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Abstract

Many interesting phenomena (electoral competition, R&D races, lobbying) are instances of multiple si-
multaneous contests with unconditional commitment of limited resources. Specifically, the following game
is analyzed. Two players compete in a number of simultaneous contests. The players have limited resources
(budgets) and must decide how to allocate these to the different contests. In each contest the player who
expends more resources than his adversary wins a corresponding prize. Mixed-strategy equilibria are char-
acterized in the case of identical values and budgets and the connections with the classical Blotto game are
analyzed.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Many important economic, social, political, and biological phenomena are instances of multiple
simultaneous contests with unconditional (on winning) commitment of limited resources.

As a first example, consider the following model of electoral competition: two candidates
for an office try to woo voters in different groups—identified by ideology, demographics, or
location—by targeted campaign spending on, say, media coverage. Voters are influenced only by
the spending targeted at them and the candidate who spends more on a particular group wins the
votes from that group. Each candidate’s total spending across groups is, however, subject to an
overall budget constraint. Candidates seek to maximize their expected vote share. What sorts of
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spending patterns will emerge in equilibrium? Will electoral competition create inequality
among an otherwise homogeneous electorate? Will candidates appeal to all voters equally
or will they cultivate favored minorities, leading to a prevalence of special interest
politics?

A second example is that of two firms engaged in R&D competition. Each firm has to decide
how to allocate a given budget to a number of research projects, say developing new drugs.
The commitment of resources to projects is not conditional on winning the prize—expenditure
on R&D is irreversible. If the expenditure of the first firm on the development of a drug X is
greater than that of the other firm, then the first firm is more likely to patent drug X before the
other firm. The overall payoff of the firm is the total value of patents it receives less its total
research expenditure. How should the firms allocate their budgets to the projects? Will the firms
concentrate their expenditure only on a few projects or will they try to invest in every potential
patent?

Other notable examples of structurally similar situations include multiple-object simultaneous
auctions with budget-constrained players, rent-seeking and lobbying, arms races and escalation
conflicts.

This paper seeks to provide a theoretical framework, along with the methods of constructing
equilibria, suitable for the analysis of a wide variety of economic situations. Specifically, the
following class of games is analyzed. Two players compete in a number of simultaneous contests
or races. The players have limited resources (budgets) and must decide how to allocate these
to the different races. In each race the player who allocates more resources than his adversary
wins a corresponding prize of known value. Resources devoted by a player to a race are not
recoverable and constitute sunk costs. The key strategic problem the players face is that an increase
in resources devoted to one race in an attempt to win leaves fewer resources available for other
races. Thus, the presence of budget restrictions creates an indirect ‘substitutability’of prizes which
precludes the existence of pure strategy equilibria. The paper fully characterizes mixed strategy
equilibria and studies their properties in the case of identical values of the objects and identical
budgets.

1.1. Related literature

A zero-sum version of the game studied here is one of the first analyzed in game theory. Its
venerable history dates back to Borel [3,4] who posed the problem in 1921 and solved it in 1938 by
characterizing a mixed strategy equilibrium. Discrete versions of Borel’s game, known as Colonel
Blotto games [9, p. 455], were used in the 1950s to analyze armed conflicts and battlefield tactics.
It is, however, difficult to assess in full the results of this early development. Some contributions
survived only as abstracts [15], others as classified military memoranda. 1 Standard Colonel
Blotto games involve a finite (discrete) set of pure strategies, usually a subset of the set of natural
numbers. In the simplest version, Colonel Blotto has a number of battalions at his disposal and
needs to decide how to distribute them across N battlefields. Blotto’s adversary simultaneously
makes the same decision. If Blotto outnumbers his enemy at a battlefield he receives payoff v,
otherwise his payoff is −v. The payoff of the game as a whole is the sum of payoffs across all
battlefields.

1 The latter category is mentioned by Blackett [2] who “exposes as incorrect various solutions to Blotto games which
appear in the classified literature.”
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It is important to emphasize that in these early models players care only about winning and
losing but not about the resources (money, battalions, etc.) they expend in doing so, making the
underlying game zero- or constant-sum. However, this assumption may be incongruous with many
real-life situations. Candidates may take into account the total campaign spending—raising funds
requires effort. Companies definitely do care about minimizing their overall R&D expenditures.
And even generals occasionally show concern over casualties.

In an important contribution, Myerson [10] uses a similar zero-sum game to analyze inequality
in election campaign spending, focusing on the case with a continuum of homogeneous voters
(equivalent in this model to a continuum of identical objects). The infinite-population assumption
allows him to treat promises to individual voters as independent and, as a result, to relax budget
restrictions: budget constraints must be satisfied only on average. Laslier and Picard [7], building
on the work by Borel andVille and Gross andWagner [6], analyze two-candidate majority elections
with exact budget constraints. They also provide an insightful review of the results related to the
construction of equilibrium mixed strategies for two-person zero-sum games with convex set of
pure strategies.

While the work referred to above concerns zero- or constant-sum games, there exists some
literature on all-pay actions with budget-constrained players [5,8], which is naturally in a non-
zero-sum setting. This literature, however, is confined to the one-object case. Multiple-object
auctions with budget-constrained bidders are studied by Benoît and Krishna [1], but only when
auctions are conducted sequentially. Szentes and Rosenthal [13,14] study the simultaneous first-
price sealed-bid auctions when objects are endowed with specific synergies. Even though they
impose no budget restrictions, the presence of extreme complementarities precludes the existence
of pure strategy equilibria and results in the structure of mixed strategy equilibria somewhat
similar to the one of Blotto game.

To summarize, the early literature focuses on the role of budget restrictions but in a zero-sum
framework. The all-pay auctions and R&D literature takes into account the costs of competing, but
does so, mostly, for one object. In contrast, this paper studies the model that incorporates all these
essential elements: multiplicity of objects, simultaneity of contests, unconditional commitment
of resources, and, last but not the least, budget restrictions.

2. The model

There are two players with budgets B1 = B2 = B and N > 1 indivisible objects indexed
by j ∈ {1, . . . , N}. The value of object j is vj and is common to either player. All the objects
are identical, vj = v for every j. There are no synergies among the objects, the value of any
bundle of objects is the sum of the values of individual objects. The game is the one of complete
information, all values and budgets are commonly known to all players.

The objects are sold simultaneously by means of (first-price) all-pay auctions. Player i submits
a nonnegative vector of bids bi = (bi1, . . . , biN ), where bij is a bid by player i for object j. Player
i wins object j if his bid for that object, bij, exceeds the bid of the other player, b−ij , and always
pays his bid, so the total payment of player i is

∑
j bij. Players are budget constrained, the sum

of player’s bids cannot exceed that player’s budget Bi . 2

2 It does not matter for the all-pay auction whether the budget constraint is imposed ex ante or ex post because the
sum of the bids always equals the actual amount paid. This distinction may be important for the analysis of other auction
formats, however.
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Formally, a pure strategy of player i is an N-dimensional vector bi . The set Bi of all pure
strategies of player i is non-empty, compact, convex subset of finite-dimensional Euclidean space

Bi =
⎧⎨
⎩bi ∈ RN+ :

∑
j

bij �B

⎫⎬
⎭ .

The player i’s payoff function �i : Bi × B−i → R is

�i (bi , b−i ) =
∑

j :bij �b−ij

vj −
∑
j

bij.

That is, players try to maximize the total value of objects they win less the resources spend
on bidding. Note that the payoff function of the corresponding constant-sum (Blotto) game is
�i (bi , b−i ) = ∑

j :bij �b−ij
vj .

Given a strategy profile b = (bi , b−i ) payoff function �i is continuous in player i’s own strategy
except when the bids of both players for some object coincide, that is, when there exists j such
that bij = b−ij . Such situations are referred to as ties. The specifics of the way in which ties are
resolved do not affect the results when players have identical budgets, because in such case the
equilibrium distributions are atomless and ties occur with probability zero. It is assumed, without
loss of generality, that in case of a tie the object is randomly allocated to one of the players and
both players have an equal probability of getting the object.

A mixed strategy of player i is an N-variate (joint) distribution function Gi : Bi → [0, 1].
The corresponding N-variate (probability) density function is gi : Bi → R. The one-dimensional
marginal distribution functions, Gij : [0, Bi] → [0, 1], (or, briefly, margins) of Gi are defined by

Gij(x) =
∫ x

0

(∫ Bi

0
· · ·
∫ Bi

0
gi(z) dz−j

)
dzj .

The function Gij is interpreted as the distribution function of bids of player i for object j. The
corresponding marginal density functions are gij : [0, Bi] → R.

3. Analysis

The analysis proceeds as follows: first, Proposition 1 establishes that no pure strategy equilib-
rium exists if more than one object is for sale. Next, Proposition 2 states necessary and sufficient
conditions for the existence of mixed strategy equilibria in terms of margins. It asserts that the
equilibrium marginal distributions are unique, symmetric with respect to objects, and have con-
nected supports. The equilibrium analysis does not, however, provide the full description of the
joint distribution, that is, of the equilibrium strategy per se. So, as a next step, several methods of
constructing a multivariate distribution with given margins are discussed. Finally, Proposition 3
provides a new approach to generating joint distributions (mixed strategies) with given margins
when more than three objects are for sale.

3.1. Pure strategy equilibrium: nonexistence

The proof of nonexistence is standard, so only the intuitive argument is provided. On the one
hand, the players cannot bid different amounts on the same object because it is always profitable
for a winning player to decrease the bid, reducing the amount paid. On the other hand, being tied
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on all objects also cannot be the equilibrium strategy; a slight increase in the bid on one object
leads to winning that object for sure instead of sharing it. The presence of the budget constraints,
though, asks for a more careful argument. If, when tied, a player uses up all his budget then such
an increase no matter how small leads to the loss of some other object. Still, a profitable deviation
exists: outbid the N − 1 smallest bids of the opponent and place a zero bid on the remaining
object. Such a strategy allows a player to win all the prizes except one while spending strictly less
than before.

Proposition 1. No pure strategy equilibrium exists if more than one object is for sale.

3.2. Mixed strategy equilibria: marginal distributions

The first step in constructing an equilibrium is the analysis of the marginal distributions asso-
ciated with the joint distribution (mixed strategy). Because there are no synergies among objects,
the payoff of player i can be written as

∑
j

v Pr[bij �b−ij ] −
∑
j

bij =
∑
j

[vG−ij (bij) − bij].

Note that the player’s payoff depends only on the marginal distributions G−ij of the other player’s
mixed strategy G−i . The next Proposition characterizes mixed strategy equilibria in terms of their
margins.

Proposition 2. Let m = min{v, 2B
N

} and N > 2. A joint distribution function Gi : Bi → [0, 1]
constitutes an equilibrium strategy if and only if all its one-dimensional marginal distribution
functions Gij are uniform on [0, m]. All equilibria are payoff equivalent and the payoff to either
player is N

2 (v − m).

Proof. See Appendix. �

It is instructive to compare mixed strategy equilibria described in Proposition 2 with mixed
strategy equilibria of the corresponding zero-sum game [4]. The uniformity of the margins fur-
nishes sufficient condition for a joint distribution to be an equilibrium mixed strategy both in zero-
and non-zero-sum games. In addition, the uniformity of the margins is also necessary condition for
an equilibrium in non-zero-sum games. This result hinges on the connectedness of the (closures
of) supports of the margins, costly bidding precludes the existence of gaps in the supports. In
zero-sum case, it is known [7] that if the supports are connected then the uniformity also becomes
necessary. However, in Blotto game the connectedness itself remains very plausible but unproven
conjecture.

Costly bidding also leads to a different upper bound on the magnitude of bids. In zero-sum games
a bid for any object is, with probability one, in [0, 2B

N
] while in non-zero-sum game a player’s bid

for any object cannot exceed that player’s valuation of the object and is, consequently, in [0, m].
Intuition can be formulated in terms of the opportunity cost of money. In the zero-sum game, the
opportunity cost of money is calculated comparing the different objects and the bidding of the
other player. With costly bidding, the opportunity cost of money has to be compared, in addition,
with the constant value of not using it in any contest.
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3.3. Mixed strategy equilibria: joint distributions

The characterization of the equilibrium strategy in terms of marginal distributions is not an
exhaustive one. Several interesting and important properties—such as the uniqueness and the
correlation—cannot be studied without the knowledge of the joint distribution.

The problem of constructing a multivariate distribution function from its one-dimensional
margins given support restrictions is an example of ill-posed inverse problem. It does not admit
the complete characterization; it is not possible, in general, to determine whether a particular
problem has the unique solution or any at all. In the game here, restrictions on the support of
the joint distribution emerge because the players are budget constrained and are allowed to use
strategies only in the set Bi , which does not include all of C(N) = [0, m]N (or, in the zero-sum
case, all of C0(N) = [0, 2B

N
]N ). Were it otherwise, it would be possible to construct a joint

distribution with any given correlation properties.
The case of only two objects for sale, N = 2, admits the complete characterization when

budgets are small, B �v. The unique 3 bivariate distribution function with uniform margins and
the support included in Bi is

G2(x) = 1
B

max{0, x1 + x2 − B}.
It places positive uniform weight only on the budget line x1 + x2 = B and the bids for two
objects have perfect negative correlation. The solution is no longer unique when budgets are
large, v < B �2v. Moreover, it is possible to have zero or positive correlation between bids even
for budgets that are strictly smaller than 2v. Fig. 1 depicts three solutions for B = 3

2v, the density
is uniform on the heavy lines and is zero everywhere else. Note that none of these solutions can
be transformed to produce a solution of the zero-sum game.

These simple examples illustrate the differences and similarities between zero- and non-zero-
sum cases implied by the different caps on the bids in games with arbitrary N. The support of
any zero-sum solution is included in the set Bi ∩ C0(N), while the support of any non-zero-
sum solutions is included in the set Bi ∩ C(N). The sets C0(N) and C(N) are the same when the
budgets are relatively small, B � Nv

2 , and in such case, the solutions to both games coincide. When,
however, the budgets are relatively large, Nv

2 < B �Nv, there is more flexibility in constructing
joint distributions in non-zero-sum case, as examples in Fig. 1 demonstrate. Intuitively, as the
budget increases it becomes less ‘restrictive’ in non-zero-sum games and ‘substitutability’ among
the objects diminishes, while in zero-sum games the budget is always binding. A player with
the larger budget is partially able to treat the objects as independent. Consider for example the
equilibrium strategy illustrated in Fig. 1(c). In this equilibrium a player makes, with the positive
probability, arbitrarily small bids on both objects, effectively not spending any resources at all.

If a zero-sum solution has connected supports of all its one-dimensional margins then it is
always possible to transform it into a non-zero-sum solution by scaling it by Nm

2B
. The resulting

joint distribution always satisfies the budget constraint because the budgets are the same in both
games and the distribution is scaled down.

Lemma 1. Any equilibrium of a zero-sum game, such that the supports of all its one-dimensional
margins are connected, is also an equilibrium of a non-zero sum game given an appropriate affine
transformation (scaling).

3 The proof of uniqueness can be found in [11].
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Fig. 1. (a) Corr = −0.5; (b) Corr = 0.5; and (c) Corr = 0.75.

On the other hand, only some non-zero-sum solutions can be transformed into zero-sum solu-
tions. The non-zero-sum solutions need to be scaled up because m� 2B

N
, so the scaling coefficient

is 2B
Nm

. After the scaling the support of a solution must be included in Bi ∩C0(N), thus the support
of the non-zero-sum solution must be included in the inverse image (under the scaling) of the

budget set. Note that this condition is vacuously satisfied when budgets are small, m = 2B
N

.

Lemma 2. Any equilibrium of a non-zero-sum game with the support included in the set{∑
i

xi �
Nm

2
; xi �0 for i = 1, . . . , N

}

is also an equilibrium of a zero-sum game given the appropriate affine transformation (scaling).

For zero-sum game and N = 3, two equilibrium joint distributions, called the disk and hexag-
onal solutions, were constructed independently by Borel [4] and by Gross and Wagner [6]. Both
solutions have uniform margins with connected supports and involve randomization over the set

Hex(B) =
{

3∑
i=1

xi = B; 0�xi �
2B

3
for i = 1, 2, 3

}
.

Thus, (by Lemma 1) these solutions can also be scaled to produce non-zero-sum solutions. When
budgets are large, 3

2v < B �3v, additional families of solutions, which cannot be obtained from
zero-sum solutions by scaling, can be constructed using ideas similar to those in Fig. 1.

The Borel construction generalizes to give a solution for the N-object game [6], the support of
which is a two-dimensional set, regardless of N. As a result, bids for different objects are heavily
correlated and the knowledge of any two bids allows to calculate the rest of the strategy. The next
Proposition describes a novel way of constructing joint distributions with uniform margins in the
presence of support restrictions. In contrast to generalized disk solution it produces a variety of
solutions with different levels of correlation.

Given a game � with N > 3 objects and budgets B consider the two auxiliary games: the game
�L with L > 1 objects and budgets BL = L

N
B and the game �N−L with N − L > 1 objects

and budgets BN−L = N−L
N

B. Suppose GL is the equilibrium distribution function of game �L

and GN−L is the equilibrium distribution function of game �N−L. Define distribution function
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G = GL × GN−L as follows: a player bids on the group of L objects according to GL and bids
on the rest of objects (N − L) according to GN−L.

Proposition 3 (Decomposition). Suppose N > 3 and N − 1 > L > 1. If GL and GN−L are
equilibrium distributions of �L and �N−L then G = GL × GN−L is an equilibrium distribution
function of �.

Proof. It suffices to verify that the joint distribution function G has uniform one-dimensional
margins on [0, m] where m = max{v, 2B

N
}. Since GL is the equilibrium distribution function

of the game �L then, according to Proposition 2, GL has uniform margins on [0, mL] where

mL = max{v, 2BL

L
}. By construction, 2BL

L
= 2B

N
and, thus, mL = m. By the same token, GN−L

also has uniform margins on [0, m]. �

The number of solutions given by the Proposition 3 grows very quickly and already for N = 10
equals 12,288. 4

The first immediate consequence of the Proposition 3 is that a solution for the game with N > 3
objects may be constructed from the solutions to the games with N = 2 and N = 3 objects. In
other words, equilibria of games G2 and G3 are the smallest ‘building blocks’ needed to generate
mixed strategy equilibria in games with arbitrary N.

Corollary 1. For any N > 1 there exists an equilibrium joint distribution G constructed using
only G2’s and G3’s.

The correlation properties of the multivariate distribution G when N > 3 are addressed by the
next corollary.

Corollary 2. For any N > 3 there exists an equilibrium joint distribution G such that the bids
for �N

2 � objects are not correlated. Moreover, the bids for at most three objects are correlated.

Intuitively one might think that the bids on different objects should be negatively correlated,
bidding more on one object leaves fewer resources available for the others. Corollary 2 reveals
that such intuition is somewhat flawed. Already for N = 4 there exist equilibria in which bids for
some pairs of objects are independent.

The results above can also be applied to the analysis of inequality in the models of electoral
competition [10,7]. The levels of inequality (as measured, for example, by Gini index) depend on
the correlation properties of the joint distribution and differ for different solutions. They range
from egalitarian ones, when the joint distribution is constructed using only G2’s, to very unequal
ones, when the heavily correlated generalized disk solution is used. No unambiguous answer
exists unless some restrictions are imposed on the equilibrium joint distribution.

It is also worth mentioning that in two Borel solutions for N = 3 and their extensions for N > 3
the supports of the joint distributions are connected sets and the joint distribution functions itself are
absolutely continuous. These properties, however, are just the artifacts of the particular solutions
and are not shared by all equilibrium mixed strategies! The connectedness of the support of the

4 The total number of different solutions is 2N(p(N) − p(N − 1)), where p(N) is the partition function: the number
of ways of writing the integer N as a sum of positive integers.
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Fig. 2. (a) Fractal solution of dimension ln 6
ln 3 ; (b) Fractal solution of dimension 1.

multivariate distribution is not implied by the connectedness of the supports of one-dimensional
margins. 5

Developing the insight in [6], it is possible to construct families of joint distributions with
supports of Lebesgue measure less than � for any � > 0. Fig. 2(a) illustrates the construction for
N = 3. At the first step, 6 regular hexagons are inscribed into the original one, defined on Hex. At
the kth step, 6 regular hexagons are inscribed into each hexagon generated on the (k − 1)th step.
The solution of kth generation involves choosing, with equal probability, one out of 6k hexagons
and randomizing over it according to some solution for N = 3. Fig. 2(b) depicts the first three
generations of a solution with even less ‘dense’support (at the kth step only 3k hexagons are used).
These ‘fractal’ solutions possess interesting features. Even though objects are identical ex ante
they are never treated symmetrically ex post. In particular, in all realizations there are bids smaller
than 2B/9, there are bids larger than 4B/9, but there are no bids in the interval [2B/9, 4B/9]. In
addition, the ‘egalitarian’bids in the neighborhood of (B/3, B/3, B/3) are made with probability
zero.

The last remark concerns somewhat novel nature of the multiplicity of equilibria in this game.
Multiple equilibria emerge because the joint distribution is not determined uniquely by its margins.
Interestingly, the uniqueness of margins also implies interchangeability of equilibria in this game,
which is not usual for the non-zero-sum games.

Appendix

Proof of Proposition 2. Necessity. Let P = (x1, . . . , xN) be an arbitrary point in the closure of
the support of an equilibrium mixed strategy of player i. Then there exists � > 0 such that for

5 Weinstein [16] constructs another interesting family of one-dimensional joint distributions for any N �3.
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every j the marginal equilibrium distribution function G−ij of player −i is strictly increasing and
continuous in the interval (xj − �, xj + �). The proof is by contradiction.

Suppose there exists j = j∗ such that G−ij is constant in the interval (xj∗ − �, xj∗ + �).
Consider a point P ′ = (x1, . . . , xj∗ − �, . . . , xN). The difference in payoffs when moving from
P to P ′ is given by

∑
j

(
dxj

∫
Hj

g−i d�

)
− �

2
,

where Hj is the hyperplane xj = const, and � is the Lebesgue measure. By construction, dxj =
xj − x′

j = 0 for every j 	= j∗ and the hyperplane Hj∗ does not intersect the support of an
equilibrium joint distribution. Thus, the difference is negative and the strategy G−ij (x) is not
optimal.

Suppose that G−ij (x) is discontinuous at P for all j. Define

�(j) = lim
xj

sup G−ij (x) − lim
xj

inf G−ij (x)

and let j∗ ∈ arg minj �(j). Consider a point P ′ = (x1 + �
N−1 , . . . , xj∗ − �, . . . , xN + �

N−1 ). The
difference in payoffs when moving from P to P ′ is given by

∑
j

(
dxj

∫
Hj

g−i d�

)
− v

2

⎛
⎝∑

j 	=j∗
�(j) − �(j∗)

⎞
⎠

and is negative for a small enough �, contrary to the assumption that G−ij is an equilibrium mixed
strategy.

Suppose that G−ij is discontinuous at P only for some j. Denote by J the set of all such j and
consider point P ′ such that x′

j = xj + �
|J | for all j ∈ J and x′

j = xj − � for some j /∈ J . Again,
the difference in payoffs when moving from P to P ′ is given by

∑
j

(
dxj

∫
Hj

g−i d�

)
− v

2

∑
j∈J

�(j)

and is negative for a small enough �, contrary to the assumption that G−ij (x) is an equilibrium
mixed strategy. In both cases the existence of a small enough � is guaranteed by the fact that the
function G−ij can have at most a countable number of discontinuities.

Thus, it follows that g−i is positive for any j in the neighborhood of xj . Consider a point P ′ 	= P

in the neighborhood of P, such that
∑

j dxj = 0. The difference in payoffs when moving from P
to P ′, given by

∑
j

(
dxj

∫
Hj

g−i d�

)
,

must be zero, implying that g−ij (x) = ∫
Hj

g−i d� does not depend on j.

Next, it is shown that g−ij is also independent of x. If P and P ′ are two points in the support
of the joint distribution with a coordinate in common, say xj = x′

j , then g−ij (xj ) = g−ij (x
′
j ).

Since the supports of margins are connected, g−ij (xj ) = g−ij (x
′
j ) for every pair of points.
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Player i’s expected payoff from bidding bi is increasing in
∑

j bij if g−ij < 1
v

.
As a result, in such case player i uses up all his budget. Since the average bid on any object

cannot exceed B
N

the maximal bid on any object cannot exceed 2B
N

. Thus, if v > 2B
N

then G−ij is
uniform on [0, 2B

N
]. If g−ij = 1

v
then any feasible strategy bi gives the same payoff. Moreover,

the maximal bid on any object cannot exceed v. Thus, if v < 2B
N

then G−ij is uniform on [0, v].
Denoting m = min{v, 2B

N
} the payoff to a player in either case can be written as N

2 (v − m).
Sufficiency. The proof of sufficiency is similar to the one for the zero-sum games [12,7].

Remark. Note that Proposition 2 is formulated for N > 2. The case of two objects for sale,
N = 2, must be treated separately. The main difference is that only the symmetry between
objects gi1(xi1) = gi2(xi2) but not necessarily the uniformity is implied. Any marginal density
such that g(x) = g(m − x) constitutes an equilibrium. �
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