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Abstract

This paper introduces the irregular N -gon solution, a new geometric method for

constructing equilibrium distributions in the Colonel Blotto game with heteroge-

neous battlefield values, generalising known construction methods. Using results on

the existence of tangential polygons, it derives necessary and sufficient conditions for

the irregular N -gon method to be applied, given the parameters of a Blotto game.

The method does particularly well when the battlefield values satisfy some clearly

defined regularity conditions. The paper establishes the parallel between these condi-

tions and the constrained integer partitioning problem in combinatorial optimisation.

The properties of equilibrium distributions numerically generated using the irregular

N -gon method are illustrated. They indicate that the realised allocations, weighted

by battlefield value, are less egalitarian and depend more strongly on battlefield

values than previously thought. In the context of the U.S. presidential elections

the explicit construction of equilibria provides new insights into the relation between

the size of a state and the campaign resources spent there by presidential candidates.
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1 Introduction

Budget-constrained multidimensional allocation problems were amongst the very first con-

sidered in game theory, starting with Borel and Ville (1938). These problems came to be

known as “Colonel Blotto” games, after the interpretation of Gross and Wagner (1950).

In the simplest version of the Colonel Blotto game, two generals dispose of one divisible

unit of military resources each, and face each other on three battlefields of equal value. A

battlefield is captured by the general who allocates more resources there than his opponent.

Each general aims to maximise the number of captured battlefields. Blotto games have

since been used to model military and system defense, as well as electoral competition and

R&D races.

This paper considers specifications of the Blotto game in which the players maximise

the expected total value of captured battlefields, and there are N ≥ 3 heterogeneous

battlefields. That is, every battlefield has the same value for both players, but that value

may vary across battlefields. For instance, in a system network a hub may be of greater

value – both to the attacker and the defender – than its spokes. In U.S. presidential

elections, the different states carry different numbers of electoral votes.

In these Blotto games, a pure strategy exhausting a player’s budget is an N -dimensional

allocation vector belonging to the (N − 1)-dimensional simplex, ∆N−1. A mixed strat-

egy is a probability measure on ∆N−1 captured by the N -variate cumulative distribution

function F : ∆N−1 → [0, 1]. A sufficient condition for Nash equilibrium is that the N

one-dimensional marginals of F be uniform over the support [0, 2vn/(
∑N

n=1 vn)], where vn

denotes the value of battlefield n.

The first contribution of this paper is to introduce the irregular N-gon method, a new

geometric method for constructing Nash equilibrium strategies. The method involves pro-

jecting a point uniformly distributed on the surface of a sphere onto a two-dimensional

support. It relies on the existence of an N -gon that admits an inscribed circle and whose

sides have lengths given by the N battlefield values. I provide necessary and sufficient con-

ditions on the N -vector of battlefield values under which such an N -gon exists, ensuring

the irregular N -gon construction method can be applied.

Reordering the elements of a given set of battlefield values, {v1, . . . , vN}, allows us to

generate a large number of different vectors of battlefield values (vπ(1), . . . , vπ(N)), where π

is a permutation of the indices 1, . . . , N . Any such vector satisfying the conditions for the

existence of a suitable associated N -gon can be used to construct an equilibrium strategy

using the irregular N -gon solution. Generically, when the irregular N -gon method can be

applied, it yields multiple equilibrium strategies. However, it may be possible that every

reordering of the elements of {v1, . . . , vN} fails the conditions. The existence of a suitable
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N -gon is therefore not guaranteed.

The second contribution of this paper is to establish that a set of battlefield values

admits a reordering generating a suitable N -gon if it admits a solution to an associated

constrained integer partitioning problem. In general, establishing whether an integer par-

titioning problem admits a solution is computationally cumbersome when N grows large.

Based on results in the literature on combinatorial optimisation, I derive a simple heuristic

for establishing whether a solution to the appropriate integer partitioning problem exists,

and thus whether the irregular N -gon method can be used to construct Nash equilibria of

the Blotto game.

The third contribution of this paper is to study the distributional properties of the

equilibrium allocation generated using the irregular N -gon method, and compare them

with those obtained under the previously known construction method of Gross (1950) and

Laslier (2002), which partitions battlefields into three groups. Focusing on the allocations

relative to battlefield size – which I interpret as per-capita allocations with in mind the

example of the U.S. presidential elections where the size of a battlefield is given by its pop-

ulation – I find the following differences. Under the irregular N -gon method, the variation

in the ranking of a battlefield according to realised per-capita allocation increases with the

battlefield size. Second, the outcome is less egalitarian ex-post. And most strikingly, the

per-capita allocations to smaller battlefields are positively correlated. This is surprising,

given that the budget constraint is a force making for negative correlation.

Finally, I apply the irregular N -gon method in the context of U.S. presidential elections,

in which two candidates compete over 51 battlefields1 with differing numbers of electoral

votes. I assume that the candidates maximise the expected total number of electoral votes

won. Concentrating on the 11 swing states of the 2012 election, I numerically construct the

equilibrium distribution of campaign resources across states. There is considerable inequity

in realised per-capita allocations, with the most neglected half of the population on average

receiving only 25% of campaign resources. Moreover, while smaller states are more likely

to be allocated intermediate shares, larger states are more likely to be allocated either the

highest or the lowest share of per-capita resources. Finally, the per-capita allocations of

campaign resources are positively correlated amongst smaller states.

The general appeal of geometric methods for constructing N -dimensional distributions

lies in the relative simplicity with which they describe complicated multi-dimensional ob-

jects, by using two-dimensional supports. The drawback is that they may fail to generate

the full set of distributions satisfying given restrictions on support and marginal distribu-

tions.

1 There are fifty states, plus the District of Columbia.
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The geometric method involving the projection of a sphere onto a disk inscribed in an N -

gon is described for the case of N = 3 heterogeneous battlefields in Borel and Ville (1938)

and Gross and Wagner (1950). This was extended by Laslier and Picard (2002) to the case

of N ≥ 3 homogeneous battlefields. In the case of N ≥ 3 heterogeneous battlefields con-

sidered in this paper, Gross (1950) and Laslier (2002) show that the construction method

for N = 3 heterogeneous battlefields can be used, after partitioning the N battlefields into

3 subsets. In this construction the allocations to battlefields that belong to a common

subset are perfectly correlated. This is not the case with the irregular N -gon method, and

this paper provides a numerical example illustrating the differences, and particularly the

equity and correlation properties, of equilibrium distributions constructed using the irreg-

ular N -gon method, when compared with the construction method of Gross (1950) and

Laslier (2002). Kvasov (2007) discusses the correlation properties arising in the equilibria

of N -dimensional all-pay auctions as a result of the players’ budget constraints.

Weinstein (2012) proposes a construction method directly in RN , for the case of N

homogeneous battlefields.2 The mixed strategy equilibria in first-price sealed-bid auctions

for objects with complementarities studied in Szentes and Rosenthal (2003) also involve

uniform distributions over the surface of three-dimensional objects and uniform marginals.

Roberson (2006), Roberson and Kvasov (2012) and Kovenock and Roberson (2015) ex-

ploit the link between the Blotto game andN -dimensional all-pay auctions. They introduce

copulas to map N one-dimensional marginals into N -dimensional distributions.3 They es-

tablish the existence of a copula satisfying the budget constraint, given marginals satisfying

the equilibrium conditions for the case of N homogeneous battlefields, and allowing play-

ers to have different budgets. Schwartz et al. (2014) and Kovenock and Roberson (2015)

show that the results of Roberson (2006) extend to heterogeneous battlefields, if there are

at least three battlefields of each possible value.4 In general, however, the existence of a

suitable copula in the case of N heterogeneous battlefields remains open.

The conditions for the existence of an N -gon admitting an inscribed circle are derived

in Radić (2002).5 My paper links the existence of an N -gon suitable for applying the

irregular N -gon method to a constrained version of the NP-complete “integer partitioning

problem”. I use results derived in Borgs et al. (2004) (see also Borgs et al. (2001)) to

2 Weinstein (2012) also considers a game with N homogeneous battlefields in which one player’s budget

is r times that of his opponent. That paper derives bounds on the equilibrium payoff and shows that they

are tight when r is close to 1.
3 In addition they treat the case of N = 2, as do Macdonell and Mastronardi (2012).
4 Kovenock and Roberson (2015) allow for battlefield values to differ both across battlefields (hetero-

geneous values) and across players (asymmetric values).
5 I had independently derived the results of Section 3.2. I thank an anonymous referee on an earlier

version of this paper for bringing Radić’s work on tangential polygons to my attention.
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develop a heuristic assessment of the reliability of the irregular N -gon method, given any

parametrisation of the battlefield values.

The Blotto game has frequently been used to model electoral competition. Laslier and

Picard (2002) and Laslier (2002) focus on the distributional properties6 of equilibria. So do

Myerson (1993), which corresponds to a Blotto game with a continuum of homogeneous

battlefields, and Sahuguet and Persico (2006), who consider two candidates differing in

valence and assume that some form of proportional representation is possible. Brams and

Davis (1974) propose modeling the allocation of campaign resources in the U.S. presiden-

tial elections as a Blotto game, although it is considered debatable7 whether presidential

candidates indeed maximise the expected plurality in their favour. Laffond et al. (1994)

and Laslier (2000) provide arguments supporting this view. An alternative view is that

candidates maximise their likelihood of winning a simple majority in the election. In a

model where the probability of winning a battlefield is given by a logit contest success func-

tion, Snyder (1989) shows that the two modeling assumptions imply different equilibrium

behaviour, particularly if the effect of a candidate’s campaign spending on votes is allowed

to vary across states.8 Equilibrium existence in Blotto games with the simple-majority

objective is established in Duggan (2007) and Barelli et al. (2014).

Brams and Davis (1974) consider a Blotto game in which the probability of a player

capturing a battlefield is given by a linear Tullock contest success function. That paper

does not study the mixed strategy Nash equilibria of the game, and instead concentrates

on the pure strategy symmetric minmax strategy profile. The authors derive the “3/2’s

rule”, which implies that the share of campaign resources allocated to larger states is dis-

proportionately large relative to these states’ electoral votes. I show that mixed strategy

Nash equilibria of the Blotto game do not support the “3/2’s rule”, nor the notion that

larger states receive disproportionately large shares of resources. However, in the equilib-

rium I construct, the variance in the ranking of a state according to allocated per-capita

share of campaign resources tends to increase with its size. More generally, the largest and

smallest per-capita shares are most likely to go to larger states, while intermediate shares

are more likely to go to smaller states. In other words, candidates tend to focus on “all or

nothing” policies in large swing states.

Discrete versions of the Blotto game in which a player’s budget consists of indivisible

6 De Donder (2000) uses numerical simulations to compare the redistributive properties of different

solution concepts in majority voting games.
7 See Colantoni et al. (1975a), Brams and Davis (1975) and Colantoni et al. (1975b). See also Laslier

(2005).
8Duffy and Matros (2015) study the Blotto game with heterogeneous battlefield values and a logit

contest success function for total expected payoff and majority rule objectives.
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units of resources are analysed in Hart (2008), Dziubiński (2013) and Hart (2014). They

provide the basis for experimental studies9 of the game.

Section 2 describes the Blotto game with heterogeneous battlefields and re-states a known

result characterising its Nash equilibria. Section 3 defines the irregular N -gon solution. It

gives necessary and sufficient conditions (due to Radić) for the construction method to be

applied. Proposition 2 in Section 3.3 relates these to the integer partitioning problem. The

correlation and equity properties of the resulting distributions are described in Section 3.5.

I apply my results to analyse the U.S. presidential election in Section 4.

2 Model and Equilibrium

Two players with identical budgets normalised to B choose how to allocate their resources

across N ≥ 3 battlefields indexed by n ∈ {1, ..., N}. For both players, the value of

battlefield n is vn ∈ (0,∞), and B :=
∑N

n=1 vn. If vn = vn′ for all n, n′ ∈ {1, . . . , N},
then battlefields are homogeneous, otherwise they are heterogeneous. Assume that vn <∑

k 6=n vk, for all n = 1, ..., N .

Player i ∈ {1, 2} chooses a nonnegative vector of allocations xi = (xi1, ..., x
i
N), where xin

denotes the fraction of resources allocated to battlefield n. Player i captures battlefield n

if the share xin of resources he allocates to that battlefield exceeds the share xjn of resources

allocated there by his opponent. Ties are resolved by flipping a fair coin. The sum of a

player’s resources allocated across all battlefields cannot exceed that player’s budget.

A pure strategy for player i is an N -dimensional vector xi satisfying the budget con-

straint,
∑N

n=1 x
i
nB ≤ B. Let S i denote the set of player i’s pure strategies:

S i =

{
xi ∈ [0, 1]N :

N∑
n=1

xin ≤ 1

}
.

An allocation that satisfies the budget constraint with equality belongs to the (N − 1)-

dimensional simplex denoted ∆N−1.

Each player seeks to maximise the aggregate value of captured battlefields. The function

g : S i×Sj → R measures the excess aggregate value of battlefields captured by player i if

he plays the pure strategy xi against player j’s pure strategy xj:

(1) g(xi,xj) =
N∑
n=1

vn sgn(xin − xjn),

9See Avrahami and Kareev (2009), Arad and Rubinstein (2012), Chowdhury et al. (2013), Montero

et al. (2016) and Casella et al. (2016).
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with sgn(u) = 1 if u > 0, 0 if u = 0 and −1 if u < 0.

A mixed strategy for player i is an N -variate joint distribution over S i. Let F i : S i →
[0, 1] denote its cumulative distribution function (c.d.f.), and let F i,(n) : [0, 1] → [0, 1]

denote the nth one-dimensional marginal of F i, i.e. the unconditional c.d.f. of xin, player

i’s allocation to the nth battlefield. Player i’s payoff to a mixed strategy is defined as the

expectation of g(xi,xj) with respect to the strategy profile (F i, F j).

The following proposition describes the equilibrium of this game.

Proposition 1. (Gross (1950), Laslier (2002)) Consider the Colonel Blotto Game with

heterogeneous battlefield values.

(i) This game has no pure-strategy Nash equilibrium.

(ii) Each player’s resource constraint binds in equilibrium.

(iii) Let F ∗ be a probability distribution of x ∈ ∆N−1 such that each vector coordinate

xn, n = 1, ..., N , is uniformly distributed on [0, 2vn/B]. The strategy profile (F ∗, F ∗)

constitutes a symmetric Nash equilibrium.

The first point implies that an equilibrium, if it exists, must be in mixed strategies.

The second point implies that the support of any equilibrium strategy is (a subset of) the

(N − 1)-dimensional simplex. Point three states that having univariate marginal distri-

butions that are uniform on [0, 2vn/B] is a sufficient condition for a mixed strategy with

support ∆N−1 to constitute a symmetric Nash equilibrium.

3 Constructing Nash equilibrium strategies

This section introduces a new geometric method for constructing a Nash equilibrium strat-

egy as defined in Proposition 1. Let us refer to it as the irregular N-gon solution or method,

as it relies on the existence of an N -gon that admits an inscribed circle and whose sides

have lengths given by the vector (v1, . . . , vN) of battlefield values. We begin by describing

the construction method, assuming the existence of such an N -gon. Necessary and suf-

ficient conditions on the vector of battlefield values are then given under which such an

N -gon exists and the irregular N -gon construction method can be applied.

Reordering the elements of the set {v1, . . . , vN} allows us to generate a large number of

different vectors of battlefield values. Any of these vectors satisfying the conditions for the

existence of a suitable associated N -gon can be used to construct an equilibrium strategy,

using the irregular N -gon solution. However, it may be possible that every reordering of

the elements of {v1, . . . , vN} fails these conditions. The existence of a suitable N -gon is

therefore not guaranteed.
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Proposition 2 establishes that a set {v1, . . . , vN} admits a reordering generating a suitable

N -gon if it admits a solution to an associated constrained integer partitioning problem.

In general, establishing whether a given integer partitioning problem admits a solution

is computationally cumbersome when N grows large. Based on results in the literature

on combinatorial optimisation, I provide a simple heuristic for establishing, given a set

{v1, . . . , vN} of battlefield values, whether a solution to the appropriate integer partitioning

problem exists, and thus whether the irregular N -gon method can be used to construct

Nash equilibria of the Blotto game.

Generically, when the irregular N -gon method can be applied, it yields multiple equi-

librium strategies. This multiplicity has many causes, which are discussed in Section

3.4. Moreover, further equilibrium strategies may be obtained using other construction

methods. I provide a numerical example illustrating the differences, particularly in their

correlation properties, of equilibrium distributions constructed using the irregular N -gon

method, when compared with the construction method of Gross (1950) and Laslier (2002).

In what follows, the set V := {v1, . . . , vN} of N battlefield values parametrises a Blotto

game.10 Without loss of generality, assume that the indices n = 1, . . . , N are such that

v1 ≤ v2 ≤ · · · ≤ vN . Let π denote a permutation of the indices 1, . . . , N and let wπ =

(wπ1 , . . . , w
π
N) := (vπ(1), vπ(2), . . . , vπ(N)) denote the vector of battlefield values associated

with the permutation π. For notational simplicity, whenever this is unambiguous I will

suppress the dependence of w on π. Moreover, in a slight abuse of language, I refer to a

vector w as “a permutation” of the vector v := (v1, . . . , vN).

3.1 The irregular N-gon solution

Fix a permutation w or v. The following process generates an N -dimensional random

vector X = (X1, . . . , XN) in the (N − 1)-dimensional simplex, ∆N−1, such that for each

n = 1, . . . , N , Xn is distributed uniformly over [0, 2wn/B]. Consider a tangential polygon

P with vertices P1, . . . , PN (in this order11) such that the sides have lengths |Pn−1Pn| equal

to wn, for each n = 1, . . . , N . A polygon is tangential if there exists a circle C such that

each side of P lies on a tangent line of C . Let O and r denote the center and radius of

C . The disk of centre O and radius r is the projection of the sphere S ∈ R3 onto the

plane supporting the polygon P . Finally, let R be a generic point uniformly distributed

on the surface of the sphere S and let P be the orthogonal projection of R onto the plane

supporting P .

10 In a slight abuse of terminology I allow V to contain multiple elements of the same value. That is, I

allow for the possibility that two battlefields have the same value.
11 All indices are calculated modulo N .
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For all n, hn is the distance of P from the side (Pn−1, Pn). The following lemma is a

well-known result in geometry.

Lemma 1. If R is uniformly distributed on the surface of the sphere S , then for each

n = 1, . . . , N , Xn := (hnwn)/(rB) is uniformly distributed on [0, 2wn/B].

Proof. Let Hn denote the plane that is tangent to the sphere S and whose projection onto

the plane supporting P is the side (Pn−1, Pn) of P . For all t ∈ [0, 2r], the spherical cap

of height t is the region of the sphere S that lies between the vertical plane Hn and the

vertical plane intersecting S that is parallel to Hn and a distance t away from it. Then,

for all t ∈ [0, 2r], Pr(hn < t) = Pr(R ∈ cap of height t). Since R is uniformly distributed

on the surface of the sphere, this probability equals the surface area of the cap of height t

divided by the total surface area of the sphere:

Pr(hn < t) =
2π
∫ t
0
r dx

2π
∫ 2r

0
r dx

=
t

2r
,

and hn is distributed uniformly on [0, 2r]. Consequently, the variable Xn := (hnwn)/(rB)

is distributed uniformly on [0, 2wn/B], for each n = 1, . . . , N .

3.2 Existence conditions

Lemma 1 allows to construct an equilibrium strategy when battlefield values are given

by the vector w, supposing there exists an associated tangential N -gon P with vertices

P1, . . . , PN such that the sides have lengths |Pn−1Pn| equal to wn, for each n = 1, . . . , N .

Theorem 1 provides necessary and sufficient conditions on w for the existence of an asso-

ciated tangential N -gon.

First note that the restriction wn < B/2, ∀n = 1, . . . , N , ensures that a convex N -gon

with sides of lengths given by (w1, . . . , wN) exists. However, not every polygon admits

an inscribed circle. Given a positive integer κ, we say that a tangential polygon P is

κ-tangential if:
N∑
n=1

φn = 2κπ,

where φn = ∠PnOPn+1 for each n = 1, . . . , N , and O is the centre of the circle inscribed

into P . Radić (2002) derives the following necessary and sufficient conditions for the

existence of a tangential polygon, given a vector (w1, . . . , wN) of lengths.

Theorem 1. (Radić (2002)) Let w1, . . . , wN , t1, . . . , tN be any given lengths (in fact posi-

tive numbers) such that

(2) tn + tn+1 = wn, n = 1, . . . , N ;
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and let κ be a positive integer such that κ ≤ bN−1
2
c. Then there exists a κ-tangential

polygon whose sides have lengths w1, . . . , wN .

Let Tn denote the point of tangency of the side (Pn, Pn+1) of the tangential polygon P

and its incircle C . The length tn then equals |PnTn|, and the theorem above follows from

the fact that the distances |PnTn| and |PnTn−1| must be equal.

Figure 1: A 2-tangential polygon for N = 5.

We have the following two corollaries, depending on whether N is odd or even.

Corollary 1. (Radić (2002)) Let N ≥ 3 be an odd number, and let w1, . . . , wN be given

lengths. Then for any κ ≤ N−1
2

there exists a κ-tangential polygon whose sides have lengths

w1, . . . , wN if and only if

(3)
N−1∑
k=0

(−1)2+k wn+k > 0, n = 1, . . . , N.

This can be derived from the fact that the solution to the system (2) is unique and given

by

(4) 2tn =
N−1∑
k=0

(−1)2+k wn+k, n = 1, . . . , N.

Corollary 2. (Radić (2002)) Let N ≥ 4 be an even number, and let w1, . . . , wN be given

lengths. Then for any κ ≤ N−2
2

there exists a κ-tangential polygon whose sides have lengths

w1, . . . , wN if and only if the following two conditions hold:

(5)
N∑
k=1

(−1)k wk = 0,

(6) min{b1, b3, . . . , bN−1} > max{b2, b4, . . . , bN},
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where

bk =
k∑

n=1

(−1)n+1 wn, k = 1, . . . , N.

Conditions (4) and (6) determine the location of the tangency points of the inscribed

circle with the tangential polygon. When N is odd, given w1, . . . , wN , the solution to the

system (2) is unique and tn is given by (4) for each n = 1, . . . , N . When N is even, t1

belongs to the interval defined in (6) and the remaining tn, for n = 2, . . . , N , are pinned

down by the system (2). (See Appendix 6.1.) Observe that consequently, given w1, . . . , wN ,

and for each κ ≤ N−2
2

, if N is even and if (5) and (6) are satisfied, it is possible to build

an infinity of κ-tangential polygons, by varying t1.

Conditions (3) and (5) require that the N -gon with sides given by w1, . . . , wN be balanced

in the following sense. When N is even, the summed lengths of odd sides must equal the

summed lengths of even sides. When N is odd, choosing any side n and alternately

partitioning the remaining sides into two sets, the difference between the summed lengths

within each set must not exceed wn. One interpretation for these conditions is that there

must exist a binary partition of the battlefields such that each battlefield in each subset is

pivotal.

3.3 The constrained integer partitioning problem

Faced with a Blotto game parametrised by the set V of battlefield values, will we be

able to apply the irregular N -gon method for constructing Nash equilibrium strategies?

Equivalently: Does there exist a permutation w of v such that the conditions of Theorem

1 for the existence of a tangential polygon with sides of lengths given by the vector w

are satisfied? This section relates this question to the constrained integer partitioning

problem.

First, observe that the conditions of Theorem 1 are satisfied by every v ∈ RN when

N = 3. This corresponds to the case treated in Gross and Wagner (1950). The conditions

of Theorem 1 are also satisfied for any N ≥ 3 in the case of homogeneous battlefields, i.e.

when vn = v for each n = 1, . . . , N . This is treated in Laslier and Picard (2002).12 For

N ≥ 3, as we depart from the regular N -gon, these conditions become harder to meet, and

there exist instances of v for which these conditions always fail.13

To find all permutations w of a given v which satisfy Theorem 1, one could just parse,

one by one, all possible permutations14. This “brute force” method becomes cumbersome

12 Every triangle admits an inscribed circle, as does every regular N -gon.
13 For instance, v = (1, 1, 1, 2).
14 Treating a permutation (e.g. (x, y, z)), its cyclic shifts ((y, z, x) and (z, x, y)), and the order-reversing

11



when N grows large, as the number (N − 1)!/2 of possible permutations grows faster than

exponentially. In Appendix 6.2 we propose an algorithm that does better than this brute

force method. One might still wish to assess, given a vector v of battlefield values, whether

a suitable permutation w satisfying Theorem 1 is likely to even exist. I therefore propose

the following simple heuristic.

Observe that if, as we have assumed until now, vn ∈ (0,∞) for each n = 1, . . . , N ,

then, generically, (5) cannot be satisfied. For the remainder of this paper, let us therefore

restrict attention to integer-valued battlefields and assume that vn is a positive integer for

all n = 1, . . . , N . This is a reasonable assumption in many applications. For instance, the

number of electoral votes in electoral systems is integer-valued. Moreover, the argument

also extends to the positive rationals. Since the number of battlefields is finite, we can

always re-scale rational values so that they become integers.

In that case, more can be said about when (3) and (5) are likely to be satisfied by some

permutation of v by noting that these conditions are related to the constrained integer

partitioning problem, a well-known problem of combinatorial optimisation, in which a given

set of N integers must be partitioned into two subsets of given cardinalities such that the

discrepancy, the absolute value of the difference between the sum of integers in each subset,

is minimised.

Proposition 2. Fix a set V := {v1, . . . , vN} of N battlefield values.

(i) For N even, there exists a permutation w of v satisfying the conditions of Theorem

1 if and only if V admits a solution to the following integer partitioning problem:

(P1): Partition the N elements of V into two subsets of equal cardinality such

that the discrepancy is zero.

(ii) For N odd, there exists a permutation w of v satisfying the conditions of Theorem

1 only if there exists a solution to the following integer partitioning problem:

(P2): For each n = 1, . . . , N , partition the N − 1 elements of V \ {vn} into two

subsets of equal cardinality such that the discrepancy is less than vn.

Proof. (i) The set V satisfies the integer partitioning problem (P1) if and only if there

exists a permutation w of its elements such that:

w1 + w3 + · · ·+ wN−1 = w2 + w4 + · · ·+ wN .

The condition above is equivalent to condition (5).

permutations of each ((z, y, x), (x, z, y) and (y, x, z)) as identical, the N elements of a set admit (N−1)!/2

distinct permutations.
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(ii) A permutation w of v satisfies the N conditions in (3) if and only if, for each

n = 1, . . . , N ,

wn >

N−1
2∑

k=1

wn+2k−1 −
N−1

2∑
k=1

wn+2k

Clearly, a necessary condition is that the set V satisfies the integer partitioning

problem (P2). However, this condition is not sufficient. To satisfy (3) the solutions

to the N partitioning problems in (P2) must coincide in a particular way. Appendix

6.3 provides an example of a set V satisfying the integer partitioning problem (P2),

even though there exists no permutation of its elements satisfying condition (3).

The problems (P1) and (P2) are computationally hard. The unconstrained partitioning

problem is NP-complete, and while some algorithms deliver good approximations of the

optimal partition (that is, the partition with the lowest possible discrepancy), the brute

force algorithm that compares the discrepancies of all possible partitions is still the best

known solution to the problem. Borgs et al. (2004) study the typical behaviour of the

optimal partition when the N integers are i.i.d. random variables chosen uniformly from

the set {1, ..., 2m} for some integer m. They identify two “phases” for our constrained

problems, depending on their computational difficulty.

For N and m tending to infinity while keeping the ratio m/N constant, with probability

tending to one there exists a perfect partition, i.e. a partition with discrepancy 0 or 1, when

m/N < 1. They call this the perfect phase of the problem. In that phase, the number15 of

perfect partitions is about 2(N−m). For m/N > 1, in what the authors call the hard phase

of the problem, the probability of a perfect partition tends to zero, presumably making

computation of the optimal partition more difficult there.

For the purpose of this paper, the results of Borgs et al. (2004) allow the conclusion

that conditions (3) and (5) are likely to be more easily satisfied for m/N < 1, when there

is a relatively large number of battlefields and their values are close, than for m/N > 1,

when there is a relatively small number of battlefields and their values differ greatly. The

limiting case in which vn = 1/N for all n = 1, . . . , N , and N → ∞ clearly has m/N → 0

and corresponds to the setup in Myerson (1993).

For m/N > 1, while it is possible for (3) to be satisfied, it is almost never possible for

(5) to be satisfied. We express this in Table 1 by stating that the partitioning problems

(P1) and (P2) are more “easily” satisfied when m < N and that we consequently expect to

find more permutations w of the vector v of battlefield values that satisfy the conditions

15 The number of perfect partitions in the perfect phase is lower than in the limiting case where N →∞
by about twenty percent for a given ratio m/N .
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of Corollaries 1 and 2 than for m > N , making the irregular N -gon method easier to use.

This offers a pragmatic rule of thumb for assessing, given a vector v of battlefield values,

how reliable the irregular N -gon method is likely to be.

m < N m > N

(P1) easy impossible

(P2) easy hard

Table 1: The heuristic for assessing how reliable our geometric construction

method is likely to be, given a vector v of N i.i.d. battlefield values chosen uni-

formly from {1, . . . , 2m}.

The following three examples illustrate the use of this heuristic.16 Consider the set

V1 := {5, 7, 8, 9, 12} of integers uniformly and independently drawn17 from the range 1 to

16. Our heuristic based on Borgs et al. (2004) indicates that V1 should admit a solution

to the integer partitioning problem (P2), since N = 5 and m = 4. Indeed, there are

six permutations of the elements of V1 that satisfy the conditions of Theorem 1, out of a

possible (N − 1)!/2 = 12. They are listed in Section 3.5.

In contrast, consider the sets V2 := {13, 17, 38, 46, 63} and V3 := {2, 15, 37, 46, 62} of

integers uniformly and independently drawn18 from the range 1 to 64. In both cases,

m = 6 (since 26 = 64) and N = 5 so that m/N = 6/5 > 1. The heuristic based on Borgs

et al. (2004) indicates that both sets V2 and V3 are in the hard phase: there is only a very

small chance of finding even one perfect partition. Even though for N odd, the irregular

N -gon method does not require a perfect partition, it requires that there exists at least

one permutation w of v that satisfies the constrained integer partitioning problem (P2).

In the case of V2, we find two permutations, (13, 38, 63, 46, 17) and (17, 38, 63, 46, 13),

that satisfy (P2). Computing all possible cyclical permutations the elements of V3 we find

that none satisfies (P2) or the conditions of Theorem 1, and we cannot use the irregular

N -gon method to derive a Nash equilibrium strategy in this case, even though such a

16 Although in all three cases, N = 5 and the (N −1)!/2 = 12 possible permutations of v can be quickly

parsed.
17 The null hypothesis that the data is distributed according to the uniform distribution on [0, 16] cannot

be rejected up to the 61 percent level based on the Kolmogorov-Smirnov test. (The p-value is 0.614616.)
18 For V2 the null hypothesis that the data is distributed according to the uniform distribution on [0, 64]

cannot be rejected up to the 95 percent level based on the Kolmogorov-Smirnov test. (The p-value is

0.95664.) For V3 the null hypothesis that the data is distributed according to the uniform distribution on

[0, 64] cannot be rejected up to the 98 percent level based on the Kolmogorov-Smirnov test. (The p-value

is 0.987942.)
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distribution exists.19

3.4 Multiplicity of equilibrium strategies

Given a set of battlefield values V , the irregular N -gon method may yield a multiplicity of

N -variate distribution functions constituting Nash equilibria of the corresponding Blotto

game. There are numerous sources of multiplicity.

1. The irregular N -gon method requires the existence of a tangential polygon with

sides of lengths given by w1, . . . , wN for some suitable permutation w of the vector

v. For any given V there may be many distinct suitable permutations satisfying the

conditions of Theorem 1 for the existence of a κ-tangential polygon.

2. Fix V and fix a permutation w of v such that vπ(1), . . . , vπ(N) satisfy the conditions of

Theorem 1. When N is even, there exists an infinity of associated lengths t1, . . . , tN

satisfying (2), each generating a different κ-tangential polygon. (When N is odd, the

lengths t1, . . . , tN are uniquely determined by (4).)

3. For any given V , w1, . . . , wN and t1, . . . , tN satisfying Theorem 1, letting κ vary

generates
⌊
N−1
2

⌋
distinct κ-tangential polygons.

Distinct polygons20 generate joint distributions with different correlation properties, as

discussed in the next section. The irregular N -gon method only generates a unique equi-

librium strategy in the case N = 3, as
⌊
N−1
2

⌋
= 1 so that κ may only take the value 1, N

is odd so that the unique vector (t1, . . . , tN) satisfying (2) is given by (4), and there exists

only one relevant permutation of 3 battlefield values.

Finally observe that, since there exist other methods for constructing multivariate distri-

butions satisfying the equilibrium conditions, our method, even when feasible, might not

describe the entire set of equilibrium strategies.

3.5 Equity and correlation

The restrictions of Proposition 1 on the support and marginal distributions of equilibrium

strategies limits the number of possible interactions between the resource allocations to

different battlefields. The fact alone that, in equilibrium, players only use strategies in the

(N − 1)-dimensional simplex, ∆N−1, which does not include the whole of ×Nn=1[0, 2vn/B],

precludes some correlation structures for the joint distribution. The particulars of any geo-

metric construction method are liable to limit these interactions further. So far, it has not

19 It can be constructed using the construction method of Gross (1950) and Laslier (2002).
20 These may be identical-looking polygons generated by different permutations of the battlefield values.
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been possible to fully characterise the set of possible correlations satisfying the restrictions

on equilibrium strategies, or to disentangle the effects of the equilibrium restrictions from

those of the construction method.

To illustrate this point, consider the case of homogeneous battlefields with vi = v for

each i = 1, . . . , N and with N ≥ 3. Given the lengths t1, . . . , tN satisfying (4) or (6) as

appropriate, there are (N −1)!/2 distinct permutations π of the indices 1, . . . , N such that

(vπ(1), . . . , vπ(N)) satisfies Theorem 1. Given any such π, and for κ = 1, the resources allo-

cated to battlefield π(n), n ∈ {1, . . . , N} under the irregular N -gon method will be (more)

positively correlated with the allocation to battlefields on adjacent sides of the N -gon,

π(n+ 1) and π(n− 1), and (more) negatively correlated with the allocation to battlefields

on opposite sides of the N -gon π (n+ bN/2c) and π (n− bN/2c). (Other correlation prop-

erties arise for κ > 1). To rectify this, Laslier and Picard (2002) propose averaging out

over all permutations π such that the corresponding wπ satisfy Theorem 1. (Although,

they only consider 1-tangential polygons with tn = v/2 for each n = 1, . . . , N , ignoring

further possible values of κ and, when N is even, of tn.)

Using a numerical example with heterogeneous battlefields, the remainder of this section

illustrates some properties of the irregular N -gon method and compares it with that of

Gross (1950) and Laslier (2002), paying particular attention to the equity and correlation

properties of the respective equilibrium distributions. (Section 4 illustrates the irregular

N -gon method in the context of U.S. presidential elections.) Even though the expected

allocation to a given battlefield is uniquely pinned down by the equilibrium condition of

Proposition 1, the distribution of allocations depends on the chosen construction method.

I find the following differences. Under the irregular N-gon method the variability in

the rank of the per-capita allocation, as measured by the coefficient of variation, tends to

increase with the battlefield size. This feature is less pronounced under the construction

method of Gross (1950) and Laslier (2002). Second, computing the Lorenz curve and

associated Gini coefficient in each case reveals that the irregular N-gon method yields less

egalitarian outcomes ex-post. Finally, I find that the per-capita allocations tend to be

positively correlated amongst smaller battlefields under the irregular N -gon solution. This

is particularly striking, given that the budget constraint is a force making for negative

correlation. In contrast, all allocations are negatively correlated when using the method

of Gross (1950) and Laslier (2002).

Consider the set of integers V1 := {5, 7, 8, 9, 12} discussed in the previous section. There

are six permutations of the elements of V1 that satisfy the conditions of Theorem 1, out of
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a possible twelve. They are:

(7)
(7, 5, 12, 9, 8), (8, 5, 12, 9, 7), (5, 7, 12, 9, 8),

(8, 7, 12, 9, 5), (5, 8, 12, 9, 7), (7, 8, 12, 9, 5).

Since for any given permutation, the t1, . . . , tN are uniquely determined by (4) when N

is odd, each of the permutations above corresponds to two κ-tangential polygons: one for

κ = 1 and the other for κ = 2. Different values of κ generate equilibrium distributions

with different correlation properties. To emphasise this dependence, we let F ∗κ denote the

distribution function generated using a κ-tangential N -gon, and F ∗0 denote the distribution

function obtained by averaging out over all κ ≤ N−2
2

.

For each κ, the equilibrium distribution F ∗κ is numerically constructed as follows. For

each permutation w in (7) we generate 10, 000 points uniformly distributed on the surface

of the sphere S and for each point compute the realisation of the allocation vector. See

Appendix 6.4 for details. For each realisation x, the battlefields are then ranked according

to, xn/vn, their allocated share of resources weighted by the battlefield value. This can be

interpreted as ranking battlefields according to the per-capita share of resources allocated

to them, if the value of a battlefield is understood to reflect the size of its population.

The two left panels in Table 2 describe the probability that a battlefield with value vn

is ranked kth according to the per-capita share of resources it receives under F ∗κ , for κ = 1

and for κ = 2. Each row describes the probabilities with which each battlefield occupies a

particular rank. For instance, the battlefield with value v1 is allocated the smallest share

of per-capita resources with probability 14.01 when κ = 1 and with probability 19.8 when

κ = 2. The two right panels in Table 2 are the correlation matrices of F ∗κ , for κ = 1 and

for κ = 2. The i, j entry is the correlation, under F ∗κ , of the per-capita allocation Xi/vi

to the battlefield with value vi, and the per-capita allocation Xj/vj to the battlefield with

value vj. (The matrix is symmetric.) Figure 2 gives a visual representation of the rank

and correlation matrices of Table 2.

When κ = 1, the smallest and largest per-capita share are both most likely to be al-

located to the largest battlefield, and both least likely to be allocated to the smallest

battlefield. The smallest battlefield is most likely to be allocated the second smallest or

second largest per-capita share. The per-capita shares of the three smallest battlefields

are more positively correlated to one another. The per-capita shares of the largest two

battlefields are negatively correlated to the per-capita allocations in all other battlefields.

When κ = 2 the smallest battlefield is most likely to receive the median per-capita share.

Compared with the case κ = 1, more extreme per-capita allocations (rank 1 and 5) become

more likely for smaller battlefields (1, 2 and 3) and less likely for larger battlefields ( 4 and

5). For the latter, the likelihood of receiving intermediate per-capita allocations (rank 2
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Battlefield

v1 v2 v3 v4 v5
R

an
k

1 14.01 17.75 20.31 20.39 27.54

2 27.13 21.09 17.28 23.87 10.63

3 17.7 22.31 24.9 10.78 24.3

4 27.12 21.06 17.11 24.32 10.39

5 14.03 17.79 20.4 20.64 27.14

κ = 1

Battlefield

v1 v2 v3 v4 v5

B
at

tl
efi

el
d

v1 1 0.17 0.11 −0.27 −0.39

v2 0.17 1 −0.03 −0.26 −0.44

v3 0.11 −0.03 1 −0.24 −0.52

v4 −0.27 −0.26 −0.24 1 −0.32

v5 −0.39 −0.44 −0.52 −0.32 1

κ = 1

Battlefield

v1 v2 v3 v4 v5

R
an

k

1 19.8 20.64 21.71 16.28 21.56

2 15.29 17.25 20.54 23.5 23.42

3 29.74 24.2 15.52 21.46 9.09

4 15.44 17.27 20.65 22.98 23.66

5 19.73 20.64 21.58 15.78 22.28

κ = 2

Battlefield

v1 v2 v3 v4 v5

B
at

tl
efi

el
d

v1 1 0.04 −0.49 0.49 −0.48

v2 0.04 1 −0.77 0.24 −0.27

v3 −0.49 −0.77 1 −0.19 0.13

v4 0.49 0.24 −0.19 1 −0.97

v5 −0.48 −0.27 0.13 −0.97 1

κ = 2

Table 2: Rank and correlation matrices of per-capita allocations Xn/vn for κ = 1 and κ = 2.
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Figure 2: Rank and correlation matrices of per-capita allocations Xn/vn for κ = 1 and κ = 2. (In this

an other visual representations of matrices, blue tones indicate negative values and orange tones indicate

positive values. Darker colours indicate a larger absolute value.)

18



and 4) is is now higher. Correlations are less systematic than for κ = 1.21

Averaging over κ = 1 and κ = 2, we obtain the rank and correlation matrices of F ∗0
described in Table 3 and illustrated in Figure 3. In addition, we report the coefficient

of variation cV for the distribution of the rank of per-capita allocations obtained by each

battlefield. We make an observation that remains true for other parametrisations of the

battlefield values V (see Section 4): the largest and smallest per-capita shares are most

likely to go to larger battlefields, while intermediate shares are more likely to go to smaller

battlefields. Moreover, the variability of the allocation rank, as measured by the coefficient

of variation, tends to increase with the battlefield size.

Battlefield

v1 v2 v3 v4 v5

R
an

k

1 16.90 19.19 21.01 18.33 24.55

2 21.21 19.17 18.91 23.68 17.02

3 23.72 23.25 20.21 16.12 16.69

4 21.28 19.16 18.88 23.65 17.02

5 16.88 19.21 20.99 18.21 24.71

cV 0.444 0.462 0.478 0.464 0.506

Battlefield

v1 v2 v3 v4 v5

B
at

tl
efi

el
d

v1 1 0.11 −0.19 0.11 −0.43

v2 0.11 1 −0.40 −0.01 −0.35

v3 −0.19 −0.40 1. −0.21 −0.20

v4 0.11 −0.01 −0.21 1 −0.64

v5 −0.43 −0.35 −0.20 −0.64 1

Table 3: Rank and correlation matrices of per-capita allocations Xn/vn, averaged over κ = 1 and κ = 2.

The coefficients of variation of the rank distribution for each battlefield are also reported.
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Figure 3: Rank and correlation matrices of per-capita allocations Xn/vn, averaged over κ = 1 and κ = 2.

I compare the irregular N -gon method with that of Gross (1950) and Laslier (2002).

Their method requires partitioning the battlefields into 3 subsets, N1, N2 and N3, and

building a triangle with sides of lengths given by the sum of battlefield values in each subset.

Because every triangle admits an incircle, the projection method described in Section

3.1 can always be applied to generate a three-dimensional random vector of allocations,

21 Appendix 6.9 illustrates the effects of varying κ on the rank and correlation matrices in the U.S.

presidential election game.
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(Y1, Y2, Y3). If battlefield n ∈ {1, . . . , N} belongs to subset Nk, k ∈ {1, 2, 3}, then the share

of resources allocated to battlefield n is given by Xn = Ykvn/(
∑

n∈Nk
vn), and the random

vector (Xn)Nn=1 ∈ ∆N−1 satisfies the equilibrium conditions of Proposition 1.

It is immediate that, under this construction method, the allocations to battlefields that

belong to a common subset are perfectly correlated, for any given partition of battlefields

{{N1}, {N2}, {N3}}. However, there are many possible ways of partitioning N battlefields

into 3 non-empty subsets22, subject to the constraint that the sum of battlefields values

within any subset does not exceed the sum of remaining battlefields values. This last

condition ensures that it is possible to build a triangle with sides of lengths given by the

sum of battlefield values in each subset. In our example, given V1, there are 12 such

partitions:

(8)

{{5}, {7, 12}, {8, 9}}, {{7}, {5, 9}, {8, 12}}, {{7}, {5, 12}, {8, 9}},
{{8}, {5, 9}, {7, 12}}, {{8}, {5, 12}, {7, 9}}, {{9}, {5, 7}, {8, 12}},
{{9}, {5, 8}, {7, 12}}, {{9}, {5, 12}, {7, 8}}, {{12}, {5, 7}, {8, 9}},
{{12}, {5, 8}, {7, 9}}, {{12}, {5, 9}, {7, 8}}, {{5, 7, 8}, {9}, {12}}.

Constructing the equilibrium distribution for each of the 12 partitions above, then con-

sidering their average, I obtain the rank and correlation matrices described in Table 4 and

illustrated in Figure 4.

Battlefield

v1 v2 v3 v4 v5

R
an

k 1 32.82 34.92 35.84 31.76 37.10

2 34.10 30.19 28.48 36.48 25.90

3 33.09 34.90 35.68 31.76 37.00

cV 0.405 0.418 0.423 0.398 0.431

Battlefield

v1 v2 v3 v4 v5

B
at

tl
efi

el
d

v1 1 −0.15 −0.14 −0.00 −0.23

v2 −0.15 1 −0.27 −0.14 −0.24

v3 −0.14 −0.27 1 −0.04 −0.42

v4 −0.00 −0.14 −0.04 1 −0.64

v5 −0.23 −0.24 −0.42 −0.64 1

Table 4: Rank and correlation matrices of per-capita allocations Xn/vn under

the construction method of Gross (1950) and Laslier (2002). The coefficients of

variation of the rank distribution for each battlefield are also reported.

Even though the per-capita allocations Xn/vn within each subset Nk are perfectly cor-

related given a particular partition of battlefields, when averaging out over partitions the

per-capita allocation to any battlefield is negatively correlated to that in all other battle-

fields. Moreover, the probability for any battlefield of obtaining the kth largest per-capita

22 In general there are
{
N
k

}
ways to partition N objects into k non-empty subsets, where

{
N
k

}
=

1
k!

∑k
j=0(−1)k−j

(
a
b

)
jn denotes the Stirling number of the second kind.
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Figure 4: Rank and correlation matrices of per-capita allocations Xn/vn under

the construction method of Gross (1950) and Laslier (2002).

allocation, is closer to 1/3 for every k ∈ {1, 2, 3} when using the Gross (1950) and Laslier

(2002) construction method, than it is to 1/5 for every k ∈ {1, 2, 3, 4, 5} when using the

irregular N -gon method. (See Table 3 and Figure 3). According to the coefficients of vari-

ation, under the irregular N -gon method the allocation to larger battlefields tends to be

more variable than the allocation to smaller ones (See also Table 6). This relation between

rank variability and battlefield size is less pronounced under the construction method of

Gross (1950) and Laslier (2002): for each battlefield the coefficient of variation is larger

under the former construction method than under the latter.

Furthermore, computing the Lorenz curve and associated Gini coefficient in each case

reveals that the irregular N -gon method yields less egalitarian outcomes ex-post. The

Lorenz curve describes the cumulative distribution of per-capita allocation shares. The

Gini coefficient associated with a Lorenz curve takes values between 0 and 1 and measures

the departure of the Lorenz curve from the 45◦ line (perfect equity). Larger values of the

Gini coefficient indicate a less equitable allocation of resources.

Here, the Lorenz curve is numerically constructed as follows. For each generated realisa-

tion of the allocation vector we cumulate the per-capita allocation shares ranked from the

poorest to the wealthiest. Averaging out over all permutations in (7) and over κ = 1, 2

generates the Lorenz curve for the irregular N -gon method. Averaging out over all per-

mutations in (8) generates the Lorenz curve for the construction method of Gross (1950)

and Laslier (2002).

These Lorenz curves are depicted in Figure 5. The realised allocation of resources is

clearly inequitable, with the poorest twenty units of battlefield value (corresponding to

the poorest half) receiving less than 26% of resources in both cases. The irregular N -gon

method implies greater inequality, as the associated Lorenz curve first-order stochastically

dominates the Lorenz curve generated using the construction method of Gross (1950) and

Laslier (2002). The null hypothesis that the two Lorenz curves are the same is rejected at
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the 0.1 percent significance level based on a two-sample Kolmogorov-Smirnov test.23
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Figure 5: Lorenz curves generated using the irregular N -gon method (full squares)

and that of Gross (1950) and Laslier (2002) (empty diamonds). The associated

Gini coefficients are 0.288 and 0.270 respectively.

4 Application: U.S. presidential elections

One compelling application of this model is the election of U.S. presidents by the Electoral

College. During primaries, two candidates, one Democrat, the other Republican, are chosen

to represent their party in the general election, which is then held simultaneously in all fifty

U.S. states and the District of Columbia. Each state is allocated a number of electoral

votes proportional to its population.24 A candidate gains all electoral votes of a given

state25 if he receives a plurality of the votes cast in that state. To win the election, a

candidate must win more than half the electoral votes.

23 The Kolmogorov-Smirnov test statistic is 0.0127 while the critical value at the 0, 1% significance level

is 0.0080 for 12× 10, 000 observations.
24 These numbers vary over time. The distribution of electoral votes across U.S. states for the most

recent four decades is given in Appendix 6.5.
25 Two states, Maine and Nebraska, allocate all but two of their electoral votes by Congressional district,

so that a candidate needs to win a plurality of votes in a Congressional district to win that district’s

electoral vote. The remaining two electoral votes (corresponding to the number of Senators in each state)

are allocated to the candidate winning a plurality of the vote in the state. So, in these two states, the

electoral votes may be split. I am grateful to an anonymous referee for this observation. Since neither

state was considered a swing state in the 2012 election, this singularity does not affect the results of this

section.
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Modelling the U.S. presidential elections as a Blotto game allows us to address the

following question: does the Electoral College system intrinsically lead to inequity in the

realised per-capita allocation of campaign resources across states? Does the per-capita

allocation depend on a state’s size?

Modelling the U.S. presidential elections as a Blotto game requires the following five

assumptions: (i) there are two presidential candidates (ii) who face identical budgets, (iii)

if a candidates allocates more campaign resources than his opponent to a state, he receives

a majority of votes in that state (iv) no state is ex-ante biased in favour of either candidate

and (v) each candidate wishes to maximise the expected total number of electoral votes in

his favour, rather than the probability of winning the election.

Even though third party candidates have won electoral votes in the past, they have

seldom campaigned in all 51 states. Nevertheless, their presence is considered to have had

a significant effect on the outcome of close elections.26 For the purpose of this numerical

exercise, I abstract from third party candidates.

Assumption (ii) is necessarily satisfied if we understand the campaign resource to mean

time spent campaigning in a state. What if we think of money as the resource? Since

the introduction of the public funding program27 in 1976, candidates may accept public

funds for their campaign, in which case they must abide by pre-specified spending limits.

If both candidates are publicly funded, they face identical budget constrains28. However,

in the last two presidential elections, at least one of the major party candidates rejected

public funding. Data on the last four presidential elections (see Appendix 6.6) shows that,

in practice, the campaign expenditures of candidates can greatly differ.

The positive relationship between campaigning effort and votes is well documented,

whether campaigning effort is understood to be time spent campaigning in a state (Herr

(2008)) or financial campaign expenditures in that state (Chapman and Palda (1984)).

However, Levitt (1994) rejects this claim in the context of U.S. House elections.

Assumptions (iv) and (v) may seem more problematic. For every past presidential elec-

tions, all candidates were confident enough about securing the votes of their “safe” states

and concentrated their campaigning efforts mostly on “swing” states. In my numerical

exercise I will therefore restrict attention to the “swing” states of the 2012 presidential

election. Those are listen in Table 5 together with their electoral votes in that year.

26 Perot in 1992 and Nader in 2000 are often cited as the most recent cases of potential “spoiler

candidates”. Lee (2012) argues that third party candidates are an integral part of the two-party system,

even when they fail to win a significant percentage of votes.
27 See the Federal Election Commission brochure for Public Funding of Presidential Elections at http:

//www.fec.gov/pages/brochures/pubfund.shtml.
28 In the 2004 presidential election, both candidates rejected primary matching funds, but accepted

public fund in the general election.
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CO (9) MI (16) NC (15) VA (13)

FL (29) NV (6) OH (18) WI (10)

IA (6) NH (4) PA (20)

Table 5: Electoral votes in the 2012 swing states.

As to the candidates’ aim, in general one might be more inclined to assume that can-

didates maximise the probability of their winning the election. However, because presi-

dential elections coincide with Senate and House of Representatives elections, maximising

the expected plurality of electoral votes in their favour is at least a candidate’s secondary

objective (as opposed to maximising the expected plurality of the popular vote, or the

probability of winning a majority of state electors).

4.1 Equilibrium in the U.S. presidential election game

Under assumptions (i)-(v) I model the 2012 presidential election as the following Colonel

Blotto game: two candidates with identical budgets normalised to 1 choose how to allocate

their campaign funds across N = 11 “swing” states indexed by n ∈ {1, ..., N}. The value

of state n is vn and corresponds to the number of electoral votes attached to that state in

the 2012 election (Table 5). Let V = {4, 6, 6, 9, 10, 13, 15, 16, 18, 20, 29} denote the set of

state values. Candidate i’s plurality, the number of electoral votes won minus the number

of electoral votes lost, is measured by the function gi : Si × Si → R defined in (1). This

matches the setup of Section 2, and we can use the results of Section 3 to numerically

construct a symmetric equilibrium strategy of this game.

Assume29 that the values in V are drawn uniformly from [0, 32]. In the context of Section

3.3 we have m = 5 (since 25 = 32) and N = 11 so that m/N < 1. This indicates that

the problem is in the perfect phase of Borgs et al. (2004) and our partitioning problem

should be “easy” to solve.30 Using the algorithm described in Appendix 6.2, I derive the

set G∗(V) of all distinct permutations w of v satisfying Theorem 1. There are 4896 such

permutations, about 0.27% of the (N − 1)!/2 = 1 814 400 possible permutations of v.

29 The null hypothesis that the values in V are distributed according to the uniform distribution on

[0, 32] cannot be rejected up to the 28 percent significance level based on the Kolmogorov-Smirnov test.

(The p-value is 0.28.)
30 Had we considered the entire fifty U.S. states and the District of Columbia (ignoring the singularities

of Nebraska and Maine), the resulting combinatorial problem would also have been in the perfect phase

(since N = 51, m = 6, and m/N = 6/51 < 1). Indeed, a solution can readily be found by tâtonnement,

as shown in Appendix 6.7, which illustrates one possible permutation of the 51 battlefields satisfying the

conditions of Theorem 1.
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Thus, for each κ, there exist 4896 distinct tangential polygons associated with V .31

Each tangential polygon generates its own joint distribution over ∆10, each with its own

correlation properties. I construct each joint distribution numerically as follows: for each

permutation in G∗(V) I generate 1000 points uniformly distributed on the surface of the

sphere S and for each point compute the realisation of the allocation vector. See Appendix

6.4 for details.

Following Laslier and Picard (2002), given κ, I obtain the joint distribution F ∗κ by averag-

ing out over all permutations w in G∗(V). Each κ generates distinct equity and correlation

properties. I show that varying κ does not significantly affect the Lorenz curve associated

with the distribution F ∗κ . We can therefore average out over all κ ≤
⌊
N−1
2

⌋
to obtain the

equilibrium strategy F ∗0 .

4.2 Lorenz curve

Let us investigate whether the per-capita allocation of campaign resources depends on

a state’s size, and how equitable the realised allocations are. Brams and Davis (1974)

argue that larger states receive a disproportionately larger share in equilibrium. This is

clearly excluded by Proposition 1. Define the per-capita allocation in state n to be xn/vn,

splitting the resources allocated in equilibrium to state n equally among its electoral votes.

In equilibrium, since the allocation xn to state n is distributed uniformly over [0, 2vn/B],

we have E[xn/vn] = 1/B for all n, implying ex-ante equity.

In this sense, the Blotto game does not does not support the claim that larger states

will systematically receive the largest per-capita share of campaign resources. Instead it

predicts that ex-ante, campaign resources will be distributed equitably. However, I show

that this is not the case ex-post.

For each κ ≤
⌊
N−1
2

⌋
, I construct the Lorenz curve describing the cumulative distribution

of per-capita allocation shares. For each permutation w ∈ G∗(V), I generate 1, 000 reali-

sations of the equilibrium allocation vector x and rank electoral votes from the poorest to

the wealthiest, according to the per-capita share of campaign resources allocated to them.

Cumulating the allocation shares and averaging out over all permutations w ∈ G∗(V)

generates the Lorenz curve, for a given κ. These are illustrated in Appendix 6.8.

The Gini coefficients vary significantly with κ, and consistent with this, some Lorenz

curves first-order stochastically dominate others given our sample data (See Appendix 6.8).

Averaging out over all κ ≤
⌊
N−1
2

⌋
, gives the Lorenz curve generated by the equilibrium

31 Observe that because N is odd, given κ and a permutation w := (w1, . . . , w11) ∈ G∗(V), there exists

a unique associated vector t := (t1, . . . , t11) given by (4) such that (t,w) satisfies Theorem 1. Therefore

there exists a unique tangential polygon associated with each pair (κ,w), κ ≤
⌊
N−1
2

⌋
, w ∈ G∗(V).
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distribution F ∗0 . It is depicted in Figure 6. Its Gini coefficient is 0.304. Clearly, the

realised allocation of resources is inequitable, with the most neglected half of the population

receiving less than 25% of campaign resources.
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Figure 6: The Lorenz curve generated by the equilibrium distribution F ∗0 .

4.3 Equity and correlation

When constructing the equilibrium distribution F ∗0 , for each generated data point I rank

the states according to the size of the per-capita share of resources obtained. The (k, n)

entry of Table 6 gives the probability that the nth smallest state in terms of electoral votes

receives the kth smallest per-capita share of campaign resources under F ∗0 . For instance,

the smallest per-capita share of resources (rank 1) is allocated to the smallest state (NH)

with 7.34% probability and to the largest state (FL) with 11.35% probability.

The results described in Table 6 and illustrated in Figure 7 show that the Blotto game

does not predict that larger states will systematically receive the largest per-capita share

ex-post. In fact, the largest state in our sample is as likely to receive the smallest share,

as the largest one. In line with results from Section 3.5, the variability in the ranking of a

state, as measured by the coefficient of variation, tends to increase with its size. The largest

and smallest per-capita shares are most likely to go to larger states, while intermediate

shares are more likely to go to smaller states.

As previously observed, using κ-tangential polygons with different values of κ leads to

different distributions F ∗κ with different correlation properties. In Appendix 6.9, Figure 11

illustrates the correlation matrices of F ∗κ , and Figure 12 represent the rank distributions,

when κ takes the values 1 to 5. Averaging out over all κ, gives F ∗0 whose correlation matrix

is illustrated in Figure 8. The per-capita allocations of campaign resources are positively
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Rank NH(4) IA(6) NV(6) CO(9) WI(10) VA(13) NC(15) MI(16) OH(18) PA(20) FL(29)

1 7.34 8.17 8.17 8.61 8.73 9.46 9.32 9.29 9.8 9.77 11.35

2 8.41 8.35 8.35 8.93 8.95 9.23 9.49 9.63 9.46 9.78 9.41

3 9.48 9.22 9.22 9.09 9.24 9.18 8.83 8.78 8.92 8.75 9.29

4 9.32 9.18 9.18 9.07 9.09 8.78 9.05 8.98 8.99 9.37 8.99

5 9.41 9.58 9.58 9.45 9.12 9.09 8.99 8.90 8.88 8.87 8.14

6 11.8 10.84 10.84 9.53 9.72 8.53 8.47 8.73 8.11 7.84 5.59

7 9.48 9.61 9.61 9.43 9.10 9.09 9.02 8.89 8.82 8.81 8.13

8 9.35 9.20 9.20 9.11 9.07 8.75 9.08 9.02 8.96 9.3 8.95

9 9.54 9.24 9.24 9.14 9.25 9.17 8.84 8.81 8.88 8.67 9.22

10 8.49 8.39 8.39 8.97 8.98 9.24 9.54 9.66 9.42 9.42 9.51

11 7.38 8.21 8.21 8.66 8.75 9.48 9.37 9.31 9.76 9.44 11.45

cV 0.500 0.509 0.509 0.519 0.522 0.533 0.532 0.532 0.538 0.540 0.560

Table 6: Distributions of state rankings under F ∗0 , according to per-capita share

of resources obtained by that state, and associated coefficients of variation.
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Figure 7: Plot of the data in Table 6. Darker cells indicate higher values.

correlated amongst smaller states (NH-CO). For the remaining states (WI-FL), the larger

the state, the more negatively its allocation is correlated with those of other states.

5 Conclusion

I introduce the irregular N -gon solution, a new geometric method for generating instances

of the N -variate distributions that constitute equilibria of the Blotto game with hetero-

geneous battlefield values. I relate my method to the constrained integer partitioning

problem and propose a heuristic for assessing its reliability, given a set of parameters. I

illustrate the irregular N -gon solution in a numerical example, and contrast it with the

solution generated following Gross (1950) and Laslier (2002). Finally, I apply the irregular
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Figure 8: Plot of the correlation matrix of F ∗0 . Blue tones indicate negative values

and orange tones indicate positive values. Darker colours indicate a larger absolute

value.

N -gon method to a game based on the U.S. presidential elections. Concentrating on the 11

swing states of the 2012 election, I study the equity of campaign resource allocation across

states. I find that there is substantial inequality in the realised allocation of resources.

The variation in the ranking of a state according to realised per-capita allocation tends

to increase with its size. The per-capita allocations to smaller states are positively cor-

related. The largest and smallest per-capita shares are most likely to go to larger states,

while intermediate shares are more likely to go to smaller states.
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6 Appendix

6.1 Bounds on tn when N is even.

For N even, it follows from (2) that

(9) 0 < tn < vn, n = 1, . . . , N.

Using (2) to express each tn in terms of t1:

(10) tn =

{
−t1 + bn−1 n = 2, 4, . . . , N,

t1 − bn−1 n = 1, 3, . . . , N − 1,

where bn =
∑n
j=1(−1)j+1vj for n = 1, . . . , N was defined in Corollary 2 and we use the convention b0 ≡ 0.

Using (10) in (9) we obtain

tn =

{
bn−1 > t1 > bn−1 − vn, n = 2, 4, . . . , N,

bn−1 < t1 < bn−1 + vn, n = 1, 3, . . . , N − 1.

Since bn = bn−1 − vn when n is even, and bn = bn−1 + vn when n is odd, the above becomes

tn =

{
bn−1 > t1 > bn, n = 2, 4, . . . , N,

bn−1 < t1 < bn, n = 1, 3, . . . , N − 1.

The above system of inequalities imposes N/2 upper bounds, and N/2 lower bounds on t1.

Condition (6) is necessary and sufficient for all N bounds to hold, and the interval in (6) defines the set

of admissible values for t1. For a given t1, equation (10) uniquely defines tn for all remaining n = 2, . . . , N .
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6.2 Algorithm

The following algorithm is used to build the set G∗(V) of all permutations of the set V of battlefield

values satisfying Theorem 1, treating a permutation, its cyclic shifts, and the order-reversing permutations

of all of them as identical.32. Fix v := (v1, . . . , vN ) and for each permutation π of 1, . . . , N let wπ :=

(wπ1 , . . . , w
π
N ) = (vπ(1), . . . , vπ(N)) denote the corresponding permutation of v. The existence of a tangential

polygon with sides given by wπ requires condition (2) to hold. This implies that for each n = 1, . . . , N ,

we have 0 ≤ tn ≤ wπn−1 and 0 ≤ tn+1 ≤ wπn+1 and therefore

wπn ≤ wπn+1 + wπn−1 ∀n = 1, . . . , N.

Observing that this condition is harder to satisfy the larger wπn, we use the following algorithm to

construct G∗(V).

1. Let G0(V) denote the set of all possible permutations wπ of v, treating a permutation, its cyclic

shifts, and the order-reversing permutations of all of them as identical33. For each corresponding

π, let ñπ := arg maxn∈{1,...,N} w
π
n denote the index of the highest-valued coordinate of wπ.

2. Construct the set G1(V) ⊆ G0(V) of cyclical permutations satisfying

wπñπ ≤ wπñπ−1 + wπñπ+1.

3. For k = 2, . . . , (N − 1)/2, construct the set Gk(V) ⊆ Gk−1(V) of cyclical permutations satisfying{
wπñπ−k+1 ≤ wπñπ−k + wπñπ−k+2,

wπñπ+k−1 ≤ wπñπ+k + wπñπ+k−2.

4. Eliminate from GN−1
2

(V) all permutations that do not satisfy (3).

The surviving permutations constitute the set G∗(V).

Because the algorithm above exploits the conditions of Theorem 1, it does better at deriving the set

G∗(V) than the brute force method of testing all possible permutations of the elements of V.

32 See footnote 14
33 Therefore, |G0(V)| = (N − 1)!/2.
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6.3 Counter-example

Consider the set V = {1, 2, 3, 109, 110, 111, 325} of battlefield valuations. The set G1, defined in Appendix

6.2, is empty, since 325 > 110+111 . Therefore, there exists no permutation of the elements of V satisfying

condition (2).

However, V satisfies the N integer partitioning problems in Proposition 2 (ii):

vn partition of V r {vn} into two subsets of equal cardinality discrepancy

1
{
{109, 110, 111}, {2, 3, 325}

}
0

2
{
{109, 110, 111}, {1, 3, 325}

}
1

3
{
{109, 110, 111}, {1, 2, 325}

}
2

109
{
{3, 110, 111}, {1, 2, 325}

}
104

110
{
{3, 109, 111}, {1, 2, 325}

}
105

111
{
{3, 109, 110}, {1, 2, 325}

}
106

325
{
{3, 109, 111}, {1, 2, 110}

}
110
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6.4 Numerically constructing the equilibrium distribution

This section describes the method used for numerically computing the allocation of resources under F ∗κ .

Fix a given permutation w of the vector of battlefield values v such that w ∈ G∗(V) and fix a κ ≤
⌊
N−1
2

⌋
.

Using Mathematica, we generate 10, 000 points randomly distributed on the surface of a sphere. Each

data point is then used to compute one realisation x of the N -dimensional allocation vector. Recall that

indices are defined modulo N . We use the notation of Section 3.1.

Let ρn denote the distance |OPn| and let αn denote the angle ̂Tn−1OPn which by construction equals

the angle P̂nOTn. The distance |OTn| is given by the radius rκ of the incircle of the tangential N -gon P .

(In this section this radius is indexed by κ to emphasise the dependence.)

Consider the right triangle OTn−1Pn, where ̂Tn−1OPn = αn and where |OTn−1| = rκ, |PnTn−1| = tn

and the hypotenuse is |OPn| = ρn. We have that

sinαn =
tn√

r2κ + t 2
n

.

Since αn is one of the non-right apices ofOTn−1Pn−1, we have that−π/2 < αn < π/2 so that arcsin (sinαn)

is defined34 and

αn(rκ) = arcsin

(
tn√

r2κ + t 2
n

)
.

Since arcsin is strictly increasing over its domain, αn(r) is strictly decreasing in rκ.

Theorem 2 and Corollary 3 in Radić (2002) give the radius rκ of the incirle of a κ-tangential polygon

as an implicit function of the lengths t1, . . . , tN . Based on that we obtain expressions for αn and ρn,

n = 1, . . . , N .

Figure 9: Projecting Q onto (Pn, Pn+1).

Let θ ∈ [0, 2π] and φ ∈ [−π/2, π/2] denote the polar coordinates of R, the point uniformly distributed

over the surface of the sphere S = (O, rκ). Let Q denote the projection of R onto the disk (O, rκ) inscribed

in the N -gon P . Let hn denote the orthogonal distance of Q from the line (Pn, Pn+1).

34 The function arcsin is defined as follows: For −1 ≤ x ≤ 1 and −π/2 < y < π/2, x = sin y ⇔ y =

arcsinx.
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We orient the two dimensional plane around the origin O by convening that T1 = rκe
i0. We then have

that

Pn = ρn e
i(2

∑n
j=2 αj−αn),

and

Tn = rκ e
i2

∑n
j=2 αj .

Moreover, since

Q = rκ sinφ eiθ,

we obtain that

hn = rκ − rκ sinφ cos

θ − 2

n∑
j=2

αj

 ,

and have shown in Section 3.1 that Xn = (hnwn)/(rκB) ∼ U [0, 2wn/B].
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6.5 Distribution of electoral votes (Source: www.fec.gov)

State 1981- 90 1991- 00 2001- 10 2011- 20 State 1981- 90 1991- 00 2001- 10 2011- 20

Alabama 9 9 9 9 Missouri 11 11 11 10

Alaska 3 3 3 3 Montana 4 3 3 3

Arizona 7 8 10 11 Nebraska 5 5 5 5

Arkansas 6 6 6 6 Nevada 4 4 5 6

California 47 54 55 55 New Hampshire 4 4 4 4

Colorado 8 8 9 9 New Jersey 16 15 15 14

Connecticut 8 8 7 7 New Mexico 5 5 5 5

Delaware 3 3 3 3 New York 36 33 31 29

D.C 3 3 3 3 North Carolina 13 14 15 15

Florida 21 25 27 29 North Dakota 3 3 3 3

Georgia 12 13 15 16 Ohio 23 21 20 18

Hawaii 4 4 4 4 Oklahoma 8 8 7 7

Idaho 4 4 4 4 Oregon 7 7 7 7

Illinois 24 22 21 20 Pennsylvania 25 23 21 20

Indiana 12 12 11 11 Rhode Island 4 4 4 4

Iowa 8 7 7 6 South Carolina 8 8 8 9

Kansas 7 6 6 6 South Dakota 3 3 3 3

Kentucky 9 8 8 8 Tennessee 11 11 11 11

Louisiana 10 9 9 8 Texas 29 32 34 38

Maine 4 4 4 4 Utah 5 5 5 6

Maryland 10 10 10 10 Vermont 3 3 3 3

Massachusetts 13 12 12 11 Virginia 12 13 13 13

Michigan 20 18 17 16 Washington 10 11 11 12

Minnesota 10 10 10 10 West Virginia 6 5 5 5

Mississippi 7 7 6 6 Wisconsin 11 11 10 10

Wyoming 3 3 3 3
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6.6 Presidential campaign finance summaries
(Data: Federal Election Commission, Presidential Campaign Finance Summaries, http://www.fec.gov/press/bkgnd/pres_

cf/pres_cf_Even.shtml )

Disbursements prior Total disbursements

to Super Tuesday(i)

2012 Obama∗ (D) $66, 121, 822† $469, 930, 646

$78, 712, 495‡

Romney (R) $55, 745, 321† $298, 158, 415

$68, 107, 847‡

2008 Obama (D) $115, 689, 084† $488, 331, 269

$158, 579, 005‡

Mc Cain (R) (II) $49, 650, 185† $207, 523, 221

$58, 432, 608‡

2004 Kerry (D) (II) $30, 119, 415† $243, 294, 897

$37, 867, 817‡

Bush∗ (R) (II) $38, 901, 223† $286, 628, 893

$46, 724, 159‡

2000 Gore (D) (I) (II) $25, 703, 131† $77, 863, 579

$34, 047, 289‡

Bush (R) (II) $47, 964, 764† $136, 651, 579

$60, 724, 475‡

Notation: (D) Democrat, (R) Republican. (I) indicates that the candidate accepted primary matching

funds; and (II) that he accepted government funds in the general election. ∗ indicates an incumbent, †
indicates disbursements up to and including the month of January, ‡ indicates disbursements up to and

including the month of February.

(i) “Super Tuesday” took place on the following dates: 6th Mar. 2012, 5th Feb. 2008, 3th Feb 2004,

7th Mar. 2000. In 2004 many sates held their primaries on 2nd Mar., dubbed “Mini Tuesday”.
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6.7 One permutation of U.S. states satisfying Theorem 1 (2008

Electoral College).

For clarity, wn, tn and tn+1 are multiplied by 538. (There are 538 electoral votes in total.)

n wn tn tn+1 n wn tn tn+1

1 31 2 29 26 3 1 2

2 8 6 2 27 3 2 1

3 9 3 6 28 3 1 2

4 10 7 3 29 4 3 1

5 11 4 7 30 4 1 3

6 17 13 4 31 4 3 1

7 20 7 13 32 4 1 3

8 21 14 7 33 5 4 1

9 27 13 14 34 5 1 4

10 21 8 13 35 5 4 1

11 15 7 8 36 6 2 4

12 15 8 7 37 6 4 2

13 15 7 8 38 7 3 4

14 10 3 7 39 7 4 3

15 7 4 3 40 8 4 4

16 7 3 4 41 9 5 4

17 6 3 3 42 9 4 5

18 5 2 3 43 10 6 4

19 5 3 2 44 10 4 6

20 4 1 3 45 11 7 4

21 3 2 1 46 11 4 7

22 3 1 2 47 11 7 4

23 3 2 1 48 12 5 7

24 3 1 2 49 13 8 5

25 3 2 1 50 34 26 8

- - - - 51 55 29 26
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6.8 Lorenz curves and Gini coefficients

κ = 1 κ = 2 κ = 3 κ = 4 κ = 5

Gini coefficient: 0.310 0.309 0.305 0.297 0.300

Table A: Gini Coefficients for κ = 1, . . . , 5.

κ′ = 5 κ′ = 3 κ′ = 2 κ′ = 1

κ = 4
YES

(0.0032)

NO

(0.0068)

NO

(0.0117)

YES

(0.0111)

κ = 5
NO

(0.0053)

NO

(0.0096)

NO

(0.0090)

κ = 3
NO

(0.0050)

YES

(0.0052)

κ = 2
NO

(0.0028)

Table B: The first entry in each cell specifies whether the Lorenz curve Lκ (row) first-order

stochastically dominates the Lorenz curve Lκ′ (column) given our sample data, for κ, κ′ ∈
{1, . . . , 5}. The entry in brackets specifies the Kolmogorov-Smirnov test statistic obtained

in a two-sample Kolmogorov-Smirnov test of the hypothesis that Lκ and Lκ′ are identical

cumulative distributions. The critical value at the 0.1% significance level is 0.00125 for 1000×
4896 observations. All reported test statistics exceed this value, and in each case the null

hypothesis is strongly rejected by our sample data. The curves are listed from most to least

equitable according to the Gini coefficients presented in Table A.
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Lorenz Curve, κ=1,...,5

Figure 10: The Lorenz curves for κ = 1 in blue, κ = 2 in red,

κ = 3 in green, κ = 4 in black, κ = 5 in orange.
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6.9 Rank and Correlation properties of F ∗κ

Figure 11: Plots of the correlation matrices of F ∗κ , for κ = 1, . . . , 5.

Figure 12: Plots of rank distributions under F ∗κ for κ = 1, . . . , 5.
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Radić, M. (2002). Some relations concerning k-chordal and k-tangential polygons. Math-

ematical Communications 7 (1), 21–34.

Roberson, B. (2006). The Colonel Blotto game. Economic Theory 29 (1), 1–24.

Roberson, B. and D. Kvasov (2012). The non-constant-sum colonel blotto game. Economic

Theory 51 (2), 397–433.

Sahuguet, N. and N. Persico (2006). Campaign spending regulation in a model of redis-

tributive politics. Economic Theory 28 (1), 95–124.

Schwartz, G., P. Loiseau, and S. Sastry (2014, 10). The heterogeneous Colonel Blotto

Game. In NETGCOOP 2014, International Conference on Network Games, Control

and Optimization, October 29-31, 2014, Trento, Italy, Trento, ITALIE.

Snyder, J. M. (1989). Election goals and the allocation of campaign resources. Economet-

rica: Journal of the Econometric Society , 637–660.

41



Szentes, B. and R. W. Rosenthal (2003). Three-object two-bidder simultaneous auctions:

chopsticks and tetrahedra. Games and Economic Behavior 44 (1), 114–133.

Weinstein, J. (2012). Two notes on the Blotto game. B.E. Journal of Theoretical Eco-

nomics 12 (1).

42


	Introduction
	Model and Equilibrium
	Constructing Nash equilibrium strategies 
	The irregular N-gon solution
	Existence conditions
	The constrained integer partitioning problem
	Multiplicity of equilibrium strategies
	Equity and correlation

	Application: U.S. presidential elections
	Equilibrium in the U.S. presidential election game
	 Lorenz curve
	 Equity and correlation

	Conclusion
	Appendix
	Bounds on tn when N is even.
	Algorithm
	Counter-example
	Numerically constructing the equilibrium distribution
	Distribution of electoral votes (Source: www.fec.gov)
	 Presidential campaign finance summaries
	One permutation of U.S. states satisfying Theorem 1 (2008 Electoral College).
	Lorenz curves and Gini coefficients
	Rank and Correlation properties of F*


