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Abstract We analyze the strategic allocation of resources across two contests as in
the canonical Colonel Blotto game. In the games we study, two players simultaneously
allocate their forces across two fields of battle. The larger force on each battlefield
wins that battle, and the payoff to a player is the sum of the values of battlefields won.
We completely characterize the set of Nash equilibria of all two-battlefield Blotto
games and provide the unique equilibrium payoffs. We also show how to extend
our characterization to cover previously unstudied games with nonlinear resource
constraints.
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184 S. T. Macdonell, N. Mastronardi

1 Introduction

Since Borel (1921), Colonel Blotto games have been used to study a wide range of
topics within systems defense,1 conflicts and terrorism,2 politics,3 and auctions.4 In
Gross and Wagner’s (1950) canonical paper, two players, Colonel Blotto and Enemy,
are endowed with a quantity of B and E soldiers, respectively. They compete on m
battlefields by simultaneously deciding how to allocate their soldiers across each. The
player with more resources on a particular battlefield wins that battle, and a player’s
payoff is the sum of the values of the battlefields won.

Gross and Wagner (1950) found the unique equilibrium payoffs and some Nash
equilibria of many Blotto games. Since then, much research has explored the implica-
tions of modifying their model.5 Some study games where the payoffs change contin-
uously, instead of discretely as one player outspends the other,6 and others examine
games that relax the constant-sum assumption of the classic game.7 Another line of
research examines discrete Blotto games that require resource allocations to be integer
valued.8

Roberson (2006) studied Blotto games with asymmetric resources (B �= E) on
three or more equally valued battlefields. For all but the most asymmetric of resource
endowments, he characterized the univariate marginal distributions of players’ mixed
strategies in any Nash equilibrium and showed that they must be uniform. He also
provided an equilibrium of each of the remaining “very asymmetric” Blotto games.
Given these two results, he provided the unique equilibrium payoffs of any Blotto
game on three or more equally valued battlefields. Gross (1950), Laslier (2002), and
Thomas (2012) were able to provide equilibria and payoffs of canonical Blotto games
with many battlefields (m ≥ 3) of differing values, but symmetric resources (B = E).
In this paper, we provide the first complete characterization of the set of Nash equilibria
of all Blotto games with asymmetric resources and two battlefields of unequal value.
Additionally, we extend our characterization to a class of previously unstudied Blotto
games that allow for nonlinear resource constraints. Characterizing the complete set
of Nash equilibria determines all types of behavior we can (and cannot) expect in
situations resembling this classic game.

We prove the completeness of our characterization, construct a continuous set of
example equilibria, and provide a simple graphical algorithm for constructing equi-
librium which conveys important intuition. Using our graphical algorithm, our results
are easily pictured and interpreted. We place all two-battlefield Blotto games in a

1 See Coughlin (1992), and Wu et al. (2009).
2 See Powell (2009), Powers and Shen (2009) and Hortala-Vallve and Llorente-Saguer (2010).
3 See Colantoni et al. (1975), Young (1978), Merolla et al. (2005), Laslier and Picard (2002), Sahuguet and
Persico (2006), and Le Breton and Zaporozhets (2010).
4 Szentes and Rosenthal (2003) discuss this relationship. In general, the classic Blotto game is equivalent
to a multi-unit, budget constrained, all-pay auction with no payoff for leftover resources.
5 e.g., Kovenock and Roberson (2012a), and Adamo and Matros (2009).
6 e.g., Blackett (1954), Blackett (1958), and Golman and Page (2009).
7 e.g., Powell (2009), Kovenock and Roberson (2012b), and Roberson and Kvasov (2012).
8 e.g.,Hart (2008) and Dziubiński (2012).
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Waging simple wars 185

“partition” n ∈ {1, 2, 3 . . .} based on the relative strength of players’ endowments. As
n increases, resource endowments become more equitable. In a Nash equilibrium to
a game in partition n, each player plays a mixed strategy that randomizes over allo-
cations from one of n disjoint sets of allocations. We determine the probability they
play in each set, as well as provide the additional constraints on their strategies.

The organization for the remainder of this paper is as follows: Sect. 2 formally
models the game. Section 3 characterizes the complete set of Nash equilibria, and
Sect. 4 provides a graphical algorithm used to construct the complete set of Nash
equilibria. Section 5 concludes.

2 General model

We consider the following generalization of Gross and Wagner’s (1950) Blotto game
on two battlefields. The two players simultaneously take action by setting {bi }2

i=1 and
{ei }2

i=1, denoting Blotto and Enemy’s respective strength of force on Battlefield i . If
Blotto has a weakly stronger force on Battlefield i he wins that battle and receives a
payoff on that battlefield of wi > 0. Otherwise, Enemy wins that battle and receives
wi . The losing player receives a payoff of 0 from that battlefield. Players attempt to
maximize the expected sum of their payoffs across the battlefields. A mixed strategy
for Blotto or Enemy is a randomization over choices of {bi }2

i=1 or {ei }2
i=1, respectively.

Therefore, we denote Blotto or Enemy’s strategy as a probability measure μB or μE ,
respectively. Blotto’s allocation is constrained by b1 ≥ 0, b2 ≥ 0 and a general
resource constraint, b2 ≤ f (b1). So, his optimization problem is:

max
b1,b2

(
2∑

i=1

(Prob(bi ≥ ei |μE ) · wi )

)
s.t. (1)

b1 ≥ 0, b2 ≥ 0, b2 ≤ f (b1) (2)

Similarly, Enemy is constrained by e1 ≥ 0, e2 ≥ 0, and e2 ≤ g(e1) and his optimiza-
tion problem is:

max
e1,e2

(
2∑

i=1

(Prob(ei > bi |μB) · wi )

)
s.t. (3)

e1 ≥ 0, e2 ≥ 0, e2 ≤ g(e1). (4)

The two-battlefield games originally studied by Gross and Wagner (1950) are equiv-
alent to the above with two exceptions.9 First, they restrict the budget constraints to
be linear by assuming f (b1) = B − b1 and g(e1) = E − e1 for some constants B and
E such that B ≥ E . Second, they make a different assumption about payoffs when
players allocate the same strength of force to a battlefield. We award ties to Blotto,
the resource advantaged player, for consistency with the recent literature Roberson

9 They also normalize the payoffs differently to make the game zero-sum. We find this constant-sum version
more intuitive.
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186 S. T. Macdonell, N. Mastronardi

(2006). We define Blotto as resource advantaged by assuming that there is always
some minimum distance between Blotto and Enemy’s resource constraints or

∃ζ > 0 s.t. (∀x1, f (x1) ≥ g(x1) + ζ ) and
(
∀x2, f −1(x2) ≥ g−1(x2) + ζ

)
(5)

In Gross and Wagner’s (1950) original linear game, this assumption implies that B >

E . In nonlinear games, Eq. 5 rules out the possibility that the budget constraints touch
at a point or cross.10 In the special case of B = E , equilibria are easy to describe.11

We make some normalizations and assumptions to increase the clarity of the model.
Without loss of generality, scale battlefield values to normalize w1 ≡ 1. To ease
notation, define w ≡ w2

w1
. Also, assume the existence of finite intercepts of the resource

constraints. Formally:12

∃ B1, B2 > 0 s.t. f (B1) = 0, f (0) = B2. (6)

∃ E1, E2 > 0 s.t. g(E1) = 0, g(0) = E2. (7)

Assume the resource constraints f and g are continuous, strictly decreasing func-
tions. Also, we will assume that the resource constraints continue with slope −1
outside of quadrant I. As allocations on either battlefield may never be negative, this
assumption does not actually affect the game, but eases the algebraic characteriza-
tion.13 Formally, we assume Eqs. 8–11 :

f (x1) = B2 − x1 ∀x1 < 0 (8)

f (x1) = B1 − x1 ∀x1 > B1 (9)

g (x1) = E2 − x1 ∀x1 < 0 (10)

g (x1) = E1 − x1 ∀x1 > E1 (11)

3 Results

In this section, we provide the complete characterization of the set of Nash equilibria of
all two-battlefield Blotto games. We make use of the following two composite functions
of f (·) and g (·) (the resource constraints for Blotto and Enemy, respectively):

h(x) ≡ g−1( f (x)) (12)

10 Often such games have simple Nash equilibria. For instance, if the budget constraints cross exactly once
(or any odd number of times), each player can guarantee victory on exactly one battlefield. A simple Nash
equilibrium is for each player to “hunker-down” and always send an unbeatable force to the battlefield on
which they can guarantee victory.
11 See Gross and Wagner (1950) for further details.
12 We believe we could relax this assumption somewhat for Blotto. However, it seems realistic and makes
the proof cleaner.
13 We need not make such restrictive assumptions on the form of f and g outside of quadrant I. However,
we chose this simple functional form since the assumption only affects the constraints where they cannot
possibly bind.
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p(y) ≡ g( f −1(y)). (13)

Note that we follow the standard convention where h0(x) ≡ x (and similarly for
other functions). If necessary, h−1 (x) ≡ f −1 (g (x)) and p−1 (y) ≡ f

(
g−1 (y)

)
as one would expect. Then, the i th iterates of h(x) and p(y) can be defined as
follows: hi+1(x) ≡ h(hi (x)) and pi+1(x) ≡ p(pi (x)). Similarly, the −i th iter-
ates of h(x) and p(y) can be defined as follows: h−i−1(x) ≡ h−1(h−i (x)) and
p−i−1(x) ≡ p−1(p−i (x)). Also, note that functions 12 and 13 are well-defined for
all x and y given Eqs. 8–11 and the fact that f (·) and g (·) are both strictly decreasing
functions. Thus, pi (·), p−i (·), h−i (·) and hi (·) are all well-defined strictly increasing
functions ∀i = 0, 1, 2, . . .

The intuition behind h and p is as follows. h (·) takes a Battlefield 1 allocation x
and returns an Enemy Battlefield 1 allocation h (x) such that the following is true:
If Blotto and Enemy allocate x and h (x) to Battlefield 1, respectively, and choose
a resource constraint binding Battlefield 2 allocation ( f (x) and g (h ()), then they
will have the same Battlefield 2 allocation. p (·) takes a Battlefield 2 allocation y and
returns an Enemy Battlefield 2 allocation p (y) such that the following is true: If Blotto
and Enemy allocate y and p (y) to Battlefield 2, respectively, and choose a resource
constraint binding Battlefield 1 allocation, then they will have the same Battlefield 1
allocation.

We now describe a partitioning of the set of possible two battlefield Blotto games
(not player action spaces) based upon the players’ exogenous resource constraint func-
tions. Figure 1 shows examples of Blotto games in partitions 1, 2, and 3, respectively.
Intuitively, we number the partitions based on the number of times it is possible to
reflect one of the end points of Enemy’s resource constraint, E1 or E2, off of Blotto’s
resource constraint and his own in quadrant I, as shown in Fig. 1.

Remark 1 Every Blotto game satisfying the conditions in Sect. 2 falls into one partition
n, where the strictly positive integer n satisfies the following condition:

E2 ∈
(

f
(

hn−2 (E1)
)

, f
(

hn−1 (E1)
)]

. (14)

Proof For any such game, Eq. 14 must be true for exactly one strictly positive n. Con-
sider an integer i ≥0. By Eq. 5, f

(
g−1

(
f
(
hi−1 (E1)

))) ≥ g
(
g−1

(
f
(
hi−1 (E1)

)))+
ζ for some ζ > 0. Simplifying we have

f
(

hi (E1)
)

≥ f
(

hi−1 (E1)
)

+ ζ. (15)

As f
(
h−1 (E1)

) = 0 by definition, iterating on Eq. 15 implies that f
(
hi (E1)

) ≥ ζ i.

So, for i ≥ E2
ζ

we have f
(
hi (E1)

) ≥ E2. Given that f
(
hi (E1)

)
is strictly increasing

in i (by Eq. 15) and that there is some i for which f
(
hi (E1)

) ≥ E2, Eq. 14 must be
true for exactly one integer n.14 	


14 Note that one could provide a similar definition and explanation in terms of f −1
(

pi (E2)
)

.
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188 S. T. Macdonell, N. Mastronardi

(a) (b)

(c)

Fig. 1 Blotto and Enemy resource constraints for Blotto games in partitions 1, 2, and 3

Consider a two-battlefield Blotto game in partition n ≥ 2. Define the following sets
of allocations:

∀i = 1, . . . , n T b
i ≡ {(b1, b2) : (b1 ≥ hn−i (E1),

b2 ≥ pi−1(E2), b2 ≤ f (b1)} (16)

∀i = 2, 3, . . . , n − 1 T e
i ≡ {(e1, e2) : (e1 > f −1

(
pi−2 (E2)

)
,

e2 > f
(

hn−i−1 (E1)
)

, e2 ≤ g(e1))} (17)

T e
1 ≡ {(e1, e2) : (e1 ≥ 0, e2 > f

(
hn−2 (E1)

)
, e2 ≤ g(e1))} (18)

T e
n ≡ {(e1, e2) : (e1 > f −1

(
pn−2 (E2)

)
, e2 ≥ 0, e2 ≤ g (e1))} (19)

Equations 18 and 19 are implied by 17 with the exception of weak inequalities at the
zero bounds. Note that if E2 = f

(
hn−1 (E1)

)
, which occurs at a partition boundary,

then all the T b
i ’s will contain only one point. For example, in T b

1 we would have one
point, (b1, b2) = (

hn−1 (E1) , f
(
hn−1 (E1)

)) = (
f −1 (E2) , E2

)
. Figure 2 graphs

the Ti ’s for a game in partition 2.
We now define sets that will be useful in specifying the restrictions on how players

can randomize over their T ′
i s. ∀i < 1, 2, . . . , n − 1,∀x ∈ R:

j x,i
b ≡ {(b1, b2) : ((b1, b2) ∈ T b

i , b1 < x)} (20)

kx,i
b ≡ {(b1, b2) : ((b1, b2) ∈ T b

i+1, b2 ≥ g (x))} (21)
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Fig. 2 The Ti ’s of a game in
partition 2

j x,i
e ≡ {(e1, e2) : ((e1, e2) ∈ T e

i+1, e1 ≤ x)} (22)

kx,i
e ≡ {(e1, e2) : ((e1, e2) ∈ T e

i , e2 > f (x))} (23)

If Enemy were to play (x, g(x)), j x,i
b is the set of allocations in T b

i where Blotto

would lose on Battlefield 1, and kx,i
b is the set of allocations in T b

i+1 where Blotto

would win on Battlefield 2. Conversely, if Blotto were to play (x, f (x)) , j x,i
e is the

set of allocations in T e
i+1 where Enemy would lose on Battlefield 1, and kx,i

e is the set
of allocations in T e

i where Enemy would win on Battlefield 2.
Now, define �B as the set of probability measures, μB , which satisfy the following

two properties:
Property 1b: ∀i = 1, . . . , n

μB(T b
i ) = wn−i∑n−1

j=0w
j

Property 2b: ∀i < 1, 2, . . . , n − 1, ∀x ∈ [hn−i (E1), f −1
(

pi−1 (E2)
)]:

μB( j x,i
b ) ≤ μB(kx,i

b ) · w

Property 1b specifies how Blotto must allocate his probability mass to each of the
T b

i ’s. For instance, in the equally weighted battlefield case, Blotto must play in each
of the T b

i ’s with probability equal 1
n . Property 2b provides restrictions on how Blotto

may allocate his probability mass within the T b
i ’s. These restrictions ensure that any

Enemy full expenditure deviation is not payoff improving. Figure 3 illustrates Property
2b for a Blotto game in Partition 3.

Now, define �E as the set of probability measures, μE , with the following two
properties:

Property 1e: ∀i = 1, . . . , n

μE (T e
i ) = wi−1∑n−1

j=0w
j
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190 S. T. Macdonell, N. Mastronardi

Fig. 3 Property 2b

Property 2e: ∀i = 1, 2, . . . , n − 1, ∀x ∈ ( f −1
(

pi−1 (E2)
)
, hn−i−1(E1))

μE ( j x,i
e ) ≤ μE (kx,i

e ) · w

Property 1e specifies how Enemy must allocate his probability mass to each of the
T e

i ’s. For instance, in the equally weighted battlefield case, Enemy must play in each
of the T e

i ’s with probability equal 1
n . Property 2e provides restrictions on how Enemy

may allocate his probability mass within the T e
i ’s.

Given these properties, we provide three theorems which we prove in “Appendix
1”:

Theorem 1 When Blotto plays a strategy μB ∈ �B and Enemy plays a strategy
μE ∈ �E , Blotto’s expected payoff is

∑n
j=0 w j∑n−1
j=0 w j

(24)

and Enemy’s expected payoff is ∑n−1
j=1 w j∑n−1
j=0 w j

. (25)

Proof See “Proof of Theorem 1 in Appendix 1” 	

Given that this game is constant sum, these payoffs will be the unique equilibrium

payoffs (see Lemma 9 in “Proof of Theorem 3 of Appendix 1”).

Theorem 2 Any pair of strategies {μB, μE } such that μB ∈ �B and μE ∈ �E

constitute a Nash equilibrium.

Proof See “Proof of Theorem 2 in Appendix 1”. 	

In other words, pairing a Blotto strategy from �B , with an Enemy strategy from �E

forms a Nash equilibrium. Note that in general, there will be a continuum of Blotto
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Waging simple wars 191

(Enemy) strategies, μB (μE ), which form an equilibrium with any corresponding
opponent strategy.15

Theorem 3 The complete set of Nash Equilibria of any two-battlefield Colonel Blotto
game is the set of pairs {μB, μE } such that μB ∈ �B and μE ∈ �E .

Proof See “Proof of Theorem 3 in Appendix 1”. 	

Property 1b(e) requires that Blotto (Enemy) randomizes over each of his T b

i ’s

(T e
i ’s) with probability wn−i∑n−1

j=0w
j
,

(
wi−1∑n−1
j=0w

j

)
. Property 2b(e) simply requires that Blotto

(Enemy) distributes his mass over the areas from Property 1b(e) in such a way that he
does not provide his opponent with any profitable deviations.

Theorem 4 There are an uncountably infinite number of equilibria of any two battle-
field Blotto game.

Appendix 2 proves Theorem 4. In the proof, we show how to take any contin-
uous univariate cumulative distribution function (CDF), with range [0, 1] over the
domain

[
hn−1 (E1) , f −1 (E2)

] ([
0, hn−1(E1)

))
as given and then construct a unique

bivariate Blotto (Enemy) equilibrium strategy distribution from that CDF. So long as[
hn−1 (E1) , f −1 (E2)

] ([
0, hn−1(E1)

))
is not a scalar, there are an uncountably infi-

nite number of such CDFs.16 Since it is impossible for
[
0, hn−1(E1)

)
to be a scalar, at

least Enemy has an uncountably infinite number of equilibrium strategies. There are
then an uncountably infinite number of equilibria of any Blotto game.

Note that there are additional equilibrium strategies beyond those that can be
constructed as discussed in “Appendix 2.” Since the processes used in “Appen-
dix 2” assume the CDFs of battlefield 1 allocations in

[
hn−1 (E1) , f −1 (E2)

]
and[

0, hn−1(E1)
)

are continuous, they don’t produce equilibrium strategies with mass
points. In “Proof of Theorem 3 of Appendix 1,” we make use of equilibrium Blotto
and Enemy strategies with mass points in T b

1 and T e
1 , respectively.

4 Nash equilibrium general construction

We now provide an algorithm that completely characterizes the set of Nash equilibria
graphically. Until Sect. 4.4, we assume Gross and Wagner’s (1950) original resource

15 See “Appendix 2” for a method to construct such a continuum of equilibria.
16 For example, consider the set of univariate CDFs of the form:

(
x − hn−1 (E1)

f −1 (E2) − hn−1 (E1)

)a

∀a ∈ [1, 2]. Any CDF in this set has range [0, 1] over the domain
[
hn−1 (E1) , f −1 (E2)

]
. There are

an uncountably infinite number of such CDFs. So, using the method described in “Appendix 2,” we could
generate an uncountably infinite number of equilibrium bivariate Blotto strategies from this set of univariate
CDFs.
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Fig. 4 Resource constraints for
a (trivial) Blotto game in
partition 1

constraints, f (b1) = 1 − b1 and g(e1) = E − e1 for some E < 1,17 and that the
battlefields are equally valuable, w ≡ 1. Section 4.1 graphically constructs the set
of all Nash equilibria in the trivial case where E ≤ 1

2 . Section 4.2 constructs the
more complicated set of all Nash equilibria in the next partition of the game where
1
2 < E ≤ 2

3 . Section 4.3 shows how the graphical algorithm extends to other games.

4.1 The trivial case: partition 1, E ≤ 1
2

If Colonel Blotto has twice the forces of Enemy, he can guarantee himself victory
on both battlefields by deploying at least E on both battlefields, as shown in Fig. 4.
Clearly, a Nash equilibrium is formed by any (feasible) Blotto strategy that always
sends at least E to both battlefields paired with any (feasible) Enemy strategy. Against
such Blotto strategies, Enemy can expect a payoff no greater than 0, and no matter
what, Blotto can expect a payoff no greater than 2. Note that when E = 1

2 Blotto’s
T b

1 collapses to a point; he must always play (E, E) in equilibrium.

4.2 Partition 2, 1
2 < E ≤ 2

3

Unlike in Sect. 4.1, Blotto no longer has enough soldiers to guarantee victory on both
battlefields. However, he has enough resources to do the following: choose a battlefield
by the flip of a fair coin; send E soldiers to that battlefield and at least E

2 to the other
battlefield. Against such a strategy, Enemy can only send more than half his forces (for
example all his forces) to one battlefield. Enemy hopes to mismatch; he hopes to deploy
the majority of his forces to the battlefield to which Blotto sent at least E

2 (in which
case, he will win one battle). Blotto hopes to match. If they both send a larger force
to the same battlefield, Blotto wins both. Intuitively, in any Nash equilibrium, each
player heavily attacks one battlefield and sends a smaller force to the other battlefield.

Consider this game graphically in Fig. 5. Figure 5a shows that Blotto has two
separate areas where he may play while attacking one battlefield heavily. Line (a)
shows that he must play more than E on Battlefield 2 if he is to ensure victory there.
Line (b) shows a similar condition when he decides to attack Battlefield 1 heavily. If

17 Technically, Gross and Wagner (1950) set f (b1) = B − b1. Here, we normalize B = 1.
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(a) (b)

(c)

Fig. 5 1
2 < E ≤ 2

3 Construction

Blotto plays in each of these areas with probability 1
2 , Enemy should expect the same

payoff from heavily attacking either battlefield.
Observe Fig. 5b. The horizontal line (c) shows that when Enemy is attacking Battle-

field 2 heavily, he needs to be sure his force is large enough to beat any residual force
Blotto might send to Battlefield 2 when Blotto is attacking Battlefield 1 heavily.18 The
vertical line (d) shows a similar condition when Enemy attacks Battlefield 1 heavily.
If Enemy plays in each of the two wavy areas with equal probability, Blotto does not
know which battlefield to attack heavily, nor which only needs a smaller force.

Consider Fig. 5c. The horizontal line (e) shows that when Blotto attacks Battlefield
1 heavily, he needs to send enough forces to Battlefield 2 to ensure victory there if
Enemy attacks Battlefield 1 heavily, but still sends a small force to Battlefield 2. The
vertical line (f) demonstrates a similar condition when Blotto attacks Battlefield 2
heavily. We now have two areas for both Blotto and Enemy, and we know they must
play in both areas with equal probability. Note that when E = 2

3 Blotto’s two areas
will be points.

Properties 2b and 2e from Sect. 3 dictate how players should distribute mass within
those two areas. In any Nash equilibrium, Blotto expects a payoff of 1 1

2 and Enemy
expects 1

2 . The distribution of mass within the two areas cannot provide the other
player with a higher expected payoff if they deviate. We demonstrate these conditions
in Fig. 6 in terms of the j’s and k’s defined in Eqs. 20–23. Figure 6a demonstrates
how certain Blotto distributions could provide Enemy with profitable deviations from
his prescribed strategy. Observe the potential deviation (ed

1 , ed
2 ). Line (h) divides the

area where Blotto is attacking Battlefield 2 heavily into two parts; in j
ed

1 ,1
b , b1 < ed

1 .
Line (g) similarly divides the area where Blotto is attacking Battlefield 1 heavily; in

18 Recall that Enemy can never win on Battlefield 2 when Blotto is also attacking Battlefield 2 heavily.
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(a) (b)

Fig. 6 1
2 < E ≤ 2

3 mass restrictions

k
ed

1 ,1
b , b2 ≥ ed

2 . We know that Enemy can only expect a payoff of at most 1
2 if he were

to deviate here.
Relative to playing in T e

1 , playing (ed
1 , ed

2 ) increases Enemy’s chances of winning on

Battlefield 1 by Blotto’s frequency of play in area j
ed

1 ,1
b , but decreases Enemy’s chances

of winning on Battlefield 2 by Blotto’s frequency of play in area k
ed

1 ,1
b . Therefore, the

total mass Blotto plays over area j
ed

1 ,1
b can be no more than the mass over area k

ed
1 ,1

b , as
stated in Property 2e. Figure 6b demonstrates how similar restrictions affect Enemy’s
potential distributions.

Notice that we chose (ed
1 , ed

2 ) (and (bd
1 , bd

2 )) arbitrarily. Any full expenditure devi-
ation is possible. Thus, there is a continuum of such restrictions (one for each full
expenditure deviation) on how Blotto and Enemy can randomize over the two areas.
If there are no full expenditure payoff improving deviations, then there are no payoff
improving deviations as both players’ payoffs are weakly increasing in allocations to
either battlefield.

We can describe the complete set of Nash equilibrium to Blotto games in partition
2 graphically as follows: the set of Blotto and Enemy randomizations that place 1

2 of
each players’ mass on the respective player’s two areas shown in Fig. 5c, and distribute
the mass within those two areas in such a way that their opponent has no profitable
deviations (as shown in Fig. 6).

4.3 The general approach

In the previous Section, Blotto could randomize between (E, E
2 ) and ( E

2 , E); each
battlefield was always allocated at least E

2 . When E > 2
3 Blotto no longer has a

sufficient resource advantage to support those allocations. Thus, he now must be
concerned that Enemy might split his forces across both battlefields (e.g., playing( E

2 , E
2

)
). We will now provide our graphical algorithm to determine the set of Nash

equilibrium in such cases. We provide an illustration of our method for Partition 3
where E ∈ ( 2

3 , 3
4 ] in Fig. 7. For the rest of this section, we will use the notation E1

and E2 to ease later comparisons to the game with general resource constraints.
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(a) (b)

(c) (d)

Fig. 7 The general graphical method

The graphical algorithm is a three-step process. In step one, as shown in Fig. 7a,
we draw a (solid) vertical line coming out of the point (E1, 0). Every time this line
intersects a resource constraint we rotate it 90 degrees (alternating counterclockwise,
clockwise, counterclockwise . . .). Observe in Fig. 7a how implementing two of these
90 degree rotations corresponds to subjecting an allocation to the h function defined
in Eq. 12. We stop the rotations once we reach a point (b1, b2) on Blotto’s resource
constraint where b2 ≥ E2. Every time the solid line intersects Enemy’s resource
constraint, we also draw a dotted line showing how the solid line would continue if
we did not rotate it.

A game’s partition as defined in Sect. 3 is equivalent to the number of times step
one intersects Blotto’s resource constraint. For example, the game depicted in Fig. 7a
is in partition n = 3 as we intersected Blotto’s resource constraint three times.

Step two is similar to step one. As shown in Fig. 7b, we draw a (solid) horizontal line
coming out of the point (0, E2). Again, when the line intersects a resource constraint we
rotate it 90 degrees (alternating clockwise, counterclockwise, clockwise . . .). Observe
in Fig. 7b how implementing two of these 90 degree rotations corresponds to subjecting
an allocation to the p function defined in Eq. 13. We stop the rotations once we reach a
point (b1, b2) on Blotto’s resource constraint where b1 ≥ E1. We again draw a dotted
line showing how the solid line would continue every time it intersects Enemy’s
resource constraint. After doing both steps one and two, we will have a graph like
Fig. 7c.

In step three, we use our graph to find the regions over which each player will
randomize. After completing steps one and two, we have n triangles directly below
Enemy’s resource constraint and 2n − 1 triangles directly below Blotto’s resource
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(a) (b)

Fig. 8 Region 3 mass restrictions

constraint as shown in Fig. 7c.19 We label the triangles directly below Enemy’s resource
constraint T e

1 , . . . , T e
n , from top left to bottom right as in Fig. 7d. These will be the

areas over which Enemy can randomize in equilibrium. For the triangles directly below
Blotto’s resource constraint, we label the top left T b

1 . As we move down and right along
the resource constraint, we skip the next triangle and then label T b

2 , skip another, label
T b

3 and so on until we reach T b
n . We can see this in Fig. 7d.

We stop steps one and two when we reach points on Blotto’s resource constraint
where x2 ≥ E2 and x1 ≥ E1, respectively. If we stop step one because x2 = E2, then
we will necessarily stop step two because x1 = E1 and the lines drawn by these steps
will overlap exactly and each T b

i will consist of a single point.
In equilibrium, each player will play in each of their Ti ’s with probability 1

n . There-
fore, with probability 1

n they will “match,” or, for some j, Blotto and Enemy will
play allocations in T b

j and T e
j , respectively. In this case, Blotto wins both battlefields.

Otherwise (with probability n−1
n ) they will “mismatch,” and Blotto and Enemy will

play allocations in T b
i and T e

j , respectively, such that i �= j . In this case, each player
wins one battlefield. Thus, for any allocation in one of their Ti ’s, Blotto expects a
payoff of n+1

n while Enemy expects n−1
n .

In order to completely characterize the set of equilibrium strategies, we need to
discuss additional restrictions on how players can randomize within their Ti ’s. These
restrictions are very similar to the restrictions shown earlier in Fig. 6; they prevent
profitable deviations by the opponent. Since either player’s expected payoff is weakly
increasing in allocations on either battlefield, ensuring that there are no full expenditure
expected payoff increasing deviations is sufficient.

Properties 2b and 2e preventing profitable deviations apply to partition n in the
same manner as they did in partition 2. This is illustrated in Fig. 8.

In “Appendix 2” and “Proof of Theorem 3 in Appendix 1,” we provide formal exam-
ples of Blotto and Enemy strategies that would satisfy our characterization. However,
for now the reader may wish to consider the following Nash equilibrium in terms of

19 We are not discussing any of the larger triangles in the graph which contain smaller shapes (e.g., the
axes and the resource constraints form triangles, but these are not what we are interested in). The triangles
we are discussing are empty in Fig. 7c.
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(a) (b)

Fig. 9 Weights

the game presented in Fig. 8: Each player plays in each of their Ti ’s with probability 1
n

by playing that mass uniformly over their resource constraint within each Ti . Note that
since the slope of both resource constraints is −1, the conditions preventing payoff
improving deviations will always hold with equality in this equilibrium.

4.4 Generalizations of the graphical algorithm

In this section, we demonstrate how to extend our graphical algorithm to apply to
Colonel Blotto games with asymmetric battlefield weights and/or nonlinear resource
constraints.

4.4.1 Asymmetric battlefields

Now, we relax our earlier assumption that both players care about both battlefields
equally; we no longer restrict w2 = w1. Previously, players would play in each Ti with
probability 1

n . Now that the players place different weights on the two battlefields, they
need to play in each Ti with a different probability in order to make their opponent
indifferent between his own Ti ’s. While we will explain how to graphically characterize
the set of equilibrium strategies generally, Fig. 9 shows how our process applies in
partition 3. We follow the process in Sect. 4.3 to find the Ti ’s over which players may
randomize (Fig. 9a).

Consider the expected payoff to Enemy of playing in some T e
i compared to playing

in T e
i+1 (e.g., T e

1 v.s. T e
2 in Fig. 9a). The realized payoff of playing in either will be the

same unless Blotto plays in T b
i or T b

i+1. Moving from T e
i+1 to T e

i allows Enemy to now
win Battlefield 2 if Blotto plays in T b

i+1 but at the cost of now losing on Battlefield
1 when Blotto plays in T b

i . Since Enemy values Battlefield 2 w times as much as
Battlefield 1, his added chance of losing Battlefield 1 needs to be w times his added
chance of winning Battlefield 2. This implies that μB(T b

i ) = w · μB(T b
i+1). As this

must hold for all i :

μB(T b
i ) = wn−i∑n−1

j=0w
j
,
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Fig. 10 General budget
constraints

These weights are shown in Fig. 9b. Similar logic gives the probability Enemy will
play in each T e

i . The results are shown in Fig. 9b.
We still need to place additional restrictions on how players can randomize within

their Ti ’s. However, we can show the restrictions in the same manner as before in
Fig. 8. The only difference is that now we need to account for the different weights.

This is easily reconciled. In terms of Fig. 8a the restriction now becomes μB( j
ed

1 ,2
b ) ≤

μB(k
ed

1 ,2
b ) · w and similarly for μE . The set of equilibria in these non-constant-sum

Blotto games is going to be the set of pairs of Blotto and Enemy strategies that satisfy
the conditions we have just described.

4.4.2 Force effectiveness and nonlinear resource constraints

In many situations, resource constraints may be nonlinear. Perhaps each player faces
different (dis)economies of scale for different levels of resources allocated to each
battlefield. In order to allow for this generalization, we relax the assumptions made
earlier on the resource constraints and allow for any strictly decreasing g (·) and f (·)
which satisfy Eqs. 5–7. We believe there are no prior solutions to this generalization
of the Blotto game.

Our previous graphical algorithm described in Sect. 4.3 works here without mod-
ification. We only need to use nonlinear resource constraints. Figure10 demonstrates
how our method works with nonlinear constraints in the same way as Fig. 7 did for
the case of linear resource constraints of slope −1. Since we are allowing nonlinear
budget constraints, the Ti ’s may no longer be triangles, but we retain the notation T .

To allow for this modification and general battlefield values, the analysis from Sect.
4.4.1 carries over directly.

5 Conclusion

We provide a complete characterization of the set of Nash equilibria of any canonical
two-battlefield Blotto game and for Blotto games with nonlinear resource constraints.
Furthermore, we provide a method for constructing continuous sets of equilibria of
any such game and provide an algorithm for illustrating the equilibrium strategies
graphically.
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Experimentally, Chowdhury et al. (2013) confirm most of Roberson’s (2006) the-
oretical predictions and Arad and Rubinstein (2012) use an experiment in a Colonel
Blotto environment to study alternative decision making processes. Prior to our work,
testing two-battlefield Blotto predictions (experimentally or empirically) would have
been problematic. For the set of games we study, the previous literature has provided
only some equilibria, but the set of Nash equilibrium strategies we find is infinite.
Suppose we observed players in an environment like ours using strategies that dif-
fered from any of the previously known Nash equilibrium strategies. How would we
know whether they were failing to play Nash strategies in general or simply playing
an unknown Nash strategy? Knowing the set of equilibria solves this issue.

Gross and Wagner (1950) show that equilibrium payoffs for two battlefield Blotto
games can change discontinuously with changes in players’ initial linear resource con-
straints. Our work may allow for equilibrium payoffs to change similarly as the shape
of players’ nonlinear resource constraints change. This may yield fruitful discussions
regarding endogenous resource constraints, (either levels of resources or shapes of
constraints) similar to the way that Kovenock et al. (2010) analyze endogenous battle-
field dimensionality. Just as the disadvantaged player may be willing to pay to increase
the dimensionality of the battlefields in Kovenock et al. (2010), players may be willing
to pay to “reshape” their resource constraints.

As noted earlier, Roberson (2006) considers Blotto games on three or more equally
valued battlefields (m ≥ 3) with asymmetric resources (B �= E). For most such games,
he characterized the unique univariate marginals of players’ strategies, showing that
they were uniform. However, for all other “very asymmetric” (B ∈ [(m − 1)E, m E])
games he provided an equilibrium. These games are fundamentally different; the strate-
gies he provides do not have uniform marginals. All nontrivial two-battlefield Blotto
games meet the “very asymmetric” criteria (B ∈ [E, 2E]).

In the strategies Roberson (2006) provides for very asymmetric games, each player
randomly chooses two battlefields. Then, they each randomly choose one of k alloca-
tions to the two battlefields to play with probability 1

k . These are reminiscent of the n
Ti ’s played with probability 1

n that we characterize for two-battlefield games with sym-
metric battlefield values. This suggests that our complete characterization may extend
to cover the “very asymmetric” Blotto games on many battlefields to which Roberson
(2006) provides an equilibrium. Our allowance for asymmetric battlefield values may
carry over as well. Further extensions of our work could lead to the first characteriza-
tion of the set of Nash equilibria of canonical Blotto games with asymmetric resources
and more than two unequally valued battlefields.

Our work should prove useful for further empirical and theoretical analysis. While
the set of Nash equilibria we find is infinite, our characterization provides some easily
testable criteria: In equilibrium, each player should only play allocations from one
of n distinct areas. We define these areas and provide the probability with which
they should play in each. We demonstrate the theoretical utility of our approach by
characterizing the set of equilibria of a previously unsolved generalization of the Blotto
game allowing for nonlinear resource constraints. Our results provide fertile ground
for further work, especially considering the relationship between our characterization
and the very asymmetric games analyzed by Roberson (2006).
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Characterizing the complete set of Nash equilibrium strategies of the canonical
Blotto game exposes new equilibria and the full set of conditions constraining them.
Interestingly, these conditions do not necessarily require either player to fully expend
their resources, even though there is no payoff for unallocated resources. This suggests
possible equilibrium refinement techniques or potential insight into the shadow value
of the players’ resources. Extending the logic of our Nash construction algorithm yields
insights into more complicated variants of the game, which may be more representative
of real military, political, or other environments.

Appendix 1: Proofs of Theorems 1–3

First, we prove that pairs of strategies from �B and �E provide the expected payoffs
from Theorem 1. Then we prove that all pairs of strategies from �B and �E constitute
a Nash equilibrium. Finally, we show that no other strategies are a part of any Nash
equilibrium.

First, define two projection operators. �1(S) is the set of all scalars that are the
first dimension of some two dimensional point in the set S, the set of Battlefield 1
allocations given a set S of two dimensional battlefield allocations.

�1(S) ≡ {x1 : (∃x2 ∈ R s.t. (x1, x2) ∈ S)}

�2(S) is defined similarly:20

�2(S) ≡ {x2 : (∃x1 ∈ R s.t. (x1, x2) ∈ S)}

We also define the set of all points in some T b
i (T e

i ):

T b ≡ T b
1 ∪ T b

2 ∪ . . . ∪ T b
n

T e ≡ T e
1 ∪ T e

2 ∪ . . . ∪ T e
n

Recall the definitions of h and p from Eqs. 12 and 13. Lemma 5 gives us the intervals
of battlefield allocations within the various Ti ’s.

Lemma 5 ∀i = 1, 2, . . . , n :

�1(T
b

i ) =
[
hn−i (E1), f −1

(
pi−1 (E2)

)]
, (26)

�2(T
b

i ) =
[

pi−1(E2), f
(

hn−i (E1)
)]

. (27)

20 For instance, if S = {(1, 3), (2, 5)}, then �1(S) = {1, 2} and �2(S) = {3, 5}.
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∀i = 2, 3, . . . , n − 1 :

�1(T
e

i ) =
(

f −1
(

pi−2 (E2)
)

, hn−i (E1)
)

, (28)

�2(T
e

i ) =
(

f
(

hn−i−1 (E1)
)

, pi−1(E2)
)

, (29)

For i = 1 we have the following:

�1(T
e
1 ) = [0, hn−1(E1)), (30)

�2(T
e
1 ) =

(
f
(

hn−2 (E1)
)

, E2

]
, (31)

and for i = n :

�1(T
e
n ) =

(
f −1

(
pn−2 (E2)

)
, E1

]
, (32)

�2(T
e
n ) = [0, pn−1(E2)), (33)

The last four equations are implied by Eqs. 28 and 29, but vary due to the closed
bounds at the extremes. We will simultaneously prove Lemma 5 with our proof of
Lemma 6.

First, informally we could rewrite the interval
[
0, f −1

(
pn−1 (E2)

)]
as

[�1(T
e
1 ),�1(T

b
1 ),�1(T

e
2 ),�1(T

b
2 ), . . . , �1(T

e
n ),�1(T

b
n )]

or we could rewrite the interval
[
0, f

(
hn−1 (E1)

)]
as

[�2(T
e
n ),�2(T

b
n ),�2(T

e
n−1),�2(T

b
n−1), . . . , �2(T

e
1 ),�2(T

b
1 )].

More formally,

Lemma 6 �1(T e) ∪ �1(T b) = [
0, f −1

(
pn−1 (E2)

)]
and �2(T e) ∪ �2(T b) =[

0, f
(
hn−1 (E1)

)]
while �1(T e) ∩ �1(T b) = {E1} and �2(T e) ∩ �2(T b) = {E2}.

Proof Refer to Eqs. 16–19. Consider the bounds for any e1 ∈ �1(T e
i ). Its open (closed

when i = 1) infimum is f −1
(

pi−2 (E2)
)
. Changing the two other constraints on T e

i
to equalities and solving we find that for e1 ∈ �1(T e

i ) the open (closed when i = n)
supremum is hn−i (E1), which is the closed infimum of b1 ∈ �1(T b

i ). Similar algebra
for the other relevant bounds in Lemma 5 and iteration from i = 1 confirms Lemmas
5 and 6. 	


Based on this we know that ∀i ∈ {1, . . . , n} any e1 ∈ �1(T e
i ) is strictly less than any

b1 ∈ �1(T b
i ), which is strictly less than any e1 ∈ �1(T e

i+1). The former inequality is
weak when i = n. (Obviously, we ignore the latter when i = n). Also, ∀i ∈ {1, . . . , n}
any e2 ∈ �2(T e

i−1) is strictly greater than any b2 ∈ �2(T b
i ) which is strictly greater

than any e2 ∈ �2(T e
i ). The later inequality is weak when i = 1. Obviously, we ignore

the former when i = 1. More formally we have:
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Lemma 7

∀i ∈ {1, . . . , n − 1},(
(ei

1 ∈ �1(T
e

i ), ei+1
1 ∈ �1(T

e
i+1), bi

1 ∈ �1(T
b

i )) �⇒ (ei
1 < bi

1 < ei+1
1 )

)
(34)

(en
1 ∈ �1(T

e
n ), bn

1 ∈ �1(T
b
n )) �⇒ en

1 ≤ bn
1 (35)

∀i ∈ {2, 3, . . . , n},(
(ei−1

2 ∈ �2(T
e

i−1), ei
2 ∈ �2(T

e
i ), bi

2 ∈ �2(T
b

i ) �⇒ (ei
2 < bi

2 < ei−1
2 )

)
(36)

(e1
2 ∈ �2(T

e
1 ), b1

2 ∈ �2(T
e
1 )) �⇒ e1

2 ≤ b1
2 (37)

Proof Lemma 7 follows directly by examining the bounds in Lemma 5. 	


Proof of Theorem 1

Recall Theorem 1: When Blotto plays a strategy μB ∈ �B and Enemy plays a

strategy μE ∈ �E , Blotto’s expected payoff is
∑n

j=0 w j∑n−1
j=0 w j

and Enemy’s expected payoff

is
∑n−1

j=1 w j∑n−1
j=0 w j

.

Proof Given Lemma 7, we know that against any Blotto strategy in �B , when Enemy
plays in T e

i his probability of winning on Battlefield 1 is:

μB(T b
1 ∪ . . . ∪ T b

i−1) =
∑n−1

j=n−(i−1) w j∑n−1
j=0 w j

His probability of winning Battlefield 2 is:

μB(T b
i+1 ∪ . . . ∪ T b

n ) =
∑n−i−1

j=0 w j∑n−1
j=0 w j

.

The total expected payoff is then:

∑n−1
j=n−(i−1) w j∑n−1

j=0 w j
+ w ·

∑n−i−1
j=0 w j∑n−1

j=0 w j
=

∑n−1
j=1 w j∑n−1
j=0 w j

(38)

for any allocation in (any) T e
i .

Similarly, against any Enemy strategy from above, when Blotto plays in T b
i his

probability of winning Battlefield 1 is:

μE
(
T e

1 ∪ . . . ∪ T e
i

) =
∑i−1

j=0 w j∑n−1
j=0 w j
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His probability of winning Battlefield 2 is:

μE
(
T e

i ∪ . . . ∪ T e
n

) =
∑n−i

j=i−1 w j∑n−1
j=0 w j

His total expected payoff is then

1 ·
∑i−1

j=0 w j∑n−1
j=0 w j

+ w ·
∑n−i

j=i−1 w j∑n−1
j=0 w j

=
∑n

j=0 w j∑n−1
j=0 w j

(39)

for any allocation in (any) T b
i . 	


Proof of Theorem 2

In this section, we prove that any pair of strategies {μB, μE }, such that μB ∈ �B and
μE ∈ �E , in fact forms a Nash equilibrium. Before proceeding with the formal proof,
we provide the intuition. Properties 1b and 1e specify that in any equilibrium Blotto
and Enemy each randomize over n distinct areas (T b

1 , . . . , T b
n and T e

1 , . . . , T e
n ). Blotto

and Enemy’s potential equilibrium allocations on either battlefield only overlap at one
point in the following sense:

�1(T
b) ∩ �1(T

e) = {E1},

�2(T
b) ∩ �2(T

e) = {E2}.

Though in the figures it may appear as though all boundaries should be included in
these sets, careful inspection of the boundary conditions shows that the boundaries for
Enemy are open, and closed for Blotto. Therefore, they should not in fact be included
in these sets.

Given that ties always go to Blotto, we calculated players’ expected payoffs in
“Proof of Theorem 1 of Appendix 1.” When they both play strategies satisfying Prop-

erties 1b and 1e, Blotto achieves an expected payoff of
∑n

j=0 w j∑n−1
j=0 w j

while Enemy earns
∑n−1

j=1 w j∑n−1
j=0 w j

. We will show that given these payoffs, Property 2b(e) ensures that Enemy

(Blotto) has no full expenditure allocation which provide a payoff strictly greater than∑n−1
j=1 w j∑n−1
j=0 w j

(∑n
j=0 w j∑n−1
j=0 w j

)
. Since all allocations in the players’ supports provide the same

payoff, and there exist no allocations providing higher payoffs, pairs of strategies from
these distributions constitute a Nash equilibrium. We now move to the formal proof.

Recall Theorem 2: Any pair of strategies {μB, μE } such that μB ∈ �B and μE ∈
�E constitute a Nash equilibrium.
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Proof We show that there are no allocations for Enemy or Blotto that provide a strictly
higher expected payoff than their payoffs from Theorem 1. Note that if either player
were to have an expected payoff improving deviation from the strategies we defined,
they must have a full expenditure payoff improving deviation, as the expected payoffs
must be weakly increasing in strength on either battlefield. Therefore, we only need
to show that there are no payoff improving full expenditure deviations. So, we check
full expenditure deviations outside of any T e

i or T b
i .

Consider a full expenditure Enemy deviation ed = (ed
1 , ed

2 ), ed /∈ T e.21 Given
the bounds on the T e

i ’s and Lemma 5, ed must lie “between” some T e
i and T e

i+1

in the following sense: ∀ei
1 ∈ �1(T e

i ), ei+1
1 ∈ �1(T e

i+1) ei
1 < ed

1 < ei+1
1 , and

similarly for ed
2 . Let (e1, e2) be an allocation in T e

i . Examine Property 2b with x = ed
1 .

Given Lemma 7, the realized payoff to Enemy of playing ed against any of our Blotto
strategies will be the same as if he had played (e1, e2) unless Blotto plays in T b

i or
T b

i+1. If Blotto plays in T b
i , the deviant allocation may do better 22 on Battlefield 1

(without changing the outcome on Battlefield 2). The cost is that if Blotto plays in T b
i+1

the deviant strategy may do worse on Battlefield 2 (without changing the outcome on

Battlefield 1). Using the notation of Property 2b, any b1 in j
ed

1 ,i
b will lose to ed

1 (while

it would have beat e1) and any b2 in k
ed

1 ,i
b will beat ed

2 (while it would have lost to e2).
Property 2b then says that by moving from any (e1, e2) in T e

i to (ed
1 , ed

2 ), the additional
probability of winning on Battlefield 1 is weakly less than the additional probability
of losing on Battlefield 2 times the weight placed on that battlefield. Therefore, no
full expenditure deviation (ed

1 , ed
2 ) is payoff improving, and therefore no deviation is

payoff improving.
The same line of reasoning applies directly to Property 2e and full expenditure

deviations by Blotto which lie “between” some T b
i and T b

i+1. Specifically, Prop-
erty 2e ensures that a full expenditure deviating allocation by Blotto, (bd

1 , bd
2 ),

cannot be payoff improving. Simply set bd
1 = x in the property and the same

line of reasoning follows. Additionally, there are full expenditure deviations which
do not lie “between” some T b

i and some T b
i+1 (e.g., (B, 0) and (0, B)). Specifi-

cally, there are two more deviating types of full expenditure allocations: a (bd
1 , bd

2 )

where ∀(b1, b2) ∈ T b
1 bd

1 < b1 and f
(
bd

1

) = bd
2 > b2 or a (b#

1, b#
2) where

∀(b1, b2) ∈ T b
n b#

1 > b1 and f
(
b#

1

) = b#
2 < b2. In the former, Blotto increases

allocations to Battlefield 2 at the expense of Battlefield 1, relative to T b
1 . However, in

T b
1 , Blotto is guaranteeing victory on Battlefield 2, so this can not be payoff improving.

Similar logic applies to the later type of allocations. Given Lemma 5, and Lemma 7,
there are no other types of full expenditure deviations.

Thus, if Blotto plays μB ∈ �B and Enemy plays μE ∈ �E , they would both
be playing best responses to the other’s strategy. Therefore any such pair {μB, μE }
constitutes a Nash equilibrium. 	


21 Clearly ed
2 = g(ed

1 ).
22 By “do better” on Battlefield 1 we mean ed

1 would be strictly greater than Blotto’s Battlefield 1 allocation,
whereas e1 would be weakly less.
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Proof of Theorem 3

We now prove that there are no uncharacterized strategies which could be part of a
Nash equilibrium. Before proceeding, we will need two lemmas that hold for any
two-player constant-sum game.

Consider a two-player constant-sum game where Player 1 chooses a strategy x ∈ X
and Player 2 chooses a strategy y ∈ Y . Let f i (x, y) denote the expected payoffs to
Player i when Player 1 plays x and Player 2 plays y. Also, let �i denote the set of
player i strategies that are a part of some Nash equilibrium.

Definition 8 A game is said to feature constant payoffs if, for each player, the expected
payoff is the same in each Nash equilibrium.

Lemma 9 If a Nash equilibrium exists for a two-player constant-sum game, that game
features constant payoffs. In other words, ∃ {ci }2

i=1 such that in every Nash equilibrium
{x j , y j }, f i (x j , y j ) = ci for all i = 1, 2.

For a formal proof of the preceding and proceding lemmas see (Vorob’ev, 1977, pp.
1–10)

Lemma 10 Equilibrium Interchangeability If a Nash equilibrium exists to a two-
player constant-sum game, then every strategy that a player uses in any Nash equi-
librium forms a Nash equilibrium with any opponent strategy from any (other) Nash
equilibrium. In other words: for all x∗ ∈ �1 and all y∗ ∈ �2, {x∗, y∗} constitutes a
Nash equilibrium.

Equilibrium Interchangeability and constant payoffs are useful when proving the
completeness of our characterization.23 Equilibrium Interchangeability allows us to
consider equilibrium strategies for Blotto and Enemy separately. Unlike with most
multiple equilibria games, there is no need to worry about pairing with a particular
opponent equilibrium strategy. If we discover just one Nash equilibrium (pair of strate-
gies), all the remaining equilibria are simply the cross of all the Blotto strategies that
form an equilibrium with the one known Enemy strategy, and all the Enemy strategies
that form an equilibrium with the one known Blotto strategy.

Our proof of the completeness of our characterization proceeds as follows. We first
prove that all Enemy strategies that are a part of some Nash equilibrium are in �E .

Then we prove that all Blotto strategies that are a part of some equilibrium are in �B .

Therefore, the set of all Nash equilibria is the set of pairs of strategies from �E and
�B by Equilibrium Interchangeability.

In the proof, we make use of the strategy μ∗
B where in each T b

i Blotto plays the allo-
cations

(
hn−i (E1), f

(
hn−i (E1)

))
and

(
f −1

(
pi−1 (E2)

)
, pi−1 (E2)

)
with probabil-

ity wn−i

2·∑n−1
j=0w

j
each. These points correspond to z1 − z6 in Fig. 11 for a game in region 3.

Blotto never plays any other allocations. Recall that if E2 = f
(
hn−i (E1)

)
each of the

T b
i ’s contain only one allocation,

(
hn−i (E1), f

(
hn−i (E1)

)) = (
f −1

(
pi−1 (E2)

)
,

pi−1 (E2)
)
. In this case this single allocation is played with probability wn−i∑n−1

j=0w
j
.

23 We are not the first to use these two results when analyzing Blotto Games (e.g., see Roberson (2006)).

123



206 S. T. Macdonell, N. Mastronardi

Fig. 11 An example

In each T b
i ,

(
hn−i (E1), f

(
hn−i (E1)

))
and

(
f −1

(
pi−1 (E2)

)
, pi−1 (E2)

)
are the

intersections of Blotto’s resource constraint with the two other bounds on T b
i . So,

Property 1b holds as 2 · wn−i

2·∑n−1
j=0w

j
= wn−i∑n−1

j=0w
j

= μ∗
B

(
T b

i

)
. Now consider Prop-

erty 2b. As Blotto is playing
(

f −1
(

pi−1 (E2)
)
, pi−1 (E2)

)
in T b

i with probabil-

ity wn−i

2·∑n−1
j=0w j

, μ∗
B( j x,i

b ) ≤ wn−i∑n−1
j=0w

j
− wn−i

2·∑n−1
j=0w

j
= wn−i

2·∑n−1
j=0w

j
, ∀i < 1, 2, . . . , n −

1, ∀x ∈ [hn−i (E1), f −1
(

pi−1 (E2)
)]. As g is strictly decreasing, the minimum

of μ∗
B(kx,i

b ) for x ∈ [hn−i (E1), f −1
(

pi−1 (E2)
)] occurs when x = hn−i (E1).

Then ∀x ∈ [hn−i (E1), f −1
(

pi−1 (E2)
)], μ∗

B(kx,i
b ) ≥ wn−(i+1)

2·∑n−1
j=0w j

as g
(
hn−i (E1)

) =
f
(
hn−i−1(E1)

)
and

(
hn−(i+1)(E1), f

(
hn−(i+1)(E1)

))
is played with probability

wn−(i+1)

2·∑n−1
j=0w

j
in T b

i+1. Therefore μ∗
B(kx,i

b ) · w ≥ wn−i

2·∑n−1
j=0w

j
≥ μ∗

B( j x,i
b ) and Property

2b holds, μ∗
B ∈ �B .

Lemma 11 Any Enemy strategy which is a part of some Nash equilibrium is in �E .

Proof We prove Lemma 11 by contradiction. Suppose there exists a Nash equilibrium
Enemy strategy that is not in �E . Such a strategy must then either violate Property
1e or satisfy Property 1e and violate Property 2e. In proving that all our strategies
were indeed part of a Nash equilibrium, we have already shown how a violation of
Property 2e alone would provide Blotto with a payoff improving deviation, so we rule
out that possibility. The only other way Lemma 11 could be false is if there were a
Nash equilibrium Enemy strategy which violated property 1e. We divide deviations
from property 1e into three possible cases. Figure 12 provides a graphical reference
(in Region 3) to aid the reader.

Intuitively, Deviation 1 represents Enemy placing some mass on allocations which,
relative to some T e

i , always send less to one battlefield, without increasing the allo-
cation to the other. Deviation 2 represents Enemy placing mass on allocations which,
relative to any T e

i always send less to one battlefield, but increase the allocation
to the other. Deviation 3 has him playing an “incorrect” mass on some T e

i (i.e.,

μE (T e
i ) �= wi−1∑n−1

j=0w j
).

Deviation 1: Enemy could play over an area that sends less to both battle-
fields than some (e1, e2) in some T e

i . Formally, this would have Enemy play a
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Fig. 12 Enemy deviations in
region 3

μ
d1
E such that the following three statements hold for some feasible set of Enemy

allocations S:24

S ∩ T e = ∅ (40)

μ
d1
E (S) > 0 (41)

∀(ed
1 , ed

2 ) ∈ S, ∃(e1, e2) ∈ T e s.t. ed
1 ≤ e1 and ed

2 ≤ e2 (42)

Condition 40 implies that at least one of the two inequalities in 42 always holds strictly.
Suppose Deviation 1 holds for some S and consider an allocation (ed

1 , ed
2 ) ∈ S.

Without loss of generality, suppose ∃ (e1, e2) ∈ T e
i such that ed

1 ≤ e1 and ed
2 < e2.

Either ed
2 < e#

2 for all e#
2 ∈ �2

(
T e

i

)
or not. If so, (ed

1 , ed
2 ) cannot be a best response to

μ∗
B which has Blotto playing Battlefield 2 allocations equal to the open lower bound of

e#
2 ∈ �2

(
T e

i

)
with positive probability. Enemy could increase his expected payoff by

playing (e1, e2). Alternatively, there could exist an e#
2 ∈ �2

(
T e

i

)
for which ed

2 ≥ e#
2 .

Since we know ed
2 < e2 ∈ �2

(
T e

i

)
we must have that ed

2 ∈ �2
(
T e

i

)
. Given the bounds

of T e
i and Eq. 40, it must be the case that ed

1 ≤ f −1
(

pi−2 (E2)
)

the open lower bound
of �1

(
T e

i

)
, a Battlefield 1 allocation Blotto plays with positive probability in μ∗

B .
Therefore (ed

1 , ed
2 ) cannot be a best response to μ∗

B which has Blotto playing the open
lower bounds of e#

1 ∈ �1
(
T e

i

)
with positive probability. Enemy could increase his

payoff by playing (e1, e2) . Given equilibrium interchangeability and the fact that no
allocation (ed

1 , ed
2 ) ∈ S could be a best response to μ∗

B, Deviation 1 cannot happen in
any Nash equilibrium.

This only leaves two possible types of deviations by Enemy: He could play with

mass other than wi−1∑n−1
j=0w j

over some T e
i (Deviation 3) and/or he could play with mass

over a region S where ∀(ed
1 , ed

2 ) ∈ S, ∀(e1, e2) ∈ T e :

ed
1 > e1 or ed

2 > e2

S ∩ T e = ∅

24 Feasibility implies: ∀(e1, e2) ∈ S e1 ≥ 0, e2 ≥ 0, e2 ≤ g (e1).
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(Deviation 2). Given the bounds of the T e
i ’s it is easy to show that any such region

S must be within the set of points De
i , indexed by i = 1, 2, . . . , n − 1, where

De
i ≡

{
(e1, e2) : (e1 ≥ hn−i (E1), e2 ≥ pi (E2), and e2 ≤ g (e1))

}

Given Lemma 5 there are no other allocations for which Deviation 2 holds.
We simultaneously prove that neither of the latter two deviations is possible. Con-

sider a T e
i and De

i and a deviating Enemy strategy μd
E that forms an Nash equilibrium

with any μB ∈ �B . Consider some i ∈ {1, 2, 3, . . . , n − 1}. Assume that

∀k = 1, 2, . . . , i − 1, μd
E (De

k) = 0 and μd
E (T e

k ) = wi−1∑n−1
j=0w

j
(43)

In other words, there has not “yet” been a Deviation 2 or Deviation 3.

Suppose the mass over μd
E (T e

i ) < wi−1∑n−1
j=0w

j
. Given Lemma 7, Eq. 43 and the fact

that we’ve ruled out Deviation 1, when Blotto plays
(
hn−i (E1), f

(
hn−i (E1)

))
(which

he does with probability wn−i

2·∑n−1
j=0w

j
in strategy μ∗

B) he wins Battlefield 1 with prob-

ability μd
E

(
T e

1 ∪ . . . ∪ T e
i

)
<

∑i−1
j=0 w j∑n−1
j=0 w j

but still wins Battlefield 2 with probability

1 − μd
E

(
T e

1 ∪ . . . ∪ T e
i−1

) =
∑n−i

j=i−1 w j∑n−1
j=0 w j

for a total expected payoff strictly less than∑n
j=0 w j∑n−1
j=0 w j

, which is Blotto’s constant expected payoff in all equilibria, a contradiction.

Therefore, μd
E (T e

i ) ≥ wi−1∑n−1
j=0w

j
.

Similarly, ifμd
E

(
T e

i

)
> wi−1∑n−1

j=0w
j
, then when Blotto plays

(
hn−i (E1), f

(
hn−i (E1)

))
,

he wins Battlefield 1 with probability μd
E

(
T e

1 ∪ . . . ∪ T e
i

)
>

∑i−1
j=0 w j∑n−1
j=0 w j

but still wins

Battlefield 2 with probability 1 − μd
E

(
T e

1 ∪ . . . ∪ T e
i−1

) =
∑n−i

j=i−1 w j∑n−1
j=0 w j

for a total

expected payoff strictly greater than his constant equilibrium payoff,
∑n

j=0 w j∑n−1
j=0 w j

, a con-

tradiction. Therefore, μd
E (T e

i ) = wi−1∑n−1
j=0w

j
.

Now suppose μd
E (De

i ) > 0. Now, when Blotto plays
(

f −1
(

pi−1 (E2)
)
, pi−1 (E2)

)
(which he does with probability wn−i

2·∑n−1
j=0w

j
in strategy μ∗

B) he expects to win on Battle-

field 1 with probability μd
E

(
T e

1 ∪ . . . ∪ T e
i ∪ De

i

)
>

∑i−1
j=0 w j∑n−1
j=0 w j

and expects to win on

Battlefield 2 with probability 1 − μd
E

(
T e

1 ∪ . . . ∪ T e
i−1

) =
∑n−i

j=i−1 w j∑n−1
j=0 w j

. Therefore his
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total expected payoff is strictly greater than
∑n

j=0 w j∑n−1
j=0 w j

, his constant equilibrium payoff,

another contradiction. Therefore, μd
E (De

i ) must equal zero.
As the above analysis holds for all i = 1, 2, . . . , n − 1, the mass over all such T e

i

and De
i must equal wi−1∑n−1

j=0w
j

and 0, respectively. The remaining mass of wn−1∑n−1
j=0w

j
must

then be distributed over the only region left, T e
n . Therefore, μd

E satisfies Property 1e.
We’ve already discussed why it must also satisfy Property 2e. Therefore, μd

E ∈ �E ,

and there can be no Enemy strategies which are a part of some Nash equilibrium which
do not satisfy our characterization. 	


We have ruled out any potential Enemy strategies that deviate from our charac-
terization of possible Nash equilibrium Enemy strategies. The proof that we have
characterized the complete set of Blotto Nash equilibrium strategies proceeds much
the same way as the proof of completeness for Enemy’s strategies. However, due to
the open boundaries of the T e

i ’s, the proof requires additional consideration.

Lemma 12 Any Blotto strategy which is a part of some Nash equilibrium is in �B .

Proof Suppose not. Then there exists at least one Blotto strategy which is a part
of some Nash equilibrium that does not satisfy properties 1b and 2b. Call such a
strategy μd

B We’ve already shown how a strategy that satisfied property 1b, but violated
property 2b would give Enemy an allocation offering a payoff higher than his constant
equilibrium payoff. So, any uncharacterized Blotto strategy which is part of some
Nash equilibrium must violate property 1b. Property 1b specifies that Blotto must
only play in his T b

i ’s and provides the probability of play in each. There are two ways
Blotto could violate this property: He could sometimes play outside of T b, or his μB

could assign an incorrect probability to some T b
i . We break the former down into two

separate deviations. The first type of deviation we consider (Deviation 1) are where
Blotto mixes over allocations that send weakly less to both battlefields than some non-
deviating allocation. Formally, a strategy, μ

d1
B , exhibits Deviation 1 if the following

conditions hold for some S :

μ
d1
B (S) > 0 (44)

S ∩ T b = ∅ (45)

∀(bd
1 , bd

2 ) ∈ S, ∃(b1, b2) ∈ T b s.t. bd
1 ≤ b1 and bd

2 ≤ b2 (46)

The second condition implies that one of the two inequalities in the third condition
always holds strictly.

The next type of deviation we consider (Deviation 2) are the remaining feasible
allocations outside of T b. Specifically, these are the allocations that are outside T b,
and, relative to any allocation in T b, send strictly more to one battlefield. Formally a
strategy, μ

d2
B , exhibits Deviation 2 if the following conditions hold for some S:

μ
d2
B (S) > 0 (47)

S ∩ T b = ∅ (48)
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Fig. 13 Blotto deviations in
region 3

∀(bd
1 , bd

2 ) ∈ S, (b1, b2) ∈ T b ei ther bd
1 > b1 or bd

2 > b2 (49)

Consider the following sets of allocations:

Db
0 ≡ {(b1, b2) : (b1 ≥ 0), (b2 > f

(
hn−1 (E1)

)
), (b2 ≤ f (b1))} (50)

Db
i ≡ {(b1, b2) : (b1 > f −1

(
pi−1 (E2)

)
), (b2 > f

(
hn−i−1 (E1)

)
),

(b2 ≤ f (b1))} ∀i = 1, . . . , n − 1 (51)

Db
n ≡ {(b1, b2) : (b1 > f −1

(
pn−1 (E2)

)
), (b2 ≥ 0), (b2 ≤ f (b1))} (52)

Note that Eqs. 50 and 52 are implied by 51 with the exception of the weak inequalities
at the zero bounds. A strategy, μ

d2
B , satisfying Deviation 2 must allocate some mass

over at least one of the Db
i ’s as, given Lemma 5, these are the only regions where

conditions 47–49 hold. See Fig. 13 for a graph of the Di ’s.
The last type of deviation we consider (Deviation 3) is simply where Blotto plays

inappropriate mass over one of his T b
i ’s. Formally, a strategy μ

d3
B exhibits Deviation

3 if the following condition holds for at least one of Blotto’s T b
i ’s:

μ
d3
B

(
T b

i

)
�= wn−i∑n−1

j=0w
j
.

Because of Lemma 10 (Equilibrium Interchangeability), any Blotto strategy from
any Nash equilibrium must form a Nash equilibrium with any Enemy strategy from
�E . Specifically, we consider the following sequence of Enemy strategies: For any
k = 1, 2, . . . let μk

E be the strategy where in each T e
i Enemy plays points

(
g−1

(
pi−1

(
E2 − i

ε

k

))
, pi−1

(
E2 − i

ε

k

))

and (
hn−i

(
E1 − (n + 1 − i)

ε

k

)
, g

(
hn−i

(
E1 − (n + 1 − i)

ε

k

)))
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with probability wi−1

2·∑n−1
j=0w

j
. This implies that no other allocations are in the support

of μk
E since 2 · ∑n

i=1
wi−1

2·∑n−1
j=0w

j
= 1. For ε sufficiently small μ1

E (and any other μk
E )

satisfies properties 1e and 2e.
Intuitively, this is a sequence of strategies that has Enemy randomizing over allo-

cations on his resource constraint, arbitrarily close to the corners in his T e
i ’s. In other

words, for any T e
i we will be able to find some μk

E where Enemy plays arbitrarily
close to each intersection of his resource constraint and either of the other two bounds
for T e

i with strictly positive probability.
To see that any μk

E is in fact in �E , consider the following. So long as ε is suf-
ficiently small, the points from μ1

E ,
(
g−1

(
pi−1

(
E2 − i ε

1

))
, pi−1

(
E2 − i ε

1

))
and(

hn−i
(
E1 − (n + 1 − i) ε

1

)
, g

(
hn−i

(
E1 − (n + 1 − i) ε

1

)))
, will be in T e

i . These
points are a small (note the iε or (n + 1 − i) ε terms) distance from the intersec-
tion with their respective boundary of T e

i . As they are a small distance toward the
interior, Property 1e holds (for sufficiently small ε). Since these points will simply get
closer to the boundary as k increases, (yet never touch it) Property 1e will hold for
any μk

E .

The ε
k terms are multiplied by i and (n + 1 − i) to ensure that property 2e holds.

Note that full expenditure deviating play by Blotto of
(

f −1
(

pi−1
(
E2 − i ε

k

))
,

pi−1
(
E2 − i ε

k

))
will exactly match the pi−1

(
E2 − i ε

k

)
Enemy sometimes plays on

Battlefield 2, but will not increase his payoff on Battlefield 1 as f −1
(

pi−1
(
E2 − i ε

k

))
is strictly less than f −1

(
pi

(
E2 − (i + 1) ε

k

))
(from T b

i+1). So, Blotto’s expected pay-
off will not increase relative to play in T b

i . Similar analysis on other potential full
expenditure Blotto deviations ensures Property 2e holds.

Now we are ready to start considering Blotto’s potential deviations. Deviation 1
has Blotto mix over allocations which send weakly less to both battlefields than some
allocation in some T b

i . Since these deviating allocations are not themselves in T b
i

they must send strictly less to at least one battlefield. Suppose these conditions hold
for some set of allocations S and let bd = (

bd
1 , bd

2

) ∈ S satisfy Deviation 1 relative
to a

(
bi

1, bi
2

) ∈ T b
i . Suppose bd sends strictly less to Battlefield 1, or, by Lemma

5, bd
1 < hn−i (E1) (and bd

2 ≤ f
(
hn−i (E1)

)
). There exists some k∗ where bd

1 <

hn−i
(
E1 − (n + 1 − i) ε

k∗
)

< hn−i (E1). Now, we know
(
bd

1 , bd
2

)
cannot be a best

response to μk∗
E . Blotto could play

(
hn−i (E1), f

(
hn−i (E1)

))
, but he plays

(
bd

1 , bd
2

)
which strictly lowers his probability of winning on Battlefield 1 when Enemy plays
μk∗

E , and it does so without increasing Blotto’s probability of winning on Battlefield
2. Therefore

(
bd

1 , bd
2

)
provides a strictly lower payoff and cannot be a best response.

Similar logic applies to
(
bd

1 , bd
2

)
that send strictly less to Battlefield 2 (or where

bd
1 ≤ f −1

(
pi−1 (E2)

)
and bd

2 < pi−1(E2)). Therefore, all allocations which could
be randomized over in Deviation 1 are not best responses to some μk

E . Therefore, no
equilibrium Blotto strategy exhibits Deviation 1.

Consider a deviating Blotto strategy μd
B that forms a Nash equilibrium with any

μE ∈ �E . All allocations in Db
0 and Db

n are not best responses to certain Nash
equilibrium Enemy strategies. For instance, take an allocation

(
bd

1 , bd
2

) ∈ Db
0 . Blotto
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is increasing his Battlefield 2 allocation while reducing his Battlefield 1 allocation
relative to T b

1 . However, in T b
1 Blotto was already guaranteeing victory on Battlefield

2 so this cannot be payoff improving. Clearly bd
1 < hn−1(E1). We can find some

k∗ ∈ N such that bd
1 < hn−1

(
E1 − (n + 1 − 1) ε

k∗
)

< hn−1(E1). As Enemy plays

hn−1
(
E1 − (n + 1 − 1) ε

k∗
)

on Battlefield 1 with positive probability in μk∗
E ,

(
bd

1 , bd
2

)
must provide Blotto with a strictly lower payoff than

(
hn−1(E1), f

(
hn−1(E1)

))
,

which also guarantees victory on Battlefield 2. Therefore, μd
B

(
Db

0

) = 0. Similar logic
implies that μd

B

(
Db

n

) = 0.

We now simultaneously prove that neither Deviation 2 nor Deviation 3 is possible
in a Nash equilibrium. Consider some i ∈ {1, 2, 3, . . . , n − 1} . Assume that

∀ j = 1, 2, . . . , i − 1, μd
B(Db

j ) = 0 and μd
B(T b

j ) = wn− j∑n−1
l=0 wl

(53)

In other words, there has not “yet” been a Deviation 2 or Deviation 3.
Consider possible versions of Deviation 3 for T b

i . First suppose, μd
B

(
T b

i

)
>

wn−i∑n−1
j=0w

j
. Given Eq. 53 and the fact that we’ve already ruled out Deviation 1, when

Enemy plays in T e
i his probability of winning on Battlefield 1 is μd

B

(
T b

1 ∪. . .∪T b
i−1

)=∑n−1
j=n−(i−1) w j∑n−1

j=0 w j
.25 However, his probability of winning on Battlefield 2 is 1 − μd

B(T b
1 ∪

. . . ∪ T b
i ) <

∑n−i−1
j=0 w j∑n−1

j=0 w j
. Therefore, Enemy’s total expected payoff is then strictly less

than
∑n−1

j=1 w j∑n−1
j=0 w j

which is his constant equilibrium payoff, a contradiction. Similar logic

applies to the case where μd
B

(
T b

i

)
< wn−i and implies that his expected payoff would

be greater than
∑n−1

j=1 w j∑n−1
j=0 w j

, his constant equilibrium payoff, a contradiction. Therefore,

μd
B

(
T b

i

) = wn−i∑n−1
j=0w j

.

Now consider a possible Deviation 2. Specifically, μd
B

(
Db

i

)
> 0. Note that all

Battlefield 2 allocations in Db
i are strictly greater than f

(
hn−i−1 (E1)

)
. Define

Si (δ) = {
(b1, b2) : (b1, b2) ∈ Db

i and b2 ≥ f
(
hn−i−1 (E1)

) + δ
}
. We are then

assured that ∃δ > 0 sufficiently small that μd
B (Si (δ)) > 0. Then we are also assured

that ∃k∗ ∈ N such that f
(
hn−i−1 (E1)

)+δ > g
(
hn−i

(
E1 − (n + 1 − i) ε

k∗
))

.26 Note
that Enemy plays

(
hn−i

(
E1 − (n + 1 − i) ε

k∗
)
, g

(
hn−i

(
E1 − (n + 1 − i) ε

k∗
)))

with

positive probability in μk∗
E . When he does so the probability that he wins on Battlefield

1 is μB(T b
1 ∪. . .∪T b

i−1) =
∑n−1

j=n−(i−1) w j∑n−1
j=0 w j

, but the probability he wins on Battlefield 2 is

25 μd
B (∅) = 0 for i = 1.

26 Note, g
(

hn−i
(

E1 − (n + 1 − i) ε
k∗

))
= g

(
h

(
hn−i−1

(
E1 − (n + 1 − i) ε

k∗
)))

=
f
(

hn−i−1
(

E1 − (n + 1 − i) ε
k∗

))
.
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weakly less than 1−μB(T b
1 ∪ . . .∪T b

i−1 ∪ Si (δ)) <

∑n−i−1
j=0 w j∑n−1

j=0 w j
. Therefore his expected

payoff is strictly less than
∑n−1

j=1 w j∑n−1
j=0 w j

, his constant equilibrium payoff, a contradiction.

This analysis holds for all i = 1, . . . , n − 1. Therefore, given Lemma 5 and the
definitions of the T b

i ’s, Db
i ’s, and Deviation 1, we have now determined the mass

over sets containing all feasible Blotto allocations other than those in T b
n (see Fig. 13

for a graphical aide). Thus, μd
B

(
T b

n

) = 1∑n−1
j=0w

j
, the remaining mass. Therefore, μd

B

does not violate Property 1b. Since we’ve already shown it can’t violate Property 2b,
μd

B ∈ �B . 	

Recall Theorem 3: The complete set of Nash Equilibria of any two-battlefield

Colonel Blotto game is the set of pairs {μB, μE } such that μB ∈ �B and μE ∈ �E .

Proof The theorem follows directly from Lemmas 10, 11, and 12. 	


Appendix 2: Method of equilibrium strategy construction

Blotto construction

Here we will demonstrate how to construct an equilibrium Blotto strategy from any
continuous CDF whose range is [0, 1] over the domain of b1 within T b

1 .
Let z1 (b1) be any continuous, strictly increasing function over the domain[

hn−1 (E1) , f −1 (E2)
]

such that:

z1 (b1) = 0 i f b1 ≤ hn−1 (E1) (54)

z1 (b1) = 1 i f b1 ≥ f −1 (E2) . (55)

So, z1 is a continuous, strictly increasing function with a range of [0, 1] over the
domain of b1 within T b

1 . We let this represent a CDF of b1 values that Blotto might
play within T b

1 . Now ∀i = 2, . . . , n we iteratively define:

zn

(
h−(n−1) (b1)

)
≡ . . . zi

(
h−(i−1) (b1)

)
. . . ≡ z2

(
h−(2−1) (b1)

)
≡ z1 (b1)

(56)
Each zi represents a CDF over b1 values that Blotto might play within T b

i . Note
that by Eq. 26 the lower and upper bounds of b1 values in �

(
T b

i

)
are hn−i (E1) and

f −1
(

pi−1(E2)
)

respectively. Then, by Eqs. 54, and 56:

zi

(
hn−i (E1)

)
= zi

(
h−(i−1)

(
hn−1 (E1)

))
= z1

(
hn−1 (E1)

)
= 0.

Note that by definition we have that f −1
(

p j (x)
) = h− j

(
f −1 (x)

)
. Therefore, by

Eqs. 55, and 56:

zi

(
f −1

(
pi−1(E2)

))
= zi

(
h−(i−1)

(
f −1 (E2)

))
= z1

(
f −1 (E2)

)
= 1.
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So, given this construction method, zi equals zero at the lower bound of b1 values in
�1

(
T b

i

)
and equals 1 for the upper bound of b1 values in �1

(
T b

i

)
. Also note that all zi

are strictly increasing functions over �1
(
T b

i

)
as h−(i−1) and z1 are strictly increasing

functions. Therefore, each zi is a CDF over b1 values that Blotto might play within
�1

(
T b

i

)
.

Proposition 13 For any z1, the following mixed strategy, μ∗
B , is in �B : Blotto chooses

i ∈ {1, 2, . . . , n} with the probability he chooses any particular i being given by

wn−i∑n−1
j=0w

j
.

He then randomly chooses a b1 within �1
(
T b

i

)
according to the CDF zi . He then

allocates (b1, f (b1)).

Proof This strategy trivially satisfies Property 1b. We now show that such a
strategy satisfies Property 2b. For some i ∈ 1, 2, . . . , n − 1 consider an x ∈
[hn−i (E1), f −1

(
pi−1 (E2)

)] = �1
(
T b

i

)
. By construction, and Eq. 20 μ∗

B

(
j x,i
b

)
=

zi (x) · wn−i∑n−1
j=0w

j
. Note that since under this strategy Blotto always fully expends

his resources, the set of allocations such that b2 ≥ g (x) is equivalent to the set

of allocations such that b1 ≤ f −1 (g (x)) . Therefore, given Eq. 21 μ∗
B

(
kx,i

b

)
=

zi+1
(

f −1 (g (x))
) · wn−i−1∑n−1

j=0w
j
. Note that h−1 (x) = f −1 (g (x)) . Therefore, by con-

struction zi+1
(

f −1 (g (x))
) = zi (x), and μ∗

B

(
j x,i
b

)
= μ∗

B

(
kx,i

b

)
·w. Thus Property

2b is satisfied. 	


Enemy construction

Here we will demonstrate how to construct an equilibrium Enemy strategy from any
continuous CDF whose range is [0, 1] over �1

(
T e

1

)
.

Let v1 (e1) be any continuous, strictly increasing function such that:

v1 (e1) = 0 i f e1 ≤ 0 (57)

v1 (e1) = 1 i f e1 ≥ hn−1 (E1) . (58)

So, v1 is a continuous, strictly increasing function with a range of [0, 1] over the
domain of e1 within T e

1 . We let this represent a CDF of e1 values that Enemy might
play within T e

1 . Now ∀i = 2, . . . , n we iteratively define:

vn

(
h−(n−1) (e1)

)
≡ . . . vi

(
h−(i−1) (e1)

)
. . . ≡ v2

(
h−(2−1) (e1)

)
≡ v1 (e1) (59)
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Note that by Eqs. 28, 30, and 32 the lower and upper bounds of e1 values within T e
i

are f −1
(

pi−2(E2)
)

and hn−i (E1) respectively. Then, by Eqs. 57, and 59:

vi

(
hn−i (E1)

)
= vi

(
h−(i−1)

(
hn−1 (E1)

))
= v1

(
hn−1 (E1)

)
= 1.

Note that by definition we have that f −1
(

p j (x)
) = h− j

(
f −1 (x)

)
. Therefore, by

Eqs. 58, and 59:

vi

(
f −1

(
pi−2(E2)

))
= vi

(
h−(i−2)

(
f −1 (E2)

))
= v1

(
h

(
f −1 (E2)

))
= v1

(
g−1

(
f
(

f −1 (E2)
)))

= v1 (0) = 0.

So, given this construction method, vi equals zero at the lower bound of e1values in
�1

(
T e

i

)
and equals 1 for the upper bound of e1 values in �1

(
T e

i

)
. Also note that all vi

are strictly increasing over �1
(
T e

i

)
as h−(i−1) and v1 are strictly increasing functions.

Therefore, each vi is a CDF over e1 values that Enemy might play within �1
(
T e

i

)
.

Proposition 14 For any v1, the following mixed strategy, μ∗
E , is in �e : Enemy

chooses i ∈ {1, 2, . . . , n} with the probability he chooses any particular i being
given by

wi−1∑n−1
j=0w

j
.

He then randomly chooses a e1 within �1
(
T e

i

)
according to the CDF vi . He then

allocates (e1, g (e1)).

Proof This strategy trivially satisfies Property 1e. We now show that such a
strategy satisfies Property 2e. For some i ∈ 1, 2, . . . , n − 1 consider an x ∈(

f −1
(

pi−1 (E2)
)
, hn−i−1 (E1)

) = �1
(
T e

i+1

)
. 27 By construction, and Eq. 22

μ∗
E

(
j x,i
e

)
= vi+1 (x)· wi∑n−1

j=0w j
. Note that since under this strategy Enemy always fully

expends his resources, the restriction that e2 ≥ f (x) is equivalent to the restriction that

e1 ≤ g−1 ( f (x)) . Therefore, given Eq. 23 μ∗
E

(
kx,i

e

)
= vi

(
g−1 ( f (x))

) · wi−1∑n−1
j=0w

j
.

Note that h (x) = g−1 ( f (x)) . Therefore, by construction

vi+1 (x) = vi+1

(
h−1 (h (x))

)
= vi (h (x)) = vi

(
g−1 ( f (x))

)
,

and μ∗
E

(
j x,i
e

)
= μ∗

E

(
kx,i

e

)
· w. Thus Property 2e is satisfied and μ∗

E ∈ �e. 	


27 For i = n − 1, �1

(
T e

i+1

)
technically equals

(
f −1

(
pi−1 (E2)

)
, hn−i−1 (E1)

]
.
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