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Abstract We analyze a Colonel Blotto game in which opposing parties have differ-
ing relative intensities. In other words, the game is non-zero sum because colonels have
asymmetric and heterogeneous battlefield valuations. We characterize the colonels’
payoffs that sustain a pure strategy equilibrium and present an algorithm that reaches
the equilibrium actions (when they exist). Finally we show that the set of games with
a pure strategy equilibria is non-empty.
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1 Introduction

The Colonel Blotto game was first proposed by Borel (1921). In such a game, two col-
onels fight over a number of battlefields and must simultaneously divide their forces
among the various battlefields. A battlefield is won by the one with the most troops and
the winner is the colonel that wins the most battlefields. The game was initially stud-
ied by Borel (1921), Borel and Ville (1938) and Gross and Wagner (1950). It follows
immediately from the formulation of the game that there (generally) is no pure strat-
egy equilibrium. Recently, Roberson (2006) has fully characterized the mixed strategy
equilibria when troops are perfectly divisible and Hart (2008) has done likewise when
the action space is discrete.
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Despite the variety of formulations of the game (discrete vs. continuous forces,
equal or unequal forces), the Colonel Blotto game is a zero-sum game where all
regions are equally valued by both colonels, and a gain by one colonel means a loss
of equal size for the other colonel. Gross (1950) and Laslier (2002) assume different
valuations across battlefields but colonels equally value all territories thus the game is
still zero-sum. There are two exceptions in which the nature of the game is non-zero
sum because unused resources have value: Kvasov (2007) characterizes the equilib-
rium when the allocation of forces is costly and both colonels have exactly the same
number of troops; Roberson and Kvasov (2008) extend the analysis to cases in which
the colonels’ number of troops differ.

In this paper we analyze the game in which opposing parties have differing relative
intensities (i.e. asymmetric and heterogeneous battlefield valuations). In contrast with
the classical example, strict Pareto improvements may now exist: a colonel may accept
losing a battlefield if that implies winning a battlefield that is of more value to him. By
allowing differing relative intensities, we depart from the zero-sum nature of the game
and characterize the sets of payoffs that support the existence of a pure strategy Nash
equilibrium (NE) when both colonels are endowed with an equal number of indivisible
troops. We prove that there can be at most a single pure strategy equilibrium and pro-
vide a simple algorithm that reaches the pure strategy equilibrium actions (whenever
they exist). Finally, we show that the set of games with pure strategy equilibrium is
non empty.

Our work relates to a burgeoning literature on voting and conflict resolution that pro-
poses a new mechanism that allows agents to extract gains from the inherent heteroge-
neity in their preferences (see for instance Casella (2005), Jackson and Sonnenschein
(2007) and Hortala-Vallve (2010)).

The rest of the paper is organized as follows. Section 2 presents the game.
Section 3.1 characterizes the set of voting profiles which can constitute an equilib-
rium, Sect. 3.2 introduces an algorithm that reaches equilibrium whenever this exists
and Sect. 3.3 describe the games which have equilibrium in pure strategies. Section 4
concludes.

2 The model

It’s wartime. Two colonels, each on command of T troops are fighting for the control
of N separate battlefields. They both know that the one that deploys most troops in
a battlefield wins that battlefield. We want to characterise the optimal simultaneous
deployment of troops.

Colonels are denoted i ∈ {1, 2} and battlefields are denoted n ∈ {1, 2, . . ., N }. Col-
onel i’s payoff from winning battlefield n is denoted θ i

n > 0; when he loses battlefield n
his payoff is 0. The payoff vector of colonel i is denoted θ i =

(
θ i

1, . . ., θ
i
N

)
∈ " ⊆ RN .

The total war payoff for each colonel is the sum of the individual payoffs across the
N battlefields.1

1 Implicit in this definition of payoffs is the assumption that valuations are independent across battlefields.
That is, there are no complementarities between them. If this assumption holds, results can be extended to
any linear transformation of the payoffs.
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The set of actions for each colonel is the collection of deployment profiles:

T :=
{
(t1, . . ., tN ) ∈ {0, 1, . . ., T }N : t1 + · · · + tN = T

}

The winner in each battlefield is the colonel that deploys the most troops. We assume
that ties (when both colonels deploy the same number of troops) are broken with the
toss of a fair coin. That is,






t1
n > t2

n ⇒ colonel 1 wins battlefield n
t1
n < t2

n ⇒ colonel 2 wins battlefield n
t1
n = t2

n ⇒ each colonel wins battlefield n with probability 1
2 .

3 Games with pure strategy equilibria

We want to characterize the set of games that have (at least one) pure strategy equi-
librium when there are more than two battlefields (N > 2) and a strictly positive
number of troops (T > 0).2 Our argument follows three steps. Firstly, we determine
which deployment profiles can constitute an equilibrium. Secondly, we describe an
algorithm that reaches the pure strategy equilibrium (when this one exists). Finally, we
characterize the set of payoffs that support the existence of a pure strategy equilibrium
and show that this equilibrium is unique.

3.1 Equilibrium actions

Our first step towards characterizing the non zero-sum Colonel Blotto games which
have a pure strategy equilibrium relies on distinguishing the set actions that can be
part of an equilibrium. The following definitions anchor two ideas that are key in our
analysis.

Definition 1 Given both colonels’ deployment of troops,

• the troops of colonel i in battlefield n, t i
n , are decisive when deploying less troops

implies a different outcome in such battlefield3

• there is a positive tie in battlefield n when t i
n = t j

n and t i
n > 0

The following Lemma establishes that there cannot be non decisive armies in a bat-
tlefield when ties occur in (at least) one battlefield. If this is not the case, one of the
colonels has a profitable deviation by deploying non decisive troops in the battlefield
where ties occur. These extra resources undo the tie and ensure a further victory for
the deviating colonel.

2 The cases with less than three battlefields are trivial. When N = 1, all troops are deployed in the unique
battlefield and ties occur. When N = 2, colonels deploy all their troops in the battlefield that yields highest
payoff: when the colonels’ preferred battlefield coincide, ties occur on both battlefields; otherwise, each
colonel wins his preferred battlefield.
3 This idea is analogous to the idea of a pivotal vote in voting games.
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Lemma 1 In any pure-strategy NE with at least one tie, troop deployments are deci-
sive. As a result, only one troop is deployed in those battlefields in which ties do not
occur. Formally, for any equilibrium t∗ ∈ T × T such that ∃n, m : t∗i

n = t∗ j
n and

t∗i
m '= t∗ j

m , t∗i
m + t∗ j

m = 1.

Proof We prove this Lemma by contradiction: assume that there exists an equilibrium
with at least one tie and that there exists at least one player whose troop deployment
includes one or more battlefields with strictly positive and non-decisive troops. For
such a player, moving the strictly positive and non-decisive troops to a battlefield
where there is a tie is a strictly payoff increasing deviation. A contradiction to the
assumption that such an equilibrium exists. ()

We can now characterize the types of troop deployments that can be observed in
battlefields that are tied.

Lemma 2 In any pure-strategy NE with positive ties in more than one battlefield, colo-
nels deploy a single troop in all battlefields where positive ties occur. Formally, for any
equilibrium t∗ ∈ T ×T such that ∃n, m : t i

n = t j
n > 0 and ti

m = t j
m > 0, t i

n = t i
m = 1.

Proof We prove this Lemma by contradiction. Assume that there is an equilibrium
with positive ties in two battlefields and strictly more than one troop in, say, battlefield
n. That is, t i

n = t j
n ≥ 2 and t i

m = t j
m . First note that all battlefields with positive

ties should yield the same payoff; otherwise any colonel has a profitable deviation by
diverting the troops from the least preferred battlefield to the most preferred battlefield.

Any colonel can deviate two troops from battlefield n and obtain a higher payoff.
The first troop can be deployed in battlefield m by which the overall payoff does not
change (instead of tying battlefields n and m now the colonel wins battlefield m and
loses battlefield n). The second troop can now be deployed in a territory that is tied or
one that is lost (by Lemma 1 territories can only be lost by one vote) thus obtaining a
strictly higher payoff. ()

The previous results fully characterize the equilibria when T is small: few troops
imply that a non-decisive vote can always be used for breaking a tie or reaching a
tie in a battlefield lost 1–0 (i.e. the losing colonel deploys no troops and the winning
colonel deploys a single troop). The previous results also imply that when T is large
there can never be an equilibrium with positive ties in more than one battlefield. This
is because in all positive ties both colonels need to invest a single troop and battlefields
that are not tied should only have a troop from one of the colonels. However, if T is
large enough, there are not enough battlefields where all troops can be deployed thus
there should be a battlefield tied with a large number of troops. The following Lemma
further characterizes the equilibrium voting profiles when T is large.

Lemma 3 If T > N
2 , then in any pure strategy NE, there exists at least one positive

tie. Formally, when T > N
2 , for any equilibrium t∗ ∈ T × T , ∃n : t i

n = t j
n > 0.

Proof We prove this Lemma by contradiction: we assume that there is a pure strat-
egy equilibrium without positive ties. Having more troops than half the battlefields
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Pure strategy Nash equilibria in non-zero sum colonel Blotto games 335

(T > N
2 ) implies that there are non-decisive votes. This implies that non-positive ties

(i.e. ties at zero) cannot occur in any battlefield and every battlefield needs to be won
by one of the colonels. We now show that each colonel can win at least half of the
battlefields (step 1) but such configuration implies that all battlefields are won with
a single troop deployed in them (step 2). However, the latter assertion together with
not having positive ties (inductive assumption) implies that the assumed equilibrium
profile cannot constitute an equilibrium when T > N

2 .
Step 1: Assume there is an equilibrium

(
t1, t2) such that colonel 1 wins the bat-

tlefields indexed from 1 to k, and colonel 2 wins the remaining ones (indexed k + 1
to N ). Consider a situation where colonel 2 only deploys the necessary votes to win
battlefields k + 1 to N . This is, t̃2

n = t1
n + 1, for n = k + 1, . . ., N . Colonel 1 needs

a strictly higher number of troops than colonel 2 in battlefields 1 to k so that t̃2 is not
a profitable deviation for colonel 2, i.e. t1

1 + · · · + t1
k ≥ k +

(
t̃2
1 + · · · + t̃2

k

)
. Using

the definition of t̃2
n and the fact that any colonel disposes of T troops, we know that

the previous inequality can only be sustained when k ≤ N
2 . Therefore, if

(
t1, t2) is an

equilibrium it must be the case that none of the colonels wins more than N
2 battlefields.

Whenever N is odd, this proves our result: no colonel can win more than N
2 battle-

fields but this implies that there is a battlefield where ties occur and this contradicts
our inductive hypothesis.

Step 2: Assume
(
t1, t2) is a pure strategy equilibrium where both colonels win

exactly half the battlefields when N is even (w.l.o.g. assume colonel 1 wins battle-
fields 1 to N

2 ). The troops not deployed in battlefields N
2 +1 to N by colonel 2 need to

be strictly smaller than the troops deployed by colonel 1 in any of the first N
2 battle-

fields. That is, T −
(

t2
N
2 +1

+ · · · + t2
N

)
< t1

n , ∀n = 1, . . ., N
2 . We can rewrite this

expression as:

t1
1 + · · · + t1

N
2

<
N
2

+ t1
n , ∀n = 1, . . .,

N
2

.

The equality above implies that any sum of (N − 1) colonel 1’s troops in the first half
of the battlefields is strictly less than N

2 . The fact that this very same colonel wins
those battlefields implies that he should be deploying at least one troop in each of
them—thus the sum needs to be equal to N

2 − 1. This implies that t1
1 = · · · = t1

N
2

= 1

but this is not an admissible configuration when T > N
2 . ()

The situation where more than one battlefield is tied requires colonels to be indifferent
amongst battlefields where positive ties occur. Imagine for instance a situation with
three battlefields that are equally valued by both colonels (i.e. θ i

1 = θ i
2 = θ i

3 for
i = 1, 2 ). It can easily be shown that when T = 3 the unique pure strategy equi-
librium has each colonel deploying a single troop in each battlefield. However, both
colonels deploying one troop each in the first battlefield and two troops each in the
second battlefield does not constitute an equilibrium.

We can illustrate the above results following the previous example with three troops
and battlefields (N = T = 3) but allowing any payoff per battlefield. The deployment
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(
t1, t2) = ((1, 2, 0) , (0, 1, 2)) can never constitute an equilibrium (regardless of the

colonels’ payoffs). This is because colonel 2 can profitably deviate by deploying one
troop from the third battlefield into the first (or second) battlefield. The following list
displays the only ten deployment profiles that can constitute a pure strategy equilibrium
(note that we should have grouped all permutations of identical profiles)

•
(
t1, t2) = ((1, 1, 1) , (1, 1, 1))

•
(
t1, t2) = ((2, 1, 0) · (2, 0, 1)) or ((2, 0, 1) · (2, 1, 0)) or ((1, 2, 0) · (0, 2, 1)) or

((0, 2, 1) · (1, 2, 0)) or ((1, 0, 2) · (0, 2, 1)) or ((0, 1, 2) · (1, 2, 0)).
•

(
t1, t2) = ((3, 0, 0) , (3, 0, 0)) or ((0, 3, 0) , (0, 3, 0)) or ((0, 0, 3) , (0, 0, 3))

This example shows how the previous three Lemmas have greatly simplified the char-
acterization of the games that have a pure strategy equilibrium in a game with three
battlefields.4 As we increase the number of battlefields (and troops) the gains in-
crease exponentially. We now need to show the payoff configurations that support
such deployment of troops as a pure strategy NE.

3.2 An algorithm to deploy troops

We consider an algorithm that instructs colonels on how to allocate their T troops
sequentially. In each iteration of the algorithm, both colonels simultaneously deploy
one troop in the battlefield they most value (amongst the battlefields each colonel is
not winning).

This algorithm reaches a unique deployment profile when colonels are never indif-
ferent among battlefields. However we need to add a couple of refinements to address
the cases of indifference (these refinements will allow the reach of a deployment pro-
file that is the unique pure strategy equilibrium when it exists). To illustrate these
cases we consider once again a situation with three battlefields and three troops where
the colonels’ payoffs are: t1 = (7, 4, 1) and t2 = (2, 5, 5). Without having a rule,
the algorithm may reach the deployment profile (1, 2, 0) for one of the colonels and
(0, 1, 2) for the other colonel—this profile is not an equilibrium. However, we could
have also reached the deployment profile

(
t1, t2) = ((1, 2, 0), (0, 2, 1)) that indeed

constitutes a pure strategy equilibrium (below we will show that this is the unique
equilibrium). The refinement that allows us to select the second deployment profile
reads as follows: whenever a colonel reaches an iteration in which he is indifferent
among various battlefields he deploys his troops in the battlefield least preferred by
his opponent (among those to which he is indifferent). The second refinement helps
the colonel to allocate his troop when the first refinement still leaves him indifferent
among various battlefields:when there is not a single battlefield that is least preferred
by his opponent (among those to which the colonel is indifferent) the colonel should
deploy his troop in the battlefield where least troops have been deployed. This last
requirement allows to evenly distribute troops when colonels are indifferent among

4 The set of deployment profiles for both colonels contains 100 elements. The previous three Lemmas show
that only 10 of them can constitute a pure strategy NE.
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many battlefields and allows them to reach the unique equilibrium when both colonels
equally value all battlefields.

The previous algorithm (together with the two refinements) allows colonels to
deploy all their troops. Moreover, the final deployment of troops is uniquely deter-
mined (except for some cases when there is indifference among battlefields). Most
interestingly, the following proposition states that whenever there is a pure strategy
equilibrium, the algorithm above reaches such allocation.

Proposition 1 Consider a non-zero Colonel Blotto game with a pure strategy equi-
librium. The algorithm where each colonel simultaneously deploys a single troop at a
time in the battlefield he values most among those that he is not winning (and in case of
indifference, the battlefield that is least valued by his opponent and/or the battlefield
in which there are less troops) reaches the pure strategy equilibrium’s deployment
profiles.

Proof We first need to consider all deployment profiles that can be sustained as a pure
strategy equilibrium (Lemma 1, 2, and 3) and show which payoff configurations can
sustain such deployment profiles. Once this is done we can show that the described
algorithm reaches such deployment configuration.

First, we consider the situation where there is a pure strategy equilibrium with all
battlefields are won 1–0 or tied 0–0. These deployment profiles are an equilibrium
only when the battlefield each colonel wins is valued strictly more than those he does
not win. This implies the algorithm reaches exactly the same allocation as the pure
strategy equilibrium.

Second, we consider the situation where there is a pure strategy equilibrium with
at least two battlefields with positive ties and where the remaining battlefields that are
won 1–0 or tied 0–0. We first note that a colonel’s payoffs from the battlefields that
are positively tied need to be equal. These payoffs need to be (strictly) greater than the
payoffs from battlefields that are lost or tied 0–0, and (strictly) lower than the payoffs
from battlefields that are won. When the algorithm is run, colonels first allocate their
troops into the battlefields they most prefer (i.e. battlefields whose outcome is 1–0).
At one point during the algorithm, each colonel has as many non-deployed troops as
battlefields most valued and not won by any colonel; moreover, this set of battlefields
yield the same payoff to each colonel. The algorithm’s second refinement implies that
ties with one troop occur in all these battlefields (i.e. 1–1).

Third (and last), we consider the situation where there is a pure strategy equilib-
rium with a unique battlefield with positive ties, the remaining battlefields are won
1–0 or tied 0–0. Once again, the battlefields that are won are valued strictly more than
those that are positively tied. And the latter should be valued more than the battlefields
that are lost. The algorithm requires troops to be deployed in the battlefields that are
most valued. The battlefield positively tied is valued strictly more than the lost battle-
fields, thus colonels continue to simultaneously deploy a single troop into that same
battlefield because it is the most preferred among the battlefields each colonel is not
winning. ()

We must recall that the previous result states that our algorithm reaches a pure strat-
egy equilibrium when this one exists. It is easy to show that our algorithm does not
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always reach a pure strategy equilibrium. For instance, when payoffs are θ1 = (5, 4, 3)

and θ2 = (7, 3, 2) the allocation reached by our algorithm has all troops of both colo-
nels deployed in the first battlefield. However, the first colonel has a profitable devia-
tion: he could deploy half his troops in battlefield 2 and the other half in battlefield 3.
It follows from the previous Proposition that a game with such a payoff configuration
cannot have a pure strategy equilibrium.

An interesting question that arises when analyzing our algorithm is whether the
allocation it reaches constitutes a subgame perfect NE of the extensive game where
each colonel simultaneously deploys a single troop in each stage of the game. The
previous example answers this question negatively: our algorithm does not reach a
subgame perfect equilibrium in the extensive game. However, when a pure strategy
equilibrium exists in the simultaneous game, the algorithm reaches the unique sub-
game perfect equilibrium of game where each colonel repeatedly (and simultaneously)
deploy a single troop.

Lemma 4 Consider a non-zero Colonel Blotto game with a pure strategy equilibrium.
The algorithm where each colonel simultaneously deploys a single troop at a time in
the battlefield he values most among the ones he is not winning (and in case of indif-
ference, the one that is least valued by his opponent and/or has less troops deployed
in it) is a subgame perfect equilibrium of the extensive form game with T stages where
each colonel simultaneously deploys a single troop in each stage of the game.

Proof We need to show that the algorithm prescribed actions indeed constitute a NE
in all subgames of the extensive form game.

Using Proposition 1, we know that the deployment profile reached by the algorithm
is a NE. Now we need to consider all other subgames. At any subgame or iteration of
our algorithm we can drop the battlefields that have been won by any of the agents
(when a pure strategy equilibrium exists, these battlefields play no role in the allocation
of subsequent troops). By doing so we have a reduced colonel Blotto game with less
battlefields; in addition, all remaining battlefields are tied.5 Using once again Prop-
osition 1 we know that the algorithm reaches the unique equilibrium of the reduced
game, thus the prescribed actions in our algorithm are indeed a NE in all subgames of
our extensive game. ()

Whenever the game has non-pure strategy equilibrium the deployment profile
reached by the algorithm is trivially non subgame perfect because it does not
constitute an equilibrium of the game.

3.3 Characterization of games with pure strategy equilibrium

Proposition 1 tells us that a necessary condition for the existence of a pure strat-
egy equilibrium is that the algorithm reaches an admissible deployment profile (see
Lemmas 1, 2, and 3). This profile requires battlefields to be won by one troop or tied.

5 It is possible that one of the battlefields may be positively tied. This happens when both colonels have
invested their troops in the same battlefield in the previous iteration of the algorithm.
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Besides, in a pure strategy equilibrium a colonel that wins a battlefield should obtain a
higher payoff from that battlefield than from the battlefields he ties. In turn, he should
obtain a higher payoff from the battlefields he ties than from the ones he loses (strictly
higher payoff when ties are with a positive number of troops). In order to simplify our
analysis we assume that colonels are never indifferent between any two battlefields
(including the possibility of indifference makes our analysis more tedious). When
there is no indifference, we can prove that there can never be multiple pure strategy
equilibria.

Lemma 5 Consider a non-zero Colonel Blotto game where colonels never receive the
same payoff from any two battlefields (i.e. θ i

n '= θ i
m for any n '= m and for i = 1, 2).

There can be at most a single pure strategy equilibrium.

Proof Given a pure strategy equilibrium, Proposition 1 tells us that the equilib-
rium deployment profile is reached by our algorithm. Besides, our algorithm reaches
a unique configuration when colonels are never indifferent between any two bat-
tlefields. It follows that if an equilibrium in pure strategies exists, it should be
unique. ()
In order to characterize the non-zero Colonel Blotto games that contain a (unique)
pure strategy equilibrium it will be convenient to classify such games in terms of the
coincidence of their most preferred battlefields. In this vein we first define the set of
the k (0 < k < N ) most preferred battlefields by colonel i (i = 1, 2) as Mi

k . Formally
this set can be described by the following expression:

Mi
k :=

{
n : θ i

n ≥ θ i
(k)

}

where θ i
(k) denotes colonel i’s k-th most preferred battlefield.

Recall that the algorithm above requires each colonel to distribute a single troop in
his most preferred battlefield among the battlefields that he is not winning. This shows
that as long as the most preferred battlefields of both colonels do not coincide, colonels
place a troop in their most preferred battlefield and win it with the only permissible
troop allocation in a pure strategy equilibrium (recall Lemma 2, battlefields can only
be won 1–0). When their most preferred battlefield (among those that they do not win)
coincide, the algorithm leads to the remainder of their troops being deployed in such
battlefield. The problem arises when one colonel’s most preferred battlefield coincides
with a battlefield that has already been won by his opponent. In such circumstances
no pure strategy equilibrium will exist.

We say that a non-zero Colonel Blotto game has index λ when λ is the highest
integer such that the sets of λ most preferred battlefields by each colonel are disjoint,
i.e. λ = max{k : M1

k ∩ M2
k = ∅} and λ = 0 when M1

1 ∩ M2
1 '= ∅. The index of

any game is always well defined: greater or equal than 0 and smaller or equal than
the integer value of N

2 . For instance, a game with index equal to 0 is one where both
colonels’ most preferred battlefield coincides; a game with an index equal to 1 is one
where both colonels’ most preferred battlefields do not coincide but their second most
preferred battlefields coincides with each other or with the most preferred of their
opponent, etc.
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With the aid of the index of non-zero Colonel Blotto games we can characterize the
deployments achieved by our algorithm. This in turn allows to characterize the games
that have a pure strategy equilibrium. Prior to the statement of our main Proposition
we present two examples that perfectly capture the situations when a pure strategy
equilibrium exists.

Example 1 Consider a situation where both colonels’ payoffs are: (4, 5, 3) and
(9, 2, 1). If both colonels only have single troop (T = 1) there is indeed an equi-
librium where both colonels deploy that troop in their most preferred battlefield (note
that non-zero sum colonel Blotto games with a single troop (T = 1) always have a
pure strategy equilibrium).

Example 2 Now consider a situation where both colonels payoffs are: (5, 4, 3) and
(9, 2, 1). If both colonels have three troops, we have that our algorithm reaches a
deployment profile where all troops are deployed in the first battlefield. However,
we can see that this does not constitute an equilibrium because the first colonel has
incentives to divert his troops into the last two territories. Instead, if his valuation of
the last two territories is low enough, the described deployment profile would be an
equilibrium.

As shown in example 1, there always exists an equilibrium whenever T = 1. We
are now ready to state our Proposition that characterizes the valuations of the games
which have a pure strategy NE whenever T > 1.

Proposition 2 Consider a non-zero Colonel Blotto game with T > 1 troops, N bat-
tlefields and index λ ≥ 0. Assume that colonels never receive the same payoff from
any two battlefields. When the number of troops is smaller than or equal to the index
(T ≤ k), there is a unique pure strategy equilibrium. When the number of troops is
greater than the index (T > k) there exists a pure strategy equilibrium, if and only if
both colonels (λ + 1) most preferred battlefield coincides and the colonels’ valuation
of this battlefield is large enough.

Proof When there is a small number of troops (T ≤ λ) our algorithm reaches an
allocation in which he wins his λ preferred battlefields, loses λ other battlefields and
ties the remaining ones. This deployment profile is indeed an equilibrium because
each troop is deployed in the T battlefields that yield the most payoff to each colonel.

When there is a large number of troops (T >λ) the existence of pure strategy equi-
librium depends on the (λ + 1) most preferred battlefield of each colonel, θ i

(k+1) for
i = 1, 2. When both colonels (λ + 1) most preferred battlefield coincides, the algo-
rithm reaches a deployment profile in which each colonel deploys a single troop in his
λ preferred battlefields and (T −λ) troops in his (λ+1) most preferred battlefield. The
outcome of such a battle has each colonel winning his λ most preferred battlefields,
tying his (λ + 1) most preferred battlefield, losing λ other battlefields and tying the
remainder. This may be a candidate to pure strategy equilibrium as the deployment
profile satisfies the conditions in Lemmas 1, 2, and 3. In order to ensure this is an
equilibrium we need to check that there is no profitable deviation. We know that each
colonel is winning his λ most preferred battlefields with a single troop so there is
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no incentive to move troops in or out of those battlefields. The question is whether a
colonel is better off by relocating the (T − λ) troops deployed in his (λ + 1) most
preferred battlefield. These troops can be relocated to improve the outcome of one of
the territories that he ties or loses. We are now ready to show that there is a lower
bound in θ i

(λ+1) above which the actions described constitute an equilibrium.
Colonel i’s deployment profile is such that apart from his (λ + 1) most preferred

battlefields, all battlefields are either lost by one troop or tied. In the former case, two
troops are needed to win such territory and in the latter, a single troop suffices. In
order to explicitly describe the lower bound for a pure strategy equilibrium to exist we
define the function ρi (n) as

ρi (n) =
{

1 when the n-th most preferred battlefield of colonel i is tied
2 when the n-th most preferred battlefield of colonel i is lost.

We know that colonel i has a profitable deviation when there exists ρ̃ ∈ {1, 2} and
ν ∈ {1, . . ., N } : ρ̃ ≤ ρ (λ + ν) and

θ i
(λ+1) ≤ ρi (λ + 2) · θ i

(λ+2) + · · · + ρi (λ + ν − 1) · θ i
(λ+ν−1) + ρ̃ · θ i

(λ+ν)

where ν is such that ρi (λ + 2) + · · · + ρi (λ + ν − 1) + ρ̃ ≤ T − λ.

In other words, the above formula applies when colonel i can relocate (some or all)
of his troops in his (λ + 1) most preferred battlefield into his next ν most preferred
battlefields. This relocation of troops implies that he loses his (λ + 1) most preferred
battlefield but wins ν−1 battlefields (from being tied or lost) and improves the outcome
of his (λ + ν) most preferred battlefield (colonel i may not have enough resources to
win this last battlefield).

Note that the lower bound on θ i
(λ+1) not only depends on the number of troops

available (the colonel is relocating at most the (T − λ) troops deployed in his (λ + 1)

most preferred battlefield) but also on the particular identity of the λ most preferred
battlefields by his opponent.

We now need to look at the case where the colonels’ (λ + 1) most preferred bat-
tlefield does not coincide. By the definition of the index of the game we know that
M1

λ+1 ∩ M2
λ+1 '= ∅. It could be the case that both colonels’ (λ + 1) most preferred

battlefield coincides with one the λ most preferred battlefields of his opponent (i.e.
θ i
(k+1) ∈ M j

k , ∀i '= j), or that this occurs only for one of the colonels.

In the first case we have that θ i
(k+1) ∈ M j

k , ∀i '= j . The deployment reached
by our algorithm now depends on whether (T − λ) is even or odd. Note that at the
stage when colonel i is deploying his (λ + 1) troop, he ties a battlefield he was losing
(one of the λ most preferred by his opponent) and the deployment of his opponent
implies that a battlefield he was previously winning is now tied. At the stage when
colonel i is deploying his (λ + 2) he wants to deploy the troop in the battlefield that is
most preferred to him among the battlefields that he is not winning. This implies that
he will undo the tie just created by the (λ + 1) troop of his opponent. His opponent
will do exactly the same, thus the outcome of this deployment of troops will be iden-
tical to the outcome they obtained after allocating λ troops. It thus follows that the
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following deployment of troops will simply replicate the outcome of stage (λ + 1),
and the subsequent deployment will replicate that of stage (λ + 2). Therefore, when
(T − λ) is odd, the algorithm ends in the outcome achieved in the (λ + 1) stage, and
when it is even, it ends in the outcome achieved in the (λ + 2) stage. Finally, we need
to show which of these situations can constitute a pure strategy NE: the allocation
where (T − λ) is even is one where two battlefields are won with strictly more than
one troop and we know that this cannot constitute an equilibrium (Lemma 1); the allo-
cation when (T − λ) is odd cannot constitute an equilibrium because two battlefields
are tied with one troop per colonel but, given that colonels are not indifferent between
any two battlefield, there is a profitable deviation by deploying the troop in the tied
battlefield that yields less payoff into the tied territory that yields more payoff.

In the second case we have that θ i
(k+1) ∈ M j

k but θ
j
(k+1) /∈ Mi

k . The deployment
profile reached by our algorithm implies that colonel i wins all battlefields in Mi

λ,
colonel j wins battlefields in M j

λ+1\Mi
λ+1 and they both deploy (T − λ) in colonel

i’s (λ+1) most preferred battlefield. It is immediate to show that this cannot constitute
an equilibrium because colonel j has incentives to deviate the troop deployed in his
(λ + 1) most preferred battlefield into his opponent’s (λ + 1) most preferred battle-
field: in this way he improves his overall payoff by tying a battlefield he is winning
(his (λ + 1) most preferred battlefield) and wins a battlefield he is tying (on of his λ

most preferred battlefields). ()
An immediate corollary follows from the previous proposition.

Corollary 1 Consider a non-zero Colonel Blotto game with T troops and N battle-
fields. Assume that the payoffs to each colonel are independent and identically dis-
tributed according to a density with full support on [0, 1]. There is a strictly positive
probability that the game has a pure strategy equilibrium.

The proof is immediate because when payoffs are i.i.d. there is for instance a strictly
positive probability that both colonels equally rank all battlefields and that the first
battlefield’s payoff to each colonel is arbitrarily larger than the payoffs of the other
battlefields. In such circumstances a pure strategy equilibrium trivially exists. More
noteworthy of highlighting is the probability with which pure strategy equilibria exists
increases rapidly as we increase the number of battlefields (it is easier to find a situa-
tion where the sets of T most preferred battlefields of each colonels are disjoint) but
this probability will decrease rapidly as we increase the number of troops (it is easier
to find a situation where both colonels’ (λ + 1) most preferred battlefield coincide).

4 Conclusion

We have characterized the situations under which non-zero sum colonel Blotto games
have pure strategy equilibria. We have done so in three steps. First, we have deter-
mined the admissible actions (deployment profiles). Second, we have introduced an
algorithm that converges to a pure strategy equilibrium when this one exists. And
third, we have characterized the set of payoffs that support pure strategy equilibria.
Finally we have stated that when payoffs are independent and identically distributed
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there is always a positive probability of finding non-zero sum colonel Blotto games
with pure strategy equilibria. We believe that this work only constitutes a first step
towards the full characterization of equilibria in non-zero sum colonel Blotto games.
These games are not only relevant in terms of conflict games but can also be of use
when thinking about the allocation of resources in voting games, optimal strategies in
multi-object auctions, etc.
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