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ON “COLONEL BLOTTO” AND ANALOGOUS GAMES*
RICHARD BELLMANY

1. Introduction. In a number of different settings, we encounter the prob-
lem of determining the minimum with respect to the x; and the maximum with
respect to the y; of the function

(1.1) Ry = ky(xy,y1) + ky(x3,y2) + - + kn(xy, yn)
over the region defined by

(1.2)

If the function k; is convex in x; and concave with respect to y;, i = 1,2, ---, N,
then we can assert that

(1.3) min max Ry = max min Ry
fxi} (i} it {x)

and conceive of this optimization problem as an example of a two-person zero-
sum game.

The ““Colonel Blotto™ game [1], [2] is an example of this. In this note, we wish
to indicate the applicability of dynamic programming [3], [4] to the analytic
and computational solution of problems of this nature.

2. Functional equations. In place of (1.2), let the constraint region be

x; 2 0, ixi=x, 0<x< oo,
Q.1) o

y; =0, .;y,:y, 0=y< oo
Write J
(2.2) fa(x, ¥) = min max Ry,

{xi} i)
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where N = 1,2, ---. Then an application of the principle of optimality yields
the recurrence relation

M, y) = min  max [ky(xy,yy) + fy-1(x — Xy, ¥ — yy)]
0SxNSxO0Synsy

2.3) .
= max min [.--],
OsSynsSy OSxnsSx
N = 2, with
filx,y) = min  max [ki(xq, )]
0sx;Sx 0Sy15y
2.4)

= max min [---].
0Sy Sy 0sxSx
One way of obtaining (2.3) is to conceive of the game as a multistage process
with N stages, where (xy, yy) are chosen first, (xy_-;,yy-1) are chosen next,
and so on. The fundamental min-max theorem permits us to permute the mini-
mum and maximum operations as we wish.

3. Homogeneity. A case of some interest is that where each k; is homo-
geneous of degree one, i.e.,

(3.1) ki(tx, sy) = tskyx, y)
for x, y,s,t = 0. It follows then that
(3'2) fN(xa ,V) = ngY,

where gy is independent of x and y. Then (2.3) becomes

(3.3) gy = min max [ky(xy, yv) + gv—1(1 — xx)(1 = yn)l,

0sxy=10syn=1

a relation which permits an explicit analytic solution in some cases. We shall
omit the associated max-min relation.

If we have only
(3.4) kitx, ty) = tkix, y),

as in [2], then (2.3) can be replaced by a recurrence relation for a function of one
variable, say fy(1,y) or fy(x,1). This can lead to analytic and computational
simplification, To obtain this, we write

y
fN(xa y) = fo( 1, ;)
(3.5)
X
= yf (_’ 1) .
"y
Thus, for example, setting z = y/x, we obtain
0<xysS1 0Synsz 1= xy

(36) fu(l,z)= min max [kN<xN,y~)+<1—me-l(l,——z‘yN)],

with a corresponding equation for fy(z, 1).
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4. Computational aspects. A disadvantage of this last recurrence equation
as opposed to (2.2) lies in the expanding grid in the z-variable. If fy(1, z) is desired
in the interval [0, z,], we may have to compute fy_,(1, z) in a very much larger
interval due to the presence of the term (z — yy)/(1 — xy) on the right-hand
side of (3.6).

To avoid this difficulty, we use the relation in (3.6) for 0 < z < 1 and
the corresponding relation for fy(z,1) also in 0 < z £ 1. Thus, by calculating
the two sequences { fy(l, z)}, { fa(z, 1)}, we can restrict our attention to the fixed
interval 0 < z < 1; see the use of the same device in [4, p. 239].
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