
This article was downloaded by: [155.198.30.43] On: 27 October 2020, At: 13:13
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Mathematics of Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

From Duels to Battlefields: Computing Equilibria of Blotto
and Other Games
AmirMahdi Ahmadinejad, Sina Dehghani, MohammadTaghi Hajiaghayi, Brendan Lucier, Hamid
Mahini, Saeed Seddighin

To cite this article:
AmirMahdi Ahmadinejad, Sina Dehghani, MohammadTaghi Hajiaghayi, Brendan Lucier, Hamid Mahini, Saeed Seddighin
(2019) From Duels to Battlefields: Computing Equilibria of Blotto and Other Games. Mathematics of Operations Research
44(4):1304-1325. https://doi.org/10.1287/moor.2018.0971

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2019, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/moor.2018.0971
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

MATHEMATICS OF OPERATIONS RESEARCH
Vol. 44, No. 4, November 2019, pp. 1304–1325

http://pubsonline.informs.org/journal/moor ISSN 0364-765X (print), ISSN 1526-5471 (online)

From Duels to Battlefields: Computing Equilibria of Blotto and
Other Games
AmirMahdi Ahmadinejad,a Sina Dehghani,b MohammadTaghi Hajiaghayi,b Brendan Lucier,c Hamid Mahini,d Saeed Seddighinb

aDepartment of Management Science and Engineering, Stanford University, Stanford, California 94305; bDepartment of Computer Science,
University of Maryland, College Park, Maryland 20742; cMicrosoft Research, Cambridge, Massachusetts 02142; d School of Electrical and
Computer Engineering, University of Tehran, Tehran, Iran
Contact: ahmadi@stanford.edu (AA); sina.dehghani@gmail.com, http://orcid.org/0000-0002-4625-3199 (SD); hajiagha@cs.umd.edu (MH);
brlucier@microsoft.com (BL); hamid.mahini@ut.ac.ir (HM); sseddigh@cs.umd.edu (SS)

Received: January 24, 2017
Revised: November 23, 2017; June 29, 2018
Accepted: July 15, 2018
Published Online in Articles in Advance:
May 31, 2019

MSC2000 Subject Classification: Primary:
91A05; secondary: 68R05
OR/MS Subject Classifications: Game theory

https://doi.org/10.1287/moor.2018.0971

Copyright: © 2019 INFORMS

Abstract. In the well-studied Colonel Blotto game, players must divide a pool of troops
among a set of battlefields with the goal of winning a majority. Despite the importance of
this game, only a few solutions for special variants of the problem are known.We provide a
general technique for computing equilibria of the Colonel Blotto game. Our approach applies
to variations of the Colonel Blotto game as well, including an infinite-strategy variant called
the General Lotto game.We also apply our technique beyond Colonel Blotto games to create
the first polynomial-time algorithms for computing equilibria for a variety of other zero-sum
games. Our approach is to reformulate each zero-sum game into a bilinear form, then reduce
equilibrium computation to linear optimization over a game-specific polytope.

Funding: This work was supported in part by the National Science Foundation (NSF) [CAREER Award
CCF-1053605, BIGDATA Grant IIS-1546108, and AF:Medium Grant CCF-1161365], the Defense
Advanced Research Projects Agency (DARPA) [GRAPHS/AFOSR Grant FA9550-12-1-0423], and
another DARPA SIMPLEX grant.

Keywords: algorithmic game theory • Nash equilibrium • Colonel Blotto • zero-sum games

1. Introduction
Computing a Nash equilibrium (NE) of a given game is a central problem in algorithmic game theory. It is
known that every finite game admits a Nash equilibrium; that is, a profile of strategies from which no player
can benefit from a unilateral deviation [38]. However, it is not necessarily obvious how to find an equilibrium.
Indeed, impossibility results abound: it is widely believed that the class of polynomial parity arguments on
directed graphs (PPAD) is computationally hard, and computing a Nash equilibrium of a normal-form game is
known to be PPAD-complete [15, 20], even for two-player games [11]. In fact, it is PPAD-complete to find
an 1/nO(1) approximation to a Nash equilibrium [12]. These results call into question the predictiveness of a
Nash equilibrium as a solution concept.

This motivates the study of classes of games for which equilibria can be computed efficiently. It has been
found that many natural and important classes of games have structures that can be exploited to admit
computational results [14, 19, 29, 35]. Perhaps the most well-known example is the class of zero-sum two-player
games,1 in which player 2’s payoff is the negation of player 1’s payoff. This natural class of games models
perfect competition between two parties. The normal-form representation of a zero-sum game is a matrix A,
which specifies the game payoffs for player 1. Given the payoff matrix for a zero-sum game as input, a Nash
equilibrium2 can be computed in polynomial time, and hence time polynomial in the number of pure strategies
available to each player [14]. Yet even for zero-sum games, this algorithmic result is often unsatisfactory. The
issue is that for many games the most natural representation is more succinct than simply listing a payoff matrix,
so that the number of strategies is actually exponential in the most natural input size. In this case, the algorithm
described above fails to guarantee efficient computation of equilibria, and alternative approaches are required.

1.1. The Colonel Blotto Game
A classic and important example illustrating these issues is the Colonel Blotto game, first introduced by Borel
in 1921 [7, 8, 17, 18, 47]. In the Colonel Blotto game, two colonels each have a pool of troops and must fight
against each other over a set of battlefields. The colonels simultaneously divide their troops between the
battlefields. A colonel wins a battlefield if the number of his troops dominates the number of troops of his
opponent. The final payoff of each colonel is the (weighted) number of battlefields won. An equilibrium of the
game is a pair of colonels’ strategies, which is a (potentially randomized) distribution of troops across battlefields,

1304

http://pubsonline.informs.org/journal/moor
mailto:ahmadi@stanford.edu
mailto:sina.dehghani@gmail.com
http://orcid.org/0000-0002-4625-3199
http://orcid.org/0000-0002-4625-3199
mailto:hajiagha@cs.umd.edu
mailto:brlucier@microsoft.com
mailto:hamid.mahini@ut.ac.ir
mailto:sseddigh@cs.umd.edu
https://doi.org/10.1287/moor.2018.0971

such that no colonel has incentive to change his strategy. Although the Colonel Blotto game was initially
proposed to study a war situation, it has found applications in the analysis of many different forms of competition,
from sports, to advertisement, to politics [37, 33, 36, 13, 30, 31], and has thus become one of the most well-
known games in classic game theory.

Colonel Blotto is a zero-sum game. However, the number of strategies in the Colonel Blotto game is exponential
in its natural representation. After all, there are

(n+k−1
k−1

)
ways to partition n troops among k battlefields. The

classic methods for computing the equilibria of a zero-sum game therefore do not yield computationally
efficient results. Moreover, significant effort has been made in the economics literature to understand the
structure of equilibria of the Colonel Blotto game (i.e., by solving for equilibrium explicitly [46, 5, 6, 4, 44, 48,
41, 32, 24, 21, 31]). Despite this effort, progress remains sparse. Much of the existing work considers a
continuous variation of the problem whereby troops are divisible, and for this variation, a significant breakthrough
came only quite recently in the seminal work of Roberson [41], 85 years after the introduction of the game.
Roberson finds an equilibrium solution for the continuous version of the game, in the special case that all
battlefields have the same weight. The more general weighted version of the problem remains open, as does
the original version with discrete strategies. Given the apparent difficulty of solving for equilibrium explicitly,
it is natural to revisit the equilibrium computation problem for Colonel Blotto games.

1.2. An Approach: Bilinear Games
How should one approach equilibrium computation in such a game? A first observation is that, in zero-sum
games, computing an equilibrium is equivalent to computing a MinMax strategy for each player. Therefore,
throughout this paper, we focus on computing a MinMax strategy and use the terms MinMax strategy and
Nash equilibrium interchangeably. The running time of the classic algorithm for finding a MinMax strategy
depends polynomially on the size of the strategy set. However, the exponential size of the strategy set is not an
impassable barrier; in certain cases, games with exponentially many strategies have an underlying structure
that can be used to approach the equilibrium computation problem. For example, Koller et al. [28] show how
to compute equilibria for zero-sum extensive-form games with perfect recall. Immorlica et al. [25] give an
approach for solving algorithmically motivated “dueling games” with uncertainty. Letchford and Conitzer
[34] compute equilibria for a variety of graphical security games. Each of these cases involves games with
exponentially many strategies. In each case, a similar approach is used: reformulating the original game as a
payoff-equivalent bilinear game. In a bilinear game, the space of strategies forms a polytope in Rn, and payoffs
are specified by a matrix M: if the players play strategies x and y respectively, then the payoff to player 1 is
xTMy. It has been observed that such bilinear games can be solved efficiently when the strategy polytope has
polynomially many constraints [10, 28]. In each of the examples described above, it is shown how to map
strategies from the original games to appropriate payoff-equivalent bilinear games, in which strategies are
choices of marginal probabilities from the original game. In other words, the game payoffs can be formulated
to depend only on the marginals of the chosen strategies (e.g., the distribution of troops assigned to each
battlefield, in the Colonel Blotto game), rather than the entire mixed strategy profile itself. If one can also map
a strategy in the bilinear game back to the original game, then one has a polynomial-time reduction to the (solved)
problem of finding equilibria of the bilinear game. In each of these prior works, it is this latter step—mapping back
to the original game—that is the most demanding; this generally requires a problem-specific way to convert a
profile of marginals into a corresponding mixed strategy in the original game.

1.3. Our Contribution
We first show how to compute equilibria of the Colonel Blotto game. Like the works described above, our
method is to consider a payoff-equivalent bilinear game defined over a space of appropriately selected
marginals (in this case, the distribution of soldiers to a given battlefield). However, unlike those works, we do
not explicitly construct a game-specific mapping to and from a polynomially sized bilinear game. We instead
use a more general reduction, based on the idea that it suffices to solve linear optimization queries over
strategy profiles in a (potentially exponentially sized) bilinear game. In other words, equilibrium computation
reduces to the problem of finding a strategy that optimizes a given linear function over its marginal components.
We apply our reduction to the Colonel Blotto game by showing how to solve these requisite optimization queries,
which can be done via dynamic programming.

Our reduction follows from a repeated application of the classic equivalence of separation and optimization
[22]. In more detail, we formulate the equilibrium conditions as a linear program (LP) whose feasibility region
is the intersection of two polytopes: the first corresponding to the set of strategies of player 1, and the second

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS 1305

encoding payoff constraints for player 2. To find a solution of the LP using the well-known ellipsoid method, it
suffices to design a separation oracle for each polytope. However, as we show, separation oracles for the second
polytope reduce to (and from) separation oracles for the set of strategies of player 2. It therefore suffices to design
separation oracles for the polytope of strategies for each player, and for this it is enough to perform linear
optimization over those polytopes [22]. Finally, to convert back to an equilibrium of the original game, we
make use of a result from combinatorial optimization: the solution of an LP with polynomially many variables
can always be expressed as a mixed strategy with a polynomial-size support, and such a mixed strategy can be
computed using the separation oracles described previously [22].

The reduction described above is not specific to the Colonel Blotto game. It applies to any zero-sum game
that admits a payoff-equivalent bilinear form. To the best of our knowledge, this general reduction from
equilibrium computation to linear optimization has not previously been stated explicitly, although it has been
alluded to in the security games literature,3 and similar ideas have been used to compute correlated equilibria
in compact games [26]. We demonstrate the generality of this approach by considering notable examples of
games to which it can be applied. In each case, our approach either results in the first known polynomial-time
algorithm for computing equilibria or else significantly simplifies prior analysis. Finally, we note that our
approach also extends to approximations: given the ability to approximately answer separation oracle queries
to within any fixed error ε> 0, one can compute a corresponding approximation to the equilibrium payoffs.

1.3.1. DuelingGames. In a dueling game, introduced by Immorlica et al. [25], two competitors each try to design
an algorithm for an optimization problem with an element of uncertainty, and each player’s payoff is the
probability of obtaining a better solution than their opponent. This framework falls within a natural class of
ranking or social context games [1, 9], in which players separately play a base game and then receive ultimate
payoffs determined by both their own outcomes and the outcomes of others. Immorlica et al. argue that this class
of games models a variety of scenarios of competitions between algorithm designers: for example, competition
between search engines (which must choose how to rank search results), or competition between hiring managers
(who must choose from a pool of candidates in the style of the secretary problem).

Immorlica et al. [25] show how to compute a Nash equilibrium for certain dueling games, by developing
mappings to and from bilinear games with compact representations. We extend their method and show how
to expand the class of dueling games for which equilibria can be efficiently computed. As one particular
example, we introduce and solve the matching duel. In this game, two players each select a matching in a
weighted graph, and each player’s payoff is the probability that a randomly selected node would have a
higher-weight match in that player’s matching than in the opponent’s. Notably, because the matching
polytope does not have a compact representation [42], the original method of Immorlica et al. [25] is not
sufficient to find equilibria of this game. We also illustrate that our approach admits a significantly simplified
analysis for some other dueling games previously analyzed by Immorlica et al.

1.3.2. General Lotto Game. Hart [24] considers a variant of the Colonel Blotto game, namely the General Lotto
game. In this game, each player chooses a distribution over nonnegative real numbers, subject to the constraint
that its expectation must equal a certain fixed value. A value is then drawn from each player’s chosen dis-
tribution, and the players’ payoffs are functions of these values. What is interesting about this game is that
there are infinitely many pure strategies, which complicates equilibrium computation. Nevertheless, we show
that our techniques can be applied to this class of games as well, yielding a polynomial-time algorithm for
computing Nash equilibria. It is worth mentioning that the General Lotto game is an important problem by
itself, and its continuous variant has been thoroughly studied in the literature (see, e.g., [3], [43], [24], and [16]).

2. Results and Techniques
We present a general method for computing Nash equilibria of a broad class of zero-sum games. Our ap-
proach is to reduce the problem of computing equilibria of a given game to the problem of optimizing linear
functions over the space of strategies in a payoff-equivalent bilinear game.

Before presenting our general reduction, we will first illustrate our techniques in a high-level perspective by
considering the Colonel Blotto game as a specific example in Section 2.1 (deferring the complete details to
Section 3). Then in Section 2.2 we will present the general reduction. Further applications of this technique
are provided in Section 4 (for dueling games) and Section 6 (for the General Lotto game).

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
1306 Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS

2.1. Colonel Blotto
Here, we propose a polynomial-time algorithm for finding an equilibrium of discrete Colonel Blotto in its
general form. We allow the game to be asymmetric across both the battlefields and the players. A game is
asymmetric across the battlefields when different battlefields have different contributions to the outcome of the
game, and a game is asymmetric across the players when the two players have different numbers of troops.

In the Colonel Blotto game, two players A and B simultaneously distribute a and b troops, respectively, over
k battlefields. A pure strategy of player A is a k-partition x � 〈x1, x2, . . . , xk〉, where

∑k
i�1 xi � a, and a pure strategy

of player B is a k-partition y � 〈y1, y2, . . . , yk〉 where
∑k

i�1 yi � b. Let uAi (xi, yi) and uBi (xi, yi) be the payoff of player
A and player B from the ith battlefield, respectively, given the numbers of troops deployed to that battlefield.
Note that the payoff functions of the ith battlefield, uAi and uBi , have (a + 1) × (b + 1) entries. This means the size
of input is Θ(kab). Because Colonel Blotto is a zero-sum game, we have uAi (xi, yi) � −uBi (xi, yi).4 Note that we
otherwise allow payoff functions to be arbitrary. So, for example, the payoffs might depend not only on which
player wins a given battle, but by how much. We also represent the total payoff of player A and player B by
hA@(x, y) � ∑

i uAi (xi, yi) and hB@(x, y) � ∑
i uBi (xi, yi), respectively.

A mixed strategy of each player would be a probability distribution over his pure strategies. For ease of
reading, we will tend to distinguish pure strategies and mixed strategies by using boldface letters for mixed
strategies. For example, because x and y denote pure strategies in the Colonel Blotto game, we write x and y
to denote mixed strategies. We can think of x and y as random variables corresponding to the actions chosen
under these mixed strategies.

Theorem 1. One can compute an equilibrium of any Colonel Blotto game in polynomial time.

Proof. Let - and = be the set of all pure strategies of players A and B, respectively. That is, each member of - is a
k-partition of a troops, and each member of = is a k-partition of b troops. We will also write}(-) and}(=) for the
set of mixed strategies of players A and B, respectively.

We first write an exponentially sized LP that encodes the equilibria of the Colonel Blotto game. To that end,
we can imagine representing a mixed strategy x ∈ }(-) of player A with a vector p ∈ [0, 1]|-| such that∑

x∈- px � 1, where px denotes the probability that player A selects action x ∈ - under mixed strategy x.
Similarly, let vector q ∈ [0, 1]|=| represent a mixed strategy of player B. Because Colonel Blotto is a zero-sum
game, we leverage the MinMax theorem for finding an NE of the game. This theorem says that pair (p∗, q∗) is an
NE of the Colonel Blotto game if and only if strategies p∗ and q∗ maximize the guaranteed payoff of players A
and B, respectively [45]. Now, we are going to find strategy p∗ of player A, which maximizes his guaranteed
payoff. The same technique can be used for finding q∗. It is known that for each mixed strategy p, at least one
of the best-response strategies to p is a pure strategy. Therefore, a solution to the following program
characterizes strategy p∗:

max U (1)
s.t.

∑
x∈-

px � 1,∑
x∈-

pxhA@(x, y) ≥ U, ∀y ∈ =.

Unfortunately, LP 1 has |-| variables and |=| + 1 constraints where |-| and |=| + 1 are exponential. We therefore
cannot solve LP 1 directly. We will instead solve LP 1 in three steps, described below.

Step 1 (Transferring to a New Space). We first transform the solution space to a new space in which an LP
equivalent to LP 1 becomes tractable. See, for example, [2] for a similar approach. This new space will project mixed
strategies onto the marginal probabilities for each (battlefield, troop count) pair. For each pure strategy x ∈ - of
player A, we map it to a point in {0, 1}n(A), where n(A) � k × (a + 1). For convenience, we may abuse the notation
and index each point x̂ ∈ {0, 1}n(A) by two indices i and j such that x̂i,j represents x̂(i−1)(a+1)+j+1. Now we map a pure
strategy x to &A(x) � x̂ ∈ {0, 1}n(A) such that x̂i,j � 1 if and only if xi � j. In other words, if playerA puts j troops in the
ith battlefield, then x̂i,j � 1. Let IA :� {x̂ ∈ {0, 1}n(A)|∃x ∈ -,&A(x) � x̂} be the set of points in {0, 1}n(A) that represent
pure strategies of playerA. Similarly, wemapmixed strategy x to point&A(x) � x̂ ∈ [0, 1]n(A) such that x̂i,j represents
the probability that mixed strategy x puts j troops in the ith battlefield. Note that we represent x̂ in boldface to
indicate that it corresponds to the mixed strategy x. Note also that the mapping &A is not necessarily one-to-one
nor onto; that is, each point in [0, 1]n(A) may be mapped to zero strategies, one strategy, or more than one strategy.

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS 1307

Let SA � {x̂ ∈ [0, 1]n(A)|∃x ∈ }(-),&A(x) � x̂} be the set of points in [0, 1]n(A) that represent at least one mixed
strategy of player A. Similarly, we use function &B to map each strategy of player B to a point in [0, 1]n(B), where
n(B) � k × (b + 1), and define IB � {ŷ ∈ {0, 1}n(B)|∃y ∈ =,&B(y) � ŷ} and SB � {ŷ ∈ [0, 1]n(B)|∃y ∈ }(=),&B(y) � ŷ}.
We show in Section 3 that set SA forms a convex polygon (Lemma 1).

Now, we are ready to rewrite linear program 1 in the new space as follows:

max U (2)
s.t. x̂ ∈ SA (Membership constraint)

hA@(x̂, ŷ) ≥ U, ∀ŷ ∈ IB (Payoff constraints),

where

hA@(x̂, ŷ) �
∑k
i�1

∑a
ta�0

∑b
tb�0

x̂i,ta ŷi,tbu
A
i (ta, tb)

is the expected payoff of player A.
Step 2 (Solving LP 2). The modified linear program, LP 2, has exponentially many constraints but only poly-

nomially many variables. One can therefore apply the ellipsoid method to solve the LP, given a separation oracle
that runs in polynomial time [23, 40]. By the equivalence of separation and optimization [22], one can implement
such a separation oracle given the ability to optimize linear functions over the polytopes SA (for the membership
constraints) and SB (for the payoff constraints).

Stated more explicitly, optimizing over the membership polytope SA refers to the following optimization
problem. Given a sequence of real numbers c0, c1, . . . , ck(m+1), where k is the number of battlefields and m is the
number of troops for a player, the required oracle must find a pure strategy x � (x1, x2, . . . , xk) ∈ - such that∑k

i�1 xi � m, and x̂ � &(x) minimizes the following expression:

c0 +
∑k(m+1)

i�1
cix̂i, (3)

and similarly for polytope =. We show that one can indeed find a minimizer of Equation (3) in polynomial
time, using dynamic programming. It is similarly possible to optimize linear constraints over SB, the polytope
of payoff constraints, using an oracle that can be implemented in polynomial time. We provide more details in
Section 3.2 and formally describe the optimization algorithms in Section 7.

Step 3 (Transferring to the Original Space). At last we should transfer the solution of LP 2 to the original space. In
particular, we are given a point x̂ ∈ SA and our goal is to find a strategy x ∈ }(-) such that &A(x) � x̂. To achieve
this, we invoke a classic result of [22], which states that an interior point of an n-dimensional polytope P can be
decomposed as a convex combination of at most n + 1 extreme points of P, in polynomial time, given an oracle that
optimizes linear functions over P. Note that this is precisely the oracle required for Step 2 above. Applying this
result to the solution of LP 2 in polytope SA, we obtain a convex decomposition of x̂ into extreme points of SA, say
x̂ � ∑

i αix̂i. Because each x̂i corresponds to a pure strategy in -, it is trivial to find strategy xi with &A(xi) � x̂i,
because the marginals of each x̂i lie in {0, 1}. We then have that x � ∑

i αixi is the required mixed strategy profile.
Combining these three steps, we find a Nash equilibrium of the Colonel Blotto game in polynomial time,

completing the proof of Theorem 1. See Section 3 for more details. □

2.2. A General Framework for Bilinear Games
In our method for finding a Nash equilibrium of the Colonel Blotto game, the main steps were to express the
game as a bilinear game of polynomial dimension, solve for an equilibrium of the bilinear game, then express
that point as an equilibrium of the original game. To implement the final two steps, it sufficed to show how to
optimize linear functions over the polytope of strategies in the bilinear game. This suggests a general re-
duction, whereby the equilibrium computation problem is reduced to finding the appropriate bilinear game
and implementing the required optimization algorithm. In other words, the method for computing Nash
equilibria applies to a zero-sum game when:

1. One can transfer each strategy x of player A to &A(x) � x̂ ∈ Rn(A), and each strategy y of player B to
&B(y) � ŷ ∈ Rn(B) such that the payoff of the game for strategies x̂ and ŷ can be represented in a bilinear form
based on x̂ and ŷ; that is, the payoff is x̂tMŷ, where M is a n(A) × n(B) matrix.

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
1308 Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS

2. For any given vector α and real number α0 we can find, in polynomial time, whether there is a pure
strategy x̂ in the transferred space such that α0 +∑

i αix̂i ≥ 0.
We refer to such a game as polynomially separable. A direct extension of the proof of Theorem 1 implies that

Nash equilibria can be found for polynomially separable games.

Theorem 2. There is a polynomial-time algorithm that finds a Nash Equilibrium of a given polynomially separable game.

This general methodology can be used for finding an NE in many zero-sum games. In subsequent sections,
we show how our framework can be used to find Nash equilibria for a generalization of Blotto games and for a
class of dueling games introduced by Immorlica et al. [25].

2.3. General Lotto
The General Lotto game is a relaxation of the Colonel Blotto game (see [24] for details). In this game each
player’s strategy is a distribution of a nonnegative integer-valued random variable with a given expectation. In
particular, players A and B simultaneously determine (two distributions of) two nonnegative integer-valued
random variables X and Y, respectively, such that E[X] � a and E[Y] � b. The payoff of player A is

hAΓ (X,Y) �
∑∞
i�0

∑∞
j�0

Pr(X � i)Pr(Y � j)u(i, j), (4)

and again the payoff of player B is the negative of the payoff of player A, that is, hBΓ(X,Y) � −hAΓ (X,Y). Hart [24]
presents a solution for the General Lotto game when u(i, j) � sign(i − j). Here, we generalize this result and
present a polynomial-time algorithm for finding an equilibrium when u is a bounded distance function. Function
u is a bounded distance function if one can write it as u(i, j) � fu(i − j) such that fu is a monotone function and
reaches its maximum value at uM � fu(uT), where uT ∈ O(poly(a, b)). Note that u(i, j) � sign(i − j) is a bounded
distance function where it reaches its maximum value at i − j � 1. The following theorem presents our main
result regarding the General Lotto game.

Theorem 3. There is a polynomial-time algorithm that finds an equilibrium of a General Lotto game where the payoff function
is a bounded distance function.

2.3.1. Main Challenge. In the General Lotto game, each player has an infinite number of pure strategies, and
thus one can use neither our proposed algorithm for the Colonel Blotto game nor the technique of Immorlica
et al. [25] for solving the problem. To address this issue, we should prune strategies such that the problem
becomes tractable. To that end, our approach is to characterize the extreme point of the polytope of all
strategies and use this characterization for pruning possible strategies. To the best of our knowledge, our
algorithm is the first to compute an NE of a game with an infinite number of pure strategies in this way. The
full proof of Theorem 3 appears in Section 6.

3. Colonel Blotto
In this section, we provide a more detailed description of our polynomial-time algorithm for finding a Nash
equilibrium of the Colonel Blotto game, which we described informally in Section 2.1. In Section 3.1, we
present a procedure for mapping strategies of both players to a new space. The new space maintains the
important information of each strategy and helps us to find a Nash equilibrium of the game. Next, in Section 3.2,
we demonstrate how to verify the feasibility of the membership and payoff constraints in the new space. This
allows us to construct a polynomial-time algorithm for determining an equilibrium of the Colonel Blotto game
in the new space. At last, in Section 3.3, we present an algorithm that transfers a Nash equilibrium from the
new space to the original space.

3.1. Transferring to a New Space
In this subsection we define a new notation for describing the strategies of players and discuss the properties
of those strategies. Let n(A) � k(a + 1) and x be a strategy of player A. We define the function &A in the
following way: &A(x) � x̂, where x̂ is a point in Rn(A) such that x̂(i−1)(a+1)+j+1 is equal to the probability that
strategy x puts j units in the ith battlefield, for 1 ≤ i ≤ k and 0 ≤ j ≤ a. For simplicity, we may represent
x̂(i−1)(a+1)+j+1 by x̂i,j. We define n(B) and &B similarly for player B. Let n � max{n(A),n(B)}. Note that &A maps
each strategy of the first player to exactly one point in Rn(A). However, each point in Rn(A) may be mapped to
either zero strategies, one strategy, or more than one strategy. Figure 1 illustrates an example of a mixed
strategy along with its mapping into the new space.

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS 1309

Let us recall the definition of }(-), which is the set of all strategies of player A, and the definition of SA,
which is

SA � {x̂ ∈ [0, 1]n(A)|∃x ∈ }(-),&A(x) � x̂}.
To design an algorithm for verifying the membership constraints, we first show in Lemma 1 that set SA is a
polyhedron with an exponential number of vertices and facets. Then we prove in Lemma 4 that set SA can be
formulated with 2(2poly(n)) number of constraints. These results enable us to leverage the ellipsoid method for
verifying the membership constraints [23].

Lemma 1. Set SA forms a convex polyhedron with no more than n(A)n(A) vertices and no more than n(A)(n(A)2) facets.
Proof. First we need Lemmas 2 and 3 for proving Lemma 1.

Lemma 2. Let x1, x2, . . . , xt be t arbitrary mixed strategies of player A,
∑t

r�1 αr � 1, and x � ∑t
r�1 αrxr be a mixed strategy

that plays strategy xr with probability αr; then &A(x) � ∑t
r�1 αr&A(xr).

Proof. Because x � ∑t
r�1 αrxr and &A(xr)j represent the probability that strategy xr plays j, we have [&A(x)]j �∑t

r�1 αr[&A(xr)]j for all 1 ≤ j ≤ n(A). Therefore, &A(x) � ∑t
r�1 αr&A(xr). □

Lemma 3. SA is a convex set.

Proof. A set of points is convex if and only if every segment joining two of its points is completely in the set. Let
x̂ � (x̂1, x̂2, . . . , x̂n(A)) and x̂′ � (x̂′1, x̂′2, . . . , x̂′n(A)) be two points in Rn(A). We show that if x̂, x̂′ ∈ SA, then for every
0 ≤ α ≤ 1, (αx̂ + (1 − α)x̂′) ∈ SA.

Because x̂ and x̂′ are in SA, there exist mixed strategies x and x′ in }(-), such that x̂ � &A(x) and x̂′ � &A(x′).
Let x′′ � αx + (1 − α)x′ be a mixed strategy of player A that plays x with probability α and x′ with probability
1 − α. By Lemma 2 we have &A(x′′) � αx̂ + (1 − α)x̂′ � x̂′′; hence, x̂′′ ∈ SA. □

Now we are ready to prove Lemma 1. By Lemma 3, we know SA is convex. We show that we can find a
finite set of points in SA such that every point in SA can be written as a convex combination of these points.
Note that - � {-1,-2, . . . ,-|-|} is the set of all pure strategies of player A, and IA � {-̂1, -̂2, . . . , -̂|-|} is the set of
points where -̂i � &A(-i). Note also that IA and - are finite sets. Every strategy of player A is either a pure
strategy or a mixed strategy and can be written as a convex combination of the pure strategies. Therefore,
according to Lemma 2, every point in SA is either in IA or can be written as a convex combination of points in
IA. Hence, SA forms a convex polyhedron in Rn(A).

Next we show that the number of vertices and facets of SA is 2(2poly(n)). Let x̂ be a vertex of polyhedron SA
and x be a strategy of player A such that &A(x) � x̂. Because x̂ is a vertex of SA, it cannot be written as a convex

Figure 1. A strategy of a player with three troops in a Colonel Blotto game with three battlefields.

Notes. On the left is a mixed strategy x, which plays as follows: with probability 0.3 puts all troops in the first battlefield, with probability 0.4 puts
one troop in each battlefield, andwith probability 0.3 puts two and one troop(s) in the second and third battlefields, respectively. The table on the
right shows how x̂ is derived from x.

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
1310 Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS

combination of other vertices of SA. If x is a mixed strategy, it can be written as a convex combination of other
strategies, and according to Lemma 2, &A(x) can be written as convex combination of other points of SA. This
implies that either x is a pure strategy or there exists a pure strategy x′ such that &A(x′) � x̂. Therefore, the
number of vertices of SA is no more than the number of pure strategies of player A. Because each pure strategy
of player A is a partition of a units into k battlefields, the number of pure strategies is no more than (a + 1)k.
Thus, the number of vertices of SA is at most n(A)n(A).

Let d ≤ n(A) be the dimension of SA. Because every facet of SA can be uniquely determined by d vertices of
SA, the number of facets is no more than

|IA|
d

()
≤ (|IA|)d ≤ (n(A)n(A))d ≤ n(A)(n(A)2). □

Lemma 4. Set SA can be formulated with 2(2poly(n)) number of constraints.

Proof. Note that the dimension of SA is not necessarily n(A). Let d be the dimension of SA and *(SA) be the affine
hull of SA. Because *(SA) is a d-dimensional subspace of Rn(A), it can be represented as the intersection of n(A) − d
orthogonal hyperplanes. Let L be a set of such hyperplanes. Let C be the set of all hyperplanes perpendicular to
hyperplanes in L that contain a facet of SA. We need Lemmas 5, 6, 7, and 8 for proving Lemma 4.

Lemma 5. There exists exactly one hyperplane perpendicular to all hyperplanes in L that contains all points of a
(d − 1)-dimensional subspace of *(SA).
Proof. Let O be the orthogonal basis of the (d − 1)-dimensional subspace and N be the set of normal vectors of
hyperplanes in L. Because every vector inO is in*(SA), all vectors inO are orthogonal to all vectors inN. Therefore,
the desired hyperplane should be orthogonal to all vectors N ∪O. Because |N ∪O| � n(A) − 1 and all vectors in
N ∪O are pairwise orthogonal, there exists exactly one hyperplane containing the subspace and perpendicular to
all hyperplanes in L. □

Lemma 6. There exists exactly one hyperplane perpendicular to all hyperplanes of L that contain all points of some facet f
of SA.

Proof. Because f is a facet of SA, its dimension is d − 1. Therefore, its affine hull is a (d − 1)-dimensional subspace
of *(SA). Note that a hyperplane contains f if and only if it contains the affine hull of f . Lemma 5 states that there
exists exactly one hyperplane perpendicular to all hyperplanes of L that contains the affine hull of f . Hence, there
exists a unique hyperplane containing f that is perpendicular to all hyperplanes of L. □

Lemma 7. For every point x̂ ∈ *(SA) that is not in SA, there exists a hyperplane perpendicular to all hyperplanes in L that
contains a facet of SA and separates x̂ from SA.

Proof. Consider a segment between x̂ and one point of SA. Because one endpoint of the segment is in SA and the
other one is not, it has intersection with at least one facet of SA, namely f . By Lemma 6, there exists one hyperplane
that contains f and is perpendicular to hyperplanes in L. This hyperplane has intersection with the segment and
separates x̂ from SA. □

Lemma 8. Point x̂ ∈ Rn(A) is in SA if and only if all hyperplanes in L contain x̂ and no hyperplane in C separates x̂ from SA.

Proof. Because SA is in the intersection of all hyperplanes in L, if x̂ ∈ SA it is also in all hyperplanes in L, and no
hyperplane in C separates x̂ from SA. Now suppose x̂ /∈ SA. If x̂ /∈*(SA), then x̂ is not in all hyperplanes of L;
otherwise by Lemma 7 there exists a hyperplane in C that separates x̂ from SA. □

Now we are ready to prove Lemma 4. By Lemma 8 we conclude that the set of hyperplanes in L and C is
sufficient to formulate SA. We know |L| is at most n(A), and by Lemma 6 we can find out that |C| is equal to the
number of facets of SA. Moreover, Lemma 1 states that |C| is 2(2poly(n)), which means |C| + |L| ∈ 2(2poly(n)). □

3.2. Verifying the Membership and the Payoff Constraints
As we briefly described in Section 2, the final goal of this section is to determine an NE of the Colonel Blotto
game. To do this, we use linear program 2 and show that this LP can be solved in polynomial time. Because we

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS 1311

use the ellipsoid method to solve the LP, we have to implement an oracle function that reports a violating
constraint for any infeasible solution.

We will first focus on the membership constraints of LP 2. We show there exists a polynomial-time al-
gorithm that finds a separating hyperplane for any point x̂ that violates a membership constraint.

Lemma9. There exists a polynomial-time algorithm that takes as input a point x̂ and either finds a hyperplane that separates x̂
from SA or reports that no such hyperplane exists.

Proof. Let x̂ � (x̂1, x̂2, . . . , x̂n(A)). Consider the following LP, which we will refer to as LP 5:

α0 +
∑n(A)
j�1

αjx̂j < 0 (5)

α0 +
∑n(A)
j�1

αjv̂j ≥ 0 ∀v̂ ∈ IA. (6)

The variables of this LP are α0, α1, . . . , αn(A), which describe the following hyperplane:

α0 +
∑n(A)
j�1

αjx̂′j � 0.

Constraints (5) and (6) force LP 5 to find a hyperplane that separates x̂ from SA. Hence, LP 5 finds a separating
hyperplane if and only if x̂ is not in SA.

A hyperplane separating oracle is an oracle that gets variables α0, α1, . . . , αn(A) as input and finds whether
constraints (6) are satisfied. Moreover, if some constraints are violated it returns at least one of the violated
constraints. In Section 7 we describe a polynomial-time algorithm for the hyperplane separating oracle. Note
that (5) is a single constraint and can be verified in polynomial time. LP 5 has n(A) + 1 variables and |IA| + 1
constraints. By Lemma 1, |IA| � 2(2poly(n)). Thus we can use the ellipsoid method [23] to solve this LP in
polynomial time. □

Having handled the membership constraints, we now turn to the payoff constraints of LP 2. We present an
algorithm to determine the outcome of the game (i.e., the payoffs) when both players play optimally. We say x
is an optimal strategy of player A if it maximizes the guaranteed payoff of player A. By the MinMax theorem,
an NE of a zero-sum game is precisely a strategy profile in which each player plays an optimal strategy [45].
Therefore, it is enough to find an optimal strategy of both players. Before we discuss the algorithm, we show
the payoff hA@(x,y) can be determined by &A(x) and &B(y). Recall the definition of hA@(x̂, ŷ), which is

hA@(x̂, ŷ) �
∑k
i�1

∑a
α�0

∑b
β�0

x̂i,αŷi,βu
A
i (α, β).

Lemma 10. Let x ∈ }(-) and y ∈ }(=) be two mixed strategies for players A and B, respectively. Let x̂ � &A(x) and
ŷ � &B(y). The outcome of the game is determined by hA@(x̂, ŷ).
Proof. Let x and y be twomixed strategies of playersA and B, respectively, and let E[uAi (x, y)] be the expected value
of the outcome in battlefield i. We can write E[uAi (x,y)] as follows:

E[uAi (x,y)] �
∑a
α�0

∑b
β�0

x̂i,αŷi,βuAi (α, β).

We know that the total outcome of the game is the sum of the outcome in all battlefields, which is

E
∑k
i�1

uAi (x,y)
[]

� ∑k
i�1

E[uAi (x,y)] �
∑k
i�1

∑a
α�0

∑b
β�0

x̂i,αŷi,βu
A
i (α, β) � hA@(x̂, ŷ). □

We now have all the pieces we require to solve LP 2, which solves the equilibrium problem in the new space.

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
1312 Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS

Lemma 11. There exists a polynomial-time algorithm that finds an NE of the Colonel Blotto game in the new space.

Proof. The Colonel Blotto is a zero-sum game, and the MinMax theorem states that a pair of strategies (x̂, ŷ) is a
Nash equilibrium if x̂ and ŷ maximize the guaranteed payoff of players A and B, respectively [45].

Recall that LP 2 finds a point x̂ ∈ SA that describes an optimal strategy of player A.5 This LP has n(A) + 1
variables, which are x̂1, x̂2, . . . , x̂n(A) and U. The membership constraints guarantee x̂ is in SA. It is known that in
any normal-form game there always exists a best-response strategy that is a pure strategy [39]. Hence, variable
U represents the maximum payoff of player A with strategy x̂ when player B plays his best-response strategy
against x̂. Note that Lemma 10 shows hA@(x̂, ŷ) is a linear function of x̂, when ŷ is a fixed strategy of player
B. This means the payoff constraints are linear constraints. Putting all these together implies that LP 2 finds a
point x̂ subject to the following conditions:

1. There exists a strategy x such that &A(x) � x̂.
2. The minimum value of hA@(x,y) is maximized for every y ∈ }(=).
Now we prove that this LP can be solved in polynomial time using the ellipsoid method. The best-response

separating oracle is an oracle that gets a point x̂ and a variable U as input and either reports that point x̂ meets
all payoff constraints or reports a violated payoff constraint. In Section 7, we will show that the running time
of this oracle is 2(poly(n)). Note that Lemma 9 provides a polynomial-time algorithm for verifying the
membership constraints, and that the best-response separating oracle is a polynomial-time algorithm for
verifying the payoff constraints.

Now by Lemmas 1 and 4, LP 2 has 2(2poly(n)) many constraints. Thus we can use ellipsoid method to solve
LP 2 in polynomial time. □

3.3. Finding a Nash Equilibrium in the Original Space
In the previous subsection, we presented an algorithm that finds a Nash equilibrium (&A(x),&B(y)) of the game
in the new space. The remaining problem is to translate &A(x) back to the original space and compute x.

Lemma 12. Given a point x̂ ∈ SA, there exists a polynomial-time algorithm that finds a strategy x ∈ }(-) such that
&A(x) � x̂.

Proof. Because every strategy of player A is a convex combination of elements of -, we can find such an x by
finding a feasible solution to the following LP. Because every feasible solution is acceptable, the objective function
does not matter. In this LP, αx’s are decision variables: for each pure strategy x ∈ -, αx denotes the corresponding
probability of x in the mixed strategy.

min 0 (7)
s.t.

∑
x∈-

αx � 1 (8)∑
x∈-

αx&A(x)j � x̂j ∀1 ≤ j ≤ n(A) (9)

αx ≥ 0 ∀x ∈ - (10)

To find a solution of the above LP, we write its dual LP as follows.

max β0 +
∑n(A)
j�1

x̂jβj (11)

s.t. β0 +
∑n(A)
j�1

&A(x)jβj ≤ 0 ∀x ∈ - (12)

In this LP, the decision variables are β0, β1, . . ., βn(A). The variable β0 corresponds to constraint (8), and variables
β1, β2, . . . , βn(A) correspond to constraint (9). An oracle similar to the hyperplane separating oracle (described in
Section 3.2) can find a violating constraint for any infeasible solution of the dual LP. Because the number of
constraints in the dual LP is |IA| � 2(2poly(n)) owing to Lemma 1, we use the ellipsoid method to find an optimal
solution of the dual LP in polynomial time.

The next challenge is to find an optimal solution of the primal LP from an optimal solution of the dual LP.
This can be done via classic LP solving techniques [27]. However, for the sake of completeness, we include a
formal statement and proof as Lemma 13, below.

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS 1313

Lemma 13. Assume we have a separation oracle for primal LPmax{cTx : Ax ≤ b} with exponentially many constraints and
polynomially many variables. If primal LP is feasible, then there is a polynomial-time algorithm that returns an optimum
solution of dual LP min{bTy : ATy ≥ c}.
Proof. Because the primal LP is feasible, we can assume OPT � max{cTx : Ax ≤ b}. The ellipsoid method returns an
optimum solution of primal LP by doing binary search and finding the largest K that guarantees feasibility of
{cTx ≤ K : Ax ≤ b}. Let (Â, b̂) be the set of polynomially many constraints returned by the separation oracle during
all iterations. We first prove max{cTx : Âx ≤ b̂} � OPT. Note that (Â, b̂) is a set of constraints returned by the
ellipsoid method. Note also that (Â, b̂) is a subset of all constraints (A, b). This means every vector x that satisfies
Ax ≤ b will satisfy Âx ≤ b̂ as well. Therefore, max{cTx : Âx ≤ b̂} ≥ max{cTx : Ax ≤ b} � OPT. On the other hand,
we know (Â, b̂) contains constraints that guarantee that the set {cTx ≥ OPT + ε : Ax ≤ b} is empty. In particular,
{cTx ≥ OPT + ε : Âx ≤ b̂} is empty, which means that max{cTx : Âx ≤ b̂} ≤ OPT. Putting all these together we can
conclude that max{cTx : Âx ≤ b̂} � OPT.

The linear program max{cTx : Âx ≤ b̂} has polynomially many constraints and polynomially many variables,
and we can find an optimum solution to its dual, min{b̂Tŷ : ÂTŷ ≥ c}, in polynomial time. Let ŷ∗ be an optimum
solution of dual LP min{b̂Tŷ : ÂTŷ ≥ c}, and let S � {i|(Ai, bi) is in (Â, b̂)}, where Ai is the ith row of matrix A, be
the set of indices corresponding to constraints in (Â, b̂). For every vector y and every set of indices R we define
yR to be the projection of vector y on set R. Now let vector y∗ be a solution of dual LP min{bTy : ATy ≥ c} such
that y∗S � ŷ∗ and y∗i � 0 for all i �∈ S. We prove y∗ is an optimum solution of dual LP min{bTy : ATy ≥ c} as
follows:

• We first show y∗ is feasible. Note that y∗i � 0 for all i �∈ S, which means ATy∗ � ÂTŷ∗ ≥ c, where the last
inequality comes from the feasibility of ŷ∗ in dual LP min{b̂Ty : ÂTy ≥ c}.

• Note that bTy∗ � ∑
i bTi y

∗
i � ∑

i∈S bTi y∗i +∑
i�∈S bTi y∗i � b̂Tŷ∗. The last equality comes from the facts that y∗i � 0 for

all i �∈ S and
∑

i∈S bTi y∗i � b̂Tŷ∗. Because ŷ∗ is an optimum solution of the dual LP min{b̂Ty : ÂTy ≥ c}, by the weak
duality, it is equal to max{cTx : Âx ≤ b̂} � OPT. Therefore, bTy∗ � OPT.

We have proved y∗ is a feasible solution to dual LP min{bTy : ATy ≥ c} and bTy∗ � OPT. We also know
OPT � max{cTx : Ax ≤ b} by definition. Therefore, the weak duality insures y∗ is an optimum solution of dual
LP min{bTy : ATy ≥ c}. □

We know that x̂ is in SA. This means there is a strategy x ∈ }(-) such that &A(x) � x̂. Therefore, LP 7 and its
dual are both feasible, and thus we can apply Lemma 13 to find an optimal solution in polynomial time,
completing the proof of Lemma 12. □

4. Application to Dueling Games
Immorlica et al. [25] introduced the class of dueling games. In these games, an optimization problem with an
element of uncertainty is used to define a competition between two players. They also provide a technique for
finding Nash equilibria for a set of games in this class. In this section, we formally define the dueling games and
bilinear duels. Then, in Section 4.3, we describe our method and show that our technique solves a more general
class of dueling games. Furthermore, we provide examples of bilinear duel games, considered previously [25],
to demonstrate the simplicity of our method. Finally, in Section 4.4, we examine the matching duel game to
provide an example in which the method of Immorlica et al. [25] does not apply directly but our presented
method can still be applied.

4.1. Dueling Games
Formally, dueling games are two player zero-sum games with a set of strategies X, a set of possible situations
Ω, a probability distribution p over Ω, and a cost function c : X ×Ω → R that defines the cost measure for each
player on the basis of her strategy and the element of uncertainty. The payoff of each player is defined as the
probability that she beats her opponent minus the probability that she is beaten. More precisely, the utility
function is defined as

hA(x, y) � −hB(x, y) � Pr
ω∼p[c(x, ω)< c(y, ω)] − Pr

ω∼p[c(x, ω)> c(y, ω)],

where x and y are strategies for player A and B, respectively. We will consider the following two games,
introduced in [25].

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
1314 Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS

4.1.1. Binary Search Tree Duel. In the binary search tree duel, there is a set of elements Ω and a probability
distribution p over Ω. Each player is going to construct a binary search tree containing the elements of Ω.
Strategy x beats strategy y for element ω ∈ Ω if and only if the path from ω to the root in x is shorter than the
path from ω to the root in y. Thus, the set of strategies X is the set of all binary search trees with elements of Ω,
and c(x, ω) is defined to be the depth of element ω in strategy x.

4.1.2. Ranking Duel. In the ranking duel, there is a set of m pages Ω, and a probability distribution p over Ω,
notifying the probability that each page is going to be searched. In the ranking duel, two search engines compete
against each other. Each search engine has to provide a permutation of these pages, and a player beats the other if
page ω comes earlier in her permutation. In other words, the set of strategies X contains all m! permutations of
the pages, and for any permutation x � (x1, x2, . . . , xm) and page ω, c(x, ω) � i if and only if ω � xi.

4.2. Dueling Games Are Polynomially Separable
Consider a dueling game in which each strategy x̂ of player A is an n(A) dimensional point in Euclidean space.
Let SA be the convex hull of these strategy points. Thus each point x̂ in SA is a mixed strategy of player A.
Similarly define strategy ŷ, n(B), and SB for player B. A dueling game is bilinear if utility function hA(x̂, ŷ) has
the form x̂tMŷ, where M is an n(A) × n(B) matrix. Again for player B, we have hB(x̂, ŷ) � −hA(x̂, ŷ). Immorlica
et al. [25] provide a method for finding an equilibrium of a class of bilinear games, which is defined as follows.

Definition 1. Polynomially Representable Bilinear Dueling Games). A bilinear dueling game is polynomially rep-
resentable if one can represent the convex hull of strategies SA and SB with a polynomial number m of linear
constraints; that is, there are m vectors {v1, v2, . . . , vm} and m real numbers {b1, b2, . . . , bm} such that SA � {x̂ ∈
Rn(A)|∀i ∈ {1, 2, . . . ,m}, vi · x̂ ≥ bi}. Similarly SB � {ŷ ∈ Rn(B)|∀i ∈ {1, 2, . . . ,m′}, v′i · ŷ ≥ b′i}.

In the following theorem, we show that every polynomially representable bilinear duel is also polynomially
separable, as defined in Section 2.2. This implies that the general reduction described in Section 2.2 can be used
to solve polynomially representable bilinear duels as well.

Theorem 4. Every polynomially representable bilinear duel is polynomially separable.

Proof. Let SA and SB be the set of strategy points for player A and player B, respectively. We show that if SA can be
specified with a polynomial number of linear constraints, then one could design an algorithm that finds out
whether there exists a point x̂ ∈ SA such that α0 +∑

αix̂i ≥ 0. Let {(v1, b1), (v2, b2), . . . , (vm, bm)} be the set of con-
straints that specify SA, where vi is a vector of size n(A) and bi is a real number. We need to check whether there
exists a point satisfying both constraints in {(v1, b1), (v2, b2), . . . , (vm, bm)} and α0 +∑

αix̂i ≥ 0. Recall that m is as-
sumed to be polynomial in the natural game representation. Because all these constraints are linear, we can solve
this feasibility problem by an LP in polynomial time. The same argument holds for SB; therefore, every poly-
nomially representable bilinear duel is polynomially separable as well. □

4.3. A Simplified Argument for Ranking and Binary Search Duels
In this section, we revisit some examples of dueling games and demonstrate how Theorem 2 can be used to
solve them in polynomial time. To apply Theorem 2, one should take two main steps. First, it is necessary to
express the duel as a bilinear game: that is, one must transfer every strategy of the players to a point in n(A)
and n(B) dimensional space, such that the outcome of the game can be determined for two given strategy
points with an n(A) × n(B) matrix M. Second, one must implement an oracle that determines whether there
exists a strategy point satisfying a given linear constraint.

To illustrate our method more precisely, we propose a polynomial-time algorithm for finding an NE for
ranking and binary search tree dueling games in what follows.

Theorem 5. There exists an algorithm that finds an NE of the ranking duel in polynomial time.

Proof. We transfer each strategy x of player A to point x̂ in Rm2
where x̂i,j denotes the probability that ωi stands at

position j in x. The outcome of the game is determined by the following equation:∑m
i�1

∑m
j�1

∑m
k�j+1

x̂i,jŷi,kp(ωi) −
∑m
i�1

∑m
j�1

∑j−1
k�1

x̂i,jŷi,kp(ωi),

where p(ωi) denotes the probability that ωi is searched.

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS 1315

Here, we need to provide an oracle that determines whether there exists a strategy point for a player that
satisfies a given linear constraint α0 +∑

αi,jx̂i,j ≥ 0. Because each pure strategy is a matching between pages and
indices, we can find the pure strategy that maximizes

∑
αi,jx̂i,j with the maximum weighted matching al-

gorithm. Therefore, this query can be answered in polynomial time. Because we have reduced this game to a
polynomially separable bilinear duel, we can find a Nash equilibrium in polynomial time. □

Theorem 6. There exists an algorithm that finds an NE of the binary search tree duel in polynomial time.

Proof. Here we map each strategy x to the point x̂ � 〈x̂1,1, x̂1,2, . . . , x̂1,m, x̂2,1, x̂2,2, . . . , x̂m,m〉 ∈ Rm2
, where x̂i,j denotes

the probability that depth of the ith element is equal to j. Therefore, the payoff of the game for strategies x̂ and
ŷ is equal to

∑m
i�1

∑m
j�1

∑m
k�j+1

x̂i,jŷi,kp(ωi) −
∑m
i�1

∑m
j�1

∑j−1
k�1

x̂i,jŷi,kp(ωi),

where p(ωi) denotes the probability that ith element is searched.

Next, we need to provide an oracle that determines whether there exists a strategy point for a player that
satisfies a given linear constraint α0 +∑

αi,jx̂i,j ≥ 0. To do this, we find the binary search tree that maximizes∑
αi,jx̂i,j. This is done with a dynamic program. Let D(a, b, k) denote the maximum value of

∑b
i�a αi,jx̂i,j for a

subtree that its root is at depth k. D(a, b, k) is formulated as

D(a, b, k) � mina≤c≤b{D(a, c − 1, k + 1) +D(c + 1, b, k + 1) + αc,k} if a< b,

αa,k if a � b.

{
Therefore, we find the binary search tree that maximizes

∑
αi,jx̂i,j in polynomial time and determine whether

it meets the constraint. Because we have reduced this game to a polynomially separable bilinear duel, we can
find an NE in polynomial time. □

4.4. Matching Duel
In a matching duel, two players play a game on a bidirectional graph G � (V,E,W) whose every edge has an
arbitrary weight. Each of the players selects a perfect matching of G as his strategy, and the payoffs are
determined according to the matchings of the players. More precisely, once both players make their decisions,
a random node ω is drawn from a probability distribution Ω. Next, each player gets a score equal to the
weight of the edge incident to ω in his matching, and the winner is the one with the higher score. In case of a
tie, the game is a draw and both players receive a payoff of 0; otherwise the winner gets a payoff of 1 and the
loser gets a payoff of −1. In other words, a strategy x beats a strategy y for element ω ∈ Ω if ω is matched to a
higher weighted edge in strategy x than strategy y.

The matching duel may find its application in a competition between websites that try to match people
according to their desire. In this competition, the goal of each website is to maximize its number of users, and a
website attracts a user if it suggests a match that is better than other websites’ suggestions. We mention that
the ranking duel is a special case of the matching duel when G is a complete bipartite graph with n nodes on
each side, in which the first part denotes the web pages and the second part denotes the ranking positions.
Thus, the weight of the edge between page i and rank j is equal to j.

Note that Rothvoss [42] showed that the feasible strategy polytope (the perfect matching polytope) has
exponentially many facets. Therefore, any approach that requires a polynomial number of constraints, such as
the method described by Immorlica et al. [25], cannot directly apply. However, it turns out that the matching
duel is polynomial separable, and thus our technique can be used to compute an equilibrium in polynomial time.

Theorem 7. There exists an algorithm that computes a Nash equilibrium of the matching duel in polynomial time.

Proof. We transfer every strategy x to a point in |E|-dimensional Euclidean space x̂, where x̂e denotes the probability
that x chooses e in the matching. Thus, the payoff function is bilinear and is as follows:∑

ω∈Ω

∑
e1∈N(ω)

∑
e2∈N(ω)

[p(ω)x̂e1 ŷe2 × sign(w(e1) − w(e2))],

where N(ω) is the set of edges adjacent to ω.6 Next, we need to prove that the game is polynomially separable.
Given a vector α and a real number α0, we are to find out whether there is a strategy x̂ such that α0 + α · x̂ ≥ 0.

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
1316 Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS

This problem can be solved by a maximum weighted perfect matching, where the graph is G � (V,E,W) and
w(e) � αe. Thus using our framework, we find an NE of the matching duel in polynomial time. □

5. Approximating the Payoff of the Game
We observe that in some dueling games the separation problem cannot be solved in polynomial time. However,
having a fixed error threshold, it is possible to approximately solve the separation problem in polynomial time.
In this section, we present a technique for approximating the payoff of the dueling games via providing an
approximate solution for the separation problem.

We say a (not necessarily feasible) point x̂ is an ε-solution of the LP in a bilinear dueling game where there
exists a feasible strategy point x̂′ such that |x̂ − x̂′| ≤ ε and the minimum payoff of strategy x̂ differs by at most
ε from that of the MinMax strategies. Note that in the separation problem we are given a linear constraint
α0, α1, . . . and are to find out whether there exists a strategy point for a player which has the property
α0 +∑

i αix̂i ≥ 0. We say a separation oracle solves this problem with approximation factor ε if it always finds
such a point when there exists a violating point having a distance of at least ε from the hyperplane. Note that
the approximate oracle may not report a correct answer when the distance of all desired points to the hy-
perplane is less than ε. We say a dueling game is polynomially ε-separable if we can approximately solve the
separation problem in polynomial time for every ε> 0. The following theorem provides a strong tool for
approximating the payoff of the game in an NE for a broad set of dueling games.

Theorem 8. Let B be a bilinear dueling game ranging over [0, 1]n(A) × [0, 1]n(B) (i.e., SA ⊂ [0, 1]n(A) and SB ⊂ [0, 1]n(B)) with
payoff matrix M and n � max{n(A),n(B)}. If we can solve the ε-separation problem in time f (ε,n), then we can find an
ε-solution of the LP in time 2(poly(n) · f (ε/β, n)), where β � max{1,∑i,j |Mi,j|}.
Proof. Suppose we solve LP 2 with the ellipsoid method using an ε/β-separating oracle instead of the exact oracle,
and let x̂ be the solution we find. First we show that there exists at least one feasible strategy x̂′ such that |x̂′ − x̂| ≤ ε.
Next, we will compare the minimum payoff of x̂′ with that of the MinMax strategies. Note that to determine
whether x̂ is within the set of feasible strategy points, we solve the following linear program (which is the same as
LP 5 from the proof of Lemma 9) and determine whether there is any violating constraint.

α0 +
∑
j
αjx̂j < 0 (13)

α0 +
∑
j
αjv̂j ≥ 0 ∀v̂ ∈ IA

Because the ε/β-separating oracle does not report any violating constrains for x̂, either there is no violating
constrain or the distance of x̂ from all violating hyperplanes is less than ε/β. Therefore, there exists a point x̂′ in
the set of feasible solution such that |x̂′ − x̂| ≤ ε/β ≤ ε.

Next, we compare the minimum payoff of strategy x̂′ with the minimum payoff of the MinMax strategies.
From the previous argument we have |x̂′ − x̂|< ε/β. Because β � ∑

i,j |Mi,j|, we have |(x̂Mŷ) − (x̂′Mŷ)|< |x̂′ − x̂| ·
β< ε for each strategy ŷ of the second player. Moreover, because every MinMax strategy is a potential solution
of the linear program and x̂ is the solution that maximizes the objective function, the minimum possible payoff
off x̂ is not less than the minimum possible payoff of the MinMax strategies. Thus, the difference between
the minimum possible payoff of x̂′ and that of the MinMax strategies is at most ε. Because we are using the
ellipsoid method, the number of times we call the ε-separation oracle is poly(n), hence the running time of the
algorithm is 2(poly(n) · f (ε/β, n)). □

Note that, by Theorem 8, if we can find an approximate solution of the separation problem in polynomial
time, then we can find an approximate solution of the LP in polynomial time as well. Because an approximate
solution may not necessarily be a feasible strategy point, it cannot be used to characterize the properties of the
MinMax strategies. However, we can approximate the payoff of the players in an NE by computing the
payoffs for the ε-solution of the LP.

6. General Lotto
In this section, we study the General Lotto game. An instance of the General Lotto game is defined by Γ(a, b, u),
where players A and B simultaneously define probability distributions of nonnegative integers X and Y,
respectively, such that E[X] � a and E[Y] � b. In this game, player A’s aim is to maximize hAΓ (X,Y) and player
B’s aim is to maximize hBΓ(X,Y) � −hAΓ (X,Y), where hAΓ (X,Y) is defined as Ei∼X,j∼Yu(i, j). The previous studies of

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS 1317

the General Lotto game considered a special case of the problem in which u(i, j) � sign(i − j).7 Here, we
generalize the payoff function to a bounded distance function and present an algorithm for finding a Nash
equilibrium of the General Lotto game in this case. Function u is a bounded distance function, if one can write
it as u(i, j) � fu(i − j) such that fu is a monotone function and reaches its maximum value at fu(tu), where
tu ∈ O(poly(a, b)).

We first define a new version of the General Lotto game, which is called the finite General Lotto game. We prove
a Nash equilibrium of the finite General Lotto game can be found in polynomial time. Then we reduce the
problem of finding a Nash equilibrium for the General Lotto game with bounded distance function to the
problem of finding a Nash equilibrium for the finite General Lotto game. This helps us to propose a polynomial-
time algorithm for finding a Nash equilibrium of the General Lotto game with bounded distance function.

6.1. Finite General Lotto
We define the finite General Lotto game Γ(a, b,u, S) to be an instance of the General Lotto game in which every
strategy of players is a distribution over a finite set of numbers S. Here, we leverage our general technique to
show the finite General Lotto game is a polynomially separable bilinear game and, as a consequence, it leads
to a polynomial-time algorithm to find a Nash equilibrium for this game.

Theorem 9. There exists an algorithm that finds a Nash equilibrium of the finite General Lotto game Γ(a, b,u,S) in time
O(poly(|S|)).
Proof. First we map each strategy X to a point x̂ � 〈x̂1, x̂2, . . . , x̂|S|〉, where x̂i denotes Pr(X � Si). Without loss of
generality we assume the elements of S are sorted in strictly ascending order (i.e., for each 1 ≤ i< j ≤ |S|, Si <Sj).
Now the utility of player A when A plays a strategy corresponding to x̂ and B plays a strategy corresponding to ŷ
is obtained by the following linear function:

hAΓ (x̂, ŷ) �
∑|S|
i�1

∑i−1
j�1

x̂ŷu(i, j) −∑|S|
i�1

∑|S|
j�i+1

x̂ŷu(i, j).

Therefore the game is bilinear. Now we prove the game is polynomially separable.
Given a real number r and a vector v, we provide a polynomial-time algorithm that determines whether

there exists a strategy point x̂ such that r + v · x̂ ≥ 0. We design the following feasibility program for this
problem with |S| variables x̂1 to x̂|S| and three constraints.

∑|S|
i�1

x̂i � 1 (14)

∑|S|
i�1

x̂iSi � a (15)

r + v · x̂ ≥ 0 (16)

Constraints 14 and 15 force the variables to represent a valid strategy point (i.e., the probabilities sum to 1 and
the expectation equals a). Thus every point x̂ is a valid strategy point if and only if it satisfies constraints (14)
and (15). On the other hand, constraint (16) enforces the program to satisfy the given linear constraint of the
separation problem. Thus there exists a strategy point x̂ such that b + v · x̂ ≥ 0 if and only if there is a solution
for the feasibility LP. The feasibility of the program can be determined in polynomial time, hence the sep-
aration problem is polynomially tractable.

Therefore the finite General Lotto game is a polynomially separable bilinear game, and by Theorem 2, there
exists a polynomial-time algorithm that finds a Nash equilibrium of the finite General Lotto game. □

6.2. General Lotto with Bounded Distance Functions
Below is the formal definition of bounded distance functions.

Definition 2. Function u is a bounded distance function, if one can write it as u(i, j) � fu(i − j) such that fu is a
monotone function and reaches its maximum value at uM � fu(uT), where uT ∈ O(poly(a, b)). We call uT the
threshold of function u and uM the maximum of function u.8

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
1318 Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS

The following theorem shows the main result for the General Lotto game with bounded distance
funciton.

Theorem10. There is a polynomial-time algorithm that finds a Nash equilibrium of the General Lotto game Γ(a, b,u), where u
is a bounded distance function.

To prove this theorem, we require to first state several lemmas. The main proof idea is to show there is a bound
on the optimal strategies in the Nash equilibria of General Lotto games with bounded distance functions. We
show that for bounded distance function this bound actually exists and is polynomial in the size of input. Then
we use our results for the finite General Lotto problem to solve the General Lotto problem with bounded distance
function.

Next we state the necessary steps to prove Theorem 10. First, we define a specific class of strategies called
paired strategies and claim that for every player’s strategy there is a best-response strategy that is a paired
strategy. Using this observation, we can bound the set of optimal strategies.

Consider a probability distribution that only allows two possible outcomes; that is, there are only two elements
in S with nonzero probabilities. We call such distribution a paired strategy. Let Ti,j be a paired strategy that only
has nonzero probabilities at elements i and j. Also let Ta

i,j be such strategy with E[Ta
i,j] � a. Given a paired

strategy Ta
i,j, we have Pr(Ta

i,j � i) · i + Pr(Ta
i,j � j) · j � a; and because we know Pr(Ta

i,j � i) + Pr(Ta
i,j � j) � 1, these

probabilities can be computed as functions of i, j, and a. Some algebraic manipulation yields Pr(Ta
i,j � i) �

(a − j)/(i − j) and Pr(Ta
i,j � j) � (a − i)/(j − i). To shorten the notation let αa

i,j � Pr(Ta
i,j � i) and αa

j,i � Pr(Ta
i,j � j). In

the following structural lemma, we show that every distribution T over a finite set S can be constructed by a
set of paired strategies.

Lemma 14. For every distribution T over S with E[T] � a and t elements with nonzero probabilities, there exist an integer
m ≤ t m and paired strategies σ1, σ2, . . . , σm with corresponding probabilities β1, β2, . . . , βm such that T � ∑m

r�1 βrσr,
9 and

for all 1 ≤ i ≤ m we have βi ∈ [0, 1] and E[σi] � a.

Proof. We prove this claim by an induction on the number of elements with nonzero probabilities in T. If there is
only one element with nonzero probability in T (i.e., t � 1), then we have Pr(T � a) � 1. Thus T � Ta

0,a is a paired
strategy, and the claim holds by setting σ1 � Ta

0,a and β1 � 1.
Now assuming the claim holds for all 1 ≤ t′ < t, we prove the claim also holds for t. Let T be a probability

distribution with t nonzero probability elements. Because t ≥ 2, there should be some i< a with Pr(T � i)> 0
and some j> a with Pr(T � j)> 0. We choose the largest possible number 0< β ≤ 1 such that βαa

i,j ≤ Pr(T � i) and
βαa

j,i ≤ Pr(T � j). If β � 1, then Pr(T � i) + Pr(T � j) ≥ αa
i,j + αa

j,i � 1. This means T � Ta
i,j is a paired strategy, and

the claim holds by setting σ1 � Ta
i,j and β1 � 1. Otherwise, we can write T � (1 − β)T′ + βTa

i,j, where T′ �
(T − βTa

i,j)/(1 − β). Furthermore we have

E[T′] � E[T − βTa
i,j]

1 − β
� E[T] − βE[Ta

i,j]
1 − β

� a.

We select β such that at least one of the probabilities Pr(T′ � i) or Pr(T′ � j) becomes zero. Thus, compared with
T, the number of elements with nonzero probability in T′ is at least decreased by one, and by the induction
hypothesis we can write T′ � β′1σ′1 + β′2σ′2 + . . . + β′m′σ′m′ , where m′ ≤ t − 1. Let βi � (1 − β)β′i and σi � σ′i for 1 ≤
i ≤ m′ and βm′+1 � β and σm′+1 � Ta

i,j. Now we can write T � β1σ1 + β2σ2 + . . . + βm′+1σm′+1, where each σi is a
paired strategy and E(σi) � a. Furthermore, m � m′ + 1 ≤ t, and the proof is complete. Because t ≤ |S|, m is
polynomial in the size of input. Therefore paired strategies σ1, σ2, . . . , σm and their corresponding coefficients
β1, β2, . . . , βm can be computed in polynomial time. □

Lemma 15. For every strategy of player A in a finite General Lotto game there is a best-response strategy of player B that is a
paired strategy.

Proof. Consider finite General Lotto game Γ(a, b,u, S), strategy X of player A, and a best-response strategy Z of
player B. Because Z is a distribution on S, by using Lemma 14 we can write Z � ∑m

r�1 βrσr. Thus, we have
hBΓ(X,Z) � hBΓ(X,∑m

r�1 βrσr), and because of the linearity of expectation we can write hBΓ(X,Z) � ∑m
r�1 βrhBΓ(X, σr).

Because Z is a best-response strategy, we have
∀1 ≤ r ≤ m, hBΓ(X, σr) � hBΓ(X,Z). (17)

This means paired strategy σr, for each 1 ≤ r ≤ m, is a best-response strategy of player B. □

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS 1319

In the following lemmas, using the structural property of the best-response strategies, we show some
bounds for each player’s optimal strategies.

Lemma 16. For any strategy X with E[X] � c and any integer j, we have
∑j

i�0 Pr(X � i) ≥ 1 − c
j+1.

Proof. Because
∑+∞

i�0 iPr(X � i) � c, we have (j + 1)∑+∞
i�j+1 Pr(X � i) ≤ c. This implies

∑j

i�0
Pr(X � i) � 1 − ∑+∞

i�j+1
Pr(X � i) ≥ 1 − c

j + 1
. □

Lemma 17. Consider Nash equilibrium (X,Y) of General Lotto game Γ(a, b,u), where u is a bounded distance function with
threshold uT. We have

∑a−1
i�0 Pr[Y � i] ≤ uT

uT+1.

Proof. Let X′ be a pair distribution of player A that chooses a − 1 with probability p and chooses a + uT − 1 with
probability 1 − p. Thus p � (uT − 1)/uT. The payoff of playing strategy X′ against Y is

hAΓ (X′,Y) � ∑+∞
i�0

Pr(Y � i)[pu(a − 1, i) + (1 − p)u(a + uT − 1, i)]. (18)

Note that by the definition of u, u(i, j) ≥ 0 if and only if i − j ≥ 0 and u(i, j) ≤ 0 if and only if i − j ≤ 0. Fur-
thermore, if i − j ≥ uT, then u(i, j) � uM, and if i − j ≤ −uT, then u(i, j) � −uM. Therefore,

∑a−1
i�0

Pr(Y � i)pu(a − 1, i) ≥ 0

∑a−1
i�0

Pr(Y � i)(1 − p)u(a + uT − 1, i) ≥ (1 − p)uM ∑a−1
i�0

Pr(Y � i)
∑+∞
i�a

Pr(Y � i)[pu(a − 1, i) + (1 − p)u(a + uT − 1, i)] ≥ −uM ∑+∞
i�a

Pr(Y � i).

(19)

Note that a ≤ b and (X,Y) is a Nash equilibrium, which means hAΓ (X,Y) ≤ 0. This implies hAΓ (X′,Y) ≤ 0. Thus, by
applying equality (18) and inequality (19) we have

0 ≥ hAΓ (X′,Y) ≥ (1 − p)uM ∑a−1
i�0

Pr(Y � i) − uM
∑+∞
i�a

Pr(Y � i),

which implies
∑+∞

i�0 Pr(Y � i) ≥ (2 − p)∑a−1
i�0 Pr(Y � i). Thus, ∑a−1

i�0 Pr(Y � i) ≤ 1/(2 − p). By substituting (uT − 1)/uT
instead of p we can conclude

∑a−1
i�0 Pr(Y � i) ≤ uT/(uT + 1). □

In the following lemma, we provide an upper bound for the maximum variable with nonzero probability of
a player’s strategy in the equilibrium.

Lemma 18. Consider a Nash equilibrium (X,Y) of General Lotto game Γ(a, b,u), where u is a bounded distance function with
threshold uT. If û � (4buT + 4b + uT)(2uT + 2), then we have Pr(Y> û + uT) � 0 and Pr(X> û) � 0.

Proof. First, we prove for any integer z> û, Pr(X � z) � 0. The proof is by contradiction. Let z> û be an integer
with nonzero probability in X. Thus there is an integer x< a with nonzero probability in X. Consider the pair
distribution Ta

x,z. We define another pair distribution Ta
x,y, where y � 4buT + 4b + uT.

Consider strategy Xε � X − εTa
x,z + εTa

x,y. Note that (X,Y) is a Nash equilibrium of the game. This means
strategy X is a best response of player A to strategy Y of player B, which implies hAΓ (X,Y) ≥ hAΓ (Xε,Y). On the
other hand, because of the linearity of expectation we can write

hAΓ (Xε,Y) � hAΓ (X,Y) − εhAΓ (Ta
x,z,Y) + εhAΓ (Ta

x,y,Y).

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
1320 Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS

Therefore, we conclude w � hAΓ (Ta
x,z,Y) − hAΓ (Ta

x,y,Y) ≥ 0. Let p � αa
z,x and q � αa

y,x. We have

w � ∑+∞
i�0

Pr(Y � i)[(1 − p)u(x, i) + pu(z, i)] −∑+∞
i�0

Pr(Y � i)[(1 − q)u(x, i) + qu(y, i)] ≥ 0.

We write w as w � w1 + w2 − w3 − w4 + w5, where

w1 �
∑x
i�0

Pr(Y � i)[[(1 − p)u(x, i) + pu(z, i)] − [(1 − q)u(x, i) + qu(y, i)]],

w2 �
∑+∞
i�x+1

Pr(Y � i)[(1 − p)u(x, i) − (1 − q)u(x, i)],

w3 �
∑y−uT−1
i�x+1

Pr(Y � i)qu(y, i),

w4 �
∑+∞

i�y−uT
Pr(Y � i)qu(y, i),

w5 �
∑+∞
i�x+1

Pr(Y � i)pu(z, i).

Because 1 − p ≥ 1 − q and u(z, i) � u(y, i) � uM for all i ≤ x, we can conclude w1 ≤ 0. For all i> x, we have
u(x, i) ≤ 0, and we also know 1 − p ≥ 1 − q. These mean w2 ≤ 0. Because for all i ≤ y − uT we have u(y, i) � uM,
we conclude

w3 � quM
∑y−uT−1
i�x+1

Pr(Y � i). (20)

Moreover, for any arbitrary integers i and j, we have −uM ≤ u(i, j) ≤ uM. Thus,

−w4 ≤ quM
∑+∞

i�y−uT
Pr(Y � i) (21)

w5 ≤ puM
∑+∞
i�x+1

Pr(Y � i). (22)

Therefore, by knowing w ≥ 0, w1 ≤ 0, w2 ≤ 0, and considering inequalities (20), (21), and (22), we conclude

uM −q ∑y−uT−1
i�x+1

Pr(Y � i) + q
∑+∞

i�y−uT
Pr(Y � i) + p

∑+∞
i�x+1

Pr(Y � i)
()

≥ w ≥ 0. (23)

From the definition of y we have y − uT − 1 � 4buT + 4b − 1 and by Lemma 16,
∑y−uT−1

i�0 Pr(Y� i) ≥ 1−b/(4buT +
4b) � (4uT +3)/(4uT +4). Note that x<a, which means

∑x
i�0 Pr(Y� i) ≤∑a−1

i�0 Pr(Y� i). On the other hand, Lemma 17

states that
∑a−1

i�0 Pr(Y� i) ≤uT/(uT +1) holds. Hence we can conclude
∑x

i�0 Pr(Y� i) ≤ uT/(uT +1). Therefore
∑y−uT−1
i�x+1

Pr(Y � i) � ∑y−uT−1
i�0

Pr(Y � i) −∑x
i�0

Pr(Y � i) ≥ 3
4uT + 4

(24)

and

∑+∞
i�y−uT

Pr(Y � i) � 1 − ∑y−uT−1
i�0

Pr(Y � i) ≤ 1
4uT + 4

. (25)

By inequalities (23), (24), (25) and
∑+∞

i�x+1 Pr(Y � i) ≤ 1, we have

−q 3
4uT + 4

+ q
1

4uT + 4
+ p ≥ 0, (26)

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS 1321

which implies q/p ≤ 2uT + 2. Recalling p � αa
z,x � (a − x)/(z − x), q � αa

y,x � (a − x)/(y − x), and z> y, we can
bound z/y as follows: z/y ≤ (z − x)/(y − x) � q/p ≤ 2uT + 2. Therefore z ≤ y(2uT + 2) � û, which is a contra-
diction. Knowing that player A put zero probability on every number z> û and considering the definition of
bounded distance function u, player B will put zero probability of every number greater than û + uT in any
Nash equilibrium. □

Theorem 10 follows after Theorem 9 and Lemma 18. Below is the formal proof of Theorem 10.

Proof of Theorem 10. Let ū � (4buT + 4b + uT)(2uT + 2) + uT. Lemma 18 shows there is a bound on the optimal
strategies in a Nash equilibrium.More precisely, Pr(Y> ū) � 0, where Y is a strategy of playerA or B. Thus, General
Lotto game Γ(a, b,u) is equivalent to finite General Lotto game Γ(a, b, f ,S), where S � {1, 2, . . . , ū}. By Theorem 9, a
polynomial-time algorithm finds a Nash equilibrium of the game. □

7. Separation Oracles
In this section, we describe, in precise detail, the separating oracles used by the ellipsoid method to solve our
represented linear programs. Consider we are given a sequence c0, c1, . . . , ck(m+1), where k is the number of
battlefields and m is the number of troops for a player. We first present an algorithm that finds a pure strategy
x � (x1, x2, . . . , xk) ∈ - such that

∑k
i�1 xi � m, and x̂ � &(x) minimizes the expression

c0 +
∑k(m+1)

i�1
cix̂i. (27)

We will then leverage this algorithm and design polynomial-time algorithms for the hyperplane separating
oracle and best-response separating oracle. The following lemma shows that Algorithm 1 (FINDBESTPURE) finds
the minimizer of expression (27).
Algorithm 1 (FINDBESTPURE)

input: m, k, c0, c1, c2, . . . , ck(m+1)
1: for j ← 1 to m do
2: d[0, j] ← c0
3: end for
4: for i ← 1 to k do
5: for t ← 0 to m do
6: for j ← 0 to t do
7: if d[i − 1, t − j] + c(i−1)(m+1)+j+1 < d[i, t] then
8: d[i, t] ← d[i − 1, t − j] + c(i−1)(m+1)+j+1
9: r[i, t] ← j

10: end if
11: end for
12: end for
13: end for
14: rem ← m
15: for i ← k downto 1 do
16: xi ← r[i, rem]
17: rem ← rem − r[i, rem]
18: end for
19: return x � (x1, x2, . . . , xk)

Lemma 19. Given two integers m and k and a sequence c0, c1, . . . , ck(m+1), algorithm FINDBESTPURE correctly finds an optimal
pure strategy x � (x1, x2, . . . , xk), where ∑k

i�1 xi � m, x̂ � &(x) and x̂ minimizes c0 +∑k(m+1)
i�1 cix̂i.

Proof. In algorithm FINDBESTPURE, using a dynamic programming approach, we define d[i, t] to be the minimum
possible value of c0 +∑i(t+1)

i′�1 ci′ x̂i′ , where
∑i

i′�1 xi′ � t. Hence, d[k,m] denotes the minimum possible value of
c0 +∑k(m+1)

i�1 cix̂i. Now,we show that algorithm FINDBESTPURE correctly computes d[i, t] for all 0 ≤ i ≤ k and 0 ≤ t ≤ m.
Obviously d[0, j] is equal to c0. For an arbitrary i> 0 and t, the optimal strategy x puts t′ ∈ {0, 1, . . . , t} units in the ith
battlefield, and the applied cost in Equation (27) is equal to c(i−1)(m+1)+t′+1. Thus,

d[i, t] � min
0≤t′≤t{d[i − 1, t − t′] + c(i−1)(m+1)+t′+1}.

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
1322 Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS

To compute the optimal pure strategy x � (x1, x2, . . . , xk) we also keep a value

r[i, t] � argmin0≤t′≤t{d[i − 1, t − t′] + c(i−1)(m+1)+t′+1},
which determines the number of units the optimal strategy should put in the ith battlefield to minimize
c0 +∑i(t+1)

i′�1 ci′ x̂i′ . Assuming we have correctly computed xi+1, . . . , xk, in line 16, algorithm FINDBESTPURE correctly
computes xi, which is equal to r[i,m −∑k

j�i+1 xj]. Because xk � r[k,m] we can conclude algorithm FINDBESTPURE

correctly computes the optimal strategy x � (x1, x2, . . . , xk). □

7.1. Hyperplane Separating Oracle
Algorithm 2 (HYPERPLANEORACLE) gets a hyperplane as input and either finds a point in IA that violates con-
straints in LP 5 or reports that all points in IA are satisfying all constraints in LP 5. We suppose that the input
hyperplane is described by the equation

α0 + α1x̂1 + . . . + αk(a+1)x̂k(a+1) � 0, (28)

and we want to find a point x̂ ∈ IA that violates the constraint

α0 +
∑n
i�1

αix̂i ≥ 0. (29)

This problem is equivalent to finding a point x̂min ∈ IA that minimizes equation α0+∑n
i�1αix̂i. If α0+∑n

i�1αix̂min
i ≥ 0,

it means all points in IA are satisfying the constraints of LP 5, and otherwise x̂min is a point that violates
constraint (6). Because points in IA are equivalent to pure strategies of player A, we can use algorithm
FINDBESTPURE to find x̂min. Thus we can conclude algorithm HYPERPLANEORACLE correctly finds a violated
constraint or reports (by returning “pass”) that the hyperplane satisfies constraints 6 of LP 5.

Algorithm 2 (HYPERPLANEORACLE)
input: a, k, α0, α1, . . . , αk(a+1)
1: xmin ← FindBestPure(a, k, α0, α1, . . . , αk(a+1))
2: x̂min ← &A(xmin)
3: if α0 +∑k(a+1)

i�1 αix̂min
i ≥ 0 then

4: return pass
5: else
6: return α0 +∑k(a+1)

i�1 αix̂min
i < 0

7: end if

7.2. Best-Response Separating Oracle
Algorithm 3 (BESTRESPORACLE) gets a pair (x̂,U) as input and decides whether there is a pure strategy y �
(y1, y2, . . . , yk) ∈ = such that for ŷ � &B(y), we have

∑k
i�1

∑a
ta�0

∑b
tb�0

x̂i,ta ŷi,tbu
A
i (ta, tb)<U. (30)

We can rewrite inequality (30) as follows:

∑k
i�1

∑b
tb�0

ŷi,tb
∑a
ta�0

x̂i,tau
A
i (ta, tb)<U.

Therefore, by letting ci,tb � ∑a
ta�0 x̂i,tau

A
i (ta, tb), this problem is equivalent to finding a point ŷmin ∈ IB that min-

imizes
∑k(b+1)

i′�1 ci′ ŷi′ . If
∑k(b+1)

i′�1 ci′ ŷmin
i′ <U, we have found a violating payoff constraint of LP 2, and if

∑k(b+1)
i′�1 ·

ci′ ŷmin
i′ ≥ U, pair (x̂,U) satisfies all the payoff constraints of LP 2. Thus, by Lemma 19 we conclude that al-

gorithm BESTRESPORACLE correctly finds a violating payoff constraint of LP 2 or reports that (x̂,U) satisfies all
the payoff constrains.

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS 1323

Algorithm 3. BESTRESPORACLE

input: a, b, k, U, x̂1, . . . , x̂k(a+1)
1: for i ← 1 to k do
2: for tb ← 0 to b do
3: c(i−1)(b+1)+tb+1 � ci,tb � ∑a

ta�0 x̂i,ta u
A
i (ta, tb)

4: end for
5: end for
6: ymin ← FindBestPure(b, k, c0, c1, c2, . . . , ck(b+1))
7: ŷmin ← &B(ymin)
8: if

∑k(b+1)
i�1 ciŷmin

i ≥ U then
9: return pass

10: else
11: return

∑k(b+1)
i�1 ciŷmin

i <U
12: end if

Acknowledgments
An earlier version of this paper was presented at an Association for the Advancement of Artificial Intelligence conference
(http://dl.acm.org/citation.cfm?id=3015869).

Endnotes
1 Or, equivalently, constant-sum games.
2 Amore appropriate name for equilibrium in zero-sumgamesmay be saddle-point equilibrium, but for the sake of consistencywith themajority of
Colonel Blotto literature we may use the term Nash equilibrium.
3 Independently and in parallel with an earlier version of this work, Xu et al. [49] implicitly used a similar idea to solve a class of Stackelberg
security games.
4 Note that if we were to relax this assumption and allow uAi (xi, yi) to not necessarily equal −uBi (xi, yi), then a special case of this game with two
battlefields can model an arbitrary two-person normal-form game, and thus finding a Nash Equilibrium would be PPAD-complete.
5 The same procedure finds an optimal strategy of player B.
6 Note that sign(w) is 1, −1, and 0 if w is positive, negative, and zero respectively.

7 sign(x) �
−1 x< 0
0 x � 0
1 x> 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
8 Note that the sign function is a special case of bounded distance functions.
9 This lemma claims that the strategy of a player in the finite General Lotto game can be written as a probability distribution over paired
strategies. Thus T � β1σ1 + β2σ2 + . . . + βmσm describes a strategy in which the paired strategy σi is played with probability βi.

References
[1] Ashlagi I, Krysta P, Tennenholtz M (2008) Social context games. Saberi A, ed. Internet and Network Economics: 6th Internat. Workshop, WINE

2010, Stanford CA, Decmeber 13–17 (Springer, New York), 675–683.
[2] Azar Y, Cohen E, Fiat A, Kaplan H, Racke H (2003) Optimal oblivious routing in polynomial time. Proc. 35th Annual ACM Symp. Theory

Comput. (ACM, New York), 383–388.
[3] Bell RM, Cover TM (1980) Competitive optimality of logarithmic investment. Math. Oper. Res. 5(2):161–166.
[4] Bellman R (1969) On Colonel Blotto and analogous games. SIAM Rev. 11(1):66–68.
[5] Blackett DW (1954) Some Blotto games. Naval Res. Logist. Quart. 1(1):55–60.
[6] Blackett DW (1958) Pure strategy solutions to blotto games. Naval Res. Logist. Quart. 5(2):107–109.
[7] Borel É (1921) La théorie du jeu et les équations intégrales à noyau symétrique. Comptes Rendus de l’Académie 173(13041308):97–100.
[8] Borel É (1953) The theory of play and integral equations with skew symmetric kernels. Econometrica 21(1):97–100.
[9] Brandt F, Fischer F, Harrenstein P, Shoham Y (2009) Ranking games. Artificial Intelligence 173(2):221–239.
[10] Charnes A (1953) Constrained games and linear programming. Proc. Natl. Acad. Sci. USA 39(7):639–641.
[11] Chen X, Deng X (2006) Settling the complexity of two-player Nash equilibrium. 47th Annual IEEE Symp. Foundations Comput. Sci. FOCS’06

(IEEE, New York), 261–272.
[12] Chen X, Deng X, Teng SH (2006) Computing nash equilibria: Approximation and smoothed complexity. 47th Annual IEEE Symp.

Foundations Comput. Sci. FOCS’06 (IEEE, New York), 603–612.
[13] Chowdhury SM, Kovenock D, Sheremeta RM (2013) An experimental investigation of Colonel Blotto games. Econom. Theory 52(3):1–29.
[14] Dantzig GB (1963) Linear Programming and Extensions (Princeton University Press, Princeton, NJ).
[15] Daskalakis C, Goldberg PW, Papadimitriou CH (2009) The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1):195–259.
[16] Dziubiński M (2011) Non-symmetric discrete general lotto games. Internat. J. Game Theory 42(4):801–833.
[17] Fréchet M (1953) Commentary on the three notes of Emile Borel. Econometrica 21(1):118–124.
[18] Fréchet M (1953) Emile Borel, initiator of the theory of psychological games and its application. Econometrica 21(1):95–96.

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
1324 Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS

http://dl.acm.org/citation.cfm?id=3015869

[19] Garg J, Jiang AX, Mehta R (2011) Bilinear games: Polynomial time algorithms for rank based subclasses. Saberi A, ed. Internet and Network
Economics: 6th Internat. Workshop, WINE 2010, Stanford CA, Decmeber 13–17 (Springer, New York), 399–407.

[20] Goldberg PW, Papadimitriou CH (2006) Reducibility among equilibrium problems. Proc. 38th Annual ACM Sympos. Theory Comput. (ACM,
New York), 61–70.

[21] Golman R, Page SE (2009) General Blotto: Games of allocative strategic mismatch. Public Choice 138(3-4):279–299.
[22] Grötschel M, Lovász L, Schrijver A (1981) The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2):

169–197.
[23] Grötschel M, Lovász L, Schrijver A (2012) Geometric Algorithms and Combinatorial Optimization, vol. 2 (Springer Science & Business Media,

New York).
[24] Hart S (2008) Discrete Colonel Blotto and General Lotto games. Internat. J. Game Theory 36(3–4):441–460.
[25] Immorlica N, Kalai AT, Lucier B, Moitra A, Postlewaite A, Tennenholtz M (2011) Dueling algorithms. Proc. 43rd Annual ACM Symp. Theory

Comput. (ACM, New York), 215–224.
[26] Jiang AX, Leyton-Brown K (2015) Polynomial-time computation of exact correlated equilibrium in compact games. Games Econom. Behav.

91(May):347–359.
[27] Khachiyan LG (1980) Polynomial algorithms in linear programming. USSR Comput. Math. Math. Phys. 20(1):53–72.
[28] Koller D, Megiddo N, Von Stengel B (1994) Fast algorithms for finding randomized strategies in game trees. Proc. 26th Annual ACM Symp.

Theory Comput. (ACM, New York), 750–759.
[29] Kontogiannis S, Spirakis P (2010) Exploiting concavity in bimatrix games: New polynomially tractable subclasses. Serna M, Shaltiel R,

Jansen K, Rolim J, eds. Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques (Springer, New York),
312–325.

[30] Kovenock D, Roberson B (2010) Conflicts with multiple battlefields. CESifo Working Paper Series 3165, CESifo Group Munich, Munich,
Germany.

[31] Kovenock D, Roberson B (2012) Coalitional Colonel Blotto games with application to the economics of alliances. J. Public Econom. Theory
14(4):653–676.

[32] Kvasov D (2007) Contests with limited resources. J. Econom. Theory 136(1):738–748.
[33] Laslier JF, Picard N (2002) Distributive politics and electoral competition. J. Econom. Theory 103(1):106–130.
[34] Letchford J, Conitzer V (2013) Solving security games on graphs viamarginal probabilities.Proc. 27th AAAI Conf. Artificial Intelligence (AAAI

Press, Palo Alto, CA), 591–597.
[35] Lipton RJ, Markakis E, Mehta A (2003) Playing large games using simple strategies. Proc. 4th ACM Conf. Electronic Commerce (ACM, New

York), 36–41.
[36] Merolla J, Munger M, Tofias M (2005) In play: A commentary on strategies in the 2004 us presidential election. Public Choice 123(1–2):19–37.
[37] Myerson RB (1993) Incentives to cultivate favored minorities under alternative electoral systems. Amer. Political Sci. Rev. 87(4):856–869.
[38] Nash J (1951) Non-cooperative games. Ann. Math. 54(2):286–295.
[39] Osborne MJ, Rubinstein A (1994) A Course in Game Theory (MIT Press, Cambridge, MA).
[40] Papadimitriou CH, Steiglitz K (1998) Combinatorial Optimization: Algorithms and Complexity (Courier Dover Publications, Mineola, NY).
[41] Roberson B (2006) The Colonel Blotto game. Econ. Theory 29(1):1–24.
[42] Rothvoss T (2014) Thematchingpolytope has exponential extension complexity.Proc. 46thAnnualACMSymp. TheoryComput. (ACM,NewYork),

263–272.
[43] Sahuguet N, Persico N (2006) Campaign spending regulation in a model of redistributive politics. J. Econom. Theory 28(1):95–124.
[44] Shubik M, Weber RJ (1981) Systems defense games: Colonel Blotto, command and control. Naval Res. Logist. Quart. 28(2):281–287.
[45] Sion M (1958) On general minimax theorems. Pacific J. Math. 8(1):171–176.
[46] Tukey JW (1949) A problem of strategy. Econometrica 17:73.
[47] Von Neumann J, Fréchet M (1953) Communication on the Borel notes. Econometrica 21(1):124–127.
[48] Weinstein J (2012) Two notes on the Blotto game. BE J. Theoret. Econom. 12(1):1–13.
[49] Xu H, Fang F, Jiang AX, Conitzer V, Dughmi S, Tambe M (2014) Solving zero-sum security games in discretized spatio-temporal domains.

Proc. 28th Conf. Artificial Intelligence (AAAI, Palo Alto, CA), 1500–1506.

Ahmadinejad et al.: From Duals to Battlefields: Computing Equilibria of Blotto
Mathematics of Operations Research, 2019, vol. 44, no. 4, pp. 1304–1325, © 2019 INFORMS 1325

	From Duels to Battlefields: Computing Equilibria of Blotto and Other Games
	Introduction
	Results and Techniques
	Colonel Blotto
	Application to Dueling Games
	Approximating the Payoff of the Game
	General Lotto
	Separation Oracles

