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Abstract

This paper describes a geometrical method for constructing equilibrium distribu-
tion in the Colonel Blotto game with asymmetric battlefield values. It generalises to
the n-dimensional case a construction method first described by Gross and Wagner.
The proposed method does particularly well in instances of the Colonel Blotto game
in which the battlefield weights satisfy some clearly defined regularity conditions.
Though these conditions constrain the set of games in which this method reliably
generates equilibrium strategies, they are less restrictive than the condition of sym-
metry across all battlefields, hitherto common in the literature. The paper also
explores the parallel between these conditions and the integer partitioning problem

in combinatorial optimisation.
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1 Introduction

Budget-constrained multidimensional allocation problems were amongst the very first ones
considered in game theory. The first version can be found in Borel and Ville [I]. This
problem and similar ones later came to be known as “Colonel Blotto” games, after Gross

and Wagner’s approach [4] to the allocation problem.

In the simplest version of the Colonel Blotto game, two generals want to capture three
equally valued battlefields. Each general disposes of one divisible unit of military resources.
The generals have to simultaneously allocate these resources among the three battlefields.
A battlefield is captured by a general if he allocates more resources there than his opponent.

The goal of each general is to maximise the number of captured battlefields.

In that game, a pure strategy for player i is a 3-dimensional allocation vector x; =
(x4, 2%, x%) where z} is the amount of resources allocated to the kth city. The set of all pure
strategies is the 2-dimensional simplex A2, A mixed strategy is a trivariate distributions
function F : A? — [0, 1].

This version of the game was considered in Borel’s course on probability [1] at the univer-
sity of Paris in 1936-37. The solutions given by Borel reappear in Gross’s and Wagner’s
unpublished research memorandum (1950) [4].

They state that a mixed strategy F' constitutes a symmetric equilibrium of the game if
all one-dimensional margins of F' are uniform over [0, %] One geometrical approach to
building such a distribution F' consist of projecting a sphere, together with a uniform

generic point belonging to its surface, onto the disc inscribed in an equilateral triangle.

Gross and Wagner conjecture that this geometrical method of generating the equilibrium
distribution extends to Colonel Blotto games with more than three equally valued battle-
fields. This extension is formalised in Laslier and Picard (2002) [7]. It is worth noting
that Weinstein (2005) [9] presents a different geometric approach for case of n > 3 equally
valued battlefields.

Roberson (2006) [8] addresses the question of whether the univariate marginal distributions
of the equilibrium strategies (n-variate distributions) are necessarily uniform for symmetric
battlefield weights but possibly asymmetric budgets, and finds that they indeed have to be.
That paper does not, however, solve the Blotto Game with asymmetric battlefield values.
Another related paper is Kvasov (2007) [6]. It looks at a variation of the Blotto Game in

which the allocation of resources is costly, and there too, battlefields are symmetric.
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The present paper generalises Gross and Wagner’s geometric approach to construct equi-
librium distributions of the n-dimensional Colonel Blotto game with asymmetric battlefield
weights. The difficulty lies in inscribing a circle within an irregular n-gon. The necessary
and sufficient conditions for this relate to the integer partitioning problem, a well-known

problem of combinatorial optimisation.

The next section describes the model, then generalises the proofs of the existing literature
to describe knows equilibria of this game. Section [3] presents geometrical methods of
constructing equilibrium distributions. It describes Borel’s solutions as formulated in Gross
and Wagner (1950), then Laslier and Picard’s geometric construction method. Section [4]
constitutes the main contribution of this paper. It shows how, and under which conditions,
this method can be extended to asymmetric n-dimensional cases. The conditions are
related to a constrained version of the NP-complete “integer partitioning problem”. Section
[Billustrates the construction method using the example of US presidential elections. The

final section concludes.

2 Model and Equilibrium

Two players with identical budget normalised to one decide how to allocate their resources
across n battlefields indexed by k € {1,...,n}. The absolute value of battlefield % is the
positive integer Ej. For all k, denote e, = Ej/ 22:1 E. the relative value of battlefield k
and note that Y,_, e, = 1. To make the game non-trivial, assume that 0 < e, < 1/2, or
equivalently that 0 < Fjy < Z#k E; forall k=1,....n.

)

i
') where x},

Player i € {1,2} chooses a nonnegative vector of allocations x; = (2%, ...,x
is the amount of resources allocated to battlefield k. Player ¢ wins in battlefield k if his
resources in that battlefield, x%, exceeds the resources xﬁg of the other player. Ties are
resolved by flipping a coin. Both players are budget-constrained so the sum of a player’s

resources allocated across all battlefields cannot exceed that player’s budget of 1.

A pure strategy of player i is an n-dimensional vector x° satisfying the budget constraint.

Denote S' the set of pure strategies of player i:
S'={xel0,1]": Zxk <1}
k=1

Both players seek to maximise the aggregate value of captured battlefields. The function
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g: 8" x &8 — R measures the excess aggregate value of battlefields captured by player i if
he plays the pure strategy x* while player j plays x7:

n

g(x',x7) =Y e sgn(ay — ),
k=1

with sgn(u) =1ifu >0, 0if u =0 and —1 if u < 0.
A mixed strategy of player i is an n-variate joint distribution function F* : S* — [0, 1].
Denote F} the kth one-dimensional margin of F*, i.e. the unconditional distribution of .

For each k = 1,...,n, F} maps [0,1] into itself. Define the payoff to a mixed strategy as

the mathematical expectation of g(x*,x/) with respect to the strategy F*.

The following proposition generalises existing results on the form of equilibria in Blotto

games to the case of asymmetric battlefield weights. The proof is relegated to Appendix

1

Proposition 1. Consider the Colonel Blotto Game with asymmetric battlefield weights.
(i) This game has no pure strategy Nash equilibrium
(i1) Both players meet their resource constraint in equilibrium.

(iii) Let F* be a probability distribution of x € A" such that each vector coordinate xy,
(k =1,...,n) is uniformly distributed on [0,2ex]. Then (F*, F*) constitutes a symmetric

Nash equilibrium.

The first point implies that an equilibrium, if it exists, must be in mixed strategies. The sec-
ond point guarantees that the support of any equilibrium strategy is the (n—1)-dimensional

simplex.

Point three states that having univariate margins that are uniform on [0, 2e;] is a suffi-
cient condition for a mixed strategy with support A"~! to constitute a symmetric Nash

equilibrium.

Roberson [§] shows that for homogeneous battlefield values (Vk e, = 1/n) uniform uni-

variate margins are also a necessary condition for equilibrium.

Is it always possible to build a joint distribution satisfying the properties of F*? The

following section describes the geometric construction method of Gross and Wagner, and



later Laslier and Picard, while section[4]generalises it to accommodate asymmetric battle-
field values. We obtain conditions under which this construction method always produces

a joint distribution satisfying the properties of F™*.

3 Multivariate Distributions - known cases

The aim is to construct a n-variate distribution function F* from given one-dimensional
margins and given the equilibrium restrictions on the support of F*. Indeed, in equilibrium
candidates only use strategies in the (n — 1)-dimensional simplex, A"~ which does not
include the whole of x}_,[0,2e;]. Were it otherwise, it would be possible to construct a

joint distribution with any correlation properties.

So the restriction of the support of F™* given its margins limits the number of possible
interactions between resource allocations to different battlefields. So far, I have not been

able to fully characterise the set of possible correlations satisfying the restrictions on F™.

This section presents a geometrical method of constructing F™* that this paper will refer
to as the generalised disk solution, in reference to the disk solution presented in Gross and

Wagner [4] and later with some modifications in Laslier and Picard [7].

Note that because this is not the only way to construct multivariate distributions satisfying
the restrictions above, this method might not describe the entire set of F*s even in cases

where the method is applicable.

3.1 Triangle Solution - Gross and Wagner 1950

First, consider the case presented in Gross and Wagner [4] for n = 3 asymmetric battlefield
weights. The following process generates three dimensional vectors x = (x1, 22, z3) in the

two dimensional simplex A? such that each zy is distributed uniformly over [0, 2ey].

Think of the triangle of side ey, €a, €3, as belonging to the plane with z-coordinate zero
in the three-dimensional space (x,y,z). Inscribe a disk of centre O and radius r within

that triangle. This disk is the projection (onto the plane (x,y,0)) of the sphere S of centre

2For simplicity we identify a side of the triangle with its length. So we use ey, to refer both to a segment

and to its length. Note also that this triangle always exists since ey, < 1/2 Vk.



O and radius r belonging to the three dimensional space (z,y,z). Finally, let R be a
generic point that is uniformly distributed on the surface of the sphere S, and let P be
the projection of R onto the plane.

€1

The triangle solution

For all k, hj is the distance of P from the side e;. In the three-dimensional space, it is
also the distance of R from Py, the vertical plane tangent to the sphere of centre O and

which projects onto the side e.

If R is uniformly distributed on the surface of the sphere, what is the distribution of hy?
For all t € [0, 2r], the spherical cap of height t is the region of the sphere S that lies between
the vertical plane Py, and the vertical plane parallel to P, and at a distance t away from
it. Then, for all ¢ € [0, 2r], Pr(hx < t) = Pr(R € cap of height t), and since R is uniforml
distributed on the surface of the sphere, this probability equals the surface area of the ca -
of height ¢, ¢ € [0,2r], divided by the total surface area of the sphere:

27 f; r dx t

Pr(hpy <t) = —2—— = —,
(P ) 27Tf02rrdx 2r

and so hy, is distributed uniformly on [0, 2r].

3 Note that the result of this sub-section is largely driven by the following
property of spheres: Consider the spherical segment of height h. -
Its surface (excluding the bases) is called a zone. Its mathematical b
expression is 2w ff r dx = 27rh. Note that this area is independent of v

the vertical position of the zone.



Back in the two-dimensional plane, call A the area of the triangle of height h; and
side ey sustended by P. For all k, Ay = exhy/2. Since hy ~ UJ0,2r], it must be that
A ~ U0, 2rex /2] = U0, reyg].

Letting A = Ay + Ay + A3 = (e1 + e3 + €3)1r/2 = r/2 be the total area of the triangle, we
assimilate the fractions x1, x5, x3, which are assumed to belong to the two dimensional
simplex, to the fractions A;/A, As/A, A3/A, which belong to the two dimensional simplex
by construction. So for all k, xy=A;/A = 2A;/r. Then finally, since A; ~ UJ0,rex], it
must be that xz, ~ U|0, 2reg/r], i.e. z ~ U[0,2¢;]. QED.

Note that this construction is unique as there is only one cyclical permutation of 3 objects,

if we account for the orientation of the cycle (i.e. treat {x,y, z} and {z,y, 2} as equivalent).

3.2 Regular n-gon - the disk solution - Laslier and Picard 2002

As n increases beyond three, note that different orderings of the e;’s create different sup-
ports for the equilibrium strategy. Moreover for n > 4 it is not possible to inscribe a circle

in any n-gon. Irregular n-gons are the object of the next section.

Let us first consider the case of regular n-gons. As supported by the disk solution, it is
possible to construct a multivariate distribution F™* for the case in which all states carry the
same value: e = 1/n for all k. Then, regardless of n, it is possible to inscribe a circle within
the n-gon ; and following the same method as in the triangle case, the process generates
n-dimensional vectors x = (x, ..., z,,) belonging to the (n — 1)-dimensional simplex, such

that each xy, is distributed uniformly over [0, 2/n].

In the two-dimensional, oriented plane, consider the regular n-gon { P, ..., P,_1} centered

at zero such that
j(2h=D)n
n

P, = (,0 cos=Ur p sm@k;““) =pe

The disk that is inscribed within this n-gon is centered at zero and has radius r such that

Py + Py
2

4
= g 2(1+ cos%) =r.

This disk is the projection onto the plane of the sphere centered at zero of radius r. To gen-
erate the n-dimensional vector x, use the method corresponding to the three-dimensional

case described above.
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Regular n-gon

Note that there are as many disk solutions as there are ways to order n objects in a circle
without taking into account the orientation of the circle, i.e. (n — 1)!/2. Even though
all sides have the same length, meaning that the n-gons {ej, s, €3, €4} and {es, ea, €1, €4}
say, look identical, the correlations of vector coordinates deriving from the resulting joint

distributions will be different.

4 Multivariate Distributions - Irregular case

In this section, we present a novel construction method for the case where battlefield
values differ. Note that if there exists an n-gon with sides of lengths corresponding to
the battlefield values and that admits an inscribed circle, we can use the method for
constructing F* described above. But as noted in the previous section, for n > 4 it is
not possible to inscribe a circle in any n-gon. Roughly, the figure needs to be sufficiently
regular. Indeed, for some {ex}}_;, it may never be possible to inscribe a circle in an n-gon
of sides e, regardless of the ordering. This is the case for instance if one ej is much larger

than all the others.



€1 €2

1ll-behaved n-gons

The next sub-section describes how to construct an irregular n-gon admitting an incircle,
assuming this is possible. Then, sub-section presents the necessary and sufficient
conditions on battlefield weights guaranteeing it is possible to construct an irregular n-gon

admitting an incircle.

4.1 Irregular n-gon - the modified disk solution

Consider the n-vector e = (eq, ..., e,) of battlefield weights, and define the n-vector v =
(71, ---» ¥n) to be a reordering of e satisfying conditions described in section[4.2] Let k, the

index of the coordinates of «, be congruent modulo n.
Given 7, consider the following method of constructing an irregular n-gon of ordered sides

1, Y2, etc, such that a circle is inscribed in it.

For k =1,...,n, let T be a string of n connected segments [Py_1, Py] of length -, with the
following equidistance property: let T} be a point of the segment [Py_1, Py] such that, for
each k, the distances ||T;P|| and ||PyTy41|| are the same, denoted t;. The points T}, will

be the tangency points between the n-gon and the circle inscribed in it.

I D ’

The set T’
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Consider the disk (O, r) and two connected segments [AB] and [BC]. Let both segments
be tangent to the circle, and let K and L be the points of tangency of [AB] and [BC]
respectively. It is a well known result that the distances ||K — B|| and ||B — L|| are then

necessarily equal.

Equidistance

Accordingly, if a sequence of connected segments can be wrapped around a circle (regardless
of the number of times the sequence goes around the circle) in such a way that all segments
are tangent to that circle, then the points of tangency of two consecutive segments are
equidistant from the point common to both segments.

P
P, !

P

Wrapping T',, around a circle

This equidistance property is, by construction, satisfied by the set I'. So I' can be wrapped

around any circle (O, 7). The number of times we can wrap this set of connected segments
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around a circle depends on r. Theorem [2lstates that there is only one value of r for which
we can wrap a given I' around a circle, such that P, = F,, closing the n-gon. Denote 6}
the angle (Py_1,0, Py).

Theorem 2. For a gwen T, >")_, 0, = f(r) where f is a continuous, strictly monotone

function. Therefore, r* satisfying f(r*) = 2 is unique.

Proof. Denote aj the angle (7,0, P;). Then Y, 6 = 2%} _,a,. The function
sin™! is defined (and monotonically increasing) on [—1,1], and since for all z € R**

0<z/Vat+r2<z/Va?=1, so
sinay, = tik & ap =sin? [tik]
NG VE+r2]

and . .
t
0, =2 in~! {7k } - :
; ' ,;Sm Vi +r? 1w

which is strictly decreasing, and hence invertible in r for all n. The proposition follows. B

Note that r* depends on the particular choice of #; so that any vector e may be associated

with several r*.

We now present the conditions on ~ that are necessary and sufficient for the existence of
a set I', and hence for the existence of an n-gon of sides given by ~ and admitting an

inscribed circle.

4.2 Necessary and sufficient conditions

When the n-gon is regular, it is always possible to inscribe a circle within it. As we deviate
from the regular n-gon, what are sufficient conditions on {e;}7_; and on the ordering of
the sides of the irregular n-gon that need to be satisfied to ensure that a circle can be

inscribed within it?

First note that the restriction e; < 1/2 Vk guarantees that a convex n-gon with sides of

lengths given by {ex}}_; exists.

This section describes conditions for reordering the coordinates of the n-vector e = (eq, ..., €,)
to form the n-vector v = (71, ...,7,). Recall that k, the index of the coordinates of 7, is

congruent modulo n. The conditions are necessary and sufficient to be able to inscribe a
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circle in the irregular convex n-gon with ordered sides given by -, and from there, to build

an equilibrium strategy F™.

It will be shown that some vectors e will not admit any reordering ~y satisfying these con-
ditions so that it will not be possible to build a distribution with the properties of F* using

the geometric method.

To be able to build such a set I', the vector v needs to satisfy the following restrictions

[(P1) and (P2)| that are divided in sub-cases depending on whether n, the number of
battlefields, is odd or even.

(P1E) If n is even, then

n

Z(_l)i7k+i = 0.

i=1
(P2E) If n is even, then for any k, there exists a constant ¢ > 0 such that forv = 1,2, ..., %,

2v—1

2v
mjLX{Z(—l)MV(kH)} <c< ml}n{Z(—l)iHV(kH)}-
i=1 =1

(P10O) If n is odd, then for any k,

(P20) If n is odd, then for any k,

n—1
Ve > H Z(_l)iﬂ%ﬂ‘
i=1

These restrictions are all derived from the fact that by definition, v, = tx + tx1, and from

the two following requirements:

1)  Congruence Vk, tpi, = .

2) Fit Yk, 0 <t < .
|(P1) and (P2)| hold if and only if congruence and fit are satisfied. The details can be
found in appendix [T.2

Congruence and fit are necessary and sufficient conditions for ~ for generate a set I' as

defined in section [4.1] It follows that these properties of 7 are necessary and sufficient for
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the resulting I' to generate at least one n-gon admitting an incircle. Of course, they are all
satisfied when all the coordinates of + are the same - corresponding to the case of Laslier’s

and Picard’s regular n-gon. The following theorem is the main result of this section:

Theorem 3. If for a vector e of battlefield weights we can find a reordering v satisfying

[(P1) and (P2), then we can construct an irreqular n-gon with an inscribed circle of radius

*

.

The radius r* is defined in theorem [2l In the remainder of this section, we provide some

insight into these properties and in particular (section[4.3)), ask how easy they are to satisfy.

Conditions|(P2E)|and |(P10O)| relate to the tangency points between the inscribed circle

and the n-gon. They ensure that if ¢; belongs to the interval (0,~;), then t;,q, which is
equal to v, — tg, belongs to the following interval, (0,7%.1). We can see that while for n

odd, the conditions on the length t; are very strict (equality), for n even it will be sufficient
for t; to belong to the interval defined in |[(P2E)

(P2E)’ If n is even, then for all £,

2v—1

ty € (max{z D i } mln{z Y et })

So for a given 7, if n is even, it is possible to build and infinity of sets I" as long as|(P2E)’
is satisfied, while for n odd, there exists a unique I" with distances ¢ satisfying|(P10)

The remaining two conditions, [(P1E)|and [(P20)| are discussed in the next sub-section.

4.3 The constrained integer partitioning problem

It is clear that while some vectors e may admit several corresponding vectors =y, others
may admit none. Indeed, the properties are all regularity restrictions on the ordering of
the coordinates of v and impose some balance. Notice that [(P1E)|can be rewritten as:

(P1E)’ If n is even, then

3 3

1
E Y(k+2i) = E V(k+2i-1) = 5’
i=1 =1

and that |(P20)|can be rewritten as:

14



(P20)’ If n is odd, then for any k,

n—1

n—1
2 2

Tk > H Z’Y(k—i—%) - Z’V(k-&-?i—l) H
=1 =1

So the two conditions are similar in requiring that the n-gon generated by -~ is balanced
in the sense that the summed length of odd sides and the summed length of even sides are

equal (for n even) or close in a precise sense (for n odd).

As a brief digression, note that they also can be interpreted as the requirement that there
exists a coalition of states such that each state in that coalition and each state in the
complement coalition is pivotal. Pivotality is not a very apt concept here, as players are
maximising their plurality. It would be more fitting in a context where players maximise

their probability of winning.
More can be said about when [(P1E)|and [[P20)| may be satisfied by noting that these

conditions are related to the constrained integer partitioning problem, a classic problem

of combinatorial optimisation. The exercise consists in partitioning n integers into two
subsets of given cardinalities such that the discrepancy, the absolute value of the difference

of their sums, is minimized.

corresponds to the constrained partitioning problem in which the cardinality of
the two resulting subsets is n/2 and the discrepancy is equal to zero. A partition with
a discrepancy of zero is called a perfect partition. corresponds to n instances of
a more relaxed version of the constrained partitioning problem just described: for each
k=1,...,n, the aim is to partition n — 1 integers into two subsets of equal cardinality, such

that the discrepancy is less than ;.

These are computationally difficult problems. The unconstrained partitioning problem
is NP-complete, and while some algorithms deliver good approximations of the optimal
partition (the partition with the lowest possible discrepancy), the brute force algorithms
that compares the discrepancies of all possible partitions is still the best known solution

to the problem.

Borgs et al. [2] identify two phases of the constrained problem depending on its compu-
tational difficulty. They study the typical behaviour of the optimal partition when the
n integers are i.i.d. random variables chosen uniformly from the set {1,...,2™} for some

integer m.
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They find that, for m and n tending to infinity in the limiting ratio m/n, with probability
tending to one, there exists a perfect partition when m/n < 1. They call this the perfect
phase of the problem. In the hard phase of the problem, for m/n > 1, the probability of
a perfect partition tends to zero and the optimal partition is unique, making computation
of the optimal partition more difficult there. Still, the minimum discrepancy, i.e. the

discrepancy of the optimal partition, can be bounded from above and below.

While in the limiting case, the phase transition is sharp at 1, in finite cases, the phase
transition happens within a specified interval containing 1, and it is not clear whether the
transition is sharp. Finally, the number of perfect partitions in the perfect phase is lower

than in the limiting case by about twenty percent for a given ratio m/n.

For the purpose of this paper, the results of Borgs et al. allow the conclusion that (P1E)
and (P20) are likely to be more easily satisfied for m/n < 1 than for m/n > 1, and that
while (P20) may be satisfied for m/n > 1, (P1E) never is.

m/n<1| m/n>1

P1E easy impossible
(P20) easy hard

Finally note the importance of the assumption that battlefield values are integers. Indeed,
were battlefield values drawn from R, the condition for n even would hold with probability

Zero.

5 Application

One compelling illustration of this model is the election of US presidents by electoral
college: first, during primaries , two candidates, one Democrat, the other Republican, are
chosen to represent their party in the general election, which is then held simultaneously in
all 51 US states (50 + D.C). Each state is allocated a number of electoral votes depending
on its populatio . There are 538 electoral votes in total. A candidate gains all electoral
votes of a given state if he receives more than half the votes cast in that state. To win the

election, a candidate must win at least 270 electoral votes.

4For details, see Appendix
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This situation can be modeled as an asymmetric colonel Blotto game under the following
three assumptions: (i) presidential candidates face identical budget constraints, (ii) the
probability of winning the election in a given state increases with campaigning resource
allocated to that state, and (iii) candidates wish to maximise their plurality, rather than

the probability of winning the election.

The first two assumptions are the least controversial. In fact assumption (i) is trivially

satisfied if we think of the campaigning resource as time spent campaigning in each state.

What if we think of money as the resource? In practice, candidates can choose whether to
self-finance their general election campaign, or (since 1976) can accept public fundin. To
be eligible to receive the public funds, a candidate must limit spending to the donatio

So if both candidates are publicly funded, it makes sense to assume that they both face

the same resource constraint.

The assumption of equal budgets becomes more trying if at least one of the candidates is
self-funded. Indeed, there is considerable evidence that in these cases, budgets differ, as

seen in the latest US presidential elections.

The positive relationship between campaign effort and votes is well documented, be it
whether campaigning effort is understood to be time spent campaigning in a state (Herr [3])
or financial campaign expenditures in that state (Chapman and Palda, [3]). So assumption

(i) is also pretty unproblematic.

This is not so for the last assumption. In general, one would assume that candidates
maximise the probability of their winning the election. Nevertheless one could argue that
because presidential elections coincide with Senate and House of representative elections,
presidential candidates do campaign so as to maximise the plurality of votes in they favour,
not only so as to win the presidential election. This is more believable in cases where one
candidate already expects to win with a significant plurality, but surely not when elections
are close. Either way, it is fair to say that maximising the plurality in his favour is at least

a candidate’s secondary objective.

SFor information on the Public Matching Fund scheme, visit the Federal Election Commission at
http://www.fec.gov/.

6In essence. More precisely, the candidate may not accept private contributions for the campaign.
Private contributions may, however, be accepted for a special account maintained exclusively to pay for
legal and accounting expenses associated with complying with the campaign finance law. These legal and
accounting expenses are not subject to the expenditure limit. For more detail, see the FEC brochure for

Public Funding of Presidential Elections at http://www.fec.gov/pages/brochures/pubfund.shtml.
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One strong argument supporting the claim that candidates care at least a little about
plurality is that they do indeed campaign in all states, while ignoring small states (states
with few electoral votes, that have little chance of being pivotal) would be consistent with

the strategy of a candidate solely trying to maximise his probability of winning the election.

So we can think of the US general election game as a Colonel Blotto game. In both cases
candidates choose how to allocate a fixed amount of resources across states. Strategic
considerations arise because of the positive relationship between campaign effort and votes.
By spending more in a state than his opponent, a candidate increases his chances to win
that state.

In this section we look for a solution to a Colonel Blotto game in which each state has a
value corresponding to its relative number of electoral votes. The distribution of electoral

votes across states is shown in Appendix [7.3]

Two candidates with budgets X4 = Xp = X decide how to allocate their campaigning
funds across n = 51 states indexed by k € 1,...,n. The value of state k is e, which
corresponds to the number of electoral votes allocated to state k as a fraction of the total
number of electoral votes, 538. For instance, the state of Alabama has 9 electoral votes,
so for that state, e = 9/538. Accordingly e, < 1 for all k and > ;_, e, = 1.

Candidate i’s plurality, i.e. the number of electoral votes won minus the number of electoral

votes lost is measured by the function g; : S; X S; — R defined in section

Since this fits exactly into the setup of section [2] the results of all following sections
hold, including the existence of one equilibrium distribution. Indeed, consider the vector
~n presented in Appendix [7.4] It is such that each e, corresponds to the number of
electoral votes allocated to state k as a fraction of the total number of electoral votes,
538. For clarity, we multiply all numbers back by 538. Note that this solution uses the
current distribution of electoral votes (i.e. the third column in table [7.3)), but that the

construction method works equally well for the other two distributions.

This vector satisfies the conditions [(P1) and (P2)|for n odd (n = 51). Note that within

the framework of section [.3] the 51 partitioning problems corresponding to this exercise

are in the perfect phase. Here, the greatest of the n = 51 integers is 55, the number
of electoral votes for the state of California. So we can treat the electoral votes as n

i.i.d integers chosen uniformly from the set {1,...,2™} with m = 6, in which case m/n ~
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6/50 < 1 (perfect phase) so that the partitioning problem should be relatively easy to
solve. Indeed, a solution can be easily found heuristically, as shown in Appendix [Z4l This

illustrates one possible equilibrium of the US general elections game.

6 Conclusion and Open Questions

This paper describes a geometrical method for constructing equilibrium distribution in
the Colonel Blotto game with asymmetric battlefield values. The appeal of geometrical
methods for constructing n-dimensional distributions subject to restrictions on their sup-
port and their margins lies in the relative simplicity with which they describe complicated
multi-dimensional objects. The drawback is that they may fail to generate the full set
of distributions satisfying given restrictions on support and margins. This downside is
limited when that set is well defined, as it is here, so that the exercise becomes to generate

instances of these well-defined objects.

The method presented in this paper generalises to the n-dimensional case a construction
method first proposed by Gross and Wagner. It does particularly well in instances of the
Colonel Blotto game in which the battlefield weights satisfy some clearly defined regularity
conditions (Section [2)). Though these conditions constrain the set of games in which this
method reliably generates equilibrium strategies, they are less restrictive than the condition
of symmetry across all battlefields (Laslier and Picard). Moreover, their implications

suggest directions for further research.

Noticing that the conditions on the reordering  can be interpreted as the requirement that
there exists a coalition such that every battlefield is pivotal suggests a parallel between
behaviour of candidates seeking to maximise plurality and candidates seeking to maximise
probability of victory, though this paper leaves the exact relationship between these games

an open question.

Finally, the restrictions on the support of equilibrium distributions limit the number of
possible correlations across x;’s. This captures the idea that even though it is intuitive that
more resources are likely to be allocated to battlefields with greater weight, the solution
suggests that allocations to different battlefields interact in a particular way. Looking more
carefully at possible correlations across z;’s could be interesting from the empirical point

of view.
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7 Appendix

7.1 Proof of Proposition 1

Proof of (i) and (ii): Straightforward.

Proof of (iii): To prove this point, it is sufficient to show that the payoff to any pure
strategy y € S? against [* is non-positive. First we show that the expected payoff to player
i from playing F** against F* is zero. Let x* = (2, ..., 2 ) and x/ = (], ..., 27) be generated

by F*. Accordingly, for all k = 1,...,n, 2 and xfc are drawn from the uniform distribution

over [0,2¢,X] and Pr(z}, < x},) = Fy(},) = % So given x¢, for all k =1, ..., n,
Elsgn(zl — 2))|x,] = 2F*(z}) — 1 = _ T
€k

And hence, forall k =1,...,n
. i Qek t
Elson(at~ el = [ (£ -1) ar)
0

(&2
1 QEk
_ L <t _ 1) it
€r Jo €k
which is zero for all £ =1, ..., n so that:
Elg(F*, F")] Zek [sgn(xl —x})] = 0.

Now consider the payoff to player i of playing an arbitrary pure strategy y € 8¢ = An~!
against F*. Since for all k =1,....n, e, < % and F} is the uniform distribution on [0, 2eg],
Fi(yr) = yr/2ex if yg € [0,2¢x] and Fjf(yx) = 1 if yx > 2ex. So

Elsgn(yx — x3)ly] = 2F; (ye) — 1
- 2min{1, ﬁ} "
26k

Elg(y, F*)] = zn:ek min {1 LU 1}

Hence:

k=1 Ck
- Yk

< e (——1)

_; (o

The last term equals > _, yx — > _p_; €, which is zero since y € A" ' and Y ,_, e, = 1 by
construction. So g(y, F*) < 0= g(F*, F*) forally € S;. [ |
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7.2 Restrictions on v, the reordering of e

In this appendix, I illustrate how to derive the conditions|(P1) and (P2)[from the property

tr + tre1 = Y, and the requirements:

1) Congruence Vk, tjy, =ty
2) Fit Vk, 0<t < Vi

First, let’s develop the first requirement. For n even:

totn = T
< U = Vetn—1 = Vktn—2 T Vetn-3 — . — Ve Tl
& (D) =0
& [(PIB)
For n odd:
totn = Tg
< e = Vetn-1— Vhtn—2t Vhgn-3— -+ Ve — i
< 20k = Ye4n—1 — Vetn—2 t Vetn-3 — - + Wk
& 2 =200 (=) e

& [(P10)
Now, let’s develop the second requirement.

For n odd, from (P10) we know that ¢, = %(’yk — Vi1 F Vet2 — oo + Vhtn—1)- SO
0<t < Yk
& Y < Vet T+ Ve2 = o T Vegn—1 < Yk
i=1
& > | e
n—1

<|(P2E)

For n even, the fit requirement, Vk, 0 < t < 7y, gives us n restrictions:

(1) 0 < & < %

(2) < i1 < Ve
(3) S )
(n) 0 < fhyn-1 < Vrin-1
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They can all be simplified to n restrictions on #:

(1) 0 < 173 < Yk
(2) Ve — Ve+1 < 7 < Y
(3) e = Mer1 <tk < Ve — Veer + Ve

(n) Ve — Ve+1 + oo T Vogn—2 — Votn-1 < thgn-1 < Ve — Ve+1 t oo T Vign—2

Notice that ¢ faces n/2 upper bounds and n/2 lower bounds. All n conditions are satisfied
if:

2v 2v—1
max{D (-1} < te < min{d (=1)Fpan}
i=1 =1

and for this to be possible, v needs to satisfy

7.3 Distribution of Electoral Votes (Source: FEC www.fec.gov)

State 1981-1990 | 1991-2000 | 2001-2010 State 1981-1990 | 1991-2000 | 2001-2010
Alabama 9 9 9 Missouri 11 11 11
Alaska 3 3 3 Montana 4 3
Arizona 7 8 10 Nebraska 5 5
Arkansas 6 6 6 Nevada 4 4
California 47 54 55 New Hampshire 4 4
Colorado 8 8 9 New Jersey 16 15 15
Connecticut 8 8 7 New Mexico 5 5 5
Delaware 3 3 3 New York 36 33 31
D.C 3 3 3 North Carolina 13 14 15
Florida 21 25 27 North Dakota 3 3 2
Georgia 12 13 15 Ohio 23 21 20
Hawaii 4 4 4 Oklahoma 8 8 7
Idaho 4 4 4 Oregon 7 7 7
Illinois 24 22 21 Pennsylvania 25 23 21
Indiana 12 12 11 Rhode Island 4 4
Towa 8 7 7 South Carolina 8
Kansas 6 6 South Dakota 3 3
Kentucky 9 8 8 Tennessee 11 11 11
Louisiana 10 9 9 Texas 29 32 34
Maine 4 4 4 Utah 5 5
Maryland 10 10 10 Vermont 3 3
Massachusetts 13 12 12 Virginia 12 13 13
Michigan 20 18 17 Washington 10 11 11
Minnesota 10 10 10 West Virginia 6 5 5
Mississippi 7 7 6 Wisconsin 11 11 10
Wyoming 3 3 3
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7.4 One possible support of the modified disk solution applied
to US data.

For clarity, all numbers are multiplied by 538.

i
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e o O 4 A = &N o I 0
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