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Abstract In the Colonel Blotto game, two players simultaneously distribute forces
across n battlefields. Within each battlefield, the player that allocates the higher
level of force wins. The payoff of the game is the proportion of wins on the indi-
vidual battlefields. An equilibrium of the Colonel Blotto game is a pair of n-variate
distributions. This paper characterizes the unique equilibrium payoffs for all (sym-
metric and asymmetric) configurations of the players’ aggregate levels of force,
characterizes the complete set of equilibrium univariate marginal distributions for
most of these configurations, and constructs entirely new and novel equilibrium
n-variate distributions.
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1 Introduction

The Colonel Blotto game, which originates with Borel (1921), is a constant-sum
game involving two players, A and B, and n independent battlefields. A has X 4
units of force to distribute among the battlefields, and B has X units. Each player
must distribute their forces without knowing the opponent’s distribution. If A sends
xk units and B sends x% units to the kth battlefield, the player who provides the
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higher level of force wins battlefield k. The payoff for the whole game is the propor-
tion of the wins on the individual battlefields. An equilibrium' of this game is a pair
of n-variate distributions, and the first solutions appear in Borel and Ville (1938),
who solve the problem for the case of n = 3 and X4 = Xp. In a 1950 RAND
research memorandum Gross and Wagner extend these solutions to allow for any
finite n > 3, but still require that the players’ are symmetric in their aggregate
levels of force, X4 = Xp.

Although the Colonel Blotto game captured the attention of some of the great-
est operations researchers of recent generations (see, for instance, Bellman 1969;
Blackett 1954, 1958; Shubik and Weber 1981; Tukey 1949) heretofore, the techni-
cal difficulty of this problem has restricted the scope of examination to a simplified
discrete Colonel Blotto game and symmetric configurations of the players’ aggre-
gate levels of force in the continuous Colonel Blotto game.? This paper extends the
literature on the continuous Colonel Blotto game by characterizing the unique equi-
librium payoffs for all symmetric and asymmetric configurations of the players’
aggregate levels of force, characterizing the complete set of equilibrium univariate
marginal distributions for most of these configurations, and constructing entirely
new and novel equilibrium n-variate distributions.*

Gross and Wagner’s (1950) generalizations of Borel’s two solutions to the
Colonel Blotto game with symmetric forces exploit properties of regular n-gons.>
However, forn > 3 the use of regular n-gons severely limits the set of n-tuples from
which the support of equilibrium n-variate distributions can be formed. Further-
more, the equilibrium n-variate distributions of the game with asymmetric forces
examined in this paper cannot be constructed by distributing mass on the surface
of regular n-gons. This paper establishes entirely new and novel solutions which
do not use regular n-gons.

Since the appearance of the solutions to the symmetric case, it has been an
open question whether uniform univariate marginal distributions are a necessary
condition for equilibrium.® We show that the answer to this question is yes. To char-
acterize the equilibrium univariate marginal distributions, we utilize n-copulas, the
functions that map univariate marginal distributions into joint distributions, to sep-
arate the players’ best response correspondences into a set of univariate marginal
distributions and a mapping of this set into an n-variate distribution.” Additionally,

! Throughout this paper the term “equilibrium” refers to Nash equilibrium although, since the
game is constant sum, these are also optimal strategies.

2 In Borel’s course on probability at the University of Paris (1936-1937) two solutions to this
problem were given. These are commonly referred to as the disk and hexagonal solutions and
were published in Borel and Ville (1938).

3 Gross and Wagner (1950) solve the Colonel Blotto game with asymmetric forces in the
special case of n = 2.

4 In particular for ﬁ < % < 1, this paper completely characterizes the equilibrium univar-
iate marginal distributions. For the case % < % < ﬁ this paper provides an equilibrium and

the unique equilibrium payoffs. The remaining case % < % is trivial.

3 In particular, the sum of the perpendiculars from any point in a regular n-gon to the sides of
the regular n-gon is equal to n times the inradius, and letting s be the side length and r be the
inradius, s = 2r tan Z- for all regular n-gons.

6 See for example Gross and Wagner (1950), Kvasov (2005), and Laslier and Picard (2002)
who discuss this issue.

7 See Nelson (1999) for an introduction to copulas.
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both Borel’s solutions and Gross and Wagner’s (1950) generalizations rely on the
connectedness of the support. The equilibrium rn-variate distributions examined in
this paper do not rely on the connectedness of the support, and this paper highlights
the fact that the connectedness (or disconnectedness) of the support is a property
of the n-copula.

The Colonel Blotto game is a fundamental model of strategic resource alloca-
tion in multiple dimensions. Strategic resource allocation in a single dimension,
such as the all-pay auction, has been widely used in economics to model contests
such as political campaigns, political lobbying, research and development races,
litigation and a number of other applications. Most if not all of these applica-
tions have multiple dimension analogs. In addition, the Colonel Blotto game has
recently been used to analyze electoral competition over redistribution of a fixed
budget (Laslier 2002; Laslier and Picard 2002). In the model of redistributive poli-
tics candidates simultaneously announce how they will allocate a budget, if elected,
by making binding promises to each voter. Each voter votes for the candidate offer-
ing the higher level of utility, and each candidate’s payoff is the vote share that
they receive. The Colonel Blotto game with asymmetric forces, characterized in
this paper, corresponds directly to a model of redistributive politics in which one
candidate has a valence advantage.® Also related is Kvasov (2005), who examines
a non-constant-sum version of the Colonel Blotto game in which the allocation of
force is costly. That paper alludes to a connection between the standard (constant-
sum) Colonel Blotto game with symmetric forces and a non-constant-sum version
of the Colonel Blotto game with symmetric forces. This paper formally estab-
lishes the connection between the two games for all symmetric and asymmetric
configurations of the players’ aggregate levels of force.

Section 2 presents the model. Section 3 completely characterizes the equi-
librium univariate marginal distributions of the Colonel Blotto game for most of
the parameter space. Using a new method for constructing equilibrium r-variate
distributions, Section 4 demonstrates the existence of n-copulas with the neces-
sary properties. Section 4 also provides an equilibrium and the unique equilibrium
payoffs for the remaining subset of the parameter space. Section 5 concludes.

2 The model

Players Two players, A and B, simultaneously allocate their forces X4 and Xp,
respectively, across a finite number, n > 3, of homogeneous battlefields.’ Each bat-
tlefield j has a payoff of % Each player’s payoff is the sum of the payoffs across
all of the battlefields or, equivalently, the proportion of the battlefields to which
the player sends a higher level of force. Let X4 < Xp. In the case that the players
allocate the same level of force to a battlefield, it is assumed that player B wins
that battlefield. The specification of the tie-breaking rule does not affect the results

8 See for example Sahuguet and Persico (2006) who examine a related model of redistributive
politics, based on Myerson’s (1993) model of redistributive politics with a continuum of voters,
in which one candidate has a valence advantage.

9 The case of n = 2, with symmetric and asymmetric forces, is discussed by Gross and Wagner
(1950). Moving from n = 2 to n > 3 greatly enlarges the space of feasible n-variate distribution
functions, and the equilibrium strategies examined in this paper differ dramatically from the case
of n =2.
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as long as %X B < X 4. However, in the case that %X B > Xa, this specification
of the tie-breaking rule avoids the need to have player B allocate a level of force
arbitrarily close to, but above, player A’s maximal allocation of force, X 4. A range
of tie-breaking rules yield similar results. The force allocated to each battlefield
must be nonnegative. For player i, the set of feasible allocations of force across the
n battlefields is denoted by

n
B, = xeRmfo < X;
=1

Strategies It is well known that for %X B < X4 < Xp there is no pure strategy

equilibrium for this class of games.'® A mixed strategy, which we term a distribu-
tion of force, for player i is an n-variate distribution function P; : R% — [0, 1]
with support contained in the set of player i’s feasible allocations of force, *8;, and
with one-dimensional marginal distribution functions {Fij } , one univari-

je{l,...,n}
ate marginal distribution function for each battlefield j. The n-tuple of player i’s

allocation of forces across the n battlefields is a random n-tuple drawn from the
n-variate distribution function P; with the set of univariate marginal distribution

n
functions { F/ } .
j=1

The Colonel Blotto game The Colonel Blotto game, which we label
CB{Xa, Xp,n},

is the one-shot game in which players compete by simultaneously announcing dis-
tributions of force subject to their budget constraints, each battlefield is won by the
player that provides the higher allocation of force on that battlefield (where player
B wins the battlefield in the case of a tie), and players’ payoffs equal the proportion
of battles won.

3 Optimal univariate marginal distributions
We begin with the case of L < X2 <1 The remaining case Lo X L jg
. . n-1 Xp . oqe . n .XB . n—1
addressed in section 4. To completely characterize the equilibrium univariate mar-
1

ginal distribution functions for — =< ig—z < 1, we utilize n-copulas, the functions

that map univariate marginal distribution functions into joint distribution functions.

Definition 1 Ler I denote the unit interval [0, 1]. An n-copula is a function C from
I" to I such that

1. For allx € I", C (x) = 0 if at least one coordinate of x is 0, and if all
coordinates of x are 1 except xi, then C (x) = xy.

10 In the case that %X B > Xa, there, trivially, exists a pure strategy equilibrium, and player B
wins all of the battlefields.
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2. Foreveryx,y € I" such that x;, < yy forallk € {1, ... ,n}, the C-volume of
the n-box [x1, y1] X ... X [Xu, Yul,
Ve ([x.y]) = Ay Ay - AZAYC @)

Xn — Xn—1

where

A;:C(t) =C(t1, oo s 1y Vi tkt1s - -« » In)
—C(t1, oo Bem1s Xpes gty -+ Bn)

is greater than or equal to 0.

Given the definition of an n-copula, we can state the crucial property of n-cop-
ulas that we will use.

Theorem 1 (Sklar’s Theorem in n-dimensions) Let H be an n-variate distri-
bution function with univariate marginal distribution functions Fi, F, ... , F,.
Then, there exists an n-copula C such that for all x € R",

Hxy,...,x))=CF1(x1),...,F,(x3)). (1)

Conversely, if C is an n-copula and F\, F;, ... , F, are univariate distribution
functions, then the function H defined by equation (1) is an n-variate distribution
function with univariate marginal distribution functions Fy, F», ... , F,.

The proof of the two-dimensional version of Sklar’s theorem is due to Sklar (1959).
For a proof of the n-dimensional version see Schweizer and Sklar (1983).

One additional definition that will be used throughout the paper is the support
of an n-variate distribution function.

Definition 2 The support of an n-variate distribution function, H, is the comple-
ment of the union of all open sets of R" with H-volume zero.

We now show that the univariate marginal distribution functions and the n-cop-
ula are separate components of the players’ best response correspondences.

Proposition 1 In the game CB {X 4, X, n}, for a given P_;, with the set of uni-

. n
variate marginal distribution functions {Fﬁi }j:1, the Lagrangian of each player
i’s optimization problem'" can be written as

n

max A; [/OO [iFZ,. (x)—x:| dFJ] + M X, 2)
1 0

{F.f}" — ni;
i j=

where the set of univariate marginal distribution functions {Flj } satisfy the
1

n

. . J: .
constraint that there exists an n-copula, C, such that the support of the n-variate
distribution C (le (xl) Y 4 (x")) is contained in B;.

1" This formulation assumes that for all battlefields the players’ univariate marginal distribu-
tions do not place an atom on the same value. However, it is straightforward to incorporate the
tie-breaking rule into the Lagrangian of each player’s optimization problem.
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Proof In the game CB {X 4, X, n}, for a given P_;, each player i maximizes the
sum of the expected payoffs across the individual battlefields

1. ,
mgx;/o ;Fii(x)dﬂj

subject to the constraint that the support of the distribution of force P; is contained
in SB,’ .

For a given P;, let G; denote the distribution function of Z?zlxj

i' and
recall that G; (z) is the P;-volume over the region {x e RY| Z?:l x) < z]. Given
that the P;-volume over the region { x € RY| Z;': (x> X ,-} is 0, it follows that

Ep (Z,;:I le> < X;. Furthermore, Ep. (Zf;:] xlj) = X, if and only if

0 ifz<X;

C@O=11 s x

Recalling that Ep, (Zj’:l x/ ) = >y Ei (x), it follows that the restriction

on the support of the joint distribution, P;, implicitly places a restriction on the
set of univariate marginal distributions. In particular, Z;’.Zl EL; (x) < X; which
holds with equality if and only if the budget is spent with probability 1. Finally,
from Theorem 1 the n-variate distribution function P; is equivalent to the set of

N
univariate marginal distribution functions {Fl/ ] ~combined with an appropriate

j=1
n-copula, C. The result follows directly. O

Note that from Theorem 1 an n-variate distribution function is equivalent to a
. n
set of univariate marginal distribution functions, { Fi] } ,and ann-copula, C. This
j=1

in combination with the payoff function of this class of games allows us to separate
the players’ best response correspondences into the set of univariate marginal dis-
tribution functions and n-copula components. Moreover, contrary to the concerns
stated by Gross and Wagner (1950), the existence of equilibrium n-variate distri-
bution functions without a connected support is not problematic.'> Connectedness
of the support is a property that arises from the n-copula. Proposition 1 makes no
requirement on the connectedness of the resulting n-variate distribution function.
In particular, the only requirement on the set of feasible n-copulas is that given a set
n

of optimal univariate marginal distribution functions, {F J } ~, the combination

1 ‘/:1

of the n-copula and the set of univariate marginal distribution functions must have
support contained in B;.

12 For example consider the Colonel Blotto game CB {1, 1, 3}. It is straightforward to estab-
1

lish that the trivariate distribution with support that uniformly places mass 5 on each of the

two following line segments (0, % %) to (% % 0) and (0, % %) to (% 0, %) is an equilibrium
trivariate distribution that has a disconnected support. See Section 4 for details. After this article
was accepted for publication, I learned that this equilibrium in the symmetric case was derived

independently by Weinstein (2005), who also examines majority Blotto games.



The Colonel Blotto game 7

We begin by completely characterizing the set of equilibrium univariate mar-

ginal distribution functions for ﬁ < §—2 < 1 and then move on to constructing

sufficient n-copulas. Theorem 2 examines the case of % < §—2 < 1 and Theo-

rem 3 examines the case of ﬁ < X < % The remaining parameter range,

—= XB
% < §—2 < ﬁ, is addressed in Section 4.'3 In this parameter range the equilib-
rium univariate marginal distributions differ dramatically from those examined in

this section.

Theorem 2 Let X 4, Xp, and n > 3 satisfy % < §—2 < 1. The unique Nash equi-
librium univariate marginal distribution functions of the game CB {X 4, Xp, n}
are for each player to allocate its forces according to the following univariate

distribution functions. For player A

Vie(l,....n) F/{(x)=(1—§—g>+;;8 (§—) x € [0,2x,].

Similarly for player B

Vjiell,....n) Fpn =2 xel0 2xg].

=1

The expected payoff for player A is 2};—/‘8, and the expected payoff for player B is
— Xa
2X5"

The formal proof of Theorem 2 is given in Appendix A. However, it is useful to
provide some intuition for the uniqueness of the univariate marginal distribution
functions.

Beginning with the characterization of n independent and identical simulta-

neous two-bidder all-pay auctions with complete information, let Fij represent

bidder i’s distribution of bids for auction j, and vij represent the value of auction
j for bidder i. Each bidder i’s problem is

n

max Z/OO [vijFii (x)—x]dFij.
0

L
i j=1

Since each auction is independent, we can apply the equilibrium characterization
of the single all-pay auction with complete information (see Hillman and Riley
1989; Baye, Kovenock, and de Vries 1996). Thus, there exists a unique equilib-

rium distribution function Fij for each auction j. For each auction j and bidder i
we have the following three cases:

ifvij>vjA Fij(x):% xe[O,vj.]

—i v

ifv.j:vj. Fij(x):f xEI:O,Ul-]]

1 —1

J
i

. . . i
i <vl, B = (%) +

|
=
m
| —
A
h-ck‘
JE—

<
=

—i i

13 The case of %XB > X4 is trivial.
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Now consider a Colonel Blotto game C B {X4, X, n}. From equation (2) in
Proposition 1, each player’s Lagrangian can be written as

n

max A; [/w[%w (x)—x:|dF’]+kX
{I:ij}le 0

j=1

subject to the constraint that there exists an n-copula, C, such that the support of
the n-variate distribution C (F}' (x'), ..., F/ (x")) is contained in ;. Assuming
that a sufficient n-copula exists, Appendix A establishes a one-to-one correspon-
dence between the set of equilibrium univariate marginal distribution functions and
the equilibrium distribution functions of bids from a unique set of » independent
and identical simultaneous two-bidder all-pay auctions. It is important to note the
role of the Lagrange multipliers in this correspondence In particular, the Lagrange
multipliers establish a shadow value, —, for the independent and identical simul-
taneous all-pay auctions. Appendix A estabhshes the uniqueness of the Lagrange
multipliers.

It is also important to note how the constraint on the set of feasible n-cop-
ulas affects the correspondence between the Colonel Blotto game and a unique
set of independent and identical simultaneous all-pay auctions. In particular, a
potential issue that arises is whether this additional constraint leads to equilibria of
the Colonel Blotto game which do not have univariate marginal distributions that
correspond to the equilibrium distributions of bids from a set of independent and
identical simultaneous all-pay auctions.'* However, if a sufficient n-copula exists
this constraint places no restrictions on the set of potential univariate marginal dis-
tribution functions, but rather the set of univariate marginal distributions places a
constraint on the set of feasible n-copulas. Section 4, then, establishes the existence
of sufficient n-copulas. Thus, the equilibrium univariate marginal distributions of
the Colonel Blotto game are equivalent to the equilibrium distributions of bids from
a unique set of independent and identical simultaneous all-pay auctions. However,
the restriction on the set of feasible n-copulas in the Colonel Blotto game implies
that the set of equilibrium n-variate distributions for the game forms a strict subset
of the set of all n-variate distribution functions with univariate marginal distribu-
tions that coincide with the equilibrium distributions of the corresponding set of
all-pay auctions.

The following Theorem addresses the case of ﬁ < §—2 < %
Theorem 3 Ler X 4, X, and n > 3 satisfy ﬁ < §—2 2 The unique Nash equi-

librium univariate marginal distribution functions of the game CB{X 4, Xp,n}
are for each player to allocate its forces as follows:
For player A

Viell,....n) Fy)=(1-2)++(3) xel0 Xal.
Similarly for player B
2x(Xa ——)

Viefl,....n} Fix)={—mp *<€l0.Xa),
1 x> Xa.

14 Thanks to an anonymous referee for this remark.
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The expected payoff for player A is % — nzz X5 and the expected payoff for player
Bisl— 24 Xs
n n2Xy"

The formal proof of Theorem 3 is similar to the proof contained in Appendix A
for Theorem 2, and is thus omitted. The intuition for this parameter range follows
from a one-to-one correspondence with a unique set of n independent and identical
simultaneous two-bidder all-pay auctions in which player A has a cap of X4 on
bids. The characterization of the all-pay auction in which only one bidder faces a
cap on bids follows along lines similar to the all-pay auction with a symmetric cap
on bids due to Che and Gale (1998).

4 Existence of sufficient n-copulas

Subject to the constraint that there exist sufficient n-copulas, Theorems 2 and 3
characterize the unique sets of equilibrium univariate marginal distribution func-
tions for 2 < §—2 < 1 and L < §—;} < ,2 respectively. There is no known
existence result for an n- copula C, with the necessary property that, given a set
of univariate marginal distribution functions {F / } , the support of the n-variate
j=1
distribution C (F! (x'), ..., F (x)) is contained in {x eRLIY_ X/ = Xi}.
However from Theorem 1, it is sufficient to show that for each player there exists
an n-variate distribution function that allocates all of that player’s forces with
probability 1 and that provides the unique sets of equilibrium univariate marginal
distribution functions characterized in Theorems 2 and 3. Much of this section is
devoted to a proof of the existence of such n-variate distribu}gions This section
A

concludes by addressing the remaining parameter range, ; < ¥* < ;1.

Theorem 4 For each unique set of equilibrium univariate marginal distribution

functions, { F; i } , characterized in Theorems 2 and 3, there exists an n-copula, C,
j=l1

such that the support of the n-variate distribution function C (F' (x') , ..., FI' (x"))
is contained in {x eRLID, x/ = X,»}.

The discussion that follows establishes an entirely new and novel way to construct
sufficient n-variate distribution functions for the symmetric and most asymmetric
configurations of force in the Colonel Blotto game. Recall that the ceiling function
[x] gives the smallest integer greater than or equal to x, and that the floor function
x| gives the largest integer less than or equal to x. We begin with the case that
2 < §—2 < 1 as in Theorem 2. This proof is for player A. The proof for player B

follows directly as the special case of player A where §—2 = 1. The construction of

the n-variate distribution function is outlined as follows:

1. Player A selects n — ”;(BA of the battlefields, each battlefield chosen with

equal probability, and provides zero forces to those battlefields.

21 [ ] — | 22 | = 1 then:
B

nXy,

(a) Player A selects L o J of the remaining {"XA] battlefields, each of the

battlefields chosen with equal probability.
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(b) On the randomly selected L"XAJ battlefields, player A randomizes uni-

formly on [0, 2X 5] on each of these battlefields such that, letting z be the

sum of player A’s allocations of force on these L”X A J battlefields and G (z)
be the distribution of z,
—(X —%X 1 nX +nXA
o= | OB IR g, 2 x,).
1 7> Xa.

The precise construction generating G (z) is discussed in detail directly
following this outline.

(c) Defining the allocation of force on the remaining battlefield as X — z,

it follows directly that the univariate distribution of force on the remain-

ing battlefield places mass ’7";(; —‘ - % at 0 and randomizes uniformly on

(O, ;X B] with the remaining mass. In addition, for all realizations, x € R” ,
of this strategy >_, x/ = X, with probability 1.

(d) There are ,C [m W qu C, ways of dividing n battlefields into disjoint

Xp Xp

subsets such that n — (”}f A —| battlefields receive zero forces with probability

1, ”; 4 | battlefields involve randomizations of force as in 2(b) above, and

one battlefield involves randomization as in 2(c). The n-variate dlstrlbutlon
function formed by placing probability [,,C Pxﬂ [,,XA w C1]7! on each of

Xp Xp
these n-variate distribution functions has univariate marginal distribution

functions which each have a mass point of (1 - ﬂ) at 0 and randomize

Xp
uniformly on (O, %X B].

3 1f {XW - [XJ — 0, then:

Xp

(a) On the remaining ”XA battlefields, player A randomizes uniformly on

[0, =X B] on each of these battlefields such that, letting z be the sum of
player A’s allocations of force on these battlefields and G (z) be the distri-
bution of z,

0 Z<XA,
co={} I3

The precise construction generating G (z) is discussed in detail directly
following this outline.

(b) There are ,C.x, ways of dividing the n battlefields into disjoint subsets
Xp

such that n — % battlefields receive zero forces with probability 1 and
”XA battlefields involve randomizations of force as in 3(a). The n-variate
dlstrlbutlon function formed by placing probability [,C 3 17! on each of
these n-variate distribution functions has univariate margmal distribution
functions which each have a mass point of ( - X_B) at 0 and randomize

uniformly on (0, %X B]-
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The pivotal steps in this construction are points 2 (b) and 3 (a), and we will now
show that there exist such multivariate distribution functions. Beginning with the
case that 2 < §A < 3 from points 2 and 3 player A allocates force to at least
two and not more than three battlefields, which we label battlefields 1, 2, and 3.
Let x; denote the allocation of force to battlefield i € {1, 2, 3}, z = x, + x3, and
x1 = X4 — z. Consider the support of a bivariate distribution function, F, for x,
and x3 which uniformly places mass (X A/ %X B) — 1 on each of the two following

line segments:

(3Xp, X4 — 2Xp) to (X4 — 2X5,0),
(XA —%XB,%XB) to (0, XA— %XB),

and uniformly places the remaining mass, 3 — (nX 4/X3p), on the line segment
(%XB, X4 — %XB) to (XA — %XB, %XB)

This support is shown in Figure 1.
In the expression for this bivariate distribution function we will use the follow-
ing notation:

2 4x —X
RE: {(x0) € [0, 2X6] oo > 255500 4+ X0 — 2Xs
2 x X
{(xz,xz) € [0 %XB] [x3 > . BzXsz—i-XA—gXB}
R3: {(xz,x%) e [0, %XB]Z X2 4+ x3 > XA}
R4: {2, 1) € [0, 24T | (2, x3) ¢ R1UR2URS3]
Z3
2Xp 1
Xa—2Xp |

T } T2
Xa—2X 2x
A n B B

Fig. 1 Support of the bivariate distribution F'
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The bivariate distribution function for x;, x3 is given by

%)6738 (XZ, X3) e R1
{;B (XQ, X3) e R2
F (x2,x3) = % -1 (x2,x3) € R3
max{xz XA+ - X5, 0}+max{X3 XA+ X3, 0} (x X ) c R4
1y |:’le XA] 25 A3
n Bl 2y
A~ XB

X2

2 XB
F (2X B x3) = 52-. Thus, F provides the necessary univariate margmal dis-

tributions for battleﬁelds 2 and 3.
It % = X_B’ then player A randomizes on only 2 battlefields and the support

The univariate marginal distributions are given by F (x2, 2Xj) = and

of this bivariate distribution function F collapses to the line segment (%X B 0) to
(0, 2XB) i.e. the supportis {1, x2) € REJxy + x2 = X4}

If = 2 X—z < ; then, from the support of the bivariate distribution function F,
it follows that

G(z>=<<k(}(§‘%)(%—2) z€[Xa—2Xp. Xa)
1

2> Xy

Since x; = X4 — xp — x3, the univariate marginal distribution for battleﬁeld 1

places an atom of size 3 — ”;A at 0 and randomizes uniformly on (O =X B] with

the remaining mass, and for all realizations of (xi, xp, x3), X1 + X2 + x3 = X4
with probability 1. Equivalently, the combination of x; = X4 — z with the bivari-
ate distribution F for x, and x5 defines a trivariate distribution function, F’, with
support that uniformly places mass (X a/ %X B) — 1 on each of the two following
line segments:

(0,2Xp, X4 — 2Xp) to (3Xp, X4 — 2X5,0),
(0, X4 — 2Xp,2Xp) to (2X5,0, X4 — 2X3),

and uniformly places the remaining mass, 3 — (nX4/Xp), on the line segment
(0, %XB, XA — %XB) to (O, XA — —XB, nXB)

The projections of this support onto the x,, x3-, x3, x1-, and x3, x-planes are given
in Figure 2.

15 It should be pointed out that in the case that % = ;—2, the bivariate distribution function F is
exactly the Fréchet—Hoeffding lower bound two-copula,

W =max {F (x;) + F (x) — 1,0}

combined with F (x;) = ;‘)QB for x; € [0, %XB] andi =1, 2.
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€3
2xXp +
Xi—2Xpn -
A— SAB
} } 2
2 2
XA*;XB ;XB
T
2 |
HXB
. : z9 (or x3)
2 2
XA—;XB ;XB

Fig. 2 Projections of the support of the trivariate distribution F’ onto the x,, x3—, x5, x; —, and
X3, X1 — planes

It §—2 = %, then player A randomizes on three battlefields according to the
trivariate distribution function F’ which has support that for ;—;} = % uniformly
1

places mass 5 on each of the two following line segments:

(0.2 X0, 1) 0 (X 12 0).
(O, %XB, %XB) to (%XB, 0, %XB) .

From the preceding discussion it is clear that each of the three univariate mar-
ginal distribution functions randomizes uniformly on [0, %X B] and that for all
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realizations of (x|, xz, x3), xX; + x2 + x3 = X 4 with probability 1. Furthermore, it
is also clear that this support is not a connected set.

Similarly, for % < ;—2 < % player A allocates force to at least three and not
more than four battlefields. In this case, let z = x» + x3 + x4 and x; = X4 — 2.
Consider the support of the trivariate distribution function, F, for x,, x3, and x4
which uniformly places mass 2 — (X A/ %X B) on each of the two following line
segments:

(0, %XB, Xa— %XB) to (%XB, X4 — %XB,O) s
(0, X4 —2Xp, 2Xp) 0 (3X5,0, X4 — 2X5),

and uniformly places mass (X a/ %X B) — (3/2) on each of the two following line
segments:

(0,0, XA — %XB) to (%XB,XA - %XB,O),
(0, XA—,%XB,O) to (%XB,O, X4 — %XB)

This support is shown in Figure 3.

Given this support, it is straightforward to establish that each of the three univar-
iate marginal distribution functions randomizes uniformly on [0, %X B] . In addition,
this trivariate distribution function has the property that the distribution of z places
an atom of size 4 — ";(BA at X 4 and randomizes uniformly on [X4 — 2X, X,) with
the remaining mass. Since at every point on the support x| + x; + x3 + x4 = Xa,
it follows directly that the univariate marginal distribution on battlefield 1 places
an atom of size 4 — % at 0 and randomizes uniformly on (0, %X B] with the

remaining mass.

€3
2
7 XB
X4 — nXB B
T2
2
7 XB
2
Xa— ;XB
EXB

i ™

Fig. 3 Support of the trivariate distribution F
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Since we can always use independent combinations of the bivariate and trivar-
iate distributions used to establish that points 2 (b) and 3 (a) hold for % < §—2 <3

n 9
the remaining cases, % < ;(—2 < 1, follow directly. For example, in the case that
Xy _2 3

% < §—; < %itis clear that% <fH-5= =. Thus, player A can independently use

the construction in 3(a) of the outline for §—2 = ’% and the construction in 2(b) of the

outline for % < §—2 < % In this case, player A randomly selects n — 5 battlefields
which each receive zero force and breaking the remaining five battlefields into a
set of two battlefields and a set of three battlefields, independently randomizes on
these two disjoint subsets as described above. Since the bivariate and trivariate
distribution functions are independent it is straightforward to show that the support

across all five battlefields is contained in {x e R3| Zle Xi = Xa } In general,

for all % < §—2 < 1 there exist combinations of independent bi- and trivariate

distribution functions to establish that points 2 (b) and 3 (a) hold.

We now examine the case that ﬁ < % < % as in Theorem 3. The existence
of a sufficient n-variate distribution for player A in this parameter range is a special
case of the Theorem 2 parameter range when X4 = %X . This proof is for player
B. The construction of the n-variate distribution function is outlined as follows:

1. Player B selects VXLABJ — n of the battlefields, each battlefield chosen with

equal probability, and provides a force of X 4 to each of those battlefields.

2. If ’VZXB—‘ - L%J = 1, then:
A

(a) Player B selects 2n — 2;( 5 | of the remaining 2n — VX BJ battlefields, each

of the battlefields chosen with equal probability.

(b) Ontherandomly selected 2n — [%f—l battlefields, player B randomizes uni-
formly on [0, X 4] on each of the battlefields such that, letting z be the sum
of player B’s allocations of force on all n — 1 of the battlefields addressed
in 2(a) and 2(b) and G (z) be the distribution of z,

_ Z—XB 2XB 2XB
co=1+(50) (- 5+ |5 )

for z € [Xp — X4, Xp]. The precise construction of G (z) is given in detail
directly following this outline.
(c) Defining the allocation of force on the remaining battlefield as Xp — z, it
follows directly that the univariate distribution of force on the remaining
2XB _ szg

battlefield places mass J at X 4 and randomizes uniformly on

[0, X 4) with the remalnmg mass. In addition for all realizations, x € R},
of this strategy >_, x/ = X with probability 1.
(d) There are ,C (2”_L 25 J) X <2n szB J) C, ways of dividing n battlefields into

disjoint subsets such that 2XAB — n battlefields receive X4 forces with

probability 1, 2n — ’72X . —‘ battlefields involve randomizations of force as in

2(b), and one battlefield involves randomization as in 2(c). The n-variate dis-
tribution function formed by placing probability [,,C (2'!7 vaiﬁ J) X (Znitzxﬁ J)
Xa

XA
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C117 ! on each of these n-variate distribution functions has univariate mar-

2
ginal distribution functions which each have a mass point of ”;i £ —lat Xy
and randomize uniformly on [0, X 4).

3. I l”‘sl - VLJ — 0, then:

Xa
(a) On the remaining 2n — 2X =>£ battlefields, player B randomizes uniformly on
[0, X 4] on each of these battleﬁelds such that, letting z be the sum of player
B’s allocation of force on all of the battlefields and G (z) be the distribution
of z,

0 Z<XB,
G(Z):{1 2> Xp.

The precise construction of G (z) is given in detail directly following this
outline.
(b) There are ,C ( zxﬂ) ways of dividing the n battlefields into disjoint sub-
Xa

sets such that QXB

— n battlefields receive X 4 forces with probability 1 and
2n — 2?;‘ battleﬁelds involve randomizations of force as in 3(a). The n-
variate distribution function formed by placing probability [,C (2}1— o )]*l
on each of these n-variate distribution functions has univariate marginal

—l) at X4

2
N . . . 2y
distribution functions which each have a mass point of (”X z
and randomize uniformly on [0, X 4).

The pivotal steps in this construction are, again, points 2 (b) and 3 (a), and we will
now show that there exist such multivariate distribution functions. In fact these
multivariate distributions are quite similar to those used for the Theorem 2 param-
eter range. We will, thus, only provide the supports of the bivariate and trivariate
distributions that establish that points 2 (b) and 3 (a) hold. Beginning with the case
thatn — 3 < %(LAB —n < n — 2 (or equivalently an1 < ))g—g < nlé)’ from points
2 and 3 player B allocates a force of X4 to at least n — 3 and not more than
n — 2 battlefields. Given that n — 3 battlefields have received a force of X4, for
the three remaining battlefields let x; denote the allocation of force to battlefield
i € {1, 2, 3}. Consider the support of a trivariate distribution function for x, x, x3
which uniformly places mass n — 1 — (X 5/ X 4) on each of the two following line
segments:

(0, X4, Xp—Xa(n—2))to (Xa, Xp —Xa(n—2),0),
(Oa XB - XA (n - 2) 5 XA) to (XAa 07 XB - XA (n - 2))

and uniformly places the remaining mass, (2X g/ X 4) —2n + 3, on the line segment
(X4,0,Xp —Xa(n—2))to (Xa, Xp—Xa(n—2),0).

This support is shown in Figure 4.

Given this support, it is straightforward to establish that the univariate marginal
distribution functions on battlefields 2 and 3 randomize uniformly on [0, X 4] and
that the univariate marginal distribution function for battlefield 1 places an atom of
size 2—A —2n + 3 at X4 and randomizes uniformly on [0, X 4) with the remaining
mass.
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T2

Xa

Xp— Xaph—2) +

z1
X4
Xp—Xa(n—2)
Xa
Fig. 4 Support of the trivariate distribution F
Similarly, forn—4 < 2XB —n<n=3 (orequlvalently < §—2 < nlj)player

B allocates a force of X 4 to at least n —4 and not more than n — 3 battlefields. Given
that n —4 battlefields have received a force of X 4, for the four remaining battlefields
let x; denote the allocation of force to battlefield i € {1,2,3,4},z = x2 +x3 + x4
and x; = Xp — 7/ — X4 (n — 4). Consider the support of a trivariate distribution
function for x,, x3, x4 which uniformly places mass 2 + (X /X 4) — n on each of
the two following line segments:

(0, X4, Xp—Xa(n—=2))t0 (X4, Xp—Xs(n-2),0),
0,Xp—Xa(n—2),X4)10(X4,0,Xp— X4 (n—2))

and uniformly places mass n — (Xp/X4) — (3/2) on each of the two following
line segments:

0, Xa, Xp—Xa(n—2))to (X, Xp—Xa(n—2),X4),
0, Xp —Xa(n—2), Xs) t0(Xa, Xa, Xp— Xu(n—2)).

This support is shown in Figure 5.

Given this support, it is straightforward to establish that each of the three univar-
iate marginal distribution functions randomizes uniformly on [0, X 4]. In addition,
this trivariate dlstrlbutlon function has the property that the distribution of z’ places
an atom of size 4 + —2non Xp — X4 (n — 3) and randomizes uniformly on
(Xp—Xa(n—3), XB — X4 (n — 4)] with the remaining mass. Since at every
point on the support x; + x, + x3 + x4 = Xp — (n — 4) X4, it follows directly
that the univariate marginal distribution on battlefield 1 places an atom of size
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T3

Xa

X} —XA(TL—Q) T

T2

Xa
Za

Fig. 5 Support of the trivariate distribution F

4 + 2}5—3 — 2n at X4 and randomizes uniformly on [0, X 4) with the remaining
mass.

Since we can always use independent combinations of the bivariate and tri-
variate distributions used to establish that points 2 (b) and 3 (a) hold forn — 4 <
zxﬂ —n < n — 2, the remaining cases, 0 < ZX—B —n < n — 4, follow directly.

A A

In the remaining case that % < §—2 < ﬁ, Theorem 3 would provide the unique
set of equilibrium univariate marginal distributions if a sufficient n-copula were to
exist for each player. However, such an n-copula does not exist for player B, and
thus, the Lagrange multipliers in the players’ optimization problems may equal

zero. This follows from the fact that for player B the univariate marginal distribu-

tions in Theorem 3 require an atom of size % — 1 at X4 and randomize uniformly
over the interval [0, X 4) with the remaining mass. However, for % < §—2 < ﬁ the

intersection of the set {x e R | Z'}z | xI=X B} with the n-box [0, X 41" contains

no n-tuples in which one battlefield receives O forces. That is, if player B uses all

of its forces it can allocate X 4 forces to n — 1 battlefields and the force allocated

to the remaining battlefield must be X 5 — X4 (n — 1) which is greater than 0 since

X1 < L Thus, for 1 < £ < -L it is not possible for player B to allocate all
B . n . n oy B n . . . . . . .

of its forces with probability 1 and use the univariate marginal distributions given

by Theorem 3.

For the case that % < X+ < 5= one equilibrium is given by an extension
of the case of n = 2 with asymmetric forces discussed by Gross and Wagner
(1950). This equilibrium is not unique. However, since the Colonel Blotto game is
a constant-sum game the equilibrium payoffs are unique.

Xy i
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Theorem 5 Define k = {#ﬁn_l)—‘ Let X4, Xp, andn satlsfy =< —B < nil

(ie. 2 < k < 00). A Nash equilibrium of the game CB {X 4, Xp, n} is for each
player to allocate its forces according to the following n-variate distributions:

Player A randomly allocates Q) forces to n —2 of the battlefields, each battlefield
chosen with equal probability, "n;z On the remaining two battlefields player A uti-
lizes a bivariate distribution function with k mass points, each mass point receiving
the same weight, % Player A’s mass points on these two remaining battlefields are
located at the points

. Xa .
((k—l—z) — ) i=0... k-1

k—1

Player B randomly allocates X 4 forces to n — 2 battlefields, each battlefield
chosen with equal probability, "=2
lizes a bivariate dzstrlbutlon Sunction with k mass points, each mass point receiving
the same wezght . Player B’s mass points on the two remaining battlefields are
located at

=0,... . k—1.

nXas— Xp nX4—Xp .
Xy iZPAT B k-1 —pIEAT 2B
(A = a—( i) 1 ) i

The unique expected payoff for player A is

for player B is 1 — M.

and the unique expected payoff

kVL2 ’

The proof of Theorem 5 is given in Appendix B. In the case that n = 2, Theorem 5
coincides with Gross and Wagner’s (1950) equilibrium for the Colonel Blotto game
with asymmetric forces and n = 2. It is also important to note that in the limit as
§—2 approaches n%] from below this set of equilibrium univariate marginal distribu-
tions converges to the unique set of equilibrium univariate marginal distributions
given by Theorem 3 and the players’ payoffs converge to those in Theorem 3.

5 Conclusion

The Colonel Blotto game is a fundamental model of strategic resource allocation in
multiple dimensions. This paper extends the literature on the Colonel Blotto game
in several important ways. In particular, the technical difficulty of the Colonel
Blotto game has, heretofore, restricted the focus to the case of symmetric configu-
rations of the players’ aggregate levels of force. This paper extends the literature on
the Colonel Blotto game by characterizing the unique equilibrium payoffs for all
symmetric and asymmetric configurations of the players’ aggregate levels of force
and characterizing the complete set of equilibrium univariate marginal distributions
for most of these configurations.

Gross and Wagner’s (1950) generalizations of Borel’s two solutions to the
Colonel Blotto game with symmetric forces exploit properties of regular n-gons.
However, the equilibrium n-variate distributions of the Colonel Blotto game with
asymmetric forces cannot be constructed from distributing mass on the surface of
regular n-gons, and this paper establishes entirely new and novel solutions which
do not use regular n-gons. Furthermore, unlike both Borel’s solutions and Gross
and Wagner’s generalizations, the equilibrium r-variate distributions examined in
this paper do not rely on the connectedness of the support.
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Appendix A

The proof of Theorem 2, which is contained in the following lemmas, establishes
that there exists a one-to-one correspondence between the equilibrium univariate
marginal distributions of the Colonel Blotto game and the equilibrium distributions
of bids from a unique set of two-bidder independent and identical simultaneous
all-pay auctions. The uniqueness of the equilibrium univariate marginal distribu-
tions then follows from the characterization of the all-pay auction by H1llman and
Riley (1989) and Baye et al. (1996). In the discussion that follows, 5/ and s] are
the upper and lower bounds of candidate i’s distribution of force for battleﬁeld J

andgsﬁsl.
n X[;

Lemma 1 Foreachi € {A, B} andfor% < §—2 <1 x>0

Proof The fact that the univariate marginal distributions provided in Theorem 2
and the corresponding n-variate distributions constructed in Theorem 4 form an
equilibrium is easily verified. It is also easily verified that in this equilibrium A; > 0
for each player i. By way of contradiction, suppose that there exists an equilibrium
in which player —i does not use their entire budget, X _;, with probability 1. For
any parameter configuration such that % < §—’; < 1, a feasible strategy for player i
is the joint distribution constructed in Theorem 4 that corresponds to the univariate
marginal distributions, given in Theorem 2, for this parameter configuration. In this
case, player —i’s expected payoff would be strictly less than the expected payoff
given in Theorem 2. This is a contradiction since player —i can obtain the expected
payoff given in Theorem 2 by using the feasible strategy of the joint distribution
constructed in Theorem 4 that corresponds to the univariate marginal distributions,
given in Theorem 2, for this parameter configuration. O

The next four lemmas follow along the lines of the proofs in Baye et al. (1996).
j .

Lemma 2 Foreach j € {1,...,n}, 5, :El] =5/

Lemma 3 In any equilibrium {Fij, Fll} { }, no le can place an atom in the
) jell,....n

half open interval (0, Ef].

Lemmad4 Foreach j € {1,...,n} and for each i € {A, B}, —F] (x) —xis

constantV x € (O, Ej]. "
Lemma5 ¥ j € {I.....n), F}(0) = 0 and, thus, -—Fj (x) —x =0V x €
[0,57].

The following lemma characterizes the relationship between A 4 and 1.
Lemma 6 In equilibrium .5 = \p §—§
Proof By way of contradiction, suppose that A4 # Ap §—j For Theorem 2’s param-

eter range, in any equilibrium each player allocates all of their forces with certainty
and in expectation, thus

XBZ/O xdF} (x) = XAZ/O xdF} (x). (3)
j=1 j=1
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But, from Lemmas 3, 4, and 5, it follows that

dF] (x) = nipdx “4)
for all x € (0,5/], and

dF} (x) = nisdx 5)

for all x € [0, 5/]. Substituting equations (4) and (5) in equation (3), we have

n 5/ n 5/
)‘BXBZ/ nxdx:kAXAZ/ nxdx
j=170 j=170

which is a contradiction since
n 5/ n 5/
E / nxdx = E / nxdx
j=179 j=170

but)»A#)\.Bi((—i. ]

The following lemma establishes the value of 5/.

Lemma?7 5/ = L.
nig

Proof From Lemmas 4 and 5, we know that for each player i and any battlefield j

Lp
_— (X)) — X
I’l)\[ -

is constant Vx € (0, 5/ ] It then follows that player i would never use a strategy

that provides offers in (ﬁ, oo) since an offer of zero strictly dominates such a

1
nAB ’

strategy. Noting that —— < we have that 5/ < - and that ¥x € (0, 5]

. 1 ,
—F (x)—x> — —§.
I/Z)\.,' I’l)\,'

By way of contradiction, assume that 5/ < ﬁ then by allocating a level of force

to battlefield j that is greater than 5/ by an arbitrarily small amount, player A
can earn arbitrarily close to ﬁ — 5§/ > 0 on battlefield j, which contradicts
Lemma 5. O

The following lemma establishes that there exists a unique pair A4, Ap that
satisfies the budget constraint.

Lemma 8 There exists a unique value for A, and thus for Ag. Ay = 5+ and thus

X,
— Xa
Ap = %
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Proof The budget constraint determines the unique pair A4, Ap. Thus, A4 solves

1

nig
n xniadx = Xp.
0

Solving for A4 we have that

1

g = —.
470X,

Xa
2 .
2X3

It follows directly from Lemma 6 that A =

This completes the proof of Theorem 2.

Appendix B
The proof of Theorem 5, stated below, establishes the existence of an equilibrium
in the game CB {X 4, X, n} for X4, Xp, and n such that % < §—2 < ﬁ In the
discussion that follows, recall that k = ’7X3+:(n_1)—|, and thus, 2 < k < o0.
First, the strategies in the statement of Theorem 5 are feasible since for player
A
. Xa . Xa
k—1-— = Xyu,
( i) —1 +1 —1 A
and for player B
Xa—X Xa—X
Xa (0 =2+ Xg = im " X = (= 1 =) T = Xy

foralli =0,...,k—1.

Second, each player is indifferent between each point in the support of their
strategy. For this equilibrium the univariate marginal distributions for player A and
Vjell,..., n}are

kn—2k+2

DA
T )
Kn—zk+a XA H XA
Tn x e[ 24),
j kn—2k+2Gi+1) Xy X4
Fy(x) = Tn xeligh, G+ ),
kn=2 (k=2)X,
o xe[ k-1 *XA)’
1 x> Xy
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Similarly for player BandV j € {1, ... ,n}

0 XE[O,XB—XA(H_]))’
i XE[XB_XA(H—I),XA—(/‘_Z)(]’:#>’
Fj(x) = 2(:};1>xe[x _ GoldeXaXe) y w)
% xe[XA_%’XA)’
1 x> Xa.
In addition note that fori =1, ...,k — 1,'6
. nXA—XB . XA nXA—XB
X _k_l <1 <X _k_l—l nia— 28
a ) k—1 k—1 -4 ( ) — 1

Thus, given that player B is following the equilibrium strategy, player A’s alloca-
tion of the level of force i z 7= to abattlefield yields the expected payoff > 2 for each

i=0,....,k—1. Slmllarly, player A’s remaining force (k — 1 — i) kX*‘ has an
expected payoff of 2(1‘ =) Thus, for eachi = 0, . — 1 player A’s allocation
of force

X4
<(k_1_’) k—1" k—l)

has an expected payoff of <—= 2" -2, The argument for player B is symmetric.

Third, neither player can increase their payoff by deviating to another feasible
strategy. Given that player B is following the equilibrium strategy, the payoff to
player A for any allocation of force in which no battlefield is allocated a level of

force above Xz — X4 (n — 1) is zero. Similarly, if, for some i =1, ...,k — 2,7
player A allocates a level of force of X4 — (k — 1 — i) ”X,f%]XB + € to a battlefield
2(l+1)

the expected payoff on that battlefield is

(k—1—1i)"Xa=Xs — ¢ and

. Player A’s remaining forces are

k—1—1) A= Xz <X —-(G+D" A~ Xs
J— _l—_ J— —_—
k e=ta—l k—1

since, from the definition of k, n X4 — Xp < X A k . If player A allocates all of
its remaining force to a single battlefield the maximum expected payoff on that
battlefield is % Thus, for player A any feasible allocation of force in which
only one or two battlefields receive a strictly positive level of force has a maximum

16 For the remaining case thati = 0,0 < X — X4 (n — 1).

17" For the remaining case that i = k — 1, player A’s payoff from allocating all X, forces to
a given battlefield is the same as if player A allocates X4 — % + € to the battlefield. This
follows from the tie-breaking rule and the fact that in this case player A’s remaining forces are
% — €, and % —€ < Xp — Xa(n—1), for all admissible k and € > 0, so that the
payoff from player A’s remaining forces is 0.
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2,1‘;22 . In addition, since the step size between each mass point in

%, player B’s minimal allocation of force
isXg—Xa(n—1) > ”X,j%lx"’, and each mass point has the same weight, player
A cannot achieve a higher expected payoff from dividing these remaining forces
among more than one battlefield. Thus, given that player B is following the equi-
librium strategy, the expected payoff to player A for an arbitrary strategy x € 4

18

expected payoff of
player B’s equilibrium strategy is

1 2k —2
;;Fé(xj)fw

The argument for player B is symmetric.
This completes the proof of Theorem 5. O
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