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Abstract This article examines behavior in the two-player, constant-sum Colonel
Blotto game with asymmetric resources in which players maximize the expected
number of battlefields won. The experimental results support the main qualitative
predictions of the theory. In the auction treatment, where winning a battlefield is deter-
ministic, disadvantaged players use a “guerilla warfare” strategy that stochastically
allocates zero resources to a subset of battlefields. Advantaged players employ a “sto-
chastic complete coverage” strategy, allocating random, but positive, resource levels
across the battlefields. In the lottery treatment, where winning a battlefield is probabi-
listic, both players divide their resources equally across all battlefields. However, we
also find interesting behavioral deviations from the theory and discuss their implica-
tions.
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1 Introduction

This article experimentally investigates the classic Colonel Blotto game with asym-
metric resources. In this constant-sum game, two players simultaneously allocate their
endowments of resources across n-battlefields, with the objective of maximizing the
expected number of battlefields won. The probability of winning a battlefield depends
on the resources allocated by both players to that field. The function that maps the two
players’ resource allocations into their respective probabilities of winning is called the
contest success function (CSF). We examine two types of contest success functions
(CSFs): the “auction” CSF, in which the player allocating more resources to a battle-
field wins that battlefield with certainty, and the “lottery”” CSF, in which the probability
of winning a battlefield equals the ratio of a player’s resource allocation to the sum of
the players’ resource allocations in that battlefield.

The experimental results support the main qualitative predictions of the theory. In
the auction treatment, where the winner of each battlefield is determined according
to the auction CSF, disadvantaged players often use a “guerilla warfare” strategy that
stochastically allocates zero resources to a subset of battlefields. Advantaged play-
ers often employ a “stochastic complete coverage” strategy, allocating random, but
positive, resource levels to each battlefield. Under the lottery treatment, where the
winner of each battlefield is determined according to the lottery CSF, there is sup-
port for the equilibrium prediction of a constant allocation across battlefields for both
players. However, we also find interesting behavioral deviations from the theory. Due
to the constant-sum nature of the game, we examine behavior under both strangers
and partners matching protocols. In the auction treatment, under the strangers pro-
tocol, players have significant serial correlation in allocations to a given battlefield
across time. Under the partners protocol, this correlation is significantly reduced and
disappears for the disadvantaged player. Intuitively, under the auction treatment and
partners protocol, both players want to be less predictable (i.e., reduce serial corre-
lation), and this incentive is even stronger for the disadvantaged player (i.e., player
whose loss from being predictable is the highest).

The Colonel Blotto game is the prototype of models of multidimensional strate-
gic resource allocation. Originally formulated by Borel (1921), it is among the first
strategic situations to be subject to formal mathematical analysis. Over the years,
variants of the game have been examined by prominent scholars across a wide range
of disciplines (Tukey 1949; Blackett 1954, 1958; Bellman 1969; Shubik and Weber
1981; Snyder 1989; Powell 2007, and Hart 2008). Interest in the game is derived
from its wide potential for application, including to problems in military and systems
defense (Blackett 1954, 1958; Shubik and Weber 1981; Clark and Konrad 2007; Powell
2007; Hausken 2008, and Kovenock and Roberson 2009b), advertising (Friedman
1958), research and development portfolio selection (Clark and Konrad 2008), political
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campaign resource allocation (Snyder 1989; Klumpp and Polborn 2006 and Stromberg
2008), and redistributive politics (Laslier 2002; Laslier and Picard 2002; and Roberson
2008).! The two most popular contest success functions employed in these analyses
are the auction and lottery CSFs.

Borel’s original version of the Colonel Blotto game employed an auction CSF and
was solved for the special case of three battlefields and symmetric resources by Borel
and Ville (1938). Gross and Wagner (1950) extended the Borel and Ville analysis of
the case of symmetric resources to allow for any finite number of battlefields. Fried-
man (1958) provided a partial characterization of the solution to Borel’s problem for
n-battlefields and asymmetric resources. More recently, Roberson (2006) has applied
the theory of copulas to prove the uniqueness of equilibrium payoffs under the auc-
tion CSF for n-battlefields and arbitrary asymmetric resources and prove that uniform
univariate marginal distributions are necessary for equilibrium over a wide range of
endowments of resources.? To our knowledge, Friedman (1958) was also the first to
examine the Blotto game under the lottery CSF and solved the game for n-battlefields
and asymmetric resources. A recent extension is Robson (2005), who extends the
analysis from the lottery CSF to more general CSF’s of the ratio form in which the
probability that player i wins the contest as a function of the two levels of expenditure
x1 and x is x7 / (x! + x}), where 0 < r < 1.3

Which of the contest success functions better describes a given strategic multi-
dimensional resource allocation problem depends on the nature of the conflict within
each contested battlefield. An auction CSF might well approximate environments in
which exogenous noise plays little role in influencing the outcome of the battle. The
lottery CSF is a popular method of modeling environments in which victory in a given
battlefield is determined not just by the respective resource allocations, but also a
substantial random component.

There exists a substantial experimental literature on lottery contests (Davis and
Reilly 1998; Potters et al. 1998; Sheremeta 2010, 2011; Sheremeta and Zhang 2010;
Morgan et al., forthcoming), as well as all-pay auctions with complete information
(Davis and Reilly 1998; Potters etal. 1998; Gneezy and Smorodinsky 2006; Lugovskyy
et al. 2010). The vast majority of experimental studies focus on simple single-battle
contests.* Almost without exception, the existing studies provide evidence of subjects

1 Conceptually related, but somewhat different technically, are the models of redistributive politics with a
continuum of battlefields following Myerson (1993). Contributions in this line of research include Lizzeri
(1999), Lizzeri and Persico (2001), Sahuguet and Persico (2006), Crutzen and Sahuguet (2009), and
Kovenock and Roberson (2009a).

2 See also Kvasov (2007) and Roberson and Kvasov (forthcoming), who examine “non-constant sum’
Blotto games in which budgets are not use-it-or-lose-it, Golman and Page (2009) who examine Blotto
games with payoffs non-linear in the number of battlefields won and externalities across battlefields, and
Hart (2008) who examines a Blotto game with discrete strategy spaces.

3 Snyder (1989) examined a related game in which the CSF for each battlefield was of the type employed
by Rosen (1986) and contained the lottery CSF as a special case. Snyder assumed no budget constraints, but
instead a positive marginal cost of each unit resource employed. He also examined two different objectives,
one involving a payoff linear in the number of battlefields won and the other a payoff that was discontinuous
when a majority of battlefields was won.

4 Although there are several studies in the literature (see Sheremeta 2010), investigating multi-battle
elimination contests.
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behaving more aggressively than predicted by the Nash equilibrium. Commonly cited
explanations for over-dissipation in contests are that subjects make mistakes (Potters
et al. 1998; Sheremeta 2011; Schmidt et al. 2011), they misperceive probabilities
(Amaldoss and Rapoport 2009; Sheremeta and Zhang 2010), and they have a non-
monetary utility of winning (Parco et al. 2005; Sheremeta 2010; Price and Sheremeta
2011). The unique feature of our study is that our experiments investigate constant-sum
contests in which players cannot over-dissipate, whereas all previous studies investi-
gate non-constant-sum contests. In contrast to previous experimental studies on the
all-pay auction (i.e., Potters et al. 1998; Gneezy and Smorodinsky 2006; Lugovskyy
et al. 2010), we find that the payoffs in the Colonel Blotto game are very close to the
theoretical prediction. But we also find that the pattern of dichotomous behavior (play-
ers choosing either very low bids or moderately high bids more often than predicted)
is similar to the findings in the all-pay auction literature.

Most closely related to our study is the study by Avrahami and Kareev (2009), who
investigate behavior in a discrete Colonel Blotto game with an auction CSF (as in Hart
2008). Although many of the details of both their experiment and analysis differ from
ours, the key difference is that we use a finer mesh of feasible strategies to approx-
imate the continuous Colonel Blotto game (Roberson 2006). Moreover, we compare
two prominent CSFs: lottery versus auction, which represent alternative assumptions
about the technology of conflict.

The rest of the article is organized as follows. In Sect. 2, we describe our experimen-
tal design and theoretical predictions. Section 3 presents the results of our experiment
and compares these results to the corresponding theoretical predictions. Section 4
concludes.

2 Experimental environment
2.1 Experimental design and theoretical predictions

This article examines experimentally whether behavior conforms to the Nash equilib-
rium predictions of the Colonel Blotto game with asymmetric budgets. Our experi-
mental design is based on the constant-sum Colonel Blotto game, in which two players
simultaneously allocate their resources across n-battlefields, with the objective of max-
imizing the expected number of battlefields won.> We study two treatments: the auction
treatment, in which the player with the higher resource allocation to a battlefield wins
that battlefield with certainty, and the lottery treatment, in which the probability of
winning a battlefield equals the ratio of a player’s resource allocation to the sum of
the players’ resource allocations in that battlefield. The auction treatment is based on
Roberson (2006), and the lottery treatment is based on Friedman (1958).

The structure of the game is shown in Fig. 1. We use 8 battlefields (boxes) and
two players with asymmetric resources. The resource endowment for player 1 is 200
tokens, and for player 2, it is 120 tokens. The outline of the experimental design along
with the theoretical predictions is shown in Table 1. Under the auction CSF (auction

3 Since the games examined are constant sum, Nash equilibrium strategies are also optimal strategies.
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Fig. 1 The structure of the game

Table 1 Experimental design and theoretical predictions

Treatment Number Player Budget Equilibrium marginal Expected payoff
of boxes distribution of tokens per box
Lottery 8 1 200 x1 =25 0.625
2 120 xy =15 0.375
Auction 8 1 200 Fi (x) = 35x where x € [0, 50] 0.7
2 120 Fy(x) = 2 + 535 x wherex €[0,50] 0.3

treatment), for the parameters chosen, there exists no pure strategy Nash equilibrium
in this game. For 8 battlefields and the ratio of budgets chosen (120/200), Roberson
(2006) demonstrates that mixed strategy equilibrium univariate marginal distributions
are unique.® We chose 8 battlefields and endowments of 120 and 200 tokens to both
ensure uniqueness of these marginal distributions and also to ensure that the allocation
problem for the subjects is non-trivial. Endowments were also chosen so that player
2 had a substantial probability of winning some battlefields. Moreover, these param-
eters, together with private conversion rates, were chosen to ensure equal earnings
between player 1 and player 2.

The qualitative nature of the mixed strategy equilibria that arise depends on the ratio
of the two players’ budgets. For the budgets examined here, the disadvantaged player
2 allocates zero resources to a given battlefield with positive probability (0.4) and
then employs a uniform marginal distribution between zero (0 tokens) and a common
upper bound (50 tokens). Hence, the disadvantaged player 2 uses a “guerilla warfare”
strategy that stochastically allocates zero resources to a subset of battlefields. The
advantaged player 1’s equilibrium strategy must generate marginal distributions that
are uniform over the complete support, which coincides with that of the disadvantaged
player. Hence, equilibrium strategies for the advantaged player exhibit “stochastic
complete coverage,” allocating random, but positive, resource levels across the battle-
fields. The unique equilibrium expected payoff for the advantaged player is 0.7, and
for the disadvantaged player, it is 0.3.

6 Roberson (2006) constructs equilibrium n-variate distributions for these and all possible parameter
configurations, but a complete characterization of the equilibrium set is still an open question.
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Table 2 Experimental design

Session number Design Matching protocol Participants per Periods per
session treatment

1-2 Lottery — Auction Strangers 16 15

34 Auction — Lottery Strangers 16 15

5-6 Lottery — Auction Partners 16 15

7-8 Auction — Lottery Partners 16 15

The Colonel Blotto game with the lottery CSF (lottery treatment) applied in each
battlefield yields markedly different equilibrium predictions. For all positive budget
pairs of the two players, the unique equilibrium requires that players employ pure
strategies that divide their budgets equally across the n-battlefields (Friedman 1958).
Given the specific parametric restrictions used in our experiment, equilibrium requires
that the advantaged player 1 allocates 25 tokens, whereas the disadvantaged player 2
allocates 15 tokens to each box. It is straightforward to calculate the expected payoff
in the lottery treatment. The expected payoff per box is equal to the probability of win-
ning that box. Hence, player 1’s expected payoff is 25/(25 + 15) =0.625 and player
2’s expected payoff is 0.375.

2.2 Experimental procedures

The experiment was conducted at the Vernon Smith Experimental Economics Labo-
ratory during March and May of 2008. The computerized experimental sessions were
run using z-Tree (Fischbacher 2007). A total of 128 subjects participated in eight ses-
sions. All subjects were Purdue University undergraduate students who participated
in only one session of this study. Some students had participated in other economics
experiments unrelated to this research.

Table 2 summarizes the design of the experiment. We employ two treatment vari-
ables: CSF (lottery versus auction) and matching protocol (strangers versus partners).
Each experimental session had 16 subjects and it proceeded in two parts, correspond-
ing to the lottery and auction treatments.” Each subject played for 15 periods in the
lottery treatment and 15 periods in the auction treatment. The sequence was varied so
that half the sessions had the auction treatment first, and half had the lottery treatment
first.3

7 Before the start of the experiment, we also elicited subjects’ risk preferences by utilizing a series of 15
lottery choices as in Holt and Laury (2002)). In eliciting risk preferences, we used US dollars instead of
experimental francs. This was mainly done to be comparable with other studies on contests (Sheremeta
2010, 2011), and we also wanted to know explicitly subjects’ risk preferences based on US dollars and
not on francs (although theoretically they should be equivalent). However, we did not find any interesting
patterns or correlations between risk attitudes and the behavior in the Colonel Blotto game. So, we omit
any discussion from the article.

8 We did not find any significant order effect, so for the same treatment, we combined the data from the
first and last 15 periods of the experiment.
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At the beginning of each treatment, subjects were given instructions, available in
the Appendix, and the experimenter read the instructions aloud. Before the first period
of the experiment, subjects were randomly and anonymously assigned as player 1
or player 2. All subjects remained in the same role assignment throughout the entire
experiment. In sessions 1-4, where we employed the strangers matching protocol,
subjects of opposite assignments were randomly re-paired each period to form a two-
player group.” In sessions 5—-8, where we employed the partners matching protocol,
subjects were paired with the same participant of opposite assignment for the entire
experiment. In each period, player 1 received 200 tokens and player 2 received 120
tokens. Both players were asked to choose how to allocate their tokens across 8 boxes.
Player 1 could allocate any number of tokens between 0 and 200 (with a mesh of 0.5
tokens) to each box. In each period, the total number of tokens had to sum to 200 or the
computer did not accept the allocation of player 1. A corresponding rule was applied
to player 2 up to his budget of 120 tokens. After all subjects in the session submitted
their allocations for a given period, the computer informed each player which boxes
they had won. The winner of each box received 1 franc (experimental currency). In the
lottery treatment, the winner of each box was chosen according to the lottery CSF. A
simple lottery was used to explain how the computer chose the winner. In the auction
treatment, the player who allocated more tokens to a particular box was chosen as the
winner of that box. We also explained to subjects that when both players allocate the
same amount to a given box, the computer would always chose player 1 as the winner
of that box.!” In each period, after all subjects in the session submitted their allo-
cations, the computer displayed on the outcome screen each player’s allocation, the
allocation of tokens by the player’s opponent, the player’s period earnings in francs,
and the player’s cumulative earnings.

At the end of the experiment, subjects were paid for each of the 15 periods in the
lottery treatment and each of the 15 periods in the auction treatment. The earnings
were converted into US dollars at the end of the experiment. For player 1, the conver-
sion rate was 8 francs to $1, and for player 2, the conversion rate was 4 francs to $1.
Subjects knew that conversion rates were different for players 1 and 2, although the
exact conversion rate was private information for each subject.'! On average, subjects
earned $25 each, which was paid in cash. The experimental sessions lasted for about
100 minutes.

9 Due to the length of the experiment (i.e. 30 periods), we could not employ the perfect strangers matching
protocol. Instead, the 16 subjects were randomly re-matched each period and thus, on average, they played
a given opponent during approximately 4 periods in the experiment (i.e., 30/8).

10 This tie-breaking rule is used in Roberson (2006) to avoid having to employ e-equilibrium arguments.
Therefore, to directly test the theory, we decided to implement the same tie-breaking rule as in Roberson
(2006). It is important to emphasize, however, that the specification of the tie-breaking rule does not affect
the results for the parameters that we chose in our experiment (for a discussion see Roberson 2006).

1 Although conversion rates are different for players 1 and 2, it does not change the equilibrium of the
game, since equilibrium strategies are invariant to multiplication of all payoffs by a positive constant. As
long as the subjects know that each box is worth the same amount (i.e., 1 franc in our experiment), the
equilibrium prediction is not affected by different private conversion rates.
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Table 3 Average allocations and payoffs (strangers and partners)

Field Lottery Auction
Player 1 Player 2 Player 1 Player 2

1 25.9 (7.6) 16.3 (10.9) 26.2 (11.9) 16.2 (15.8)
2 25.5 (7.0) 15.7 9.4) 26.0 (11.3) 14.6 (15.3)
3 26.6 (7.6) 15.1 9.2) 27.0 (10.9) 16.2 (15.4)
4 25.1 (7.2) 14.6 9.1) 25.2 (11.2) 14.8 14.7)
5 25.9 (6.8) 15.0 9.5) 26.0 (10.9) 15.2 (15.0)
6 23.9 (7.2) 15.1 (8.7 242 (10.8) 15.6 (15.1)
7 23.5 (7.6) 14.5 (8.9) 23.0 (11.5) 15.4 (14.8)
8 23.5 9.0 13.7 (8.9) 22.3 (12.5) 12.0 (14.0)
Payoff per box 0.64 (0.17) 0.36 (0.17) 0.71 (0.13) 0.29 (0.13)

Standard deviations in parentheses

3 Results
3.1 General results

Table 3 summarizes the average allocation of tokens to each box and the average
payoff of each player (combined strangers and partners protocols).!? The first support
for the “Colonel Blotto” theory comes from the fact that the actual payoffs in Table 3
are very close to the predicted payoffs in Table 1. Specifically, the theory predicts that
the expected payoffs per box to players 1 and 2, respectively, are 0.63 and 0.37 in
the lottery treatment and 0.70 and 0.30 in the auction treatment. The actual respective
payoffs are 0.64 and 0.36 in the lottery treatment and 0.71 and 0.29 in the auction treat-
ment. These payoffs are not significantly different from the theoretical predictions.'?
The findings are consistent with the findings of Avrahami and Kareev (2009), who
also document that in the discrete Colonel Blotto game subjects’ payoffs are consis-
tent with the theoretical predictions. This is an important finding in the experimental
contest literature because the vast majority of experimental studies document that pay-
offs in non-constant-sum contests do not conform to the theoretical predictions (Davis
and Reilly 1998; Gneezy and Smorodinsky 2006; Sheremeta 2010, 2011). In contrast
to the previous studies, however, our experiments investigate a constant-sum game,
where players cannot over-dissipate, and we find that the actual payoffs are consistent
with the theoretical payoffs.

12 The average allocations to each box and average payoffs are virtually the same under the strangers and
partners protocols. For example, the average payoff of player 1 under the strangers versus the partners
protocol is 0.65 versus 0.63 in the lottery treatment and 0.70 versus 0.71 in the auction treatment. The
corresponding payoffs for player 2 are 0.35 versus 0.37, and 0.30 versus 0.29.

13 Separately for each treatment and type, we estimated a random effects model, with individual subject
effects, where the dependent variable is the payoff and the independent variables are a constant and session
dummy variables. A standard Wald test, conducted on the estimates of a random effects model, cannot
reject the hypothesis that the constant coefficients are equal to the predicted theoretical values as in Table 1
(all p values >0.05).
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Fig. 2 Distribution of tokens in the lottery treatment

We also find that, consistent with the theoretical predictions, player 1’s (2’s) payoff
of 0.71 (0.29) in the auction treatment is significantly higher (lower) than player 1’s
(2’s) payoff of 0.64 (0.36) in the lottery treatment.'* This is an interesting result
because the average allocation of tokens to each box is the same for both treatments
(see Table 3). Nevertheless, the more deterministic nature of the auction treatment
more heavily favors the stronger player 1, and thus, the expected payoff of player 1 in
the auction treatment is higher than in the lottery treatment.

In the lottery treatment, equilibrium requires a constant allocation across all boxes
for both players (Table 1). To see whether this prediction is supported, Fig. 2 displays
the distribution of tokens within each box and over all periods in the lottery treatment.
There is some support for the equilibrium prediction as the allocations of player 1 are
clearly centered at 25 while the allocations of player 2 are centered at 15. Contrary
to the equilibrium predictions, there is substantial variance in the allocation of tokens
within each box.!> This variance is consistent with previous experimental findings

14 Separately for each type, we estimate a random effects model, with individual subject effects, where the
dependent variable is the payoff and the independent variables are a constant, a treatment dummy variable,
and session dummy variables. For both types, the treatment dummy variable is significant (p value <0.01).

15" Another deviation from the theory is that subjects on average allocate more tokens toward the first
boxes 1-4 than towards boxes 5-8 (Table 3). An explanation for this bias may come from framing effects
(Druckman 2001) and the theory of “focal points” (Schelling 1960). Although all 8 boxes in our experiment
were symmetric from a strategic standpoint, they were located in a row from left-to-right. Thus, subjects
may identify boxes 1-4 (on the left) as more focal than boxes 5-8 (on the right). One reason for this
may be because 90% of subjects participating in our experiment write from left-to-right (according to a
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in the literature on contests with lottery CSFs (Davis and Reilly 1998; Potters et al.
1998; Sheremeta 2010, 2011). Bounded rationality is a prominent explanation for the
variance in individual decisions; players may commit errors and potentially learn over
time. This process is complicated by the probabilistic nature of the lottery CSF. Each
period, the computer makes a random draw to determine the winner of each box.
The random draw in period ¢t — 1 may affect a player’s behavior in period ¢, which
can explain why there is substantial variance in the allocations in all periods of the
experiment.'® We do find evidence that subjects learn over time. Particularly, we find
that the variance of token allocation within each box decreases substantially from the
first five to the last five periods of the experiment.!” Nevertheless, even in the last five
periods of the experiment, the variance of allocations is very substantial. Moreover,
the proportion of chosen strategies that are equal to the equilibrium strategies (25 and
15 for players 1 and 2, respectively) is almost the same in the first five periods as the
last five periods of the experiment (45% versus 43% for player 1 and 34% versus 37%
for player 2). These findings suggest that it is difficult for subjects to converge to the
pure strategy equilibrium in the lottery treatment.

In the auction treatment, equilibrium requires that player 1 employ a joint distribu-
tion that generates for each box a uniform marginal distribution over the interval [0,
50]. On the other hand, player 2’s joint distribution generates a marginal distribution in
each box that allocates 0 tokens with probability 0.4 and randomizes uniformly over the
interval [0, 50] with the remaining probability. From Fig. 3, we can see that the aggre-
gate behavior conforms substantially to the predictions of equilibrium.'® The interval
over which players randomize is between 0 and 50, with only 0.5% of observed alloca-
tions above 50 tokens. Consistent with the theory, the advantaged player 1 employs a
“stochastic complete coverage” strategy, allocating a random, but positive, number of
tokens across the boxes. The disadvantaged player 2 uses a “guerilla warfare” strategy
that stochastically allocates zero tokens to a subset of the boxes. Avrahami and Kareev
(2009), in independent work, document similar behavior by a disadvantaged player
in a discrete Colonel Blotto game. Also, as in studies of non-constant sum contests
(Potters et al. 1998; Barut et al. 2002; Gneezy and Smorodinsky 2006), behavior is
more dichotomous than predicted by the equilibrium, with players choosing either

Footnote 15 continued

questionnaire). However, we do not find support for this conjecture since there is no significant correlation
between the allocation to boxes 1-4 and a language dummy variable. It is also possible that subjects allocate
more to boxes 1-4 simply because at the beginning of each period, the input cursor automatically appears
in box 1.

16 The mechanisms through which period + — 1 random outcomes influence decisions in period ¢ are
described further in Sect. 3.2.

17 Separately for player 1 and player 2, a standard F test for the equality of variances rejects the hypothesis
that the allocation of tokens has the same variance in the first 5 periods as in the last 5 periods of the
experiment (p value <0.05).

18 Obviously, the analysis is based on the aggregate level, after combining all subjects’ observations in all
rounds, and it may not reflect individual behavior. Indeed, substantial evidence exists that individual choices
in games with mixed strategies are quite far from equilibrium predictions (Brown and Rosenthal 1990). This
is also the case in our study since, as we document in Sects. 3.2 and 3.3, subjects exhibit substantial serial
correlation of allocations to a given box. Nevertheless, the major purpose of our study is to test general
comparative statics predictions of the theory, i.e. the impact of the contest rule on individual behavior.
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Fig. 4 Fraction of players who use decimals

very low allocations or moderately high allocations to a given box more often than
predicted.

The theoretical predictions as well as the observed behavior in the lottery treatment
are very different from the auction treatment.!® The difference also comes from the
observation that players use decimals in the allocation of tokens in the auction treat-
ment more often than in the lottery treatment. Figure 4 shows the fraction of players

19 We conducted a standard F-test, separately for player 1 and player 2, for the equality of token allocation
variances (i.e., comparing the variance of distributions in Figs. 2 and 3). The test clearly rejects the hypoth-
esis that allocation of tokens has the same variance in the auction treatment as in the lottery treatment (p
value <0.05). Therefore, it is apparent that subjects behave very differently across these two treatments.
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who use decimal points in their allocations. In the auction treatment, both players 1
and 2 use decimal points significantly more often than in the lottery treatment.?° This
finding is due to several factors. First, equilibrium under the auction CSF requires
non-degenerate marginal distributions with support [0, 50]. Second, the tie-breaking
rule under the auction CSF favors player 1, so one might expect player 2 to attempt
to avoid ties. Finally, for the parameters we examine, equilibrium in the lottery treat-
ment requires pure strategies that are whole numbers. From Fig. 4, we also see that
player 2 uses decimal points more often than player 1. This difference is especially
pronounced and significant for the auction treatment.?! One explanation of why player
2 in the auction treatment uses decimal points significantly more often than player 1 is
that the deterministic nature of the auction treatment and the tie-breaking rule heavily
favor the stronger player 1 and require that subjects assigned the role of player 2 use
more sophisticated and diverse strategies. Another explanation is that since player 2
is disadvantaged, subjects in this role may have more incentives to experiment with
different ways of outbidding their rivals, which could also lead to using decimal points
more often.

3.2 Strangers versus partners: serial correlation and “hot box”

In non-constant sum games, repetition with the same set of players (a partners pro-
tocol) may change the nature of equilibrium since subjects have incentive to collude
(Kreps et al. 1982). A common way to deal with this is to randomly re-group players
(a strangers protocol) after each iteration of the game. However, there is no general
agreement on how matching protocol influences individual behavior. In public good
games, some studies find more cooperation among strangers, some find more by part-
ners, and some fail to find any difference at all (Andreoni and Croson 2008; Botelho
et al. 2009). In auctions, there is some evidence that subjects collude more under the
partners matching protocol (Lugovskyy et al. 2010).

In contrast to the standard auction literature (Klemperer 2002), collusion is not
an issue in our experiment since the Colonel Blotto game presented here is a
constant-sum game. Every gain for one player is a loss for the other. However,
after we ran the first set of experiments using the conventional strangers proto-
col, we realized that several very interesting behavioral patterns were caused by
this matching protocol. Specifically, we found that players have significant ser-
ial correlation in allocations to a given box across periods. Note that, although
similar findings have been documented previously in two-player zero-sum games

20 Separately for each type, we estimate a random effects probit model, with individual subject effects,
where the dependent variable is whether a subject chose to use a decimal point in a given box or not and
the independent variables are a constant, a treatment dummy variable, and session dummy variables. For
both types, the treatment dummy variable is significant (p value <0.01).

21 Separately for each treatment, we estimate a random effects probit model, with individual subject effects,
where the dependent variable is whether a subject chose to use a decimal point in a given box or not and the
independent variables are a constant, a type dummy variable, and session dummy variables. For the auction
treatment, the type dummy variable is significant (p value <0.01), while for the lottery treatment, it is not
(p value = 0.23).
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Fig. 5 Allocation by player 1 in the auction treatment (strangers)

(Brown and Rosenthal 1990; Walker and Wooders 2001; Camerer 2003; Craw-
ford and Iriberri 2007), our study is novel in that players have a very large pure
strategy space (the set of non-negative budget balanced allocations to the eight
boxes). The very large number of degrees of freedom embodied in this decision
problem enables us to examine the serial correlation of allocations within each
box.

Serial correlation of allocations to a given box under the strangers matching pro-
tocol is clearly illustrated in Fig. 5, where we display the allocations to each box of
one of the subjects taking the role of player 1 over the 15 periods in the auction treat-
ment. This particular player 1 received the highest payoff among all players under
the strangers matching protocol. The size of a bubble in the figure indicates the size
of the allocation. For example, the biggest bubbles in the figure correspond to the
allocation of 40 tokens, while the smallest bubbles correspond to the allocation of 10
tokens. The “+” or “=” correspond to winning or losing. Note that this player 1 has
a tendency to allocate the same amount of tokens to a given box across periods. We
have highlighted those allocations that do not change from period # — 1 to period ¢
(i.e., perfectly correlated). It is worth examining whether this behavior results from
faulty randomization across periods or from some type of individual bias.

To control for individual and period effects, we provide a multivariate analysis. To
capture heterogeneity across individuals, we use random effects models with individ-
ual subject effects. We also include dummy variables to capture session effects. The
regressions are of the following form:

allocationim = Bo + prown-lag;_yy, + Brown-lag;;_y), X win-lag;;_,

+ Bsopponent-lag;,_yy, + Ba x (1/1) + Z BsnSh + ui + €ir,
h

where allocation is player i’s allocation of tokens to the n-th box in a period ¢, own-lag
denotes player i’s allocation to the same box in the previous period, win-lag denotes
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Table 4 Determinants of allocation to a specific box (strangers)

Treatments Lottery Lottery Auction Auction
Dependent variable, @)) 2) 3) 4)
allocation of tokens Player 1 Player 2 Player 1 Player 2
own-lag 0.36%* 0.25%%* 0.31%* 0.16%*
[own tokens in period ¢ — 1] (0.02) (0.02) (0.03) (0.03)
own-lag x win-lag 0.01 0.02 0.05* 0.07%*
[own tokens if subject won the field in period r — 1] (0.01) (0.02) (0.02) (0.03)
opponent-lag 0.06%*%* 0.03 0.10%* —0.05
[opponent’s tokens in period ¢ — 1] (0.01) (0.02) (0.02) (0.03)
1/t —0.03 —0.03 0.04 0.14
[inverse of a period trend] (1.00) (1.34) (1.38) (2.02)
Constant 14.81%* 10.48%* 14.61%* 13.28%*
(0.50) (0.67) (0.58) (0.88)
Observations 3,584 3,584 3,584 3,584
Number of subjects 32 32 32 32

* Significant at 5%, ** significant at 1%. All models include a random effects error structure, with individ-
ual subject effects. Each regression also includes dummies, controlling for session effects. We use 3,584
observations for estimation of each regression (32 subjects of each type, making 8 decisions in each period,
for a total of 15 periods minus 1 period taken by the lag variables)

whether player i won that box in the previous period, and opponent-lag denotes the
opponent’s allocation to that box in the previous period. All regressions also include
dummy variables to capture session effects. The results of the estimation under the
strangers protocol are presented in Table 4.2 In specifications (1) and (2), we use the
data from the lottery treatment while in specifications (3) and (4), we use the data from
the auction treatment.

In all specifications, the own-lag coefficient is positive and significant, indicating
the presence of serial correlation. One explanation of why subjects use strategies with
serial correlation is that for opponents such correlation may be hard to detect due
to the random matching of subjects. It is also possible some subjects believe that all
other subjects are of a similar type. Such beliefs may also lead to serial correlation by
inducing subjects to employ previously successful strategies in later periods.

To capture the dynamic aspect of the game, we also used an interaction between
own-lag and win-lag. The win-lag variable takes on the value of 1 if the subject won
the box in period + — 1 and 0 otherwise. In specifications (3) and (4), the interaction
between own-lag and win-lag is positive and significant. We call this the “hot box™

22 We have also re-estimated Table 4 by including a dummy variable for boxes 1-4. The dummy variable
is positive and significant for player 1 but not for player 2, suggesting that player 1 allocates more tokens
to boxes 1-4 than to boxes 5-8. All other estimation results are virtually the same and are available from
the authors upon request.
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Fig. 6 Allocation by player 1 in the auction treatment (partners)

effect.?? This is a robust finding since in both specifications, we control for the number
of tokens allocated to each box by the opponent in period ¢ — 1. The opponent-lag
variable is positive and significant only for player 1, indicating that player 1 allocates
more tokens to the boxes where his opponent allocated more tokens in period ¢t — 1.
One explanation of why there is a “hot box™ effect only in specifications (3) and
(4) might be due to the deterministic nature of the auction treatment. In the auction
treatment, winning a specific box is always a result of a higher allocation, and thus,
subjects may attribute a winning history specifically to the choice of allocation. On
the other hand, in the lottery treatment, a higher allocation to a specific box does not
necessarily guarantee winning that box nor does a lower allocation guarantee defeat.
As a consequence, subjects may be more reluctant to attribute a winning history to the
specific choice of allocation, making them less likely to repeat the allocation.

The presence of serial correlation and a “hot box” effect motivated us to run sessions
with the partners matching protocol. Next, we examine the behavior of the subjects
under the partners protocol. Figure 6 displays the allocations to each box under the
partners protocol of one of the subjects taking the role of player 1 over 15 periods in
the auction treatment. This particular player 1 received the highest payoff among all
players under the partners matching protocol. The biggest bubbles in the figure cor-
respond to the allocation of 50 tokens, while no bubble corresponds to the allocation
of 0 tokens. Again, we have highlighted those allocations that do not change from
period ¢ — 1 to period ¢. Note that the striking difference between Figs. 5 and 6 is that
the number of perfectly correlated allocations is reduced from 77 to 24. The player
whose allocations are displayed in Fig. 6 frequently changes the allocation of tokens
to a particular box across periods. One explanation of why subjects use strategies with
lower levels of serial correlation when playing against the same opponent in every

23 This finding resembles a phenomenon known in the gambling literature as a “hot hand”—a belief in
a positive autocorrelation of a non-autocorrelated random sequence. For a review, see Chau and Phillips
(1995) and Croson and Sundali (2005).
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Table 5 Determinants of allocation to a specific box (partners)

Treatments Lottery Lottery Auction Auction
Dependent variable, @)) 2) 3) 4)
allocation of tokens Player 1 Player 2 Player 1 Player 2
own-lag 0.08%* 0.17%* 0.12%* 0.01
[own tokens in period ¢ — 1] (0.02) (0.02) (0.03) (0.03)
own-lag x win-lag —0.01 —0.00 —0.03 —0.04
[own tokens if subject won the field in period r — 1] (0.01) (0.02) (0.03) (0.03)
opponent-lag 0.03* 0.01 0.00 —0.05*
[opponent’s tokens in period ¢ — 1] (0.01) (0.02) (0.02) (0.02)
1/t 0.04 —0.00 —0.11 0.00
[inverse of a period trend] (1.00) (1.24) (1.77) (2.22)
constant 22.84%* 12.27%* 22.57%* 16.51%*
(0.50) (0.62) (0.59) (0.76)
Observations 3,584 3,584 3,584 3,584
Number of subjects 32 32 32 32

* Significant at 5%, ** significant at 1%. All models include a random effects error structure, with individual
subject effects. Each regression also includes dummies, controlling for session effects

period is that such correlation is more easily observed and exploited by an opponent
in the partners protocol. Under the strangers protocol serial correlation may be harder
for opponents to detect due to the random matching of subjects.

For a robust comparison, we re-estimated the regressions from Table 4 using all
subjects who made their decisions under the partners matching protocol. The results of
the estimation, shown in Table 5, support our initial observation. The own-lag coeffi-
cient in all specifications is much lower in Table 5 than in Table 4, indicating that serial
correlation is reduced under the partners protocol. Moreover, in the auction treatment,
the own-lag coefficient is no longer significant for player 2. Intuitively, in the auction
treatment under the partners protocol, both players want to be more unpredictable
(i.e., reduce serial correlation), and this incentive is even stronger for the disadvan-
taged player (i.e., player whose loss from being predictable is the highest). Finally, the
estimation results in Table 5 indicate that, under the partners protocol, the “hot box”
effect disappears for both players.

3.3 The determinants of payoffs: “good ol’ rock”

“Lisa: Look, there’s only one way to settle this. Rock-paper-scissors.
Lisa’s brain: Poor predictable Bart. Always takes ‘rock’.

Bart’s brain: Good ol’ ‘rock’. Nuthin’ beats that!

Bart: Rock!

Lisa: Paper.

Bart: D’oh!”

—The Simpsons (http://www.snpp.com/episodes/9F16.html)
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In a repeated constant-sum game with equilibrium in non-degenerate mixed strat-
egies, employing the same pure strategy in each period is not a good idea because
one’s opponent will eventually uncover this pattern and employ a best response. This
i1s what happens to Bart in the episode of The Simpsons cited above. In the game of
Rock-Paper-Scissors with Lisa, he always plays “Rock”, which Lisa recognizes from
repeated play. As a result, Lisa employs the best response “Paper” and always wins the
game. Had Bart played Rock-Paper-Scissors against a different person each period,
with his past history unobserved by his opponents, then playing his “good ol’ rock”
strategy would be difficult to exploit and one would not expect Bart to perform poorly.

In the context of our analysis, a subject playing a pure strategy or some other strat-
egy with high serial correlation in the repeated game would be expected to perform
more poorly under the partners protocol than under the strangers protocol. Under the
strangers protocol, however, independent re-matching of subjects in each period and
the fact that the identity of a subject’s current opponent cannot be attached to specific
past actions before current play make it difficult for opponents to detect patterns of
play that would be quickly exploited under the partners protocol.

Our use of “good ‘ol rock”™ in the context of the Colonel Blotto game refers to a
constant allocation to a given box over time and not to a constant octuple of alloca-
tions over time. Given this definition, we found that the “good ol’ rock” strategy was
frequently employed by subjects in the auction treatment under the strangers protocol.
As a general rule, when subjects maintained a constant within-box allocation across
periods for one or more of the eight boxes, they did so over a strict subset of the boxes.
This type of behavior was significantly reduced when we employed the partners pro-
tocol. Support for this finding can be found in Fig. 7 that displays the cumulative
distribution of the absolute differences between allocations within the same box in
periods ¢ and ¢ + 1 in the auction treatment. Note that the empirical CDF of these
within-box absolute differences under the partners protocol first order dominates the
corresponding CDF under the strangers protocol. When paired with strangers, in 52%
of the time periods, subjects in the role of player 1 do not change their allocation from
t to t 4+ 1 (the difference within the same box is 0). However, when paired up with
the same partner over time, the percentage goes down to around 18%. For subjects
in the role of player 2, the corresponding percentage changes from 36 to 24%. These
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Fig. 7 Cumulative distribution of differences in the auction treatment
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differences are significant based on the estimation of a random effects probit model.?*
This preliminary analysis provides initial support for our earlier conjecture that the
“good ol’ rock” strategy is more frequently employed by subjects under the strangers
matching protocol than under the partners protocol.

Another interesting result under the two different protocols is the effect of random-
ization on payoffs. We find that deviations from equilibrium behavior by employing
either greater dispersion of resources across boxes in the lottery treatment or less dis-
persion across boxes (or within each box, across time) in the auction treatment are
associated with lower payoffs. To show this, we estimate random effects models of
the following form:

payoffy = Bo + Bibetween-boxes;; + Brbetween” 2-boxes;;
+ Bswithin-boxes;; + Bawithin2-boxes;; + Bs(1/1)

+Z,36h5h +u; + &ir,
h

where payoff is player i’s payoff in a period . The between-boxes variable is defined
as the absolute difference between the tokens allocated to a specific box and the mean
across all boxes. So, for player 1 (player 2), this variable indicates how far the allo-
cation to a specific box is from 25 (15). The between”2-boxes variable is defined as
the square of the difference between the tokens allocated to a specific box and the
mean. The within-boxes variable is defined as the absolute difference between the
tokens allocated to the same box in periods # and ¢ — 1. The within"2-boxes variable
is defined as the square of the difference between the tokens allocated to the same box
in period ¢ and period t — 1.

The estimation results for treatments that used the strangers protocol are shown in
Table 6. The between-boxes coefficient in specifications (1) and (2) is negative and
significant, indicating that in the lottery treatment there is a strong incentive for play-
ers 1 and 2 to converge to the equilibrium allocations of 25 and 15, respectively.?
On the other hand, the between-boxes coefficient in the auction specifications (3) and
(4) is positive and significant, indicating that in the auction treatment players 1 and 2
earn significantly higher payoffs by deviating from the mean. To control for the fact
that too great a deviation from the mean can actually be harmful, in specifications
(5) and (6), we include the between”2-boxes and the within”2-boxes variables. The
between-boxes coefficient is still positive and significant, while the between” 2-boxes
coefficient is negative, indicating that some deviation from the mean increases payoff
while excessive deviation decreases payoff. The within-boxes and within”2-boxes

24 Separately for each type, we estimate a random effects probit model, with individual subject effects,
where the dependent variable is whether the difference within the same box from 7 to # + 1 is 0 and the
independent variables are a constant, a matching protocol dummy variable, and session dummy variables.
For both types, the matching protocol dummy variable is significant (p value <0.05).

2 By definition, a deviation from equilibrium play leads to a lower payoff when the other player employs
the equilibrium strategy. However, when both players simultaneously deviate from the equilibrium strategy,
it is not obvious what the effect is. That is why we re-estimated the regressions in Tables 6 and 7 without
separating the regressions by the players’ identity. The estimation results, available upon request, are very
similar to those reported.
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Table 6 Determinants of payoff (strangers)

Treatments Lottery  Lottery  Auction Auction Auction Auction
Dependent variable, (D) 2) 3) @) 5) (6)
payoft Player I Player2 Player1 Player2 Player1 Player2
between-boxes —-0.46* —1.00%* (.78** 1.40%%  231%* 2.84%*
[difference between 8 fields (0.20) (0.16) (0.20) (0.17) 0.43) (0.44)
in period ]
between”2-boxes —0.68*%* —0.61**
[difference squared between 0.22) (0.18)
8 fields in period ¢]
within-boxes 0.22 0.13 —0.03 0.05 0.29 0.11
[difference within the same (0.17) (0.14) (0.13) (0.07) 0.27) (0.25)
field in periods # and ¢t — 1]
within”2-boxes —0.12 —0.01
[difference squared within the same (0.10) 0.07)
field in periods # and ¢t — 1]
1/t —0.33 0.38 1.04* 0.29 1.37%* 0.26
[inverse of a period trend] 0.51) (0.48) 0.43) (0.38) 0.41) (0.39)
constant 5.09%%  3.33%* 4.92%%  (0.79%*  4.53%%* 0.22
(0.16) (0.15) (0.19) (0.24) (0.18) (0.28)
Observations 448 448 448 448 448 448
Number of subjects 32 32 32 32 32 32

* Significant at 5%, ** significant at 1%. All models include a random effects error structure, with individual
subject effects. Each regression also includes dummies, controlling for session effects

variables are not significant in any of the specifications, indicating that the “good ol’
rock” strategy does not affect the payoff and thus can be optimal under the strangers
protocol.?

Table 7 reports the estimation results under the partners protocol. An interesting
contrast with Table 6 is reflected in the estimation of specifications (3) through (6).
Because of the partners protocol, the “good ol’ rock™ strategy does not work well in
the auction treatment. This is reflected in specifications (3) and (4) by the significant
within-boxes coefficient. Randomizing allocations within the same box across periods
significantly increases the payoff for both players. Specifications (5) and (6) confirm
that large variation in allocations, even within box, has a negative effect on payoff.

4 Conclusions

This article experimentally investigates the classic Colonel Blotto game employing
two popular contest success functions: the auction and lottery CSFs. Under the lottery
treatment, the equilibrium prediction is that each player should divide their resources

26 We have also examined whether the time spent by subjects in making decisions is correlated with payoffs.
We re-estimated Tables 6 and 7 and found that in only 1 out of 12 specifications was time marginally signif-
icant, with a negative coefficient. The results of the estimation are available from the authors upon request.
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Table 7 Determinants of payoff (partners)

Treatments Lottery  Lottery  Auction Auction Auction Auction
Dependent variable, (D) 2) 3) @) 5) (6)
payoft Player I Player2 Player1 Player2 Player1 Player2
between-boxes —0.53*  —0.71*%* 0.11 0.64**  0.87* 0.57
[difference between 8 fields (0.25) (0.19) 0.15) (0.17) (0.40) (0.35)
in period ]
between”2-boxes —0.27 0.15
[difference squared between (0.18) (0.13)
8 fields in period ]
within-boxes 0.39* 0.02 0.31* 0.24* 1.18%%* 1.08**
[difference within the same (0.19) (0.17) (0.13) (0.10) (0.28) (0.23)
field in periods ¢ and r — 1]
within2-boxes —0.24%%  —(0.23%**
[difference squared within the same 0.07) (0.06)
field in periods # and ¢t — 1]
1/t —-0.73 0.74 0.45 —0.05 0.47 —0.17
[inverse of a period trend] (0.49) (0.49) 0.41) (0.39) (0.38) (0.39)
constant S5.12%%  3.23%* 5.24%% 1.41%*%  4.67%* 0.99%*
(0.20) (0.18) (0.18) (0.22) (0.20) (0.26)
Observations 448 448 448 448 448 448
Number of subjects 32 32 32 32 32 32

* Significant at 5%, ** significant at 1%. All models include a random effects error structure, with individual
subject effects. Each regression also includes dummies, controlling for session effects

equally across all battlefields. The experimental results support this prediction. More-
over, deviations from equilibrium behavior result in lower payoffs. Under the auction
treatment, equilibrium requires that the disadvantaged player stochastically allocates
zero resources to a subset of battlefields and the advantaged player allocates random,
but positive, resource levels across the battlefields. Again, the data support this theo-
retical prediction and deviations from equilibrium behavior in the form of strategies
exhibiting low dispersion of allocations across battlefields at a point in time or within
a battlefield over time are associated with lower payoffs. Although the qualitative pre-
dictions of the theory in terms of aggregate behavior, payoffs, and comparative statics
are supported in our experiment, we also find significant behavioral deviations from
the theory.

Due to the constant-sum nature of the game, we examined both partners and strang-
ers matching protocols. The choice of matching protocol has significant effects on
subject behavior under the auction treatment. Under the strangers protocol, subjects
are prone to “hot box” and “good ‘ol rock™ strategies. In the former, winning a box
in a period encourages the subject to allocate more resources to that box in the next
period. In the latter, independent randomization across periods is replaced with strat-
egies exhibiting high within-box serial correlation of allocations. In fact, under the
strangers protocol, subjects often allocate exactly the same level of the resource to
a given box across periods. Occurrence of both the “hot box™ and “good ol’ rock”
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strategies significantly diminishes under the partners protocol. To our knowledge, this
is the first study to explicitly recognize such effects of the strangers protocol in con-
stant-sum games of multidimensional resource allocation. Our results signal the need
for further analyses of these issues.

The Colonel Blotto game is one that is easy to understand yet analytically quite
challenging. Because of its compelling structure as a prototype model of strategic
multi-dimensional resource allocation, the game has been utilized in many real-life
applications, such as military conflicts, advertising resource allocation, political cam-
paigns, and research and development portfolio selection. Although researchers have
been grappling with an analytical solution to the game since Borel (1921), and a com-
plete characterization of the set of equilibria under the auction treatment is still an
open question, it took only one hour for subjects who were unfamiliar with this game
to exhibit behavior consistent with equilibrium. Players’ marginal distributions and
payoffs conformed to what we know must be true of al/ equilibria in the Colonel Blotto
game (Roberson 2006).

The success of experimental results supporting existing theory in this computa-
tionally challenging game is very encouraging. It also suggests that experiments can
be used extensively to provide guidance for other theoretically challenging problems
arising in related games. This remains a promising avenue for future research.

Appendix
General instructions

This is an experiment in the economics of strategic decision making. Various research
agencies have provided funds for this research. The instructions are simple. If you
follow them closely and make careful decisions, you can earn an appreciable amount
of money.

The experiment will proceed in three parts. Each part contains decision problems
that require you to make a series of economic choices which determine your total
earnings. The currency used in Part 1 of the experiment is US Dollars. The currency
used in Parts 2 and 3 of the experiment is francs. Francs will be converted to US
Dollars at a rate of X francs to 1 dollar. At the end of today’s experiment, you will be
paid in private and in cash. 16 participants are in today’s experiment.

It is very important that you remain silent and do not look at other people’s work. If
you have any questions, or need assistance of any kind, please raise your hand and an
experimenter will come to you. If you talk, laugh, exclaim out loud, etc., you will be
asked to leave and you will not be paid. We expect and appreciate your cooperation.

At this time, we proceed to Part 1 of the experiment.

Instructions for part 1
Your decision

In this part of the experiment, you will be asked to make a series of choices in decision
problems. How much you receive will depend partly on chance and partly on the
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choices you make. The decision problems are not designed to test you. What we want
to know is what choices you would make in them. The only right answer is what you
really would choose.

For each line in the table in the next page, please state whether you prefer option A
or option B. Notice that there are a total of 15 lines in the table but just one line will be
randomly selected for payment. Each line is equally likely to be chosen, so you should
pay equal attention to the choice you make in every line. After you have completed all
your choices, a token will be randomly drawn out of a bingo cage containing tokens
numbered from 1 to 15. The token number determines which line is going to be paid.

Your earnings for the selected line depend on which option you chose: If you chose
option A in that line, you will receive $1. If you chose option B in that line, you will
receive either $3 or $0. To determine your earnings in the case you chose option B,
there will be second random draw. A token will be randomly drawn out of the bingo
cage now containing twenty tokens numbered from 1 to 20. The token number is then
compared with the numbers in the line selected (see the table). If the token number
shows up in the left column, you earn $3. If the token number shows up in the right
column, you earn $0.

Are there any questions?

.. . . Please
Decision| Option A Option B choose
no. Aor B

1 $1 $3 never $0if 1,2,3.4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
2 $1 $3 if 1 comes out of the bingo cage $0 if 2,3,4,5,6,7,8.9,10,11,12,13,14,15,16,17,18,19,20
3 $1 $3iflor2 $0 if 3,4,5,6,7.8,9,10,11,12,13,14,15.16,17,18,19,20
4 $1 $3if1,2,3 $0 if 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

5 $1 $3if 1,2,3.4 $0 if 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

6 $1 $3if 1,2,3.4,5 $0 if 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

7 $1 $3if 1,2,3.4,5,6 $0 if 7,8,9,10,11,12,13,14,15,16,17,18,19,20

8 $1 $3if 1,2,3.4,5,6,7 $0 if 8,9,10,11,12,13,14,15,16,17,18,19,20

9 $1 $3if 1,2,3.4,5,6,7.8 $0if9.10,11,12,13,14,15,16,17,18,19,20

10 $1 $3if 1,2,3.4,5,6,7.8,9 $0 if 10,11,12,13,14,15,16,17,18,19,20

11 $1 $3if 1,2, 3,4,5,6,7,8,9,10 $0if 11,12,13,14,15,16,17,18,19,20

12 $1 $3if 1,2, 3,4,5,6,7,8,9,10,11 $0if 12,13,14,15,16,17,18,19,20

13 $1 $3if 1,2, 3,4,5,6,7,8,9,10,11,12 $0 if 13,14,15,16,17,18,19,20

14 $1 $3if 1,2, 3,4,5,6,7,8,9,10,11,12,13 $0 if 14,15,16,17,18,19,20

15 $1 $3if 1,2, 3,4,5,6,7,8,9,10,11,12,13,14 | $0 if 15,16,17,18,19,20

Instructions for part 2
Your decision

The second part of the experiment consists of 15 decision-making periods. At the
beginning of each period, you will be randomly and anonymously placed into a group
which consists of two participants: participant 1 and participant 2. At the beginning
of the first period, you will be randomly assigned either as participant 1 or as partici-
pant 2. You will remain in the same role assignment throughout the entire experiment.
So, if you are assigned as participant 1 then you will stay as participant 1 throughout
the entire experiment.
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Each period, participant 1 will receive 200 tokens and participant 2 will receive
120 tokens. Both participants will choose how to allocate their tokens to 8 boxes, as
shown on a decision screen below.

Remainng bme [se<]

Particpant © 1
You are rarcnly paired with arciher partcpart 2 each decison perod

You have been assigned as Participant 1

Participant 1 has 200 tokens

How @0 you want to aliocate your tokens 10 each box? @ 0 69

Participant 2 has 120 tokens.

Participant 1 can allocate any number of tokens between 0 and 200 (including 0.5
decimal points) to each box. The total number of tokens in all boxes must sum to 200
or the computer will not accept the decision of participant 1. Similarly, participant 2
can allocate any number of tokens between 0 and 120 (including 0.5 decimal points).
The total number of tokens in all boxes must sum to 120 or the computer will not
accept the decision of participant 2.

Your earnings

After each participant has made his or her decisions, your earnings for the period are
calculated. Your period earnings are proportional to the number of boxes you win. For
each box you win, you will receive 1 franc.

Your earnings = Number of boxes you won x 1 franc

So, if you win all 8 boxes, you will receive 8 francs for this period. If you do not win
any of the boxes, you will receive O francs. Francs will be converted to US Dollars at
a rate of X francs to 1 dollar. Your conversion rates are your private information. All
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conversion rates for participant 1 are equal and all conversion rates for participant 2
are equal. However, the conversion rates are different for participants 1 and 2. Notice
that the more francs you earn, the more dollars you earn. What you earn depends partly
on your decision and partly on the decision of the other participant with whom you
are paired.

The more tokens you allocate to a particular box, the more likely you are to win that
box. The more tokens the other participant allocates to the same box, the less likely
you are to win that box. Specifically, for each token you allocate to a particular box,
you will receive 10 lottery tickets. At the end of each period, the computer draws
randomly one ticket among all the tickets purchased by you and the other participant
in your group. The owner of the drawn ticket wins the box and receives 1 franc for
that box. Thus, your chance of winning a particular box is given by the number of
tokens you allocate to that box divided by the total number of tokens you and the other
participant allocate to that box.

Chance of winning a box
Number of tokens you allocate to that box

~ Number of tokens you allocate + Number of tokens the other participant allocates to that box

In case both participants allocate zero to the same box, the computer will randomly
chose a winner of that box. Therefore, each participant has the same chance of winning
the box.

Example of the random draw

This is a hypothetical example used to illustrate how the computer makes a random
draw. Let’s say participant 1 and participant 2 allocate their tokens to eight boxes in
the following way.

Box Participant Participant Chance of winning Chance of winning

1 2 the box for Partici- the box for Partici-

pant 1 pant 2

1 20.5 15 20.5/(20.5+15) =0.58 15/(20.5+15)=0.42
2 19.5 15 19.5/(19.5+15) =0.57 15/(19.5+15)=0.43
3 25 10 25/(25+10)=0.71 25/(25+10)=0.29
4 25 10 25/(25+10)=0.71 25/(25+10)=0.29
5 0 0 0.50 0.50
6 0 40 0/(0440) = 0.00 40/(0+40) =1.00
7 40.5 15.5 40.5/(40.54+15.5)=0.72 15.5/(40.5+15.5) =0.28
8 69.5 14.5 69.5/(69.5+14.5)=0.83 14.5/(69.5+14.5) = 0.17
Total 200 120

Participant 1 allocates 20.5 tokens to box 1, 19.5 tokens to box 2, 25 tokens box
3, 25 tokens to box 4, 0 tokens to box 5, 0 tokens to box 6, 40.5 tokens to box 7, and
69.5 tokens to box 8 (total of 200 tokens). Participant 2 allocates 15 tokens to box
1, 15 tokens to box 2, 10 tokens to box 3, 10 tokens to box 4, O tokens to box 5, 40
tokens to box 6, 15.5 tokens to box 7, and 14.5 tokens to box 8 (total of 120 tokens).
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Therefore, the computer will assigns lottery tickets to participant 1 and to participant
2 according to their allocation of tokens.

For example, in box 1, the computer will assign 205 lottery tickets to participant
1 and 150 lottery tickets to participant 2. Then, the computer will randomly draw
one lottery ticket out of 355 (205 + 150). As you can see, participant 1 has a higher
chance of winning box 1: 20.5/(20.5 + 15) = 0.58. Participant 2 has lower chance of
winning box 1: 15/(20.5+ 15) = 0.42.

Similarly, in box 6, the computer will assign O lottery tickets to participant 1 and
400 lottery tickets to participant 2. Then, the computer will randomly draw one lottery
ticket out of 400 (0+400). As you can see, participant 1 has no chance of winning
box 6: 0/(0+40) = 0.0. Therefore, participant 2 will win box 6 for sure: 40/(0 +40) =
1.0.

After all participants allocate their tokens and press the OK button, the computer
will make a random draw for each box separately and independently. Note that you
can never guarantee that you will win a particular box. However, by increasing your
allocation to that box, you can increase your chance of winning that box. The random
draw made by the computer will decide which boxes you win. Then, the computer
will calculate your period earnings based on how many boxes you won.

At the end of each period, the allocation of your tokens, the allocation of the other
participant’s tokens, which boxes you win, your period earnings, and your cumulative
earnings are reported on the outcome screen as shown below. Once the outcome screen
is displayed, you should record your results for the period on your Personal Record
Sheet under the appropriate heading.

Pencd

1 of 1 Remunng bme [vec] 46

Patcpart O 1

You have been assigned as Participant 1

Participant 1 has 200 tokens

0% 195 250 250 0o 00 ws 85

No Yeos No

150 150 100 100 0o 400 155 145

Participant 2 has 120 tokens.
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Important notes

At the beginning of the first period, you will be randomly assigned either as partic-
ipant 1 or as participant 2. You will remain in the same role assignment throughout
the entire experiment. Each consecutive period you will be randomly re-paired with
another participant of opposite assignment. So, if you are participant 1, each period
you will be randomly re-paired with another participant 2. If you are participant 2,
each period you will be randomly re-paired with another participant 1.

At the end of the experiment, you will convert your cumulative earnings into a pay-
ment in US dollars. Your conversion rates are your private information. All conversion
rates for participant 1 are equal, and all conversion rates for participant 2 are equal.
However, the conversion rates are different for participants 1 and 2.

Are there any questions?

Instructions for part 3

The third part of the experiment consists of 15 decision-making periods. As in the
previous part 2 of the experiment, you will be placed into a group that consists of
two participants: participant 1 and participant 2. Your assignment as participant 1 or
participant 2 will be the same as it was in the previous part 2 of the experiment.

Each period, participant 1 will receive 200 tokens and participant 2 will receive
120 tokens. Both participants will choose how to allocate their tokens to 8 boxes.
Participant 1 can allocate any number of tokens between 0 and 200 (including 0.5
decimal points) to each box. The total number of tokens in all boxes must sum to 200
or the computer will not accept the decision of participant 1. Similarly, participant 2
can allocate any number of tokens between 0 and 120 (including 0.5 decimal points).
The total number of tokens in all boxes must sum to 120 or the computer will not
accept the decision of participant 2.

After each participant has made his or her decisions, your earnings for the period
are calculated. Your period earnings are proportional to the number of boxes you win.
For each box you win, you will receive 1 franc.

Your earnings = Number of boxes you won x 1 franc

The main difference from part 2 is that the computer will choose the winner of each
box in the following way. The participant who allocates more tokens than the other
participant to a particular box wins that box with certainty. So, if participant 1 allo-
cates 30 tokens to a particular box while participant 2 allocates 29.5 tokens to the
same box then the computer will chose participant 1 as the winner of that box. In case
both participants allocate the same amount to the same box, the computer will always
chose participant 1 as a winner of that box. In case both participants allocate zero to
the same box, the computer will always chose participant 1 as a winner of that box.

After all participants allocate their tokens and press the OK button, the computer
will determine the winner of each box and will calculate your period earnings based
on how many boxes you won.
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At the end of each period, the allocation of your tokens, the allocation of the other
participant’s tokens, which boxes you win, your period earnings, and your cumulative
earnings are reported on the outcome screen. Once the outcome screen is displayed,
you should record your results for the period on your Personal Record Sheet under
the appropriate heading.

Important notes

Your assignment as participant 1 or participant 2 will be the same as it was in the previ-
ous part 2 of the experiment. You will remain in the same role assignment throughout
the entire experiment. Each consecutive period you will be randomly re-paired with
another participant of opposite assignment. So, if you are participant 1, each period
you will be randomly re-paired with another participant 2. If you are participant 2,
each period you will be randomly re-paired with another participant 1.

The participant who allocates more tokens than the other participant to a particular
box wins that box with certainty.

At the end of the experiment, you will convert your cumulative earnings into a
payment in US dollars. Your conversion rates are your private information. All con-
version rates for participant 1 are equal and all conversion rates for participant 2 are
equal. However, the conversion rates are different for participants 1 and 2.

Are there any questions?
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