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Abstract. We formulate a version of the Breuil–Mézard conjecture for quater-

nion algebras, and show that it follows from the Breuil–Mézard conjecture for
GL2. In the course of the proof we establish a mod p analogue of the Jacquet–

Langlands correspondence for representations of GL2(k), k a finite field of

characteristic p.
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1. Introduction.

The Breuil–Mézard conjecture ([BM02]) has proved to be one of the most im-
portant conjectures linking Galois representations and automorphic forms; indeed,
Kisin’s proof of (most cases of) the original formulation of the conjecture ([Kis09])
simultaneously established (most cases of) the Fontaine–Mazur conjecture for GL2 /Q.
The original conjecture predicted the Hilbert–Samuel multiplicities of the special
fibres of potentially semistable deformation rings for two-dimensional mod p repre-
sentations of GQp , the absolute Galois group of Qp, in terms of the representation
theory of GL2(Zp). The statement of the conjecture was generalised in [Kis10] to
the case of representations of GK , for K an arbitrary finite extension of Qp. This
conjecture is largely open, although it has been proved for potentially Barsotti–Tate
representations ([GK12]).

The connection between potentially semistable deformation rings and the rep-
resentation theory of GL2 is via the local Langlands correspondence. Given the
Jacquet–Langlands correspondence, it is natural to wonder whether for potentially
semistable deformation rings of discrete series type, the Hilbert–Samuel multiplic-
ities could also be described in terms of the representation theory of the units in
a non-split quaternion algebra. One advantage of such a description is that the
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representation theory is much simpler in this case; all the irreducible admissible
representations are finite-dimensional, and the irreducible mod p representations of
the maximal compact subgroup are all one-dimensional.

In this paper we formulate such a conjecture, and show that it is a consequence
of the conjecture for GL2. In particular, we prove the conjecture (in most cases)
over Qp, as a consequence of Kisin’s proof of the conjecture for GL2 in this case
([Kis09]). In order to do this, we have found it helpful to reformulate the conjecture
slightly more abstractly in terms of linear functionals on Grothendieck groups of
representations, and also to prove a general result on the reduction modulo p of the
Jacquet–Langlands correspondence, or rather a version of this correspondence for
types. In the remainder of the introduction, we will explain this in some detail.

Let K be a finite extension of Qp with absolute Galois group GK , and let τ be
an inertial type for K (i.e. a two-dimensional representation of the inertia group
IK with open kernel, which can be extended to GK). Let λ be a highest weight
for an irreducible algebraic representation of ResK/Qp GL2/K . Then a recipe using

Henniart’s inertial local Langlands correspondence (see the appendix to [BM02])
associates to the pair (τ, λ) a finite-dimensional irreducible representation σ(τ, λ) of
GL2(OK) over Qp. Let k denote the residue field of OK . Choosing a stable lattice,
reducing modulo p and semisimplifying, we can write

σ(τ, λ) ∼= ⊕σσnτ,λ(σ),

where σ runs over the equivalence classes of irreducible mod p representations of
GL2(k), and nτ,λ(σ) is a nonnegative integer.

Let ρ : GK → GL2(Fp) be a continuous representation. Then there is (after
fixing a sufficiently large coefficient field) a universal lifting ring Rτ,λ for lifts of ρ
which are potentially semistable of inertial type τ and Hodge type λ. Let e(Rτ,λ/$)
denote the Hilbert–Samuel multiplicity of the special fibre of Rτ,λ. Then the Breuil–
Mézard conjecture asserts that there are uniquely determined nonnegative integers
µσ(ρ), depending only on ρ and σ (and not on τ or λ) such that for all τ, λ, we
have

(1) e(Rτ,λ/$) =
∑
σ

nτ,λ(σ)µσ(ρ).

Now, the right hand side of (1) depends only on σ(τ, λ), the semisimplification
of the reduction modulo p of σ(τ, λ). Let RFp(GL2(k)) denote the Grothendieck

group of finite-dimensional Fp-representations of GL2(k); then we may define a
linear functional ι : RFp(GL2(k))→ Z by sending σ to µσ(ρ). Then the right hand

side of (1) is just ι(σ(τ, λ)) by definition.
With this perspective in mind, let D be the non-split quaternion algebra with

centre K, and let OD be the maximal order in D. Suppose that τ is a discrete series
type (that is, it is scalar or it can be extended to an irreducible representation
of GK). As explained in Section 3, a natural analogue of the procedure above
associates a finite-dimensional representation σD(τ, λ) of O×D to the pair (τ, λ). If l

is the quadratic extension of k, then irreducible mod p representations of O×D factor
through l×, so we see that the natural analogue of the Breuil–Mézard conjecture
for D× is to ask for a linear functional ιD : RFp(l×) → Z with the property that

for all pairs (τ, λ) where τ is discrete series, we have

e(Rτ,λ,ds/$) = ιD(σD(τ, λ)),



THE BREUIL–MÉZARD CONJECTURE FOR QUATERNION ALGEBRAS 3

where Rτ,λ,ds denotes the maximal quotient of Rτ,λ corresponding to discrete series
lifts (see Section 5 for more details).

Our approach in this paper is to deduce the existence of ιD from the existence
of ι. The existence of such functionals for all representations ρ strongly suggests
the possibility of there being a homomorphism JL : RFp(l×) → RFp(GL2(k)) such

that ιD = ι ◦ JL, and the construction of such a map is the main objective of this
paper. Since elements of the Grothendieck group are determined by their Brauer
characters, this determines a map between the class functions on the semisimple
conjugacy classes of GL2(k) and l×. The usual Jacquet–Langlands correspondence
involves a sign-reversing relation between the characters evaluated at regular elliptic
elements; our correspondence satisfies a close analogue of this relation.

Having written down this map, in order to check that ι ◦ JL satisfies the prop-
erties required of ιD, the main fact we need to check is that JL takes σD(τ, λ) to
σ(τ, λ) when τ is of supercuspidal type. In other words, we need to check that
JL is compatible with the usual Jacquet–Langlands correspondence (or rather the
induced correspondence for types) and reduction modulo p. In order to do this, we
use results of Carayol [Car84] on the construction of supercuspidal representations
as well as results of Kutzko [Kut87] on the characters of supercuspidal representa-
tions and the characters of the types they contain. Fred Diamond has pointed out
to us that it is presumably also possible to verify this directly using the explicit
formulas in the appendix to [BD12]. We suspect that the approach taken here will
extend to give similar results for GLn (and that the extension should be relatively
straightforward when n is prime); we intend to return to this question in future
work. Florian Herzig pointed out to us that our correspondence JL is given (up to
a sign) by the reduction modulo p of Deligne–Lusztig induction from a non-split
torus in GL2 to GL2. This immediately suggests natural analogues of JL in the
case of GLn.

We would like to thank Kevin Buzzard for asking whether there was a Breuil–
Mézard conjecture for quaternion algebras. We would also like to thank Matthew
Emerton, Florian Herzig, Guy Henniart, Mark Kisin, Vytautas Paškūnas, and
Shaun Stevens for helpful conversations.

1.1. Notation. Fix a prime number p and an algebraic closure Qp of Qp. This

determines an algebraic closure Fp of Fp.
Fix K a finite extension of Qp with ring of integers OK , uniformiser $, and

residue field k of cardinality q. Write GK for (a choice of) the absolute Galois
group of K, and IK for its inertia subgroup.

Let D be the (unique up to isomorphism) non-split quaternion algebra with
centre K, and let OD be the maximal order in D. Fix a uniformiser $D of D. Let
L be the quadratic unramified extension of K, so that D splits over L. If l is the
residue field of L, then OD/$D

∼= l. We let νD denote the valuation on D defined
by νD(x) = νK(Nm(x)) where Nm is the reduced norm on D and νK the valuation
on K normalised by νK($) = 1. We define U0

D = O×D and if a ≥ 1 is an integer,
we let UaD = 1 +$a

DOD ⊂ U0
D.

We let recp be the local Langlands correspondence of [HT01], so that if π is

an irreducible Qp-representation of GLn(K), then recp(π) is a Weil–Deligne repre-

sentation of the Weil group WK defined over Qp. If R = (r,N) is a Weil–Deligne
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representation of WK (so in particular, r is a representation of WK with open kernel
and N is a nilpotent endomorphism), then by R|IK we mean r|IK .

If E/Qp is an algebraic extension and V is a continuous representation of a com-
pact group G on a finite-dimensional E-vector space V , then we define a semisimple
representation V of G over the residue field of E as follows: since G is compact, it
stabilizes an OE-lattice in V . Reducing such a lattice modulo the maximal ideal
of OE and semisimplifying gives the required representation. This representation
is independent of the choice of lattice by the Brauer–Nesbitt theorem.

If K is a p-adic field, W is a de Rham representation of GK over E, and
κ : K ↪→ E, then we will write HTκ(W ) for the multiset of Hodge–Tate weights
of W with respect to κ. By definition, the multiset HTκ(W ) contains i with mul-

tiplicity dimE(W ⊗κ,F F̂ (i))GF . Let Z2
+ = {(a1, a2) ∈ Z2 : a1 ≥ a2}, and fix

λ ∈ (Z2
+)HomQp (K,E). If W is two-dimensional, then we say that W has Hodge type

λ if for each κ : K ↪→ E, we have HTκ(W ) = {λκ,1 + 1, λκ,2}.
If G is a finite group, we let RFp(G) denote the Grothendieck group of the

category of finitely generated Fp[G]-modules.
If R is a commutative ring, we let Rred denote the maximal reduced quotient of

R.

2. A mod p Jacquet–Langlands correspondence for finite groups

We begin by defining an analogue of the Jacquet–Langlands correspondence for
mod p representations of GL2(OK) and O×D. The irreducible mod p representa-
tions of these two groups are obtained via inflation from the irreducible mod p
representations of GL2(k) and l×, and our correspondence is actually between the
Grothendieck groups RFp(GL2(k)) and RFp(l×). An element of either Grothendieck

group is determined by its Brauer character so we may equivalently describe our
map on the level of Brauer characters. Both descriptions are given below. Given
an element σ of either RFp(GL2(k)) and RFp(l×), we write χσ for its Brauer char-

acter, which we view as being valued in our fixed Qp. Recall that if G is a finite

group, the Brauer character of a finite Fp[G] module is a function on the p-regular
conjugacy classes in G. For G = GL2(k), the p-regular conjugacy classes coincide
with the semisimple conjugacy classes; representative elements for these conjugacy
classes are given by the diagonal matrices, and the matrices i(z), where z ∈ l× \k×
and i : l ↪→ M2(k) denotes a choice of embedding of k-algebras. For G = l×, the
p-regular conjugacy classes are just the elements of l×.

Definition 2.1. We define an additive map JL : RFp(l×) → RFp(GL2(k)) as fol-

lows:

• if ψ : k× → F×p is a character, then

JL([ψ ◦Nl/k]) = [spψ]− [ψ ◦ det]

• if ψ : l× → F×p is a character which does not factor through the norm Nl/k,
then

JL([ψ]) = [Θ(ψ)].

Here the representations spψ and Θ(ψ) are as defined in [Dia07, §1].
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We let C(GL2(k)) (resp. C(l×)) be the space of Qp-valued class functions on the
semisimple conjugacy classes in GL2(k) (resp. l×). Then we have C(GL2(k)) =
RFp(GL2(k))⊗ZQp (resp. C(l×) = RFp(l×)⊗ZQp). Note that C(GL2(k)) and C(l×)

have natural ring structures, where multiplication corresponds to the tensor product
on RFp(GL2(k)) and RFp(l×). We may also describe JL : C(l×) → C(GL2(k)) as

follows: If χ ∈ C(l×) then JL(χ) is defined by the following rule:

i(z) 7−→ −χ(z)− χ(zq) if z ∈ l× \ k×(
x 0
0 x

)
7−→ (q − 1)χ(x) if x ∈ k×(

x 0
0 y

)
7−→ 0 if x, y ∈ k×, x 6= y.

That this definition agrees with the previous one follows immediately from the table
of Brauer characters in [Dia07, §1].

3. Types and supercuspidal representations

In this section we will discuss types for GL2(OK) and O×D, and the inertial lo-
cal Langlands and Jacquet–Langlands correspondences. All representations in this
section will be over Qp, unless otherwise stated. Recall that an irreducible ad-
missible smooth representation of GL2(K) is either one-dimensional, a principal
series representation, a twist of the Steinberg representation, or is a supercuspidal
representation. If it is either supercuspidal or a twist of the Steinberg representa-
tion, we say that it is a discrete series representation. There is a bijection JL (the
Jacquet–Langlands correspondence) from the irreducible smooth admissible repre-
sentations of D× (which are necessarily finite-dimensional) to the discrete series
representations of GL2(K) (which are necessarily infinite-dimensional). Under this
correspondence, the 1-dimensional representations of D× correspond to the twists
of the Steinberg representation. More precisely, for each character ψ : K× → Qp,
we have JL(ψ ◦ Nm) = Sp2(ψ| |−1/2). (See [HT01, p.32] for this formula and the
definition of Sp2(∗).)

3.1. Types. In this paper we will be particularly concerned with types, which are
finite-dimensional representations of GL2(OK) and O×D, and with their relationship
to inertial types. An inertial type is a two-dimensional representation τ of IK with
open kernel which may be extended to a representation of GK . We say that τ is
a discrete series type if it is either scalar, or can be extended to an irreducible
representation of GK . In the latter case, we say that τ is supercuspidal.

In the GL2 case, the theory of types is worked out explicitly in Henniart’s ap-
pendix to [BM02]. We recall his main result. (We follow [Kis09] in introducing the
notation σcr(τ).)

Theorem 3.2. For any inertial type τ , there are unique finite dimensional irre-
ducible representations σ(τ) and σcr(τ) of GL2(OK), with the following properties:

(1) if π is an infinite dimensional smooth irreducible representation of GL2(K),
then HomGL2(OK)(σ(τ), π) 6= 0 if and only if recp(π)|IK ∼= τ , in which case
HomGL2(OK)(σ(τ), π) is one-dimensional.
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(2) if π is any smooth irreducible representation of GL2(K), then we have
HomGL2(OK)(σ

cr(τ), π) 6= 0 if and only if recp(π)|IK ∼= τ and the mon-
odromy operator N on recp(π) is 0. In this case, HomGL2(OK)(σ

cr(τ), π) is
one-dimensional.

There is an analogous (but much simpler) theory for D×, which we now recall,
following Section 5.2 of [GK12]. Note that K×O×D has index two in D×. Thus if
πD is an admissible smooth representation of D×, then πD|O×

D
is either irreducible

or a sum of two irreducible representations which are conjugate under a uniformiser
$D in D×. Moreover, we easily see that if π′D is another smooth irreducible rep-
resentation of D×, then πD and π′D differ by an unramified twist if and only if
πD|O×

D

∼= π′D|O×
D

.

Let τ be a discrete series inertial type. Then by the Jacquet–Langlands cor-
respondence, there is an irreducible smooth representation πD,τ of D× such that
recp(JL(πD,τ ))|IK ∼= τ . Define σD(τ) to be one of the irreducible components of
πD,τ |O×

D
; then by the above discussion, we have the following property.

Theorem 3.3. Let τ be a discrete series inertial type. If πD is a smooth irre-
ducible Qp-representation of D× then HomO×

D
(σD(τ), πD) is non-zero if and only

if recp(JL(π))|IK ∼= τ , in which case HomO×
D

(σD(τ), π) is one-dimensional.

Remark 3.4. By the above discussion, any representation satisfying the property
of σD(τ) given in Theorem 3.3 is necessarily isomorphic to σD(τ) or to σD(τ)$D .

For our purposes, we will however require some more precise results: we will
need to know exactly when πD,τ |O×

D
is irreducible and we will need to relate the

characters of σ(τ) and σD(τ) in a sense we will make precise below.

3.5. Supercuspidal representations. Let π be a smooth irreducible representa-
tion of GL2(K) or D×. Then π is said to be minimal if π has minimal conductor
amongst all its twists by characters. Following [Car84], we define subgroups Zs, Ks

of GL2(K) for s = 1, 2 as follows:

• Z1 = 〈$〉, K1 = GL2(OK),

• Z2 = 〈
(

0 1
$ 0

)
〉, K2 =

{(
a b
c d

)
∈ GL2(OK) : a, d ∈ O×, c ∈ ($), b ∈ O

}
.

We refer to [Car84, §4] for the definition of a very cuspidal representation of ZsKs

Z2K2 of type m ≥ 1. When s = 2, such representations exist only when m is even.

Theorem 3.6 ([Car84] Théorèmes 4.2 & 8.1).

(1) Let s = 1 or 2 and set r = 2/s. Let ρ be a very cuspidal representation of

ZsKs of type m. Then c-Ind
GL2(K)
ZsKs

ρ is an irreducible minimal supercuspi-
dal representation of GL2(K) of conductor r(m− 1) + 2.

(2) The representations obtained in (1) are all inequivalent.
(3) Every irreducible minimal supercuspidal representation of GL2(K) is iso-

morphic to c-Ind
GL2(K)
ZsKs

ρ for a uniquely determined pair s, ρ as in (1).

We note that the representations given by (1) have even conductor when s = 1
and odd conductor when s = 2. This result in fact allows us to give an explicit
description of the types corresponding to supercuspidal inertial types.
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Proposition 3.7. Let τ : IK → GL2(Qp) be a supercuspidal inertial type. More-
over, assume that τ has minimal conductor amongst its twists by smooth characters
that extend to GK . Choose a (necessarily minimal and supercuspidal) representa-

tion π of G with rec(π) equal to an extension of τ to WK . Write π = c-Ind
GL2(K)
ZsKs

ρ
as in Theorem 3.6. Then

σ(τ) ∼= Ind
GL2(OK)
Ks

(ρ|Ks).

Proof. The construction of σ(τ) described by Henniart in [BM02, §A.3.1] is exactly
the description given in the statement of the proposition. �

When we pass to representations of D× via the Jacquet–Langlands correspon-
dence, there is a similar dichotomy which tells us precisely when the restriction to
O×D of a smooth irreducible representation of D× is reducible.

Proposition 3.8. Let πD be a smooth irreducible minimal representation of D×

of dimension greater than 1. Write c(πD) for the conductor of πD.

(1) If c(πD) is odd, then πD|O×
D

is irreducible.

(2) If c(πD) is even, then πD|O×
D

∼= σD ⊕ σ$DD for some irreducible representa-

tion σD of O×D with σD 6∼= σ$DD .

Proof. Suppose first of all that c = c(πD) is odd. Let a = (c−1)/2 and let χ denote
a character of the abelian group UaD/U

c−1
D appearing in πD|UaD . In [Car84, §6.7]

(where the integer a is denoted p), it is shown that the stabilizer Zχ of χ in D×

is equal to K(u)×UaD where u ∈ D is an element generating a ramified quadratic
extension of K. In [Car84, §6.8], it is shown that

πD ∼= IndD
×

K(u)×UaD
ψ

for some character ψ extending χ. Now, sinceO×D\D×/K(u)×UaD
∼= Z/νD(K(u)×) =

Z/Z = 0, it follows that

πD|O×
D

∼= Ind
O×
D

O×
K(u)

UaD
ψ.

Thus, πD|O×
D

is irreducible if and only if for each t ∈ O×D−O
×
K(u)U

a
D, the characters

ψ and ψt of Ht := tO×K(u)U
a
Dt
−1∩O×K(u)U

a
D are distinct. However, if ψ = ψt on Ht

for some t ∈ O×D − O
×
K(u)U

a
D, then since UaD ⊂ Ht, we certainly have ψt|UaD = χ.

Thus, by definition, t ∈ Zχ = K(u)×UaD, a contradiction.
Suppose now that c = c(πD) is even and set a = (c−2)/2. Then in [Car84, §6.9]

it is shown that

πD ∼= IndD
×

K(u)×UaD
ρ

where now u ∈ D generates the quadratic unramified extension of K and ρ is a
representation of dimension 1 or q2. Since

O×D\D
×/K(u)×UaD

∼= Z/νD(K(u)×) = Z/2,

we deduce immediately that πD|O×
D

has at least 2 irreducible components. The

stated result now follows easily from the fact that K×O×D has index 2 in D×. �

We now recall some further results of Carayol.
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Proposition 3.9. Let πD be a smooth irreducible minimal representation of D×

of dimension greater than 1. Let π = JL(πD) and write

π = c-Ind
GL2(K)
ZsKs

ρ

for some uniquely determined pair s, ρ as in Theorem 3.6 (1). Then

• If s = 2, then (q − 1) dimπD = (q + 1) dim ρ.
• If s = 1, then (q − 1) dimπD = 2 dim ρ.

Proof. By [Car84, Proposition 7.4], the dimension of πD coincides with the formal
degree of π (when Haar measure on GL2(K)/K× is normalized as in [Car84, §5.10]).
The stated result now follows from the formulas obtained in [Car84, §5.9 – 5.11]. �

We deduce the following formula relating the dimension of types for GL2(K) and
D×.

Corollary 3.10. Let πD be a smooth irreducible minimal representation of D× of
dimension greater than 1. Let π = JL(πD) and write

π = c-Ind
GL2(K)
ZsKs

ρ

for some uniquely determined pair s, ρ as in Theorem 3.6 (1). Define

σ := Ind
GL2(OK)
Ks

(ρ|Ks)

and let σD denote an irreducible constituent of πD|O×
D

. Then

(q − 1) dimσD = dimσ.

Remark 3.11. In our definition of the type σD(τ) for O×D, we arbitrarily choose one
of the irreducible constituents of πD,τ |O×

D
. This has the apparent disadvantage of

breaking the symmetry of the situation but has the advantage that the dimension
formula above holds independently of the parity of the conductor. Ultimately in our
statement of the Breuil–Mézard conjecture for D× we will consider both choices;
see Conjecture 5.3 and Remark 5.4.

Keep the notation of the preceding corollary. We now proceed to show that the
characteristic p reductions σ and σD of σ and σD are related by the mod p Jacquet–
Langlands map defined in Definition 2.1. For this we will make use of results of
Kutzko [Kut87].

We will denote the characters of σ and σD by χσ and χσD respectively. Note
that the representation σ (resp. σD) factors through the quotient GL2(OK) �
GL2(k) (resp. O×D � l×). We denote the Brauer character of σ (resp. σD) by

χσ : (GL2(k)/ ∼)ss → Zp (resp. χσD : l× → Zp). Here (GL2(k)/ ∼)ss is the set of
semisimple (or equivalently, p-regular) conjugacy classes in GL2(k).

If x ∈ l×, we let x̃ ∈ O×L denote its Teichmüller lift. Choose an isomorphism of

OK-modules i : OL
∼−→ OK⊕OK . This gives rise to injections i : O×L ↪→ GL2(OK)

and i : l× ↪→ GL2(k). We also fix an embedding j : L ↪→ D giving rise to an
injection j : O×L ↪→ O×D.

Proposition 3.12. Let πD be a smooth irreducible minimal representation of D×

of dimension greater than 1. Let π = JL(πD) and write

π = c-Ind
GL2(K)
ZsKs

ρ
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for some uniquely determined pair s, ρ as in Theorem 3.6 (1). Define

σ := Ind
GL2(OK)
Ks

ρ|Ks
and let σD denote an irreducible constituent of πD|O×

D
. Then

JL(σD) = σ.

Proof. Since both JL(σD) and σ are semisimple, it suffices to show that we have
an equality of Brauer characters JL(χσD ) = χσ. Let g ∈ GL2(k) be a p-regular
element. We need to check that JL(χσD )(g) = χσ(g). There are three cases:

(1) We have g = x with x ∈ k×. In this case, we need to show that

(q − 1)χσD (x) = χσ(x)

or equivalently, that (q − 1)χσD (x̃) = χσ(x̃). This follows from Corollary
3.10 and the fact that π and πD have the same central character.

(2) We have g ∼ diag(x, y) with x, y ∈ k× distinct. In this case we are re-
quired to show that χσ(g) = 0, or equivalently, that χσ(g̃) = 0 where
g̃ = diag(x̃, ỹ). If s = 2, this follows from [Kut87, Prop. 3.4] and the Frobe-
nius formula for the trace of an induced representation. If s = 1, it follows
from [Kut87, Lemmas 6.3 & 6.4].

(3) We have g ∼ i(z) for some z ∈ l× \ k×. In this case, we need to show that

−χσD (z)− χσD (zq) = χσ(i(z)).

Let us first consider the sub-case where s = 2. Then πD|O×
D

is irreducible

and it suffices for us to show that

−2χσD (j(z̃)) = χσ(i(z̃)).

We will in fact show that both sides vanish. To see that the right hand side

vanishes, recall that σ = Ind
GL2(OK)
K2

ρ and note that for all t ∈ GL2(OK),

we have t−1i(z̃)t 6∈ K2. For the left hand side, we have

−χσD (j(z̃)) = −χπD (j(z̃)) = χπ(i(z̃)),

where the second equality is a property of the Jacquet-Langlands corre-
spondence. The vanishing then follows from [Kut87, Prop. 5.5(2)].

Finally, we treat the sub-case where s = 1. Then πD|O×
D

is reducible and

it suffices to show that

−χσD (j(z̃))− χσD (j(z̃q)) = χσ(i(z̃)).

For this, note that the left hand side is just −χπD (j(z̃)), which in turn
equals χπ(i(z̃)). Thus we are required to show that χπ(i(z̃)) = χσ(i(z̃)).
Yet this follows from [Kut87, Prop 6.11(1)] and the proof is complete. �

4. Compatibility of Jacquet–Langlands correspondences

In this section we prove our main technical result, a generalization of Proposi-
tion 3.12 which includes the case of twists of the Steinberg representation (that is,
the case where πD as in Proposition 3.12 is one-dimensional) and incorporates al-
gebraic representations. Again, all representations will be over Qp unless otherwise
stated.
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Let Wλ be an irreducible algebraic representation of ResK/Qp GL2/K of highest

weight λ. More precisely, we let λ ∈ (Z2
+)HomQp (K,Qp), and take Wλ to be the

representation

Wλ = ⊗τ∈HomQp (K,Qp)(Symaτ,1−aτ,2 ⊗det aτ,2)(Q2

p)

of ResK/Qp GL2/K ×QpQp =
∏
τ GL2/Qp

. We regard Wλ as a representation of

GL2(K) via the map
∏
τ τ : GL2(K) →

∏
τ GL2(Qp). We can also regard it as

a representation of D× as follows: choose an isomorphism D ⊗K L ∼= M2×2(L)
and for each Qp-embedding τ : K ↪→ Qp choose an embedding τ̃ : L ↪→ Qp
extending τ . Then we regard Wλ as representation of D× via the chain of maps

D× ↪→ (D ⊗K L)× ∼= GL2(L)
∏
τ τ̃−→
∏
τ GL2(Qp). The isomorphism class of the

resulting representation is independent of any choices. We can then regard Wλ as
a representation of GL2(OK) or O×D, by restriction.

Fix a discrete series inertial type τ : IK → GL2(Qp), so that we have finite-

dimensional representations σ(τ) and σcr(τ) (resp. σD(τ)) of GL2(OK) (resp. O×D).
Define

σ(τ, λ) := σ(τ)⊗Wλ

σcr(τ, λ) := σcr(τ)⊗Wλ

σD(τ, λ) := σD(τ)⊗Wλ,

regarded as representations of GL2(OK) or O×D as appropriate. Since GL2(OK) and

O×D are compact, we may consider the corresponding semisimple Fp-representations
σ(τ, λ), σcr(τ, λ) and σD(τ, λ) obtained by reducing a stable lattice and semisim-
plifying. These representations factor through the quotients GL2(OK) � GL2(k)
and O×D � l×. In the case λ = 0 (when Wλ is the trivial representation), we will
write σ(τ), σcr(τ) and σD(τ) for σ(τ, 0), σcr(τ, 0) and σD(τ, 0).

Let Fλ (respectively FDλ ) be the representation of GL2(k) (respectively l×) ob-
tained from Wλ|GL2(OK) (resp. Wλ|O×

D
) by taking a stable lattice, reducing mod p,

and semisimplifying. The following lemma is trivial.

Lemma 4.1. We have χFλ

((
x 0
0 x

))
= χFDλ (x) for each x ∈ k×, and χFλ(i(z)) =

χFDλ (z) for each z ∈ l× \ k×.

The following theorem expresses the compatibility of our mod p Jacquet–Langlands
correspondence with the reduction modulo p of the inertial correspondence.

Theorem 4.2. Let τ : IK → GL2(Qp) be a discrete series inertial type.

(1) Suppose τ is scalar. Then for each highest weight λ ∈ (Z2
+)HomQp (K,Qp), we

have

JL(σD(τ, λ)) = σ(τ, λ)− σcr(τ, λ).

(2) Suppose τ is supercuspidal. Then for each highest weight λ ∈ (Z2
+)HomQp (K,Qp),

we have

JL(σD(τ, λ)) = σ(τ, λ).

Proof. Since all of the representations involved are semisimple, it suffices to prove
equalities of Brauer characters. By definition we have χσ(τ,λ) = χσ(τ)χFλ , χσcr(τ,λ) =
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χσcr(τ)χFλ , and χσD(τ,λ) = χσD(τ)χFDλ , so by Lemma 4.1 we may immediately re-

duce to the case λ = 0.
In case (1), since everything is compatible with twists by characters we may

reduce to the case that τ is the trivial type; but then σD(τ) and σcr(τ) are the trivial
representation, and σ(τ) = sp1, and the result is immediate from Definition 2.1. In
case (2), after twisting we may reduce to the case that σD(τ) extends to a minimal
representation of D×, and the result is immediate from Proposition 3.12. �

5. The Breuil–Mézard conjecture

In this section we prove the main theorem of this paper, relating the Breuil–
Mézard conjectures for GL2(OK) andO×D. We begin by recalling the Breuil–Mézard
conjecture, reformulated in terms of Grothendieck groups, as in the introduction.

Fix a finite E/Qp with ring of integers O, uniformiser $ and residue field F, and

fix a continuous representation ρ : GK → GL2(F). Let R� be the universal lifting
ring of ρ on the category of complete Noetherian local O-algebras with residue
field F. Let τ be an inertial type and λ a weight as in Section 4. Extending E if
necessary, we may assume that τ , σ(τ), σcr(τ) and σD(τ) (when τ is a discrete series
type) are all defined over E. Then, there is a quotient Rτ,λ of R� which is reduced
and p-torsion free, and is “universal” for liftings which are potentially semistable
of Hodge type λ and inertial type τ . Specifically, we take Rτ,λ to be the image
of the natural map R� → (R�[1/p])τ,λ,red where (R�[1/p])τ,λ is the quotient of
R�[1/p] constructed in [Kis08, Theorem 2.7.6] (where our λ corresponds to Kisin’s
v). There is also a universal lifting ring Rτ,λ,cr which is reduced and p-torsion
free, and is universal for liftings which are potentially crystalline of Hodge type
λ and inertial type τ . In this case, we take Rτ,λ,cr to be the image of the map
R� → (R�[1/p])τ,λ,cr, where the latter is ring constructed in [Kis08, Cor. 2.7.7]; it
is reduced by [Kis08, Theorem 3.3.8]. If R is a complete local Noetherian O-algebra
with residue field F, then we write e(R/$) for the Hilbert–Samuel multiplicity of
R/$.

Conjecture 5.1. (The Breuil–Mézard Conjecture for GL2.)
(1) There is a linear functional ι : RF(GL2(k)) → Z such that for each τ, λ we

have ι(σ(τ, λ)) = e(Rτ,λ/$).
(2) There is a linear functional ιcr : RF(GL2(k))→ Z such that for each τ, λ we

have ι(σcr(τ, λ)) = e(Rτ,λ,cr/$).

Lemma 5.2. If Conjecture 5.1 holds, then we necessarily have ι = ιcr.

Proof. Since Rτ,λ = Rτ,λ,cr and σcr(τ, λ) = σ(τ, λ) unless τ is a scalar type, it is
enough to show that ι (and thus ιcr) is uniquely determined by its values on the
σ(τ, λ) for τ non-scalar. We may replace RF(GL2(k)) by RF(GL2(k)) ⊗Z Qp, so it
suffices to prove that C(GL2(k)) is spanned by the Brauer characters χσ(τ,λ) for τ
non-scalar. Now, χσ(τ,λ) = χσ(τ)χFλ , and the χFλ span C(GL2(k)), so the span of
the χσ(τ,λ) for τ non-scalar is an ideal in C(GL2(k)) (the ideal generated by the
χσ(τ) for τ non-scalar).

Since the maximal ideals in C(GL2(k)) are given by the sets of functions which
vanish on some semisimple conjugacy class, it suffices to show that for each semisim-
ple conjugacy class, there is some non-scalar type τ such that χσ(τ) does not vanish
on that class; but this follows immediately from the table of Brauer characters
in [Dia07, §1]. �
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The obvious variant for representations of D× is as follows. Let λ and τ be
as above. Let Rτ,λ,ds denote the maximal reduced p-torsion free quotient of Rτ,λ

which is supported on the set of irreducible components of SpecRτ,λ where the
associated Weil–Deligne representation is generically of discrete series type. More
specifically, if τ is a supercuspidal type, then Rτ,λ,ds = Rτ,λ = Rτ,λ,cr; if τ is a
principal series type, then Rτ,λ,ds = 0; while if τ is a scalar type, then SpecRτ,λ,ds

is the union the irreducible components of SpecRτ,λ not occurring in SpecRτ,λ,cr,
with the reduced induced scheme structure. Recall that for some τ of supercuspidal
type, we chose σD(τ) to be one of the two irreducible constituents of the restriction
to O×D of a certain supercuspidal representation; in the statement of the following
conjecture, we consider both choices.

Conjecture 5.3. There is a linear functional ιD : RF(l×)→ Z such that for each
discrete series type τ , each algebraic weight λ, and each choice of σD(τ) we have
ιD(χσD(τ,λ)) = e(Rτ,λ,ds/$).

Remark 5.4. As in the proof of Lemma 5.2, a functional ιD as in Conjecture 5.3 is
necessarily unique. Note that in the case that there are two choices of σD(τ), the
two possibilities are related by conjugation by $D, and in the other case σD(τ) is
invariant under conjugation by $D. The representation Wλ is also invariant under
conjugation by $D (as it is a representation of D×). Conjugation by $D induces
the involution c : x 7→ xq on l×, so rather than insisting on allowing both choices of
σD(τ) in the statement of Conjecture 5.3, we could equivalently have insisted that
ιD be invariant under the action of c, and only used one choice of σD(τ).

Before stating our main result, we note that in the case where τ is a scalar type,
the potentially semistable deformation ring of weight λ and type τ constructed

in [Kis08] is not necessarily reduced. More specifically, we denote by R̃τ,λ the
image of the map R� → (R�[1/p])τ,λ; it is p-torsion free, equidimensional and
its generic fibre is generically reduced (by [Kis08, Theorem 3.3.4]). The ring Rτ,λ

is its maximal reduced quotient. Similarly, we may consider quotients R̃τ,λ,ds of

the ring R̃τ,λ that are p-torsion free and have support consisting of the irreducible
components generically of discrete series type. (There need not be a maximal such

quotient.) The ring Rτ,λ,ds is the maximal reduced quotient of any such R̃τ,λ,ds.

If we work with these potentially larger rings R̃τ,λ and R̃τ,λ,ds, then the question
arises as to whether the Hilbert Samuel multiplicities of the special fibres change.
The following lemma shows that this is not the case.

Lemma 5.5. Let R be a complete Noetherian O-algebra with residue field F. Sup-
pose that R is p-torsion free, equidimensional, and that R[1/p] is generically re-
duced. Then

e(R/$) = e(Rred/$).

Proof. Let I denote the kernel of the surjection R � Rred. Since R is assumed to
be p-torsion free, Rred is also p-torsion free and we thus have an exact sequence

0→ I/$I → R/$ → Rred/$ → 0.

Thus e(R/$) = e(Rred/$) + e(I/$I,R/$) (notation as in [Kis09, §1.3]) and we
are reduced to showing that e(I/$I,R/$) = 0. Since R[1/p] is generically reduced,
the localisation I℘ vanishes for every minimal prime ℘ of R. Thus the support of
I on R is of dimension strictly smaller than that of R. Since I ⊂ R ⊂ R[1/p], each



THE BREUIL–MÉZARD CONJECTURE FOR QUATERNION ALGEBRAS 13

minimal prime in the support of I is p-torsion free. It follows that the support of
I/$I is of dimension strictly smaller than that of R/$. Thus e(I/$I,R/$) = 0,
as required. �

The main result of this paper is the following.

Theorem 5.6. Conjecture 5.1 implies Conjecture 5.3.

Proof. Assume that Conjecture 5.1 holds. Define ιD := ι ◦ JL. If τ is supercus-
pidal, then by Theorem 4.2, we have ιD(σD(τ, λ)) = ι(σ(τ, λ)) = e(Rτ,λ/$) =
e(Rτ,λ,ds/$), as required. If τ is scalar, then we see in the same way using
Lemma 5.2 that ιD(σD(τ, λ)) = ι(σ(τ, λ)−σcr(τ, λ)) = e(Rτ,λ/$)−e(Rτ,λ,cr/$) =
e(Rτ,λ,ds/$). (The last equality follows from [Kis09, Prop. 1.3.4], taking f to be
the map Rτ,λ → Rτ,λ,cr ⊕Rτ,λ,ds.) �

Corollary 5.7. Suppose that K = Qp and that p ≥ 5. Then Conjecture 5.3 holds.

Proof. Under these hypotheses, Conjecture 5.1 holds by the main result of [Paš12].
�

Remark 5.8. It should also be possible to use the main result of [GK12] to prove
that there is a functional ι satisfying the conclusion of Conjecture 5.1 whenever
λ = 0 (the only issue being for scalar types, where the results of [GK12] consider
only the potentially crystalline, rather than potentially semistable representations;
but when λ = 0, the only representations excluded are ordinary, so it should be
possible to prove the automorphy lifting theorems necessary to use the machinery
of [GK12]). It would then follow that a functional ιD as in Conjecture 5.3 exists if
we restrict to the case λ = 0.

Remark 5.9. It may seem to the reader that the proof of Theorem 5.6 is a little
too simple, and that we have avoided various technical issues, in particular the
formulation of the weight part of Serre’s conjecture for ρ, which are usually present
in discussions of the Breuil–Mézard conjecture. However, following [GK12], the
weight part of Serre’s conjecture can be formulated in terms of the Breuil–Mézard
conjecture; namely, the predicted weights for ρ are precisely the irreducible repre-
sentations σ of GL2(k) for which ı(σ) > 0. (Note that if Conjecture 5.1 is true,
then ı(σ) is positive whenever it is non-zero; this follows from taking τ to be trivial
and Wλ to be a lift of σ in the second part of the conjecture.)

The analogous definition could be made for weights of D× (that is, for irreducible
representations of l×). In fact, if we translate the definition of the weight part of
Serre’s conjecture for quaternion algebras made in [GS11, Definition 3.4] to this
language, it is easy to see that this is precisely the definition made there.

More precisely, let σ be an F×-character of l×, and let σ̃ be its Teichmüller lift.
Then the discussion before Definition 3.2 of [GS11] shows that σ̃ = σD(τ) for some
type τ (in fact, the tame type corresponding to σ̃⊕ σ̃q via local class field theory).
Taking λ = 0, we see that ıD(σ) = e(Rτ,0,ds/$) ≥ 0, which is positive if and only
if ρ has a discrete series lift of weight 0 and type τ . This recovers [GS11, Definition
3.4].

Remark 5.10. Our results in fact give rise to a formula for the predicted D× weights
of ρ in terms of the predicted GL2 weights of ρ. Under the perfect pairing

RF(GL2(k))×RF(GL2(k))→ Z
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which sends two irreducibles (σ, σ′) to dimF HomGL2(k)(σ, σ
′), we can identify the

functional ι with an element
∑
σ µρ(σ)σ of RF(GL2(k)). We have a similar pairing

RF(l×)×RF(l×)→ Z

which allows us to think of ιD as an element of RF(l×). Moreover, we may consider
the adjoint JL∗ : RF(GL2(k)) → RF(l×) of the map JL with respect to these
pairings. Since ιD = ι ◦ JL, we see that for any element V of RF(l×), we have

(ιD, V ) = (ι, JL(V )) = (JL∗(ι), V ).

In other words, ιD = JL∗(ι). Note that for any irreducible F[GL2(k)]-representation
σ, we have

JL∗(σ) =
∑
ξ

mξ(σ)[ξ] +
∑
χ

mχ(σ)[χ ◦Nl/k]

where ξ runs over characters l× → F× not factoring through Nl/k and χ runs over

characters k× → F× and where:

• mξ(σ) is equal to the multiplicity with which σ appears in Θ(ξ) (which is
either 0 or 1 by [Dia07, Proposition 1.3]);
• mχ(σ) is 1 if σ = spχ; it is −1 if σ = χ ◦ det and it is 0 otherwise.

Thus, we have:

ιD =
∑
ξ

(∑
σ

mξ(σ)µρ(σ)

)
[ξ] +

∑
χ

(
µρ(spχ)− µρ(χ ◦ det)

)
[χ ◦Nl/k].
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