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Abstract. Let p > 2 be prime. We complete the proof of the weight part

of Serre’s conjecture for rank two unitary groups for mod p representations
in the totally ramified case, by proving that any Serre weight which occurs is

a predicted weight. This completes the analysis begun in [BLGG11], which

proved that all predicted Serre weights occur. Our methods are a mixture
of local and global techniques, and in the course of the proof we use global

techniques (as well as local arguments) to establish some purely local results

on crystalline extension classes. We also apply these local results to prove
similar theorems for the weight part of Serre’s conjecture for Hilbert modular

forms in the totally ramified case.
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1. Introduction

The weight part of generalisations of Serre’s conjecture has seen significant
progress in recent years, particularly for (forms of) GL2. Conjectural descriptions
of the set of Serre weights were made in increasing generality by [BDJ10], [Sch08]
and [GHS11], and cases of these conjectures were proved in [Gee11] and [GS11a].
Most recently, significant progress was made towards completely establishing the
conjecture for rank two unitary groups in [BLGG11]. We briefly recall this result.
Let p > 2 be prime, let F be a CM field, and let r̄ : GF → GL2(Fp) be a modular
representation (see [BLGG11] for the precise definition of “modular”, which is in
terms of automorphic forms on compact unitary groups). There is a conjectural
set W ?(r̄) of Serre weights in which r̄ is predicted to be modular, which is defined
in Section 2 below, following [GHS11]. Then the main result of [BLGG11] is that
under mild technical hypotheses, r̄ is modular of every weight in W ?(r̄). We note
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that this result is rather more general than anything that has been proved for inner
forms of GL2 over totally real fields, where there is a parity obstruction due to
the unit group; algebraic Hilbert modular forms must have paritious weight. This
problem does not arise for the unitary groups considered here, which is why we use
them, rather than making use of the more obvious choice of an inner form. In the
absence of a mod p functoriality principle, it is not known that the results for inner
and outer forms of GL2 are equivalent, and at present the theory for outer forms
is in a better state.

It remains to show that if r̄ is modular of some Serre weight, then this weight
is contained in W ?(r̄). It had been previously supposed that this was the easier
direction; indeed, just as in the classical case, the results of [BLGG11] reduce the
weight part of Serre’s conjecture for these unitary groups to a purely local problem
in p-adic Hodge theory. However, this problem has proved to be difficult, and so far
only fragmentary results are known. In the present paper we resolve the problem
in the totally ramified case, so that in combination with [BLGG11] we resolve the
weight part of Serre’s conjecture in this case, proving the following Theorem (see
Theorem 6.1.2).

Theorem A. Let F be an imaginary CM field with maximal totally real sub-
field F+, and suppose that F/F+ is unramified at all finite places, that ζp /∈ F ,

and that [F+ : Q] is even. Suppose that p > 2, and that r̄ : GF → GL2(Fp) is
an irreducible modular representation with split ramification such that r̄(GF (ζp)) is
adequate. Assume that for each place w|p of F , Fw/Qp is totally ramified.

Let a ∈ (Z2
+)S0 be a Serre weight. Then aw ∈ W ?(r̄|GFw ) if and only if r̄ is

modular of weight a.

(See the body of the paper, especially Section 2.2, for any unfamiliar notation
and terminology.) While [BLGG11] reduced this result to a purely local problem,
our methods are not purely local; in fact we use the main result of [BLGG11],
together with potential automorphy theorems, as part of our proof.

In the case that r̄|GFw is semisimple for each place w|p, the result was established
(in a slightly different setting) in [GS11a]. The method of proof was in part global,
making use of certain potentially Barsotti-Tate lifts to obtain conditions on r̄|GFw .
We extend this analysis in the present paper to the case that r̄|GFw is reducible but
non-split, obtaining conditions on the extension classes that can occur; we show
that (other than in one exceptional case) they lie in a certain set Lflat, defined
in terms of finite flat models. We are also able to apply our final local results to
improve on the global theorems proved in [GS11a]; see Theorem 6.1.3 below.

In the case that r̄|GFw is reducible the definition of W ? also depends on the
extension class; it is required to lie in a set Lcrys, defined in terms of reducible
crystalline lifts with specified Hodge-Tate weights. To complete the proof, we show
that Lcrys = Lflat, except in one exceptional case that we handle separately in
Proposition 5.2.9. An analogous result was proved in generic unramified cases in
section 3.4 of [Gee11] by means of explicit calculations with Breuil modules; our
approach here is less direct, but has the advantage of working in non-generic cases,
and requires far less calculation.

We use a global argument to show that Lcrys ⊂ Lflat. Given a class in Lcrys, we
use potential automorphy theorems to realise the corresponding local representation
as part of a global modular representation, and then apply the main result of
[BLGG11] to show that this representation is modular of the expected weight.
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Standard congruences between automorphic forms then show that this class is also
contained in Lflat.

To prove the converse inclusion, we make a study of different finite flat models
to show that Lflat is contained in a vector space of some dimension d. A standard
calculation shows that Lcrys contains a space of dimension d, so equality follows.
As a byproduct, we show that both Lflat and Lcrys are vector spaces. We also
show that various spaces defined in terms of crystalline lifts are independent of the
choice of lift (see Corollary 5.2.8). The analogous property was conjectured in the
unramified case in [BDJ10].

It is natural to ask whether our methods could be extended to handle the general
case, where Fw/Qp is an arbitrary extension. Unfortunately, this does not seem
to be the case, because in general the connection between being modular of some
Serre weight and having a potentially Barsotti-Tate lift of some type is less direct.
We expect that our methods could be used to reprove the results of section 3.4
of [Gee11], but we do not see how to extend them to cover the unramified case
completely. In particular, we are unsure as to when the equality Lflat = Lcrys holds
in general.

We now explain the structure of the paper. In Section 2 we recall the definition
of W ?, and the global results from [BLGG11] that we will need. In Section 3 we
recall (and give a concise proof of) a potential automorphy result from [GK11],
allowing us to realise a local mod p representation globally. Section 4 contains the
definitions of the spaces Lcrys and Lflat and the proof that Lcrys ⊂ Lflat, and in
Section 5 we carry out the necessary calculations with Breuil modules to prove our
main local results. All of these results are in the reducible case, the irreducible case
being handled in [GS11a]. Finally, in section 6 we combine our local results with
the techniques of [GS11a] and the main result of [BLGG11] to prove Theorem A,
and we deduce a similar result in the setting of [GS11a].

We would like to thank the anonymous referee for an extremely thorough reading
of the paper, and for their helpful suggestions which have improved the exposition
in many places. One of us (DS) thanks Fred Diamond for valuable discussions on
closely related questions.

1.1. Notation. If M is a field, we let GM denote its absolute Galois group. Let ε
denote the p-adic cyclotomic character, and ε̄ the mod p cyclotomic character. If M
is a global field and v is a place of M , let Mv denote the completion of M at v.
If M is a finite extension of Ql for some l, we write IM for the inertia subgroup
of GM . If R is a local ring we write mR for the maximal ideal of R.

LetK be a finite extension of Qp, with ring of integersOK and residue field k. We
write ArtK : K× →W ab

K for the isomorphism of local class field theory, normalised
so that uniformisers correspond to geometric Frobenius elements. For each σ ∈
Hom(k,Fp) we define the fundamental character ωσ corresponding to σ to be the
composite

IK // W ab
K

Art−1
K // O×K // k×

σ // Fp
×
.

In the case that k ∼= Fp, we will sometimes write ω for ωσ. Note that in this case

we have ω[K:Qp] = ε.
We fix an algebraic closure K of K. If W is a de Rham representation of GK

over Qp and τ is an embedding K ↪→ Qp then the multiset HTτ (W ) of Hodge-Tate
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weights of W with respect to τ is defined to contain the integer i with multiplicity

dimQp(W ⊗τ,K K̂(−i))GK ,

with the usual notation for Tate twists. Thus for example HTτ (ε) = {1}.

2. Serre weight conjectures: definitions

2.1. Local definitions. We begin by recalling some generalisations of the weight
part of Serre’s conjecture. We begin with some purely local definitions. Let K be
a finite totally ramified extension of Qp with absolute ramification index e, and let

ρ : GK → GL2(Fp) be a continuous representation.

Definition 2.1.1. A Serre weight is an irreducible Fp-representation of GL2(Fp).
Up to isomorphism, any such representation is of the form

Fa := det a2 ⊗ Syma1−a2 F2

p

where 0 ≤ a1 − a2 ≤ p− 1. We also use the term Serre weight to refer to the pair
a = (a1, a2).

We say that two Serre weights a and b are equivalent if and only if Fa ∼= Fb as
representations of GL2(Fp). This is equivalent to demanding that we have a1−a2 =
b1 − b2 and a2 ≡ b2 (mod p− 1).

We write Z2
+ for the set of pairs of integers (n1, n2) with n1 ≥ n2, so that a

Serre weight a is by definition an element of Z2
+. We say that an element λ ∈

(Z2
+)HomQp (K,Qp) is a lift of a Serre weight a ∈ Z2

+ if there is an element τ ∈
HomQp(K,Qp) such that λτ = a, and for all other τ ′ ∈ HomQp(K,Qp) we have
λτ ′ = (0, 0).

Definition 2.1.2. Let K/Qp be a finite extension, let λ ∈ (Z2
+)HomQp (K,Qp), and

let ρ : GK → GL2(Qp) be a de Rham representation. Then we say that ρ has Hodge

type λ if for each τ ∈ HomQp(K,Qp) we have HTτ (ρ) = {λτ,1 + 1, λτ,2}.
In particular, we will say that ρ has “Hodge type 0” if its Hodge-Tate weights are

(0, 1) with respect to each embedding. Following [GHS11] (which in turn follows
[BDJ10] and [Sch08]), we define an explicit set of Serre weights W ?(ρ).

Definition 2.1.3. If ρ is reducible, then a Serre weight a ∈ Z2
+ is in W ?(ρ) if and

only if ρ has a crystalline lift of the form(
χ1 ∗
0 χ2

)
which has Hodge type λ for some lift λ ∈ (Z2

+)HomQp (K,Qp) of a. In particular, if

a ∈ W ?(ρ) then by Lemma 6.2 of [GS11a] it is necessarily the case that there is a
decomposition Hom(Fp,Fp) = J

∐
Jc and an integer 0 ≤ δ ≤ e− 1 such that

ρ|IK ∼=
(
ωδ
∏
σ∈J ω

a1+1
σ

∏
σ∈Jc ω

a2
σ ∗

0 ωe−1−δ∏
σ∈Jc ω

a1+1
σ

∏
σ∈J ω

a2
σ .

)
We remark that this definition in terms of crystalline lifts is hard to work with

concretely, and this is the reason for most of the work in this paper. We also remark
that while it may seem strange to consider the single element set Hom(Fp,Fp), this
notation will be convenient for us (note that we always assume that the residue
field of K is Fp).
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Definition 2.1.4. Let K ′ denote the quadratic unramified extension of K inside K,
with residue field k′ of order p2.

If ρ is irreducible, then a Serre weight a ∈ Z2
+ is in W ?(ρ) if and only if there is

a subset J ⊂ Hom(k′,Fp) of size 1, and an integer 0 ≤ δ ≤ e − 1 such that if we

write Hom(k′,Fp) = J
∐
Jc, then

ρ|IK ∼=
(∏

σ∈J ω
a1+1+δ
σ

∏
σ∈Jc ω

a2+e−1−δ
σ 0

0
∏
σ∈Jc ω

a1+1+δ
σ

∏
σ∈J ω

a2+e−1−δ
σ

)
.

We remark that by Lemma 4.1.19 of [BLGG11], if a ∈ W ?(ρ) and ρ is ir-
reducible then ρ necessarily has a crystalline lift of Hodge type λ for any lift

λ ∈ (Z2
+)HomQp (K,Qp) of a. Note also that if a and b are equivalent and a ∈ W ?(ρ)

then b ∈W ?(ρ).

Remark 2.1.5. Note that if θ : GK → F×p is an unramified character, then W ?(r̄) =

W ?(r̄ ⊗ θ).

2.2. Global conjectures. The point of the local definitions above is to allow us to
formulate global Serre weight conjectures. Following [BLGG11], we work with rank
two unitary groups which are compact at infinity. As we will not need to make any
arguments that depend on the particular definitions made in [BLGG11], and our
main results are purely local, we simply recall some notation and basic properties
of the definitions, referring the reader to [BLGG11] for precise formulations.

We emphasise that our conventions for Hodge-Tate weights are the opposite of
those of [BLGG11]; for this reason, we must introduce a dual into the definitions.

Fix an imaginary CM field F , and let F+ be its maximal totally real subfield.
We assume that each prime of F+ over p has residue field Fp and splits in F . We
define a global notion of Serre weight by taking a product of local Serre weights in
the following way.

Definition 2.2.1. Let S denote the set of places of F above p. If w ∈ S lies over
a place v of F+, write v = wwc. Let (Z2

+)S0 denote the subset of (Z2
+)S consisting

of elements a = (aw)w∈S such that aw,1 + awc,2 = 0 for all w ∈ S. We say that an
element a ∈ (Z2

+)S0 is a Serre weight if for each w|p we have

p− 1 ≥ aw,1 − aw,2.

Let r̄ : GF → GL2(Fp) be a continuous irreducible representation. Definition
2.1.9 of [BLGG11] states what it means for r̄ to be modular, and more precisely
for r̄ to be modular of some Serre weight a; roughly speaking, r̄ is modular of
weight a if there is a cohomology class on some unitary group with coefficients in
the local system corresponding to a whose Hecke eigenvalues are determined by the
characteristic polynomials of r̄ at Frobenius elements. Since our conventions for
Hodge-Tate weights are the opposite of those of [BLGG11], we make the following
definition.

Definition 2.2.2. Suppose that r̄ : GF → GL2(Fp) is a continuous irreducible
modular representation. Then we say that r̄ is modular of weight a ∈ (Z2

+)S0 if r̄∨

is modular of weight a in the sense of Definition 2.1.9 of [BLGG11].

We remark that if r̄ is modular then r̄c ∼= r̄∨ ⊗ ε. We globalise the definition of
the set W ?(ρ) in the following natural fashion.
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Definition 2.2.3. If r̄ : GF → GL2(Fp) is a continuous representation, then we
define W ?(r̄) to be the set of Serre weights a ∈ (Z2

+)S0 such that for each place w|p
the corresponding Serre weight aw ∈ Z2

+ is an element of W ?(r̄|GFw ).

One then has the following conjecture.

Conjecture 2.2.4. Suppose that r̄ : GF → GL2(Fp) is a continuous irreducible
modular representation, and that a ∈ (Z2

+)S0 is a Serre weight. Then r̄ is modular

of weight a if and only if a ∈W ?(r̄).

If r̄ : GF → GL2(Fp) is a continuous representation, then we say that r̄ has split
ramification if any finite place of F at which r̄ is ramified is split over F+. We will
frequently place ourselves in the following situation.

Hypothesis 2.2.5. Let F be an imaginary CM field with maximal totally real sub-
field F+, and let r̄ : GF → GL2(Fp) be a continuous representation. Assume
that:

• p > 2,
• [F+ : Q] is even,
• F/F+ is unramified at all finite places,
• Fw/Qp is totally ramified for each place w|p of F , and
• r̄ is an irreducible modular representation with split ramification.

We point out that the condition that any place above p in F+ splits in F , which is
assumed throughout [BLGG11], is implied by the third and fourth conditions above.
The following result is Theorem 5.1.3 of [BLGG11], one of the main theorems of
that paper, specialised to the case of interest to us where Fw/Qp is totally ramified
for each place w|p of F . (Note that in [BLGG11], the set of Serre weights W ?(r̄) is
referred to as W explicit(r̄).)

Theorem 2.2.6. Suppose that Hypothesis 2.2.5 holds. Suppose further that ζp 6∈ F
and r̄(GF (ζp)) is adequate. Let a ∈ (Z2

+)S0 be a Serre weight. Assume that a ∈
W ?(r̄). Then r̄ is modular of weight a.

Here adequacy is a group-theoretic condition, introduced in [Tho10], that for
subgroups of GL2(Fp) with p > 5 is equivalent to the usual condition that r̄|GF (ζp)

is irreducible. For a precise definition we refer the reader to Definition A.1.1 of
[BLGG11]. We also remark that the hypotheses that F/F+ is unramified at all
finite places, that every place of F+ dividing p splits in F , and that [F+ : Q] is
even, are in fact part of the definition of “modular” made in [BLGG11]. .

Theorem 2.2.6 establishes one direction of Conjecture 2.2.4, and we are left with
the problem of “elimination,” i.e., the problem of proving that if r̄ is modular of
weight a, then a ∈W ?(r̄). We believe that this problem should have a purely local
resolution, as we now explain.

The key point is the relationship between being modular of weight a, and the
existence of certain de Rham lifts of the local Galois representations r̄|GFw with
w|p. The link between these properties is provided by local-global compatibility
for the Galois representations associated to the automorphic representations under
consideration; rather than give a detailed development of this connection, for which
see [BLGG11], we simply summarise the key results from [BLGG11] that we will
use. The following is Corollary 4.1.8 of [BLGG11].
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Proposition 2.2.7. Suppose that Hypothesis 2.2.5 holds. Let a ∈ (Z2
+)S0 be a

Serre weight. If r̄ is modular of weight a, then for each place w|p of F , there is
a crystalline representation ρw : GFw → GL2(Qp) lifting r̄|GFw , such that ρw has

Hodge type λw for some lift λw ∈ (Z2
+)HomQp (Fw,Qp) of a.

We stress that Proposition 2.2.7 does not already complete the proof of Conjec-
ture 2.2.4, because the representation ρw may be irreducible (compare with Defi-
nition 2.1.3). However, in light of this result, it is natural to make the following
purely local conjecture, which together with Theorem 2.2.6 would essentially resolve
Conjecture 2.2.4.

Conjecture 2.2.8. Let K/Qp be a finite totally ramified extension, and let ρ :

GK → GL2(Fp) be a continuous representation. Let a ∈ Z2
+ be a Serre weight, and

suppose that for some lift λ ∈ (Z2
+)HomQp (K,Qp), there is a continuous crystalline

representation ρ : GK → GL2(Qp) lifting ρ, such that ρ has Hodge type λ.

Then a ∈W ?(r̄).

We do not know how to prove this conjecture, and we do not directly address the
conjecture in the rest of this paper. Instead, we proceed more indirectly. Propo-
sition 2.2.7 is a simple consequence of lifting automorphic forms of weight a to
forms of weight λ; we may also obtain non-trivial information by lifting to forms
of weight 0 and non-trivial type. In this paper, we will always consider principal
series types. Recall that if K/Qp is a finite extension the inertial type of a poten-

tially semistable Galois representation ρ : GK → GLn(Qp) is the restriction to IK
of the corresponding Weil-Deligne representation. In this paper we normalise this
definition as in the appendix to [CDT99], so that for example the inertial type of
a finite order character is just the restriction to inertia of that character. We refer
the reader to Definition 2.1.2 and the discussion immediately following it for our
definition of “Hodge type 0.”

Proposition 2.2.9. Suppose that Hypothesis 2.2.5 holds. Let a ∈ (Z2
+)S0 be a

Serre weight. If r̄ is modular of weight a, then for each place w|p of F , there is a
continuous potentially semistable representation ρw : GFw → GL2(Qp) lifting r̄|GFw ,
such that ρw has Hodge type 0 and inertial type ω̃a1⊕ω̃a2 . (Here ω̃ is the Teichmüller
lift of ω.) Furthermore, ρw is potentially crystalline unless a1 − a2 = p − 1 and

r̄|GFw ∼=
(
χε ∗
0 χ

)
for some character χ.

Proof. This may be proved in exactly the same way as Lemma 3.4 of [GS11a],
working in the setting of [BLGG11] (cf. the proof of Lemma 3.1.1 of [BLGG11]).
Note that if ρw is not potentially crystalline, then it is necessarily a twist of an
extension of the trivial character by the cyclotomic character. �

3. Realising local representations globally

3.1. We now recall a result from the forthcoming paper [GK11] which allows us
to realise local representations globally, in order to apply the results of Section 2.2
in a purely local setting.

Theorem 3.1.1. Suppose that p > 2, that K/Qp is a finite extension, and let

r̄K : GK → GL2(Fp) be a continuous representation. Then there is an imaginary
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CM field F and a continuous irreducible representation r̄ : GF → GL2(Fp) such
that, if F+ denotes the maximal totally real subfield of F ,

• each place v|p of F+ splits in F and has F+
v
∼= K,

• for each place v|p of F+, there is a place ṽ of F lying over F+ with r̄|GFṽ
isomorphic to an unramified twist of r̄K ,
• ζp /∈ F ,
• r̄ is unramified outside of p,
• r̄ is modular in the sense of [BLGG11], and
• r̄(GF (ζp)) is adequate.

Proof. We give a brief (but complete) proof; a more detailed version will appear
in [GK11]. The argument is a straightforward application of potential modularity
techniques. First, an application of Proposition 3.2 of [Cal10] supplies a totally real
field L+ and a continuous irreducible representation r̄ : GL+ → GL2(Fp) such that

• for each place v|p of L+, L+
v
∼= K and r̄|L+

v

∼= r̄K ,

• for each place v|∞ of L+, det r̄(cv) = −1, where cv is a complex conjugation
at v, and
• there is a non-trivial finite extension F/Fp such that r̄(GL+) = GL2(F).

By a further base change one can also arrange that r̄|G
L
+
v

is unramified at each

finite place v - p of L+.
By Lemma 6.1.6 of [BLGG10] and the proof of Proposition 7.8.1 of [Sno09], r̄K

admits a potentially Barsotti-Tate lift, and one may then apply Proposition 8.2.1
of [Sno09] to deduce that there is a finite totally real Galois extension F+/L+ in
which all primes of L+ above p split completely, such that r̄|GF+ is modular in the
sense that it is congruent to the Galois representation associated to some Hilbert
modular form of parallel weight 2.

By the theory of base change between GL2 and unitary groups (cf. section 2
of [BLGG11]), it now suffices to show that there is a totally imaginary quadratic

extension F/F+ and a character θ : GF → F×p such that r̄|GF ⊗θ has multiplier ε−1

and such that for each place v|p of F+, there is a place ṽ of F lying over v with
θ|GFṽ unramified. The existence of such a character is a straightforward exercise in

class field theory, and follows for example from Lemma 4.1.5 of [CHT08]. �

4. Congruences

4.1. Having realised a local mod p representation globally, we can now use the
results explained in Section 2 to deduce non-trivial local consequences.

Proposition 4.1.1. Let p > 2 be prime, let K/Qp be a finite totally ramified ex-

tension, and let ρ : GK → GL2(Fp) be a continuous representation. Let a ∈W ?(ρ)
be a Serre weight. Then there is a continuous potentially semistable representa-
tion ρ : GK → GL2(Qp) lifting ρ, such that ρ has Hodge type 0 and inertial type
ω̃a1 ⊕ ω̃a2 . Furthermore, ρ is potentially crystalline unless a1 − a2 = p − 1 and

ρ ∼=
(
χε ∗
0 χ

)
for some character χ.

Proof. By Theorem 3.1.1, there is an imaginary CM field F and a modular repre-
sentation r̄ : GF → GL2(Fp) such that

• for each place v|p of F+, v splits in F as ṽṽc, and we have Fṽ ∼= K, and
r̄|GFṽ is isomorphic to an unramified twist of ρ,
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• r̄ is unramified outside of p,
• ζp /∈ F , and
• r̄(GF (ζp)) is adequate.

Now, since the truth of the result to be proved is obviously unaffected by making an
unramified twist (if ρ is replaced by a twist by an unramified character θ, one may
replace ρ by a twist by an unramified lift of θ), we may without loss of generality
suppose that r̄|GFw ∼= ρ. Let b ∈ (Z2

+)S0 be the Serre weight such that bṽ = a for
each place v|p of F+, where S denotes the set of places of F above p. By Remark
2.1.5, b ∈W ?(r̄). Then by Theorem 2.2.6, r̄ is modular of weight b. The result now
follows from Proposition 2.2.9. �

4.2. Spaces of crystalline extensions. We now specialise to the setting of Def-
inition 2.1.3. As usual, we let K/Qp be a finite totally ramified extension with
residue field k = Fp, ramification index e, and uniformiser π. We fix a Serre weight
a ∈ Z2

+. Note that all the subsequent constructions that we make (such as the
definitions of the spaces Lflat and Lcrys below) will depend on this choice. We fix a

continuous representation ρ : GK → GL2(Fp), and we assume that there is:

• a decomposition Hom(Fp,Fp) = J
∐
Jc, and

• an integer 0 ≤ δ ≤ e− 1 such that

ρ|IK ∼=
(
ωδ
∏
σ∈J ω

a1+1
σ

∏
σ∈Jc ω

a2
σ ∗

0 ωe−1−δ∏
σ∈Jc ω

a1+1
σ

∏
σ∈J ω

a2
σ .

)
Note that in general there might be several choices of J , δ. Consider pairs of

characters χ1, χ2 : GK → Q×p with the properties that:

(1) ρ ∼=
(
χ1 ∗
0 χ2

)
,

(2) χ1 and χ2 are crystalline, and
(3) if we let S denote the set of HomQp(K,Qp), then there exist J , δ as above

such that either
(i) J is non-empty, and there is one embedding τ ∈ S with HTτ (χ1) =

a1 + 1 and HTτ (χ2) = a2, there are δ embeddings τ ∈ S with
HTτ (χ1) = 1 and HTτ (χ2) = 0, and for the remaining e − 1 − δ
embeddings τ ∈ S we have HTτ (χ1) = 0 and HTτ (χ2) = 1, or

(ii) J = ∅, and there is one embedding τ ∈ S with HTτ (χ1) = a2 and
HTτ (χ2) = a1 + 1, there are δ embeddings τ ∈ S with HTτ (χ1) = 1
and HTτ (χ2) = 0, and for the remaining e− 1− δ embeddings τ ∈ S
we have HTτ (χ1) = 0 and HTτ (χ2) = 1.

Note that these properties do not uniquely determine the characters χ1 and χ2,
even in the unramified case, as one is always free to twist either character by an
unramified character which is trivial mod p. We point out that the Hodge type of
any de Rham extension of χ2 by χ1 will be a lift of a. Conversely, by Lemma 6.2
of [GS11a] any χ1, χ2 satisfying (1) and (2) such that the Hodge type of χ1 ⊕ χ2 is
a lift of a will satisfy (3) for a valid choice of J and δ (unique unless a = 0).

Suppose now that we have fixed two such characters χ1 and χ2, and we now
allow the (line corresponding to the) extension class of ρ in ExtGK (χ2, χ1) to vary.
We naturally identify ExtGK (χ2, χ1) with H1(GK , χ1χ

−1
2 ) from now on.
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Definition 4.2.1. Let Lχ1,χ2
be the subset of H1(GK , χ1χ

−1
2 ) such that the cor-

responding representation ρ has a crystalline lift ρ of the form(
χ1 ∗
0 χ2

)
.

We have the following variant of Lemma 3.12 of [BDJ10].

Lemma 4.2.2. Lχ1,χ2
is an Fp-vector subspace of H1(GK , χ1χ

−1
2 ) of dimension

|J |+ δ, unless χ1 = χ2, in which case it has dimension |J |+ δ + 1.

Proof. Let χ = χ1χ
−1
2 . Recall thatH1

f (GK ,Zp(χ)) is the preimage ofH1
f (GK ,Qp(χ))

under the natural map η : H1(GK ,Zp(χ))→ H1(GK ,Qp(χ)), so that Lχ1,χ2
is the

image of H1
f (GK ,Zp(χ)) in H1(GK , χ). The kernel of η is precisely the torsion

part of H1(GK ,Zp(χ)). Since χ 6= 1, e.g. by examining Hodge-Tate weights, this

torsion is non-zero if and only if χ = 1, in which case it has the form κ−1Zp/Zp
for some κ ∈ mZp . (To see this, note that if χ 6= 1 is defined over E, then the

long exact sequence associated to 0 → OE(χ) → OE(χ) → kE(χ) → 0 identifies
kE(χ)GK with the $-torsion in ker(η).)

By Proposition 1.24(2) of [Nek93] we see that dimQp H
1
f (GK ,Qp(χ)) = |J | + δ,

again using χ 6= 1. Since H1(GK ,Zp(χ)) is a finitely generated Zp-module, the
result follows. �

Definition 4.2.3. If χ1 and χ2 are fixed, we define Lcrys to be the subset of

H1(GK , χ1χ
−1
2 ) given by the union of the Lχ1,χ2

over all χ1 and χ2 as above.

Note that Lcrys is a union of subspaces of possibly varying dimensions, and
as such it is not clear that Lcrys is itself a linear subspace. Note also that the
representations ρ corresponding to elements of Lcrys are by definition precisely
those for which a ∈W ?(ρ). Note also that Lcrys depends only on ρss and a.

Definition 4.2.4. Let Lflat be the subset of H1(GK , χ1χ
−1
2 ) consisting of classes

with the property that if ρ ∼=
(
χ1 ∗
0 χ2

)
is the corresponding representation,

then there is a finite field kE ⊂ Fp and a finite flat kE-vector space scheme over
OK(π1/(p−1)) with generic fibre descent data to K of type ωa1 ⊕ ωa2 (see Defini-

tion 5.1.1) whose generic fibre is ρ.

Note that Lflat depends only on ρss and a.

Proposition 4.2.5. Provided that a1−a2 6= p−1 or that χ1χ
−1
2 6= ε, Lcrys ⊂ Lflat.

Proof. Take a class in Lcrys, and consider the corresponding representation ρ ∼=(
χ1 ∗
0 χ2

)
. As remarked above, a ∈ W ?(ρ), so by Proposition 4.1.1, ρ has a

crystalline lift of Hodge type 0 and inertial type

ω̃a1 ⊕ ω̃a2 ,
and this representation can be taken to have coefficients in the ring of integers OE
of a finite extension E/Qp. Let $ be a uniformiser of OE , and kE the residue field.
Such a representation corresponds to a p-divisible OE-module with generic fibre
descent data, and taking the $-torsion gives a finite flat kE-vector space scheme
with generic fibre descent data whose generic fibre is ρ. By Corollary 5.2 of [GS11b]
this descent data has type ωa1 ⊕ ωa2 . �
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In the next section we will make calculations with finite flat group schemes in
order to relate Lflat and Lcrys.

5. Finite flat models

5.1. We work throughout this section in the following setting:

• K/Qp is a finite extension with ramification index e, ring of integers OK ,
uniformiser π and residue field Fp.
• χ1, χ2 are characters GK → F×p .

• a ∈ Z2
+ is a Serre weight.

• There is a decomposition Hom(Fp,Fp) = J
∐
Jc, and an integer 0 ≤ δ ≤

e− 1 such that

χ1|IK = ωδ
∏
σ∈J

ωa1+1
∏
σ∈Jc

ωa2 ,

χ2|IK = ωe−1−δ
∏
σ∈Jc

ωa1+1
∏
σ∈J

ωa2 .

Note in particular that (χ1χ2)|IK = ωa1+a2+e.
Let K1 := K(π1/(p−1)). Let kE be a finite extension of Fp such that χ1, χ2 are

defined over kE ; for the moment kE will be fixed, but eventually it will be allowed
to vary.

We wish to consider the representations ρ ∼=
(
χ1 ∗
0 χ2

)
such that there is a

finite flat kE-vector space scheme G over OK1
with generic fibre descent data to K

of type ωa1 ⊕ ωa2 (see Definition 5.1.1), whose generic fibre is ρ. In order to do so,
we will work with Breuil modules with descent data from K1 to K. We recall the
necessary definitions from [GS11b].

Fix π1, a (p− 1)-st root of π in K1. Write e′ = e(p− 1). The category BrModdd

consists of quadruples (M,Fil1M, φ1, {ĝ}) where:

• M is a finitely generated free kE [u]/ue
′p-module,

• Fil1M is a kE [u]/ue
′p-submodule of M containing ue

′M,

• φ1 : Fil1M → M is kE-linear and φ-semilinear (where φ : Fp[u]/ue
′p →

Fp[u]/ue
′p is the p-th power map) with image generatingM as a kE [u]/ue

′p-
module, and
• ĝ :M→M for each g ∈ Gal(K1/K) are additive bijections that preserve

Fil1M, commute with the φ1-, and kE-actions, and satisfy ĝ1 ◦ ĝ2 = ĝ1 ◦ g2

for all g1, g2 ∈ Gal(K1/K); furthermore 1̂ is the identity, and if a ∈ kE ,
m ∈M then ĝ(auim) = a((g(π)/π)i)uiĝ(m).

The category BrModdd is equivalent to the category of finite flat kE-vector space
schemes over OK1 together with descent data on the generic fibre from K1 to K
(this equivalence depends on π1); see [Sav08], for instance. We obtain the associated
GK-representation (which we will refer to as the generic fibre) of an object of
BrModdd,K1

via the covariant functor TKst,2 (which is defined immediately before
Lemma 4.9 of [Sav05]).

Definition 5.1.1. Let M be an object of BrModdd such that the underlying kE-
module has rank two. We say that the finite flat kE-vector space scheme corre-
sponding toM has descent data of type ωa1 ⊕ωa2 ifM has a basis e1, e2 such that
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ĝ(ei) = ωai(g)ei. (Here we abuse notation by identifying an element of GK with
its image in Gal(K1/K).)

We now consider a finite flat group scheme with generic fibre descent data G
as above. By a standard scheme-theoretic closure argument, χ1 corresponds to a
finite flat subgroup scheme with generic fibre descent data H of G, so we begin by
analysing the possible finite flat group schemes corresponding to characters.

Suppose now thatM is an object of BrModdd. The rank one objects of BrModdd

are classified as follows.

Proposition 5.1.2. With our fixed choice of uniformiser π, every rank one object
of BrModdd has the form:

• M = (kE [u]/ue
′p) · v,

• Fil1M = ux(p−1)M,
• φ1(ux(p−1)v) = cv for some c ∈ k×E , and
• ĝ(v) = ω(g)kv for all g ∈ Gal(K1/K),

where 0 ≤ x ≤ e and 0 ≤ k < p− 1 are integers.
Then TKst,2(M) = ωk+x ·urc−1 , where urc−1 is the unramified character taking an

arithmetic Frobenius element to c−1.

Proof. This is a special case of Proposition 4.2 and Corollary 4.3 of [GS11b]. �

Let M (or M(x)) be the rank one Breuil module with kE-coefficients and de-
scent data from K1 to K corresponding to H, and write M in the form given
by Proposition 5.1.2. Since G has descent data of type ωa1 ⊕ ωa2 , we must have
ωk ∈ {ωa1 , ωa2}.

5.2. Extensions. Having determined the rank one objects, we now go further and
compute the possible extension classes. By a scheme-theoretic closure argument,
the Breuil module P corresponding to G is an extension of N by M, where M is
as in the previous section, and N (or N (y)) is defined by

• N = (kE [u]/ue
′p) · w,

• Fil1N = uy(p−1)N ,
• φ1(uy(p−1)v) = dw for some d ∈ k×E , and
• ĝ(v) = ω(g)lv for all g ∈ Gal(K1/K),

where 0 ≤ y ≤ e and 0 ≤ l < p− 1 are integers. Now, as noted above, the descent
data for G is of type ωa1⊕ωa2 , so we must have that either ωk = ωa1 and ωl = ωa2 ,
or ωk = ωa2 and ωl = ωa1 . Since by definition we have (χ1χ2)|IK = ωa1+a2+e, we
see from Proposition 5.1.2 that

x+ y ≡ e (mod p− 1).

We have the following classification of extensions of N by M.

Proposition 5.2.1. Every extension of N by M is isomorphic to exactly one of
the form

• P = (kE [u]/ue
′p) · v + (kE [u]/ue

′p) · w,

• Fil1P = (kE [u]/ue
′p) · ux(p−1)v + (kE [u]/ue

′p) · (uy(p−1)w + νv),
• φ1(ux(p−1)v) = cv, φ1(uy(p−1)w + νv) = dw,
• ĝ(v) = ωk(g)v and ĝ(w) = ωl(g)w for all g ∈ Gal(K1/K),
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where ν ∈ umax{0,(x+y−e)(p−1)}kE [u]/ue
′p has all nonzero terms of degree congruent

to l−k modulo p−1, and has all terms of degree less than x(p−1), unless χ1 = χ2

and x ≥ y, in which case it may additionally have a term of degree px− y.

Proof. This is a special case of Theorem 7.5 of [Sav04] with the addition of kE-
coefficients. When K (in the notation of loc. cit.) is totally ramified, the proof of
loc. cit. is argued in precisely the same manner when coefficients are added, taking
care to note the following changes. (Note that loc. cit. uses l instead of p, so let
l = p in what follows.)

• Replace Lemma 7.1 of loc. cit. (i.e., Lemma 5.2.2 of [BCDT01]) with
Lemma 5.2.4 of [BCDT01] (with k′ = kE and k = Fp in the notation
of that Lemma). In particular replace tl with φ(t) wherever it appears in

the proof, where φ is the kE-linear endomorphism of kE [u]/ue
′l sending ui

to uli.
• Instead of applying Lemma 4.1 of [Sav04], note that the cohomology group

H1(Gal(K1/K), kE [u]/ue
′l) vanishes because Gal(K1/K) has prime-to-l or-

der while kE [u]/ue
′l has l-power order.

• Every occurrence of T li in the proof (for any subscript i) should be replaced
with Ti.
• The coefficients of h, t are permitted to lie in kE (i.e., they are not con-

strained to lie in any particular proper subfield).

�

The formulas for (P,Fil1P, φ1, {ĝ}) in the statement of Proposition 5.2.1 define a

Breuil module with descent data provided that Fil1P contains ue
′P and is preserved

by each ĝ. This is the case as long as ν lies in umax{0,(x+y−e)(p−1)}kE [u]/ue
′p and

has all nonzero terms of degree congruent to l− k modulo p− 1 (cf. the discussion
in Section 7 of [Sav04]); denote this Breuil module by P(x, y, ν). Note that c is
fixed while x determines k, since we require ωk+x · urc−1 = χ1; similarly d is fixed
and y determines l. So this notation is reasonable.

We would like to compare the generic fibres of extensions of different choices ofM
and N . To this end, we have the following result. Write χ1|IK = ωα, χ2|IK = ωβ .

Proposition 5.2.2. The Breuil module P(x, y, ν) has the same generic fibre as the
Breuil module P ′, where

• P ′ = (kE [u]/ue
′p) · v′ + (kE [u]/ue

′p) · w′,
• Fil1P ′ = (kE [u]/ue

′p) · ue(p−1)v′ + (kE [u]/ue
′p) · (w′ + up(e−x)+yνv′),

• φ1(ue(p−1)v′) = cv′, φ1(w′ + up(e−x)+yνv′) = dw′,
• ĝ(v′) = ωα−e(g)v′ and ĝ(w′) = ωβ(g)w′ for all g ∈ Gal(K1/K).

Proof. Consider the Breuil module P ′′ defined by

• P ′′ = (kE [u]/ue
′p) · v′′ + (kE [u]/ue

′p) · w′′,
• Fil1P ′′ = (kE [u]/ue

′p) ·ue(p−1)v′′+ (kE [u]/ue
′p) · (uy(p−1)w′′+up(e−x)νv′′),

• φ1(ue(p−1)v′′) = cv′′, φ1(uy(p−1)w′′ + up(e−x)νv′′) = dw′′,
• ĝ(v′′) = ωk+x−e(g)v′′ and ĝ(w′′) = ωl(g)w′′ for all g ∈ Gal(K1/K).

(One checks without difficulty that this is a Breuil module. For instance the con-
dition on the minimum degree of terms appearing in ν guarantees that Fil1P ′′
contains ue

′P ′′.) Note that k + x ≡ α (mod p − 1), l + y ≡ β (mod p − 1). We
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claim that P, P ′ and P ′′ all have the same generic fibre. To see this, one can check
directly that there is a morphism P → P ′′ given by

v 7→ up(e−x)v′′, w 7→ w′′,

and a morphism P ′ → P ′′ given by

v′ 7→ v′′, w′ 7→ upyw′′.

By Proposition 8.3 of [Sav04], it is enough to check that the kernels of these maps do

not contain any free kE [u]/(ue
′p)-submodules, which is an immediate consequence

of the inequalities p(e− x), py < e′p. �

Remark 5.2.3. We note for future reference that while the classes in H1(GK , χ1χ
−1
2 )

realised by P(x, y, ν) and P ′ may not coincide, they differ at most by multiplication
by a kE-scalar. To see this, observe that the maps P → P ′′ and P ′ → P ′′ induce
kE-isomorphisms on the one-dimensional sub- and quotient characters.

We review the constraints on the integers x, y: they must lie between 0 and e,
and if we let k, l be the residues of α−x, β− y (mod p−1) in the interval [0, p−1)
then we must have {ωk, ωl} = {ωa1 , ωa2}. Call such a pair x, y valid.

Corollary 5.2.4. Let x′, y′ be another valid pair. Suppose that x′ + y′ ≤ e and
p(x′ − x) + (y− y′) ≥ 0. Then P(x, y, ν) has the same generic fibre as P(x′, y′, ν′),

where ν′ = up(x
′−x)+(y−y′)ν.

Proof. The Breuil module P(x′, y′, ν′) is well-defined: one checks, e.g. from the
relation l − k ≡ β − α + x − y (mod p − 1), that the congruence condition on the
degrees of the nonzero terms in ν′ is satisfied, while since x′ + y′ ≤ e there is no
condition on the lowest degrees appearing in ν′. Now the result is immediate from
Proposition 5.2.2, since up(e−x)+yν = up(e−x

′)+y′ν′. �

Recall that x + y ≡ e (mod p − 1), so that x and e − y have the same residue
modulo p− 1. It follows that if x, y is a valid pair of parameters, then so is e− y, y;
and similarly for x, e− x. Let X be the largest value of x over all valid pairs x, y,
and similarly Y the smallest value of y. Then on the one hand X ≥ e − Y by
definition of X, while on the other hand e −X ≥ Y by definition of Y . It follows
that X + Y = e.

Corollary 5.2.5. The module P(x, y, ν) has the same generic fibre as P(X,Y, µ)

where µ ∈ kE [u]/ue
′p has all nonzero terms of degree congruent to β − α+X − Y

modulo p − 1, and has all terms of degree less than X(p − 1), unless χ1 = χ2, in
which case it may additionally have a term of degree pX − Y .

Proof. Since X + Y = e and p(X − x) + (y − Y ) ≥ 0 from the choice of X,Y ,
Corollary 5.2.4 shows that P(x, y, ν) has the same generic fibre as some P(X,Y, ν′);
by Proposition 5.2.1 there exists µ as in the statement such that P(x, y, µ) has the
same generic fibre as P(X,Y, ν′). (Note that if χ1 = χ2 then automatically X ≥ Y ,
because in this case if (x, y) is a valid pair then so is (y, x).) �

Proposition 5.2.6. Let X be as above, i.e., X is the maximal integer such that

• 0 ≤ X ≤ e, and
• either χ1|IK = ωa1+X or χ1|IK = ωa2+X .

Then Lflatis an Fp-vector space of dimension at most X, unless χ1 = χ2, in which
case it has dimension at most X + 1.
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Proof. Let Lflat,kE ⊂ Lflat consist of the classes η such that the containment η ∈
Lflat is witnessed by a kE-vector space scheme with generic fibre descent data.
By Corollary 5.2.5 and Remark 5.2.3 these are exactly the classes arising from
the Breuil modules P(X,Y, µ) with kE-coefficients as in Corollary 5.2.5. These
classes form a kE-vector space (since they are all the extension classes arising from
extensions of N (Y ) byM(X)), and by counting the (finite) number of possibilities
for µ we see that dimkE Lflat,kE is at most X (resp. X + 1 when χ1 = χ2).

Since Lflat,kE ⊂ Lflat,k′E
if kE ⊂ k′E it follows easily that Lflat = ∪kELflat,kE is

an Fp-vector space of dimension at most X (resp. X + 1). �

We can now prove our main local result, the promised relation between Lflat and
Lcrys.

Theorem 5.2.7. Provided that either a1 − a2 6= p − 1 or χ1χ
−1
2 6= ε, we have

Lflat = Lcrys.

Proof. Before we begin the proof, we remind the reader that the spaces Lcrys and
Lflat depend on the fixed Serre weight a and the fixed representation ρss, and that
we are free to vary J and δ in our arguments. By Proposition 4.2.5, we know that
Lcrys ⊂ Lflat, so by Proposition 5.2.6 it suffices to show that Lcrys contains an Fp-
subspace of dimension X (respectively X + 1 if χ1 = χ2). Since Lcrys is the union
of the spaces Lχ1,χ2

, it suffices to show that one of these spaces has the required
dimension. Let X be as in the statement of Proposition 5.2.6, so that X is maximal
in [0, e] with the property that either χ1|IK = ωa1+X or χ1|IK = ωa2+X . Note that
by the assumption that there is a decomposition Hom(Fp,Fp) = J

∐
Jc, and an

integer 0 ≤ δ ≤ e− 1 such that

ρ|IK ∼=
(
ωδ
∏
σ∈J ω

a1+1
σ

∏
σ∈Jc ω

a2
σ ∗

0 ωe−1−δ∏
σ∈Jc ω

a1+1
σ

∏
σ∈J ω

a2
σ

)
,

we see that if X = 0 then χ1|IK = ωa2 .
If χ1|IK = ωa2+X then we can take J to be empty and we take δ = X; otherwise

X > 0 and χ1|IK = ωa1+X , and we can take Jc to be empty and δ = X − 1. In
either case, we may define characters χ1 and χ2 as in Section 4.2, and we see from
Lemma 4.2.2 that dimFp Lχ1,χ2

= X unless χ1 = χ2, in which case it is X + 1. The

result follows. �

As a consequence of this result, we can also address the question of the rela-
tionship between the different spaces Lχ1,χ2

for a fixed Serre weight a ∈W ?(ρ). If
e is large, then these spaces do not necessarily have the same dimension, so they
cannot always be equal. However, it is usually the case that the spaces of maximal
dimension coincide, as we can now see.

Corollary 5.2.8. If either a1 − a2 6= p − 1 or χ1χ
−1
2 6= ε, then the spaces Lχ1,χ2

of maximal dimension are all equal.

Proof. In this case dimFp Lχ1,χ2
= dimFp Lcrys by the proof of Theorem 5.2.7, so

we must have Lχ1,χ2
= Lcrys. �

Finally, we determine Lcrys in the one remaining case, where the spaces Lχ1,χ2

of maximal dimension no longer coincide.

Proposition 5.2.9. Suppose that a1 − a2 = p − 1 and that χ1χ
−1
2 = ε. Then

Lcrys = H1(GK , ε).
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Proof. We prove this in a similar fashion to the proof of Lemma 6.1.6 of [BLGG10].
By twisting we can reduce to the case (a1, a2) = (p − 1, 0). Let L be a given line
in H1(GK , ε), and choose an unramified character ψ with trivial reduction. Let χ
be some fixed crystalline character of GK with Hodge-Tate weights p, 1, . . . , 1 such
that χ = ε. Let E/Qp be a finite extension with ring of integers O, uniformiser $
and residue field F, such that ψ and χ are defined over E and L is defined over F
(that is, there is a basis for L which corresponds to an extension defined over F).
Since any extension of 1 by χψ is automatically crystalline, it suffices to show that
we can choose ψ so that L lifts to H1(GK ,O(ψχ)).

Let H be the hyperplane in H1(GK ,F) which annihilates L under the Tate
pairing. Let δ1 : H1(GK ,F(ε)) → H2(GK ,O(ψχ)) be the map coming from the

exact sequence 0 → O(ψχ)
$→ O(ψχ) → F(ε) → 0 of GK-modules. We need to

show that δ1(L) = 0 for some choice of ψ.
Let δ0 be the map H0(GK , (E/O)(ψ−1χ−1ε))→ H1(GK ,F) coming from the ex-

act sequence 0→ F→ (E/O)(ψ−1χ−1ε)
$→ (E/O)(ψ−1χ−1ε)→ 0 of GK-modules.

By Tate local duality, the condition that L vanishes under the map δ1 is equivalent
to the condition that the image of the map δ0 is contained in H. Let n ≥ 1 be the
largest integer with the property that ψ−1χ−1ε ≡ 1 (mod $n). Then we can write
ψ−1χ−1ε(x) = 1 + $nαψ(x) for some function αψ : GK → O. Let αψ denote αψ
(mod $) : GK → F. Then αψ is a group homomorphism (i.e. a 1-cocycle), and
the choice of n ensures that it is non-trivial. It is straightforward to check that the
image of the map δ0 is the line spanned by αψ. If αψ is in H for some ψ, we are
done. Suppose this is not the case. We break the rest of the proof into two cases.

Case 1: L is très ramifié: To begin, we observe that it is possible to have chosen ψ
so that αψ is ramified. To see this, letm be the largest integer with the property that
(ψ−1χ−1ε)|IK ≡ 1 (mod $m). Note that m exists since the Hodge-Tate weights of
ψ−1χ−1ε are not all 0. If m = n then we are done, so assume instead that m > n.
Let g ∈ GK be a fixed lift of FrobK . We claim that ψ−1χ−1ε(g) = 1 + $nαψ(g)
such that αψ(g) 6≡ 0 (mod $). In fact, if αψ(g) ≡ 0 (mod $) then ψ−1χ−1ε(g) ∈
1 + $n+1OK . Since m > n we see that ψ−1χ−1ε(GK) ⊂ 1 + $n+1OK and this
contradicts the selection of n. Now let ψ′ be the unramified character sending our
fixed g to 1+$nαψ(g). Then ψ′ has trivial reduction, and after replacing ψ by ψψ′

we see that n has increased but m has not changed. After finitely many iterations
of this procedure we have m = n, completing the claim.

Suppose, then, that αψ is ramified. The fact that L is très ramifié implies that H
does not contain the unramified line in H1(GK ,F). Thus there is a unique x ∈ F×
such that αψ + ux ∈ H where ux : GK → F is the unramified homomorphism
sending FrobK to x. Replacing ψ with ψ times the unramified character sending
FrobK to (1 +$nx)−1, for x a lift of x, we are done.

Case 2: L is peu ramifié: Making a ramified extension of O if necessary, we can
and do assume that n ≥ 2 (for example, replacing E by E($1/2) has the effect
of replacing n by 2n). The fact that L is peu ramifié implies that H contains the
unramified line. It follows that if we replace ψ with ψ times the unramified character
sending FrobK to 1 +$, then we are done (as the new αψ will be unramified). �
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6. Global consequences

6.1. We now deduce our main global results, using the main theorems of [BLGG11]
together with our local results to precisely determine the set of Serre weights for a
global representation in the totally ramified case.

Theorem 6.1.1. Suppose that Hypothesis 2.2.5 holds. Let a ∈ (Z2
+)S0 be a Serre

weight such that r̄ is modular of weight a. Let w be a place of F dividing p, write
aw = (a1, a2), and write ω for the unique fundamental character of IFw of niveau
one.

Then aw ∈W ?(r̄|GFw ).

Proof. Let e be the ramification degree of Fw. Suppose first that r̄|GFw is irre-
ducible. Then the proof of Lemma 5.5 of [GS11a] goes through unchanged, and
gives the required result. So we may suppose that r̄|GFw is reducible. In this case
the proof of Lemma 5.4 of [GS11a] goes through unchanged, and shows that we
have

r̄|GFw ∼=
(
χ1 ∗
0 χ2

)
where (χ1χ2)|IK = ωa1+a2+e, and either χ1|IK = ωa1+z or χ1|IK = ωa2+e−z for
some 1 ≤ z ≤ e, so we are in the situation of Section 4.2. Consider the extension
class in H1(GFw , χ1χ

−1
2 ) corresponding to r̄|GFw . By Proposition 2.2.9, either a1−

a2 = p − 1 and χ1χ
−1
2 = ε, or this extension class is in Lflat. In either case,

by Theorem 5.2.7 and Proposition 5.2.9, the extension class is in Lcrys, so that
aw ∈W ?(r̄|GFw ), as required. �

We remark that we have stated Theorem 6.1.1 only when Fw/Qp is totally rami-
fied for all places w|p of F in order to avoid recalling the definition of Serre weights
in any greater generality; however, the above argument would prove essentially the
same result at any totally ramified place w|p of F , even if not all places w|p are
totally ramified (just modify Proposition 2.2.9 suitably).

Combining Theorem 6.1.1 with Theorem 5.1.3 of [BLGG11], we obtain our main
global result.

Theorem 6.1.2. Suppose that Hypothesis 2.2.5 holds. Suppose further that ζp 6∈ F
and r̄(GF (ζp)) is adequate. Let a ∈ (Z2

+)S0 be a Serre weight. Then aw ∈W ?(r̄|GFw )
for all places w|p of F if and only if r̄ is modular of weight a.

Finally, we may apply our local results to the case of inner forms of GL2, as
considered in [GS11a]. Here is an example of the kind of theorem that one can
prove. We refer the reader to [GS11a] for the notion of ρ as below being modular
(of some weight).

Theorem 6.1.3. Let F be a totally real field, let p ≥ 7 be prime, and suppose that
p is totally ramified in F , and that [F (ζp) : F ] > 4. Let ρ : GF → GL2(Fp) be
a continuous modular representation, and suppose that ρ|GF (ζp)

is irreducible. Let

a ∈ Z2 be a Serre weight. Let v be the unique place of F lying over p, and assume
that ρ|ssGFv 6

∼= εωa1 ⊕ ωa2 , εωa2 ⊕ ωa1 . Then ρ is modular of weight a if and only if

a ∈W ?(ρ|GFv ), where v is the unique place of F lying over p.

Proof. This follows easily from Theorem 5.2.7 together with (the proof of) Corollary
7.3 of [GS11a], replacing the use of Theorem 7.1 of [GS11a] with an appeal to
Theorem 6.1.9 of [BLGG10]. �



18 TOBY GEE, TONG LIU, AND DAVID SAVITT

References

[BCDT01] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modu-
larity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001),

no. 4, 843–939 (electronic). MR 1839918 (2002d:11058)

[BDJ10] Kevin Buzzard, Fred Diamond, and Frazer Jarvis, On Serre’s conjecture for mod l
Galois representations over totally real fields, Duke Math. J. 155 (2010), no. 1, 105–

161.

[BLGG10] Tom Barnet-Lamb, Toby Gee, and David Geraghty, Congruences between Hilbert mod-
ular forms: constructing ordinary lifts, preprint, 2010.

[BLGG11] , Serre weights for rank two unitary groups, preprint, 2011.
[Cal10] Frank Calegari, Even Galois Representations and the Fontaine-Mazur conjecture II,

preprint, 2010.

[CDT99] Brian Conrad, Fred Diamond, and Richard Taylor, Modularity of certain potentially
Barsotti-Tate Galois representations, J. Amer. Math. Soc. 12 (1999), no. 2, 521–567.

MR MR1639612 (99i:11037)

[CHT08] Laurent Clozel, Michael Harris, and Richard Taylor, Automorphy for some l-adic lifts
of automorphic mod l Galois representations, Pub. Math. IHES 108 (2008), 1–181.

[Gee11] Toby Gee, On the weights of mod p Hilbert modular forms, Inventiones Mathematicae

184 (2011), 1–46, 10.1007/s00222-010-0284-5.
[GHS11] Toby Gee, Florian Herzig, and David Savitt, Explicit Serre weight conjectures, in

preparation, 2011.

[GK11] Toby Gee and Mark Kisin, The Breuil-Mézard conjecture for potentially Barsotti-Tate
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