big cell P(F)w~tU(F),

(3.2.1) Qe (f) = /N(F) Qo (f(w™ n))A(n) " Ldn

is well-defined (the integrand is smooth and compactly supported). For arbitrary
f the same formula holds with N'(F) replaced by large enough open compact
subgroup which depends on f but not on v (as usual realising the vector space
underlying Indg((g)) o ® v independently of v by restriction to K), so that v —
Q. (f) is holomorphic.

The Archimedean case is more subtle, since the notion of Whittaker functional
requires a topology on the underlying space of the representation to be well-behaved
(it is not defined directly on (g, K)-modules). So in this case one considers the
smooth parabolically induced representation 7, := Indg(aoo ® v), whose subspace
7,k of K-finite vectors is naturally isomorphic to the (g, K')-module algebraically
induced from onpynk (see [BWOO, §II1.7]). Assume that the central character of
o is unitary. Then the integral is absolutely convergent for v € X*(Dp) @ C
satisfying

(3.2.2) Va € ®(T,N), (a¥,Rv) > 0,
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and extends analytically to X*(Dy) ® C ([ShalQ, Theorem 3.6.4]). The proof of
Theorem 3.6.7 in [Shal(] also shows uniqueness (up to a scalar) of a Whittaker
functional for Ind$ (0o ® v) (note that the argument for uniqueness only involves
the Jordan—Holder factors of a principal series representation, and so one may
replace P by another parabolic subgroup of G admitting M as a Levi factor and
such that the opposite of is satisfied, so that any generic subquotient of
Ind$ (o ® v) appears as a quotient).

We can now treat the p-adic and Archimedean cases together. Assume that v is
chosen so that Endg(p)(m,) = C. This is the case if the central character of o is
unitary and v satisfies (this follows from the fact that 7, then has a unique
irreducible quotient which occurs with multiplicity one in its composition series), or
if —v satisfies (m, then has a unique irreducible subrepresentation). Then
one can define the action of  on m, to be the unique Ay € End(m,) such that
Agom,(g) =7, (0(g)) o Ap for all g € G(F) and Q,, 0 A = Q, . This can be made
more explicit in the case at hand, see [MWO06l §5.2]. The operator Ay does not
depend on the choice of w made above.

For this definition we followed [AMgR18| §8]. As explained there, the resulting
canonical extension of m, coincides with the extension defined by Arthur in [Art13]
§2.2], by [MWO06l §5.2] and analytic continuation (see [AMgRI8| Remarque 8.3]).

Finally, consider an arbitrary irreducible smooth representation 7 of G(F') (ad-
missible (g, K)-module in the Archimedean case). By the Langlands classification
([Lan89, Lemmas 3.14 and 4.2], [Sil78], [BW00, Chapter IV]), 7 is the unique ir-
reducible quotient of Indg(o ® v) (resp. unique irreducible subrepresentation of
Ind§- (o ® v)) for v € X*(Dy) @ C satisfying (3:2:2), with o tempered (in partic-
ular, with unitary central character) and the pair (P,o ® v) is well-defined up to
conjugation. These two realisations of 7 as quotient (resp. subrepresentation) of a
parabolically induced representation give two canonical extensions of 7 to é7 by the
above. In fact these two canonical extensions coincide: consider the composition

Ind$ (0 @ v) = 7 — IndS_ (0 @ v)

which is clearly non-zero. From the properties of these induced representations
mentioned above it follows that dim Homg(F)(Indg(a ® v),IndS- (o0 ® v)) < 1.
Therefore the above composition coincides with the usual intertwining operator
[Wal03, Théoreme IV.1.1], [VW90Q] (up to a scalar and a normalising factor to make
this intertwining operator holomorphic at ). But this operator varies analytically
if we vary v, and generically it is an isomorphism between irreducible parabolically
induced representations, thus generically it intertwines the two Ay’s, and by analytic
continuation this also holds for the original v.

3.3. Proof of Theorem We now prove Theorem in the cases described
at the end of Section [3.11

Proof in the first case for F' p-adic. The proof is a very special case of the gener-
alisation of [MWO06, Théoreme 4.7.1] to essentially self-dual representations. See
also [Mceg06].

Let p be the supercuspidal representation of GLo(F') such that rec(p) = ¢. Then
(x odet) ® p¥ ~ p. We will give an ad hoc definition of II;, using special cases of
results of [MWO6] to check compatibility with twisted endoscopy for GLy X GL;. In
[IMW06] Moeglin and Waldspurger consider self-dual parameters, and we will argue
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that their arguments extend to the case at hand without substantial modification,
the essential input being compatibility of local Langlands for GSping for twisted
endoscopy (and the same for GSping and GSpin,, which is trivial).

Let A be the diagonal embedding SU(2) — SU(2) x SLy(C), so that ¢ o A is
the essentially tempered Langlands parameter obtained by tensoring ¢ with the 2-
dimensional irreducible representation of the factor SU(2) of WDg. Then Cent (¢ o
A, GSp,) = Z(GSp,), and so ITyon (as defined by Gan-Takeda in [GT11a]) consists
of a single irreducible discrete series representation myoa of GSping(F'). Let P be
the standard parabolic subgroup of GSping with Levi subgroup L ~ GL2 x GSpin;
(conventions as in Section [2.2). Then Jacp(Tyoa) = p| det |'/? @ y where Jac de-
notes the normalised Jacquet module. We briefly recall the proof. Let ﬂgol‘A be
the (discrete series) representation of GL4(F) corresponding to pry Stdoty o A :
WDr — GL4(C). Denoting by PEL the upper block triangular parabolic subgroup

of GL4 with Levi subgroup GLy x GLj, it is well-known that Jacper (wgolg =

pldet|'/? @ p|det |~Y/2. Let WEOA be the Whittaker-normalised (see Section |3.2| or
MW, §5.1]) extension of 7G04 ®@x to T'(F). By (iii) in the main theorem of [CGI5]
we have that tr wEOA is a transfer of tr myoa. The parabolic subgroup PG x GL,
of ' is stable under 6, write P = (PGY x GL;) x 6. By (an obvious generalisation
of) [MWO06l, Lemme 4.2.1], tr Jacf,(ﬂgoA) is a transfer of tr Jacp (myoa ), and thus
Jacp (mypon) = p|det |'/2® x. By Frobenius reciprocity, Tyon 1s naturally a subrep-

resentation of IndSSpin"’ (pldet|/? ® x). By [BZT77, Theorem 2.8] this parabolic

induction has length < 2 and so the cokernel of
Tyon <> Indg =P (pldet |72 @ x )

is an irreducible Langlands quotient which we denote . We let IT, = {m,}. Since
Cent (¢, GSp,(C)) = C*, we only have to check the twisted endoscopic character
relation (Theorem (1)). Following [MWO6], this will be a consequence of
comparing the short exact sequence
(3.3.1) 0 = Tyon — Indg P (p| det['? ® x) — 7y =0
with a similar one for T'.

We have a short exact sequence of representations of I'(F') = GL4(F) x GL1 (F):

(3.3.2) 0= oA @ X = E1(TGA) ®X = TG @ x — 0

obtained as in [MWOG6, Prop. 3.1.2], by applying functorial constructions to 7T$OLA
to get a resolution of WgoI'A by sums of standard modules except possibly for the last
term, which is defined as a cokernel and shown to be irreducible with Langlands
parameter (1) o A)¥ = 1) (the general definition of ¥* is given in [MWO6, §3.1.2]).
The definition of the middle term is

& (Wﬁ}‘A) = Indlcjé‘,‘f (Jacper (Typon)) = Indg'é‘ﬁ <p| det |2 @ p| det |*1/2)

and in the present case Moeeglin and Waldspurger’s resolution does not involve any
non-trivial “proj”, so that the resolution actually goes back to [Aub95], [SS97].
Following Moeeglin and Waldspurger one can extend W%OIZ ® x from T'(F) to T'T(F)
by choosing an action of 6 (see [MWO06l §§1.7-1.9]), that we denote by 6w . The
resolution inherits an action of 6 by functoriality (see [MWO06, §3.2]), and
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fortunately the resulting action on 7 ® x happens to coincide with 6w (see
[IMWO06, Lemma 3.2.2], in which we have j(v)) = 1 and so S(¢p o A, p, < d) = +1).
Another way to choose an extension of 7T$OLA ® x (resp. WgL ® x) to 0 is to use
Whittaker functionals and the Langlands classification as we recalled in Section[3.2]
Denote the resulting actions of 6 by 6y . In general 0y and 05,y differ by a sign,
but here fortunately 6y = 05, on both Wg()['A ® x and ng‘ ® x (a special case of
[MWO06, Prop. 5.4.1]). Thus we have a well-defined extension

(3.3.3) 0= (rSh ox) = (ErSh) @x) = (FFex) =0

of to I'"(F). The trace of the left term is known to be the transfer of tr myoa.
By compatibility of stable transfer with Jacquet modules [MWO06l, Lemme 4.2.1] and
parabolic induction (a consequence of the explicit formula for parabolic induction
(vD72], [Clo84], [Leml0), §7.3, Corollaire 3])), the trace of the middle term is the

+
transfer of the middle term of (3.3.1). So we can conclude that tr (ng‘ ® x) is
the transfer of trmy. O

Proof in the second case for p-adic F'. This is similar to the previous case but now
¢ : Wrp — GLy(C) is reducible and so it defines a principal series representation
of GLo(F,). Write ¢ =~ rec(n;) @ rec(nz), so that x = n11m2. As explained above
we can assume that 7; # 7. Define m, = Indg P™ ((n; o det) ® x) where the
standard parabolic subgroup P has Levi L ~ GLy x GSpin, and I, = {my}. The
representation 7y, is certainly irreducible (see [Mcegll] §4.2]), but since this is not
necessary to prove the Theorem we simply take the definition IT;, = {7y} to mean
that IL, is the multi-set of constituents of .
Consider the parabolic induction for GL4 x GL;

(3.3.4) Ty = Indgé‘ﬁ ((n odet) ® (12 o det)) ® x

where PGL is the standard parabolic subgroup of GL4 with Levi GLz X GLa.
The twisted representation 7'('11; of f‘(F ) obtained from using the canonical
action of 0 (defined as in [MWO06, §1.3]) is such that its trace is the transfer of the
trace of my, by compatibility of parabolic induction with transfer. This is almost
the twisted endoscopic character relation, but again we need to be careful with the
definition of Whittaker normalisation. The Whittaker-normalised action of § on 775
is obtained by realising it as the Langlands quotient of

(3.3.5) mdSE: (m]- V2@l V2 @ml [ @l - |7V2) @ x

where BGL is the standard Borel subgroup of GLy, which coincides with the canoni-
cal action of § on this parabolic induction by (the obvious generalisation of) [MWO0G,
Lemme 5.2.1].

Let us sketch the proof of the fact that these two actions of € on 7r11; coincide.
It will be convenient to denote o1 X - -+ x o, for the parabolic induction (using the
standard parabolic) of an admissible representation 1 ®- - -® 0, of GLy,, (F) X - -+ X
GL, (F) to GLy, 4...4n,.(F). Recall that for any s € C the parabolic induction
No| - |V/2+5 x | -|~1/27% is irreducible by [BZ76, Theorem 3], since the assumption
that xy = mm2 is not a square implies that n; |O; #* 772|(9;' The intertwining
operator
. ‘1/2+s 1/2+s

I :ma| x| TR ] TV x|
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defined by the usual integral formula for $(s) > 0, is rational in ¢~ (where ¢ is
the cardinality of the residue field of F') by [Wal03l Théoreme IV.1.1], and so there
is a polynomial r(s) in ¢—° such that r(s)Is is well-defined and non-zero for any s,
and therefore an isomorphism. It induces an isomorphism I norm:

|2 |2 ey [ T2 e [ T2 =y |2 x| T2 x| |2 x| T2

Denote 71,5 (resp. ma,s) the LHS (resp. RHS). Since s - [~1/2 = x/ (m| - |'/?) and
m| - |7Y275 = x/ (n2] - [V/?+*), there is a canonical extension of m; , ® x to I'F(F)
(see [MWOG, §1.3]). Denote by 6; this canonical action of § on the space of m; s ® x
(one can easily check that it does not depend on s), so that for s = 0 we recover
the Whittaker normalisation on . The irreducible representation

((ml- 172 m] 17727 ) @ (o] - /255 x| 71/2) ) @ x

of the f-stable parabolic subgroup P x GL; of I is also fixed by 6, and so m2 s ® x
also admits a canonical extension to f‘(F) Denote 6, this canonical action of 6
on the space of my s ® ), which for s = 0 recovers the canonical action on the
quotient . An easy computation that we skip shows that for R(s) > 0 we
have I horm 001 = 0201 norm, and the case of an arbitrary s € C follows by analytic
continuation. ([

Proof in the first case for F'=R. This is similar to the first case for F a p-adic
field except we now follow arguments of [AMgRI8]. For a € 1Zx¢ let I, be the
tempered Langlands parameter Wg — GLo(C) obtained by inducing the character
z — (2/2)* == (2/]2])®* of C*. Up to twisting we can assume that ¢ = I, with
a > 0 integral, with x equal to the sign character sign of Wg. Let Wg'L“ be the
irreducible unitary representation of GL4(R) associated to ¢y. Let x : GL1(R) —
{£1} be the sign character, so that (x o det) ® (WEL“)V o~ W$L4. As in the p-adic

case we have the Whittaker-normalised extension 7711; of ﬂi = 7T$L4 ® X.
We have a (short) resolution from [Joh84] (see [AMgRI8| §6.2] where this reso-
lution is made completely explicit for GLs,, and parameters I,,[n] for w € %Z>0)

GL4 GL; GL; GL, GL;
0— Ty ISR X T e — LA X Tt —0
where | - | is the norm character of Wg (i.e. the square of the usual absolute value
on C* and |j| = 1) and we denoted parabolic induction for standard parabolic

subgroups of GL as in the p-adic case. In [AMgR18, Lemme 9.9] only the first
case occurs, so comparing normalisations (Whittaker and imposed by induction
in Johnson’s construction of the resolution) is particularly simple: we obtain the
analogue of [AMgR18, Théoreme 9.7] with A, = A}. O

Proof in the second case for F' =R or C. Up to twisting we can assume that ¢ ~
1@ x with x = sign in the real case and x(z) = (z/2)*|z|" with a € 1Z \ Z and
t € R in the complex case. The proof is identical to the p-adic case and we do not
repeat the argument. Note that the complex case is the analogue of [MRI5 Prop.
6.5]. O
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4. STABILISATION OF THE TWISTED TRACE FORMULA

We now state the stabilisation of the twisted trace formula proved by Moeglin
and Waldspurger in [MWT6al, [MWI6D] following the case of ordinary (i.e. non-
twisted) endoscopy proved by Arthur in [Art02], [Art01], [Art03] (also following
[Lan83|, [Kot86], [Lab99], and of course [LW13]). We recall some of the definitions
needed to state the stabilisation, and mention some simplifications occurring in the
cases at hand.

4.1. The discrete part of the spectral side. Consider a connected reductive
group G over a number field F' and an automorphism 6 of G of finite order. Let
G = G x 6. Let Ay be a maximal split torus in G. We will only consider Levi
subgroups of G which contain Ay. Let K = [[, K, be a good maximal compact
subgroup of G(Ap) with respect to Ay as in [LWI3| §3.1]. Choose a minimal
parabolic subgroup Py of G containing Ay.

Following [MW16b], §X.5], let us recall the terms occurring in the discrete part of
the spectral side of the twisted trace formula. To work with discrete automorphic
spectra it is necessary to fix central characters (at least on a certain subgroup of
the centre), and we follow [MWI1Ghl §X.5.1]. We now elaborate on the notation
for the discrete automorphic spectrum introduced in Section |1 Recall that g
denotes the vector group Ag(R)? where Ag is the biggest central split torus in
ResF/Q(G). Then G(AF) = G(Ap)l X ng, where

G(Ar)! = {g € G(Ap)| VB € X*(G)%¥, |B(g)| =1},

so that G(F)\G(Ap)! has finite measure. Let g = A%. Then Ag = (1-0)(Ag) x
A

GIn the general definition of twisted endoscopy one considers a character w of G(Ar);
in all cases considered in this paper we have w = 1. Moeglin and Waldspurger con-
sider a character xg of 2 which is trivial on g and satisfies 0(xq) = xaW|ag;
since we will always have w = 1 in this paper, we will have yg = 1.

Let L be a Levi subgroup of G. Up to conjugating by G(F') we can assume
that L is the standard Levi subgroup of a standard parabolic subgroup P of
G. There is a canonical splitting Ay, = Ag x AE (with AF included in the de-
rived subgroup of G(F ®qg R)), and we write xg 1 for the extension of yg to 2y
such that XG’L|QLE = 1. As remarked above in all cases considered in this pa-
per we simply have yg,. = 1. The space of square integrable automorphic forms
A?(L(F)\L(AF), xa.L) decomposes discretely, i.e. it is canonically the direct sum,
over the countable set Il4isc(L, xa,1,) of discrete automorphic representations 7,
for L such that 7,|o;, = X1, of isotypical components

A*(L(F)\L(AF), Xa.L)m

which have finite length. Denote by Up the unipotent radical of P. Recall [MW94]
§1.2.17] the space A% (Up(Ap)L(F)\G(AF), xa.L) of smooth K-finite functions ¢
on Up(Ap)L(F)\G(AF) such that for any k € K,

x> 0p(2) V2 (2) (k)

is an element of A%(L(F)\L(Ar), xg,L). In other words,

A2 (Up(Ap)L(F)\G(AF), xa.1) = Indg (i) (A2 (L(F)\L(Ap), xar)) "
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This space is endowed with the usual left action of H(G), which we will de-
note by p§. If 7y, is an irreducible admissible representation of L(Ax) such that
Wrp |2, = X@.L, denote by

A*(Up(Ap)L(F)\G(AF), Xa.L)m,
the sub-H(G)-module of A*(Up(Ar)L(F)\G(AF), XG 1) consisting of functions ¢
such that for any k € K,
(== 8o (@) 2 (@)6(wk) ) € A2(LIFN\L(AR), XG.L)m

Let W(L,G) = Norm (L, G(F))/L(F), where the action of G(F) on G is the
adjoint action coming from the deﬁnition of a twisted space [MWT16al §I.1.1]. For
@ € W(L,G) and f(2)di € H(G), we have a map [MWI6H, bottom of p. 1204]

(4.1.1)
P55 (f) : A(Up(Ap)L(F)\G(AF), xa,L) — A*(Uge)(Ar)L(F)\G(Ar), xG.L),

6 (W /. ¢<w—1g:z>f(aé>dsz>
G(AF)
and for f1, f3 € H(G) and f, € H(G) we have

Pg,uv(fl * fax f3) = PS(P)(fl) ° Pg,w(fz) ° Pg(f:s)-
If 7y, is an irreducible admissible representation of L(Ap) such that wy |9, =
XG,L, then for any f € H(G), pg,ﬁ)(f) restricts to
A?(Up (Ap)L(F)\G(AF), xa L)r. — A (Uge)(Ar)L(F)\G(AF), XG.L)o(r)

where () = 7, o Ad(w~1).
By meromorphic continuation of the usual integral formula, there is an inter-
twining operator

Mpj3e)(0) - A* (Uge) (Ap)L(F)\G(AF), xa.r) = A* (Up(Ap)L(F)\G(AF), xa L) -

Since x@,L is unitary, Mp|g(p) is well-defined (i.e. holomorphic) at 0, and is in
fact unitary. Moreover for any irreducible admissible representation 7p, of L(Afg),
Mp|5(p)(0) restricts to

A*(Uge) (Ap)L(F\G(AF), xa,L)m — A*(Up(Ap)L(F)\G(AF), Xa.L)m
Therefore for f € H(G) the composition Mppp)(0) o f;; (f) maps
A*(Up(Ap)L(F)\G(AF), xG,L)
to itself and restricts to
A (Up(Ap)L(F\G(AF), xG L) — A*(Up(Ap)L(F)\G(AF), XG,L) i)

We can finally recall the contribution of L to the discrete part of the spectral
side of the twisted trace formula for G. For f € H(G), let

SR = WL Y fdet (@ 1128) |7t (Mejaqe) (0) 0 o0 ()
'JJEW(L,é)reg

where W (L, é)reg is the set of @ € W(L,G) such that (a®)® = 0. As the no-

tation suggests, Idlsc (f) only depends on f and the G(F)-conjugacy class of L.
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In fact it depends on f only via its image in I(G). The fact that the trace of
Mp|4(p(0) opgw(f) on A2(Up(Ar)L(F)\G(Ar), xa.L) is well-defined and equals
the absolutely convergent sum

>t (Mpjaw)(0) 0 o8 5(F) | A(Up (Ar)L(FNG(AF), XGL)m. )
7L €Haise (X a,L)
W(rL)~TL
is a consequence of work of Finis, Lapid and Miiller, as explained in [LW13], §14.3]
and [MWI6H, §X.5.2 and X.5.3].
Ié,G

The most interesting case is of course for L = G, since 13,7 (f) is simply the
trace of f on the discrete automorphic spectrum for G and yg. We will recall below
the refinement of discrete terms by infinitesimal character and Hecke eigenvalues
following Arthur and Maoeglin—Waldspurger, that allows one to forget about con-
vergence issues and work with finite sums. But first we make explicit the condition
w(7y,) ~ 7r, in the cases at hand.

or G = N X 1 and a standard (i.e. block diagonal) Levi L =~
1) For G = GL GL d dard (i.e. block di 1) Levi L
(Hk21(GLk)"’“) x GL1 (where ny = 0 for almost all k and >, -, kng =

N), there always exists an element of G(F) normalising L (for example
0o = (J71,1) x 0, so that for any (g,2) € G we have Oy(g,2)0;" =
(g~ ,zdetg)). Moreover there is a natural identification W(L,G) =~
[Ii>1 Gy For w = (ok)r>160 € W(L,G), @ is regular if and only if
for every k > 1, the decomposition of o}, in cycles only involves cycles of
odd length. For such a regular @ and if 7 = (®k>1 (M1 ®---® 7rk7nk)> [25%

is an irreducible admissible representation of L(Afg), then @(w) ~ 7 if and
only if each m ; satisfies m/; @ (x o det) ~ m; and for every k > 1, the
isomorphism class of (7 ;)1<i<n, is fixed by o) (i.e. m; > 7y ; if ¢ and j
belong to the same cycle in the decomposition of o).

(2) In the non-twisted cases G = GSpin,,,; or GSpinj,,, recall that in Sec-
tion [2.2| we chose (non-uniquely) an isomorphism L >~ [[.+,(GL;)" x G,
where m + >°,.,ir; = n and G,, is a GSpin group of the same type
as G of absolute rank m. There is a natural embedding W (L,G)
[Iis; {£1}7 x &,,) which is surjective unless G = GSpiny,, m = 0,
and there exists an odd i > 1 such that r; > 0, in which case it is of index
two.

An element w = ((€;,j)1<j<r, X 04),~, is regular if and only if for ev-
ery i > 1 and every cycle (ji ... Js) appearing in the decomposition of o;,
[l}_ i, = —1. Forsuchw € W(L, G)yeg and 7, ~ @), (Mi1 @ -+ @ T3, )®
nq,, an irreducible admissible representation of L(Af), we have w(7y,) =~
71, if and only
(a) foreveryi > 1land1 < j <y, m/;@(xodet) = m; j where x : A — C*
is 7@, o p, and
(b) for every ¢ > 1 the isomorphism class of (7; ;)i1<j<r, is fixed by o;.
We now recall from [MWI16Db| p. 1212] the refinement of the discrete part of the
spectral side of the twisted trace formula by infinitesimal characters (using Arthur’s
theory of multipliers) and families of Satake parameters.

Definition 4.1.2.
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(1) Let IC(G) be the set of semisimple conjugacy classes in the Lie algebra of
the dual group (over C) of Resp,q(G). This is the set where infinitesimal
characters for irreducible representations of G(F ®gR) live. In the twisted
case let IC(G) = IC(G)?. For 74, an irreducible admissible representation
of G(F ®qg R), denote by v(nw) € IC(G) its infinitesimal character.

(2) Let S be a large enough (i.e. containing Viay as in [MWI6b, §VI.1.1]) fi-
nite set of places of F. Let FS°(G) = [Togs ((A} X Frobv) /(A}, and in the
twisted case let F.SS(G) = (FSS(G))e. Write also F'S(G) = lim FS5(G)
and in the twisted case FS(G) = lim . FSS(G). If 7 = @7, is an ir-
reducible admissible representation of G(Ar), we will write ¢(r) for the
associated element of F'S(G) via the Satake isomorphisms.

(3) For v € IC(G), S as above, ¢ = (¢y)vgs € FSY(G), and L a Levi
subgroup of G, let Igisc (I, x@,1)v,cs be the set of 7y, € Ilgisc (L, X@,L) such

that the infinitesimal character of 7, . maps to v via Lie (Re;/aL)) —
Lie (Res/p/a(})), and for every v € S, 7, is unramified for K, and its

Satake parameter maps to ¢, via ‘L — LG. For f € @, g H(G(F,)), let

B (e wmelt Y dw@-128) Y ),
DEW (L,G)rog mL€laisc (Lyxa,L), .5
7]:)(71’1_,)271’1_,

where we write

tre, (1) = (Mepae) (0) © o8 (/) | A2(Up (A LIFNG(Ar), Xa L)) -
Finally let
(413) Idc-i}sc,mcs (f) = Ig;(];u,cs (f)
L
where the sum is over G(F')-conjugacy classes of Levi subgroups of G.

Seeing this as a sum over triples (L, @, 7,), all but finitely many terms vanish.
Indeed, if we fix v, S, ¢ and an idempotent e of @ ,ecs H(G(F,)), then there is a
vtoo

finite set Y (v, S,c%, €) of triples (L, ®, 7L such that for any f € @, g H(G(F,))
for which e * f = f x e = f, the terms corresponding to (L, @, 7r) & Y (v, S,c”, )
in the double sum defining Igsc’u’cs (f) all vanish.

Remark 4.1.4. (1) By [JS81] and [MWRS9], taking the image in F'S(GLy)
is injective on formal sums of elements of Il4isc(GLy,, x) (note that it is
essential that all of the summands are x self-dual for the same character x).
For this reason we will often identify such formal sums and their image.

(2) In [MW16b] Mceglin—Waldspurger multiply by j(G)~! := | det(1 —
0|Ag/Ag)|", but this factor is also present in (G, H) with their defini-
tion.

Definition 4.1.5. (1) We will say that ¢S € FS(G) occurs in IST if there

\~ b disc

exists v € IC(G) and f € H(G) such that up to enlarging S we have
Igs)l::u,cs (f) ?é 0.



ARTHUR’S MULTIPLICITY FORMULA FOR GSp, AND RESTRICTION TO Sp, 27

(2) Let D be an induced central torus in G, so that there is a dual morphism

LG — LD. For ¢® € FS(G) occurring in Ig’s’f we define the central charac-
ter of ¢ to be the (unique by weak approximation for D [PR94], Proposition
7.3]) character w. : Ag(Ar)/Ac(F) — C* such that for almost all places
v of F, the Langlands parameter of (w.), equals the image of ¢, in “D.

Note that in all cases considered in this paper the connected centre of G is split
and so one can take D to be the full connected centre.

Lemma 4.1.6. Let G = GLy x GL; and G = G x 0. If c € FS(G) occurs in
Igsc and x is the central character of ¢, then there is a unique ¥ € U(G,x) such
that ¢ is associated to .

Proof. This simply follows from Remark (1) and the above description in
the case at hand of the pairs (w,ry,) with @ € W(L, G)reg, 7 € Igisc(L) and
7T£D ~ L. [l

Remark 4.1.7. Let G = GLy x GL; and G = G x 6.

(1) For P a parabolic subgroup of G with Levi L and 7y, € gisc(L, X@.1), the
parabolically induced representation A?(Up(Ar)L(F)\G(AF))y, is irre-
ducible by [MW89| (implying multiplicity one for the discrete automorphic
spectrum for L) and [Ber84, §0.2], [Vog86, Theorem 17.6] (irreducibility of
unitary parabolic induction for general linear groups).

(2) It follows from [JS81), [MW89] and Lemma that for ¢ € FS(G) oc-

G,L

curring in I3, L is determined by c.

isc ?

(3) For S C ', the linear form IS’SC st OL I(Gg) is simply the tensor product

of Igsc,l/ s With the unramified linear form on I (és/\s) corresponding to
the Satake parameters (cv)vesr~s (see Remark[2.3.4)). This is particular to
GL,, and is a direct consequence of strong multiplicity one. Also by strong
multiplicity one for a given ¢ € FS5(G) there is at most one v € IC(G)

such that Iy, s # 0. By these remarks, for ¢ € FIS(G) we have a well-

defined linear form IS on I (G), whose restriction to I(Gg) (for large

= disc,c
enough S) is IS
g disc,v,

such v exists.

.s for the unique v such that this is non-zero, or 0 if no

4.2. Elliptic endoscopic groups. Consider the split group I' = GL4 x GL;
over F and its automorphism 6 : (g,z) — (Jtg=1J =1, xdet g), where

0 0 0 -1
0 0 1 0
S = 0 -1 0 O
1 0 0 O

was chosen so that the usual pinning of GL4 x GL; is stable under . Note that
if (m, x) is a representation of I'(F),) for some place v of F', then (7, x) 06 ~ (7¥ ®
(x odet), x). The dual group I is naturally identified with GL4(C) x GL;(C), and
§(g,x) = (Jtg~*J Lz, z), where J = J (but with coefficients in a different field).
Denote T' = T' x 6 (that is, the non-identity connected component of T' x {1,6}).
We consider twisted endoscopy with w = 1.
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Then the elliptic endoscopic data (H,H,s,&) for T are easily seen to be of the
following form.
(1) H = GSpin;, dual H = GSp,, for s = 1: The first projection identifies
51(G§[E15) — T with the general symplectic group defined by J, and the
|G§;E15’ Both

T and GSpin; are split, so there is an obvious choice for ¢ : “GSping —
Ly,

(2) GSping, with a € F*/F*2 dual GSpin} = GSO, with action of Gal(E/F)
if a is not a square, where F = F(y/a). Pick s = diag(—1,—1,1,1), then
TAd(s)00 — GOy for the Gram matrix

“similitude factor” morphism G@g — GL; equals pr, o0&y

0 0 0 1
0 0 -1 0
0 -1 0 O
1 0 0 0

If o = 1 the group GSpin, is split and we choose the obvious “¢. Otherwise
let ¢ be the non-trivial element of Gal(E/F), and define £¢ by mapping 1xc
to

o= o o
= O O O

0
1
0
0

o O o+

(3) R® := (GSping x GSpin,)/{(z,271)|z € GL;}, for non-trivial a. The
dual R is the subgroup of GSO2 x GSp, of pairs of elements with equal
similitude factors, and Gal(E/F') acts on the first factor. Let s = diag(—1,1,1,1),
so that

¢(RY) = {diag(z1, 4, 22) | A € GLy, 2125 = det A}
Define “¢ by mapping 1 % ¢ to

_ o o o
o o

0 0
1 0
0 1
0 0 0

We also need to consider the elliptic endoscopic groups for GSpins and GSpin,.
Let H; be the unique non-trivial elliptic endoscopic group for GSping, so that
H; ~ GLy x GLy/{(2I5, 2~ '15)}. Then Hj is the subgroup of GSp,(C) x GSp,(C)
of pairs of elements with equal similitude factors, so we have an obvious embedding
of dual groups ﬁl — Ggpi\n5 = GSp,4(C), inducing an embedding of L-groups
L¢' . I'H; — L'GSpin;,.

Let a« € F*/F*? and let ay,as € F*/F*? {1} be such that ajas = a. Let
H5"“? be the elliptic endoscopic group for GSpin§ associated to {1, as}, so that
HJ"*? ~ GSpinj* x GSpinj?/{(z,271)|z € GL;}. Recall that GSpin$® is natu-
rally isomorphic to Resp( /a;)/#(GL1). Then HyV*? is the subgroup of GSO2(C) x
GSO45(C) consisting of pairs of elements with equal similitude factors, so we again

have an obvious embedding of dual groups I-I/gl’\a2 — G@M = GSO4(C). Let pu
(resp. i1, p2) be the morphism Gal(F/F) — Z/2Z having kernel Gal(F/F(y/a))
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(resp./ Gal(F/F(y/a1)), Gal(F/F(y/az))). Denote A = (? é) € GL,(C). Writ-
ing Gal(F(v/a)/F) = {1,c}, define L¢' : THS — LGSpin, by mapping 1 x o
to

diag(A‘“(”), A’“(")) diag(1, A, 1) xo.

4.3. Stabilisation of the trace formula. We will need to use the stabilisation
of the (twisted) trace formula for T' and its elliptic endoscopic groups. Consider
the latter first: let (H,#H,s,£) be an elliptic endoscopic datum for (I‘,f‘). The
stabilisation of the trace formula for H is as follows. Fix v € IC(H), S a big
enough set of places, and ¢ € FS(H). Choose representatives (H', H’, s, ) for the
isomorphism classes of elliptic endoscopic data for H, and for each representative
choose ¢’ : L'H' — LH extending ¢ (for example as in the previous section). It
induces maps £¢’ : FS(H') — FS(H) and £¢' : IC(H') — IC(H). Inductively
define a linear form on I(H(Fs)) by

(431> Scli_ilsc,u,c(f> = Igl_ilsc,u,c(f) - Z L(el) Z S(g_ilsc,l/',c’(fH )
/=H"H ¢ e
H’;AH =S
where the sum is over equivalence classes of nontrivial elliptic endoscopic data for H,
A is a transfer of f (see Section , and the constants ¢(¢’) are recalled after the
following theorem.

Theorem 4.3.2 ([Art02, Global Theorems 2 and 2’ and Lemma 7.3(b)]). The
linear form S is stable, i.e. factors through SI(H(Fs)).

isc,v,c

Note that in general is only well-defined thanks to Theorem applied
to H'. However, for the groups H considered here, and for any non-trivial endo-
scopic group H’, the only elliptic endoscopic group for H' is H’, and so SES/C =1 (I;ilslc.

Let us recall the definition of ¢(¢’), both for ordinary endoscopy and for twisted
endoscopy. Assume that G is a twisted space and ¢ = (H, H, s,£) is an elliptic

endoscopic datum. Let
= 7@ [0 (@0 T
t(e) =
T(H) |0 (Aut(e))]
where 7 is the Tamagawa number and the superscript 0 denotes the identity com-
ponent. We have not included the factor |det(1 —6|...)|™! from [MWI6b, VI.5.1]

because of Remark (2); compare with the definition on p. 109 of [KS99] using
[KS99, Lem. 6.4.B]. Recall [MW16bl p. 693] that there is a short exact sequence

Gal

1 (Z(é) /Z(G) N T@O) " 5 Aut(e)/H — Out (¢) — 1.

In the ordinary (non-twisted) case we have T00 =T 5 Z(é) and thus ¢(e) =
7(G)T(H)"Out (¢)|7!. The only twisted case that we need in this paper is the
case of T', when T = {((t1,...,ts), 2)|Vi, t; = t; *,2} and so Z(G)N T ~ Cx.
Similarly it is easy to see that Z((A})/Z((A}) NT%0 ~ C* with trivial action of Galp,
so we can conclude that t(e) = 7(T')7(H)!|Out (¢)|~! for any elliptic endoscopic
datum ¢ = (H,H, s,£) of T,

Let us make the constant ¢(e) explicit in the only two cases where it will be
needed in this paper:
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(1) For the elliptic endoscopic group Hi of GSpins, (e) = 1/4.
(2) For the elliptic endoscopic group GSping of T, v(e) = 1.

We can finally state the stabilisation of the twisted trace formula for (T',T).
As in the case of ordinary endoscopy we fix representatives ¢ = (H,H,s,&) of
isomorphism classes of elliptic endoscopic data for T and for each ¢ we also choose
an L-embedding “¢ : ’'H — G extending ¢ (for example the ones defined in the
previous section).

Theorem 4.3.3 ([MW16bl X.8.1]). For any v and ¢ we have
Igisc,u,c(f) = Z L(e) Z Sgl_ilscm’,c’(fH)

e=(H,H,s,) A=
e

where the first sum is over equivalence classes of elliptic endoscopic data for r.

5. RESTRICTION OF AUTOMORPHIC REPRESENTATIONS

5.1. Restriction for general groups. Let us recall a consequence of [HS12]
§4] that we will need. Since in all cases considered in this paper the assump-
tion of [Chel8, Proposition 1 (iii)] will be satisfied, one can use the more pre-
cise result of [Chel8] (which can be formally generalised from cuspidal to square-
integrable forms) instead. Consider an injective morphism G < G’ between con-
nected reductive groups over a number field F' such that G is normal in G’ and
G’/G is a torus. Choose a maximal compact subgroup K., of G'(F ®q R); then
Ko = G(F ®p R) N K/ is a maximal compact subgroup of G(F ®g R). Note
that if 7/ is an irreducible unitary admissible (g’, K’ ) x G’(Ap, )-module then
Resg/ (') is a unitary admissible (g, Ko) X G(Ap )-module, but it has infinite
length in general. We have a (g, K) X G(Ap, ¢)-equivariant map

res$ : A2(Ae G/ (F)\G'(Ap)) — A2(AcG(F)\G(Ar))

obtained by restricting automorphic forms. The fact that resgl takes values in
A?(AcG(F)\G(AR)) is a routine verification, except for square-integrability which
follows from the proof of [HS12, Lemma 4.19] (see also Remark 4.20 op. cit.). If
7' € Myise(G') and ¢ : 7" — A%(Aq G/ (F)\G'(Ar)), then res§ (:(7')) is naturally
identified with a quotient of Resg (7'). This quotient can be proper and of infinite
length, but in any case it is non-zero. In particular there exists an irreducible
constituent 7 of Resg (7") such that 7 € Igisc(G). In this situation we will say
that 7 is an automorphic restriction of ©/. Unsurprisingly, this notion of restriction
is compatible with the Satake isomorphism at almost all places:

Lemma 5.1.1 (Satake). Suppose that m ~ @)1, € Haisc(G) is an automorphic
restriction of ™' ~ @! ! € Haisc(G'), then for almost all places v of F the Satake
parameter c(m,) of m, is the image of c(wl) under the natural map

(6\4’ X Frobv)SS /C/}\’ —conj — (é X Frobv)Ss /(A} — conj.

Proof. For almost all places v, m, is the unique unramified direct summand in

Resg/(g%) (7). The result follows from [Sat63l, §7.2] applied to G x T — G’ where

T is any central torus in G isogenous to G’/G, and the translation in terms of dual
groups [Bor79, Prop. 6.7]. O
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Let us now formulate a direct consequence of [HS12, Theorem 4.14], ignoring
multiplicities.
Theorem 5.1.2 (Hiraga—Saito). The map resgl 1s surjective, and so any discrete
automorphic representation for G is an automorphic restriction of a discrete auto-

morphic representation for G'. In other words, there exists a surjective map
extd : Maise(G) — Maise(G')/ (G/(Ar)/G(AF)G(F)Ag:)"
such that for any 7' € extgl (), m is a subrepresentation of Resg (7).

In general this map extg/ is not uniquely determined.

We will mainly use this result for Sp, — GSpin;. This will be fruitful thanks
to exterior square functoriality for GL, [Kim03] and the commutativity of the
following commutative diagram of dual groups:

GSpin, = GSp, —— Sp, = SO;
(5.1.3) ng lsm @1
GL4 X GL1 SL@

where f:= A*(pr,) @ pry L.
6. GLOBAL ARTHUR-LANGLANDS PARAMETERS FOR GSpiny

6.1. Classification of global parameters. Let x : Ay /F* — C* be a continu-

ous unitary character. Recall the set ¥(I, x) of formal global parameters defined in
Section Recall that in Sectionwe fixed a representative (H, H, s, £) for each
equivalence class of elliptic endoscopic data for f‘, and in each case an L-embedding
Le: IH —» I'T = T x Wr. We also fixed, for each H as above, a representative
(H',H', s, &) for each equivalence class of elliptic endoscopic data for H, as well as
an L-embedding “¢’ : “H’ — “H. Throughout this section we will use this generic
notation.

A difficulty in using the twisted trace formula is to separate contributions from
different endoscopic groups. In our case the problematic endoscopic groups are
GSping and GSpin,. For this reason we begin with parameters of orthogonal
type, although they will not be our main focus.

There are two natural conjugacy classes of morphisms of complex algebraic
groups GLo x GLy — GSOy: up to scalars there is on C? a unique non-degenerate
alternating bilinear form, so that we have GLy = GSp,, and the tensor product bi-
linear form on C?®C? is symmetric. A simple computation by restriction to a max-
imal torus shows that the composition of any such morphism GLs x GLs — GSOy4
with the standard representation of GSOy is isomorphic to (Sym?Std® det) &
(det ® Sym? Std). Dually we get two conjugacy classes of embeddings + : GSpin, —
GL2 x GLy, with image the distinguished subgroup {(¢1,¢92)| det g1 = det g2}.
Note that the equality GLo = GSp, is reflected by the fact that for any irreducible
representation m of GLy(F),) we have (w, odet) ® 7V ~ 7. Ramakrishnan [Ram00,
Theorem M] defined the “tensor product” functoriality GLg x GLy — GLy4, which
we will denote by (m1,m2) — w1 X 7o, for cuspidal m;’s. This is an isobaric au-
tomorphic representation for GL,, i.e. we may see it as formal sum of cuspidal
automorphic representations for GL,,, with ) . n; = 4. If wy, wy, is unitary then
w1 X ms is a formal sum of cuspidal representations having unitary central character.
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(Note that this condition is put in the definition of isobaric automorphic represen-
tations in [Ram00], as is apparent in §2.2 loc. cit., contrary to the original definition
in [Lan79].) We will only need this lift in the weak sense, i.e. compatibility with
Satake parameters at all but finitely many places. This transfer is easily extended
to discrete representations:

e if m; = n[2] for some character i and 7y is cuspidal, then 73 K7y = ((no
det) ® m3)[2].
o if 1 = m[2] and w9 = 12[2], then m K o = n112 B n172[3].

Proposition 6.1.1. For any discrete automorphic representations w1, mo for GLa
such that wy,wyr, = x we have 1 B my € Uais.(GSpiny, x).

Proof. If m or my is discrete but not cuspidal this is clear, so we may assume
that both are cuspidal. We have m; K7 = 7} B --- H 7/ and this decomposition
is x-self-dual, so that each factor =} is either y-self-dual or occurs together with
7 = (x o det) @ m;" for some j # . For any large enough S we have

2 2

L3 Nm B m) @x™) = [T 256 A ex™) [T L5 mixm xx ™).

1<i<j<r

Each factor is meromorphic and does not vanish at s = 1 [Sha81, Theorem 5.2],
and L9 (s, m} x X x~!) has a pole at s = 1 if and only if ;i =~ (x odet) ® Al
[JS81l Proposition 3.6]. So to prove that each factor 7} is x-self-dual of orthogonal
type and occurs with multiplicity one it is enough to prove that the L-function
LS(s, \*(m R my) @ x 1) is holomorphic at s = 1. We have

2
L3(s, /\(m X ) @ (wWr,way,) 1) = L¥(s,ad’ (1)) L5 (s, ad®(m2))

where ad’(7;) is the Gelbart-Jacquet lift [GJ78] of 7;. The Gelbart-Jacquet lift
decomposes as follows (see Theorem 9.3 and Remark 9.9 loc. cit.). Recall that any
continuous character n : A3 /F>* — C* such that m; @ (nodet) ~ m; satisfies n* = 1.
Denote X(m;) = {n|m; ® (nodet) ~ m;}.

(1) If ©(m;) = {1} then ad’(m;) is a self-dual cuspidal automorphic representa-
tion for GL3 with trivial central character.

(2) If ¥(m;) = {1,n} for some non-trivial character n then letting E be the qua-
dratic extension of F' corresponding to 7, there exists a continuous character

v : Ag/E* — C* such that m; corresponds to Ind};‘g/EX (7), and denoting

Gal(E/F) = {1,c} we have (y/7¢)? # 1. In particular w,, = 7|A;/FX1].
Then ado(ﬂ'i) = o where o is the self-dual cuspidal automorphic repre-
sentation for GLy of orthogonal type corresponding to IndXVXF X (/7).
E

(3) The last possibility is that 3(m;) has 4 elements, say X(m;) = {1, 71, 92, m72}-
Then ado(m) = 11 B e B nine. This case is similar to the previous one
except that E/F is not unique, v/ is a quadratic character and o is not
cuspidal.

In any case no factor of ad’(m;) is the trivial representation of A%/F* and so
L%(s,ad’(m;)) is holomorphic at s = 1. O
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When we state the symplectic/orthogonal alternative (Proposition below),
we will for completeness include the non-split case in the statement. For this reason
we next state a special case of the non-split analogue of Proposition |6.1.1

Let E = F(y/a) be a quadratic extension of F. We now consider the ana-
logue of Proposition for GSpiny. Any one of the two conjugacy classes of
embeddings with distinguished image GSpiny xp E — GL2 g X GL2 g descends
to a unique conjugacy class of embeddings +* : GSpinj — Resp,/p GL2. Dually
this corresponds to two morphisms L(ResE/F GL,) — YGSpin,. The composi-
tion with the embedding ¢ : “'GSpin§ — T gives the dual of the inclusion
GL; — Resg,p GL; = Z(Resg/p GL2) on the second factor, and one of the two
Asai representations on the first factor. Recall that the two Asai representations
L(Resg /7 GL2) — GL4 are the two representations extending the representation
Std ® Std ®1 of the index two subgroup GLs X GLy xWg; in particular they are
twists of each other by the quadratic character Wy — Gal(E/F) ~ {£1}. We
will not need to distinguish these Asai representations, since we will only use the
fact that their composition with the exterior square morphism GL4s — GLg is the
unique representation of *(Res GLs) = (GLy x GLy) x W which coincides with
(Sym? Std ® det ®1) @ (det ® Sym? Std ®1) on GLy x GLy x Wi, i.e. the induction
of either factor. For a cuspidal automorphic representation 7 for Resg,r GL2, its
Asai lift As(m) was constructed in [Ram02] and [Kri03] and is an isobaric auto-
morphic representation for GL4 which is a sum of cuspidal representations having
unitary central character. As in the previous case we will only need compatibility
at unramified places. This construction is trivially extended to non-cuspidal dis-
crete automorphic representations for Resg,r GLa: for a continuous character « of
A% /E*, one of the two Asai lifts of v[2] is ’Y|A;/Fx77E/F EH7|A;/FX (3], where ng,p
is the quadratic character of A% /F* corresponding to E.

Proposition 6.1.2. As above let E = F(\/«a) be a quadratic extension of F. Let
7 be a discrete automorphic representation for Resg,p GLa. Assume that the re-
striction of wy to A% /F* equals x. Then (I, x) is of orthogonal type, i.e. for any
large enough S the L-function L (s,Sym?(I1) @ x~!) has a pole at s = 1.

Proof. As in the proof of Proposition [6.1.1] the case where 7 is not cuspidal is trivial,
and in the cuspidal case it is enough to prove that the L-function L5 (s, A> As(7) ®
x 1) is holomorphic at s = 1. We have

L3(s, /\AS(ﬂ') ®x 1) = L% (s,Ind% (ad’ 7).

As we recalled in the previous proof the Gelbart-Jacquet lift ad® (7) may decompose
into one, two or three cuspidal representations but in any case the trivial represen-
tation of Aj/E* does not occur. Thus the trivial representation of A /F* does
not occur in the automorphic induction Ind% (ad’ 7). O

Remark 6.1.3. In [Kril2) Appendix A] the precise decomposition of the tensor
product and Asai lifts are given.

Corollary 6.1.4. Let o € F*/F*2. Let I be a discrete automorphic representa-
tion for GSpiny and let c(I) € FS(GSping) be the associated family of Satake
parameters. Assume that I1 has central character x, i.e. p(c(Il)) = c(x). Then
LE(C(H)) € \IldisC(GSpingaX)'
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Proof. We use an embedding ¢* as introduced before Propositions [6.1.1] and [6.1.2]
and Theorem to realize IT as an automorphic restriction of some discrete au-

tomorphic representation for Resp 71/ GL2. The fact that (7, x) is of orthogonal
type then follows from Propositions and O

Propositionbelow shows that we may associate a parameter in the set \I/(f‘, X)
to each discrete automorphic representation of GSping with central character x.
We will refine this in Proposition to show that these parameters are in fact
contained in the subset Uq;.(GSpins, x). The following elementary remark will
help us to distinguish parameters coming from different endoscopic subgroups for
T.

Remark 6.1.5. For any o € F*/F*2 \ {1} the sets
(“6(FS(GSping)) UTE(FS(GSpiny))) and (“¢(FS(GSping)) U “¢(FS(R®)))

are pairwise disjoint, because we can recover « as follows (by the definition of *¢):
for H = GSpin{ or H = R®, ¢® € FS(H) and (¢°,2%) = “¢(c), for any v ¢ S,
then v splits in F'(y/a) if and only if det g, = 2. On the other hand if H = GSpin,
or H = GSpin, then we always have det g, = z2.

Proposition 6.1.6.

1) ForL a proper Levi subgroup of GSpin;, any c € F'S(GSpin;) occurring in
g 5, ANy 5 g

Igsscpins’l' such that [i(c) = ¢(x) satisfies “&(c) € U(T,x) and this element

of U(T', x) is not discrete.
(2) Let H = (GLy x GLg) /{(z212,27 I3 |z € GL1} be the unique non-trivial
elliptic endoscopic group for GSping. Then any ¢ € FS(H) occurring in

IH = SH and such that Ji(c) = c(x) satisfies (F€ o2& (c) € (T, ).
(3) Let o € F*/F*2. Let H' be a non-trivial elliptic endoscopic group for
GSpin{. Then any ¢ € FS(H') occurring in 'L = S and such that

isc disc
fi(e) = e(x) satisfies (€0 L&) (c) € W(T,x) and each one of its factors is
of orthogonal type with respect to x.

(4) Leta € F*/F*2. ForL a Levi subgroup of GSping, any c € F.S(GSpiny)
occurring in Iﬁsscping’l' and such that fi(c) = c(x) satisfies L&(c) € U(T, x).
If L # GSpin§ then &(c) is not discrete.

(5) Any ¢ € FS(GSpiny) occurring in Sﬁipin‘l and such that fi(c) = ¢(x)

satisfies “&(c) € U(T, x), and if this parameter is discrete then each one of
its factors is of orthogonal type with respect to x.
(6) Any ¢ € FS(GSping) occurring in S(?Spm"’ and such that fi(c) = ¢(x)

isc

satisfies L&(c) € W(T, y).
(7) Any c € FS(GSping) associated to a discrete automorphic representation

for GSpiny with central character x satisfies L¢(c) € W(T, x).

Proof. We use repeatedly the description of [, d(i;i‘ explained in Section namely

that if ¢ € FS(G) occurs in Idcfbjf, then there is a regular element @ € W (L, G),
and 7, € Ilgisc(L) such that 7% ~ 7 and ¢(7,) maps to ¢ via L — F'G.
(1) The possible proper Levi subgroups L and the embeddings L — £ GSpin,
are listed in Section 2:2] In the case at hand, the possibilities are
(a) GL; x GSping = GL; x GLg,
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(b) GLy x GSpin; = GL; x GL{, and
(¢) GL; x GL; x GSpin; = GL; x GL; x GL;.
In the first case we find that the corresponding parameter is of the form nH
w7, where 7 is a unitary discrete automorphic representation of GL2(Ar)
with wy, = x and n2 = x; in the second case, that the parameter is of
the form 7 B 7, where 7 is a unitary discrete automorphic representation
of GLy(Ar) such that ¥ @ (x o det) ~ 7; and in the third case that the
parameter is of the form n; B 7o By By with 7 =72 = x

(2) By the description of H as a quotient, ¢ corresponds to a pair (m,m2)
with each 7; either an element of Ilgsc.(GL2) with w,, = x or n B 7, with
n? = x. It is easy to check that (“¢o0L¢)(c) = (c(m1) @ c(ma), c(x)), so that
the corresponding parameter is m; H 5.

(3) This is similar to the previous two parts. Write H' = H3"** as in Sec-
tion so that an element of Ilgs.(H') is given by a pair of automor-
phic representations pi, py for the tori GSpinj* ~ Resg, p(GL1) (here
E; = F(y/a)) whose restrictions to GL; are equal to x. Then via the
natural embedding “GSping’ = GSO, x Gal(E;/F)) — GLa, we have
(Feote)(c) = (e(m1) @ e(m2), ¢(x)) where ) and 7o are the cuspidal auto-
morphic representations for GLo with central character x automorphically
induced (for E;/F) from p, and py seen as unitary characters of Ay, /E.

(4) We use the embedding ¢ introduced before Proposition (or rather one
of the two possible embeddings, the choice being irrelevant as before). If

c is discrete automorphic, i.e. it occurs in Igsscpm‘“GSpm“, then by The-

orem it comes from the automorphic restriction of some (my,m3) €

4isc (GLo x GLy), with ¢(wq, )e(wr,) = ¢(x) and $0 wx,wr, = x. Then

Le(e) = (e(m) @ e(ma), ¢(x)), and the corresponding parameter is 71 X 72,

considered in Proposition [6.1.1

Otherwise ¢ occurs in [ ;’sscpm“’l' for some proper Levi subgroup. By the

description given in Section we see that L is isomorphic to GLy X
GSpinj = GLy x GL; or to GL; x GL; x GSping = GL; x GL; x GL;.
In either case we can compute explicitly as in , and we find that we
obtain parameters of the form 7 H 7, where 7 is a discrete automorphic
representation of GLg(Af) such that 7¥ ® () o det) ~ 7, and parameters
of the form n; B ny By, By with n? =02 = x.

(5) This follows immediately from the stable trace formula for GSpin,
and the two previous points.

(6) This follows from the stable twisted trace formula of Theorem and
Remark Observe that we can associate an element of \Il(f‘, X) to any

family of Satake parameters occurring in Sﬁsscpin‘l or to IX_; in the former
case this is the content of , and in the latter case it follows from Lemma
4.1.0l

(7) This follows as in @, this time using the stable trace formula for GSpin;,
and applying parts and @ O

Note that points [4 and |5/ in Proposition could be proved for GSpin§ in a
similar way, but we will not need this case in the sequel.
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We can now prove the symplectic/orthogonal alternative for GL4. This is well
known, and can also be proved using the theta correspondence or converse theo-
rems; indeed, [AS14, Thm. 4.26] proves a corresponding result for GSpin groups of
arbitrary rank, showing that a x-self dual cuspidal automorphic representation m
of GL,, arises as the transfer of a globally generic representation of a GSpin group
which is uniquely determined by the data of which of the corresponding symmetric
and alternating square L-functions has a pole, together with the central character
of m.

However, our emphasis here is slightly different (we wish to determine which rep-
resentations have Satake parameters which occur in the discrete spectrum of GSpin;),
and in any case we find it instructive to show how this follows from the trace formula
together with Kim’s exterior square transfer [Kim03].

Proposition 6.1.7. Let w be a x-self dual cuspidal automorphic representation for
GLy, and let S be a finite set of places of F containing all Archimedean places and
all non-Archimedean places where m is ramified.

(1) There is a unique (up to isomorphism) elliptic endoscopic datum (H,H, s, &)
for T such that there exists ¢ € FS(H) satisfying L£(¢') = (c(n),¢(€)).
Moreover H is not isomorphic to R, and for any ¢’ as above we have, for
any large enough finite set S of places of F and any v € IC(H),

SCIl_iIsc,u,(c’)S Igilsc,u,(c’)s = I;ils,f,lv,(c/)s'
(2) (a) If H ~ GSpin§ for some a € F*/F*2 then (m,x) is of orthogonal
type, i.e. for any large enough S the L-function L°(s,Sym?(7) ® x 1)
has a pole at s = 1.
(b) If H ~ GSping then (m,x) is of symplectic type, i.e. for any large
enough S the L-function LS (s, \>(7) @ x~ ') has a pole at s = 1.

Proof. (1) By Remark (2) we know that (c¢(7), ¢(x)) does not occur in Icl;ifslc‘
for any proper Levi subgroup L of T'. Since (7, x) occurs with multiplicity
one in the discrete automorphic spectrum for I', the automorphic extension
FofrtoT (provided by for L = G, with @ = #) has non-vanishing
trace (see [LemlI0l Proposition A.5] for the p-adic case, the Archimedean

case is proved similarly). Therefore (c(m),c(x)) occurs in I% .. In the
stabilisation of the twisted trace formula (Theorem this contribution
comes from at least one elliptic endoscopic datum, i.e. there is an elliptic
endoscopic group H and ¢’ € FS(H) occurring in S} such that L¢(¢/) =
(c(m),e(x)). Again using [JS81] we see that H ~ R would contradict
cuspidality of 7. By (2), (3) and (4) in Proposition we also know that
¢’ cannot come from a proper Levi subgroup of H or from a non-trivial
endoscopic datum for H. We have proved every statement of the first point
except for uniqueness of H, which will follow from the second point.

(2) Let H and ¢ be as above. The previous point shows that there ex-
ists a discrete automorphic representation IT for H such that “&(c(Il)) =
(c(I), ¢(x))-

(a) If H ~ GSpiny the result follows from Corollary

(b) If H ~ GSpin;, let II' be an automorphic restriction (in the sense
of Section [5) of II to (GSping)der ~ Spy. Then I is a discrete
automorphic representation for Sp,, and Arthur associates a discrete
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parameter ¢’ € Wgisc(Spy) to I’ (see Theorem. Now A%(c(m))®
c(x)™t = 1@ c(¢') (see the commutative diagram (5.1.3)) and so
LS(s, N°(m) @ x™1) = ¢3(s)L5(s,¢)'). Moreover by [Kim03, Thm.
5.3.1], 1®c(y’) is associated to a (unique by [JS81, Thm. 4.4]) isobaric
sum of unitary cuspidal representations, and so the same holds for v’
This implies that L(s,1’) does not vanish on the line R(s) = 1, by
the main result of [JST7]. O

Remark 6.1.8. Thanks to Theorem we see that Wgs.(GSping, x) is the
subset of W(T', x) consisting of pairs (1, x) with ¥ of the following kinds. (We have

labelled them in the same way as in [Art04]. The groups Sy are easy to compute;
for the values of ey, see [Art13] (1.5.6)].)

(a) cuspidal automorphic representations 7 of GLy4 such that 7V @ (yodet) ~ 7
and L5(s, x ™! ®/\2 m) has a pole at s = 1. (General type, Sy =1, ey = 1.

(b) w1 B w2 where m; are cuspidal automorphic representations of GLg, w,, =
W, = X and my % mo. (Yoshida type, Sy = Z/2Z, ey, = 1.)

(c) m[2] for m a cuspidal automorphic representation for GLg such that w,/x
has order 2 (i.e. (m, ) is of orthogonal type, which means that = is auto-
morphically induced from a character n : Ay /E* — C* for the quadratic
extension E/F corresponding to wy/x, such that n° # n and 77|A;/Fx = X).
(Soudry type, Sy =1, gy = 1.)

(d) wHn[2] with 7 cuspidal for GLg and w, = n? = x. (Saito-Kurokawa type,
Sy =7Z/2Z, ey =sgn if (1/2,7 ®n~1) = —1, and €, = 1 otherwise.)

(e) mi[2] B n2[2] with n? = n3 = x and 7, # 2. (HowePiatetski-Shapiro type,
STP = Z/2Z, Ey = 1.)

(f) n[4] with n? = x. (One dimensional type, Sy =1, g4 = 1.)

Proposition 6.1.9. For ¢ € FS(GSpin;) associated to a discrete automorphic
representation 11 of GSpin, with central character x, the associated element of
(T, x) (by Proposition belongs to the subset Uqisc(GSping, X).

Proof. As in the proof of Proposition we use an automorphic restriction IT'
of II to Sp,, and the associated parameter i)', which we know to be discrete. We
also know that 1® c(¢') = A*(c(¥)) ® c(x) L.

By Theorem [2.6.1} we can and do assume that  is not a square. In particular,
this implies that 1) does not have a summand of the form 7, n[2] or n[4] (as the
condition that 7 is y-self dual forces n? = x). In addition, if ¢ = v; By, then

@2
c(y) = (/\2(6(1/}1)) ® c(x)’l) @ ad’(c(v1)), which contradicts the discreteness
of ¢'. Thus we have the following possibilities for .

(1) ¢ = 11 B 1o where 9; is a cuspidal automorphic representation for GLo
such that ¥y ® (x odet) ~ t; and 11 % 5. We need to show that w,, = X,
ie. that (m;,x) is of symplectic type. Suppose not. We have w? = x?,
and by Remark we also have wy,wr, = x? and s0 Wy, = Wx,. Then
we find that A°(¥) ® X! = (wr, /%) B (wr,/x) B (x 17 K 7m). Since
W, /X = Wi, /X is a non-trivial quadratic character, this cannot be written
as 1 H ¢’ with ¢’ discrete, a contradiction.

(2) ¢ = w[2], where 7 is a cuspidal automorphic representation for GLy such
that m¥ ® (x o det) ~ 7. In this case we need to check that w, /x has order
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2, i.e. is non-trivial. But if y = w, then ¢’ = A*(x[2]) @w;! = ad’(7)B[3],
which cannot be written as an isobaric sum of 1 and discrete automorphic
representations for general linear groups, a contradiction.

(3) ¢ = w[1] where 7 is a cuspidal automorphic representation for GL4 such

that 7 ® (x o det) ~ 7. This case was considered in Proposition O

7. MULTIPLICITY FORMULA

In this section we prove the multiplicity theorem for GSping (Theorem [7.4.1)),
which describes the discrete automorphic spectrum in terms of the packets Il (ey)
defined in Definition [2.5.5} We begin with some preliminaries.

7.1. Canonical global normalisation versus Whittaker normalisation. Re-
call from Remark that for G = GLy x GL; and G =G x 0, for a Levi
subgroup L of G and 7, € Ilgisc(L) the parabolically induced representation
A2(Up(Ap)L(F)\G(Ap))s, is irreducible. For @ € W(L,G) we have a canon-
ical (“automorphic”) extension of this representation of G(Ar) to G, denoted
Mp5p)(0) o pgw in Section We have another canonical normalisation of this
extension, namely the Whittaker normalisation recalled in Section [3.2

Lemma 7.1.1 (Arthur). These two extensions coincide.
Proof. The proof of [Art13l Lemma 4.2.3] readily extends to the case at hand. O

7.2. The twisted endoscopic character relation for real discrete tempered
parameters.

Proposition 7.2.1. Let ¢ : Wr — GSp, be a discrete parameter. Then the twisted
endoscopic character relation holds for 11, (as defined by Langlands in [Lan89]),

i.e. part[1] of Theorem[3.1.1] holds.

Recall that for ¢ such that i o ¢ is a square, this twisted endoscopic character
relation is a direct consequence of [Mez16] and [AMgR18, Annexe C].

Proof. We use a global argument similar to (but simpler than) [AMgR18| Annexe
C]. Up to twisting we can assume that Stdgspin, ¢ = (o, @ I,,,sign"!), where
a1,as € 37 are such that a; —as € Zq (and as before, I, = Indg/;r* (z+— (2/2)%)).
Fix a continuous character y : AX/R+oQ* — C* such that x|gx = sign®**. There
are cuspidal automorphic representations 7y, mo for GLy/Q with central characters
Wr, = wg, = x and such that rec(m; o) = I,, (apply [Ser97, Proposition 4] with
n=1,k=2a;+1 fixed and N of the form fcond(x) where cond(x) is the conductor
of x and £ — 400 prime). Let ¢ = m B o € Wyis.(GSping, x), so that ¥, = ¢.
By [Mez16] there is z(p) € C* such that for any fs € I(T'g) we have

7 (foo) = 2(0) (s (f) + trm (fe))
)

where 7}, (resp. 7)) is the generic (resp. non-generic) element of IL,, ie. (-, 7%)
(resp. (-, 7)) is the trivial (resp. non-trivial) character of S,. We need to show

that z(¢) = 1. Recall that for any finite prime p the twisted endoscopic character

relation N
trwip(fp) = Z trwp(fl'))

Tp Epr
holds by the main theorem of [CG15].
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In the discrete part of the trace formula for f‘, the contribution I (1;1 serc(1) of c(v)
only comes from L = GL; x GLy and @ = 6y, using notation as in the discussion
preceding Definition By Lemma and since det(w — 1|AL) = 2 this

contribution is (on I(T'g) for S containing oo and all places where 7; or 7y ramify)

H hy — = Htrﬂwv

veS
where ng is the Whittaker-normalised extension to I'(F,) of the irreducible parabol-
ically induced representation 7y, x 72,. Thus we get for h = [[,cgho € 1 (f‘ s)

(7.2.2) Idle () (R H Z tr m, (hSSPins),

vES m, €y,

By the stabilisation of the twisted trace formula (Theorem , and using Remark
and Proposition which imply that the endoscopic groups GSping (for
a € F*X/F*?) and R® (for a € F*/F*2 <\ {1}) have vanishing contributions
corresponding to c(1)?, 2)) equals

Saise, (@) ()5 (REZPI).

By surjectivity of the transfer map h — hGSPins (Proposition|2.4.4), this determines

the stable linear form Sgsscp;?5) ey~ Let

H = (GLy x GLy) /{(2]2,2 ' I,| 2 € GL;}
be the unique non-trivial elliptic endoscopic group for GSpins. The (v(¢)), c(3)?)
part of the stabilisation of the trace formula (Theorem [4.3.2)) for GSping now reads,

fOI' f - HUES fv € I(G‘rSpil’lEB)7

IGSpin5
disc,v(1)),c(y)s

1
(fv)—’—l Z Sdlscy c’s(fH)'
vES m, €y, v ()
("S>—>(‘(w)s

Now SdlsC oS = Igilsc  ws is non-vanishing if and only if (v, %) is associated to
(m1,m2) or to (ma, 1), in which case it equals tr (7 ® m3) or tr (ma ® 71). By the

endoscopic character relations, in either case we have

Sé_ilscw’,c’s (fH) = H Z <8,7Tv>t1'7'(',u(fv),

veS WUGHW,U

where s is the non-trivial element of S;. Thus we obtain

GSpin Z(@) + Hv <Sa 7T'u>
Idiscl,)u(ii),c(qp)s(f) = Z QES H tr 7o (fo)-
(ﬂv)venvesnwv ves
By Proposition (1) the left-hand side simply equals the trace of f in the
(v(v), c(p)®)-part of the discrete automorphic spectrum for GSpins. Varying S,
the above equality means that the multiplicity of m# = &/, € Il in A%*(GSpin;)
equals (z(¢)+ (s, 7m))/2. Comparing with [CG15, Theorem 3.1] (which relies on the
theta correspondence and not trace formulas) for any 7 we finally obtain z(¢) =
1. O
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Remark 7.2.3. Arguing as in Lemma C.1 of [AMgRI§] one could certainly prove
the Proposition without using [CG15, Theorem 3.1}, since |z(¢0)| = 1 and (z(¢) —
1)/2 € Z>¢ imply z(1)) = 1 (consider the multiplicity of 7ro_o®®; mp where (s, mp) =
+1 for all p).

7.3. Local parameters. In this section we obtain Arthur’s multiplicity formula for

GSping, by formally using the stable twisted trace formula and twisted endoscopic
character relations to get the desired expression for Sgsscf):n"’ for ¢ corresponding to
1 € Wq4isc(GSping), and then the stable trace formula for GSping.

We begin with the following important point, which is Conjecture for G =

GSpin;.

Proposition 7.3.1. If m is a x-self dual cuspidal automorphic representation
of GL4(AF) of symplectic type, then for any place v of F, the pair (rec(m, ), rec(xy))
is of symplectic type, i.e. factors through GSp,(C).

Proof. This follows from [GT1lal Thm. 12.1], which shows that 7 arises as the
transfer of a (globally generic) automorphic representation II of GSp,(Afr), and
that at each place v, the pair (rec(m,),rec(xy)) is obtained from the L-parameter
associated to II, by the main theorem of [GT11a]. O

Remark 7.3.2. There are at least two alternative ways of proving Proposition|7.3.1
One is to use the main results of [Kim03|] and [Hen09], which imply in particular
that for each place v the representation A\ rec(m,) ® rec(y,) ! contains the trivial
representation, together with a case by case analysis. The other is to follow the
argument of [Art13 §8.1].

7.4. The global multiplicity formula. Given Proposition the multiplicity
formula is morally equivalent to the following formula for any ¢ € ¥ 4;5.(GSpiny),
f € H(GSpin;) and S large enough:

GSpin,  _ {E]’ézw) Domen, (Sy,mtrrif v =v(y)

disc,v,c(¢)5 0 otherwise.

This is the simplification (for discrete parameters) of the general stable multiplicity
formula (see [Art13l Theorem 4.1.2]).

We now prove the multiplicity formula; the following theorem is Conjecture(2.5.6
specialised to the case G = GSpin;. We write I, (ey) for the set of representations
defined in (with no tilde, since we are working with GSping).

Theorem 7.4.1. There is an isomorphism of H(GSpin;)-modules
(7.4.2) A%(GSpin;) = b T
X:A;/FX]R>O~>(CX
YEWqisc(GSping,x)
mEMy (ey)
where x Tuns over the continuous (automatically unitary) characters.

Proof. Fix a continuous character x : Ax/F*Rso — C*, and write

A2(GSpin5, X)
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for the space of x-equivariant square-integrable automorphic forms on which A% /F*
acts via x. For any v € IC(G) and ¢ € FS(G), write

A*(GSping, x)u. = lim A*(GSping, X)u.c:-
S

Then we have

A?(GSping, x) = @ A?(GSping, X)y.c
veIC(G)
cEFS(G)

= o, A?(GSping),,.c(y).
velC(G)
YEV4isc (GSping,x)
Indeed, it follows from Proposition that for any ¢ with A?(GSping, x). # 0,
there is some 1) € Wqis.(GSping, x) such L&(c(n)) = c(3). It follows that we are
reduced to showing that for each 1 € Uq;5.(GSping, x), we have

(7.4.3) A2(GSping),, o(y) = {@ﬂenusw T it =v(y)
0 if v #v(v).

Fix v € IC(G) and ¢ € Ug;s.(GSping, x). If x is a square, then we are done
by Theorem (that is, by reducing to SOs, already proved by Arthur). So we
only have to consider the following cases:

(1) Cuspidal 7 for GL4 such that 7V ® (xodet) ~ 7 and (, x) is of symplectic
type.

(2) m By where the 7;’s are distinct cuspidal automorphic representations for
GL; with w,, = x (Yoshida type).

(3) m[2] where 7 is a cuspidal automorphic representation for GL2 such that
wr/x is a quadratic character, i.e. 7¥ ® (x o det) ~ 7 and (m,x) is of
orthogonal type (Soudry type).

In case (2), the multiplicity formula is a special case of [CG15, Theorem 3.1], proved
using the global theta correspondence. So we can and do assume that we are in
case (1) or case (3), so that in particular Sy, = 1 and ¢ = 1. Furthermore, in
either case we know that for any place v, the parameter v, is of symplectic type,
i.e. factors through GSp, (in case (1) this is Proposition and in case (3) it
follows from Theorem .

We will prove ([7.4.3)) by computing Igip:r;?;;?vspins (f) for each f € H(GSpiny),

which by definition is the trace of f on the left hand side of (|7.4.3) (note that this

is well-defined, and equal to Igsscp:r;?ﬁss ping (f) for any sufficiently large S). To this

end, note firstly that by Proposition (1), we know that for any proper Levi
GSping,L
I 5

diso.w , with central

L of GSpin;, and for any ¢ € F.S(GSpin;) occurring in

character y, we have “¢(c) € \Il(f,x) N Paisc (GSping, x). Consequently, we see

that for any ¥ € Wqis.(GSping, x), we have
GSpin _ 1GSping,GSpin
(744) disc,u,c?w) - disc,y,c?w) ’
Denoting as usual the unique non-trivial elliptic endoscopic group of GSpin
by H, we have that Sﬂsc’u,vc, vanishes identically for any v/ € IC(H) and any

¢ € FS(H) such that £¢/(¢') = c(¢)) (because the proof of Proposition (2)
shows that any ¢’ occurring in S is such that “€ o Z¢/(¢’) is a sum of at least two
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discrete automorphic representations of general linear groups). It follows that we
have

GSpin _ oGSping
(745) disc,V,C?d)) Sdlsc v,e()”

By Proposition for any ¢ occurring in S$oP™ we have Le(d) # c(v),

disc
so that (using also Remark [6.1.5) the contribution of ¢ to the stabilisation of the
twisted trace formula for I' simply reads

r GSpin in
(746) Igisc,ll,c(w) (h) Sdlbcpy C?w)(hGSP 5)

where on the right-hand side ¢()) denotes the unique element of F.S(GSpiny)
which is the preimage of c(v)) € FS(T) by ¢, and similarly for v seen as an

element of IC(GSpin;). By surjectivity of h +— hESPs (see Proposition ,
h

and Remark this implies that GG Sping ) vanishes identically if v # v(¢). In

disc,v,c(y

the definition of I5 . ()

summand corresponds to L = GL4. By Lemma we have for h =[], h, € I(T)

as a sum over Levi subgroups, the only non-vanishing

Liisew(wy.ew () = [ ] try, (o)

Applying Theorem (or rather its extension to parameters in ¥+ (GSpinj)
via parabolic induction; see [Art13, §1.5]) to the right-hand side of this equality

and using (7.4.6) we obtain
GS i
dlean'(Z) c(w) H fU H Z tr ﬂ-’u(fv)~

vy €lly,

Combining this with (7.4.4) and (7.4.5)), we conclude that

disc,v,c() lfV#I/(@/})
Recalling that Sy, =1 and &, = 1, this is equivalent to so we are done. [J

IGSp1n5 GSpln va _ {H Z‘ﬂ'venw tr Wv(fv) ifv= l/(w)

Remark 7.4.7. A consequence of the multiplicity formula and [AST4] is that for
any discrete automorphic representation = for GSpin; which is formally tempered
(i.e. of general or Yoshida type), there exists a globally generic discrete automorphic
representation 7’ for GSping such that for any place v of F, 7, and 7, have the
same Langlands parameter. Indeed letting ¢ € Uq;5.(GSping, x) be the parameter
of m (well-defined by the multiplicity formula), Shahidi’s conjecture (proved in
[GT1Ia]) implies that there is a unique representation in II, which is generic at
each place. In fact the multiplicity formula asserts that it is automorphic with
multiplicity one. By (the converse part of) [AS14, Theorem 4.26] there exists a
globally generic discrete (even cuspidal) automorphic representation 7’ for GSping
such that 7/ ~ m, for almost all v. In particular 7’ has parameter v, and for any
place v of F, m, is generic.

Note that in the case x = 1, Arthur used the the analogue of [AS14] in order
to prove Shahidi’s conjecture: see [Artl3, Proposition 8.3.2]. More precisely, he
used the descent theorem of Ginzburg, Rallis and Soudry (and thus indirectly the
converse theorem of Cogdell, Kim, Piatestski-Shapiro and Shahidi).
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Remark 7.4.8. Let G be an inner form of GSpiny over a number field F'. Us-
ing the stabilisation of the trace formula for G qualitatively (i.e. only considering
families of Satake parameters), we see that for any 7 € aisc(G, X), there is a well-
defined ¢ € W(T, x) such that () = (c(¢), c(x)). Moreover if 1 is discrete then
Y € Uaise (GSping, x). If ¥ € Vai(GSping, x) is tempered (i.e. either of general
type or of Yoshida type) then using the stabilisation of the trace formula quanti-
tatively and the endoscopic character relations proved in [CG15| for inner forms as
well, one could certainly prove the multiplicity formula for the part of the discrete
automorphic spectrum for G corresponding to (c(v),c(x)) € FS(G). The proof
would be similar to those of Proposition and Theorem Note however
that to even state the multiplicity formula, one has to fix a normalisation of local
transfer factors satisfying a product formula. This normalisation was achieved in
[Kal] and used in [Tail] to prove the multiplicity formula for certain inner forms of
symplectic groups. It would thus be necessary to compare Kaletha’s normalisation
of local transfer factors for the non-split inner form of GSp, realised as a rigid
inner twist with Chan—Gan’s ad hoc normalisation [CGI5| §4.3].

8. COMPATIBILITY OF THE LOCAL LANGLANDS CORRESPONDENCES FOR Sp4
AND GSping

In this section, we study the compatibility of the local Langlands correspondence
with restriction from GSp,(F') ~ GSpin;(F) to Sp,(F'), where F is a p-adic field.
We do not consider the case of Archimedean places, which could certainly be done
by a careful examination of the Langlands—Shelstad correspondence.

8.1. Compatibility with restriction. Let F' be a p-adic field. The proof of
the existence of the local Langlands correspondence for GSp,(F') ~ GSping(F)
in [GT11al used the theta correspondence, and its compatibility with the correspon-
dence stated in [Art04] (characterised by (twisted) endoscopic character relations)
was proved in [CG15]. In the paper [GTIL0], a local Langlands correspondence
for Sp,(F') was deduced from the correspondence for GSp, (F') by restriction. This
correspondence is uniquely characterised by the commutativity of the diagram

II(GSpin;) ——  ®(GSpin;)

(8.1.1) l lpr

II(Sp,) ——— ®(Spy)

where II(GSpin;) (resp. II(Sp,)) is the set of equivalence classes of irreducible ad-
missible representations of GSping(F) (resp. Sp,(F)), ®(GSpiny) (resp. ®(Sp,))
is the set of equivalence classes of continuous semisimple representations of WD g
valued in GSp,(C) (resp. SO5(C)), the horizontal arrows are the local Langlands
correspondences, and pr is the projection GSp,(C) — PGSp,(C) = SO5(C). The
left hand vertical arrow is not in fact a map at all, but a correspondence, given by
taking any restriction of an element of II(GSpiny) to Sp,(F).

Of course, [Art13] gives another definition of the local Langlands correspondence
for Sp,, which is characterised by twisted endoscopy for (GLs,g — ‘g™1). It is
not obvious that this correspondence agrees with that of |[GT10]; this amounts
to proving the commutativity of the diagram , where now the horizontal
arrows are the correspondences characterised by twisted endoscopy. Proving this
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is the main point of this section; we will also prove a refinement, describing the
constituents of the restrictions of representations of GSping(F') to Sp,(F’) in terms
of the parameterisation of L-packets.

We begin by recalling some results about restriction of admissible representa-
tions, most of which go back to [GK82], and are explained in the context of GSp,,,
in [GTI0]. They are also proved in [Xul6], which we refer to as a self-contained ref-
erence. If 7 is an irreducible admissible representation of GSping(F), then 7|gp, ()
is a direct sum of finitely many irreducible representations of Sp,(F) ([Xul6l, Lem.
6.1]), and these representations are pairwise non-isomorphic ([AP06, Thm. 1.4]).
Furthermore if 7 is an irreducible admissible representation of Sp,(F’), then there
exists an irreducible representation 7 of GSping(F') whose restriction to Sp,(F)
contains 7, and 7 is unique up to twisting by characters ([Xul@, Cor. 6.3, 6.4]).
There is also an analogue of these statements for L-parameters, which is that L-
parameters for Sp, may be lifted to GSping, and such lifts are unique up to twist;
see [GT10, Prop. 2.8] (see also [Lab85, Théoréme 7.1] for a more general lifting
result).

In particular, it follows that if = € II(Sp,), and 7 lifts 7, with L-parameter oz,
then prows depends only on 7 (because w5 is well-defined up to twist, as 7 itself
is); we need to show that it is equal to the L-parameter of 7 defined by the local
Langlands correspondence of [Art13].

Theorem 8.1.2. The diagram (8.1.1)) commutes, where the horizontal arrows are
the correspondences of [Art13l [Art04] determined by twisted endoscopy; that is, the
local Langlands correspondences for Sp, of [GT10] and [Art13] coincide.

Proof. By the preceding discussion, it suffices to show that for each irreducible
admissible representation 7, there is some lift 7 of 7 such that ¢, = props.

We begin with the case that 7 is a discrete series representation. Then by [Clo86,
Thm. 1B] and Krasner’s lemma, we can find a totally real number field K, a finite
place v of K, and a discrete automorphic representation II of Sp,(Ag), such that:

(1) K, 2 F (so we identify K, with F' from now on).

(2) I, ~m.

(3) at each infinite place w of K, II,, is a discrete series representation.

(4) for some finite place w of K, II,, is a discrete series representation whose
parameter is irreducible when composed with Stdgp, : SO5 — GLs (for
example the parameter which is trivial on Wy, and the “principal SLy” on
SU(2)).

By Theorem there is a discrete automorphic representation II of GSpin;(Ag)
such that ﬁ|sp4( Ax) contains II. We can and do assume that the infinitesimal char-

acter of II is sufficiently regular, so that in particular the parameter 1 of II is
tempered. By above, 1 is just a self-dual representation for GL5/K with triv-

ial central character. Write v for the parameter of II.
As in the proof of Proposition (i.e. comparing at the unramified places
using (5.1.3))), we see that 1Hy = /\2(w) ®wil. Given the possibilities in Remark

6.1.8| we see (using [GJ78] to rule out the case 1) = 7[2], see the proof of Proposition
6.1.7/ (1)) that zz is necessarily tempered. If zz = m B 7y was of Yoshida type then
we would have ¢ = 1 H (m K 7y), a contradiction with the fourth property of
II above. Therefore zz is of general type, i.e. a y-self-dual cuspidal automorphic
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representation for GLy/K of symplectic type for some character x of A% /K*. By
the main results of [Kim03] and [Hen09|, the Langlands parameter of 1 H at v
equals /\2(rec(1zv))®rec(w$)_1, which implies that ¢r1, = propg . Taking 7 = 11,
we are done in this case.

We now treat the case that the parameter @, is not discrete, but is bounded
modulo centre. Recall that a minimal Levi subgroup “M of “Sp, such that
©-(WDp) C £M is unique up to conjugation by Cent (¢, S/p\4) [Bor79, Proposition
3.6]. Then ¢, factors through a well-defined discrete parameter ¢ : WDp — LM.
Since Sp, is quasi-split we have a natural identification of “M with the L-group of
a Levi subgroup M of GSp, (well-defined up to conjugation by normalisers in Sp,,
resp. S/FT4) Since @, is assumed to be non-discrete we have “M # LSp,. It follows
from the construction in [ArtI3] (see the proof of Proposition 2.4.3 loc. cit., in
particular (2.4.13)) that 7 is a constituent of the parabolic induction Indlcj((?)) ™,
where P is any parabolic subgroup of Sp, with Levi M, and my is in the L-packet
of om. Recall that this L-packet is defined via the natural identification M with
a product of copies of GL groups with Sp,, for some 0 < a < 2, using rec for the
GL factors and fxvrthur’s local Langlands correspondence for the Sp factor.

Write M = M N Sp, where M is a Levi subgroup of GSp,, and similarly
P = PN Sp,. Let m be an essentially discrete series representation of M(F)
whose restriction to M(F') contains mp. Then there is an irreducible constituent 7
of the (semisimple) parabolic induction Indg(SFr,’;%(F) M such that 7 is a restriction
of m. We will prove that ¢, = proyz. Note that for non-discrete parameters, the
local Langlands correspondence for GSping(F') of [GT11al is also compatible with
parabolic induction (see [CG15l §6.6] and [GT11bl Prop. 13.1]), i.e. the parameter
of T is pm; (the Langlands parameter of mng) composed with LM c LGSpin;,.
Note that M is isomorphic to a product of GL and for such a group the (bijec-
tive) local Langlands correspondence is well-defined, i.e. it does not depend on the
choice of an isomorphism. This follows from compatibility of rec with twisting,
central characters and duality. The same argument shows that any morphism with
normal image between two such groups is also compatible with the local Langlands
correspondence. We have a commutative diagram

LM —— LGSpin,

g L
IM —— LSp,

so that to conclude that ¢, = proys it is enough to show that ¢n = propr;,
which is simply a compatibility of local Langlands correspondences for M and M.
There are three cases to consider. We write the standard parabolic subgroups of
GSping and Sp, as in Section We do not justify the embedding M — M, as
this is a simple but tedious exercise in root data.

e M = GL] x GSpin;, M = GL3?, the embedding M — M is (z1,22) —
(2129, %1 /29,27 ). This case is trivial.

e M = GL, x GSpin,;, M = Sp, x GL;, the embedding M < M is
(g,21) = (gz1,27"). This case is not formal as for the factor Sp, the local
Langlands correspondence that is used is Arthur’s from [Art13] and it is not
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obvious that it is compatible with rec for GLo, in other words that Arthur’s
local Langlands correspondence for Sp, ~ SLy (characterised by twisted
endoscopy for GL3) coincides with Labesse-Langlands [LL79]. Fortunately
Arthur verified this compatibility in [Art13, Lemma 6.6.2].

e M = GL; x GSping, M = GL; x GLy, the embedding M < M is g —
(det g, g/ det g) where we have identified GSping with GLy. This case also
follows from the above remark about the local Langlands correspondence
for groups isomorphic to a product of GL.

Finally, we must treat the case that ¢ is not bounded modulo centre. The de-
scription of the L-packets in this case is again in terms of parabolic inductions from
Levi subgroups (“Langlands classification”). This is well-known and completely
general (see [Sil78], [SZ14]). The argument is similar to the above reduction, ex-
cept that P and P are uniquely determined by a positivity condition and that =
and 7 are unique quotients of standard modules and not arbitrary constituents. We

do not repeat the argument. (Il

We now examine the restriction from GSpin;(F') to Sp,(F') more closely, prov-
ing a slight refinement of the results of [GT10]. In [GTI0, App. A], a detailed
qualitative description of the constituents of 7|gp, (r) is given, which is obtained
by examining the local Langlands correspondence (see [GT10, §5, 6] for the cor-
responding calculations with L-parameters). However, since the local Langlands
correspondence of [GT10] is not characterised in terms of twisted and ordinary en-
doscopic character relations, they cannot describe precisely which elements of the
L-packets for Sp,(F) arise as the restrictions of given elements of the L-packets
for GSping(F).

Theorem [8:3.2] below answers this question. In its proof, we need to make use of
the results of Section |5 for SO4 — H where

H = (GLy x GLy) /{(22,2 ' I, | z € GL;}

is the non-trivial elliptic endoscopic group of GSpin;. Here SOy is identified with
the subgroup of pairs (a,b) with (deta)(detb) = 1. Indeed, H may be identified
with the subgroup GSO, of GO, given by the elements for which det = v, where v
is the similitude factor.

Note that SOy, is an elliptic endoscopic group for Sp, and that we have the
following commutative diagram:

H SO, = SO,
(8.1.3) lL ¢ lLE'

GSping; = GSpy ——  Sp, = S05

8.2. Multiplicity one. In studying restriction from H to SO4 we will make use
of the following variant of the results of [AP06]. In fact, we could prove the special
case that we need in a simpler but more ad-hoc fashion by using the description
of H in terms of GL3, but it seems worthwhile to prove this more general result.

Proposition 8.2.1. Letn > 1, and let V' be a vector space of dimension 2n over F
endowed with a non-degenerate quadratic form q. Let m be an irreducible admissible
representation of GSO(V,q) = GSO(V, ¢)(F). Then the irreducible constituents of
the restriction 7T|So(v7q) are pairwise non-isomorphic.
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Proof. By [APQ06, Theorem 2.3], it suffices to show that there is an algebraic
anti-involution 7 of GSO(V, ¢) which preserves SO(V, q) and takes each SO(V, q)-
conjugacy class in GSO(V, q) to itself. To define 7, we set 7(g) = v(g)6"g~ "
where § € O(V, q) is an involution with det § = —1. This obviously preserves SO(V, q),
so we need only check that it also preserves SO(V, ¢)-conjugacy classes in GSO(V, q).

To see this, we claim that it is enough to show that we can write g = zy
with z € O(V, q), y € GO(V,q) (so v(y) = v(g)) satisfying 22 = 1, det(z) = (—1)",
y? = v(y). Indeed, we then have

r(g) = w(g)d"g 0T = S w(y)y eI = s = " M ay)ad " = (267) g "),

as required. The result then follows from Lemma below, which is a slight
refinement of [RVI8, Thm. A]. O

Lemma 8.2.2. Letn >0, let K be a field of characteristic 0, and let V be a vector
space of dimension 2n over K endowed with a non-degenerate quadratic form q. If
g € GSO(V, q) then we can write g = zy with x € O(V,q), y € GO(V, q) satisfying
22 =1, det(x) = (~1)", 42 = v(y).

Proof. We argue by induction on n, the case n = 0 being trivial. Suppose now that
n > 0. By [RVI8 Thm. A], we can write g = zy with z € O(V,q), y € GO(V,q)
satisfying 22 = 1, y* = v(y) = v(g). If det(x) = (—1)" then we are done, so
suppose that det(z) = (—1)"! and so det(y) = (—1)" v (y)".

Since y? = v(y), any eigenvalue (in an extension of K) of y is a square root
of v(y). Since det(y) = (—1)"v(y)", we see that the two eigenspaces of y do not
have equal dimension. It follows that v(y) is a square, as otherwise the characteristic
polynomial of y would be a power of the irreducible polynomial X2 — v(y). So the
eigenvalues of y are in K, and up to dividing ¢ and y by one of these eigenvalues
we can assume that g € SO(V,q) and y € O(V, ¢) with det(y) = (—1)"*'. Then y
has an eigenspace (for an eigenvalue +1) of dimension at least n 4+ 1. The same
analysis applies to x, and it follows that there is a subspace W (the intersection of
these eigenspaces for x and y) of dimension at least 2 of V' on which g acts by a
scalar which is +1.

Up to replacing g by —g and y by —y, we can assume that ker(g—1) has dimension
at least 2. We have a canonical g-stable decomposition of V' as the direct sum of
ker((g — 1)?") and its orthogonal complement, and they both have even dimension
over K since g € SO(V,q) with dimg V even. If g is not unipotent, we conclude
using the induction hypothesis for the restriction of g to ker((g — 1)?*) and to its
orthogonal complement.

Suppose for the rest of the proof that g is unipotent. If n = 1 the conclusion
is trivial, so assume that n > 1, so that SO(V,q) is semisimple. By Jacobson—
Morozov (see for example [Bou05, Ch. VIII §11]) there is an algebraic morphism
i to g, unique up to conjugation by the centraliser
of g in the subgroup Aut.(s0(V, q)) of SO(V, q)/{£1} where Aut, is the subgroup of
automorphisms of the Lie algebra generated by exponentials of nilpotent elements.
For d > 1 fix an irreducible representation U, of SLo of dimension d as well as
a non-degenerate (—1)?~!'-symmetric SLo-invariant pairing By on Uy. We have a
canonical decomposition

SLy; — SO(V, ¢) mapping ((1)

V=Puiev
a>1



48 TOBY GEE AND OLIVIER TAIBI

where V; = (V @k Uj)St2. The quadratic form ¢ corresponds to an element of

2
(Sym*v)St= = sym’(Vi)e P AVi
d>1 odd d>2 even
and non-degeneracy of ¢ is equivalent to non-degeneracy of each factor. Writing
each V; for d odd (resp. even) as an orthogonal direct sum of quadratic lines (resp.
planes endowed with a non-degenerate alternate form), we are left to prove a de-
composition ¢’ = z'y’ in the following cases.
(1) V' has odd dimension 2m + 1 and is endowed with a non-degenerate qua-
dratic form ¢’ and a unipotent automorphism ¢’. Applying [RV18, Thm.
A] we obtain ¢’ = 2y’ with 2/, ¢y’ involutions in O(V,¢). Up to replacing
(2’,y') by (—a', —y’) we can assume that det(z') is +1 as we may desire.
(2) V' = Usp @ V" where V"' is 2-dimensional and endowed with a non-
degenerate alternating form B, and ¢ = ¢” ® Idy» € SO(V’,q’) for
¢’ the quadratic form corresponding to the symmetric bilinear form B’ =
By, ® B and ¢” a unipotent element of Sp(Usyy,, Bam). Applying [RVIS|

Thm. A] again we can write ¢” = 2”y"” where 2y are involutions in

GSp(Uspm, Bam) having similitude factor —1. Similarly write Idy»» = a"'y""
where 2", y"" are involutions in GSp(V"”’, B"") having similitude factor —1.
Then ¢ = (2" ® ") (y" ® y'"’) is the desired decomposition as a product

of involutions in SO(V”, ¢’). O

8.3. Restriction of local Arthur packets. We now give our description of the
restriction of representations of GSping(F'). Recall that if ¢ : WDp — GSp, is a
bounded parameter, then the corresponding component group S,, is either trivial or
is Z/27 = {1, s}. In the former case, the L-packet II, associated to ¢ is a singleton,
and in the latter case it is a pair {7, 7~ }, where 7% is characterised by the fact
that tr 7™ — tr 7~ is the transfer to GSping(F) of tr 7y, where oy € ®(H) is the
parameter mapping to (i, s) via “¢’. In either case, if we write ¢/ = prog, then
by [GTI10, Prop. 2.8], we have

(8.3.1) @ Tlsp, (F) = @ 7.
well, 71"61_[9,/

(Indeed, this follows from Theorem the fact that lifts of representations
of Sp,(F) to GSp,(F) are unique up to twist, and the fact that the restrictions
of representations of GSp,(F') to Sp,(F) are semisimple and multiplicity free.)
The following theorem improves on this result by giving a precise description of the
restrictions of the individual elements of IL,.

Theorem 8.3.2. Let ¢ be a bounded L-parameter, and write ©' = proyp, so that
S, — Sy. Write 11, and I, for the respective L-packets. If S, is trivial,

and I1, = {r}, then
Tlsem = D 7
' €Il
If S, =7Z/2Z = {1,s}, and I, = {w", 7~} as above, then
lspum = D 7

W’EHSD/
(s,m’y==%1
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Proof. In the case that S, is trivial, this is (8.3.1]), so we may suppose that Sy, is non-
trivial, so that ¢ is endoscopic. We can write ¢ = @1 @ @2 where p1, 92 : WDp —
GLy are bounded with same determinant; that is, ¢ = ¢’ o pg, where pg =
©1 X p2 : WD x SLy(C) — H. Via L¢! we can see s as the non-trivial element of
Z(I/-\I)/Z(G@%), i.e. the image of (1,—1) € H € GLy x GLy. Then by Conjec-
ture (2) for GSpiny (i.e. the main theorem of [CGIH]), we have an equality
of traces

trat (f) —tra= (f) = Z tr g (fH).

T{'HGHq,H

Applying Conjecture (2) (or rather Theorem [2.6.1)) for Sp,, and writing ¢4y
for the composite of g and the natural map H — SO, we also have an equality

of traces
S our- X ar- Y umso ).
' €Ml ' €Ml Ts0, €1
(s,m"y=1 (s,m"y=—1
The result now follows from (8.3.1)) and Theorem below. O

We end with a result on the restriction of representations from H ~ GSQOy4
to SOy that we used in the course of the proof of Theorem [8.3.2 The arguments
are very similar to those for GSpin;, but are rather simpler, as H has no non-trivial
elliptic endoscopic groups. Since H is isomorphic to the quotient of GLy x GLo
by a split torus, the local Langlands correspondence for H, and the correspond-
ing endoscopic character identities, are easily deduced from those for GLg. The
correspondence and endoscopic character identities for SO4 are of course proved
in [Art13] (up to the outer automorphism §).

By Proposition if 7 is an irreducible admissible representation of H(F),
then 7|go,(r) is a direct sum of representations occurring with multiplicity one.
The proof of [GT10, Lem. 2.6] goes through unchanged and shows that m1[so, ()
T2|so,(r) have a common constituent if and only if 1,7, differ by a twist by
a character. By [GT10, Lem. 2.7], the analogous statement is also true for L-
parameters: every L-parameter ¢’ : WDp — S/O\4((C) arises from some ¢ : WDp —

ﬁ((C), which is unique up to twist.

Theorem 8.3.3. Let ¢ : WDp — fI((C) be a bounded L-parameter, and let ¢’ :
WDpg — SO4(C) be the parameter obtained from l) Let 7 be the tempered

irreducible representation of H associated to . Then

o~ /
masour = D

W’GH@/

Proof. By the preceding discussion, we need to show that for each bounded L-
parameter ¢’ : WDp — SO4(C) (up to outer conjugacy), and each " € IL,/, there

is some 7 lifting 7/ (or 7'%) whose L-parameter ¢ lifts ¢’

Suppose firstly that ¢’ is discrete. As in the proof of Theorem by Krasner’s
lemma and [Clo86L, Thm. 1B], we can find a totally real number field K, a finite
place v of K, and a discrete automorphic representation IT" of SO4(Af), such that:

e K, 2 F (so we identify K, with F' from now on).
o I/ =n'.
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e at each infinite place w of F, I/, is a discrete series representation.

By Theorem there is a discrete automorphic representation IT of H(Ag)
such that TI|go,a,) contains II'. Then II corresponds to a pair 7y, T2 of discrete
automorphic representations of GLy(A k) with equal central characters. The con-
dition that IT/, is a discrete series representation at an infinite place w of K implies
that w1 and 7o are cuspidal.

We now consider the following commutative diagram of dual groups:

H— $S0,=50,

(8.3.4) j j

GLy x GLy ———— Gy

where the vertical arrows are the natural inclusions, and the lower horizontal arrow
is given by (g,h) — (det g)~*g ® h. Since the functorial transfer from GLgy x GLy
to GLy4 exists (as we recalled at the beginning of Sectior1|§[)7 we may compare at the
unramified places and then use strong multiplicity one to compare at the ramified

places, and we obtain that the composite WDz % H— GL2 x GLy — GLy is given
by ¢1,, ® tpg’m where @1 4, @2, are the L-parameters of m , and sy, respectively.
Since the L-parameter of II, is @1, ® @2, we can take m = II,,, so we are done in
the case that ¢’ is discrete.

Suppose now that ¢’ is not discrete. Then one can argue as in the proof of
since both local Langlands correspondences for H and SO, are compatible with
parabolic induction. In fact the proof is simpler since all proper Levi subgroups are
simply products of GL, and we do not repeat the argument. [

Remark 8.3.5. Theorem m (or rather its straightforward extension from tem-
pered to generic parameters) gives the complete spectral description of the automor-
phic restriction map of Section [p]for Sp, C GSpiny for formally tempered global pa-
rameters. This is the analogue of the results of Labesse-Langlands [LL79] (ignoring
inner forms) and the multiplicity one theorem of Ramakrishnan for SLo [Ram00].
It would perhaps be interesting to extend this to parameters which are not formally
tempered, but in the interests of brevity we do not consider this question here.

APPENDIX A. CLASSIFICATION OF ENDOSCOPIC DATA AND SURJECTIVITY OF
TRANSFER

In this appendix we denote I' = GLxy x GL; over a local or global field F' of
characteristic zero. Let J be the anti-diagonal N x N matrix with J; xy11—; = (—1)%.
Let 6 be the automorphism of T given by 0(g, z) = (J'g~1J ™1,z det g). The matrix
J was chosen so that the standard pinning (B, T, ((E;+1,0))1<i<n—1), where T
is the diagonal torus and B the upper triangular Borel, is fixed by 6. A basis
of X, (T) is given by (e7,..., ek, 2*) where ef(x) = (diag(1,...,z,...,1),1) (z is
the i-th term) and z*(z) = (1,z). Let (e1,...,en, z) be the dual basis of X*(T).
Then the roots of T are e; — e; for ¢ # j, the positive ones (with respect to B)
being those for which ¢ < j. The Langlands dual group T is also isomorphic to
GLx x GL; (now over C), and we also fix the usual (upper triangular and diagonal)
Borel pair (B,T) of T. To make the identification explicit, for y € C* we have
ei(y) = (diag(l,...,y,...,1),1) and 2(y) = (1,y). We also fix the usual pinning
consisting of the elements (E; ;41,0) of Lie 5.
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Let T be the twisted space I' x 6. A simple computation shows that the auto-
morphism 6 of T' dual to 6 (preserving the chosen pinning of T') is

(g,2) = (Jtg~ T e, )

where J is J (but now over C). It extends to an automorphism %6 of T = T’ x W
which acts trivially on Wg. Recall that an endoscopic datum of Tisa quadruple
(G,G,s,&) where

e G is a quasi-split connected reductive group over F,

o & G — T is a continuous embedding,

e G is a closed subgroup of “T" which surjects onto Wp with kernel 5(@), such
that the induced outer action of Wy on &£(G) coincides with the usual one
on G transported by £, and such that there exists a continuous splitting
Wrp =G,

e and s € T is such that (Ads) 00 is quasi-semisimple (i.e. it stabilizes a Borel
pair of T), (f‘(Ads)Og)O = ¢(G) and such that the map Wy — T induced
by h € G+ st0(h)s~th™! takes values in Z(f‘) and defines an element of
H'(Wg, Z(f‘)) which is trivial at every place of F'.

Instead of giving s one could also give § = s X 9 which belongs to the twisted
space LT := LT x 6 for the group LT'. The action of Gal(F/F) on Z(f‘) is trivial so
this cocycle Wgp — Z(f‘) is in fact trivial and we simply have G C T(Ads)od o We.
It is clear that the endoscopic datum (G, G, s, &) can be recovered from s and the
locally constant morphism o : Gal(F/F) — ﬁo(f(AdS)og) such that

£(G) = {g x 0 € TR0 s W | g € a(o)}.

So to classify endoscoplc data v up to isomorphism it is enough to classify I conjugacy
classes of elements s x @ € T' x § such that (Ads) o 0 is quasi-semisimple and to
determine 7 (I‘(Ads)oe).

A.1. Conjugacy classes in T x 0 and centralizers. Let us first consider conju-
gation by T'in I x 0. For (y,t) € T and (sy,s1) € T’ we compute

(v, ) (s, 51) ¥ ) (y 7Y = (yswJ'yJ 171, 51) % 6.

Thus the map s x [ (jﬁlsE ,81) is a leeCthH Txo ~ GLy x GL; which
intertwines the conjugation action of T on T x @ with the action on GL N X GL;
given by the formula

(y7t) ’ (h’u) = (tyilhyiltv u)

T'(Ads)od

In particular, denoting h = J _131}1 we see that equals

GAut(h) = {(y,t) € T |'yhy = th}.

Denote by v, the morphism GAut(h) — GL1, (y,t) — t. Denote hgym = (h+'h)/2
for the symmetric part and han; = (h — th)/2 for the antisymmetric part of h.
Note that h defines a bilinear form B : (X,Y) + !XhY on V := C¥, and that the
similarly defined bilinear form Bgym, (resp. Banti) associated to hgym (resp. hanti) is
symmetric (resp. antisymmetric). The decomposition & = hgym + hanti i canonical.
In particular we have GAut(h) = {g € GAut(hsym) N GAut(hanti) | Vh,,.. (9) =
)
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Lemma A.1.1. (1) Let Viym = ker Bangi and Vangi = ker By, Then Bgym,

and Bantilv,..; are non-degenerate.

(2) Let Vsi,}’nBsy"‘ be the orthogonal of Viym in V with respect to Bsym. Let

V2o Banti pe the orthogonal of Vanti in V' with respect to Banti- Let Vioth =

anti

VS;,nBsym AVLBans  Then V= Veym @ Vanti © Vootn and this decomposition

anti
is orthogonal with respect t0 Beym and Bant.

Vaym

Proof. The condition h € GLy implies that ViymNVanyi = 0, and that the restriction
of Byym t0 Veym (resp. of Banti t0 Vanti) is non-degenerate. The second point follows
easily. |

This decomposition is clearly canonical. Both Bgym|v;., and Banti|vi,., are
non-degenerate. Let ¢ be the endomorphism of Vi, defined by Banti(z,y) =
Beym(z, ¢(y)) for all z,y € Vion.

Lemma A.1.2. For any A € C we have ker(p — \) = (im(p — X)) L Bovm. The set
of eigenvalues of ¢ is contained in C~ {—1,0,1} and stable under A — —X\.

Proof. Easy. O

From now on we assume that (Ads) o ¢ is quasi-semisimple.
Lemma A.1.3. The endomorphism ¢ of Viotn is semisimple.

Proof. The hypothesis means that up to conjugating s x ) by an element of f‘, we
may assume that s € 7. Then h is antidiagonal, say

hy
(A.1.4) h—
hn

There is a natural partition {1,..., N} = Isym U Tangi U Ipotn where

Isym = {Z ‘ hi = hN+17i}7
Linti = {t|hi = —hNy1-i},
Tvoth = {i |} # B3 1}

Let e; be the standard basis of CV. For ? € {sym, anti, both} the family (e;);cr, is
a basis of V7. In this basis of Viotn the matrices of Beyry, and Bani are antidiagonal
and so the matrix of ¢ is diagonal. ]

In particular we have a canonical orthogonal (with respect to Bsym and Banti)
decomposition

i
Vioth = @ @ ker(¢p — \)
neC~{0,1} AeC
)\2:;1,
and each ker(¢ — A) is totally isotropic for Bgym and Ban; and in perfect duality
with ker(p + A) (using either bilinear form). Let R be a set of representatives for
the action of {£1} on the set of eigenvalues of .
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We obtain a canonical (except for the choice of R) identification
GAut(h) = {(gsyma Janti, (g)\))\GR) gx € GL(ker(SD - )‘))a Jsym € GAUt(Vvsyma Bsym)a

Ganti € GAut(Vanti, Banti) satisfying v(gsym) = V(ganti)}

obtained by restricting to the stable subspaces Viym, Vanti and ker(o — A) C Vioth
for A € R. To go from the right to the left, define for A € R the element g, €
GL(ker(¢ + A)) determined by the relation

Biym(9-1(2), 9 (y)) = v(gsym) Bsym (@, y)
for all (x,y) € ker(¢ + A\) x ker(p — A).

A.2. Endoscopic data. Let S be the finite subset of C \ {0,1} such that A\? € S
if and only if ker(p — X) # 0. Let Ngym = dim Viym, Nanti = dim Vingi, and for
pw € S let N, = dimker(p — ) (for either of the two A such that A? = p). We
have N = Ngym + Nanti + 2 Zues N, in particular Ngyr, = N mod 2. The group
mo(GAut(h)) has one or two elements, and it has two if and only if Ngym > 0.
The characteristic polynomial of ¢ is clearly an invariant of the conjugacy class of
sx0. We have associated a quintuple (Ngym, Nanti, S5 (Ny)pes, @) to any endoscopic
datum for T. It is easy to check that two endoscopic data are isomorphic if and
only if the associated quintuples are equal.
Conversely if we give ourselves:

e a finite set S C C~ {0,1},

e a partition N = Ngym + Nanti + 2 Zues N, with Ngym > 0, Nanei > 0 even

and N, >0 forall p €S,

e a continuous morphism « : Gal(F/F) — {£1} which is trivial if Ngym = 0,
it is not difficult to exhibit an endoscopic datum such that the associated quintuple
is (Nsym, Nanti, S, (Nyu) pues, o). We have thus proved the first part of the following
classification result.

Proposition A.2.1. (1) Isomorphism classes of endoscopic data off‘ are parametrized
by tuples (Noym, Nanti, S, (Nu)ues, ) as above.
(2) An endoscopic datum is elliptic if and only if the corresponding tuple (Nsym, Nanti, S5 (Ny)pes, )
satisfies:
e S=0, and
o a is non-trivial if Neym = 2.

Proof of the second part. If S is not empty then the center of GAut(h) contains
a torus isomorphic to GL‘ls‘ which is not included in the center of T, and so the
endoscopic datum cannot be elliptic.

If S is empty then the connected center of GAut(h)? is 1 x GL; C T except in
the case where Ngym = 2, in which case it is isomorphic to SOz x GL;. The action

of Galr on the factor SOz has kernel Galp(, /), so SOQGalF’O is contained in Z(GLy)

(the first factor of T') if and only if a # 1. O

Let ¢ = (G,G,s,&) be an elliptic endoscopic datum for f, corresponding to
(Nsym, Nanti, @) as above. Since the standard N-dimensional representation of G
(obtained by composing £ with the first projection r— GLy) is irreducible, we
have an embedding Out (¢) C Out (G)g, where Out (G)y C Out (G) is the subgroup
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of elements acting trivially on {(AIy,\) | X € GL;} C G. If Ny = 0 or if Ny
is odd we simply have Out (é)o = 1. If Ngym > 0 is even then Out (é)o = Z/2Z,
and there is a non-trivial element in Out (¢). Indeed, we can assume that h is
antidiagonal and that Isym = {(N — Ngym)/2+ 1,..., (N + Ngym)/2}, and in this
situation the element

. 0 1 =
diag (INM.H/% INoym/2-15 (1 0) s INgym /215 INann/2> er

belongs to Aut(e) ~ £(G)Z(T).

A.3. Surjectivity of transfer. We now assume that F' is local and consider
the particular case of elliptic endoscopic data ¢ = (G,G,s,€) for T' satisfying
NeymNanti = 0 (the analogous ones in [Art13] were called “simple” endoscopic
data), i.e. the case where G is not a product of two non-trivial groups, and prove
Proposition We simply follow the strategy of the proof of Proposition 1.4.11
in [MW16a], observing a few facts which are particular to our situation (in particu-
lar Key Fact below). For simplicity we fix ¢ : “G ~ G extending ¢, avoiding
the use of arbitrary auxiliary datum which is necessary in general (see §1.2.5 loc.
cit.). Note that since the action of Galg on Z(T) is trivial, Z(T) is a subgroup of
Aut(e) which acts trivially on SI(G), and so the action of Aut(e) on SI(G) factors
through Out (G) := Aut(e)/Z(T)¢(G) = {1,6} (with § defined as in Section
so that this group has cardinality dividing 2).

First we need to recall basic facts about Levi subgroups. There is an injec-
tion from the set of G(F)-conjugacy classes of Levi subgroups of G to the set of
é—conjugacy classes of Levi subgroups of “G, and similarly for T and LT (see
[MW16a, §1.3.1] for the notion of Levi subspace of LT := LI‘§) More precisely,
for any Levi subgroup L of G (resp. Levi subspace M of T with associated Levi
subgroup M of T') there is a well-defined G- conjugacy class (resp. I‘—conjugacy
class) of L-embeddings tr, : “L < “G (resp. 15z : LM < LT), and o (VL) (resp.
Lﬁ(Ll\N/I)) is a Levi subgroup of G (resp. Levi subspace of LT). It is well known
(see [Bor79, §1.3]) that a choice of parabolic subgroup of G admitting L as a
Levi factor induces such an embeddlng, and the extension to the twisted case is
straightforward. The fact that the G- conjugacy class (resp. - -conjugacy class)
does not depend on the choice of a parabolic subgroup (resp. subspace) can be
checked using the Springer section (in particular [Spr98, Prop. 9.3.5]). In the case
at hand since G (resp. I') is quasi-split the map on conjugacy classes L + tp, (VL)
(resp. M LM(LM)) is also surjective. By [MW16al, 1.3.1 (8)], we also have an
identification between W(L,G) := Norm (L, G(F))/L(F) and W(LL(LL),é) =
NOI‘ID(LL(LL) G)/uL(L) (resp. between W(M T') := Norm (M,I‘(F))/M(F) and
W (131 (LM) I‘) = Norm (L~(LM) )/L ( )). As explained loc. cit. these iden-
tifications depend on choices of parabolic subgroups, but it is easy to check that
the embeddings ¢1, and tg; also pin them down. Finally, recall that we can recover
L (resp. M) as the centralizer of Ar, in G (resp. of Ag; in I'), where A (resp.

Ag;) is the largest split torus in G (resp. I') centralizing L (resp. M). On the dual
side we similarly have

1 (PL) = Cent (Z(1.(*L))°, G) = Cent (11,(Z(L)*'7 %), G) and
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157 (“M) = Cent (Cent (157 (“M), T)°, LT) = Cent (155 (Z(M)G*'r-00) LT).

We now recall a construction from [MW16a), §1.3.4]. Let L be a Levi subgroup of
G. We fix an embeddlng ur, as above. Let M (resp. M, , resp. ./\/l) be the centralizer
of £(ur.(Z (L)G"“F’ )) in r (resp. LT, resp. LT'). Then M is a Levi subspace of Lt
and it contains § := sf. Since T is quasi-split, there exists a Levi subspace M and

an isomorphism iz : LM ~ /\/l, which identifies M (resp. “M) with MO (resp.

M). Let L =GN M, then
_ -1 —1 -1
ClLevi = (La Lﬁ (‘C)7 LM (S)a LM © 5 o LL|£)

is an elliptic endoscopic datum for M. In particular dim Ay; = dim Ay,. The pair
(M, ¢Levi) 18 only well-defined up to the action of Aut(lVI, CLevi), the group of g € T
normalizing £ such that g5g~! € LM(Z(ﬁ))§ In particular any g € Aut(ﬁ, CLevi)
normalizes Z(£) N L0 = £(11,(Z(L)%17:0)) and thus also M. We have the following

commutative diagram with exact rows (by definition of all objects in the right
column) and where all vertical arrows are injective.

1 — 5 @) ——— ¢ (Norm(LL(LL),a)) —  W((*L),G) —— 1

J J
o

l

1 MO Norm (./\/l,f‘) _ W(M7f) — 1

We now make all these objects explicit in the cases at hand. In Section
we recalled that to a G(F)-conjugacy class of Levi subgroups of G is associated
a family (r;);>1 with r; € Zsq satisfying 2, ir; < N with strict inequality if
G is not split and 2% ir; # N —2 if N = Ny is even and G is split, and
any such family occurs. This family determines the conjugacy class except when
N = Ngym is even, G is split, 23 . ir; = N and r; = 0 for all odd 4, in which case
there are two conjugacy classes corresponding to (r;);, swapped by the non-trivial
outer automorphism § of G. We may assume that the element A introduced in the
previous section is antidiagonal, say

hq
h =
hn

and that hy = --- = hn/2) = 1. Let k be the smallest integer > 0 such that r; =0
for any i > k, S; is the i-dimensional antidiagonal complex square matrix with 1’s
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on the antidiagonal, and

hl—‘rzz ir;
h/ = € GLN_QZi qu(C)
hN—Zi ir;
Then the (conjugacy class of a) Levi subgroup L corresponding to (r;); is charac-

terized by the fact that there exists a Levi embedding ¢, : “L — G such that
€ 011,(FL) is either an open subgroup of

(A.3.1)
{(diag(gk’l, ey Gk 91,1, 91,015 T )\Sfltgiilgl, el )\Slzltgl;%g;c), A) ’
9i; € GLi(C), (z,)\) € GAut(h/)} x Wp C LT,

or, if N = Ngym is even, G is split, >, ir; = N/2 and r; = 0 for all odd ¢, an open

subgroup of the conjugate of by diag(In/2-1, <(1) é) In/2—1). In the rest
of the argument we shall refer to this case as the exceptional case. We fix L and such
an embedding ¢r,. There is a natural embedding W (.r,(FL), *G) < [[;5, {1} %
S, which is surjective unless N = Ny, is even, G is split, ZZ ir; = N/é and there
exists an odd 7 > 1 such that r; > 0, in which case the image of this embedding
has index two.

To be explicit, M is the diagonal Levi subgroup

(A.3.2) (GLy x-+- x GLY* X GLy_25, 4, X GLT* x -+ x GL}*) x GLy

of f‘, M=M"x Wg and M = Ma, except in the exceptional case where the sit-
1

uation is conjugated by under diag(/n/2—1, <(1) 0) s In/2—1). In particular
W(Mv, r) = W(MO, f)é in the non-exceptional cases, and in any case W(Mv, ) is
identified to [[,~,{£1}" x &,,. Thus:
(1) If Ngym = 0 or if N = Ngy, is odd, we simply have W(LL(LL),(A}) =
W(M,T) and Out (¢) = 1.
(2) If N = Ngym is even and ), ir; < N/2, we again have W(L(*L),G) =
W(M,T), and there exists an element of 15 (Aut(erevi)) N Aut(e) mapping
to the non-trivial element of Out (e).
(3) If N = Ngym is even, > ir; = N/2 (this implies that G is split) and
there exists an odd 4 such that r; > 0, then W (¢,(*L), é) has index two in
W (i, (YL), ¢) = W(M,T), and there exists an element of Norm (£(cr, (“L)), Aut(e))
which maps to the non-trivial element of Out (e).
(4) Finally in the exceptional case we have W (i, (“L), G) = W(M,T) and &
does not fix the G(F)-conjugacy class of L.

We also observe the following.

Key fact A.3.3. The I'(F)-conjugacy class ofﬁ determines the Out (¢)-orbit of

the G(F)-conjugacy class of L, i.e. each fiber of L — M consists of (at most) one
Out (e)-orbit.
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Now start with an arbitrary Levi subspace M of T. Denote by Icusp(lvl) the

subspace of T (1\7[) consisting of all functions whose orbital integrals at non-elliptic
semi-simple regular elements vanish. The endoscopic transfer induces an isomor-
phism (see [MW16a], §1.4.12 p.97], as well as §IV.3.5 loc. cit. to deduce the K-finite
case if F' is Archimedean)

W(M,T')
ICUSP(M)W(M,F) ~ (@ Slcusp(L)Aut(e/)) _ @Slcusp(L)Aut(M’el)7
34 [34

where the middle sum is over equivalence classes of elliptic endoscopic data ¢ =
(L, L,5,¢) for M, the sum on the right-hand side is over W(M, I')-orbits of such
equivalence classes, and S1c,sp is defined similarly to Iq,sp, replacing “orbital inte-
grals” by “stable orbital integrals”. Note that in the case F' = R the above isomor-
phism only holds for a K-space for M (see §1.1.11 loc. cit.), but since H!(F, M) = 1
the space Misa K -space. By the Key Fact m and using a straightforward ar-
gument in each of the four cases detailed above, the natural map

Aut(e)
e/ L

where the sum on the right-hand side is over conjugacy classes of Levi subgroups
of G mapping to the conjugacy class of M, is surjective. This is the crucial step in
the proof of Proposition [2.4.4] and to conclude the proof it simply remains to follow
the strategy of [MW16al, §1.4.12], using natural filtrations on I(I') and SI(G)Au(®),
To this end we now recall compatibility properties of endoscopic transfer for Levi
subgroups. As s above we consider a Levi subgroup L of G, and a corresponding
Levi subspace M of T Tt follows easily from [BT65, Théoreme 4.13] that the maps
HY(F,L) - HY(F,G) and H'(F,M) — H*(F,T) are injective. Thus for any I'-
regular v € M(F ), the natural map from the set of M(F)-conjugacy classes in
M(F) stably conjugated to v to the set of I'(F')-conjugacy classes in f‘(F) stably
conjugated to «y is bijective, and similarly for L C G. As explained in [MW16al
§1.3.1, p.57], this implies that the “constant term map” I(G) — I(L)" ™) induces
a well-defined map SI(G) — SI(L)"1G). Moreover the restriction of a transfer
factor for the endoscopic datum e to f‘—strongly regular matching pairs in L(F) x
M(F ) coincides with the restriction of a unique transfer factor for ereyi. This
is seen by choosing a parabolic subgroup Py, of G admitting L as a Levi factor
(resp. a parabolic subspace f’ﬁ of T admitting M as a Levi factor), which gives
corresponding parabolic subgroups in Langlands dual groups, and following the
constructions in [MW16a, §I.2.2] using Borel subgroups contained in these parabolic
subgroups and choosing x-data which is trivial on asymmetric Galois orbits. Using
such a transfer factor for ey, it is straightforward to check that the diagram

I(T) SI(G)

! !

IM)VMD) gV (L.G)
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is commutative, where the vertical arrows are “constant term” maps and the hori-
zontal arrows are transfers maps.
Recall from [MW16al §1.4.2] that there is a filtration (Fil" I(T")),,>_1 such that

the “constant term” maps identify Gr™ I(T') with

@ ICUSP(M)W(ﬁ,I‘)

M s.t. dim Ag=n

where the sum is over I'(F')-conjugacy classes of Levi subspaces in T. There is an
analogous filtration (Fil" SI(G)),>_1 of SI(G), which by §1.4.15 loc. cit. is simply
the image of the natural filtration of I(G), such that Gr™ SI(G) is identified with

@ SIcusp (L)W(L,G)

L s.t. dimAp=n

This filtration is clearly stable under Aut(e), and a straightforward induction allows

one to deduce Proposition from the surjectivity of (A.3.3]).
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