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0 Introduction

The official title for this course is ‘Games and Dynamics’. Perhaps a more appropriate title
would have been ‘Learning Dynamics in Strategic Environments’, because what this module
really aims to describe is how people, animals, plants or computers can learn over time. We
will cover models for:

e The evolution (i.e. learning) of populations. In other words, to understand how genetic
mutations which improve the performance of a population evolve over time. Such models
are also often used in economics.

e An explanation why in spite of the common assumption that all actions are aimed at
maximising an individuals’ payoff (and so are based on selfish motivations), altruistic
behaviour naturally evolves in nature.

e How learning works which is based on reinforcing behaviour which repeats actions which
led to good payoff. Such models are widely used in the computer science literature, and
are also used by for example Deep Mind (a subsidiary of Google) when they developing
technology which allows computers to learn to play games (or to solve other problems).
Here we will focus on a setting where several players have different interests, rather than
on a purely probabilistic setting.

e How learning works which is based on no-regret learning. There the idea is that a human,
or a computer evaluates whether they would have done better in the past if alternative
actions had been taken. If so, then this is used to inform future decisions.

As you will see from these notes, we will try to understand the foundations of the dynamical
aspects of learning. However, two of the three projects by which this module will be examined
are rather practical and may include a significant amount of computer coding.

0.1 What is this course about?

The notion of Nash equilibrium aims to describe how players optimise their behaviour in a
competitive environment. For this reason it is prevalent in many areas of science: economics,
biology, engineering etc.

The aim of this course is to highlight some situations where the notion of Nash equilibrium,
or related notions, are given a more dynamic interpretation. So a Nash equilibrium would be a
stationary point of some differential equation, or of some other dynamical process.

Example 0.1. Consider a population of birds where some will always fight about a grain (let us
call these hawks or hawkish birds), and others will always do some posturing but then retreat
rather than fight (dove-like). The payoff of getting the grain is GG, and the price for getting hurt
is —C'. We assume that 0 < G' < C.

If a hawk bird meets another hawk bird, one wins (and gets payoff G) and the other looses
(and get payoff —C'). On average this means the payoff for each is (G + —C')/2. If a dove
meets a dove, then one will get the grain but the other will not get hurt. In this way we get the
following payoff matrix

meeting Hawk Dove
G—C

payoff to Hawk == G ‘
payoff to Dove 0 ¢
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How is it that not the entire species develops hawkish behaviour?
Suppose that the frequency of ‘hawkish’ birds in the population is x and ‘dove-like’ birds is
1 — 2. Then the average ‘fitness’ is

r(G-C)/2+ (1 —2)G for hawkish birds
-0+ (1 —2)G/2 for dove-like.

If x = 1 then the fitness of hawkish birds is < 0 and of dove-like birds is = 0, and so the
number of dove-like birds will increase and the number of hawk-like will decrease. (Hawk-like
birds are constantly fighting and getting injured, whereas the dove-like will occasionally get
lucky.) When x = 0, the fitness is G resp. G/2, so the number of hawk-like birds will increase.
Equality holds when z = G/C.

Example 0.2 (Prisoner dilemma). Consider two prisoners, each in a separate rooms so that they
cannot communicate. The prisoners get a higher reward by betraying the other (defecting), but
if both cooperate (so stay silent) they get a reduced sentence. For example we may have the
following situation:

Prisoner I Coop Defects
Pris. I Coop -1,—-1 —=3,0
Pris I Defects 0,-3 —2,—-2 )°

This table describes the payoff (the number of years prison sentence) in various scenarios. For
example if prisoner II defects but prisoner I cooperates, then prisoner II will be released and
prisoner I will be 3 years in prison. What should the prisoners do? If II cooperates then I is
better off to defect (he then gets O years rather than 1 year prison sentence). If II defects then
he still better to defect (he gets 2 years rather than rather than 3 years). The same holds for II.
So the rational behaviour is for both prisoners to defect, resulting in a prison sentence of two
years for each.

Example 0.3 (Repeated prisoner dilemma / repeated donation game). What if the previous set-
up is repeated every year? Or what if two players are asked every week to make a donation of
£5 and if they do the other player gets a donation of £15, otherwise nothing. So the situation is
described by
II donates declines
I donates 10,10 —5,15
I declines ( 15,—=5 0,0 )

Of course if this game took place only one week, then this is again a prisoner dilemma game.
If this play is repeated many times then the considerations of the players will change of course.
We will discuss this situation in this course. (A political scientist called Axelrod, even organises
computer tournaments which explore which strategy is the most optimal. One strategy is called
TFT (Tit for Tat).)

To emphasise that it is important to consider the detailed set-up of the game, let us consider
the following:

Example 0.4 (Parrondo paradox). Consider two games Game A and Game B:
e In Game A, you lose £1 every time you play.

e In Game B, you count how much money you have left. If it is an even number, you win
£3. Otherwise you lose £5.
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Say you begin with £100. If you start playing Game A exclusively, you will obviously lose all
your money in 100 rounds. Similarly, if you decide to play Game B exclusively, you will also
lose all your money in 100 rounds.

However, consider playing the games alternatively, starting with Game B, followed by A,
then by B, and so on (BABABA...). It should be easy to see that you will steadily earn a total
of £2 for every two games.

Thus, even though each game is a losing proposition if played alone, because the results of
Game B are affected by Game A, the sequence in which the games are played can affect how
often Game B earns you money, and subsequently the result is different from the case where
either game is played by itself.

Different types of game dynamics

In this course we will consider various types of game dynamics.

e Replicator dynamics, both for one population and then for two players. This kind of
dynamics is often considered in biology and in economics (and is related to Darwin’s
idea of ‘survival of the fittest’. One question we will try to answer is how it is possible
that one has altruistic behaviour, even in these models.

e Best response dynamics and fictitious play, which was introduced in economics and
game theory as a dynamics which was meant to converge to the Nash equilibria. This
turned out to be not the case, but this dynamics is still often studied.

¢ Reinforcement learning The notion of payoff to players also leads to various learning
principles: the higher the payoff from a given action is, the more likely this action will
be taken in the future. There are various models which make this intuitive notion precise.
This and the next learning algorithm are both used heavily by IT companies such as
DeepMind, but are also studied by engineers, economists and so on.

e No-regret learning A different variant of a learning algorithm is that of no-regret learn-
ing. This is based on the idea that if a different action in the past would have given a
better payoff, assuming the other player would have done the same, then different deci-
sions should be made in the future.

0.2 Prerequisites

No other background will be required in this module than what is covered in any differential
equations course; no background is required in game theory.

0.3 Practical Arrangements

e Students will be expected to read weekly approximately 10 pages of these lecture notes.

e Key points will also be covered in approximately three videos for each week. Each of
these will last somewhere between 10 to 20 minute. Some more ‘overview’ videos will
also be provided.

e Each section in the notes contains one or more exercises which will test whether you
have understood the material. You are expected to attempt these exercises.
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0.4

A weekly one hour online problem class will be held, in which these exercise will be
discussed.

A "guidance" manual can be found on blackboard. This manual includes a precise
timetable which will be updated each week what to read, which videos to watch and
what these exercises to do. It also will contain some (constantly updated) commentaries
on the lecture notes, and links to useful or interesting videos.

In addition there will be an online office hour.
The course will be examined by project. The arrangements and support for this is outlined

in the next subsection.

Assessment arrangment

This course will be examined by a project, together with a presentation on this project.
The possible topics for this project will be handed out after a few weeks into the term.
This project will need to be submitted at the end of week 1 of term 2.

Slots will be offered around week 6 and 7 to discuss your choice of topics, and further
optional slots to discuss your progress with the project.
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0.5 References

These lecture notes are fully self-contained. If you want to read further, the main references
for these lectures are the following books, which are both available online through Imperial’s
library:

e Hofbauer & Sigmund, Evolutionary games and population dynamics

e Sigmund, The Calculus of Selfishness.

For completeness I will also list references by chapter:

e Chapter 1: The books by Hofbauer & Sigmund, Evolutionary games and population
dynamics and by Weibull, Evolutionary game theory are standard references.

e Chapter 2: more on the classification of 2 x 2 replicator dynamics can be found in Hof-
bauer & Sigmund, Evolutionary games and population dynamics but a more detailed
description can be found in chapter 3 of Cressman, Evolutionary Dynamics and Exten-
sive Form Games. The description of a chaotic replicator dynamics system is given in
Sato, Akiyama and Crutchfield, Stability and diversity in collective adaptation, Physica
D, 210, 2015, 21-57.

e Chapter 3: chapter 3 of Sigmund, The Calculus of Selfishness.

e Chapter 4: More on this can be found in Hofbauer, Deterministic Evolutionary Game
Dynamics, Proceedings of Symposia in Applied Mathematics Volume 69, 2011. Shapley
was the first to observe that there are periodic orbit in the RPS game (which is also called
Shapley game):

— Shapley, Some Topics in Two-Person Games, in M. Dresher, L. S. Shapley and A.
W. Tucker, eds., “Advances in Game Theory”, Annals of Mathematics Studies No.
52, 1-28, 1964.

For results on the bifurcations of periodic orbits and chaotic best response dynamics of
the generalised Shapley game, see http://wwwf.imperial.ac.uk/~svanstri/
publications_by_subject.php and specifically

— Colin Sparrow, SvS & Christopher Harris, Fictitious Play in 3x3 Games: the tran-
sition between periodic and chaotic bahavior. Games and Economic Behavior 63,
(2008), 259-291.

— Colin Sparrow & SvS, Fictitious Play in 3x3 Games: chaos and dithering behaviour,
Games and Economic Behavior 73 (2011), 262-286.

e Chapter 5 explores whether the limit sets of best response dynamics (and of the repli-
cator dynamics) have game theoretic properties. Sections 5.1 up to Section 5.4 follow
Ostrovski & van Strien, Payoff performance of fictitious play, Journal of Dynamics and
Games, vol 1, issue 4, October 2014.

Section [5.5]follows J. Hofbauer, S. Sorin and Y. Viossat (2009) Time average replicator
and best reply dynamics. Math. Operations Res. 10 (2), 263-269.


http://wwwf.imperial.ac.uk/~svanstri/publications_by_subject.php
http://wwwf.imperial.ac.uk/~svanstri/publications_by_subject.php

e Section 6.1 follows essentially Posch, Cycling in a stochastic learning algorithm for
normal form games, J Evol Econ (1997) 7: 193-207. But there is an extensive literature
on this.

Some of this work is grounded in the field of behavioural economics, so to model how
people learn, e.g. Erev & Roth, Predicting how people play games: Reinforcement learn-
ing in experimental games with unique, mixed strategy equilibria. Amer. Econ. 1998,
Rev. 88, 848-881.

Section 6.2 follows Beggs, On the convergence of reinforcement learning, Journal of
Economic Theory (2005) 122, 1-36.

For a discussion on approximating discrete ‘random’ dynamical systems by differential
equations can be found in for example Benaim, Dynamics of stochastic approximation
algorithms, in: Seminaire de Probabilité, XXXIII, Lecture Notes in Mathematics, vol.
1709, Springer, Berlin, 1999, https://doi.org/10.1073/pnas.1109672110
it is shown that for a very large class of games and for large class of learning dynamics
one has complicated dynamics.

In Ostrovski & van Strien, Payoff performance of fictitious play, Journal of Dynamics
and Games, vol 1, issue 4, October 2014 it is shown that the average payoff for both
players is often better if they play (FP) than if they play (NE). It would be interesting
to explore whether this is also true for the other learning dynamics considered in these
lecture notes (or specifically for the systems considered by Galla & Farmer).

e More general references for the chapters on learning are: Fudenberg & Levine, The
Theory of Learning in Games. MIT Press. (1999) and Young, Strategic learning and Its
limits, Oxford, U.K, (2004), or from the machine learning point of view, see for example
Nisan, Roughgarden, Tardos and Vazirani, Algorithmic Game Theory, 2007.
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1 Replicator dynamics for one population

1.1 Nash equilibrium of one population

We consider a large population where each individual can have one of a finite set of n pure
strategies. You might think of these as individuals which can have one of n different traits
(e.g. colour of eyes, fighting behaviour, personality characteristics, opinions etc.) Let z; denote

the frequency of strategy 7 in the population. So (xi,...,z,) is a probability vector. Let
A, ={reR,0<x <1l,zy+- -+, = 1} be the (n — 1)-dimensional simplex. So
(x1,...,2,) € A,. Usually we will fix n and write A. For later use, let e; be the vector in A

with a coefficient 1 on the i-th coordinate.

Let us assume consider a populations in which an invader who chooses strategy ¢ against
a strategy j receives payoff a;;. Assuming the populations uses a mixed strategy (y1, ..., ¥n),
with random matching (that is, random encounters) this leads to the following linear payoff to
an invader choosing strategy (or action) i:

a;(y) = Zaijyj = (Ay);
J
where A is the matrix (a;;). If the invader uses a mixed strategy x this gives a payoff
Payoff(x,y) := x - Ay.
A probability vector & € A is called a Nash equilibrium (NE) iff

x- Az <z Az, Vo e A. (1.1)

and a strict Nash equilibrium if
x-Ar < x-Az,Vor € Awithzx # 2. (1.2)

Note that v- Az < - Az, Va € A means that the invader cannot do better by choosing anything
other than z. We say that z is a pure NE if & = e; for some 1.

An equivalent way of formulating the notion of Nash equilibrium is to define the best
response map

BR(z) = argmaxy - Az el {y € Ajy-Ax <y - Az Vy € A}
yEA

Then z is a NE iff 2 € BR(%).

10

01 > . What are its Nash equilibria?

Example 1.1. Consider a game determined by A = (

To see this, note that
er ifxy > a9
BR(Z') = ey ifx) < a9
A if Tr1 = T

Soe; € BR(e;) and BR ( }?; ) > ( 1?; ) and z ¢ BR(x) for any other vector. So ey, es
and z := (e;+e€2)/2 := ( %; ) are the Nash equilibria. Note that Az = zandsoz-Az = 1/2
for each x € A. So z is not a strict NE. On the other hand, e, e, are both strict NE.

1



1 00
Example 1.2. Consider a game determinedby A= | 0 1 0

0 01
ria? Note that A in this case is a triangle. BR takes values ey, e, e3 on three convex regions,
see Figure |1, which meet at (1/3,1/3,1/3). At this midpoint, one has that (1/3,1/3,1/3) €
BR(1/3,1/3,1/3) = A and so this is a NE. Taking Z; » to be the line-segment connecting
(1/3,1/3,1/3) to the midpoint between e, and e; we have BR(z) =< e1,es > forallxz € Z; 5
and so where Z 5 intersects OA we get another NE. Continuing this analysis, we see there are
precisely 7 NE’s.

. What are its Nash equilib-

1& 4 2

Figure 1: The indifference lines, the best response regions and the Nash equilibria correspond-
ing to Example[T.2]

Exercise 1.1. 1. Give a real life example in which you clarify the notion of Nash equi-
librium.
010
2. Consider the game determined by A = | 0 0 1 |. What are its Nash equilibria?
1 00
Compute the lines Z;; = {z € A; (Az); = (Az);}. What is the relationship between
the NE and these lines?

1.2 Evolutionary stable strategies

Z is an evolutionary stable equilibrium (ESS) if for all x € A, x # 2 one has for € > 0 small
enough,
r-Alex+ (1 —€)2) < - Alex + (1 — €)). (1.3)

Here the size of € > 0 is allowed to depend on .

Lemma 1.1. strict NE = ESS =— NE.

Remark: As we will prove at the end of this chapter, every game has a Nash equilibrium. On
the other hand, there are games without an ESS.

Proof. First assume 7 is a strict NE. Then x - Az < £AZ. This inequality is what the ESS
condition (I.3) reduces to if we take e = 0. By continuity the ESS condition then also holds
for € > 0 small.

Now assume that x is an ESS. For each x # & we can let ¢ — 0 in the ESS condition and
we obtain r - Az < TAZ. O



Example 1.3. Consider a game determined by A = (1) (1) . What are its ESS? We know
this matrix has three NE’s. Let us check which of these are ESS’s. First consider whether
z = (e1+e3)/2is an ESS. Note that x - Az = 1/2 for each = € A. For z to be an ESS, we need
that for e > 0 small, and all x # z we have = - A(ex + (1 —€)z) < z - A(ex + (1 — €)z). This
reduces to = - Az < z - Az. This is supposed to hold for all x # z so in particular for z = e,
but this is clearly not true. So z is not an ESS. Note that, in fact, we could have used the next
lemma to conclude that 2 is not an ESS.

Let us now show that e; is an ESS. So we need to show that for all z = (z1,x2) # é; and
all e > 0 sufficiently small, z - A(ex + (1 —€)ey) < ey - A(ex + (1 — €)e;) when x # ey. This is
equivalent to e(x? + z3) + (1 — €)1 < ex; + (1 — €) which holds for € > 0 small since z; # 1.
[If we take € = 0, then the ESS inequality becomes z; = x - Ae; < e; - Ae; = 1 which clearly
holds when = # e;. So for ¢ > 0 small the ESS inequality also holds.] In the same way we get
that e, 1s also an ESS.

Lemma 1.2. If 7 is a Nash equilibrium then there exists ¢ € R so that (Az); = ¢ for each i for
which z; > 0. In particular, c = = - Az and if Z € int A is a NE then there exists ¢ € R with
(Az); = c for each i.

Moreover, if Z € int A is an ESS, then there exists no other NE.

Proof. Substituting e; for x in the definition (I.1)) of NE, implies
e At <1 - Azx.

This holds for all ¢ = 1,...,n. Write & = > \je; with \; > 0 and > \; = 1. Summing over
the previous inequality we get

f-Ag?::Z)\iei-A:izgZ)\ii-A:i::i-Afc.

But we would obtain here a strict inequality if e; - Az < & - AZ for some ¢ for which \; > 0,
which is clearly impossible. Hence

e;- Az =1 - Az foralli =1,...,n for which z; > 0.

proving the first part of the lemma.

It follows that if Z is an interior NE, then for each € A one has x - Az = ¢ (here we use
that « is a probability vector). Assume that 2 is also an ESS, i.e. that for each x # z and € > 0
small one has - A(ex + (1 —€)2) < T - A(ex + (1 —€)2). But since = - Az = & - AT = c, this
inequality reduces to = - Ax < @ - Az for each x # 2. So x # % cannot be a NE. [

Lemma 1.3. The ESS assumption (1.3 is equivalent to the assumption that for all y # %
sufficiently close to z,
y-Ay <. Ay (1.4)

Moreover, if 7 € int A is an ESS then
y-Ay <z -Ayforally € A (1.5)

Proof. First associate to & a compact set A C A so that & ¢ A and so that for each y # 7 the
line [(t) = (1 — t)T + ty, t > O intersects A. By the ESS inequality for each x € A there
exists g(x) > 0sothatx- A(ex + (1 —€)z) < - A(ex+ (1 —e€)z) forall € € (0, €o(x)). There
exists an open neighbourhood U(z) so that the same inequality also holds for all 2’ € U(x)
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(replacing z’ by x). By compactness of A, the open cover U,coU (z) has a finite sub-cover. It
follows that there exists ¢y > 0 so that

x-Alex+(1—¢€)z) <z Alex + (1 — €)2)

for each x € A and each € € (0, €).
By the choice of A for each y # 7 sufficiently close to Z can be written in the form y =
(1 — €)Z + ex for some x € A and for some € € (0, ¢y). Substituting the definition of y in the
previous displayed equation gives
x-Ay <z Ay.

Multiplying this inequality by e and adding to both sides the inequality the term (1 — €)Z - Ay,
gives the required inequality y - Ay < zAy.

Now assume that & € int A is an ESS. Then by the previous lemma, there exists ¢ so that
forall z, v - Az = ¢ = & - Az. This means that x - A(ex + (1 — €)2) < & - A(ex + (1 — €)2)

reduces to the required inequality = - Az < 2 - Ax forall z € A. ]
a-—c
Example 1.4. Consider the payoff matrix A = < (2) ) considered in the introduction.

G
2
For simplicity take G = 2 and C' = 4 so that A = ( _01 ? ) So Ax = ( —$1$+ 22 ) and
2

this gives BR(x) = e if x5 > x; and BR(z) = ey if 5 < z;. Furthermore, for & = ( %; )

we have BR(z) = A and so z is a NE. This is not a strict NE because Az = ( 1?; ) =z and

therefore x Az = £ Az for all x. To check that it is an ESS consider y = = + 66 . Since

y- Ay = (x+<fe)>(x+(__i€)> = (1/2) — 2¢ — 2¢
f;-Ay—@-<:z+(__‘°’:)> — (1/2) — 2

and therefore by Lemmal(l.3|Z is an ESS.

Ai*:fvwehaveAy:i:—i—( 6>.Hence

while

0o 1 -1
Example 1.5. Letusshowthat A= —1 0 1 does not have any ESS. To start with
1 -1 0
let us determine its NE’s. Assume = € int A is a NE. Then there exists ¢ so that (Az); = ¢ for
eachi. So xy — 3 = —x1 + x3 = 1 — T3 = ¢, which gives ¢ = 0 and x; = 1/3, and the point

(1/3,1/3,1/3) is a NE. Now consider the set
Zij = {w; (Ax); = (Ax);}

of = so that the 7 and j-th coordinate of Ax are the same. These can be computed relatively
easily (see lecture).

From this diagram it follows that for each i the set of x € A for which e¢; € BR(z) is an
non-empty convex region containing (1/3,1/3,1/3) and one of the corners of the triangle (see
the lectures for a drawing). This diagram also implies that (1/3,1/3,1/3) is the only NE.
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Is 2 = (1/3,1/3,1/3) a ESS? Again we need to consider the inequality = - A(ex + (1 —
€)t) < - A(ex + (1 — €)x). This reduces to = - Az < - Az. Thatis, x1(zs — z3) + xo(—x1 +
x3) + x3(z1 — x2) < (1/3)[(z2 — 23) + (=21 + 23) + (21 — 2)]. Note that both the left and
right hand side are zero, so the inequality does NOT hold and so 7 is not an ESS. It follows that
this games has no ESS.

Exercise 1.2. 1. Determinethe NEfor A= | —1 0 2 |. Does this game have a

strict NE or an ESS?

1 00
2. Show that ey, e5, e3 are ESS pointsfor A= | 0 1 0
0 01

1.3 Replicator dynamics

One proposal to describe a mechanism which explains why Nash equilibria and ESS can appear
as a dynamic process is the following system of differential equations

;= x;((Ax); —x - Ax),i=1,...,n. (1.6)

This means that one considers x;(t) is a real-valued variable depending on time ¢, rather than
as a rational number.

Note that if z(t) is a probability vector then ) . &; = >, z;((Az); —x - Az) =z - Az —x -
Az = 0. Moreover, if 2;(0) = 0 then x;(¢) for all ¢. It follows that if 2(0) is a probability vector
then x(¢) is a probability vector for all ¢. Hence by a fundamental theorem from the theory of
differential equations, solutions of exist for all time ¢ € R.

The rationale behind the differential equation (I.6) is the following: let the population
be divided up in n types, and let x; be the proportion of type ¢ (so that x is a probability
vector). Then &y /x; describes the growth rate of type i. The replicator equation assumes that
#;/x; is equal to the fitness (Ax); = e; - Ax of this type i minus the mean average fitness
>, €+ Ax = x - Az of the population. In particular if ; > 0 and (Az); > x - Az then &; > 0.

Note that (1.6) implies that

d ZT; ZT;
diz, acj((Ax)Z (Az);). (1.7)
Lemma 1.4 (Nash equilibria and equilibria of the ODE). .
1. Any Nash equilibrium Z is an equilibrium of the replicator equation (L.6).

2. If z is the omega-limit of an orbit x(¢), and & € int A then  is a NE.

3. If 2 is Lyapounov stable, then it is a NE.

Proof. By the previous lemma, if Z is a Nash euqilibrium then there exists a ¢ so that (Az); = ¢
for each i for which #; > 0. It follows that (AZ); — Z - Az = 0 for each of such i. For the other
i’s one has #; = 0. It follows that  is a zero of (1.6), proving part (1) of the lemma.

If 2 is not a Nash equilibrium then there exists x so that z - Az > % - Az. It follows that
there exists i so that e; - AT > Z - Az. Hence there exists ¢ > 0 so that for x close to Z (here we
reuse the name ), (Az); — x - Ax = e; - Ax — x - Ax > e. Hence &; > ex; when z is close to
Z and so it is impossible that z(t) — Z as t — oo. O
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Example 1.6. Give an example of a system for which not every stationary point 2 is a NE.
(Hint: there may be indices ¢ with #; = 0 when (AZ); > ¢ where c is as above.)

Example 1.7. Describe what happens for

A= (1.8)

o O O
o O
— N O

What are its NE’s? What are its ESS’s?

Let us first check whether A has any interior NE . Then (Ax); = cand so x5 = 2x3 = x3 = c.

So ¢ = 3 = x5 = 0. So there is no interior NE.

To see whether there are other NE’s we consider the set Z; ; = {x € A; (Ax); = (Ax);} where

the best response is indifferent between i, j. These sets Z; o = {xo = 223}, Z1 5 = {x2 = 23}

and Zy3 = {223 = 23} = {x3 = 0} are all lines through e,. By considering the position,

of these lines, it follows the triangle contains regions with non-empty interior where BR = e,
T2

and BR = e», see Figure 2|below. Here we use that Ax = | 2x3 |. It follows that e; is the
T3

unique NE.

Now we can ask whether & = e; is a EES? Note that Az = 0, so z - A(ex + (1 — €)2) <

Z-A(ex+ (1 —€)z) reduces to - Ax < Z- Ax which is equivalent to z1 x5 + 9223 + 2323 < T2.

which is not the case when 21 = 9 = 0,23 = 1 (or when 21 = 1,29 = x5 = 0), and so ey is

not an ESS.

By considering (x2/x3) = (xo/x3)(223 — x3), (x1/x2) = (x1/x2)(x9 — 223), (21/23)" =

(x1/x3)(x2 — x3) we see that on the sides of the triangle there are no additional singularities of

the flow, except in the corners. Moreover, it follows that the phase portrait is as in Figure [2].

Note that each of the corners e; is a singularity, but only e; is a Nash equilibrium.

Figure 2: The indifference lines and the flow corresponding to Example

Exercise 1.3. 1. Consider the replicator dynamics associated to the following system
0 10 1
A= | 10 0 1 |.Whatare the singularities and the ESS points.
1 1 1

2. What is the effect to the replicator dynamics #; = z;((Az); — x - Ax) of adding to the
1
first column of A the vector | 1 |. What are the NE and the ESS for this system?
1




€1

Figure 3: The arrow plot and a computer drawn plot of the flow corresponding to Example

3. Why do solutions of the replicator equations starting at some x(0) € A exist for all
t € R. (Hint: use a theorem from your course on differential equations.)

1.4 ESS points are asymptotically stable for the replicator system

We say that X C R"is convex ift - x + (1 —t)y € X forall x,y € R™ and for all ¢ € [0, 1].
Let us say that a function f: X — Ris convex if f(t-x+ (1 —t)y) < tf(x) + (1 —1)f(y)
for all z,y € R™ and for all ¢ € [0, 1] and it is called concave if the opposite inequality holds
throughout.

Theorem 1.1. If  is an ESS then it is asymptotically stable for the replicator system.
If £ € int A is an ESS then it globally attracts all initial points z € int A.

Proof. Consider the function P(z) = [] z¥i. Let us show that this has a unique maximum at Z.
First notice that when f is a convex function on some interval I, then f(>_ p;x;) < > pif(z;)
for x1,...,2, € I and all p; with p; > 0 and > p; = 1. If f is strictly convex, then a
strict inequality holds except when all the z; are equal. Applying this to f = log on [0, 0]
(which is concave, so we get the opposite inequality) gives 3 #;log($:) = >, . i log(§) <
log > s wo®i <log ) x; =logl=0.Hence ) &;logz; <) % logi;and so P(z) < P( )
with equality only if x = 2.
So let us now show that we can consider P as a Lyapounov function:

g jlogP szlogxz Zmzi:—

;>0
:Z@-((Ax)i—a:-/lx) =1 -Ar—z- Az

Since 7 is evolutionary stable, the equation 1} gives that the r.h.s. is > 0 and so P > 0 for
all z # 7 close to . It follows that orbits starting near & converge to 7.

If 2 € intA then 1} implies that P/P > 0 everywhere and so & attracts all points in
int A. [



0 6 —4
Example 1.8. Consider the matrix A = | —3 0 5 |. Show that £ = (1/3,1/3,1/3)
-1 3 0
is a rest point which is asymptotically stable. To see this, compute the eigenvalues of the
linearisation at this fixed point. Show that this point is not an ESS, by showing that e; =
(1,0,0) is an ESS.
61’2 - 4.%‘3
Solution: Arx = | —3z; + 5x3 | and so the lines Z, ; all go through E. From this one can
—1z; + 379
see that the lines Z; ; are as in the figure, and so £ is a Nash equilibrium. This also determines
the singularities and the arrows on the sides of the triangle, as (z;/x;) = (x;/z;)[(Ax); —
(Ax);]. Indeed, Z3 3 N [e2, €3] and Z; 3 N [eq, e3] are singularities, and of course ey, ez, 3 are
also singularities. Note that 2 and 3 are suboptimal strategies at Zs 3 N [e2, €3] and so this
point is not a Nash equilibrium. Similarly, es, e3 are not Nash equilibria. On the other hand,
Zy 3N [e1, e3] and e; are Nash equilibria. In summary, this game has three Nash equilibria and
three additional singularities.

Figure 5: By computing (z;/x2) and (z1/x3)" at some point you can determine which direction
the flow points towards, see the text in Example @

The singularity Zs 5 N [e2, 3] = (0,5/8,3/8) is a saddle point. Indeed on [eze3] we have
(x9/x3) = (w9/x3)[5x3 — 3x3]. This shows that the arrows along this side point towards
(0,5/8,3/8). Exercise: show that this point is indeed a saddle point.

1/3
To compute the eigenvaluesin E = | 1/3 | we write z; = E + h; and let h be the vector
1/3
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Figure 6: The arrow plot and a computer drawn plot of the flow corresponding to Example
To make sense of the flow diagram one needs to add carefully more initial conditions. This
figure also does not show clearly that orbits spiral towards £. In that sense the hand-drawn
flow drawn in Figure E] shows more clearly what is going on.

with components h;. Note that since x and E are probability vectors, > h; = 0 and so we can
replace hg by —h; — hs. Since all components of AFE are equal we have that h - AE = 0 and so

r-Ax =(E+h)-A(E+h)
—E-AE+h-AE + E- Ah+ O(h?) (1.9)
— E-AE + E- Ah+ O(h?).

and
(Az); —x - Az = (Ah); — E - Ah + O(h?). (1.10)
Taking 1 to be the vector with 1’s we get
E-Ah =(1/3)1- Ah

= (1/3)(—4hy + 9hy + hs3)
= (—5/3)h1 + (8/3)ha
and
(Ah)l == 6h2 - 4h5 = 4h1 + 10h2,
(Ah)Q == —3h1 + 5h3 == —8h1 - 5h2

So &; = z;((Az); — x - Ax) gives

= ((1/3) + h1) (17/3)h + (22/3)ha + O(h?))) =
— (1/9) (17hy + 22hs) + O(h2).
ha = (1/9) (—19hy — 23hy) 4+ O(h?).

This implies that the linear part at £ is equal to

(5, 2)

The eigenvalues of the matrix are (1/3)(—1 4 i/2).
To see that e; is an ESS it is sufficient to check that (z — e;) - A(ex + (1 — €)ey) < 0
when € > 0 small. Another way of seeing this, is to observe that it is sufficient to show that
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P = x; is a strict Lyapounov function. (To see that this is sufficient, have a look at the proof
of the previous theorem. There it is shown that P /P =% Ax — z - Az and by Lemma
ESS is equivalent to the statement that this term is positive for x close to Z.) But we have that
(x1/x3) = (21/23)[(Az)1 — (Ax)s] and (z1/x2)" = (x1/x9)[(Ax)1 — (Az)y] where the square
bracket terms are both positive. This means that the speed vector along the line P = x1 = €
lies in the cone in the figure, and so P is strictly increasing.

Additional arguments are needed to show that the saddle-separatrices are as shown in Fig-

ure 4]

Exercise 1.4. 1. Consider the function P from Theorem taking & equal to ey, s, €3

1 00
and A= 0 1 0 |.Draw the phase diagram for the replicator dynamics.
00 1

1.5 Further examples

Example 1.9. Consider the following matrix, determine the corresponding NE’s and the phase
020

diagrams of the replicator dynamics. A= | 2 0 2 |;
1 11

Figure 8: The arrow plot and a computer drawn plot of the flow corresponding to Example

Solution: 7, 5 and Z; 3 correspond to 2xy = 2x; + 2x3 resp 2xy + 2x3 = 1 + 22 + T3.
These are the same lines. Z; 3 corresponds to 2xo = x7 + 22 + 23 = 1, s0 29 = 1/2. So
Z13 = Z12 = Zy3 and this lines consists entirely of NE’s. These are stationary points of the
system, so in particular there are no ESS’s. In summary, this system has infinitely many NE’s
and three additional singularities.

The arrows along the boundary can be seen by using (z;/z;) = (x;/z;)[(Ax); — (Ax);].
Along [eq, 5] we get (Ax); — (Ax)y = (29 — 211), SO a sign change at x; = 2 = 1/2.
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Along [eq,e3] we get (Ax); — (Az); = (223 — 1) = —1 < 0 and along [es, e3] we get
(Az)s—(Az)s = (221+2x3—1) = 2x3—1 which has a sign change. Along Z; , = Z; 3 we have
that Az = (1,1, 1) so this means that all these points are singularities of the replicator system.
Note that everywhere (x1/x2) = (x1/x2)(Ax); — (Ax)y = 229 — (221 + 223) = —4xg — 2
which shows that orbits converge to the line Z; o = Z; 3.

)
1

(2 S aw]

1
Example 1.10. Consider A = | 0
5 0 4
diagrams of the replicator dynamics. Is there an ESS?

To answer these questions we start by computing Z;;: Z; » corresponds to x; + 4xy = dxs,
Z13 10 dxy = 4wy + 4w3 and Zy 3 to w2 + x3 = 5xy. These lines intersect at £ 1= T =
(3/18,8/18,7/18), so this is a Nash equilibrium. Note that from the form of the indifference
equations, it follows that each side of A is intersected by precisely two indifference lines. This,
and since BR(e;) = e;_1, implies that there just two possible positions for the Z;; lines, as
shown in the figure. Since Z; » does not intersect [e;es], the situation is as in the left figure.

determine the corresponding NE’s and the phase

ND 3

Figure 9: Two potential configurations of the indifference lines in Example As explained
in the text, the right configuration is impossible.

Figure 10: The arrow plot and a computer drawn plot of the flow corresponding to Exam-

ple[L.10}

Once we see this, we also obtain that orbits are rotating about the NE. Is this NE an ESS?
By Lemma [I.3]| and since the NE lies in the interior of A, the ESS condition corresponds to
xAx < 2 Ax for z close to the NE. Write v = &+ h = (3/8 + hy,8/18 + ho, 7/18 4 h3) where
hi 4+ he + hy = 0. So we need to check (x — Z) Az = (h1hohs)Ax < 0. Since 7 is a NE and
hy + he + hg = 0, this is equivalent to (hyhohs) A(h1hohs) < 0. Since hy + hg + hy = 0, the
last expression is equal to 72 + 5hyhy + h3 + 5hohs + 5hyhs + 4h2. Substituting hs = —hy — hy
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gives that this is equal to
h? 4+ 5hihg + h3 — 5hohy — 5h3 — 5hT — 5hihg + 4(hy + hy)? = 3hihs.

This expression does not have a constant sign for i1, ho /= 0. So the attracting NE is not an ESS.
Nevertheless solutions converge to E. Indeed, write x = & + h. Then, using the calculation

from (I.10), '

hy = (3/18 + hy)[(hy + Bhg) — & - Ah + O(h?)]

hy = (8/18 + ha)[(he + 5h3) — & - Ah 4+ O(h?)).
Note that A = (19/9,23/18,34/9) and since h3 = —hy — hy this gives 2Ah = —(5/3)h; —
(5/2)hy and so we obtain

hy = (1/18)[(3hy + 15hy + (5/3)hy + (5/2)h2) + O(h?)]
hy = (1/18)[(8hy — 40hy — 40hs) + (5/3)hy + (5/2)hy) + O(h2)].

Or in simplified form:

h = (1/18)[(14/3)hy + (35/2)hs] + O(h?)
ho = (1/18)[—(115/3)hy — (59/2)hy] + O(h?)

The linear part of this system is

1 [ 14/3  35/2
18 ( ~115/3 —59/2 > ‘

This has eigenvalues —0.6898 £ 1.08157 so the system is locally stable. (I've determined the
eigenvalues using Matlab.) To show that the system is globally stable one needs additional
methods.

Exercise 1.5. 1. Consider the replicator dynamics associated to the following system
0 10 1
A= 10 0 1 | (see also Exercise|l.3(1)) and determine its phase portrait.
1 1 1

1.6 Rock-paper-scissor replicator game

There is a class of systems which have only one Nash equilibrium and for which BR(e;) = e;1;
(or BR(e;) = e;—1). So this suggests cyclic behaviour, and are therefore called rock-paper-
scissor games. Let us consider the replicator dynamics in one example of this situation; in the
general case the analysis is the same but computationally more involved.

0 1 =b
Example 1.11. Consider the matrix A= | —b 0 1 when b > 0. If b = 1 then this is
1 —=b O
a zero-sum game because then A + A" = 0 (and we took B = A" to be the payoff matrix of
the 2nd player), but otherwise it is not a zero-sum game. Show that V' := x xo23 is a constant
of motion (i.e. ¢ — V' (z(t)) is constant) when b = 1 and draw the phase diagram. If b # 1,
it is a Lyapounov function; draw the phase diagram. This game is called a rock-paper-scissor
game. These games will discussed again in Subsection[1.6]
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Figure 11: The rock-scissor-paper game from Example On the right the situation where
b > 11is drawn.

€3

4
Vs
e

0.0 1.0 -0. -~
-02 0.0 1. I
1.0 -0.2 0. N
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1@
f‘\v— (‘(
PN S
e €7

Figure 12: The arrow plot and a computer drawn plot of the flow corresponding to Exam-
ple forb € (0,1).
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Solution. Note that BR(e;) = e;_1: so the best response is cyclic. This matrix has an interior
NE at (1/3,1/3,1/3). As in Theorem |1.1|{take P = (x,2525)"/3. By the calculation in that
theorem, P/P = & - Az —x - Az = (& —z) - Az. Write © = 1/3+ h;. A calculation shows that
(JAZ'—LE) Ax = (b/?)— 1/3)(h1 +h2+h3) + (b— 1)(h1h2+h1h3—|—h2h3) = (1 —b) (h%—f—h%—f—hlhg)
where in the last equality we used that hs = —h; — hy. So P/P > 0 when b € (0,1) and
P /P < 0 when b > 1. So interior orbits starting at x # F, spiral out to the boundary when
b > 1 and towards E when b € (0, 1).

Let us see whether there are other Nash equilibria. This can be done in a number of ways.
One way is to show that the indifference lines are as shown along the above figure. Along the
boundary x5 = 0, we have Az = (xo—bxs, —bz1+x3, 11—br2) = (—brs, —b+(1+b)xs, 1—23)
where we used that along this boundary x; = 1 — 3. Hence BR(e;) = e3, BR(e3) = e; and
T € Zsz N [e1,es] along this side implies 3 = (1 + b)/(2 + b) and therefore ey - Az =
es- Ar > 0. Whenz € Z; 35N {xs = 0} thenx3 = 1/(b—1) ¢ [0,1] as b > 0 and similarly
x € Z1aN{xy = 0} then 3 = b/(1 + 2b) and then (Ax), = (Ax)s < 0 < (Azx)s. So using
the symmetry we obtain that the positions of Z;; are as in Example

Moreover, along [eq, e3] one has (Az); — (Az); = —bxg — (1 —z3) = (1 — b)zz < 0 as
b> 0and z3 € [0,1]. So (x;/x3)" < 0 and there are no singularities along this boundary of the
triangle. So solutions spiral out/in depending on whether b > 1 or b € (0, 1), and the arrows on
the sides of A are as shown.

0O 1 —=b
Lemma 1.5. Consider A = -b 0 1 with b > 1. Then
1 —b 0
1 [T
z(T):—/ () dt (L11)
T Jo

depends continuously on 7" and converges to some polygon with corners A; = (1,0%,b)/(1 +
b+ %), Ay = (b,1,6%)/(1 + b+ b?) and A3 = (b*,b,1)/(1 + b+ b*). You will be asked in
Exercise [1.6]to show that A;, A;,1, e;.1 are collinear. (Later on we shall see that the triangle is
the orbit under the so-called best response dynamics.)

Proof. Integrating the expression of the replicator dynamics and dividing by 7' gives

log(z:(T)) — log(z;(0)) 1 g e
og(i(T)) — log(xi( )):sz:%,/o ”Tj(t)dt_f/o v Avdt. (112

T

Since z(t) spends most of the time close to corners of the symplex (there the speed is small,
and between corners it is large) and since a;; = 0,

1 T
lim —/ x - Axdt — 0. (1.13)
(This statement is properly proved in the 2nd part of Exercise [1.6])
cm
Take a sequence 7}, — oo so that x(7}) converges to some point w € 0A with T}, chosen,
to be definite, so to that w € (e3, e3), i.e. wy = 0 and so that wo, w3 > 0. Taking, if necessary, a
1 Tk

subsequence of 7}, we can assume that 2(T;) = 7- [;* (t)dt converges to some point z € A.

Since z;(1}) — w; € (0,1) for i = 2, 3 and since 7, — oo we have

log(xi(T})) — log(xi(0))

0
T, ~
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fori = 2,3 as k — oo. Hence, using (1.11)), (1.12) and (1.13) we get that for i = 2, 3,

1

Ty

as k — oo. Since z(Ty) — z this implies (Az)y = 0, (Az)3 =0, i.e.

E (2525 = E ag;z; =0.
J J

Using the definition of the matrix A we get that for ¢ = 2,3 we have —bz; + 23 = 21 — bzo = 0.
Combined with 2, + 25 + 23 = 1 this means z = Ay := (b, 1,0%)/(1 + b+ b?).

Similarly when w € (eq,e1) respectively w € (e, e3) we get that z is equal to A; =
(1,6%,6)/(1 + b+ b*) and Az = (b*,b,1)/(1 + b+ b?).

Similarly, if 2(T}) converges, say, to ez and simulataneously z(7;) — =z then we obtain
log(xi(T')) — log(x:(0))

A — 0 for 7 = 3 and

(following the same argument as above) that

E a3;25 = 0.
J

This means z; — bzy = 0 (which corresponds to a line segment containing the points A3 and
Ajy. So during the very long time interval when z(T") stays near e, the average z(7") travels
along this segment between A3 and A,, so to one of the sides of the triangle A, Ay, . A3. U

therefore

2 (M)~ °

N e

1

Figure 13: The triangle from Lemma As the orbit z(7T},) converges to the boundary of A the
average z(T}) converges to the shown triangle. During the very long time interval when x(7})
converges to one of the corners ¢; the average Z (T} converge to one of sides of the triangle.

Later on we will consider non-symmetric rock-paper-scissor games, and ask whether these
can lead to chaotic dynamics.

Exercise 1.6. 1. Explain why the name Rock-Scissor-Paper is appropriate for the game
from example[I.T1]

2. Show that A;, A1, ;41 from Lemma 5.5 are collinear.
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3. Go through each of the steps in the proof of Lemma [5.5| carefully. For example, give
a convincing argument why limp_, o, T fOT x - Ax dt — 0. (This is a more challenging

exercise. Hint: use that there for each corner point there exists a C! diffeomorphism
which conjugates solutions of this differential equation at that corner point to the so-
lutions of a linear differential equation corresponding to a diagonal matrix. )

1.7 Hypercycle equation and permanence

Is it possible that orbits don’t converge to the boundary (we shall call this property ‘perma-
nence’) and also not to a Nash equilibrium in the interior?
Let us consider an example of such a situation. Consider

0 0 0 . . . Kk
ke O 0 . . . O
A= 0 k& O . . . O
0O 00 . .k O

This matrix is used to model n populations where population ¢ catalyses the reproduction of the
population ¢ + 1(modn). This model was created to understand the replication of RNA frag-
ments in the primordial soup. For more on this see Eigen M. and Schuster P., The Hypercycle
(Springer-Verlag, New York, Berlin, 1979) and https://en.wikipedia.org/wiki/
Hypercycle_ (chemistry).

To simplify the analysis we will consider the case that k; = 1. So the replicator dynamics
is described by

Ty = xi(Tim — Z TiTj1). (1.14)
j=1

where we use the cyclic notation, i.e. we take xo = x,,.

Lemma 1.6. This system has an interior Nash equilibrium which is stable for n < 4 and
unstable (of saddle-type) for n > 5.

Proof. E = (1/n)(1,1,...,1) is a Nash equilibrium. An elementary calculation show that the
linear part of the system at this point is the matrix

—2/n? —2/n? —2/n* . . —2/n? 1/n—2/n?
1/n — 2n? —2n? —2/n?* . . . —2/n?

—2/n*  1/n—2/n* —2/n* . . : 2—/n?

—2/n? —2/n?  =2/n* . . 1/n—2/n?>  —=2/n?

This is an example of a circulant matrix

Co ci C . . . Cp—1
Ch—1 Co C1 . . . Cph—2
C =
C1 Cy C3 . . . Co
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It is easy to check that the eigenvalues of such a matric are equal to
n—1
=Y N k=0...,n-1 (1.15)
j=0

and corresponding eigenvectors
(LA N2 A= DRy =0, . n—1

where A\ = €2™/™_ In our setting this leads to 7, = 1 and

22 1 AF
_E _ Ok L Zy\W=Dk 2 g —
Vi = n2/\] +n/\ = Jk=1,...,n—1

J=0

where we use that the first sum in this expression vanishes. The eigenvalue 1 with the eigen-
vector (1,1,1,...,1) (when k = 0) corresponds to the motion orthogonal to the simplex A so
is not of interest. When n = 3, we get 7, = (1/2)e?™/3, k = 1,2. The real parts of both these
eigenvalues are negative, so the singularity is stable. When n = 4, we get v, = (1/2)e?™/4,
k = 1,2, 3 and we see that the eigenvalues 71, 5 lie on the imaginary axis. Using a Lyapounov
function, see below, we show below that in spite of this the singularity is stable when n = 4.
For n > 5 there are eigenvalues with positive real part. So in this case the singularity is of
saddle type, i.e. both the stable and unstable manifold of the singularity is non-empty. So the
singularity is certainly not locally stable.

Let us explain that the boundary of the simplex A is repelling (and prove this statement for
n = 2,3,4). Define the Lyapounov function P(z) = xy - --x,. This function is zero on the
boundary of A and positive in the interior of A. Using the chain rule we get that

d @ -
dt(log P) = Z = 1- anjxj,l.
i =1

=1

For n = 2 and n = 3 this function is strictly positive on the interior of A except at the Nash
equilibrium £. When n = 4 then

5 = gl P) =300, o l—n) i xjzj1= 016
=1- 4(1’1334 + ToX1 + XT3To + T4T3) = '

)
=1—4(x1+x3)(va+z4) =1—48(1—1¢) >0

where t = (21 +x3) = 1 — (x2+x4) € [0, 1]. Note that 1 —4¢(1 —¢) > 0 and is 0 if and only if
t =1/2. So P/P > 0 on the interior of A minus W = {z € A; (z;423) = 1/2 = (z2+14)}.
Moreover, the only invariant subset of W is E: if y(0) € W and y(¢) € W for all ¢ > 0 then
y(0) = E (see exercise below).

Claim: this implies that the Nash equilibrium is stable (and in fact attracts all orbits starting
in the interior of A).

Proof of Claim: Take x(0) in the interior of A and suppose by contradiction that z(t) /4 E.
By (1.16) and since P has a unique maximum at £, we have then that ¢ — P(x(¢)) is increasing
whlle at the same time there exists 6 > 0 so that O < P(z(0)) < P(z(t)) < P(E) — ¢ for all
t > 0. Hence P — 0 as t — co. Using again it follows that x(t) — W as t — oo. But
this implies that for each accumulation point y(O) ofx(t)inW ={z € A;x; +x3 =22+ 24}

17



we have that its solution y(t) stays in W for ¢t > 0 and therefore we must have y(0) = E, a
contradiction.
Notice that for any arbitrary n

n

d T “
E(logP) = Zx_ =1 —nZa:jxj,l >0

i=1 j=1

whenever © € A is close to one of the corners e; of A, and so z(¢) moves then away from the
boundary of A. As part of the first project you are asked (based on Hofbauer and Sigmund’s
book) to show that orbits move away from the boundary when n > 5. So for n > 5, the
attracting set is neither the boundary of A nor the singularity E. ]

Exercise 1.7. 1. Show that the expression in (1.15)) indeed gives the eigenvalues for the
matrix C' from Lemma (1.6).

2. Show that when n = 4 indeed E is the only forward invariant subset of the set W
defined in the proof of the previous lemma. Hint: define the new variable z = x; +
x3— (2 +x4). Then z = (x; — x3) (19 —14) — 2(2?:1 z;x;—1). We need to show that
if 2(0) = 0 then 2(t) = 0 for all ¢ > 0. Since > 7, x;2;1 > 0 for z in the interior
of A, this only holds if (z1(¢) — z3(t))(x2(t) — x4(t)) = 0 for all ¢ > 0. Claim: this
implies x1(0) = 22(0) = 23(0) = 24(0) and so x = E.

Proof of claim: If Tr1— T3 = 0 then jﬁ'l —[t3 = (I11'4 —ZE3$2> — (fL’l —xg)(Z?ZI xjxj—l)
reduces to &7 — @3 = x1(r4 — x2). Hence z; — x5 = 0 and &1 — @3 = 0 implies
x4—T9 = 0. Similarly if x5 = x4 then Zy—14 = $2$1—$4$3—($2—$4)<Z?:1 T;Tj_1)
reduces to @y — @4 = x9(x1 — x3) and therefore &9 — &4 = 0 and x5 — x4 = 0 implies
x1 —x3 = 0.

1.8 Existence and the number of Nash equilibria

In this section we will show that each game has a Nash equilibrium, and in fact that for "most
games" the number of Nash equilibria is odd. In fact, we will prove a result which will assign
to each Nash equilibrium an index, and state that the sum of the indices is equal to (—1)""*
where n is the number of dimensions.

To discuss this, we will need to discuss some background on degree theory on the index of
a vector field. Several results on this background will not be covered in these lectures.

To start with, let assume that M, N are smooth connected orientable manifolds. If you
don’t know what a manifold is, then think of for example M/ = R™, M is an open ball in R",
M = S', M = S? or the two-dimensional torus M = T?.

Moreover, let f: M — N be a smooth map. We say that y is a regular value if f~'(y) # 0
and if for each x € f~!(y) the map f is locally smoothly invertible near z, i.e. Df, is an
invertible matrix. In this case, define

| [ 41 if det(Df,) >0
sign Df, = { -1 if det(Df,) <0

Definition. Let f: M — N be a smooth map and that y is a regular value. Then the degree of
fatapointy € f(M)\ f(OM) is equal to

deg(fiy) = > sienDf,.

z€f~1(y)
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Example 1.12. Let S' = R/Z and f: S' — S! be defined by = — nx. Then deg(f,y) = n
for each y. Let M be an open ball in N := R" and define f(x) = —z. Thendeg(f,y) = (—1)"
foreachy € N = f(M).

Assume that M is a compact manifold without boundary (we will only need to consider the
case that M is a sphere).

Theorem 1.2. The degree of a map has the following useful properties.

e The degree deg(f,y) of f: M — N is the same for each regular value y of f, see figure
in lecture. So this why we speak also of deg(f).

o If f,: M — N is a family of smooth maps depending smoothly on ¢, then deg(fy) =
deg(f1)-

Definition. Consider X : R” — R"”, and assume z is an isolated zero of X. We will view
X as a vector field, so at each point x € R™ we have a vector X (z). Take a small sphere S
centered at z (i.e. take the boundary of a small ball centered at ;7)) on which X has no zeros,
and define the map

f:S— 85" by f(z) =

Then the index of X at x is defined as
ind(X, o) := deg(f).
The same definition applies if X is a vector field on a manifold.
Example 1.13. The index of a saddle point in R? is —1, and of a source and a sink is 1.

Lemma 1.7. Assume that X is a vector field, and xz an isolated singularity and that its lineari-
sation A := DX (z) is non-singular (i.e. invertible). Then ind(X, x() is equal to the sign of
the determinant of A.

In particular, we have ind(—X, x¢) = (—1)" - ind(X, z¢) where n is the dimension.

It is easy to check this in dimension two or for linear vector fields. The general case can
be seen by deforming the vector field continuously to the linear one, without introducing new
singularities.

Example 1.14. Consider the vector field X () = —x on R™. This corresponds to the differ-
ential equation ;, = —x;, ¢ = 1,...,n. Then according to the previous theorem, ind(X,0) =
(—1)™. Moreover, the associated map is equal to f(z) = —z, and so again deg(f,0) = (—1)".

The following remarkable theorem is related to the famous Brouwer fixed point theorem.

Theorem 1.3 (Poincaré-Hopf theorem). Let X be a vector field which is defined on a compact
manifold M (you may assume that M is a compact subset of R™), and assume that if M has a
non-empty boundary then for each x € M one has that X () points outwards.

Then

z,X (x)=0

where y (M) is the Euler characteristic of M.
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In this course we won’t develop the machinery to compute (or even to formally define)
the Euler characteristic of a space. For this you need some homology theory, a subject which
is covered in most courses on algebraic homology, and so outside the scope of this course.
However, let us give some examples.

Example 1.15. The sphere S? in R? has Euler characteristic 2. A surface which is made up of
a sphere with g handles, has Euler characteristic 2 — 2g. So for example the torus has Euler
characteristic 0 and the pretzel Euler characteristic —2. In fact, assume that you describe a
surface as a convex polyhedron. Then its Euler characteristic y(surface) = V' — E + F where
V, E, F are the number of vertices, edges and faces. For example, for a cube V' = 8 F =
12, F' = 6 and so x = 2 while for a tetrahedron, V' =4, I/ = 6, F' = 4 and so again y = 2.

Similarly, an open or closed ball B in R™ has Euler characteristic x(B) = 1 whereas the
sphere S™ in R™™! has Euler characteristic x(S") = 1+ (—1)".

Example 1.16. The above theorem implies the Brouwer’s fixed point theorem if we assume
that the map involved is smooth. This theorem says that any continuous map f: B — B
from a ball in R” has a fixed point. Let us assume that f is smooth, B is the unit ball and
by contradiction assume that f has no fixed point. Then we can define the vector field X (z)
defined by X (z) = = — f(z) has no zeros and points along the boundary to the exterior of B.
But this contradicts the Poincaré-Hopf theorem as y(B) = 1.

Example 1.17. The above theorem also implies the so-called hairy ball theorem: If X is a
vector field on S? then
> ix(x) =2

z,X (2)=0

In particular X has at least one zero. The reason this is called the hairy ball theorem is that
it implies that a hairy ball has to have places where the "hair sticks up". Note that the above
theorem also implies that it is impossible to have a vector field on S? with just one saddle point.

Application to game theory

We say that a singularity z of a vector field X is regular if the linear part A = DX (z) is
invertible, and say that a game is regular if at each Nash equilibrium z, the replicator dynamics
has a regular singularity (i.e. the linearisation is invertible - so no zero eigenvalue).

Remark 1. Assume that x is a regular singularity of the vector field X and let X, is a family
of vector fields depending differentiably on A with X, = X. Then by the implicit function
theorem, there exists a function A — () so that X (z¢(A)) = 0. (So the singularity moves
smoothly as the parameter varies.)

Theorem 1.4. Each n x n matrix A has at least one Nash equilibrium. Moreover,
1. if A is a regular game, then the number of its Nash equilibria is odd.

2. Consider a Nash equilibrium Z of the replicator dynamics & = X (x) on the boundary
of A and let B = DX(Z) its linear part. Then any eigenvalue corresponding to any
eigenvector of B which is transversal to the boundary of A is negative. Hence the stable
manifold of Z points into the interior of A, and the unstable manifold of Z is either empty
or fully contained in OA.

3. Most n x n matrices are regular.
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Proof. Consider the following slight modification of a replicator equation:
t; = z;((Ax); — - Az — ne) + e. (1.17)

and let X, be the vector field defined by the r.h.s. of this expression. Along 0A, the vector field
X (x) has no singularities, and points into the simplex A. This means that along A the vector
field — X, (z) points outwards. So, by the Poincaré-Hopf theorem, the sum of the indices of the
singularities of — X, is equal to 1. Now note that X and —X have the same singularities, and
by Lemmall.7]at each singularity z, we have ind(—X,, 7o) = (—1)"tind(X., zy) because the
dimension of A is n— 1. It follows that for each ¢ > 0, the sum of the indices of the singularities
of is equal to (—1)""1,

This implies that the number of singularities of X, is odd: let £, [ be the number of singular-
ities with index +1 resp —1. Suppose by contradiction that £+ is even. Since k(+1)+I(—1) =
(=1)"'wehave k — 1 =1 mod 2and k + 1 =0 mod 2. This is impossible and therefore
we get that k£ + [ is odd.

Let us now show that every singularity of X is a Nash equilibrium (here we use that X, is
regular). Indeed, for any singularity p(e) of we have

pi(e)

(Ap(€)); — ple) - Ap(€)) = ne —

Note that for any § > 0, we have that ne — ﬁ < ¢ for € > 0 sufficiently small. Hence, for

any limit point p of lim. o p(€) we have that
(Ap)i <p-Ap

and so p is a Nash equilibrium.

Moreover, if all singularities of the replicator system X are regular, then X has finitely
many singularities (each one is isolated). Each of these singularities moves smoothly with €
and remains a singularity of X, i.e. of (I.I7). Moreover, the number singularities of
remains the same for all ¢ > 0 small. This proves the first assertion of the lemma.

To prove the 2nd assertion, let us consider a singularity z on the boundary, i.e. with
Z; = 0. Because of the form of the equation, the i-row of the linearisation B is of the form
(00 ...2;...00) where z; = (AZ); — - AT appears on the i-position and the other terms are
zero. It follows that any eigenvector with a non-zero i-component has eigenvalue z;. Since we
assumed that the system is regular and it is a Nash equilibrium, we have z; < 0. Hence the 2nd
claim holds.

It is not so hard to prove the 3rd assertion, but we will not do this here. L]

Example 1.18. In Examplewe had three Nash equilbria: e;, £ and [e;, e3] N Z; 3. The first
one is a sink, the 2nd a source, and the final one a saddle, so with index +1, +1, —1. The sum
of these numbers is equal to +1 + 1 — 1 = 1 = (—1)*>"!. In several other examples we had a
unique NE which was a sink or source in the interior (or a centre) and so there the theorem also

holds.

Exercise 1.8. 1. Check the formula from Theoremfor simple flows on S? and on the
two-torus 7°2. In the case S? consider the north-south flow (each point except the north
pole flows to the southpole). In the case of T draw a picture of a similar flow (think
of a doughnut standing on its side) and the corresponding north-south flow. This flow
now has 4 singularities.
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2. Give a game which has infinitely many NE.

3. Give a heuristic argument which shows that if a game has only regular singularities,
then under the perturbed flow the Nash equilibria (of the original flow corre-
sponding to ¢ = () on the boundary move into the interior of A and the other singu-
larities of the original system move out of A.

4. This is a somewhat open-ended question: Discuss why it is a hard problem to find a
NE. A starting point is to do an internet search on ‘finding Nash Equilibrium is NP
hard’.
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2 Two player games

So far we looked at a game with one population with different strains, and analysed whether a
particular make-up 7 is ‘optimal’, in the sense that is a Nash or an ESS equilibrium.

A more general situation is when there are two populations which are competing. In this
case we have two matrices A, B and assume that the positions of the two populations are deter-
mined by two probability vectors = and y.

2.1 Two conventions for the payoff matrices

There are two different conventions for these matrices. In the first convention, the payoff and
best-response maps for the two populations are

Pa(z,y) = - Ay, BRu(y) = argmax,., 7 - Ay,

( 2.1
Pg(z,y) =y - Bx, BRp(x)= argmax y - Bx. '

yEAB

Here A is be a n x m matrix and B a m x n matrix, which means that player A has n strategies
and B has m strategies to choose from, and A 4, A are the probability vectors in R" respec-
tively R™. (Often we will assume that n = m and write A instead of A4, Ag.) We then say
that (%, ) is a Nash equilibrium iff

T € BR4(y) and y € BRp().
An equivalent definition is to say that (z,¢) is a NE if forall x € A4 and y € Ap,
r-Ay<z-Ay,y-Bx<y-Bzx

If both inequalities are strict if x # & and y # ¢ then (&, §) is called a strict Nash equilibrium.
One could also define (Z, ) to be an evolutionary stable equilibrium (ESS) if for all ¢ > 0 and

allz € Aq\ {2},y € Ap\ {7},
z-Aley + (1 —€)9) < i+ Aley + (1 — €)9),

y-Blex+ (1 —¢€)z) <y-B(ex + (1 — €)2).

In the first convention a pair of matrices is called zero-sum if A + B = 0.
In fact, there is also 2nd convention for defining the payoff and best response of the two
players, namely as

Py(z,y) =x- Ay, BRa(y) = argmax,.n, z- Ay and
(

Pp(r,y) =2 By, BRp(r)=argmax,,, - By. (2.2)

In this convention A, B are both n x m matrices and the definition of NE is as before. (Z, )
is called an evolutionary stable equilibrium (ESS) if foralle > O and all z € A4\ {2},y €

Ap\ {7},
z-Aley + (1 —€)f) < - Aley + (1 — €)9),

(ex 4+ (1 —€)2) - By < (ex + (1 — €)z) - By.

In the 2nd convention, a zero-sum game corresponds to A + B = 0. The convenience of
the 2nd convention becomes clear in the following example:
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Example 2.1. Let us consider the situation where both players have two strategies and so

the payoff matrices are 2 x 2: A = @92 ) and B = b b . If we use the 2nd
az a4 by by

convention from (2.2) then one can combine these two matrices using the following notation
( (alabl) (a'27b2)

. This corresponds to
(G:s,bs) (a4,b4) ) P

Payoff’s Player B Player B
chooses left  chooses right

Player A chooses top (a1,b1) (ag, bs) ’
Player A chooses bottom (az, b3) (a4, by)

In fact, this ‘compact notation’ putting the payoff matrices for both players into one box, is
only used when referring to the 2nd convention.

1) (0,0)

. ’ (17 -
Exercise 2.1. 1. Compute the NE’s for the 2 x 2 game ( (0,0) (—1,1)

) where we

use the 2nd convention.

2. Let (A, B) be a two-person game and assume we use the 2nd notation. Denote by
A 4, Ap the sets of probability vectors in R” resp. R™. Assume that (x,y) € As X Ap
is in the interior of A4 x Ap. Show that (x,y) is a NE if and only all elements of Ay
are equal, and similarly all elements of =’ B are equal.

3. Consider the game

| ii
(2,2) (L2) |,
(2,1) (2,2)

where we use the 2nd convention (we would otherwise not use the ‘compact’ notation).
Show that (eq,e1) and (eq, e5) are both NE’s, but that (e, ;1) is not an ESS while

(e, €5) is an ESS. (Hint: A( o ) _ ( 2 ) and (1—€) B =((2—¢) 2)

i
i

whileA( 1;): ( 1_2|—E>and(e (1-e)B=(1+e 2).)

2.2 Two player replicator dynamics

If we use the first convention for A, B as in[2.1] the replicator dynamics corresponding to two

populations is defined as
& = xi((Ay); — x - Ay)

. 2.3
i = u((Bx);—y- Bo) 2
If instead we use the 2nd convention (2.2)) for the payoff these equations would become

y; =y;((2"B); — x - By)

Some people do not like the aesthetics of the latter expression, and therefore prefer to use the
first convention.
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(Oa O) (_ 17 1)
down the corresponding replicator equations where we are again using the 2nd conven-
tion. Note that x, y are both probability vectors in R?sox; = 1 — 25 and 3, = 1 — ys.
So the A x A can be parametrised by (x1, 3;). Draw the phase diagram.

Exercise 2.2. 1. As in the previous exercise consider ( > Write

2.3 Symmetric games

Suppose that n = m and that players A, B choose actions e;, e; respectively. Then in the 2nd
notation they receive payoffs a;; resp. b;;. Note that if players A, B change role, and swap
strategies and payoff matrices, then player A would receive a payoff of b;; and player B a
payoff of a;;. We say that the game is symmetric if the resulting payoff from such a swap is the
same, 1.e. if
CL,L']' = bji and bij = CL]‘Z'
1.e.
A=B"

Then if one uses the 2nd notation for the replicator equations, i.e. equation (2.4)) can be written

as )
o = x;((Ay); — = - Ay)

v =y;i((Az); —x - Ay)

Exercise 2.3. Show that for a symmetric game, if x(0) = y(0) then z(¢) = y(¢) for all
t € R. In that sense, in Chapter 1 one can say that the population is playing against itself.

(2.5)

2.4 The 2 x 2 case

Let us consider the 2x2 case, with payoff matrices A = 2 ) and B = b by
ao21 a99 b21 b22

and use the first convention '
T = ri((Ay); — v - Ay)
y; =vy;((Bz); —y- Bx).

for the moment. This gives

&1 = xi[anys + awy: — r1(anys + ayz) — v2(anyr + axny))
71 = yi[biixy + biare — y1 (b1 + biaxa) — Ya(ba1xy + baoxs)]

Using 1 + o = 1 and y; + y» = 1, these formulas reduce to

i1 = 2(1—21)on — yilon + aw)] (2.6)
o= (1 —y)[B — 21 (B + Bo)] .
where
Q= a1 — A2, (2 = d21 — A1 2.7

61 = b12 - b227 62 = b21 - bll-

If, instead, we used the 2nd convention then (2.6) would stay the same but in one would
have to exchange the terms b5 and bs;.

Using that the r.h.s. of the first equation in has no zeros when 0 < z1,y; < 1 when
1o < 0 (and similarly for the 2nd equation), it turns out that there are three possibilities:
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Figure 14: The replicator dynamics of typical 2 x 2 games.

Proposition 2.1. There are three possibilities for a 2 x 2 replicator dynamics system (apart
from the degenerate case), namely

(1) ajag > 0, 5182 > 0,181 > 0 (coordination games),

(i1) ayap < 0 or B1 82 < 0 (dominated strategy, but could be zero-sum),

(i) ayap > 0, 8152 > 0, a1 81 < 0 (zero sum case with interior NE).

The dynamics in case (i) and (iii) is as drawn below.

Exercise 2.4. 1. Explain the terminology used in the previous proposition. Which of
the two cases in the above figure corresponds to the battle of the sexes and which
is the zero sum case? We already discussed the prisoner dilemma game and in the
literature also the ‘stag hunt’ and ‘battle of the sexes’ appear. Zero sum games are
often discussed. (Note that often the 2nd rather than the first notation is used when
talking about 2 x 2 games.) What are the NE’s and the replicator phase portraits of the
following games?

(@9
stag hunt : ( (3.1)

prisoner dilemma : (

e ( 0.0 (11 )™\ 00 0-.
2. In the above proposition case (iii) includes zero-sum cases, but it includes also non-

zero games. Why is this case still called the ‘zero sum case’. (Hint: can there be
games with the same phase portrait, but with different matrices?)

3. Why is the interior NE of the replicator differential equation

i =xz(l—2)ar —ylon + as)]
gy =yl —y)[B — (B + Ba)]

either a saddle or orbits are elliptic with orbits cycling around the NE as on the right
panel of Figure [I4? (Extensive hint: (i) compute the linerarisation of the replicator
system at the NE and show that the trace of the linearisation matrix is zero at a Nash
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equilibrium. (ii) Show that this implies that either both eigenvalues are on the imagi-
nary axis, or one is negative and one is positive - in which case the singularity at this
NE is a saddle point. (iii) If both eigenvalues are on theimaginary axis then ayag > 0
and 31 > 0 and a1 31 < 0. To be definite assume «; > 0 and 3; < 0. Then consider
the Lyapounov function

P(z,y) =2 7(1—x2) Py™ (1 — y)*.

4. Show that (3) implies that these 2 x 2 games cannot have an ESS in the interior of the
state space (you are allowed use that also in the 2 x 2 case ESS points are asymptoti-
cally stable).

2.5 A 3x3replicator dynamics systems with chaos (Rock-Paper-Scissors)

A well-known example of a two-player game is

€, —1 1 € —1 1
A= 1 e -1 |B= 1 ¢
-1 1 € -1 1 ¢

Here the first notation is used and we assume that €,,¢, € (—1,1). Note that this game is
zero-sum if A + B" = 0 so when ¢, + ¢, = 0. For this game numerical investigations by Sato,
Akiyama and coworkers show chaos, see the figures below.

Exercise 2.5. 1. Show that the above game has precisely one NE, namely
(1/3,1/3,1/3),(1/3,1/3,1/3). (Hint: make sure you check that there are no NE
on the boundaries of the simplices.)

2. The corner points of A correspond to R, P, S (paper, rock, scissors). Show that the
arrows of the flow along subset 9A x OA is as in Figure[I5]

3. How should you represent the set A x A C R® on paper (or on a computer screen)?
Show that if you use the linear projection defined by (for example) the matrix

100000
X‘<010000>

then several of the points such as (R, P) and (R, .S) will be mapped to the same point.
Show that if, instead, you take the linear projection defined by

¥ = 3.6500 —1.3500 1.3500 5.3500 1.3500 1.4500
~\ 04000 0.4000 4.6000 1.9000 —0.4000 4.4000 /-

then all the nine corner points (R, R), ..., (S,.S) (which correspond to (e;, e;)) map
to distinct points in R?. Check how this relates with Figure

4. Write your own python or matlab code, and produce simulations for the above replica-
tor system. Check whether you obtain similar pictures as the ones shown below. The
previous question will be helpful.
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(S, R)
P, S N (R/S)
S, P
Y2 Xg
v _ Y1
7 (P, (R, R) X1
(P, P) ) (R, P)

Figure 15: The flow along 0A x OA. This figures come from the paper by Sato et al.

42 Y. Sato et al. / Physica D 210 (2005) 21-57

(P, P) (R, P)

Fig. 12. Quasiperiodic tori: collective dynamics in A (left column) and individual dynamics projected onto Ay and Ay, re-
spectively (right two columns). Here ex = —ey =0.0 and ay = ay =0. The initial condition is (A): (x,y) = (0.26,0.113333,
0.626667, 0.165, 0.772549, 0.062451) for the top and (B): (x, y) = (0.05, 0.35, 0.6, 0.1, 0.2, 0.7) for the bottom. The constant of motion (Hamil-
tonian) is E = 0.74446808 = E|. The Poincaré section used for Fig. 14 is given by x; = x and y; < y and is indicated here as the straight
diagonal line in agent X’s simplex Ay.

Figure 16: These figures come from the paper by Sato et al, but you can replicate these figures
using the code you can find at the end of the notes.
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Ax X A
’ (8. R)
S|P
(P.SY (S{P) ay.x)
( A
(P,R
(P,P) (R, P)
(S, 8)
Ax X A
Y (S.R)
P, S (S{P) S)
(P.R
(P.P ~R.P)
Fig. 15. Heteroclinic cycle with ey = —0.1 and ey = 0.05 (top row). Chaotic transient to a heteroclinic network (bottom row) with ex = 0.1

and ey = —0.05). For both ax = ay = 0.

Figure 17: These figures come from the paper by Sato et al, but you can replicate these figures
using the code you can find at the end of the notes.
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3 Iterated prisoner dilemma (IPD) and the role of reciprocity

In this chapter we will consider the prisoner dilemma game and donation game from the intro-
duction of these notes[[]

The latter game works as follows: If a player pays c into the scheme the other player receives
a benefit of 0. So if you cooperate and the other player too then you receive b — c, but if you do
but the other person not, then you loose —c. In particular, the payoff matrices for player I and

IT are
b—c —c and b—c b
b 0 —c 0

where we assume b > ¢ > 0, where the strategies are C' (cooperate) and D (defect). Here we
use the 2nd convention, and therefore the rows are determined by what the first player does and
the columns by what the 2nd player does.

A concrete setting might be that you share a house with somebody. To have a tidy house
gives you a benefit b, and to tidy it up costs you c. (In this model it is assumed that if you both
tidy up, then the costs for each is still ¢ but one can easily modify the pay off matrices to give
a cost of ¢/2 if both of you decide to tidy up. What would the payoff matrices look like then?

Of course this is a special case of the general prisoner dilemma game

R S R T )
(T P)and(s P)WlthT>R>P>S.

A frequent choice taken in the prisoner dilemma is

“1,-1 —3,0
(07_3 _27_2). 3.1)

Figure 18: Consider the game . If the row player chooses actions with probability (p, 1 — p) and
the column vector with probability (¢, 1 — ¢) then the payoff pg(—1,—1) + p(1 — ¢)(—=3,0) + (1 —
p)q(0,—3) + (1 — p)(1 — q)(—2, —2) of the players lies in the region shown. The payoff (—1,—1) is a
Pareto optimum (no player can improve without the other player getting less).

An important feature of both these game is that for the first player the 2nd strategy dom-
inates the first one (i.e. the 2nd row dominates the first one for his matrix) while the 2nd
strategy dominates the first one for the 2nd player (i.e. the 2nd column dominates the first one
for her matrix). Note that this a symmetric two-player game which will allow us to simplify
the discussion.

Of course if this game is repeated exactly 100 times, then by backward induction you can
deduce that the best strategy for both players is to never donate (respectively to always defect).
But of course for both players to defect 100 times gives for both of them a rather poor payoff of

"Watch this ytube clip for a TV programme which employs the prisoner dilemma in a game show.

30
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0 (resp. 100P) If they always had played the first strategy they would have received 100(b — ¢)
(resp. 100R). So in some sense playing the NE is rather suboptimal. This is also observed by
economists, biologists, psychologists etc: often in games which are iterated often players do
not choose to play the NE. Why is this? How does altruistic behaviour evolve? In this chapter
we will discuss one possible explanation, by consider various scenarios in which you don’t
know how many times this game is repeated. In such a setting

the strategy of a player could be to respond to the other player’s previous moves.

One such example is the 7it for Tat strategy. In the remainder of this chapter an attempt is made
to explain why such a Tit for Tat strategy would survive in a competitive environment.

3.1 Repeated games with unknown time length

Let us assume that after each round there is a probability w that the game is repeated at least
one more round, where w € [0, 1].
So the probability of the game taking exactly n rounds is w"'(1 — w). This means that the
expected duration of the game is
1
1(1—w)+2w(l —w)+...nw" (1 —w)+--- = T
—w
Let us assume that the payoff at round n of the game is equal to A,, and assume that this is
bounded. Then the expected total payoff is

i[Al o A1 — w).

n=1

It is easy to see that when w < 1 this is equal to the convergent series
A(U}) = A1+wA2—|—w2A3—|—....

Since A,, is bounded, this sum exists and is finite. As the expected duration of the game is
1/(1 — w), the average payoff per round is therefore

(1 —w)A(w).

Exercise 3.1. Why does it make sense to explore other strategies instead of always to defect
if you play a donation game or a prisoner dilemma game for a long time?

3.2 The three strategies AlIC, AlID, TFT

Since the game might be played infinitely many times, it makes sense for the players to consider
strategies that induce enough trust with the other player so that they will cooperate a lot of the
time, because now the issue is not to win but to receive as much pay-off as possible over the
duration of the (possible many steps of) the game. For this reason players will invent strategies
that take into account the play of the other players.

Let us consider the case where the players consider three strategies: AllC, AlID, TFT. This
means Always Cooperate, Always Defect or Tit For Tat (TFT means cooperate if and only if
the other player cooperated last time). For simplicity assume (in the TFT strategy) that both
players cooperate in the first round.
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Then the matrix describing the expected pay-off to the first player is given by

1 b—c —c b—rc
T b 0 b(1 — w) (3.2)
T\ b—¢ —c(1-w) b—c

where strategies are AllIC, AlID, TFT, where as before b > ¢ > 0 and w € [0, 1). Let us check
some of the coefficients.

First consider the situation where both players cooperate: then the payoff A, = b — ¢,
Vn > 1landso A(w) = (b—c)/(1 —w).

If both players play TFT then they will keep cooperating, and so the payoff is again A(w) =

(b—0c)/(1—w).
If I play TFT and the other player plays AlID, then A; = —cand A, = 0, Vn > 2, so
A(w) = —c, which of course is equal to =—c(1 — w).

On the other hand, if I play AlID and the other player TFT, then A; = b and from then on
A, =0,s0 A(w) = b.

When we let w — 1 then we get the case where the game is repeated infinitely often.

cm

Exercise 3.2. 1. The matrix (3.2)) describes a population which plays a mixture of three
strategies. Now suppose that the population also considers the TFTT strategy: only
when the other player twice defects will you defect. How would you model this situa-
tion?

3.3 The replicator dynamics associated to a repeated game with the AlIC,
AlID, TFT strategies

Let us consider the replicator dynamics associated to this game, but where we consider the
situation where we really have only one population with a given strategy profile, and in which
‘individuals’ are exploring alternative strategies. So this puts us in the framework of Chapter 1.

For simplicity, let us add to each column of (3.2)) a multiple of the vector 1. It is easy to see
that this does not change the replicator dynamics at all (see Exercise [I.3]2]). Let’s apply this
operation so that the 2nd row consists of all 0’s. This gives

1 —c —c bw — ¢
T—w 0 0 0
YN\ = —c(l—w) bw—-c

We can also consider the expected average pay-off per round, i.e. multiply the previous matrix
by 1 — w and consider
—c —c bw — ¢
A= 0 0 0 : (3.3)
—c —c(l—w) bw—c
where as before b > ¢ > 0 and w € [0,1). The corresponding solutions of the resulting
replicator system are then the same, apart from a time reparametrization. Then

(Az); = —c + wbas , (Az)y = 0 and (Az); = (Ax); + wews.

Note that the best response is always e; if w < ¢/b but that if w > ¢/b then BR(e1) = eo,
BR(€2) = ey and BR(Gg) =< e1,€3 >.
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LIITIN G —

AU ¢ ALD

Figure 19: The configurations of the indifference lines corresponding to the repeated the do-
nation game, corresponding to matrix (3.2)) (and equivalently to matrix (3.3) for the case that
w > ¢/b and the corresponding phase portrait.

€3

Figure 20: The arrow plot and a computer drawn plot of the flow corresponding to matrix
where we take w = 1/2, ¢ =1 and b = 4.
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So let us assume that w > ¢/b. Note that Z; 3 = {zo = 0} and that the 3rd row is
dominating the 1st one when x5 > 0. Furthermore Z;, = {z3 = &3} where 73 = c/wb.
Finally Z5 5 = {cwzy + bwzs = ¢} and so is a line connecting (1 — Z3,0, Z3) to (0,1 — &3, &3)
(= wje which is € (0, 1) since w > ¢/b.

w(b—c
Using slightly annoying calculations we get

where 23 =

x - Az = (Ax)s — xag(x3), where g(x3) = w(b — c)xz — (1 — w). (3.4)

Note that g(Z3) = 0. Because of (3.4) we get that &3 = z3[(Ax); — x - Az] = 0 along the
horizontal line x5 = 23 and so this line is invariant.
Moreover, along this line g(Z3) = 0 and so if 0 < x; < 1 then we have

To = x9[(Ax)s — x - Az| = 22]0 — (Ax)3] = —22(Ax)3 > 0

because if x; > 0 then x5 + 73 < 1 and so (Az)3 = —c + cwry + wbis < —c + cw(l — &3) +
wbts = c(—1+w) +w(b—c)ts = 0.

Along o = 0, we have ©9 = 0 and (Az)3 — 2 - Ax = zag(x3) = 0,80 &3 = &9 = @7 = 0.
It follows that the segment < e;, es > consists of singularities. The singularities with x5 = 0
and x3 > T3 = c¢/wb are attracting (and Nash equilibria) and the the singularities with x5 = 0
and x3 < T3 = ¢/wb are not Nash equilibria.

There are no interior singularities because (Az)3; > (Ax); when x5 > 0. The best response
regions and the solutions of the replicator dynamics are drawn in Figure Note that the AlID
solution is not a global attractor.

Exercise 3.3. What are the NE and the ESS for the game corresponding to or equiv-
alently (3.3)? This matrix describes a population which plays a mixture of strategies, and
discuss why this suggest that it depends on the initial mixture (i.e. the initial condition of
the ODE) of the population whether the solution converges to playing always defect (AlID
or e;) or to some mixture of AllIC and TFT.

3.4 Random versions of AlIC, AlID and TFT

Let us consider a modification of the previous set-up, in which a player makes a probabilistic
response to the other players’ position. We do this by allocating vectors (f, p, ¢) and (f',p', ¢')
to the two players. For example, if the first player chooses the TFT strategy from the previous
section, then this is described by (f,p,q) = (1,1,0). This means that he plays C' in the first
round (f = 1), will definitely reciprocate a C' with a C' (p = 1) but punish a D with a D
(g =0).

More formally, f, f* € [0, 1] gives the probability that the 1st respectively the 2nd player
plays C' in the first round. Similarly, let p, ¢ be the probability of player I responding in the
next round with C' when player II plays respectively C, D. So assume that player I cooperates
with probability ¢(n) in round n, then the probability of player II cooperating in round n + 1 is
equal to

d(n+1)=pe(n)+q(1—cn)=q+pcn)

where p/ = p’ — ¢/. The probability of player I cooperating in round n + 2 is equal to

c(n+2)=q+pcd(n+1) = a+uc(n)
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where p = p — ¢, a = ¢+ pq’ and u = pp’. It follows that

cn+l)=a+ua+ - +u" tat+ue(l) =v+u"(f —v)

/!

q+pq

where f is the probability of player I choosing C in the first round and v = a/(1—u) = . -
— pp

A similar equation holds for ¢(2n + 1).

7T
3
@
o
>
1 =7 2
M C M@

Figure 21: The replicator dynamics corresponding to the matrix (3.5).

In the special case of the donation game (with coefficients b > ¢ > 0), and again considering
the situation of a probability 1 — w after each round of terminating the game, we obtain after
some calculations that the average payoff per round of strategy (f, p, ¢) against (f',p’,¢) is

—c(e +wpe') + b(e' +wp'e)
1 — uw?

where e = (1 —w)f + wq, ¢ = (1 —w)f + wq (and as before p = p —q, p' = p' — ¢ and
u = pp’). In this way we obtain a fairly complicated 3 x 3 payoff matrix, which we will not
explicitly write down.

Now let us consider one-population replicator dynamics corresponding to this payoff ma-
trix, when there are three possible strategies: e; = (1 —€,1 —¢,1 —€), e5 = (ke, ke, ke) and
es = (1 —¢,1 — ¢, ke). Using some simplifications (by adding some multiple of 1 to each
column to simplify the matrix) we obtain the (normalised) payoff matrix

0 -1 do
A= 1 0 —ko 3.5)
0 —x O
bl — ¢

where § = we, k =1 —w + wke, 0 = and 0 = w(1l — (k + 1)e).
CcC—C

This gives rise to the replicator dynamics as shown in Figure[21] Note that 5 = 23((Az);—
x - Az) is zero along some line 3 = Z3 Moreover, one can show that there is now cyclic
behaviour whenever z3(0) is large enough, see the exercises below.

Exercise 3.4. 1. Show that V (71, 79, 73) = xi'282§ (1 — (1 + o)a3) is constant along

orbits of the replicator dynamics associated to equation (3.5). Here A = k/0, B =
d/0,C = —1/6. (Hint: use logarithmic derivatives &;/x;.)
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3.5 Axelrod tournements: the topic of the 2nd project

In 1980 Axelrod organised a tournement, asking participants to contribute a strategy (a com-
puter programme) which would compete with other strategies all playing a prisoner dilemma
game for a large number of iterates. One of the simplest strategies, namely TFT, turned out to
do very well. That the TFT did so well was for game theorists quite a surprise because this did
not fit in with the classical notion of NE, and because it involved some seemingly ‘naive’ and
‘altruistic’ behaviour.

The 2nd project aims to study the question how well different strategies do when battling
agains a large number of other strategies. In this project, the question is raised: why does TFT
do well and what about an exciting new class of strategies: zero-deteminant strategies?
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4 The best response dynamics

In addition to the replicator dynamics (which was proposed in the 1980’s), another game dy-
namics is often studied. In this dynamics, a player’s mixed strategy evolves at each moment
towards the best strategy: define as before

BR(x) = argmaxy - Az
y

and let
&= BR(x) — x. 4.1)

This differential equation is called the best response dynamics and was proposed in the 1950’s
and so predates replicator dynamics by several decades. In the next chapter we will explain
how the best response dynamics is closely related to a very natural learning dynamics.

Note that BR(x) is a non-empty convex set, and so strictly speaking is not a differential
equation but rather a differential inclusion

& € BR(x) — x. 4.2)

and so we cannot apply the usual existence and uniqueness results to this equation. Fortu-
nately = — BR(x) is upper semi-continuous. (This means that for each closed set K the set
{z; BR(x) N K # 0} is closed.) It turns out that this implies for each zy € A there exists

e a continuous curve ¢ — x(t) with 2(0) = x( so that
e ¢ +— x(t) almost everywhere differentiable and so that
e i(t) = BR(z(t)) — x(t) for each ¢ at which ¢ — x(t) is differentiable.

When these properties are satisfied we call ¢ — z(t) a solution of (4.1).

In this chapter we will only encounter the following situation: for each (continuous) solu-
tion R >t — z(t) of there exists a countable set I C R without accumulation points so
that

BR(x(t)) is a is single-value for each t € R\ I.

Write R\ I = U;(t;,t;41) with t; < t;1; for all j € Z. By definition for ¢ € (¢;,¢,:1) we have
that BR(z(t)) is single-value which means that Az () has a single largest component, and so
there exists i(j) € {1,...,n} so that BR(x(t)) = e;(;). Hence (4.1) takes the form

T = €i(j) — T fort € (tj7tj+1)-

This means that z(¢) moves along the straight line through e;(;) while ¢t € (t;,¢;41). For
t € {t;,t;+1} we have that BR(x(t)) is multi-valued, and so z(¢) lies in an indifference line.
Then for ¢ € (t;11,1;42) the orbit again moves along a straight line, but now pointing towards
Ci(+1)-

Let us consider a matrices for which we already studied the replicator dynamics.
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4.1 Rock-scissor-paper game and some other examples

Example 4.1 (Rock-scissor-paper). Consider the matrix

0 —-b a axs — brs
A= a 0 —=b |, Az = | axy— bxs 4.3)
b a O axy — bry

with a,b > 0 similar to the one for which we already consider the replicator ode in Example
(I.11). Remember that this system has a unique Nash equilibrium at £ = (1/3)1. Note
that BR(e;) = e;11 and that BR(E) = A and that BR(x) takes values ey, e5, e3 outside the
indifference line segments (Az); = (Az); and along those line segments is multivalued. For
example (Az)y = (Ax)s corresponds to ax; — brs = axy — bxy and so when z3 = 0 this means
r1 =a/(a+ b)xs.

Figure 22: The best response dynamics corresponding to (4.3). Solutions consist of piecewise
straight lines, directed at e, e3, 1 etc. On the left the case when a > b is drawn and on the
right the case when a < b and when solutions cycle to the Shapley triangle.

Take V() = max;(Ax);. Then V(z) = e; - Az where ¢; = BR(z) is piecewise constant.

e Note that V' is continuous (and differentiable outside the lines where BR(x) is multi-
valued).

e Note that V(z) > V(FE) for all z € A. Indeed, write z = z + E with >z, = 0.
Then V(z) = V(E) + V(z). Moreover, the definition of A implies ), (Az); = 0 and
so V(z) = max(Az); > 0 except if (Az); = (Az)2 = (Az)3 = 0 which only holds if
z=0.

Also note that since A;; = 0 for i = 1,2, 3, in the interior of the region where BR(z) = e;
we have

V:ei-Awt:ei‘A(ei—x):—eZwa:—V
except at the Nash equilibrium E. It follows that V' (z(¢)) = V(2(0))e™" and at first sight this
seems to suggest that V' (z(t)) — 0 as ¢t — oo. However, since V(z) > V(FE) forall z € A
this may not be possible. Indeed, V (F) = (a — b)/3.
When a > b then V(E) > 0. It follows that orbits reach E in finite time.
When a < b then V(E) < 0 and so solution starting outside £ do NOT converge to £ but
to the set where V' = 0, which is a triangle, called the Shapley triangle.
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0 6 —4
Example 4.2. Let us consider the BR-dynamics associated to the matrix A= | —3 0 5
-1 3 0
we considered before in Example Again the NE is £ = (1/3)1. The best response regions
are again determined by drawing the lines Z;; lines. As before, the BR-dynamics is multivalued
along these indifference lines but there is a difference compared to the previous example.

For example, along the segment of the line Z; 3 where regions 1 and 3 meet the ‘flow’ is
non-continuous, see the figure below: if you just below and near this line then you flow further
down, and if you are just above then you flow further up.

Along the segment of the line Z; 3 where the regions 2 and 3 meet, the opposite is true. If
you are just above this segment then you flow down, and if you just below then you flow up. So
the flow near this segment ‘pushes’ you towards the segment. One can formalise this argument
to show that one a uniquely defined ‘semi-flow’ near this segment: if you are on it, then you
flow towards E and if you are near this segment then you flow towards it in finite time, and
once you hit it then you flow towards F, again hitting it in finite time.

We will not try to formalise this argument properly in these lectures.

Exercise 4.1. 1. Consider the matrix A from Example Take as before V(z) =
max; Az. Show that since A;; = 0 for i = 1,2,3 we still have V = —V on the
interior of the regions where B R is constant. One can show that the level set of IV = 0
in A is no longer is a triangle, but is as shown in the blue set drawn in the top right in
Figure (You are not asked to calculate the position of these lines in detail.) Show
that

(a) the blue set consists of pieces of three pieces of straight lines going through
€1, €2, €3.

(b) the segments of the blue set that are contained in the interior of the regions where
BR is constant, have the property that if you start on these segments then you stay
on this segment (until you hit an indifference line).

(c) that since A; = 0 for 7 = 1,2, 3 we still have V = —V on the interior of the
regions where BR is constant.

(d) This suggests that V' decays exponentially fast to zero. Show that this is mislead-
ing, because V' = —V no longer holds on Zj 3.

39



Figure 23: The best response dynamics corresponding to Example (4.2)). Note that the solutions
do always not depend continuously on the initial conditions. For example, along the line 73
solutions just south of this line head towards e; and just to the north to es. Along the line itself,
the solution is not uniquely defined. On the other hand, near Z; 3 one can ‘extend’ so that it
becomes a continuous ‘semi-flow’.
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4.2 Two player best response dynamics

The best response dynamics corresponding to two populations is

& =BRu(y) — =z
y =BRp(z) -y

(=1,1)  (0,0)
(Oa O) (_17 1
the 2nd convention from equation (2.2 Here both players have opposite interests (the sum of
the payoff’s is always zero) and there is a unique interior NE, namely at £ = (1/2,1/2) x
(1/2,1/2). Let us show that in this case solutions go to this NE. Take

Example 4.3. Let us consider the example of < ) ) where obviously we use

V(z,y) = BRa(y) Ay + = - B BRp(z).

This function V' is continuous because BR 4(y) Ay = max;(Ay); and maximum of several con-
tinuous functions is again a continuous function and similarly for z- B BRp(z) = max; (2" B);.
Notice

BRA(y)Ay > xAy and x - BBRg(xz) > 2By = —zAy.

It follows that V (x, ) > 0. Moreover, at E = (E4, EP) we have V(E) = BRA(EP) - AEP +
E4- BBRp(E?) = E4- AEB + EA - BE®B = 0. Moreover,

V =BRu(y)-Ai + i - BBRg(z)
= BRa(y) - A(BRp(z) — y) + (BRa(y) — ) - BBRp()
=V

where in the last step we used A + B = 0. It follows that V' (z(¢), y(t)) = e *V(2(0), y(0)).
This means that orbits tend exponentially fast to the Nash equilibrium £. The orbits spiral to
the NE.

Exercise 4.2. Do solutions in Example [4.3|take an infinite amount of time to reach £? Why
is it the case that in Example 4.1 solutions reach E in finite time? Note that in both cases,
the speed does not go to zero (as would be the case for a singularity of a smooth ODE).

4.3 Convergence and non-convergence to Nash equilibrium for Best Re-
sponse Dynamics

One of the main reasons best response dynamics was introduced in the 50’s is that it was
expected that it would provide a way to find a Nash Equilibrium. In other words, that the dy-
namics would always converge to the Nash equilibrium, and thus this dynamics would provide
a mechanism for players to evolve towards a Nash equilibria (or to the set of Nash equilibria).
For zero-sum games this is indeed the case. Indeed, the argument given in the previous example
generalises to:

Theorem 4.1. Assume that (A, B) is a zero-sum game. Then the best response dynamics and
also the FP dynamics (introduced in the next section) converges to the set of Nash equilibria of
the game.

In fact, one has convergence to Nash equilibria for 2 X 2 and 2 X n games and several other
classes of games.
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Figure 24: The possible motions in 2 x 2 games (up to relabeling, and shifting the indifference lines
(drawn in dotted lines).

Z, simplex Zq simplex

Figure 25: Shapley’s periodic orbit for the best response dynamics of ll for =0

Example 4.4 (Two by two games). For general 2 x 2 game there are only 4 types of best re-
(1,1) (0,0)
(0,0) (1,1)
there are three Nash equilibrium, namely £ = ((1/2,1/2), (1/2,1/2)) and ((0, 0), (0,0)) and
((1,1),(1,1)). The orbits are then as in Figure 24| subfigure 3. Can you find matrices A, B so
that the dynamics is as in n Figure [24{ subfigure 1?

sponse dynamics (up to re-labelling the axis), see Figure 24, For example, when

However, in general one does not have convergence. For example:

Example 4.5 (Shapley system). Take

1 08 -5 1 0
Ag=1| B 1 0 Bs=| 0 -5 1 |, (4.4)
03 1 1 0 -

where we use the 2-nd convention.

Note that (E4, EP) where E4 := (1/3,1/3,1/3) and E® := (1/3,1/3,1/3)" is the Nash
equilibrium. (How can one work out that there are no other Nash equilibria?).

For 3 = 0 this corresponds to the situation that A = Id so player one wants to copy what
player two is doing (BRa(e;) = e;), and B prefers 3, 2, 1 when player A plays 1, 3 and 2,
so player B want so do something different from player A (because BRg(e;) = €;_1). This
games was introduced by the Nobel prize winner Shapley in 1964, to show that the dynamics
of FP does not necessarily converge to a Nash equilibrium, but to a periodic orbit.

Lemma 4.1 (Shapley). For 3 = 0 there exists a periodic orbit v : R — A x A C RS,

Proof. Let us first explain what this periodic orbit v will look like before proving its existence.
We have BR4(e;) = e; and BRg(e;) = e;41 (note that we using the 2nd notation for the

42

)



z, simplex 2 simplex

Figure 26: The motion for the best response dynamics of the Shapley system for 5 = 0.9.
Note that these are projections of the orbit in the four-dimensional space onto the two simplices.
The dynamics appears to be chaotic. It was rigorously proved that there are infinitely many
periodic orbits and ‘horseshoes’ in this dynamical system.
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Figure 27: The three components of payoff vector n(t) = Ay(t) as a function of time when we
take 3 = 0.9 in the Shapley system (@.4).
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matrices). Let 74, 7 be the projections of Ay x Ap C RS onto the two triangles shown in
Figure The triangles drawn in this figure correspond to the projections 74 (7y) and 7p(7)
of 7. Let 1" be the period of yand let 0 = ¢y < t; < --- < 15 < tg = T be the times when
wa(y(t)) or mp((t)) are contained in one of the indifference lines. Note that when 74 (y(t))
lies in an indifference line at ¢t = ¢/, then ¢ — 7wp(7y(t)) changes from moving towards one
corner for t < ' close to ¢’ to moving towards another corner for ¢ > ¢’ close to t'. In fact, for
each ¢ we have that () intersects at most one of the indifference lines. The points 74((t;))
and 7 (7y(t;)) are indicated in the figure, and note that the points move anti-clockwise in the
triangles and head towards e; in A 4 when () is in the region in Az marked with ¢ (and vice
versa). The curve + is a solution of the piecewise smooth BR dynamics, but for ¢ € (¢;,¢;,1)
this simply reduces to

’y(t) = (67;, Gj) — ’y(t) fort € (t“ ti+1>- (45)

Here (e;, e;) are best response choices. i.e., e, = BRa(ma(v) and e; = BRg(mp((t)). The
solution of (4.5]) is

() = (1 —e ") (e e5) + e y(0) for t € (t;,t;41). (4.6)

So (i, tix1) D t — ~y(t) is a straight line in R® (which is contained in A4 x Ap). Moreover,
for i’s you obtain a different straight line. Therefore ~(¢) will be a closed continuous curve
consisting of 6 straight lines.

To see that there exists indeed a periodic orbit v requires an explicit calculation. In Shap-
ley’s original paper Some topics in two-person games, 1963, he simply states that the corners
of the hexagon corresponding to the periodic orbit y are

(to) = (6°,6°,0,6%,1,0°)/C

y(t) = (0%,6%,1,6%,6°,.0)/C
(and continuing this cyclically for the other points (#;)) where @ is the unique real root 6° —
6? = 1 (whichis # > 1 and in fact # ~ 1.466) and where C' is chosen so that these points are in
Ay x Apg. Indeed, C = 202 + 0 = 1 + 02 + 0*; the last equality holds because of 6% — 62 = 1.
That this polygon indeed corresponds to the solution of the BR dynamics can be shown by an
explicit calculation using equation (4.6). Indeed, if we take A = (6 — 1)/6 € (0, 1) then using
the definition of C,
AC = (0—1)(20° +1)=20> - 20> +0 -1

and
(1-=N0=1,1-NF+\C =0 (1-)\)+)\XC =06

and from this we obtain that the line from (%) to (ez, e5) passes through ~(¢;):

Y(to) + A((e2, €2) — v(to)) = (1)
and similarly
Y(t1) + Al(es, e2) — y(t1)) = y(t2).

So if take
l—e " =MXandse ™t =1— )\

and
1—e ") — Nands e~ (271 =1 — )
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we see that indeed these points are orbits of a solution of and (4.6). Using the symmetry
of the equation we obtain the full periodic orbit. In Appendix A, Harris & Sparrow & SvS 2008
the existence of a periodic orbit for § € (—1, 1) is shown through a calculation. An abstract
argument which does not require calculations is given for 5 € (—1,0] in SvS & Sparrow 2011,
Proposition 3.1.

]

For 8 = ¢ where ¢ is the golden number (i.e. ¢ := (VB —1)/2 ~ 0.618), the game is
equivalent to a zero-sume game (rescaling B to B = ¢(B — 1) gives A + B = 0). Hence in
this case by Theorem play always converges to the interior equilibrium (E4, EP).

For 5 € (¢, 7) where 7 ~ 0.915 the dynamics is chaotic, as is shown in Sparrow & SvS
2011.

Exercise 4.3. 1. Show that the best response associated to a 3 x 3 matrix A is the same
a B oy
as that associatedto A’ =cA+ | « [ v | provided ¢ > 0.
a B v

2. Show that when [ is equal to the golden mean, the game defined in (4.4) is indeed
(equivalent) to a zero sum game. (We say that the games are equivalent if the best
response dynamics is the same.)

3. Go through the argument in the previous lemma in detail and show that we indeed
obtain a periodic orbit.
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5 Fictitious play: a learning model

There are several models for learning which aim to model human behaviour while others are
aimed at providing efficient algorithms for computing various generalisations of the Nash equi-
librium. Some models have their roots in economics, whereas others in computer science
literature. In the remainder of this course we will discuss some of the main models:

o fictitious play (many people, starting with Brown and Robinson in the 50’s), Fudenberg,
Levine,....

e reinforcement learning Bush and Mosteller (1951, 1955), (Roth, Erev, Arthur...), Q learn-
ing etc...

e no-regret learning (Hart, Mas-Colell, Foster, Young, Kalai, Lehrer,...).

In this chapter we will discuss fictitious play.

5.1 Best response and fictitious play

Let x(t) and y(¢) be the actions (past)play of the two players, and let

p(s) = 1/08 x(u) du and g(s) = é/oty(u) du.

S
So p(s) and ¢(¢) is the average of the past actions. Differentiating this gives

p(s) = %x(s) - ép(s) and ¢(s) = éy(s) - %q(s).

Now assume that a player decides to always play a best-response action:
z(s) € BRa(q(s)) and y(s) € BRp(p(s)) for s > 1.
Then we obtain the following differential equation (inclusion)

p(s) € %(BRA(Q(S» —p(s)) 5.1
q(s) € +(BRp(p(s)) — q(s)) '

which is called the fictitious play dynamics. Note that is a non-autonomous differential equa-
tion. Butitis closely related to an autonomous system, because if we take the time-reparametrisation
s = €', then this gives

q(t) = (BRs(p(t)) — a(t)). '

which is the autonomous best-response dynamics from the previous chapter:

Exercise 5.1. Consider the matrix from the Shapley best response dynamics from Exam-

ple

1. Show that the fictitious play dynamics associated to the same system still has the same
orbits.

2. For 8 = 0 the best response dynamics has a periodic orbit as in Figure[25] So there is a
curve t — x(t) = ((p(t),q(t)) so that x(t +T") = x(t) for all ¢. For the corresponding
fictitious play dynamics, the speed along thid orbit decays. What is the analogous
equation to z(t + T') = x(t) for all ¢?
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5.2 The no-regret set

Denote the maximal-payoff functions

A(q) :=maxp-Aq and B(p):=maxp- Bq, (5.3)

PEA geA

Let us show that playing fictitious dynamics leads to ‘no-regret’.
Assume that players A and B have respectively m and n actions.

Definition. A joint probability distribution P = (p;;) over S :={1,...,m} x {1,...,n}isa
coarse correlated equilibrium (CCE) for the bimatrix game (A, B) if (p;;), i = 1,...,m and
j =1,...,nis a matrix with all entries > 0 and so that > ;. p;; = 1 (so P = (p;;) is a joint
probability distribution) and if

Z Ay jPij < Z @i Pij

1,3 1,J
g bijpij < E bijpij
] i,J

for all ¢/, j'. The set of CCE is also called the Hannan set.

and

Lemma 5.1. The set of NE’s can be throught of a subset of the CCE set in the sense that if
(p, q) be a NE then p;; = p;q; where (p1,...,p,) =pand (q1,...,¢,) = ¢is in the CCE set.

Proof. Since (p,q) is a NE, p € BR4(q) and ¢ € BRg(q) and therefore for all probability
vectors p, ¢
p-Ag<p-Agandp-Bj<p-Bq.

In particular,
e - Aqg<p-Agandp- Bejy <p-Bq

for all ¢/, 7/ and so

>y < Xy and 3 bp < Y b
i,J i 2%

J

Since p, q are probability vectors this implies

Zai/jpiqj S Zaijpiqj and Zbij’pin S Z bijpin'

Y] 4,J 0] ]

Since p;; = p;q; the required inequalities in the definition of CCE hold. So CCE is a gener-
alisation of the notion of NE, considering all joint probability distributions P rather than just
product probability distributions. [

One way of viewing the concept of CCE is in terms of the notion of regret. Let us as-
sume that two players are (repeatedly or continuously) playing a bimatrix game (A, B), and
let P(t) = (p;;(t)) be the empirical joint distribution of their past play through time ¢, that is,
pij(t) represents the fraction of time of the strategy profile (7, j) along their play through time
t. Then ), - ai;p;;(t) and >, . bi;p;(t) are the players” average payoffs in their play through
time ?.
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For x € R, let [z]+ denote the positive part of x: [z|; = x if x > 0, and [z] . = 0 otherwise.

Then the expression
D () = Y aipi(t)
4,J 2

can be interpreted as the regret of the first player from not having played action i’ every single
time throughout the entire past history of play. It is (the positive part of) the difference between
the player A’s payoff that she would have received if she always played i and what player A’s
actual past was, both given that player B would have played the same way as she did. Similarly,

[Z bijrpij () — Z bijpij ()] +

+

is the regret of the second player from not having played j'. This regret notion is sometimes
called unconditional or external regret to distinguish it from the internal or conditional regrezﬂ
In this context the set of CCE can be interpreted as the set of joint probability distributions with
no regret (i.e. the regret is < 0).

Exercise 5.2. 1. Discuss the notion of no-regret and the CCE set in your own words.
You might want to do this exercise after you have read the definition of the CE set in
Chapter 7. (No solution will be provided for this question.)

5.3 Fictitious play converges to the no-regret set CCE

We now show that continuous-time FP converges to a subset of CCE, namely the subset for
which equality holds for at least one 7', " in (5.4).

Theorem 5.1. Every trajectory of FP dynamics (5.1)) in a bimatrix game (A, B) converges to a
subset of the set of CCE, the set of joint probability distributions P = (p;;) over S* x S such
that for all (¢, ') € S4 x S

Z airjPij < Z aijpi; and Z bijipij < Z bijpij, (5.4)
i\j i,

1,J 1,3

where equality holds for at least one (i', j') € S x SE. In other words, FP dynamics asymp-
totically leads to no regret for both players.

Note that an FP orbit (p(t), ¢(t)), t > 1, gives rise to a joint probability distribution P(t) =

(pi;(t)) via
1

pij(t) = ;/0 z;(s)y,(s)ds.

Here z;(s) is the i-th component of x(s) where z(s) € BR4(q(s)) (and similar for y;(s)). So
when BR(q(s)) is a singleton then z(s) = e; for some ¢ and z;(s) = 1 and x;(s) = 0 for
i # i. So p;;(t) represents the total time the first player and 2nd player played action (ij) at
the same time.

When we say that FP converges to a certain set of joint probability distributions, we mean
that P(t¢) obtained this way converges to this set.

2Conditional regret is the regret from not having played an action i’ whenever a certain action i has been
played, that is, [ZJ i1 jPij — Zj a;i;pij)+ for some fixed i € S4.
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Proof of Theorem Let A and B be defined as
A(q) = p-A d B(p) := - Bq.
(¢) :=maxp-Ag and Blp):=maxp-Bq
We have that
dA(q(t)) dq

whenever BR4(q(t)) is unique and x € BR(q(t)).
Let us check (5.3) in an example (the proof in the general case goes similarly): ¢(t) =

_ d - d
( L ) A = 1. Then A(g(t)) = max(t,1 — 1) and so = A(g(t)) = = max(t,1 — 1)
is equal to —1 when ¢ € (0,1/2) and equal to +1 when ¢ € (1/,2). So let us consider the

d
x - Ad_z where © € BR(q(t)). Notice that BR(q(t)) = e (resp. e;) for t € [0,1/2) (resp.

d d -
t € (1/2,1] and so x~Ad—z =z-A _11 is indeed equal to EA(q(t)) when x € BRA(q(t)).
Therefore, since z(t) € BR4(q(t)) and y(t) € BRg(p(t)) fort > 1,

@ (A1) = Alg(t)) + £ (Ala(e))) = Ala(t) + ta(ty- A%,

Using first the definition of Fictious Play (5.1)) and then (5.5)) (which implies that A(q(t)) =
x(t) - Aq(t)), it follows that

% (tA(g(1)) = Alq(t) + (1) - A(y(t) — q(t)) = x(t) - Ay(?)

for ¢ > 1. Integrating this equation, we conclude that for 7" > 1,

/1 w(t) - Ay(t) dt = TA(q(T)) — A(g(1)),

Jim (% </0Tx(t) - Ay(t) dt) - A(q(T))) —0.

%/0 x(t) - Ay(t) dt = Zaijpij (1),

1,

and therefore

Note that

where P(T) = (p;;(T)) is the empirical joint distribution of the two players’ play through time
T'. On the other hand,

A(q(T)) = max > avgs(T) = max > aipi(T).
j i

So the last three equations combined gives

Jim (Z a3;pii (T) — max Z Qi (T)) =0.
]

/Z:7j

By a similar calculation for B, we obtain
7’7] Z7‘7
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It follows that any FP orbit converges to the set of CCE. Moreover, these equalities imply
that for a sequence ¢; — oo so that p;;(t) converges, there exist ¢',j so that >, .(a;; —
aij)pij(ty) — 0and 3, (b — bij)pij(ty) — 0 as k — oo, proving convergence to the
claimed subset (where equality holds for at least one 7’). ]

Let us denote the average payoffs through time 7" along an FP orbit as

1

aNT) = = /O z(t) - Ay(t)dt and ﬁB(T):% /0 z(t) - By(t) dt. (5.6)

As a corollary to the proof of the previous theorem we get the following

Proposition 5.1. In any bimatrix game, along every orbit of FP dynamics we have

lim (a*(T)— A(q(T))) = lim (a®(T) — B(p(T))) = 0.

T—o0 T—o00

where as before

Alq) == pAgq and B(p) := Bq
(g) = maxpAg (p) = maxpBq,
Another consequence of the previous theorem is:

Proposition 5.2. Let (A, B) be a bimatrix game with unique, interior Nash equilibrium (B4, EP).
If A(q) > A(E®) and B(p) > B(E#) forall (p,q) € A x A, then asymptotically the average
payoff along FP orbits is greater than or equal to the Nash equilibrium payoff (for both players).

Of course the payoff depends on the choice of the payoff matrices. The following result
(which we shall not prove here) shows that one can always find an equivalent so that the payoff
satisfies the assumptions in the previous proposition:

Theorem 5.2. Let (A, B) be an n x n bimatrix game with unique, interior Nash equilibrium
E. Then there exists a linearly equivalent game (A’, B'), for which 4’(¢) > A’(E®P) and
B'(p) > B'(E*) for all p # E4 and q # EZ, and so for (A’, B’) FP payoff Pareto dominates
Nash payoff.

Here we way that (A, B) and (A, B') are linearly equivalent if and only if
BRA = BRA/ and BRB = BRB/.

Notice that BR4y = BRas if A’ is obtained by adding a (possible different) multiple of the
column vector 1 to each of its columns because then there exists a constant ¢ so that A'q =
Aq+ c-1forall q.

Exercise 5.3. 1. Of course Proposition suggests that you should play FP, rather
than Nash in the above game. Discuss what would happen if one of the players starts
to deviate from playing FP, and try to preempt the moves of the other player in a
more complicated way than through FP. (This is a rather open ended question, and no
solution will be provided for this question.)
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5.4 FP orbits often give better payoff than Nash

Consider the one-parameter family of 3 x 3 bimatrix games (Ag, Bg), 5 € (0, 1), given by

108 -8 1 0
Ag=|B 1 0|, Bs=|0 -8 1]. (5.7)
0 8 1 r 0 -8

This family can be viewed as a generalisation of Shapley’s game. This system has been shown
to give rise to a very rich chaotic dynamics with many unusual and remarkable dynamical
features. The game has a unique, completely mixed Nash equilibrium E, where E = (E4, EP)
where E4 = (3,3,3) and EP = (3, 3, 1), which yields the respective payoffs

1-p

1
1+5 and u?(EY) = —2.
3 3

To check the hypothesis of Proposition let g = (q1,q2,q3)" € Ap, then

uA(EB) =

A(q) = max {q1 + Bg3,q2 + Ba1, g3 + Bz}

> —((q1 + Bas) + (¢ + Bar) + (g3 + Baz))

Moreover, equality holds if and only if

@+ Bags = q2 + Bq1 = qz3 + Bqo,

which is equivalent to ¢; = ¢, = g, that is, ¢ = E”. We conclude that A(q) > A(E") for all
q € A\ {EP}, and by a similar calculation, B(p) > B(E4) forallp € Ay \ {E4}. Asa
corollary to Proposition [5.2] we get the following result.

Theorem 5.3. Consider the one-parameter family of bimatrix games (Ag, Bj) in (5.7) for 5 €
(0,1). Then any (non-stationary) FP orbit Pareto dominates constant Nash equilibrium play in
the long run, that is, for all large ¢t we have

at(t) > uM(EP) and aP(t) > uP(EY).

A conjecture

There are certainly examples of games where the opposite holds, namely where a FP orbit is
Pareto dominated by the Nash payoff. However, a numerical study suggests this is extremely
rare. For many games FP orbits Pareto dominate Nash play, and conjecturally, for a very large
proportion (say %99 percent), FP orbits dominate Nash play for large periods of time.

Exercise 5.4. 1. Consider the matrix from the Shapley best response dynamics from Ex-
ample [4.5]taking 5 = 0. Show that the set of CCE is not a single point. Hint: the the
best response dynamics has a periodic orbit as in Figure [25and use Theorem 5.1}

2. Does the average payoff 4 (¢) and @“(¢) converge as t — oo if we are in the Shapley
orbit? Hint: use Proposition [5.1]
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5.5 Time averages of Replicator Dynamics converge to pseudo-orbits of
Fictitious Play

In Lemma we saw that the time-average of a one-player RPS game, converges to the periodic
orbit of the corresponding Best Response dynamics. It turns out that this relationship holds
much more generally:

Theorem 5.4. Let x(t) be a solution of the one-player RD
;= x;((Ax); —x - Ax),i=1,...,n (RD)

and let E be the interior Nash equilibrium. Define X (¢) = 1 [ !

- |, ©(s) ds. Then there exists a(t)
with a(t) — 0 as t — oo so that

z(t) € BRAY(X(t)) and

X0 e IBROX(0) - X)) o

So the time-average of the solution of a replicator system converges to a pseudo-orbit of FP
dynamics.
Similarly, let (z(s), y(s)) be the solution of the two-player RD

) Vo,y € Ayij=1,....n, RD2
{yj —y;((Bx); —y-Br) TYERLI & RD2)

and let (E4 x Ep) € A x A be the interior Nash equilibrium. Let X () = 1 f(f x(s) ds and
Y(t) =1 [ y(s)ds. Then
o(t) € BRIV (Y (1)) y(t) € BRE"(X(1))

() e TBROYM) -X@). V) et BROX@) -y TP

Proof. Let L be the logit function L: R™ — A defined by

L) = ( (@) explan) ) |

> expr;’ >, eXp T

It follows from this expression that there exists a function «(t) — 0 as ¢ — oo so that for each
x €A,
L(tx) € BR*D(x). (5.9)

Here, as before, the set-valued map BR*")(z) is defined so that its graph is equal to the -
neighbourhood of the graph of © — BR(x), where a/(t) tends to zero as t — oc.

The two player case: Let (x(t),y(t)) be a solution of two-player RD where we assume
that 2(0) = (x,...,2§) € int(A). Define U, = Ay(s), U, = ¥ [ U,ds, U = logaf,
Uy = (UL,...,Up) and £(t) = L(Uy + f(f Us ds). Moreover, define X (t) = %fotx(s) ds and
_ 1
Tt

Y(t) Oty(s) ds. So, since U; = Ay(t) we obtain

Uy = AY (1).
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An explicit calculation, shows that £(0) = z(0) and that ¢ satisfies the first equation in (RD2).
Indeed, differentiating log &(¢) with respect to ¢ we obtain

£ty abUfexp [yUsds >, xUj exp [y Ui ds
£(1) akexp [ Uy ds >, whexp [ Ul ds
- Z ) U7 exp fot f]g ds
Y rgiexp [y Ulds

= Uf =) Ulal = Ayh(t) — x(t) - Ay(t),

where the penultimate equality uses the definition of £(¢) via the logit function. It follows £(t)
and x(t) satisfy the same differential equations, and so by uniqueness of solutions of RD we
get £(t) = x(t). Hence, X (¢) and Y (t) satisfy

In particular, since U; = AY (t) and using (5.9),

2(t) =¢&(t) = LU + [, Uyds) = L(t[Uy/t + T,])
(5.10)
€ BRMO(U,) = BRSV (Y (t)).

Interchanging the roles of z(¢) and y(¢) (and defining V; = Bx(s), Vo, V, as the analogues of
Us, Uy, U;) we also get

y(t) = L(Vo+ fy Vads) = L(t[Vo/t + V7))
(5.11)
€ BRUO(V,) = BRY"(X (1))

where a(t) — 0 as t — oo because of (5.9). It follows that for the time averages X (¢), Y (t) of

the replicator systems one has

(1) € (BRI (1) - X()
(5.12)
V(1) € S(BREIX() - Y (1)

where again a(t) — 0 ast — oo. Note that Y — BRS(Y) is a neighbourhood of the (set-
valued) graph of Y +— BR4(Y), and whenever BR4(Y) is single valued we have BRS(Y') —
BRA(Y)asa — 0.

The one-player case. Let z(t) be a solution of the equation #; = z;((Ar); — 2’cdotAx).
Define U, = Ax(s), U, = L [[ U, ds, U} = logaf, and &(t) = L(Up + [, U, ds) and X (t) =
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: f(f &(s) ds. The same calculation as before gives £(0) = x(0) and that £(¢) and x(t) satisfy
the same differential equation. Hence &£(¢) = x(t) for all ¢. It follows as before that

X(t) :%fofx(s)ds,
2(t) = L(Up +tAX(t)) € BRED(X (1)), (5.13)

X(1) € ;BRA(X() - X (1)

5.6 Discrete fictitious dynamics

Sometimes it is more natural to consider discrete time, so assume that ¢ € N. In this case we
let p(0), ¢(0) be the a priori believe at time ¢ = 0 of the probability that player B resp A thinks
the strategies will be played. The updating rule about these believes is then

np(n) + e;(n)
n+1

nq(n) +e;(n)

p(n+1) = n+1

qn+1) =

where
ei(n) € BR4(g,) and e;(n) € BRp(py)-
So
p(n+1) ~ pln) = ~(ei(n) ~ pln)), aln + 1) = a(m) + ~(e;(n) — a(n))

This should be considered as the discrete approximation of the continuous best response dy-
namics

p=BRa(q) —p,¢ = BRg(p) —q.

Exercise 5.5. Write computer code which draws orbits of the discrete fictitious play dy-
namics associated to the game corresponding to matrices (5.7) (taking various choices for (3
including 8 = 0, 3 = the golden mean and 3 = 0.9).
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6 Reinforcement learning (Chapter to be slightly updated)

Reinforcement learning (RL) is a very widely used approach to learning. The premise in RL
is that you choose an action which in the past turned out to be quite rewarding you will play it
in future more often (exploitation), but at the same time you do not rule out choosing actions
which were less successful from to time in order not to miss opportunities (exploration). The
latter avoids that you get stuck playing a ‘local maximum’.

In this chapter I will describe various models for reinforcement learning. These are all fairly
closely related to fictitious play, but instead of choosing actions based on the best response to
the average of previous actions, reinforcement learning focusses on actions which gave good
payoff’s in the past.

6.1 Set-up of reinforcement learning

1. at each time period ¢, each of the two players chooses an action x(t) resp. y(t). Here
z(t),y(t) will be probability unit vectors e;,e;. For simplicity, often we write z*, '
instead of (), y(t). In fact, the other player could be ‘nature’ or a player which has an
unknown way of choosing strategies.

2. the payoff (or reward) for player A is given by a function v' = u(z',y") € R which
for pure actions can be written in the form x! - Ay' where A is a matrix. In the current
chapter we will assume that the payoff is always strictly positive: there exists Cy > 0 so
that A;; > Cj for all 4, j and so u’ > Cj for all ¢ > 1.

3. Define a variable 6! > 0 which describes the propensity of player A to play action i (i.e.
to choose z' = ¢;) at time ¢. The variable 6! is updated in some manner according to
how "good playing z" has been. Let ' = (6%,...,6"). At time ¢, the probability that A
plays action 7 is determined by 6. For example one choose acctions according too the
probability vector )

0
t

G

p 6.1

where |z|; := Y |2;| when z € R™.

4. Several updating rules have been proposed for the propensity 6°. Here we will always
assume that |6'| = C' > 0 and indeed that all coordinates of ' are positive.

5. As mentioned, in reinforcement learning the action z* € {ey,...,e,} are chosen ran-
domly so that 2 = e; with probability p!.

One way of visualising (and implementing this) such a random variable is to partition the
interval [0, 1] into n intervals I%, ..., I, where It = [0,p%] and If = [p} +---+pl_,,p} +
-+« + p!] for i > 1. Then choose r uniformly in [0, 1] and choose z* = ¢; if r € I}.

Three well-known update rules for the propensity function:

1. Cross-learning, named after Cross (1973):
Ot = (1 — 9u")0" + Yu'a’, t>1

where we assume in this model that u’ € (0,1), ¥ € (0,1] and |#'| = 1 (and that each
component of the vector #! is strictly positive). So in this model, |6| = 1 forall ¢ > 1.
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2. Erev-Roth Cumulative payoff matching (CPM) (dating back to 1995) is:
gt = 0' 4 ulat, t> 1.

Here the initial vector ' is chosen so that |#'| = C' and so that each component of ! is
strictly positive, see below.

3. The Arthur model (dating back to 1993), is closely related to the previous one:

Ot +1)

et—i-l — et t, .t > 1.

(6" + w'a') Ct+ut’ — —

Here C' > 0 is chosen fixed throughout, and 6" is chosen so that |#'| = C and so that
each component of 6! is strictly positive.

All models have in common that they reinforce playing a particular action depending on
the payoff it resulted in previously. Note that player A does not need to observe the actions of
player B to determine 6, only their own utility pay-off. The vector #° can be viewed as some
kind of ‘score-card’ on how well the various actions have done in the past.

In the first part of this chapter, we will focus on the above updating rules where two players
use in their interactions and where we shall concentrate on models (2) and (3), which in some
sense are quite similar: the updating rule for the latter is just a rescaled version of the former
one.

In the next exercise we will consider the situation where a player interacts with ‘nature’.

Example 6.1. Let us consider in this exercise the situation of a player who interacts with
‘nature’. For example, suppose a doctor can prescribe a new medication to a patient, but it’s not
clear whether this will also have good outcomes. One approach is to do a blind sample, giving
some patients a placebo and others the new medication, and then to compare the statistics.
Another one is to use reinforcement learning. Every time one medication ‘worked’ you increase
its propensity, and start using the more successful medication more often. So the doctor has
two options: Medicine or Placebo. There are two types of patients: I and II, which perhaps
correspond to genetic traits of the patient. Unfortunately, there is no way to determine the type
of the patient beforehand. So the payoff structure is:

I 10
M 10 0
P 5 5 )7

Let us assume you update the propensity vector according to the Erev-Roth model. Let fj be
the frequency up to time < ¢ the doctor has prescribed i € { M, P} while dealing with a patient

of type j € {I,I1}. Then
101
0" =0 + ( H ) t.
5(for + f2)

This means that

. 09 + 101, _

|60l + 101, +5(f21 + f22)
Of course fj is a random variable, because at time 1,...,¢ — 1 the doctor chooses actions
depending on p',...,p'"!, and therefore p’ is also a random variable. So for each ‘run’ the
‘sample’ path p', ..., p'~! will most likely be different. In the next exercise you will be asked

to write Python code to get an impression on what to expect. One can formally prove a.e.
convergence results, and some of such results are discussed later on in this section.
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Exercise 6.1. 1. Let ¢ € (0,1) be the frequency of the patients of type I. What should
the doctor prescribe?

2. Write a Python programme which computes p} for ¢ = 10000 for n = 1000 sample
path, and draws a histogram of the results. Do this for the following four cases: ¢ =
0.3,¢=0.7,6 = (10,10) and # = (0.1,0.1). (Why the latter choice for  gives such
different results is related to what will be discussed in Proposition .) Moreover, draw
p{ for j = 1,...,t for the first 10 sample paths.

6.2 The Arthur model, in the 2 x 2 setting

In this subsection we will assume that both players learn according to the model (3) and follow
the analysis from Posch (1997). Note that in this model |6"| = tC for all ¢ > 1. Indeed,
|6'| = C by assumption. Assume by induction |#*| = ¢C' then because (by assumption) u’ > 0,

Ct+1)

6t+1 — 9t t, .t
=l e

=C(t+1).
Since p* = 0'/|60"| = 6"/ (Ct),

ot 0 +ulat Ctpt 4 ulat

pt+1 = = =
|9t+1’ Ct+ut Ct—i—ut (6 2)
t ut t t t ut t t 1 t .
el Gl DRt b sbor Clled DR e v

where ¢ = O(1/t). We will also assume that the 2nd player uses the corresponding updating
rule for their probability vector ¢'.

Note that the actions z!,..., 2! ! and y!,...,y" ! determine u!,...,u’"! and therefore
6',...,0% and p',... p'. The first player chooses action i with probability equal to the i-th
coordinate p! of p'. So x' = e; with probability p!. Finally, the payoff ' is then determined
by the action 3" of the 2nd player together with 2. If we define f(p’, ¢") to be the conditional
expectation

t—1 t—1

f@'d) =E@ (@ —p )"y, @y,
then we obtain that
u'(@' = p") = f(p'.q) + n(p' ')
where (p', ¢') is a variable with the property that

E(u(p', )"y, - "y} = 0.
Hence one can write the previous recurrence equation (6.2)) as

1
P =p+ Yoo f@'q") + u(p' ¢') + €] (6.3)

where, as before,

E(p®, ¢ (=" y"),.... (" y™)}) = 0and ¢ = O(1/t).

Note that u(p?, ¢*) depends on 2!, ...zt and y', ... ¢".
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Equation has one draw-back: this equation in principle allows the vector p' to be
no longer a probability vector, whereas in the original expression it is clear that that p'
remains a probability vector (and so in particular, each of its components is between 0 and 1).
On the other hand, (6.3)) makes the connection with a differential equation more clear, as we
will see.

6.2.1 A two player version of this with two actions

Now do the same for the other player. Then the action y' player B chooses depends on the
corresponding probability ¢, and so we obtain the discrete time stochastic process:

P =+ & 4 + ' q') + €]
(6.4)
¢ =q' + & o' d) + ¢ q") + €.

6.2.2 Stochastic approximation of an ODE

Note that when 1 = ( = ¢! = 0, is the Euler approximation with decreasing time steps of
the differential equation
p =f'q)
(6.5)
q =g q)
Since E(u(pt, ¢")|{(z',y'), ..., (@1 y*=1)}) = 0 (and similarly for ¢) and € = O(1/t), it is
reasonable to expect that the solutions of (6.4) should be closely related to those of (6.5)). Note

that ZtTZl ﬁ ~ % log(T) — o0, so after T steps the solution should be related to the solution

of (6.5) at time £ log(T).
Indeed this connection is described in quite a lot of detail in for example Benaim (1999),
where one of the main results is the following:

Theorem 6.1. Almost all realisations (p',¢"), t = 1,2,... of (6.4) tend asymptotically to a
‘internally chain recurrent set’ of the differential equation (6.5)).

The formal definition of ‘internally chain recurrent set’ of a differential equation can be
found in the appendix. For the two differential equations drawn in Figure 28] these sets are as
described in the caption in this figure. Notice that the above theorem does not claim that almost
all realisations tend to attractors of the differential equations. In Proposition[6.1]it is shown that
this indeed need not be the case.

6.2.3 Calculating f and g in the 2 x 2 case

For simplicity assume that each of the players has two actions and that the payoff matrices are A
and B are equal to A = 2 ) and B = b b

a1 Q22 ba1  bao
and derive the deterministic part of the above differential equation. Let us temporarily write
p', g’ for the vectors and p’, ¢* for its first components, so write p* = (p’,1 — p’) and g =
(¢",1 — ¢*). We will also temporarily write

f(p',q") = E(u'(x" —p")H{(x",¥"),...,x" "y H})

where we use the 1st convention
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for the vector and f(p’, q*) for its first component. If x* = e, then u’(x*—p’) = (e;- Aq") (e, —p")
and so the first component of

E(u'(x' —p){(x"y"),....(x" 1y )} = pr((z - Aq')(e; — p'))

is equal to
f@a") =p(ang +az(l —¢"))(1 —p")+
(1= p")(a21q" + az(1l — ¢')(0 = p)
=p'(1 = p') ((a12 — az2) — ¢"((az1 — an) + (@12 — az)))
and similarly for g. That is,

f(p,q) =p(1—p)lor — qloq + ay)]
) q(1 = q)[B1 — p(B1 + B2)]

where
a1 = Q12 — 422, G2 = dg1 — 411

61 - b12 - b227 62 = b21 - bll'

6.2.4 Comparison with replicator dynamics
Now compare with the replicator dynamics equation

pi = pil(Ag)i —p - Aq]
¢ = ¢l(Bp);—aq- Bpl.
This also gives
1 = pilanq + a12¢2 — pr{ang + ai2ge)
—p2(a21q1 + azqs)]
=pi(1 = p1)oa — qu(ar + ag)]
@ =qa(l—aq)B —pi(Br+ Ba)].
So
1= f(p1,q1),d0 = 9(p1, 1)
is the two person replicator dynamics that we already encountered in Subsections [2.2]and [2.4]
As we saw there, the dynamics of this two person replicator system can be completely de-
scribed. If there is an interior NE then there are two possibilities, where the diagram on the
right corresponds to a a game which is equivalent to a zero-sum game.

6.2.5 A formal connection with the replicator dynamics

Based on this, Posch (1997) and Hopkins & Posch (2005) showed the following:
Theorem 6.2. Consider the Arthur learning model in a two-player two strategy game. Then

e if the game has no strict Nash equilibrium and is equivalent to a zero sum game (as in
Figure 28] on the right), then the learning algorithm has a continuum of asymptotically
cycling paths. Almost all paths that are not asymptotically cycling converge either to the
interior fixed point or to the boundary;

o if there is at least one strict Nash equilibrium and C' > ajj, b, for j,k = 1,2, then
the learning algorithm a.s. converges to the set of strict Nash equilibria. All strict Nash
equilibria are attained in the limit with positive probability.

In Figure 29, two runs of the learning process are drawn for a zero-sum game with a NE at
(1/2,1/2) from which the runs where started.
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Figure 28: The solutions of the 2 x 2 replicator dynamics. The ‘internally chain recurrent sets’
for these differential equations are: the 5 singularities (for the flow on the left) and the entire
phase space (for the flow on the right). The game corresponding to the replicator equation on
the left is a coordination game and has three NE’s (the points on the top left, bottom right, and
the interior equilibrium point). The game associated to the picture on the right has only one
NE, namely the interior equilibrium.

0 A 1 0 A 1

Figure 29: Sample path of the 2 x 2 reinforcement learning dynamics corresponding to the two
systems considered in Figure 28]
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6.2.6 What happens if C' is not large enough in Arthur’s model?

Note that in the left panel of Figure neither (0,0) nor (1,1) is a NE. Similarly, in the
right panel of that figure none of the corner points are NE’s. Nevertheless, if C' is chosen
insufficiently large, then the learning algorithm can reach these points with positive probability:

Proposition 6.1. Suppose that 0 < C' < ay, by, for all £, 1. Then
Prob{lim p' — 1, lim ¢" — 1} > 0.
t—o0 t—o00

Proof. Let us show that there is a positive probability that p* — 1. To do this, it is sufficient
to show that [[;~, p* > 0 because this implies that there is a positive probability that player A
chooses action 1 forever.

Note that [[,°, p* > 01is equivalent to ) (1 — p') < oo. Since

ut

Ct+ut

if player A chooses action 1 (which corresponds to x* = e; = (1,0) = (1,0)) at time ¢ and
player B action j then

(x'

pt=p'+ -

141 ¢ ayj t
=pl+ — (1 —ph).
p p Oﬁ+mﬁ p')

So writing d* = 1 — p' we get

a4
dt+1 — dt . J dt
Ct + 37
Hence -
il N R R
dt Ct + Q15 '
Since a;; > C for all 4, j, there exists «, &' > 1 and ¢, so that for ¢ > ¢,

t+1 O/

1 : < i <1 .
This implies by the Raabe test that )~ d' converges. (The Raabe test states the following:
assume |c, /41| — 1and n(|c,/cni1] —1) — R. Then ) ¢, converges if R > 1 and diverges
ifR<1)
Thus we have proved that if player A chooses action 1 all the time, then [ ] p* > 0. Thus it
follows that there is indeed a positive probability that player A indeed chooses action 1 all the
time. Since the same holds for player B the proposition follows. ]

Exercise 6.2. 1. Show that the ‘internally chain recurrent set’ (as defined in the ap-
pendix) corresponding to the differential equations drawn in Figure [2§]is as claimed
in the caption of that figure.

dt+1 t+1
2. In the previous proof g does not really converge because the value of Tl

ay . .
Y where a,; depends on the action at time ¢. Show that nevertheless

B Ct + ayj
S"d' converges. (Hint: it is enough to compare d' with a sequence d' for which
Jt+1 o

1

e t
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6.3 The Erev-Roth model

In model (2) we have that |0*| < |0'| + tK where K is an upper bound for the utility of all
actions. It follows that

1

pi > m and therefore H(l —pj) =0.

t>1
(To see this implication, consider the logarithm of the product. We then need to prove > _, log(1—
1

= 00.) Note that [],.,(1 —p}) =0

implies that the probability of never choosing action : is zero,

pt) — —oo and this follows from >, pi > >~ m

6.3.1 The underlying differential equation

Following the same approach as in the Arthur model we now get, see Beggs (2005),

B = LlA0s —p- Ad
a =—-a+p-Aq
(6.6)
i ==j%3KBpL-—q~BpJ
b =—-b+4+q-Bp

Note that this is still quite close to the replicator system, but since a, b are not constant and are
distinct there are subtle differences. It turns out that this implies that the solutions almost surely
tend to Nash equilibria.

Theorem 6.3. Consider the Erev-Roth learning model in a two-player two strategy game. Then

e if the game has no strict Nash equilibrium and is equivalent to a zero sum game (as in
Figure 28] on the right), then the learning algorithm converges to the interior fixed point;

e if there is at least one strict Nash equilibrium then the learning algorithm a.s. converges
to the set of strict Nash equilibria. All strict Nash equilibria are attained in the limit with
positive probability.

Exercise 6.3. 1. Determine the singularities of the adjusted equation (6.06)).

2. Code up a matlab or python and check whether this supports the previous theorem.

6.4 Other reinforcement learning models

Take ufy = a' - AV', o, 9 € (0, 1). Update rule score vector Q)"
1. Memory loss learning model:
QM =Q" +a (uhya' —0Q").
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2. Q learning with a single state:
QM =Q +a- (u; + myax Ql} - Q- at> a*

Note that here only the component i for which a® = ¢; is updated. Remark: this originates
from the theory of Markov Decision Processes / Bandit problem in a random environment
with stationary distribution (See Appendix)A6:

fixed point <= solution of Bellman eqn.

Here v = discount factor on future earnings. In our setting v makes little sense, so take
v = 0.

6.5 Various ways of choosing actions

Given vector @ (i.e. O or Q") how to choose action a(t)?
e proportional to Q': if all coordinates of Q' are positive, one can choose as before
p(t) = Q'/|Q"].
e c-greedy choice: according to the probability vector

p(Q) = (1—-¢)BR(Q)+¢€(1/n,...,1/n)

Note that BR;(()) is the unit vector corresponding to the largest component of () (plus
tie rule).

e softmax: according to the probability vector

softmaxr(Q)) = 5 expl(Qi/T) (exp(@Q1/T),...,exp(Q,/T)).
— T = oo: uniform distribution (1/n,...,1/n) and

— T | 0 then this puts full weight on the largest component of ().

6.6 Q-Learning with softmax

This learning process was pioneered by Sutton & Barto (1998) and prior to that Watkins &
Dayan (1992). In this approach one additionally allows for the existence of distinct states. For
example, these states could model which room in a house you are in. The actions are then
according which door you exit a room. (Think of computer games.)

Suppose that you have a number of states s € S and a number of actions a € A. You try to
calculate the expected value of playing action 7 when in state s. In Q-learning you update each
Q(s,a), which should be understood as an estimate for the future value of the combination
(s,a), as follows. Suppose you are in state s, and moved to state s’ and played action i then,
taking o € (0,1) and v € (0, 1) the update from time ¢ to time ¢ + & is taken to be

Q™" (s) = Q'(s) + ah - <uf4 + 7 max Qi(s) — Q'(s) - a(t)) a(t) (6.7)
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So only the component of Q" which you play at time ¢ is updated. This updating rule is
called Q-learning. Often « is called the learning rate, and ~y the discount factor. The term
max; ();(s’,t) should be understood as an estimate for the optimal future value of being in
state s’. In these lecture notes we will assume that we are in a one-state situation, so that we
can ignore s, and then becomes

Q= Q'+ ah - (ui‘ + vmjax Q;(t)—Q"- a(t)) a(t) (6.8)

In this subsection we will consider a related model, called frequency adjusted Q-learning:

Q" = Q'+ ah (rt +ymax Q' — Qt) (6.9)
J
while choosing actions according to the softmax vector x(t) = (z1(t),...,z,(t))
e
x;(t) =1,...,n. (6.10)

Here r* is the conditional expected payoff vector where 7! is the payoff you would receive if you
chose action ¢ given all the information that is currently available about the other player. Note
that in (6.9) you also hypothetically consider all actions and adjust () at each time according to
the payoff you expect from these actions.

Of course one may take i = 1 in the updating rule but here we will show that when
h > 0 tends to 0 you get a differential equation which is closely related to the replicator system.

Indeed, .
t+ t
z;i(t+h) 7 Zj e eTAR:

zi(t) Q! >, R > ;(t)e™9

where AQ! = Q" — QL. So

GTAQE _ T eTAQ;-
zi(t + h) — z;(t) :xi(t)< 2.;:(0) )

()™

Let’s now derive a continuous version of this, so let A — 0. Firstly, ) ;% (1) = lasxis

a probability vector and e™29+(") — 1 as h — 0. This implies that the denominator of the
previous expression tends to 1 as » — 0. So

h—0 h h—0

. — T eTAQL _NY 4 (1)eTAR;

Using e* = 14+ x4+ O(2?) and Y z; = 1 this gives

dr; dQ; dQ;
7 = ;T < a2 a :1:]). (6.11)

J
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dQ; .
We we obtain an expression for ﬁ from the updating rule for () (where we assume we
use the frequency adjusted Q-learning model):

QU = Qt + ah (n(t) + max Q5 — Qf)

which gives
dQ;
dt

=« (m—i—vmaXQj —Qi> )
J

dzx; :
Since ) | z; = 1, substituting this in the equation (6.11)) for d_xt the term with ~ drops out and

dz;
dﬁ = T (n —Qi— ) wr+ ;Qjﬂﬂj) =
= ziTa (n = ar+ Y (@) — Qz’)%‘>>

and so >, w;log(z;/x;) = 73 2;(Q; — Q;). Thus we get

we obtain

TQ;

, r: e
Notice that =L =
x; e

% = ;T (ri — ijrj + (1/7) Za:j log(:g/:z:,-)) :

If the pay-off matrices of player I and Il are A and B then, since ; is the payoff that you would
obtain from choosing action 7 and the other player is expected to play actions according to her
vector y, the above expression gives

dIi
dzf = ;T <(Bﬂ?)z —y-Bx+(1/7) >,y log(yj/yi)>
dor:
Note that ), % = 0 because ), x;(Ay); = x - Ay and because
S s (og(a /) = 0
(2
since x;x; log(z;/z;) + xx;log(z;/x;) = 0. Of course (6.12)) can also be written as
J J J J
dl’i
p =z, T ((Ay)z‘ —x- Ay +(1/7) [_ logzi +3; ;log %D (6.13)
d:ii = YT ((Bx)l —y-Br+ (1/7‘) [— log y; + Zj Yj 10gyj]>

Notice that when o = 1/7 — 0 then (6.13)) converges to the usual replicator dynamics.
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Exercise 6.4. 1. Consider the following games:

o ((1L1)(5,0) !
prisoner dilemma : ( (0,5) (3,3) battle of the sexes :

_ (1,1 (=1,1)
matching pennies: ( (—=1,1) (1,-1) )

In this section we have seen three ways in which players could learn to play these

games, namely (6.8), and where in the first two the vectors x(t), y(t) are
determined by the vectors Q4 (t), QP (t) through equation (6.10). The solutions are
two of these learning algorithms are drawn on the next page. Can you replicate these
figures through a simulation in matlab or python? (The figures labeled "FAQ" are
associated to yet another learning algorithm.)
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Prisoners’ Dilemma

1 1
0.8| { /, 0.8 0.8
0.6| 0.6 0.6]
Q v;
0.4 J 0.4 0.4
0.2] 0.2] 0.2

0 02z 04 05 08 1 v 02z 04 05 08 1 0 02z 04 05 08 1
4 1
1 1
0.8 08 0.
0. 06 0.6
FAQ v,
0.4 04 04
0.2 02 0.2

0 02 o04_o06 08 1 02 04_06 08
x X,

o
°
0

04_o06 08 1
*

Battle of Sexes

02 04 06 08 1 02 04 06 08 1 02 04 06 08 1
x x x,
1 1
0.8| 0.8 0.8]
0.6| 0.6 0.6|
FAQ v,
0.4 0.4] 0.4
0.2 0.2] 0.2
02 04 06 08 0 02 04 06 08 1 02 04 06 08 1
x x X
Matching Pennies
1 F’ 1
0.8 K—\‘ 0.8
0.6| 0.6
Q v;
0.4] 0.4
0.2] 0.2

0 02 04 06 08 1 0 1 0 02 04 06 08 1

0.8| 0.8| 0.8|

FAQ y 056

0.4

0.6| 0.6|

0.4 0.4

0.2| 0.2] 0.2|

0 02 o04_o06 08 1 0 02 04_o06 08 1 0 02 04_o06 08 1
X, X, *

min mean max
Figure 4: Comparison of Q-learning to FAQ-learning with various Q-value initializations in the Prisoners’

Dilemma, the Battle of Sexes and Matching Pennies. The Q-values are initialized centered at the minimum
(left), mean (center) and maximum (right) possible Q-value given the reward space of the game.

314

6.7 So what is the message?

Learning theory is a very hot topic right now. Much of the more practical work is about finding
suitable coefficients which ‘work’. This is not so surprising in view of the theoretical results
given before.

The dynamics of the learning models we have considered in this section are all somewhat
related to the replicator dynamics. We also have seen that replicator dynamics in 3 X 3 games
can have chaotic dynamics. This suggests that one should not expect convergence within learn-
ing algorithms in a setting where two players compete. This is the topic for ongoing research.
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6.8 Some computer experiments: what if the opponent has a different
strategy?
1,2
2.1 )

Y

Consider the following game: 1

N

Suppose the 2nd player uses

1. fictitious play;

2. takes a (myopic) best response to player 1’s current action;
3. plays the minmax strategy.

Then player 1’s average payoff converges rapidly to 1.5. Indeed, Beggs [2005] did some com-
puter simulations. Against each opponent the ER rule was run 100 times in a run of length
10,000, with initial reinforcements (1,1.5).

The mean average payoff was

1. 1.48 st.dev. 0.04
2. 1.49 st.dev. 0.01

3. 1.5 st.dev. 0.003
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7 No regret learning

In this chapter we will discuss a different class of learning algorithms, namely ‘no regret match-
ing’ or ‘regret minimisation’ algorithms. These turn out to learn ‘learn’ something similar to
the (NE), namely the correlated equilibrium (CE) of a bimatrix game. To put this in context, we
have the set of Nash equilibria (NE), the correlated equilibria (CE) and the coarse correlated
equilibria (CCE). These sets are related as follows:

NE cCCFE C CCE.

We saw that the best response dynamics converges to the CCE set.

7.1 The correlated equilibrium (CE) set

Let us first give the definition of the the CE set. Assume that A has m actions and player B
has n actions. We say that the matrix (p;;), ¢ = 1,...,m and j = 1,...,n is a probability
distribution if all its entries are > 0 and }_,; pi; = 1. A joint distribution (p;;) is a correlated
equilibrium (CE) for the bimatrix game (A, B) if

Z AirkPik < Z a;rpg and Z bijpy; < Z bi;pij (7.1)
k k 1 )

for all ¢,4" and j, /. Note the similarity with the definition of the CCE set defined in Subsec-
tion 5.2l where there was double summation.

This means that if you consider p;; as the proportion of time up to time ¢ that action 7, j was
chosen, then ¢ (>, a;pix) is the payoff up to time ¢ resulting from action . The first inequality
above means that player A would not have been better off by switching action ¢ to action 7'.
The 2nd inequality means that the same holds for player B.

Often the notion of CE is motivated by introducing a trusted intermediator into the game,
who will instruct both players to pick a joint action chosen randomly according to a probability
distribution (p;;). This distribution (p;;) is a CE if no player has an incentive to deviate from
the intermediator’s instructions.

Note that a Nash equilibrium corresponds to the special case where (p;;) is a product dis-
tribution, so corresponds to the situation that there are two probability vectors p*, ¢* and that
Pij = p; - ¢ see the exercise below.

It turns out that if both players follow the no-regret algorithm which we will discuss in this
chapter then the corresponding joint probabilities converge to the C'E set. Moreover, if one
player plays agains nature (or perhaps against the stock-market) and will use this algorithm,
then they will have ‘no regret’.

Exercise 7.1. 1. Show that if (p, ¢) is a NE then the matrix p;; = p;q; is in the CE set.

2. Consider the

[ (21) (0,0)
battle of the sexes game: ( (0,0) (1,2)

where the first action corresponds to watching Tennis and the 2nd one to watching
Football. Show that there are two pure NE’s for this game, namely (7',7") (with re-
wards (2, 1)) and (F, F') (with rewards (1,2)) and one mixed NE corresponding to
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probabilities of p* = (2/3,1/3) and p? = (1/3,2/3) for the two players (with reward
(2/3,2/3)). Show that (7.1) corresponds to

2p21 < pa2, P12 < 2p1r 5 2pa1 S pr1, Pi2 < 2pao.

and therefore to

P21 < (1/2) min(py1, pa2), p12 < 2min(pyy, pa2).

1/2

Is the set CE finite? In particular, the probability distribution ( 0 1/2

) is in the
. ST 1/2 0

CE of this game. Show that the expected payoff of the joint distribution < 0 12 >

is (3/2, 3/2) which obviously outperforms the payoff of the mixed NE for both play-

ers. Which joint distributions in the CE set have the ‘highest’ expected payoff (in

the sense that is Pareto optimal: if one player would do better, then the other would
2/9—|— €1 4/9-'-62

1/94+€ 2/9+ey )

with ¢; ~ 0 the one corresponding to the NE gives the worst pay off for both players.

Explain the role of the trusted intermediator to explain the notion of CE in this setting.

do worse)? Show that amongst the probability distributions <

. Consider the

. ( (6,6) (2,7)
game of chicken: ( (7.2) (0,0) > :

where the first action is to Chicken out and the 2nd action to Dare. What are the NE
of this game? Show that the CE inequalities amount to

p11 + 0p12 < 6p11 + 2p12,  6par + 2pag < Tpog + Opao

p11 + 0pa1 < 6p11 + 2pa1,  Gpia + 2pao < Tpia + Opao

1/3 1/3
1/3 0

plain what your role and that of the role of the trusted intermediator is in this game:
what happens to the action (D, D)? Determine the NE of the game, and show that the

payoff for ( 1?2 163 > improves on playing the NE.

Show that the probability distribution < ) is in the CE of this game. Ex-

7.2 Hart and Mas-Colell’s regret matching algorithm

Suppose that the two players have played actions z%, % for time i = 1,...,t. Let SWAP,(j, k)
and SWAP';(j, k) be the payoff at time 7 which the player would get if they chose action k each
time when in fact they played j, assuming that the other player had not changed their action.
More precisely, for: =1,2,...,¢, define

ep - Ay' ifz' = ey

SWAPZA@ k‘) = { . Ayi if 2 = ¢

and similarly for SWAPpg. So this gives the payoff A would have received at time ¢, assuming
player B would have done the same, if only they had played & whenever they actually played
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4. Note that if j = k then SWAP',(j, k) = 2' - Ay’
Then define
t (. 1 : s 7 )
DIFF, (j, k) = D [SWAPY, (j, k) — ' - Ay'] | .
=1
So this is what player A would have gained (or lost) on average up to time ¢ had they played
action k£ whenever they actually played j. Now define

REGRET, (j, k) = max(DIFF,(j, k), 0).

Let j* be the action of player A at time ¢ and let the vector p'™! be defined by

1
pi*' = —REGRET)(j*,7) forall j # j*
pﬁ-‘fl =1-> p?“l when j = j*
Here p is chosen so large that the above vector is a probability vector. This means that the

probability of switching to a different strategy is proportional to their regrets relative to the
current strategy. For player B define similarly REGRETY, and ¢'**.

Theorem 7.1 (Hart and Mas-Colell). Provided we fix p sufficiently large, if player A follows
this algorithm then almost surely REGRET', (4, k) — 0 as t — oo.

What this means is that if player A chooses the actions z', ..., z' € {e,...,e,} (Where n
is the number of actions of player A) according to the probability p', . .., p then for each € > 0

Pi({(z',...,2") € {er,... e }';REGRET) (j, k) > €}

goes to zero as t — oo. Here P; is the measure on {e1, ..., e, }! defined by (p*, ..., p).
Moreover,

Theorem 7.2 (Hart and Mas-Colell). Provided we fix p sufficiently large, if both players follow
this algorithm then almost surely the resulting frequency of (joint) actions up to time ¢ tends to
the C'E) set as t — oo.

Foster-Fohra and Fudenberg-Levine have related results.

We will not explain the proofs of these theorems, but prove a result quite similar to The-
orem To do this we will revisit zero-sum games, vector values payoff functions and the
Blackwell approachability theorem.

Exercise 7.2. 1. Let us assume that you are involved in a

S (2,1) (0,0)
battle of the sexes game: ( (0,0) (1,2)

with actions: watching Football resp. Tennis. If at time ¢ the 2nd player chooses F/,
i.e. y' = F, then

0 ifj==k
[SWAPY (j, k) — 2" - Ay’ = =2 ifj=F k=T
2 ifj=Tk=F
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whereas if ' = T then
0 ifj—k
[SWAP),(j,k) —2' - Ay'] =41 ifj=F k=T
1 ifj=T k=F

So )
0 ifj =k
DIFF,(j, k) = § —2f5(F) + f5(T) ifj=F k=T
(2/5(F) = J5(T)  ifj=T,k=F.
where A
fe() =#{1<i<ty' =j}/tforje{F T}
and

REGRETY,(j, k) = max(DIFF, (3, k), 0)
For simplicity write
J = F4(T) so that f(F) =1~ f".
So
0 ifj==k

REGRETY (j, k) = { max(3ft —2,0) ifj=F k=T

| max(2 - 3f,0) ifj=Tk=F.

In Figure [30|these functions are drawn. Show what the intersection f* = 2/3 of these

graphs has to do with the matrices of the two players. Explain why |1 — ff| <
%. Suppose player B chooses action 7' on the prime number times and F' on other

times. What would player A do? Alternatively suppose player B picks some sequence

niy1 > n? and plays F resp. T for times €™, ..., e"+1 =1 when i is even resp. odd.
Note that then
eni+1 —_ eni
— Q.
e

What would player A do? Is the pay-off matrix of player B relevant for the above
discussion?

7.3 Min-max solutions and zero-sum games

Before going into no regret learning it is good to state a well-known fact which is related to
Zero-sum games.

Theorem 7.3. For any matrix A one has

va = maxminz - Ay = minmaxx - Ay := vp. (7.2)
T Y Y T
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REGRETQ (F,T) =
REGRETY (T, F) - -

3f— 2

Figure 30: The graphs of REGRETY(T, F') and REGRETY,(F,T) as a function of f!. If f* > 2/3
then you’d choose 7T to have no regret and if f¢ < 2/3 then you’d choose F in order to have no regret.
If f¢ changes over time, you’d adjust your play accordingly.

If z*, y* are so that min, z* - Ay = v = max, = - Ay* then (2*, y*) is a NE w.r.t. the two-payer
game with matrices A, B where B = —A.

Of course the value y for which min, x - Ay attains its minimum depends on z, so ((7.2)
could also be written as max, min,,) = - Ay = min, max,, r - Ay.

Remark 2. Consider two zero-sum players Alice and Bob with payoff = - Ay and = - By where
B = —A. Then no matter what Bob does, Alice will get payoff v provided she plays

x* € argmaxminz - Ay.
« y

Similarly, Bob will get a payoff of at least —v” = —v* proved he plays

y* € argminmax x - Ay = argmaxminzx - By.
Y L y z
va =vp = x*- A-y* is called the value of the zero-sum game. In view of (7.2) the pair (z*, y*)
is also called a minimax value.

Proof. In the proof of this theorem we will assume the existence of a Nash equilibrium (z*, y*)
of the game (A, B) where B = —A. In fact, as the proof below will show, is equivalent
to the existence of a Nash equilibrium (z*, y*) for zero-sum games.

To prove the v < v? inequality in (7.2) notice that min, z - Ay < x - Ay < max, z - Ay
for all x,y. Hence we have min, x - Ay < min, max, x - Ay = vp. To prove the opposite
inequality, let (z*,y*) be a Nash equilibrium of the zero-sum game (A, B) where B = —A
(and where we use the 2nd notation). This means z* € BR4(y*) and y* € BRg(z*). This is
equivalent to the requirement that for all z, y

x-Ay* <z*-Ay*and 2" - Ayt < 2" - Ay. (7.3)

(Note that B = —A and hence the 2nd inequality is <). The previous two inequalities are
equivalent to
maxx - Ay* = x* - Ay = minz* - Ay.
T Y

It follows that we also have the inequality

v :=minmaxz - Ay < maxz - Ay* = 2" - Ay*
Y T T
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=minz" - Ay < maxminzx - Ay := vy4.
y oy

This proves the first assertion of the theorem.

In fact, implies that there exists a Nash equilibrium. Indeed, take x*,y* so that
min, z* - Ay = v = max, z - Ay*. Let us show that (z*,y*) is a NE w.r.t. A, B. Indeed
for all x, v,

a:*-Ayzmyinx*-Ay:vandaj-Ay* §m3xa:-Ay* =v

Substituting for z*, y* for x, y it follows that v = z* - Ay* and
- Ay >t - Ayt > o - Ay”.
and hence the conditions (/.3 for NE are satisfied. O

Exercise 7.3. 1. Let us consider the following zero-sum game

Let us see how to solve compute the NE in this case from the minimax point of view.
Let Alice choose a randomized action (p, 1 — p). Then her payoff is 4p — 5(1 — p) =
9p—5 if Bob plays the first action and —2p+6(1—p) = 6—8p if plays chooses the 2nd
action. Draw these two lines, and explain why Alice may want to choose p = 11/17
corresponding to intersection points of these lines. Similarly, discuss what value Bob
will choose for ¢ in his randomized action (¢, 1 — ¢).

2. Consider the zero game corresponding to the matrix

—
A:

S W =~

1
2 5
17
The coefficient ay > in this game is called a saddle-point of the game, because it is
largest in its column and the smallest in its row. Explain why this means that the pure

action (2,2) is a NE of the two-player game. Show that it is enough to determine the
minima in each row and the maxima in each column, as in

—4] 4 1 —4
| 2132 5
A=1 o001 7
4 2 7

and to see whether some value in the new column agrees somewhere with a value in
the new row. Note that this approach ONLY works for zero-sum games and their pure
NE’s. Many zero-sum games do not have a pure NE.

7.4 Another way of thinking of the minmax theorem
Let A be some function of the form A: A x A — R. Then

max min A(p, ¢) = min max A(p, q) (7.4)
a p P g

74



holds iff and only if the following two statements are equivalent for each v:
i. IpVgs.t. A(p,q) <w,
ii. Ygdp s.t. A(p,q) < w.

Note that ((7.4) is not the way the minmax statement was formulated in (7.2) if we take
A(p,q) = p- Aq where A is a matrix. Indeed, in the previous section it was proved that

V4 := maxminz - Ay = minmaxz - Ay 1= vp
x Yy Yy T
and so it first sight it seems that the p, ¢ in ((7.4)) are the wrong way around. However, if we
define A(p,q) = q - A" p then (7.4) holds. Nevertheless (7.4). Indeed, p - Aq = ¢ - A"y and so
if we take p = y and ¢ = z in the above displayed formula (and apply this to A" rather than to
A) then

max min A(p, ¢) = maxminp - Ag = maxming - A”p = minmaxq - A"p =
q p a p qa p P q

= minmax p - Ag = minmax A(p, q).
P q P q

Exercise 7.4. 1. Show the ‘if and only if” statement in the above paragraph.

2. Take A = [0, 1] and let the function A: A x A — R be defined by A(p,q) = pq.
Show that max, min, A(p, ¢) = min, max, A(p, ¢) = v = 0. Show that i) and ii) both
hold if v > 0 and both fail if v < 0.

3. Now take A(p,q) = p+qwhenp+qg < 1 and A(p,q) = 2— (p+ q) otherwise. Show
that max, min, A(p, ¢) # min, max, A(p,¢). (Hint: min, A(p,q) = min(g,1 — q)
and max, A(p, q¢) = 1. ) This shows that minimax theorem does not hold for arbitrary
functions A(p, ¢). However, some convexity/concavity assumptions on the function A
are required (Sion’s theorem).

7.5 A vector valued payoff game

The minimax theorem theorem states that if we take S = {v : v > v} where v* is chosen so
that for each y there exists z so that x - Ay € S then there exists a x* so that x* - Ay € S for all
y. So z* is the silver bullet that deals with all responses!

Suppose player A receives an expected payoff vector (rather than a payoff number) de-
pending on the mixed action p and ¢. So let A(p,q) € RF where we might assume that
Alp,q) = >0, Z;n:1 piAijq; and where A;; € RF. Is there an analogue of the minimax
theorem?

The Blackwell approachability theorem, which we will next discuss, shows that one ap-
proach such a convex set C in the sense of taking averages over longer and longer time iterates.

Example 7.1. Perhaps one way of writing such a map A would be as a matrix with vector

entries:
1

Alp.a)=p- G) e
(2) (5)
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which of course is not well-defined. However, we can interpret this as

p- 11)q
11 )
23 eR

Py 5 )4

Exercise 7.5. 1. Assume that A(p,q): A x A — R* is a function and C is a convex
subset of R* with the property that for each ¢ there exists p so that A(p, ¢) € C. Does
this imply that there exists p so that A(p, ¢) € C for all ¢? (Hint: the answer is: NO if
k> 2!

2. Let us now assume that in the previous question £ = 1. So assume that A(p, q): A X
A — R, where A = [0, 1], and assume A is of the form A(p,q) = pq. Assume that
C C R is convex set is so that each ¢ there exists p so that A(p,q) € C. Show that
this implies that there exists p so that A(p, q) € C for all ¢? (Hint: the convex set C is
an interval. What properties does this interval need to have for the assumption to be
satisfied. This is related to the previous subsection.)

7.6 Blackwell approachability theorem

Assume that player A decides to play actions according to some probability vectors p', t =
1,... and his adversary plays according to ¢', t = 1,2,.... Now assume that the player re-
ceives an expected payoff vector (rather than a payoff number). Denote this payoff A(p', ¢") €
R* and let

t
a = (1/t) Y AW, q') € R".
t=1
It will be useful to realise that
t—1
t

1
ay = (-1 + zA(pt, q').
The theorem we will now discuss gives some conditions for payoff vectors to be achieved
asymptotically. In this theorem the following scenario is considered:

1. player A chooses an action z* according to probability p*

2. player B then subsequently chooses an action according to some probability ¢* but with-
out knowing the action z’.

For simplicity we will assume that the players, in fact, play the mixed action p’ and ¢'.

We say that a convex set C C R¥ is approachable for the vector payoff A if for each ¢ and
all probabilities {p’, ¢* f;i there exists a choice p' so that for each choice of ¢* (which player
A does not know before choosing p'), the vectors a; converge to C as t — oo (in the Euclidean
norm). Blackwell’s Approachability Theorem gives a necessary and sufficient condition for
C C RF to be approachable. In the setting of this theorem it will turn out that p* only depends
onC,a'tand A(p'1, ¢'1).
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Here we will always assume that A(p, ¢) can be written as

Alp,q) =D pidig;

i=1 j=1
but where A;; is a vector.

Theorem 7.4 (Blackwall’s Approchability). For any closed convex set C the following are
equivalent.

1. C is approachable for the vector payoff A;
2. for each ¢ there exists p so that A(p, q) € C;
3. every half space containing C is approachable.

Proof. (2) = (3) Consider a half-space H = {a € R*;n - a < v} which contains C where
n is the normal vector to the half-plane H.

Vq3p with A(p,q) € C = VYgIp withn - A(p,q) <v =

IpVq withn - A(p,q) <v = H is approachable

Here the exchange of V¢3p to dpVq follows since the minmax theorem holds for (p,q) —
n-A(p,q) (because n - A(p,q) =p- Aq for some matrix A) and in the conclusion one chooses
the p' = p where p is from the last line.

(3) = (2) Since each half-space H D C is approachable, there exists for each such
half-space H and for each ¢ some p with A(p,q) € H (to see this, take ¢* = ¢ for all t). Since
this holds for each such half-space we also have Vq 3p with A(p, q) € C.

(1) = (3) trivially follows from C C H.

(3) = (1) is the most interesting part of the proof. Let 7(a;) be the closest point in C
to a;, let n, = a; — m(a;) and let v; = m(a;) - ny. Then let H, be the half-space containing C
through 7(a;) orthogonal to n,. Thatis, H; = {a;a - n; < v;}. Draw a picture!

Since H, is a half-plane and since in principle player B could take ¢ for all ¢,

H, is approachable — Vg Jpso that n, - A(p, q) < v,. (7.5)

Note that n; - A(p, q) is of the form p - A'q where A’ is a matrix which depends on on n;. Since
the minmax theorem holds for A’, as we saw in Section we can exchange the quantifiers in
(7.5) and so we get Ip Vq so that n, - A(p, q) < v;. Let p* be this choice. So

ne - A(p', q') < vy = m(ay) -ny and therefore ny - (A(p', ¢') — w(a;)) < 0. (7.6)
Let us now show that there exists K so that ||a, — 7(a,)|| < K/+/t for all t and so a, — C
as t — oo. To see this, take || - || to be the Euclidean norm. Then
d(ar1,€)? < Jlarss — w(a)l2 < e + —— AR, ¢) — (a)] 2
Tl = B ’

Using n; = a; — 7(a;) the last expression is equal to

t 1
Uz
t+1 t+1

(A™, ¢ — m(ar)) II” <
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1

= ()2 el [P+ ()2 A, g — ()| P+

t+1 t+1
t t+1 t+1
+2m (nt (AP q ) = 7T(at)))
< (Pl + (o PIAGH ) = (eI

where we first used the equality ||u + v||? = ||u||* + ||v||* + 2u - v where - stands for the usual
inner product and subsequently the inequality (7.6). Since n; = d(at, C) this gives

(t+ 1)%d(ar1,C)* < t2d(ar, €)* + AP, ¢") — m(ar))I[.

To simplify the proof, let us assume that the set C is a compact. Since the values of A are
bounded, this gives that the 2nd term in the sum is < K. Using a telescopic sum we get

(t +1)%d(ar1,C)? < d(ay,C)? + K(t +1)

and so there exists K so that
d(ai1,C) < K/Vt+1
forallt =0,1,2,.... O

Exercise 7.6. 1. Draw a diagram which clarifies the previous proof, and shows how the
‘algorithm’ for choosing p' suggested in step (3) of the proof works in pseudo-code.
2. Assume that

a= (/D)) _AWp'.q)eC

Explain why it is not possible for player A to guarantee that a,,; € C. (Hint: use
Exercise 7.5.1.)

7.7 Regret minimisation

Let us give an application of the previous Blackwell approachability theorem. Take a real
valued payoff A(p,q) of the form p - Aq and consider the vector valued A(p,q) € R" with
components A(e;, q) — A(p,q), ¢ = 1,...,n. So this is the gain or loss if player A would
choose the mixed strategy p instead of strategy 1.

Now consider the convex region C = {a; a; < 0Vi}. For each ¢ there exists p so that each of
the components of fl(p, q) < 0: choose p = e;» where i* = arg max; A(7, ¢). It follows that the
2nd condition of Blackwell’s approachability theorem is satlsﬁed for the set C. In particular this
set is approachable for the payoff A, and so given pt,¢t,...,p' !, ¢* ! there exists a strategy
p! so that for whatever ¢* is one has

(% Z [A(es, ¢°) — A(p®, qs)]) = (1/t) Zﬁ(ps, ¢°) = Cast — oo.

s=1 i=1 s=1

Hence, for each 7,

lim sup — Z (ei,q°) — A(®,¢°)] < 0.
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This means that the regret tends to zero (remember that the regret was the positive part of the
previous expression).
To complete the proof we would need to do two things

1. To show that one can also show that swapping one particular action for another one would
not lead to regret. In the above proof we only considered the case that one always would
play action e;.

2. Extend the argument to show that playing pure actions (which one usually is required to
do) according to the mixed probability vectors still would not lead to regret. This step
is based on the fact that mixed strategies gives the expected payoff when picking actions
according to this mixed strategy.

We will not elaborate on these additional steps in the proof, because they do not give much
additional insight and are a little tedious.

Exercise 7.7. 1. Explain why the above strategy does not work if player B can choose ¢*
after seeing what player A has done at time .
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8 Conclusion

Let us review what we saw in these lecture notes.

8.1 Relationship between all these learning mechanisms

The learning algorithms described above originate from entirely disjoint communities, but al-
though seemingly quite different they are surprisingly connected:

Fictitious Play (FP) Reinforcement Learning (RL)

\ c

Replicator Dynamics (RD)

A The time average of a replictor orbit corresponds to a pseudo-orbit of fictitious play
dynamics, see Section 5.5.
Vice versa, if there 3 hyperbolic orbits of FP = 4 corresponding orbit in (RD) Castro
& SvS - in preparation. In particular, as we know there is chaotic dynamics in FP (SvS
& Sparrow), one also can rigorously show that there exists chaotic switching in (RD).

B Reinforcement learning with choosing e-greedy choices is very closely related to the type
of dynamics one sees in Best Response dynamics and Fictitious Play. This connection is
explored in work by SvS & Winckler - in preparation, see also Wunder, Littman, Babes.

C was known since 90’s e.g. Borgers. Revisited by e.g. Sato, Akiyama and Crutchfield and
also Tuyls et.al.

On the other hand, at this moment, it seems not so clear what the connections are of these
learning algorithms with No-Regret learning. (Best response dynamics converges to the CCE
set, whereas the no-regret learning algorithm converges to the somewhat smaller CE set.)

That there are such relationships is a little surprising as the underlying mechanisms and
approaches are somewhat different:

e replicator dynamics (RD) encourages ‘fitness’,

o fictitious play (FP) keeps tracks of the average of the other player’s actions and gives a
best response to that, whereas

e reinforcement learning (RL) keeps track of past payoff and responds to that.

8.2 Quite often these learning mechanisms lead to complicated dynamics

This is rigorously proved for Best Response dynamics for the family of 3 x 3 Rock-Paper-
Scissor games discussed in Example[d.5|by SvS and Sparrow. This was also shown numerically
for the replicator dynamics by Sato, Akiyama and Crutchfield.

Several classes of learning dynamics was considered by Galla & Farmer and they found
that for many games these lead to complicated or even chaotic dynamics.
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8.3 Complicated dynamics quite often leads to better payoff performance

One might think that any behaviour away from the NE is bad for the players. This is of course
not true. One simple instance which shows this in the coordination games in Exercise [7.1]2.
This point of view is taken much further in Ostrovski & SvS where they show that the
average payoff for both players is very often better if they play (FP) than if they play (NE).
It would be interesting to explore whether this is also true for the other learning dynamics
considered in these lecture notes (or specifically for the systems considered by Galla & Farmer).
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Appendix

Existence and uniqueness of solutions of ODE

Let f: R — R" be a C" function.

1.

A2

A3

For each zy € R" there exists € > 0 so that the initial value problem

&= f(x),2(0) =z (A.1)
has a unique solution x: (—¢, ) — R™ with 2(0) = .

The solution of can be extended to a maximal solution: there exist a(zy) < —e <
€ < b(xo) and a function (a(x),b(z)) 3 t — x(t) € R™ which satisfies (A.1). The
interval (a(zo), b(zo)) is maximal in the sense that if |a(zo)| < oo then |z(t)| — oo as
t } a(xo) and similarly if |b(zo)| < oo then |z(t)| — oo as t 1 b(xg).

Some further background on ODE’s

. For the purposes of this notes we say that V' : R"” — R is a Lyapounov function if

v (x(t))

0.
a

Often this derivative is denoted by V. The fact that V < 0 implies that V decreases along
solutions. Quite often a Lyapounov function are also assumed to achieve a minimum in
some point Z and then this can be used to show that z(t) — Z as t — oo.

. A point 7 is called Lyapounov stable if for each ¢ > 0 there exists 6 > 0 so that if

|2(0) — | < o then |z(t) — Z| < eforall ¢t > 0.

. A point 7 is called asymptotically stable if there exists § > 0 so that if |z(0) — Z| < 0

then z(t) — = as t — oc.

A well-known theorem states the following: Assume that U C R" is an open set, & € U
and V': U — Ris a function so that V' (z) > 0 for all z # z and V(z) = 0. Then

(a) If V < 0 then 7 is stable.
(b) If V < 0 for z € U \ {Z} then Z is asymptotically stable.

. The omega-limit set of a point x is defined as follows. Let x(t) be the solution of the

ODE with 2(0) = z. Then

w(z) = {y; z(tx) — y for some sequence t;, — 0o}

Stable and unstable manifolds at singularities of vector fields

A point Z so that f(z) = 0 is called a singularity of the vector field f: R" — R"™. This
singularity is called hyperbolic if all eigenvalues of the Jacobian matrix B = (D f); are off the
imaginary axis. We then have the following. The sets

W?*(z) = {x; ps(x) — T ast — oo}
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W (z) ={z; ¢ (r) = Tast — —oo}

are (immersed) manifolds which are tangent to Z to the eigenspace of B associated to the
eigenvalues with negative real part respectively positive real part. Here ¢,(z) is the solution of
& = f(x) so that ¢g(x) = z. More precisely

d¢t($)
dt

= f(¢e(x)), po(x) = .

Usually ¢, (z) is called the flow of the differential equation (or of the vector field).

A.4 Chain recurrence and attractors

Definition. Let 6,7 > 0 and a,b € X. A (0,T)-pseudo-orbit from a to b is a finite se-
quence of points a = zg,x1,...,x, = b € M such that there exist ty,...,t,_1 > T with
d(@ti(xi),a:iﬂ) <o fori = 0,...,n—1.

In a pseudo-orbit we do not need to follow the same trajectory forever, but we are allowed
to jump a finite number of times, and the parameters ¢, 1" control the maximum size of the jump
and the minimum duration between two subsequent jumps. Letting 6 — 0 and 7" — oo leads
us to the concept of chain recurrence and chain transitivity.

Definition. A point x € M is chain recurrent, if for every choice of 6,7 > 0 there is a (J,T')-
pseudo-orbit from z to itself. We denote by R(®P) the set of all chain recurrent points of the
flow ®. We say that ® is chain recurrent if R(®) = M.

Definition. The flow @ is called chain transitive, if for every pair a,b € M and every choice
of 0,7 > 0 there is a (4, T')-pseudo-orbit from a to b.

Definition. A compact subset A C M is called invariant, if ®;(A) = A forall¢t > 0. An
invariant subset is called internally chain recurrent (transitive), if the restricted flow ®|A is
chain recurrent (transitive).

Definition. A compact, invariant subset A C M is called an attractor, if A # () and if there
exists an open set O with A C O and dist(®,(0O), A) — 0 ast — oo. It is called a proper
attractor if, in addition, A C M.

A.5 Convex sets and functions

A set C C R¥ is convex if for each z, y € C and each \ € [0, 1] one has that Az + (1 — \)y € C.

A function f: C — R is called convex if for each x,y € C and each A € [0, 1] we have that
fOz+ (1= Ny) < Af(z) 4+ (1 — N)f(y). Similarly, f is concave if the reverse inequality
holds.
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A.6 The origins of Q-learning

Q-learning has its roots in the field of Markov decision processes (MDP). Let us give a short
summary of this, and explain why the assumption that there is a stationary distribution is vio-
lated in a game-theoretic setting. Assume that there are a finite number of states s € S and a
finite number of actions. Now assume that there the probability of moving from state s to s’ is
determined by the entry P; o of a probability matrix P.

Let us first assume there is only one action. In this case (MDP) reduces to Markov reward
processes (MRP). So assume you get a reward R, at time ¢, and discount the rewards in the
future by a factor v € (0,1). Then your wealth at time ¢ is defined to be equal to G; =
> k>0 YRy 11 Where Ry, R,.1,... are i.i.d. random variables. The value of being in state
s € S is then defined to be

v(s) = B(Gy|S, = s) = E (Riy1 + YRz + Y’ Ris + ... |S, = 5)

=E(Riy1 +7G141|S: = 5) = E(Ry1|S; = 5) + Z P, gv(s)).

s’'eS
which reduces in short to

v(s) = Re+7 Y Poov(s))

s'eS
and so in factor form
v =R+ ~yPv.

In this case the value v can be computed from this equation.
Now assume that there are several actions, so that P* and R? depend on which action a was

chosen:
Pscfs’ = P(Sp1 = S/‘St =3, 4; = a), R = E(R1|S; = s, A; = a).

A policy (or strategy) 7 is an assignment of probabilities of actions for each state:

m(als) = P(a; = a|S; = s).
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0 S vug(s) state

0 0 0 0 state s v (s)

o 5 qels,a)

se ( Y
0 0 0 o
‘We can define the state value function

Va(s) = En(Gy|Sy = 5) = ) (Rg +v) Ps,s,y@')) .

a€A s'eS

state

(s',a) — qr(s',a’)

and the state-action value function
qr(s,a) = B (G| Sy = s, Ay = a) = R+~ Z P,y (Z m(a'|s) g (s, a’)) .
s'esS a’'€eA
We say that 7 is an optimal policy if v, (s) > v, (s) for each other policy 7.
Theorem A.1. For each (MDP) there exists a not necessarily unique optimal policy 7, and

Un, = MAX Vs and ¢, (s,a) = Max g (7, a).

Given ¢, find 7, by m.(als) = 1is a = argmaxq.(s,a). We have the Bellman optimality
equation:
U4(s) = max ¢.(s, a)

¢u(s,a) = RZ +7 Y Phv.(s)

s'eS
and therefore
q«(s,a) = R% + Z Prmax q.(s', )

s'es
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Note that an important assumption in this theorem is that the distributions are stationary.
This assumption is violated in a game theoretic setting.

Q learning, which we discussed in the last section of Chapter 6, is aimed at numerically
finding q,.
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B Python Code

Below we include some python code which we’ve used during the course.

B.1 Code for computing orbits of one-player replicator dynamics with
three strategies
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replicator-3x1

October 7, 2020

[41]: # Import the required modules
import numpy as np
import matplotlib.pyplot as plt
# This makes the plots appear instide the notebook
Jmatplotlib inline
from scipy.integrate import odeint

0.0.1 Solving replicator equations with python

i = g;[(Ax); — o' Ax]

[52]: | # define a projection from the 3D simplex on a triangle

proj = np.array(
[[-1 * np.cos(30. / 360. * 2. * np.pi),np.cos(30. / 360. * 2. * np.pi),0.],
[-1 * np.sin(30. / 360. * 2. * np.pi),-1 * np.sin(30. / 360. * 2. * np.

# project the boundary on the simplex onto the boundary of the triangle

ts = np.linspace(0, 1, 10000)

PBdl = proj@np.array([ts, (1-ts),0*ts])

PBd2 = proj@Onp.array([0*ts,ts, (1-ts)])

PBd3 = proj@np.array([ts,O*ts, (1-ts)])

[60]: | # choose game
# game Exz 1.7 notes
A = np.array([[ 0, 1 ,0], [ 0, 0,21, [ O, O ,111) # row, 2nd Tow, 3rd Tow

x01 = np.array([0.92, 0.01, 0.07])
x02 = np.array([0.65,0.05,0.3])
x03 = np.array([0.15, 0.05, 0.8])

#define replicator equation
def replicator(x,t):
return x * (A@x - np.transpose(x) @ (AG0x))

# compute orbits
ts = np.linspace(0,100,10000)
xtl = odeint(replicator, x01, ts)



xt2
xt3

odeint (replicator, x02, ts)
odeint (replicator, x03, ts)

[62]: | # project the orbits on the triangle
orbittrianglel=projOxtl.T
orbittriangle2=projoxt2.T
orbittriangle3=proj0xt3.T
icl=projox01
ic2=proj0x02
ic3=proj0x03

# no box
plt.box(False)
plt.axis(False)

# plot the orbits, the initial values, the corner points, and the boundary,
—points

plt.plot(orbittrianglel[0] ,orbittrianglel[1],"." ,markersize=1,color="'green')

plt.plot(orbittriangle2[0] ,,orbittriangle2[1],"." ,markersize=1,color="'red")

plt.plot(orbittriangle3[0] ,,orbittriangle3[1],"." ,markersize=1,color="'blue')

plt.plot(ic1[0],ic1[1],"+" ,markersize=10,color="'green')
plt.plot(ic2[0],ic2[1],"+" ,markersize=10,color="'red"')
plt.plot(ic3[0],ic3[1],"+" ,markersize=10,color="'blue')

plt.text(-0.8660254-0.1, -0.5 +0.05 , "$e_1$",fontsize=12)
plt.text(+0.8660254+0.05, -0.5 +0.05 , "$e_2$",fontsize=12)
plt.text(0-0.03, 1 +0.1 , "$e_3$",fontsize=12)

plt.plot(PBd1[0], PBd1[1], ".",color='black',markersize=3)
plt.plot(PBd2[0], PBd2[1], ".",color='black',markersize=3)
plt.plot(PBd3[0], PBd3[1], ".",color='black',markersize=3)

# add the game matriz in the figure
for i in [0,1,2]:
for j in [0,1,2]:
c = A[i][j]
plt.text(0.2%j-0.8, -0.2%i+0.9, str(c))
plt.text(0.3-1.3,0.7,"A =")
#plt.text(0-0.03, 1 +0.1 ,A[0,0],A[0,1],A[0,2] ,fontsize=12)

#plt.plot (pE[O],pE[1],"+")
plt.savefig("Plots/flowportrait.pdf")



[1:




B.2 Code for time averages of RPS 1-player
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[1]:

[2]:

[3]:

replicator-RPS-1player-timeaverag

November 1, 2020

# Import the required modules

import numpy as np

import matplotlib.pyplot as plt

# This makes the plots appear inside the notebook
Jmatplotlib inline

from scipy.integrate import odeint, solve_ivp
import copy

0.0.1 Solving replicator equations with python

dfti = x;[(Az); — 2’ Az| here we take the RPS game and also compute the corresponding expression

average(T) = :lrfOT x(s)ds.

# define a projection from the 3D simplex on a triangle
proj = np.array(
[[-1 * np.cos(30. / 360. * 2. * np.pi),np.cos(30. / 360. * 2. * np.pi),0.],
[-1 * np.sin(30. / 360. * 2. * np.pi),-1 * np.sin(30. / 360. * 2. * np.
~pi),1.11)
# project the boundary on the simplex onto the boundary of the triangle
ts = np.linspace(0, 1, 10000)

PBdl = projOnp.array([ts, (1-ts),0*ts])
PBd2 = projOnp.array([O*ts,ts,(1-ts)])
PBd3 = proj@np.array([ts,0*ts, (1-ts)])

# choose game

# game Ex 1.7 notes

# Rock Paper Scissors

b=2

A = np.array([[ O, 1 ,-b], [ -b, 0 ,11, [ 1, -b ,011) # row, 2nd row, 3rd row
x01 = np.array([0.3, 0.2, 0.5])

#define replicator equation
def replicator(x,t):

return x * (AGx - np.transpose(x) @ (AG0x))

# end time and spacing of observed times



[4]:

[5]:

endtime=100
steps=1000000

# compute orbits
ts = np.linspace(0,endtime,steps)
xtl = odeint(replicator, x01, ts)

#t_step = 0.03

#t_final =100

#time = np.arange(0,t_final,t_step)

#sol = solve_ivp(replicator, [0,t_finall, z01, method='DOP853', t_eval=time)

# compute average of orbit
averagel=copy.deepcopy (xtl)
r=endtime/steps
for n in range(l, steps-1):
averagel[n]= (n/(n+1)) * averagel[n-1] + (1/(n+1)) * xt1[n]
# project average along orbit also in the triangle
average_proj=projQaveragel.T

SumVector=np.cumsum(xtl[1:steps],axis=0)

print (SumVector.shape)

tt=ts[1:steps]

print (tt.shape)

average2 = SumVector / tt.reshape((steps-1,1))
average2bis = average2/50
average2_proj=projQaverage2bis.T

(999999, 3)
(999999,)

# project the orbits on the triangle
orbittrianglel=projOxti.T
icl=projox01

# no boz
plt.box(False)
plt.axis(False)

# plot the orbits, the initial values, the corner points, and the boundary,
—points
plt.plot(orbittrianglel[0] ,orbittrianglel[1],"." ,markersize=1,color="'green')

# plot the average

# plt.plot(orbittrianglel [0],orbittrianglel [1],". ", markersize=1,color="red’')
# plt.plot(average[0],average[1],".",markersize=1,color="'red")
plt.plot(average_proj[0],average_proj[1],".",markersize=1,color="'blue')



#plt.plot (average2 proj[0],average2 proj[1],".",markersize=1,color="'red’')
plt.plot(ic1[0],ic1[1],"+" ,markersize=10,color="green')

plt.text(-0.8660254-0.1, -0.5 +0.05 , "$e_1$",fontsize=12)
plt.text(+0.8660254+0.05, -0.5 +0.05 , "$e_2$",fontsize=12)
plt.text(0-0.03, 1 +0.1 , "$e_33%",fontsize=12)

plt.plot(PBd1[0], PBd1[1], ".",color='black',markersize=3)
plt.plot(PBd2[0], PBd2[1], ".",color='black',markersize=3)
plt.plot(PBd3[0], PBd3[1], ".",color='black',markersize=3)

# add the game matriz in the figure
for i in [0,1,2]:
for j in [0,1,2]:
c = A[i][j]
plt.text(0.2%xj-0.8, -0.2%i+0.9, str(c))
plt.text(0.3-1.3,0.7,"A =")
#plt.text(0-0.03, 1 +0.1 ,A[0,0],A[0,1],A[0,2] ,fontsize=12)

#plt.plot (pE[0],pE[1], "+")
plt.savefig("Plots/flowportrait.pdf")

The green curve gives the solution of the replicator system. The blue one is an attempt to compute
1/T fOT x(s)ds as a function of T. This is done by “updating the average”. This seems to give the



[1:

[1:

correct answer. However, when increasing the endtime something goes wrong. Is this because the
solution near the singularity is not too accurate? clearly the cumsum solution (drawn in red) is
incorrect.



B.3 Python code for computing orbits of two player RPS game
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replicatorRPS-Sato

October 7, 2020

[232] : import numpy as np
import matplotlib.pyplot as plt
#import networkr as nz
from scipy.integrate import odeint, solve_ivp, ode
from mpl_toolkits.mplot3d import Axes3D
from scipy import sparse
import time as tm
from scipy.spatial.distance import pdist, squareform
from mpl_toolkits.axes_gridl import make_axes_locatable

3x3 replicator dynamics @; = x;(Ay — vAy) ¢; = y;(z'B — xBy) here we use the 2nd notation

[233]: def replicator(t,x,A,B):
dx = np.zeros(6)
dx[:3] = x[:3] * (A0x[3:] - np.transpose(x[:3]) @ (AGx[3:]))
dx[3:] = x[3:] * (B.T0x[:3] -np.transpose(x[:3]) @ (B@ex[3:]))
return dx

[305]: # initial walue
z0 = np.random.uniform(0.1, 0.2, 6).T
z0= [0.26, 0.113333, 0.626667, 0.165, 0.772549, 0.062451]
#20= [0.05, 0.35, 0.6, 0.1, 0.2, 0.7]

# time interval

t_step = 0.03

t_final =1000

time = np.arange(0,t_final,t_step)

init_time = tm.time()

# # J7 Define time spans, initial values, and constants
# tspan = np.linspace(0, 15, 5000)

# ttt=tspan[-1]

# yinit = [-1]

# Define matrices

# Sato's matrices: Sato use 1st motation so take transpose

epsilonx=0

epsilony=-epsilonx

A= np.array([[ epsilonx, 1 , -1], [ -1, epsilonx ,1], [ 1, -1 ,epsilonx]])



[305]:

[306] :

[306] :

BSato= np.array([[ epsilony, 1 ,-1], [ -1, epsilony ,1], [ 1, -1 ,epsilony]l])
B=BSato.T

print ('A="',A)

print ('BSato="',BSato)

print('B=',B)

# integrate ODE
sol = solve_ivp(replicator, [0,t_final], yO0=z0, method='DOP853', t_eval=time,
—args=(A,B))

xx = sol.y
xx .shape

A= [[ 0 1 -1]

[-1 0o 1]

[1-1 0]]
BSato= [[ 0O 1 -1]

[-1 o0 1]

[1-1 0]]
B=[[ 0 -1 1]

[1 0 -1]

[-1 1 0]]

(6, 33334)

transient = 100

# plt.plot(zz[1,:])

plt.figure(figsize=(15,5))

plt.subplot (121, projection='3d')

plt.plot(xx[1,transient:], xx[3,transient:], xx[4,transient:])
plt.subplot (122, projection='3d')

plt.plot(xx[1,transient:], xx[2,transient:], xx[4,transient:])

[<mpl_toolkits.mplot3d.art3d.Line3D at 0x7fbeffcd2c90>]




[307]:

[307]:

[308]:

[308]:

# define the projection to triangular coordinates
proj = np.array(
[[-1 * np.cos(30. / 360. * 2. * np.pi),np.cos(30. / 360. * 2. * np.pi),0.],
[-1 * np.sin(30. / 360. * 2. * np.pi),-1 * np.sin(30. / 360. * 2. * np.
—pi),1.11)
playerA=xx[0,transient:], xx[1,transient:], xx[2,transient:]
playerB=xx[3,transient:], xx[4,transient:], xx[5,transient:]
orbittrianglel=proj@playerA
orbittriangle2=proj@playerB
plt.figure(figsize=(15,5))
plt.subplot(121)

plt.plot(orbittrianglel[0] ,orbittrianglel[1],"." ,markersize=1,color="'green')
plt.subplot(122)
plt.plot(orbittriangle2[0],orbittriangle2[1],"." ,markersize=1,color="'blue')

[<matplotlib.lines.Line2D at 0x7fbf023e4610>]

08 08
06 06
04 04

02 02

06 04 02 00 02 04 06

PR0OJ4D2D= np.array([[3.650,-1.350,1.35,5.35,1.35,1.4500],[0.4,0.4,4.6,1.9,-0.
~4,4.411)

XY= PR0OJ4D2D @ xx[:,:]
plt.plot(XY[0],XY[1],"." ,markersize=1,color="'black')

[<matplotlib.lines.Line2D at 0x7fbf0297e110>]
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B.4 Python code for Exercise 6.1
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[62] :

[75]:

[235] :

[237]:

exercise6pl

December 23, 2020

# Import the required modules

import numpy as np

import matplotlib.pyplot as plt

# This makes the plots appear inside the notebook
Jmatplotlib inline

import random

def flip(p):
return 1 if random.random() < p else 0

thetal=10
theta2=10
q=0.3
n=1000 # number of sample path
t=10000 # number of time steps
x=np.zeros (n)
for i in range(0, n):
£11=0
£2=0
for j in range(0, t):
pl=(thetal+10*f11)/(thetal+theta2+10*f11+5*f2)
Typel=£flip(q)
Med=flip(p1)
f11+=Med*Typel
f2+=(1-Med)
x[i]=p1

plt.hist(x, bins = 100)

plt.title("histogram for g="+ str(q))

plt.text(q/2, 70, "number of time steps t ="+str(t))
plt.show()



[262] :

[246] :

histogram for q=0.3

100 A

number of time steps t =10000

Il l'l I | ma a a

0.0 0.1 0.2 03

thetal=10
theta2=10
q=0.7
n=1000 # number of sample path
m=10000 # number of time steps
x=np.zeros (n)
for i in range(0, n):
£11=0
£2=0
for j in range(0, t):
pl=(thetal+10*f11)/(thetal+theta2+10*f11+5%£2)
TypeI=flip(q)
Med=flip(p1)
f11+=Med*Typel
f2+=(1-Med)
x[i]l=p1

plt.hist(x, bins = 100)

plt.title("histogram for g="+ str(q))

plt.text(q/2, 40, "number of time steps t="+str(t))
plt.show()




[255] :

[256] :

histogram for q=0.7

40 number of time steps t=10000

thetal=0.1
theta2=0.1
q=0.7
n=1000 # number of sample path
t=10000 # number of time steps
x=np.zeros (n)
for i in range(0, n):
£11=0
£2=0
for j in range(0, t):
pl=(thetal+10*f11)/(thetal+theta2+10*f11+5%£2)
TypeI=flip(q)
Med=flip(p1)
f11+=Med*Typel
f2+=(1-Med)
x[i]l=p1

plt.hist(x, bins = 100)

plt.title("histogram for g="+ str(q))

plt.text(q/2, 40, "number of time steps t="+str(t))
plt.show()
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[289] : thetal=10
theta2=10
q=0.3
n=1000 # number of sample path
m=10000 # number of time steps
x=np.zeros (n)
z=np.zeros ((n,m))
for i in range(0, n):
£11=0
£2=0
for j in range(0, t):

T T Ll

0.4 0.6 0.8

pl=(thetal+10*f11)/(thetal+theta2+10*x£11+5*£2)

z[i,jl=p1

Typel=£flip(q)

Med=flip(pl)

f11+=Med*Typel

f2+=(1-Med)
x[i]=p1

[290]: for i in range(0,10):
plt.plot(z[i,:]1)

—
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