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Abstract The Colonel Blotto game is a two-player constant-sum game in which
each player simultaneously distributes his fixed level of resources across a set of con-
tests. In the traditional formulation of the Colonel Blotto game, the players’ resources
are “use it or lose it” in the sense that any resources that are not allocated to one of
the contests are forfeited. This article examines a non-constant-sum version of the
Colonel Blotto game that relaxes this use it or lose it feature. We find that if the level
of asymmetry between the players’ budgets is below a threshold, then there exists a
one-to-one mapping from the unique set of equilibrium univariate marginal distribu-
tion functions in the constant-sum game to those in the non-constant-sum game. Once
the asymmetry of the players’ budgets exceeds the threshold, this relationship breaks
down and we construct a new equilibrium.
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398 B. Roberson, D. Kvasov

1 Introduction

Originating with Borel (1921), the Colonel Blotto game is a classic model of
budget-constrained resource allocation across multiple simultaneous contests. Borel
formulates this problem as a constant-sum game involving two players, A and B, who
must each allocate a fixed amount of resources, X A = X B , over a finite number of
contests. Each player must distribute their resources without knowing their opponent’s
distribution of resources. In each contest, the player who allocates the higher level of
resources wins, and each player’s payoff across all of the contests is the proportion of
the wins across the individual contests.1

This simple model was a focal point in the early game theory literature (see, for
example, Bellman 1969; Blackett 1954, 1958; Borel and Ville 1938; Gross and Wagner
1950; Shubik and Weber 1981; Tukey 1949). The Colonel Blotto game has also expe-
rienced a recent resurgence of interest (see, for example, Golman and Page 2009;
Hart 2008; Hortala-Vallve and Llorente-Saguer 2011; Kovenock and Roberson 2010;
Kvasov 2007; Laslier 2002; Laslier and Picard 2002; Macdonell and Mastronardi
2011; Roberson 2006, 2008; or Weinstein 2005).2 One of the main appeals of the
Colonel Blotto game is that it provides a unified theoretical framework that is relevant
to a diverse set of environments ranging from political campaign resource allocation
to military conflict. In these constant-sum applications, each player has a fixed level of
resources to allocate across the set of contests, and any unused resources have no value.

There are also a number of closely related applications of multi-dimensional
resource allocation such as research and development races, rent-seeking, lobbying,
and litigation. However, these applications are non-constant sum in that any resources
that are not allocated to one of the contests have value, i.e., the players’ resources are
not “use it or lose it.” Kvasov (2007) introduces a non-constant-sum version of the
Colonel Blotto game that relaxes this use it or lose it feature of the original formu-
lation.3 In the case of symmetric budgets, that article establishes that there exists a
one-to-one mapping from the unique set of equilibrium univariate marginal distribu-
tion functions in the constant-sum game to those in the non-constant-sum game.

In this article, we extend the analysis of the non-constant-sum version of the
Colonel Blotto game to allow for asymmetric budget constraints. For all configu-
rations of the asymmetric constant-sum Colonel Blotto game with three or more
contests, Roberson (2006) provides: (i) the characterization of the unique equilib-
rium payoffs,4 (ii) the characterization of each player’s set of equilibrium univariate

1 This is the plurality objective. An alternative objective [the majority or tournament objective] is for each
player to maximize the probability that they win a majority of the contests. For n > 3, the solution to the
majority game is an open question.
2 Related experimental work includes Arad and Rubinstein (2009), Avrahami and Kareev (2009), Chowd-
hury et al. (2011), and Hortala-Vallve and Llorente-Saguer (2010).
3 See also the related non-constant-sum multi-dimensional contests examined in Snyder (1989), Szentes
and Rosenthal (2003a,b), Klumpp and Polborn (2006), Clark and Konrad (2007), and Arbatskaya and
Mialon (2010).
4 The case of n = 2, with symmetric and asymmetric forces, is discussed by Gross and Wagner (1950).
Moving from n = 2 to n ≥ 3 greatly enlarges the space of feasible n-variate distribution functions, and the
equilibrium strategies examined in that article differ dramatically from the case of n = 2.
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The non-constant-sum Colonel Blotto game 399

marginal distributions, and (iii) the existence of joint distributions which, in addition
to providing the equilibrium univariate marginal distributions, expend the players’
respective budgets with probability one. We find that as long as the asymmetry between
the players’ budgets is below a threshold, there exists a one-to-one mapping from the
unique set of equilibrium univariate marginal distribution functions in the constant-
sum game to those in the non-constant-sum game. Once the asymmetry of the players’
budgets exceeds the threshold, this relationship breaks down. For this range, we con-
struct an entirely new equilibrium for the non-constant-sum game. In all parameter
configurations for which there exist unique equilibrium univariate marginal distribu-
tions, these are characterized. For these parameter configurations, we also characterize
the unique equilibrium payoffs and the unique equilibrium total expected expenditures.

The non-constant-sum Colonel Blotto game is essentially a set of n independent
all-pay auctions in which two players submit n-tuples of bids subject to budget con-
straints that hold across the entire set of auctions. Therefore, our results may also be
seen as extending the analysis of the single all-pay auction with budget-constrained
bidders (see Che and Gale 1998) to allow for budget constraints that apply across a
finite set of auctions.

Section 2 presents the model. Section 3 provides a brief comparison of the con-
stant-sum and non-constant-sum formulations of the Colonel Blotto game and pro-
vides intuition for the connection between the equilibria in these two games. Section 4
characterizes the equilibrium payoffs and the equilibrium sets of univariate marginal
distributions for the asymmetric non-constant-sum version of the Colonel Blotto game.
Section 5 concludes.

2 The model

Two players, A and B, simultaneously enter bids in a finite number, n ≥ 2, of indepen-
dent all-pay auctions. Each all-pay auction has a common value of v for each player.
Each player has a fixed level of available resources (or budget), Xi for i = A, B.
Let X A ≤ X B , and let xi denote the n-tuple of bids (xi,1, . . . , xi, j , . . . , xi,n), one bid
for each auction j . If both players enter the same bid in an auction and the common
bid is X A [resp., X B − (n − 1)X A], then it is assumed that player B [resp., A] wins
the auction. Otherwise, in the case of a tie, each player wins the auction with equal
probability. As long as the asymmetry in the players’ budgets is below a threshold
[X B ≤ (n − 1)X A], any tie-breaking rule that avoids the need to have the stronger
player B provide a bid arbitrarily close to, but above, player A’s maximal bid yields
similar results. Similarly, once X B > (n −1)X A, any tie-breaking rule that avoids the
need to have the weaker player A provide a bid arbitrarily close to, but above, a bid
of X B − (n − 1)X A by player B when player B bids X A in the n − 1 other auctions
yields similar results.

In each all-pay auction j the payoff to player i for a bid of xi, j is given by

πi, j
(
xi, j , x−i, j

)
=

{
v − xi, j if xi, j > x−i, j

−xi, j if xi, j < x−i, j
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400 B. Roberson, D. Kvasov

where ties are handled as described above. Each player’s payoff across all n all-pay
auctions is the sum of the payoffs across the individual auctions.

The bid provided to each all-pay auction must be nonnegative. For player i , the set
of feasible bids across the n all-pay auctions is denoted by

Bi =




x ∈ Rn
+

∣∣∣∣
n∑

j=1

xi, j ≤ Xi




 .

Strategies

Given that each of the individual contests is an all-pay auction, it is not difficult to
show that there are no pure-strategy equilibria for this class of games. A mixed strat-
egy, which we term a distribution of resources, for player i is an n-variate distribution
function Pi : Rn

+ → [0, 1] with support (denoted Supp(Pi )) contained in the set of
player i’s set of feasible bids Bi and with one-dimensional marginal distribution func-
tions {Fi, j }n

j=1, one univariate marginal distribution function for each all-pay auction
j . To avoid confusion with the support of the joint distribution, when referring to
the support of a given univariate marginal distribution—the smallest closed univar-
iate interval whose complement has probability zero—we will make a slight abuse
of terminology and use the term domain to denote the support of the given univari-
ate marginal distribution function. The n-tuple of player i’s bids across the n all-pay
auctions is a random n-tuple drawn from the n-variate distribution function Pi .

The Non-Constant-Sum Colonel Blotto game

The N-C-S Colonel Blotto game, which we label

NC B
{

X A, X B, n, v
}
,

is the one-shot game in which players compete by simultaneously announcing distri-
butions of resources subject to their budget constraints, each all-pay auction is won
by the player that provides the higher bid in that auction (where in the case of a tie
the tie-breaking rule described above applies), and players receive the sum of their
payoffs across the individual all-pay auctions.

3 Relationship between the two formulations

Before proceeding with the equilibrium analysis, it is instructive to provide intuition for
the connection between the equilibria in the constant-sum and non-constant-sum for-
mulations of the Colonel Blotto game. The formulation of the constant-sum Colonel
Blotto game differs from the non-constant-sum game in that in each contest j the
payoff to each player i for a bid of xi, j is given by
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The non-constant-sum Colonel Blotto game 401

πi, j
(
xi, j , x−i, j

)
=

{
1
n if xi, j > x−i, j

0 if xi, j < x−i, j

where ties are handled as described above. Note that, in the constant-sum game
resources that are not allocated to one of the contests have no value; that is, resources
are use it or lose it. Each player’s payoff across all n contests is the sum of the payoffs
in the individual contests.

The following discussion provides a brief sketch of the relationship between the
equilibria in the constant-sum and non-constant-sum formulations of the game. We
begin this discussion with the disclaimer that this is not a sketch of the formal proofs
of the main results [which are provided in the Appendix]. Instead, our objective for
this discussion is simply to provide a few informal insights regarding some necessary
conditions for equilibrium in both the constant-sum and non-constant-sum Colonel
Blotto games and to highlight the relationship between these sets of necessary condi-
tions. For n ≥ 3 auctions, the Appendix provides the formal proof of the necessity of
these conditions.5

Given that player −i’s strategy is given by the n-variate distribution function
P−i with the set of univariate marginal distribution functions {F−i, j }n

j=1, player i’s
expected payoff for any n-tuple of bids xi ∈ Rn

+ is:

πi

(
xi , {F−i, j }n

j=1

)
=

n∑

j=1

[
vF−i, j

(
xi, j

)
− xi, j

]
. (1)

Observe that for a given P−i , each player i’s expected payoff depends only on the
set of univariate marginal distribution functions {F−i, j }n

j=1 and not the correlation
structure, utilized by player −i , among the univariate marginals.

Given this feature of the expected payoffs, it is useful to note that any joint distri-
bution may be broken into a set of univariate marginal distribution functions and an
n-copula, the function that maps the univariate marginal distribution functions into
a joint distribution function.6 Let Ci denote the collection of all sets of univariate
marginal distribution functions {Fi, j }n

j=1 which satisfy the constraint that there exists
a mapping from the set of univariate marginal distributions into a joint distribution
(an n-copula), C , in which the support of the resulting n-variate distribution function
C(Fi,1(x1), . . . , Fi,n(xn)) is contained in Bi .

Assuming that each of the univariate marginal distributions in player i’s strategy is
differentiable (possibly discontinuously so) and ignoring the possibility of a tie occur-
ring with strictly positive probability, player i’s optimization problem may be written
as:

5 In the case of n = 2, these conditions are not necessary. See the discussion of the case of n = 2 at the
conclusion of the next section.
6 See Nelsen (1999) or Schweizer and Sklar (1983) for an introduction to copulas.
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max{
{Fi, j }n

j=1∈ Ci

}

n∑

j=1




∞∫

0

[
vF−i, j

(
xi, j

)
− xi, j

]
dFi, j



 . (2)

Observe that the n-copula enters into the players’ optimization problems only as a
constraint and not as a strategic variable. That is, player i’s optimization problem is
invariant to the correlation structure among his own univariate marginal distribution
functions subject to the constraint that there exists a mapping from the optimal set of
univariate marginal distributions into a joint distribution that satisfies the restriction
on the support.

Next, recall that the budget constraint holds with probability one. Therefore, the
budget constraint must also hold in expectation, and player i’s set of univariate mar-
ginal distribution functions satisfy the following constraint,

n∑

j=1




∞∫

0

xi, j dFi, j



 ≤ Xi . (3)

Given that Eq. (3) is a constraint on only the set of univariate marginal distributions
functions, it will be useful to include this constraint in player i’s optimization problem.
Thus, we have that player i’s optimization problem from Eq. (2) may now be written
as,

max{
{Fi, j }n

j=1∈ Ci

}

n∑

j=1




∞∫

0

[
vF−i, j

(
xi, j

)
− (1 + λi ) xi, j

]
dFi, j



 + λi Xi . (4)

This optimization problem is essentially a variational problem involving the maxi-
mization of a collection of functionals with the side constraints that there exists a
sufficient n-copula and that each univariate marginal distribution is a weakly increas-
ing function. The n Euler–Lagrange equations provide a set of necessary conditions
for equilibrium. For each j = 1, . . . , n, the corresponding Euler–Lagrange equation
is given by

d
dx

[
vF−i, j

(
xi, j

)
− (1 + λi ) xi, j

]
= 0. (5)

Rearranging terms slightly, it becomes clear that for each auction j equation (5) is
precisely the necessary condition that holds for one isolated all-pay auction without a
budget constraint and in which the prize has value v/(1 + λi ), henceforth the implicit
value of the prize. The intuition is that the constraint on the total expenditure across
all auctions implicitly imposes an opportunity cost λi ≥ 0 of resource expenditure.7

Therefore, the cost of allocating x j resources to auction j entails not only the explicit

7 Note that λi takes the value of zero in the event that player i does not benefit from the relaxation of his
budget constraint.
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cost of the bid but also the implicit opportunity cost from not being able to use those
resources in another auction. An increase in the implicit opportunity cost of a bid has
the dual interpretation of lowering the implicit value of the prize.

Applying a similar line of reasoning to the constant-sum Colonel Blotto game, it is
straightforward to derive the set of necessary conditions for equilibrium given by the
n Euler–Lagrange equations for that optimization problem. For each j = 1, . . . , n,
the corresponding Euler–Lagrange equation is given by

d
dx

[
1
n

F−i, j
(
xi, j

)
− λi xi, j

]
= 0. (6)

In this case, we see that for each contest j Eq. (6) is precisely the necessary condition
that holds for one isolated all-pay auction without a budget constraint and in which
the prize has value 1/(nλi ).

As long as there exists a sufficient n-copula, each of the unique equilibrium univari-
ate marginal distribution functions in the two games corresponds directly to the unique
equilibrium univariate distribution function in a single two-player all-pay auction with
complete information and with each player i’s values for the prizes given by v/(1+λi )

and 1/(nλi ) respectively (see Hillman and Riley 1989; Baye et al. 1996).8 Therefore,
there exists a one-to-one mapping from the unique set of equilibrium univariate mar-
ginal distributions in the non-constant-sum game to those in the constant-sum game
as long as there exists a sufficient n-copula.

In general, the constraint on the n-copula is non-binding if for each player the inter-
section of the hyperplane formed by the n-tuples that exhaust his respective budget
and the n-box formed by the domains of each of the univariate marginal distributions
for the corresponding all-pay auctions is well behaved. For example, consider the
case in which the n-box formed by the domains is [0, X A]n . If X B > (n − 1)X A,
then it is clear that there exist no n-tuples in the intersection of the hyperplane {x ∈
Rn

+
∣∣∑n

j=1 x j = X B} and the n-box [0, X A]n in which any x j = 0. Thus, the sup-
port of player B’s distribution of resources cannot be completely contained in his
budget-balancing hyperplane and have univariate marginals with domain [0, X A].

In the constant-sum game, the constraint on the existence of a sufficient n-copula
is non-binding as long as (2/n) < (X A/X B) ≤ 1. Within this region, which is illus-
trated in Panel (i) of Fig. 1, Theorem 2 of Roberson (2006) characterizes the unique
equilibrium univariate marginal distribution functions, and Theorem 4 of that article
provides the proof of the existence of a sufficient n-copula for this range.

Before tracing out the corresponding region for the non-constant-sum formulation
of the game, observe that Panel (i) of Fig. 1 also delineates the regions of the param-
eter space that correspond to Theorems 3 and 5 of Roberson (2006), labeled regions
3 and 5, respectively. In these regions, in which (1/n) < (X A/X B) ≤ (2/n), there
exists a corresponding parameter region in the non-constant-sum game over which the
equilibrium univariate marginal distribution functions in the two games are related.
However, this relationship is not necessarily one-one. The issue is that the constraint

8 For generalizations of the all-pay-auction, see Baye et al. (2011) and Siegel (2009). For recent examples
of applications, see Levy and Razin (2011) and Sela (2011).
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(i) (ii)

Fig. 1 Parameter space n ≥ 3

on the existence of a sufficient n-copula comes into play, and the sets of univariate mar-
ginal distributions must be adjusted accordingly. In the two games, these adjustments
may vary.

For the constant-sum game’s remaining parameter configuration X A ≤ (X B/n),
the players are at the extreme end of the asymmetry spectrum. Over this parameter
region, the stronger player (B) has a sufficient level of resources to win each of the
n contests with certainty, and, due to the use it or lose it feature of the constant-sum
formulation, that game becomes trivial. In this region, there is no relationship between
the two games. Due to the relaxation of the use it or lose it feature, the non-constant-
sum game is never trivial, and in this range, we construct entirely new equilibrium
distributions of resources for the non-constant-sum game.

We now introduce what we term the modified budgets for the non-constant-sum
game with n ≥ 3. In the expressions for the modified budgets, we define the sets
T k for k = 1, 2, 3, 5 to denote the portion of the parameter space that is covered by
the corresponding theorem number k(= 1, 2, 3, 5) in the following section.9 These
regions are delineated as follows.

T1:
{
(X A, X B) ∈ R2

+
∣∣( 2

n

)
min{v, X B} < X A ≤ X B

}

T2:
{
(X A, X B) ∈ R2

+
∣∣X B/(n − 1) ≤ X A ≤

( 2
n

)
min{v, X B} or X A =

2v
n and X B > v

(
2 − 2

n

)}

T3:
{
(X A, X B) ∈ R2

+
∣∣X A <

( 2v
n

)
and X A ≤ max

{
X B− 2v

n
n−2 , X B

n

}}

T5:
{
(X A, X B) ∈ R2

+
∣∣max

{
X B− 2v

n
n−2 , X B

n

}
< X A < X B

n−1

}

9 Theorem 4 establishes the existence of a pair of n-variate joint distributions that satisfy the conditions
specified in Theorem 3.
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Recall that the floor function 'x( denotes the largest integer less than or equal to x .
Player A’s modified budget is given by

MX A (X A, X B) =






min
{

X A, nv
2

}
if (X A, X B ) ∈ T1

X A if (X A, X B ) ∈ T2
n(X A)2

2v if (X A, X B ) ∈ T3

X A −
(
1− nX A

2v

)(
nX A−X B

)
⌊

X A
X B −(n−1)X A

⌋
+1

if (X A, X B ) ∈ T5

and player B’s modified budget is given by

MX B (X A, X B) =






min
{

X B , nv
2 ,

(
nvX A

2

)1/2}
if (X A, X B ) ∈ T1

min
{

X B , v
(

2 − 2
n

)}
if (X A, X B ) ∈ T2

n
(

X A − X2
A

2v

)
if (X A, X B ) ∈ T3

nX A(nX B−(n−1)2 X A)
2v +

(
1 − n(X B−(n−2)X A)

2v

)

×
(⌊

X A
X B −(n−1)X A

⌋
+2

)
X A

⌊
X A

X B −(n−1)X A

⌋
+1

if (X A, X B ) ∈ T5

It will be useful to define the set of n-tuples that exhaust the modified budgets MX A

and MX B . Let Bi denote this set, defined as

Bi =




x ∈ Rn
+

∣∣∣∣
n∑

j=1

xi, j = MXi (X A, X B)




 ,

and note that Bi ⊂ Bi .
The players’ modified budgets, which are illustrated in (X A, X B)-space as the

shaded regions in Panel (ii) of Fig. 1, are the equilibrium total expected expendi-
tures for each of the equilibria examined in the following section [i.e., for player
i, MXi = ∑

j EFi, j (xi, j )]. As shown in the Appendix [see Lemma 2], in the T1 and T2
parameter regions with X A += (2v/n), these equilibrium total expected expenditures
are unique. In the remaining parameter regions, there exist other payoff non-equivalent
equilibria.

Note that given a pair of resource levels X A and X B which satisfy (X A, X B) ∈ T1,
there are three possible cases: (a) neither player uses all of their available resources
[i.e., MX A = nv/2 and MX B = nv/2], (b) only (the weaker) player A uses all of his
available resources [i.e., MX A = X A and MX B = (nvX A/2)1/2], and (c) both players
A and B use all of their available resources [i.e., MX A = X A and MX B = X B]. The
regions corresponding to each of these cases appear in Panel (ii) of Fig. 1 as 1a, 1b,
and 1c, respectively. Given that in the constant-sum game resources are use it or lose
it, such considerations do not arise in that game.

It is important to observe that when X A and X B satisfy the condition that X A ∈
((2/n) min{v, X B}, X B] [i.e., regions 1a, 1b, and 1c of Panel (ii) of Fig. 1], the mod-
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ified budgets satisfy the corresponding condition that (2/n) < (MX A/MX B ) ≤ 1. As
we will show, there exists a one-to-one correspondence between the sets of equilibrium
univariate marginal distribution functions that arise in this region and those that arise
in the constant-sum game for the region (2/n) < (X A/X B) ≤ 1. This characterization
is formally stated in Theorem 1 of the next section.

Similarly, for X A and X B that lie in regions 2 and 5 [which correspond to Theo-
rems 2 and 5] of Panel (ii) of Fig. 1, the modified budgets satisfy the condition that
(1/n) < (MX A/MX B ) ≤ (2/n). In these regions, the sets of equilibrium univariate
marginal distribution functions are related to those arising in the constant-sum game
for the parameter range (1/n) < (X A/X B) ≤ (2/n). But as mentioned before, this
relationship is not necessarily one-one.

For all budget configurations (X A, X B) that lie in region 3 of panel (b), we con-
struct an entirely new set of equilibrium distributions of resources [see Theorem 3].
Note that this region covers not only the portion of the parameter space which corre-
sponds to the trivial region of the constant-sum game [i.e., X A ≤ (X B/n)], but also a
portion of the parameter space in which the constant-sum game is non-trivial. Again,
this breakdown in the relationship between the equilibria in the two games occurs in
sufficiently asymmetric regions of the parameter space because of the discrepancy in
the value of unused resources in the two formulations.

To summarize, whereas there is a one-to-one relationship between the unique equi-
librium sets of univariate marginal distribution functions in the constant-sum and
non-constant-sum versions of the game—when the asymmetry between the players’
budgets is below a threshold—this relationship is nonlinear with respect to the players’
budgets but is linear with respect to the players’ modified budgets.

4 Equilibrium distributions of resources

The following Theorems examine the equilibrium distributions of resources for all
parameter configurations of the non-constant-sum Colonel Blotto game with n ≥ 3
auctions. This section concludes with the case of n = 2 auctions. In the Theorem 1
parameter range, we characterize each player’s unique set of equilibrium univariate
marginal distributions. In the Theorem 2 parameter range with X A += (2v/n), we
characterize the unique set of equilibrium univariate marginal distributions for player
A and provide an equilibrium distribution of resources for player B. Over this range,
player B does not have a unique set of equilibrium univariate marginal distribution
functions.10 In the Theorems 3 and 5 parameter ranges, we provide an equilibrium
distribution of resources for each player. Over this range, neither player has a unique
set of univariate marginal distribution functions.11 For the Theorems 1 and 2 param-
eter ranges with X A += (2v/n), the equilibrium expected payoffs and the equilibrium
total expected expenditures are unique [see Lemma 2 in the Appendix].

10 An alternative set of equilibrium univariate marginal distribution functions is provided in the discussion
following Lemma 7 in the Appendix.
11 For information on the non-uniqueness of the univariate marginals over the Theorem 5 [3] parameter
range, see the discussion preceding Theorem 5 [at the conclusion of the Appendix].

123



The non-constant-sum Colonel Blotto game 407

Three or more auctions

For the game NC B{X A, X B , n, v} with n ≥ 3, Theorem 1 examines all parameter
configurations that lie in the 1a, 1b, and 1c regions of panel (ii) of Fig. 1. Recall
that in these regions the resulting modified budgets satisfy the condition (2/n) <

(MX A/MX B ) ≤ 1.

Theorem 1 Let X A, X B , v, and n ≥ 3 satisfy (2/n) min{v, X B} < X A ≤ X B (equiv-
alently (2/n) < (MX A/MX B ) ≤ 1). The n-variate distribution functions P∗

A and P∗
B

constitute a Nash equilibrium of the game NC B{X A, X B , n, v} if and only if they
satisfy the following two conditions: (1) For each player i, Supp(P∗

i ) ⊂ Bi and (2)
P∗

i , i = A, B, provides the corresponding unique set of univariate marginal distribu-
tion functions {F∗

i, j }n
j=1 outlined below.

∀ j ∈ {1, . . . , n} F∗
A, j

(
x j

)
=

(
1 − MX A

MX B

)

+ x j

(2/n)MX B

(
MX A

MX B

)
for x j ∈

[
0,

2
n

MX B

]
.

∀ j ∈ {1, . . . , n} F∗
B, j

(
x j

)
= x j

(2/n)MX B

for x j ∈
[

0,
2
n

MX B

]
.

The unique equilibrium expected payoff for player A is (nvMX A/2MX B )− MX A , and
the unique equilibrium expected payoff for player B is nv

(
1 − (MX A/2MX B )

)
−MX B .

The unique equilibrium total expected expenditure for player A is MX A (X A, X B) =
min{X A, (nv/2)}, and the unique equilibrium total expected expenditure for player B
is MX B (X A, X B) = min{X B, (nv/2), (nvX A/2)1/2}.

The existence of a pair of n-variate distribution functions that satisfy conditions
(1) and (2) of Theorem 1 is provided in Roberson (2006). In particular, Theorem 4 of
Roberson (2006) establishes the existence of n-variate distribution functions for which
Supp(P∗

i ) ⊂ Bi and that provide the necessary sets of univariate marginal distribution
functions given in Theorem 1. The proof of the uniqueness of the equilibrium sets of
univariate marginal distribution functions, equilibrium payoffs, and equilibrium total
expected expenditures is given in the Appendix.

Although it is straightforward to show that any pair of n-variate distribution func-
tions that satisfies conditions (1) and (2) of Theorem 1 forms an equilibrium, it is
useful to provide the intuition for this result. We begin with the expected payoffs for
each player. Let P∗

B denote a feasible n-variate distribution function for player B with
the univariate marginal distributions {F∗

B, j }n
j=1 given in Theorem 1. If player B is

using P∗
B , then player A’s expected payoff πA, when player A chooses any n-tuple of

bids xA ∈ BA
⋂[0, (2/n)MX B ]n [i.e., one bid for each of the n all-pay auctions such

that
∑

j xA, j ≤ X A and xA, j ∈
[
0, (2/n)MX B

]
for each auction j], is

πA
(
xA, P∗

B
)

=
n∑

j=1

[
vF∗

B, j
(
xA, j

)
− xA, j

]
.
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Recall that for all j, F∗
B, j

(
x j

)
= (x j )/((2/n)MX B ) for x j ∈

[
0, (2/n)MX B

]
. Simpli-

fying yields

πA
(
xA, P∗

B
)

=
(

nv

2MX B

− 1
) n∑

j=1

xA, j . (7)

Similarly, the expected payoff πB to player B from any n-tuple of bids xB ∈
BB

⋂
(0, (2/n)MX B ]n—when player A uses a feasible n-variate distribution P∗

A with
the univariate marginal distributions {F∗

A, j }n
j=1 given in Theorem 1—follows directly,

πB
(
xB, P∗

A
)

= nv

(
1 − MX A

MX B

)
+

(
nvMX A

2M2
X B

− 1

)
n∑

j=1

xB, j . (8)

Observe that neither player can bid below 0 and that bidding above (2/n)MX B is sub-
optimal. Thus, for the Theorem 1, parameter range equations (7) and (8) provide the
maximal payoffs (for player A and player B, respectively) for any feasible n-tuple of
bids across the n all-pay auctions.

Recall that there are three possible cases: (a) neither player uses all of his available
resources, (b) only (the weaker) player A uses all of his available resources, and (c)
both players A and B use all of their available resources. These three regions are shown
graphically in panel (ii) of Fig. 1 as regions 1a, 1b, and 1c, respectively. Suppose that
we are in case (a) in which neither player uses all of his available resources. Case
(a) corresponds to the situation in which the total value of the n auctions nv is low
enough relative to the players’ budgets that neither player has incentive to commit
all of his resources. In the Theorem 1 parameter range, player A’s modified budget is
given by MX A = min{X A, nv/2}. If player A does not use all of his budget, then it
must be that X A > (nv/2) and so MX A = (nv/2). Similarly from player B’s modified
budget in the Theorem 1 range [MX B = min{X B, nv/2, (nvX A/2)1/2}], it follows
that if player A (the weaker player) is not using all of his budget then MX B = (nv/2).
Because MX A = MX B = (nv/2), the expected payoffs given in (7) and (8) are
πA

(
xA, P∗

B

)
= 0 and πB

(
xB, P∗

A

)
= 0, respectively. Observe that in case (a) neither

player has incentive to change their total resource expenditure,
∑

j xi, j , across the n
all-pay auctions. That is, because MX A = MX B = (nv/2) and the opponent is using
the equilibrium strategy, the expected payoff to player i , given in Eqs. (7) and (8), is
zero for all xi ∈ [0, v]n regardless of player i’s total expenditure,

∑
j xi, j , in the n

all-pay auctions.
Now suppose that we are in case (b) in which only player A uses all of his budget.

Case (b) corresponds to the situation in which the total value of the n all-pay auc-
tions nv is high enough that the weaker player optimally commits all of his resources,
but not so high that the stronger player must also commit all of his resources to
the n all-pay auctions. From the preceding discussion, it follows that X A ≤ (nv/2)

and thus MX A = X A. If player B is not using all of his budget then from MX B =
min{X B, nv/2, (nvX A/2)1/2}, it must be that X B > (nvX A/2)1/2 and so MX B =
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(nvX A/2)1/2. Inserting MX A and MX B into Eqs. (7) and (8) and simplifying yields

πA
(
xA, P∗

B
)

=
((

nv

2X A

)1/2

− 1

)
n∑

j=1

xA, j (9)

and

πB
(
xB, P∗

A
)

= nv

(

1 −
(

2X A

nv

)1/2
)

. (10)

Recall that in case (b) X A ≤ (nv/2) and so ((nv/2X A)1/2 − 1) ≥ 0. From Eq. (9),
we see that player A is indifferent with regard to which all-pay auctions to commit
resources, but has incentive to increase his total resource expenditure across the n
all-pay auctions [i.e.,

∑
j xA, j ]. However in case (b), player A’s equilibrium distri-

bution of resources P∗
A expends his budget with probability one [i.e., at each point

bA ∈ Supp(P∗
A),

∑
j xA, j = X A].12 From Eq. (10), we see that, when MX A = X A

and MX B = (nvX A/2)1/2 are inserted into player B’s expected payoff given in Eq.
(8), player B’s expected payoff is the same for all n-tuples xB ∈ (0, (2nvX A)1/2]n .
That is player B’s expected payoff is independent of his total expenditure

∑
j xB, j [so

long as xB ∈ (0, 2(nvX A/2)1/2]n], and so player B does not have incentive to change
his total resource expenditure across the n all-pay auctions.

Finally, suppose that we are in case (c) in which each player is at his respective
budget constraint. Case (c) corresponds to the situation in which the total value of the
n all-pay auctions nv is high enough that both players optimally commit all of their
resources to the n all-pay auctions. Thus, MX A = X A and MX B = X B . From Eqs. (7)
and (8), it follows that

πA
(
xA, P∗

B
)

=
(

nv

2X B
− 1

) n∑

j=1

xA, j (11)

and

πB
(
xB, P∗

A
)

= nv

(
1 − X A

X B

)
+

(
nvX A

2X2
B

− 1

)
n∑

j=1

xB, j . (12)

In case (c), X A < (nv/2) and X B < (nvX A/2)1/2 < (nv/2). Observe in Eq. (11)
that ((nv/2X B) − 1) > 0 and, thus, player A has incentive to increase his total
resource expenditure across the n all-pay auctions, but in his equilibrium distribution
of resources P∗

A he is already at his budget constraint with probability one [i.e., at each
point xA ∈ Supp(P∗

A),
∑

j xA, j = X A]. Similarly, in Eq. (12) ((nvX A/2X2
B)−1) > 0

12 Recall that Roberson (2006) establishes the existence of n-variate distribution functions for which
Supp(P∗

i ) ⊂ Bi , and that in this case MX A = X A . It follows directly that player A expends his budget
with probability one.
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and, thus, player B has incentive to increase his total resource expenditure across the n
all-pay auctions, but in his equilibrium distribution of resources P∗

B , he is already at his
budget constraint with probability one [i.e., at each point xB ∈ Supp(P∗

B),
∑

j xB, j =
X B].

Because Roberson (2006) demonstrates the existence of a pair of n-variate dis-
tributions {P∗

A,, P∗
A,} in which Supp(P∗

i ) ⊂ Bi for i = A, B and that provides the
univariate marginal distributions specified in condition (2) of Theorem 1, it follows
from the arguments given above that such a pair of n-variate distribution functions
constitute an equilibrium in all three cases (a), (b), and (c). The proof of the uniqueness
of the univariate marginal distributions is given in the Appendix.

Once (MX A/MX B ) = (2/n) both the uniqueness of player B’s equilibrium univari-
ate marginal distributions and the relationship with the two-player all-pay auction with
complete information fail to hold. The reason for this breakdown is that once X B/(n−
1) ≤ X A ≤ (2/n) min{v, X B}, or equivalently (1/(n − 1)) ≤ (MX A/MX B ) ≤ (2/n),
it is possible for player B’s equilibrium univariate marginals to have atoms that lie
strictly within the interior and at the upper bound of the domain and player B’s equilib-
rium total expected expenditure is not unique.13 In Theorem 2, we provide the unique
equilibrium univariate marginal distributions for player A and provide an equilibrium
set of univariate marginal distributions for player B.

Theorem 2 Let X A, X B , v, and n ≥ 3 satisfy X B/(n−1) ≤ X A ≤ (2/n) min{v, X B}
or X A = (2v/n) and X B > v(2 − (2/n)) [equivalently 1/(n − 1) ≤ (MX A/MX B ) ≤
(2/n)]. The n-variate distribution function P∗

A is a Nash equilibrium strategy for player
A in the game NC B{X A, X B , n, v} if and only if it satisfies the following two condi-
tions: (1) Supp(P∗

A) ⊂ BA and (2) P∗
A provides the corresponding set of univariate

marginal distribution functions {F∗
A, j }n

j=1 outlined below.

∀ j ∈ {1, . . . , n} F∗
A, j

(
x j

)
=

(
1 − 2

n

)
+ x j

X A

(
2
n

)
for x j ∈ [0, X A] .

Sufficient conditions for P∗
B to be a Nash equilibrium strategy include: Supp(P∗

B) ⊂
BB and that P∗

B provides the corresponding set of univariate marginal distribution
functions {F∗

B, j }n
j=1 outlined below.

∀ j ∈ {1, . . . , n} F∗
B, j

(
x j

)
=






2x j

(
X A− MX B

n

)

(X A)2 for x j ∈ [0, X A)

1 for x j ≥ X A

.

In equilibria satisfying these conditions on P∗
A and P∗

B, the expected payoff for
player A is 2v(1 − (MX B /nX A)) − X A, the expected payoff for player B is
nv − 2v(1 − (MX B /nX A)) − MX B , the total expected expenditure for player A
is MX A (X A, X B) = X A, and the total expected expenditure for player B is
MX B (X A, X B) = min{X B, v(2 − (2/n))}.

13 See the discussion at the conclusion of the Appendix.
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If X A += (2v/n), then the equilibrium expected payoffs and total expected expendi-
tures are unique. In the event that X A = (2v/n) player B’s equilibrium total expected
expenditure is not unique. As a direct consequence player A’s equilibrium expected
payoff is not unique when X A = (2v/n).

The existence of a pair of n-variate distribution functions that satisfy Theorem 2’s
necessary and sufficient condition for player A and sufficient condition for player B
is provided in Theorem 4 of Roberson (2006). Following Lemma 7 in the Appendix,
the Appendix concludes with a sketch, for X A += (2v/n), of the proof of uniqueness
for the equilibrium payoffs, the equilibrium total expected expenditures, and player
A’s univariate marginal distributions. If X A = (2v/n), then there exist equilibria in
which player B uses strategies PB in which

∑
j EFB, j (xB, j ) += MX B (X A, X B), where

since (X A, X B) ∈ T 2, MX B (X A, X B) = min{X B, v(2 − (2/n))}. In fact, there exists
a continuum of equilibria in which PB satisfies a modified form of the sufficient con-
ditions given in Theorem 2. The modification to the sufficient conditions for P∗

B is that
the term MX B in the univariate marginal distributions given above may be replaced
by any value in the set [v, min{X B, v(2 − (2/n))}]. In this case, it is clear that the
equilibrium payoffs are not unique. Player B’s set of equilibrium univariate marginal
distributions is, also, not unique, and an alternative set of equilibrium univariate mar-
ginal distributions for player B is given in the discussion, following Lemma 7, at the
conclusion of the Appendix.

To sketch the proof that a pair of n-variate distributions that satisfy the conditions
of Theorem 2 form an equilibrium, let P∗

B denote a feasible n-variate distribution for
player B with the univariate marginal distributions {F∗

B, j }n
j=1 given in Theorem 2. If

player B is using P∗
B , then player A’s expected payoff πA, when player A chooses any

n-tuple of bids xA ∈ BA, is

πA
(
xA, P∗

B
)

=
(

2v
(
X A − (MX B /n)

)

X2
A

− 1

)
n∑

j=1

xA, j . (13)

Note that (2v/X2
A)(X A − (MX B /n)) − 1 ≥ 0 is equivalent to MX B ≤ (n −

(nX A/2v))X A. If X A < (2v/n), it follows from Eq. (13) that player A has incentive
to choose n-tuples xA ∈ [0, X A]n such that

∑
j xA, j = X A. When X A = (2v/n),

player A’s expected payoff from any n-tuple xA ∈ [0, X A]n is zero.
Similarly, the expected payoff πB to player B from any n-tuple of bids across the

n all-pay auctions xB ∈ BB
⋂

(0, X A]n , when player A uses a feasible n-variate dis-
tribution P∗

A with the univariate marginal distributions {F∗
A, j }n

j=1 given in Theroem
2, is

πB
(
xB, P∗

A
)

= nv

(
1 − 2

n

)
+

(
2v

nX A
− 1

) n∑

j=1

xB, j . (14)

Because X A ≤ (2v/n) it follows that (2v/nX A) − 1 ≥ 0. If X A < (2v/n), player
B has incentive to choose n-tuples xB ∈ (0, X A]n such that

∑
j xB, j = X B . If
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X A = (2v/n), then any n-tuple xB ∈ (0, X A]n provides player B with an expected
payoff of nv(1 − (2/n)).

Because Roberson (2006) demonstrates the existence of a pair of n-variate distri-
butions that result in the univariate marginal distributions given in Theorem 2 and
that satisfy the respective budget restrictions with probability one [i.e., for i = A, B
at each point bi ∈ Supp(P∗

i ),
∑

j xi, j = MXi ], it follows from the arguments given
above that such a pair of n-variate distribution functions constitutes an equilibrium. A
sketch of the proof of the uniqueness of player A’s univariate marginal distributions
is given in the discussion, following Lemma 7, at the conclusion of the Appendix.

The following Theorem constructs entirely new equilibrium distributions of
resources for the highly asymmetric portion of the parameter space in which the
relationship between the constant-sum and non-constant-sum versions of the game
breaks down.

Theorem 3 Let X A, X B , v, and n ≥ 3 satisfy X A < (2v/n) and X A ≤ max{(X B −
(2v/n))/(n − 2), X B/n}. The n-variate distribution functions P∗

A and P∗
B constitute

a Nash equilibrium of the game NC B{X A, X B , n, v} if they satisfy the following two
conditions: (1) For each player i, Supp(P∗

i ) ⊂ Bi and (2) P∗
i , i = A, B, provides

the corresponding set of univariate marginal distribution functions {F∗
i, j }n

j=1 outlined
below.

∀ j ∈ {1, . . . , n} FA, j
(
x j

)
=

(
1 − X A

v

)
+ x j

v
for x j ∈ [0, X A] .

∀ j ∈ {1, . . . , n} FB, j
(
x j

)
=

{
x j
v for x j ∈ [0, X A)

1 for x j ≥ X A

In equilibria satisfying these conditions on P∗
A and P∗

B, the expected payoff for player
A is 0, the expected payoff for player B is nv(1 − (X A/v)), the total expected expen-
diture for player A is (X A)2(n/2v), and the total expected expenditure for player B
is n(X A − (X A)2/2v).

We begin with a sketch of the proof that a pair of n-variate distribution functions
that satisfy the conditions of Theorem 3 form an equilibrium and then move on to the
proof of existence of such a pair of n-variate distribution functions.

To see that these two sets of univariate marginal distributions form an equilibrium
in the Theorem 3 parameter region, let P∗

B denote a feasible n-variate distribution for
player B with the univariate marginal distributions {F∗

B, j }n
j=1 given in Theorem 3. If

player B is using P∗
B , then player A’s expected payoff πA, when player A chooses any

n-tuple of bids xA ∈ BA is

πA
(
xA, P∗

B
)

= 0. (15)

From Eq. (15), player A does not have incentive to increase or decrease his total
expenditure in the n all-pay auctions.

Similarly, the expected payoff πB to player B from any n-tuple of bids across the
n all-pay auctions xB ∈ BB

⋂
(0, X A]n , when player A uses a feasible n-variate
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distribution P∗
A with the univariate marginal distributions {F∗

A, j }n
j=1 given in

Theorem 3, is

πB
(
xB, P∗

A
)

= nv

(
1 − X A

v

)
. (16)

Thus, player B also has the same expected payoff for each xB ∈ (0, X A]n and therefore
has no incentive to increase or decrease his total expenditure in the n all-pay auctions.

Assuming that there exists a pair of n-variate distribution functions that satisfy con-
ditions (1) and (2) of Theorem 3, it follows from the arguments given above that such
a pair of n-variate distribution functions constitute an equilibrium. We now establish
the existence of sufficient n-variate distributions for the Theorem 3 parameter range.

Theorem 4 For each set of equilibrium univariate marginal distribution functions,
{Fi, j }n

j=1, given in Theorem 3, there exists an n-copula, C, such that the support of
the n-variate distribution function C(Fi,1(x1), . . . , Fi,n(xn)) is contained in Bi .

We begin with the proof for player A. The construction of a sufficient n-variate dis-
tribution function for player A and X A ≥ (v/n) is outlined as follows [recall that in
the Theorem 3 parameter region X A < (2v/n)]. The remaining case that X A < (v/n)

is addressed directly following this case.

1. Player A selects n − 2 of the all-pay auctions, each all-pay auction chosen with
equal probability, and bids zero in each of those all-pay auctions.

2. On the remaining 2 all-pay auctions, player A randomizes uniformly on three
line segments: (i) {(x1, x2) ∈ R2

+| x1 + x2 = 2X A − (2v/n)}, (ii) {(x1, x2)| x1 =
0 and 2X A −(2v/n) ≤ x2 ≤ X A}, and (iii) {(x1, x2)| x2 = 0 and 2X A −(2v/n) ≤
x1 ≤ X A}. This support is shown in panel (i) of Fig. 2, and this randomization is
discussed in greater detail directly following this outline.

3. There are nC2 ways of dividing the n all-pay auctions into disjoint subsets such
that n − 2 all-pay auctions receive bids of zero with probability 1 and 2 all-pay
auctions involve randomizations of resources as in point 2. The n-variate distri-
bution function formed by placing probability [nC2]−1 on each of these n-variate
distribution functions has univariate marginal distribution functions which each
has a mass point of (1 − (X A/v)) at 0 and randomizes uniformly on (0, X A] with
the remaining mass.

The pivotal step in this construction is point 2. Let xi denote the allocation of resources
to all-pay auction i ∈ {1, 2}. Consider the support of a bivariate distribution function,
G A, for x1 and x2 which uniformly places mass 1−(nX A/2v) on each of the following
two line segments:

{
(x1, x2)| x1 = 0 and 2X A − 2v

n
≤ x2 ≤ X A

}

{
(x1, x2)| x2 = 0 and 2X A − 2v

n
≤ x1 ≤ X A

}
.

123



414 B. Roberson, D. Kvasov

(i) (ii)
Fig. 2 Supports of players’ bivariate distributions in Theorem 3 parameter range

and uniformly places the remaining mass, (nX A/v) − 1, on the line segment

{
(x1, x2) ∈ R2

+| x1 + x2 = 2X A − 2v
n

}
.

This support is shown in panel (i) of Fig. 2.
In the expression for this bivariate distribution function, we will use the following

notation.

R1:
{
(x1, x2) ∈

[
0, 2X A − 2v

n

]2
}

R2:
{
(x1, x2) ∈

(
2X A − 2v

n , X A
]
×

[
0, 2X A − 2v

n

]}

R3:
{
(x1, x2) ∈

[
0, 2X A − 2v

n

]
×

(
2X A − 2v

n , X A
]}

R4:
{
(x1, x2) ∈

(
2X A − 2v

n , X A
]2

}

The bivariate distribution function for x1, x2 is given by

G A (x1, x2) =






( n
2v

)
max

{
x1 + x2 − 2X A + 2

vn , 0
}

if (x1, x2) ∈ R1
(

1 − nX A
v

)
+ nx1

2v + nx2
2v if (x1, x2) ∈ R2 ∪ R3 ∪ R4

The univariate marginal distributions are given by G A(x1, X A) = (1 − (nX A/2v)) +
(nx1/2v) and G A(X A, x2) = (1 − (nX A/2v)) + (nx2/2v). To see that G A
provides the necessary univariate marginal distributions, observe that given the
randomization outlined above player A allocates zero resources to each all-
pay auction j with probability ((n − 2)/n) + (2/n)(1 − (nX A/2v)) = (1 −
(X A/v)), and randomizes uniformly over the interval (0, X A] with the remaining
mass.
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If X A < (v/n), then player A allocates zero resources to n−1 of the all-pay auctions
and provides a random level of resources in the one remaining all-pay auction. In this
one remaining all-pay auction player A has a mass point of (1 − (nX A/v)) at 0 and
randomizes uniformly over the interval [0, X A] with the remaining mass.

The proof for player B is similar. The construction of a sufficient n-variate distri-
bution function for player B and X A ≥ (v/n) is outlined as follows. In the Theo-
rem 3 parameter region X B ≥ min{nX A, (n − 2)X A + (2v/n)}. If X A ≥ (v/n) then
X B ≥ (n−2)X A +(2v/n). The remaining case in which X A < (v/n) and X B ≥ nX A
is addressed directly following this case.
1. Player B selects n − 2 of the all-pay auctions, each all-pay auction chosen with

equal probability, and bids X A in each of those all-pay auctions.
2. On the remaining 2 all-pay auctions, player B randomizes uniformly on three line

segments: (i) {(x1, x2) ∈ R2
+| x1 + x2 = (2v/n)}, (ii) {(x1, x2)| x1 = X A and 0 ≤

x2 ≤ (2v/n) − X A}, and (iii) {(x1, x2)| x2 = X A and 0 ≤ x1 ≤ (2v/n) − X A}.
This support is shown in Panel (ii) of Fig. 2, and this randomization is discussed
in greater detail directly following this outline.

3. There are nC2 ways of dividing the n all-pay auctions into disjoint subsets such
that n − 2 all-pay auctions receive X A with probability 1 and 2 all-pay auctions
involve randomizations of force as in point 2. The n-variate distribution function
formed by placing probability [nC2]−1 on each of these n-variate distribution func-
tions has univariate marginal distribution functions which each has a mass point
of (1 − (X A/v)) at X A and randomizes uniformly on [0, X A) with the remaining
mass.

The pivotal step in this construction is again point 2. Let xi denote the allocation to
all-pay auction i ∈ {1, 2}. Consider the support of a bivariate distribution function,
G B , for x1 and x2 which uniformly places mass 1 − (nX A/2v) on each of the two
following line segments

{(x1, x2)| x1 = X A and 0 ≤ x2 ≤ 2v
n − X A}

{(x1, x2)| x2 = X A and 0 ≤ x1 ≤ 2v
n − X A}.

and uniformly places the remaining mass, (nX A/v) − 1, on the line segment

{(x1, x2)| x1 + x2 = 2v
n }

This support is shown in Panel (ii) of Fig. 2.
The bivariate distribution function for x1, x2 is given by

G B (x1, x2) =






( n
2v

)
max

{
x1 + x2 − 2

vn , 0
}

if (x1, x2) ∈ [0, X A)2

nx1
2v if x2 = X A, x1 ∈ [0, X A)
nx2
2v if x1 = X A, x2 ∈ [0, X A)

1 if x1, x2 ≥ X A

Following from the arguments given above for player A, it follows that G B provides
the necessary univariate marginal distributions for all-pay auctions 1 and 2.
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If X A < (v/n) and X B ≥ nX A, then player B allocates X A to n − 1 of the all-pay
auctions and provides a random level of resources in the one remaining all-pay auc-
tion. In this one remaining all-pay auction player B has a mass point of (1− (nX A/v))

at X A and randomizes uniformly over the interval [0, X A) with the remaining mass.
This completes the proof of the existence of sufficient n-variate distributions for

the Theorem 3 parameter range.
In the remaining region in which max{(X B− 2v

n )/(n−2), X B/n} < X A < X B/(n−
1), as in the corresponding constant-sum parameter range, both players have atoms
in the interior of the domains of their univariate marginal distribution functions. It
should be noted that in this region, the results are sensitive to the specification of the
tie-breaking rule.

Let # denote the amount of resources available to player B if player B has bid X A
in n − 1 of the auctions:

# = X B − (n − 1)X A.

Recalling that the floor function 'x( denotes the largest integer less than or equal to
x , define k as

k =
⌊ X A

X B − (n − 1)X A

⌋
=

⌊ X A

#

⌋
.

In this region of the parameter space, (n − 1)X A < X B < nX A and so k ≥ 1. It will
also be helpful to note that X A/(k + 1) < # ≤ X A/k.

In this region of the parameter space, the equilibrium univariate marginal distribu-
tions are not unique.

Theorem 5 Let X A, X B, v, and n ≥ 3 satisfy max{(X B −(2v/n))/(n−2), X B/n} <

X A < X B/(n − 1). The n-variate distribution functions P∗
A and P∗

B constitute a Nash
equilibrium of the game NC B{X A, X B , n, v} if they satisfy the following two con-
ditions: (1) For each player i, Supp(P∗

i ) ⊂ Bi and (2) P∗
i , i = A, B, provides the

corresponding set of univariate marginal distribution functions {F∗
i, j }n

j=1 outlined
below, ∀ j ∈ {1, . . . , n}

F∗
B, j (x) =






x
v if x ∈

[
0, X A

k+1

)

(
2
n − #+X A

v

)

k+1 + x
v if x ∈

[
X A

k+1 , 2X A
k+1

)

...
...

i
(

2
n − #+X A

v

)

k+1 + x
v if x ∈

[
i X A
k+1 , (i+1)X A

k+1

)

...
...

k
(

2
n − #+X A

v

)

k+1 + x
v if x ∈

[
k X A
k+1 , X A

)

1 if x ≥ X A

.
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If k ≥ 2, then ∀ j ∈ {1, . . . , n}

F∗
A, j (x)

=






1 − 2
n +

(
2
n − X A

v

)

k+1 + x
v if x ∈ [0,#)

1 − 2
n +

2
(

2
n − X A

v

)

k+1 + x
v if x ∈

[
#,# + X A−#

k−1

)

...
...

1 − 2
n +

(i+1)
(

2
n − X A

v

)

k+1 + x
v if x ∈

[
# +

(
i − 1

)(
X A−#

k−1

)
,# + i

(
X A−#

k−1

))

...
...

1 − 2
n +

k
(

2
n − X A

v

)

k+1 + x
v if x ∈

[
# +

(
k − 2

)(
X A−#

k−1

)
, X A

)

1 if x > X A

.

If k = 1, then ∀ j ∈ {1, . . . , n}

F∗
A, j (x) =






1 − 2
n +

(
2
n − X A

v

)

2 + x
v if x ∈ [0,#)

1 − 2
n +

1.5
(

2
n − X A

v

)

2 + x
v if x ∈ [#, X A)

1 if x > X A

.

In equilibria satisfying these conditions on P∗
A and P∗

B, the expected payoff for player
A is [(2vk/n)− k(#+ X A)]/(k + 1), the expected payoff for player B is (n − 1)(v −
X A) + v[1 − (2/n) + [(2/n) − (X A/v)]/(k + 1)], the total expected expenditure for
player A is X A − (1−nX A/2v)(X A −#)/(k +1), and the total expected expenditure
for player B is nX A(nX B −(n−1)2 X A)/2v+(1−n(#+ X A)/2v)(k+2)X A/(k+1).

We begin with a sketch of the proof that a pair of n-variate distribution functions that
satisfy the conditions of Theorem 5 form an equilibrium and then move on to the proof
of existence of such a pair of n-variate distribution functions. We will focus primarily
on the case that k ≥ 2 and conclude with the case that k = 1.

We first show that player A cannot increase his payoff by deviating to a feasible
strategy and then examine the case of player B. Let P∗

B denote a feasible n-variate
distribution function for player B with the univariate marginal distribution functions
{F∗

B, j } given in Theorem 5. We begin with the case that player A chooses an n-tuple
of bids, xA, in which ties arise with probability zero. That is, xA ∈ BA such that for
all j = 1, . . . , n and i = 1, . . . , k + 1, xA, j += i X A/(k + 1). If player B is using P∗

B ,
then player A’s expected payoff πA, when player A chooses any such n-tuple of bids
is

πA
(
xA, P∗

B
)

=
n∑

j=1

[
vF∗

B, j
(
xA, j

)
− xA, j

]
. (17)
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To simplify the following discussion, for each j = 1, . . . , n let player B’s univariate
marginal distributions be written as

F∗
B, j

(
xA, j

)
= γB(xA, j ) + xA, j

v
, (18)

where, because we are focusing on the case that ties occur with probability zero, the
term γB(xA, j ) is the sum of the mass on all atoms that lie strictly below xA, j and is
given by the expression for F∗

B, j in the statement of Theorem 5. Note that for each of
player B’s univariate marginal distribution functions each atom that lies strictly in the
interior of the domain has the same mass, [(2/n) − ((# + X A)/v)]/(k + 1). Thus,
the term γB(xA, j ) is equal to the number of atoms that lie below xA, j multiplied by
the mass on each atom. Inserting Eq. (18) into Eq. (17) and simplifying, player A’s
expected payoff is given by

πA
(
xA, P∗

B
)

= v

n∑

j=1

γB(xA, j ), (19)

which is equal to the value of the prize multiplied by both the number of player B’s
atoms that player A outbids and by the mass on each atom, [(2/n)−((#+X A)/v)]/(k+
1).

Next note that in Theorem 5’s set of univariate marginal distribution functions for
player B, {F∗

B, j }n
j=1, the step size between each atom is X A/(k +1), and the first atom

occurs at X A/(k + 1). There are a total of k + 1 atoms in each of player B’s univariate
marginal distributions. Recall that the rule for breaking ties at a common bid of X A in
an auction is that player B wins the auction. In the event that player A bids X A in auc-
tion j , then—because the (k+1)th atom is at X A—player A outbids exactly k of player
B’s atoms. Suppose that in auction j player A’s bid xA, j strictly outbids θ ≤ k of player
B’s atoms. Because the step size between atoms is X A/(k + 1), strictly outbidding
θ ≤ k of player B’s atoms requires that xA, j > θ X A/(k + 1). Then because xA ∈ BA
and xA, j > θ X A/(k + 1), it follows that

∑
j ′ += j xA, j ′ < (k + 1 − θ)(X A/(k + 1)).

This implies that, in auctions other than j , the maximal number of player B’s atoms
that player A can feasibly outbid with his remaining budget is k − θ . Equivalently,
across all auctions, player A can outbid at most k of player B’s atoms. Thus, player
A’s expected payoff for an any n-tuple of bids xA ∈ BA such that for all j = 1, . . . , n
and i = 1, . . . , k + 1, xA, j += i X A/(k + 1) is less than or equal to his equilibrium
expected payoff,

πA
(
xA, P∗

B
)

= v

n∑

j=1

γB(xA, j ) ≤
vk

(
2
n − #+X A

v

)

k + 1
. (20)

To conclude the proof that player A has no feasible payoff increasing deviations,
we now address the case that, with positive probability, a tie occurs in one or more auc-
tions. Recall that if a tie occurs and the common bid is neither X A nor X B −(n−1)X A,
then each player wins the auction with equal probability. It follows that if exactly two
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ties occur, then player A’s expected payoff is less than or equal to his equilibrium
expected payoff given in Eq. (20). However, if more than two ties occur, then player
A’s expected payoff is strictly less than his equilibrium expected payoff.

Using a similar argument for player B, it can be shown that the maximal number
of player A’s atoms that player B can outbid is (n − 1)(k + 1) + 1. One difference in
this case is that in each auction player A’s atom at zero has more mass than each of
the other atoms, but each of the other atoms has the same mass. Observe that in the
Theorem 5 equilibrium univariate marginal distributions for player B, player B’s bid
is almost surely strictly positive. Therefore, player B outbids player A’s atom at zero
in each of the auctions.

There are three cases to consider: (i) player B bids X A in (n − 1) of the auctions,
(ii) player B bids X A in (n − 2) of the auctions, and (iii) player B bids X A in less than
(n − 2) of the auctions. Beginning with case (i), recall that # = X B − (n − 1)X A.
If player B bids X A in (n − 1) of the auctions and in the remaining auction j bids
xB, j ∈ (0,#], then, because player A has k + 1 atoms in each univariate marginal,
player B outbids (n − 1)(k + 1) + 1 of A’s atoms and the expected payoff for player
B is

πB
(
xB, P∗

A
)

=
(

n − 1
)(

v − X A

)
+ v

(
1 − 2

n
+

2
n − X A

v

k + 1

)
. (21)

Thus, there are no feasible payoff increasing deviations in which player B bids X A in
(n − 1) of the auctions.

For cases (ii) and (iii), we begin with the restriction that player B chooses an
arbitrary n-tuple of bids xB ∈ BB

⋂
(0, X A]n such that for each auction j and i =

1, . . . , k − 2, xB, j += # + i[(X A − #)/(k − 1)]. That is, player B chooses an n-tuple
of bids in which for each auction j with xB, j ∈ (#, X A) a tie occurs with probability
zero. Recall that in any auction j in which player B bids xB, j = X A, the tie-breaking
rule implies that player B wins that auction with probability one. Conversely, if player
B bids xB, j = # in auction j and a tie occurs, then player A wins that auction.

If player A is using P∗
A and player B chooses an n-tuple of bids of the form assumed,

then player B’s expected payoff may be written as

πB
(
xB, P∗

A
)

= v

n∑

j=1

γA
(
xB, j

)
, (22)

where γA(xB, j ) is the sum of the mass on all atoms that lie strictly below xB, j if
xB, j ∈ (0, X A), and is the sum of the mass on all atoms, 1 − (X A/v), if xB, j = X A.

In case (ii), if player B chooses any n-tuple of bids xB ∈ BB
⋂

(0, X A]n such that
a bid of X A is made in all but two auctions, denoted j ′ and j ′′, then player B’s budget
constraint implies that xB, j ′ + xB, j ′′ ≤ # + X A. In this case, player B’s expected
payoff is

πB
(
xB, P∗

A
)

=
(

n − 2
)(

v − X A

)
+ vγA(xB, j ′) + vγA(xB, j ′′), (23)
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and for any feasible pair of bids xB, j ′ and xB, j ′′ in (0, X A]2 such that xB, j ′ + xB, j ′′ =
# + X A and ties occur with probability zero in auctions j ′ and j ′′ player B outbids
k +2 of A’s atoms in auctions j ′ and j ′′, which yields the equilibrium expected payoff.
Thus, there are no feasible payoff increasing deviations of this form in which player
B bids X A in (n − 2) of the auctions

For case (iii), observe that because player A has an atom at X A in each of his univar-
iate marginal distributions, player B cannot increase his payoff by deviating to feasible
n-tuples that bid X A in less than (n − 2) auctions. This follows from the tie-breaking
rule at bids of X A and the following two facts. First, for each of player A’s univariate
marginal distribution functions, each atom that lies strictly in the interior of the domain
has the same mass, [(2/n) − (X A/v)]/(k + 1). Second, player A has atoms at 0 and
at # (where X A/(k + 1) < # ≤ X A/k), but the step size between the remaining
atoms is (X A − #)/(k − 1) > #. This completes the sketch of the proof that player
B has no feasible payoff increasing deviations when player B chooses an n-tuple of
bids in which for each auction j with xB, j ∈ (#, X A) a tie occurs with probability
zero. If player B chooses an n-tuple of bids in which there exists at least one auction
j with xB, j ∈ (#, X A) such that a tie occurs with positive probability (i.e., for some
i = 1, . . . , k − 2, xB, j = # + i[(X A − #)/(k − 1)]), then the arguments given for
player A in the case that one or more ties occurs with strictly positive probability rule
out the possibility of this being a payoff increasing deviation for player B.

One pair of equilibrium n-variate distribution functions that satisfy the conditions
of Theorem 5 is described as follows. The support of each player’s n-variate joint
distribution function consists of an absolutely continuous distribution over a set of
line segments in R+

n combined with a set of atoms on n-tuples. Mass is distributed
among the atoms and line segments in such a way that the opponent is indifferent
among all feasible pure strategies and the mass sums to one. More precisely, player
A randomly bids 0 in n − 2 of the all-pay auctions, each all-pay auction chosen with
equal probability (n − 2)/n, and randomizes according to a symmetric bivariate dis-
tribution function in the remaining 2 auctions. Conversely, player B randomly bids
X A in n −2 of the all-pay auctions, each all-pay auction chosen with equal probability
(n −2)/n, and randomizes according to a symmetric bivariate distribution function in
the remaining 2 auctions. The supports of these bivariate distributions are illustrated
in Fig. 3. To avoid confusion between atoms in the supports of the respective bivariate
distribution functions described below and atoms in the resulting univariate marginal
distributions, 2-tuples in the support of a bivariate distribution which receive positive
mass are referred to as bivariate atoms. Similarly, points in the support of a univariate
marginal distribution that receive positive mass are referred to as univariate atoms.

We now specify the conditional bivariate marginal distribution that player A uti-
lizes in the 2 randomly chosen all-pay auctions which do not receive a bid of 0. Player
A’s conditional bivariate marginal distribution in these 2 auctions has k + 1 bivariate
atoms,14 each bivariate atom receiving the same weight, (1 − (nX A)/(2v))/(k + 1).

14 Observe that at each of the “bivariate atoms” described here player A allocates 0 resources to the other
n − 2 auctions. Thus, each of these bivariate atoms is actually an atom on an n-tuple.
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(i) (ii)
Fig. 3 Supports of players’ bivariate distributions in Theorem 5 parameter range (k = 3)

These bivariate atoms are located at the points (0, X A), (X A, 0), and

(
# +

(
k − 1 − i

)( X A − #

k − 1

)
,# +

(
i − 1

)( X A − #

k − 1

))
, i = 1, . . . , k − 1.

(24)

Player A uniformly distributes the remaining mass of (nX A)/(2v) along the line seg-
ment {(x1, x2) ∈ R2

+| x1 + x2 = X A}. To see that this construction provides the
necessary univariate marginal distributions, observe that in the randomization out-
lined above player A allocates zero resources to each all-pay auction j with proba-
bility (n − 2)/n + (2/n)[1 − (nX A/2v)]/(k + 1) = 1 − (2/n) + [2/(n(k + 1))] −
[X A/(v(k + 1))], randomizes uniformly over the interval (0, X A] with probability
(2/n)(nX A)/(2v) = X A/v, and has the specified univariate atoms with the remain-
ing probability.

Moving on to player B’s conditional bivariate marginal distribution, consider a
bivariate distribution function with k + 1 bivariate atoms, each bivariate atom receiv-
ing the same weight, [1−(n/2v)(#+ X A)]/(k +1). These bivariate atoms are located
at the points

(
(k + 1 − i)X A

(k + 1)
,
(1 + i)X A

(k + 1)

)
, i = 0, . . . , k. (25)

Player B uniformly distributes the remaining mass of n(#+ X A)/(2v) along the three
line segments {(x1, x2) ∈ R2

+| x1 + x2 = X B − (n − 2)X A}, {(x1, x2) ∈ R2
+| x1 =

X A and 0 ≤ x2 ≤ #}, and {(x1, x2) ∈ R2
+| x2 = X A and 0 ≤ x1 ≤ #}. To see that

this construction provides the necessary univariate marginal distributions, observe that
in the randomization outlined above player B allocates X A resources to each all-pay
auction j with probability ((n − 2)/n)+ (#/v)+[(2/n)− ((#+ X A)/v))]/(k + 1),
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randomizes uniformly over the interval [0, X A) with probability (2/n)(nX A)/(2v) =
X A/v, and has the specified univariate atoms with the remaining probability.

It is important to note that for this pair of equilibrium n-variate distribution func-
tions, neither player exhausts his budget with probability one. However, as shown
below, each n-tuple in the support yields the equilibrium expected payoff for the cor-
responding player, and as shown above, neither player has a, feasible, payoff increasing
deviation.

Recall that each player i’s expected payoff [Eqs. (19) and (22)] is proportional,
subject to the tie-breaking rule, to the number of player −i’s univariate atoms that
he outbids. As is indicated in the equilibrium payoffs given in Theorem 5, player A
outbids k of player B’s univariate atoms, and player B outbids (n − 2)(k + 1)+ k + 2
of player A’s univariate atoms. Next, note the following inequality

(k − i)X A

k + 1
< # +

(
k − 1 − i

)( X A − #

k − 1

)
<

(k + 1 − i)X A

k + 1
, (26)

which holds for all i = 1, . . . , k−1. This inequality follows directly from the relation-
ship between #, k, and X A. In particular, X A/(k + 1) < # ≤ X A/k. The inequality
in Eq. (26) shows that when player A bids # + (k − 1 − i)((X A − #)/(k − 1)) in an
auction he outbids k − i of player B’s univariate atoms in that auction. Conversely,
as Eq. (26) holds for all i = 1, . . . , k − 1, it also shows that when player B bids
(k +1− i)X A/(k +1) in an auction he outbids k +1− i of player A’s univariate atoms
in that auction. From the locations of each player’s bivariate atoms given in Eqs. (24)
and (25), it follows that for each player i each of his bivariate atoms outbids the same
number of player −i’s univariate atoms as is indicated in his equilibrium expected
payoff [k atoms for player A and (n − 2)(k + 1)+ k + 2 for player B]. This completes
the proof of Theorem 5 for k ≥ 2.

We now address the case of k = 1. Just as with k ≥ 2, the equilibrium univariate
marginal distributions are not unique. For k = 1, the construction specified above
for player A fails to be feasible given his budget constraint. In this case, player A’s
univariate marginals are modified, but for player B, the construction specified above,
but with k = 1, still applies.

The sketch of the proof that a pair of n-variate distribution functions, which satisfy
the conditions of Theorem 5 with k = 1, form an equilibrium follows along the same
lines as for k ≥ 2. For the proof of existence of such an n-variate distribution function
for player A, consider the following construction.

Player A randomly allocates 0 resources to n−2 of the all-pay auctions, each all-pay
auction chosen with equal probability, (n −2)/n. On the remaining 2 all-pay auctions
player A utilizes a bivariate distribution function with 4 bivariate atoms, each bivariate
atom receiving the same weight, (1 − (nX A)/(2v))/4. Player A’s bivariate atoms on
these two remaining all-pay auctions are located at the points (0, X A), (X A, 0), (0,#),
and (#, 0). Player A uniformly distributes the remaining mass of (nX A)/(2v) along
the line segment {(x1, x2) ∈ R2

+| x1+x2 = X A}. To see that this construction provides
the necessary univariate marginal distributions, observe that in the randomization out-
lined above player A allocates zero resources to each all-pay auction j with probability
(n − 2)/n + (2/n)[1 − (nX A/2v)]/2 = 1 − (2/n)+ (1/n)− [X A/(2v)], randomizes

123



The non-constant-sum Colonel Blotto game 423

uniformly over the interval (0, X A] with probability (2/n)(nX A)/(2v) = X A/v, and
has the specified univariate atoms with the remaining probability.

As before, two of player A’s atoms do not exhaust player A’s budget. However, each
of these bivariate atoms clearly outbids one of player B’s univariate atoms and results
in the equilibrium expected payoff for player A.

Two auctions

Before outlining the case of two auctions, it is important to note that for n = 2 the equi-
librium univariate marginal distributions are non-unique for all parameter regions.15

However, as is shown in the Appendix, in the Theorems 1 and 2 parameter ranges with
X A += (2v/n), the equilibrium payoffs and total expenditures are unique.

Recall that in both panels of Fig. 1, the parameter space is partitioned by the four
rays: (a) X A = X B/n, (b) X A = X B/(n − 1), (c) X A = 2X B/n, and (d) X A = X B .
In the case that n = 2, the last three of these collapse to the single ray X A = X B ,
and the first of these becomes X A = X B/2. The following partition of the parameter
space, for n = 2, provides the portions of the parameter space in which the theo-
rems in the preceding subsection provide sufficient, but not necessary, conditions for
equilibrium.

T1*:
{
(X A, X B) ∈ R2

+
∣∣v < X A ≤ X B

}

T2*:
{
(X A, X B) ∈ R2

+
∣∣X B = X A ≤ v or X A = v and X B > v

}

T3a*:
{
(X A, X B) ∈ R2

+
∣∣X B ≥ v and X B

2 < X A < v
}

T3b*:
{
(X A, X B) ∈ R2

+
∣∣X A < v and X A ≤ X B

2

}

T5*:
{
(X A, X B) ∈ R2

+
∣∣X B < v and X B

2 < X A < v
}

These regions and the resulting modified budgets are illustrated in Fig. 4 below.
Recall that in the constructions provided for the Theorems 3 and 5 parameter

regions, each player allocated a specified bid to (n − 2) of the all-pay auctions
[for player A, this was a bid of 0, and for player B, this was a bid of X A]. When
n = 2, (n − 2)/n = 0 and the constructions for both of those regions simply become
the bivariate distributions that were specified for the remaining two auctions. It is
straightforward to show that in the Theorems 1 and 2 regions the Fréchet-Hoeffding
lower bound 2-copula combined with the univariate marginals specified in Theorems 1
and 2, which for player i = A, B are given by

P∗
i

(
bi,1, bi,2

)
= max

{
F∗

i,1
(
bi,1

)
+ F∗

i,2
(
bi,2

)
− 1, 0

}
,

results in a pair of bivariate distribution functions for which Supp(P∗
i ) ⊂ Bi and that

provide an equilibrium pair of univariate marginal distribution functions.

15 With n = 2 each player’s pair of univariate marginals need not be independent of the identity of the auc-
tion. For example, the location of and/or the mass placed on atoms need not be symmetric across auctions.
For further information, see Macdonell and Mastronardi (2011).
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Fig. 4 Parameter space n = 2

5 Conclusion

Kvasov (2007) introduces a non-constant-sum version of the Colonel Blotto game that
relaxes the “use it or lose it” feature of the traditional constant-sum formulation of
the game. In the case of symmetric budgets, that article establishes that there exists a
one-to-one mapping from the set of unique univariate marginal distribution functions
in the constant-sum game to those in the non-constant-sum game. As the analysis
of the non-constant-sum version of the Colonel Blotto game is extended to allow
for asymmetric budget constraints, we find that—as long as the level of asymmetry
between the players’ budgets is below a threshold—there still exists a one-to-one map-
ping from the unique set of equilibrium univariate marginal distribution functions in
the constant-sum game to those in the non-constant-sum game. The classic Colonel
Blotto game provides an important benchmark in the study of the logic of strategic
multi-dimensional conflict, and, as our results show, the nature of the incentives in
such conflicts remains largely unchanged when the use it or lose it feature of the
constant-sum game is relaxed.

Appendix

For the Theorem 1 parameter range with n ≥ 3 (denoted as T1), this Appendix char-
acterizes each player’s unique: equilibrium univariate marginal distribution functions,
equilibrium payoffs, and equilibrium total expected expenditures. We also show that
the uniqueness of the equilibrium payoffs and equilibrium total expected expenditures
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The non-constant-sum Colonel Blotto game 425

extends to the case of n = 2. The proof for the Theorem 2 parameter range with
X A += (2v/n) follows along similar lines, and we conclude with a sketch of that
proof.

For (X A, X B) ∈ T 1, the proof of the uniqueness of the univariate marginal distri-
butions involves formally showing that, as the Euler–Lagrange equations given in Eq.
(5) of Sect. 3 suggest, there exists a one-to-one correspondence between the equilib-
rium univariate marginal distributions in the Non-Constant-Sum Colonel Blotto game
and the equilibrium distributions of bids from a unique set of two-bidder independent
and identical simultaneous all-pay auctions. The uniqueness of the equilibrium uni-
variate marginal distributions follows from the characterization of the all-pay auction
by Hillman and Riley (1989) and Baye et al. (1996).

In the case of the standard constant-sum formulation of the Colonel Blotto game, the
proof of the uniqueness of the equilibrium marginal distributions (Roberson 2006) uti-
lizes the fact that in a two-player constant-sum game with multiple equilibria, all equi-
libria are interchangeable. In Lemmas 1–3, we show that for the Theorem 1 parameter
range, this interchangeability of equilibria property also applies to the Non-Constant-
Sum Colonel Blotto game. Given this result on the interchangeability of equilibria,
the rest of the proof follows along lines similar to Roberson (2006).

In the discussion that follows, we will utilize the following notational conventions.
Given an n-variate distribution function Pi with Supp(Pi ) ⊂ Bi and the set of uni-
variate marginal distribution functions {Fi, j }n

j=1, let MXi denote the total expected
expenditure across the entire set of auctions, that is MXi ≡ ∑n

j=1 EFi, j (xi, j ). Also, let
s̄i, j and si, j denote the upper and lower bounds of player i’s distribution of resources
for all-pay auction j .

We begin the proof of the interchangeability of equilibria in the Non-Constant-Sum
Colonel Blotto game by showing that if the pair of the players’ resources (X A, X B) ∈
T 1 [i.e., (2/n) min{v, X B} < X A ≤ X B], then in any equilibrium the total expected
expenditures (MX A , MX B ) are uniquely determined by (X A, X B) and equal to those
given in Theorem 1. The proof of this result is done in two steps. First, Lemma 1
shows that if (X A, X B) ∈ T 1, then in any equilibrium {PA, PB} the pair of equilib-
rium total expected expenditures (MX A , MX B ) must lie in the set of equilibrium total
expected expenditures for Theorem 1 as illustrated by the shaded region 1c in panel (ii)
of Fig. 1 and delineated by the conditions: (i) (2/n)MX B ≤ MX A ≤ MX B , (ii) MXi ≤
(nv/2) for i = A, B, and (iii) if MX A > (2v/n) then MX B ≤ (nvMX A/2)1/2. Then,
Lemma 2 shows that in the Theorem 1 parameter region the equilibrium total expected
expenditures are uniquely determined by the pair of the players’ resources (X A, X B).

Lemma 1 If (X A, X B) ∈ T1, then in any equilibrium {PA, PB} the pair of total
expected expenditures (MX A , MX B ) are contained in the region delineated by: (i)
(2/n)MX B ≤ MX A ≤ MX B , (ii) MXi ≤ (nv/2) for i = A, B, and (iii) if MX A >

(2v/n) then MX B ≤ (nvMX A/2)1/2.

Proof First, note that the total value at stake in the auctions is nv. Let αi denote the
fraction of the total value of the auctions that player i expects to win in this equilibrium,
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αi = 1
n

EPi




n∑

j=1

F−i, j (xi, j )



 = 1 − 1
n

EP−i




n∑

j=1

Fi, j (x−i, j )



 (27)

where the first [second] expectation is taken with respect to player i’s joint distri-
bution Pi [player −i’s joint distribution P−i ] and the second equality follows from
αA + αB = 1. It is instructive to note that the αi term is precisely player i’s expected
payoff in the corresponding constant-sum Colonel Blotto game with budget constraints
given by the expected expenditures (MX A , MX B ). Player i’s expected payoff may be
written as:

πi (Pi , P−i ) = nvαi − MXi . (28)

First, we show that there exist no equilibria in which MX A + MX B > nv. This proof
is by contradiction. Suppose that (X A, X B) ∈ T 1, and that there exists an equilibrium
{PA, PB} in which MX A + MX B > nv. From Eq. (28), it follows that the sum of the
players’ expected payoffs is

πA(PA, PB) + πB(PB, PA) = nv − MX A − MX B . (29)

Because in any equilibrium each player must have a nonnegative expected payoff, it
follows that the sum of the players’ expected payoffs must also be nonnegative. Thus,
from Eq. (29), there exist no equilibria in which MX A + MX B > nv, a contradiction
to the assumption that there exists such an equilibrium.

Focusing now on equilibria in which MX A + MX B ≤ nv, for the T1 region, there are
two remaining cases to consider:16 (i) MX A > MX B , and (ii) MX A ≤ MX B , MX A >

(2v/n), and MX B > (nvMX A/2)1/2.
We begin with case (i). By way of contradiction, suppose that there exists an equi-

librium {PA, PB} in which MX A > MX B . Because X B ≥ X A, player B can always
duplicate player A’s strategy and earn an expected payoff of at least (nv/2) − MX A .
That is

πB(PB, PA) ≥ nv

2
− MX A (30)

From Eqs. (28) and (30), it follows that αB ≥ (1/2)− (MX A − MX B )/nv. Because
αA + αB = 1 it follows that

πA(PA, PB) ≤ nv

2
− MX B (31)

We will now use the upper bound on player A’s expected payoff from the strategy
profile {PA, PB}, given in Eq. (31), to show that there exists a profitable deviation,
P̃A, for player A. From Roberson (2006) [see the comments following Theorem 1

16 Observe that cases (i) and (ii) together with MX A + MX B > nv correspond to the non-shaded portions
of the T1 region in panel (ii) of Fig. 1.
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in this article], we know that there exists a joint distribution function P̃A that satis-
fies the three following properties: Supp(P̃A) ⊂ BA, the total equilibrium expected
expenditures are given by M̃X A = min{X A, (nvMX B /2)1/2}, and the set of univariate
marginal distributions are given by

∀ j ∈ {1, . . . , n} F̃∗
A, j (x) = x

(2/n)M̃X A
for x ∈

[
0, 2

n M̃X A

]
.

Player A’s expected payoff from the feasible deviation P̃A is

πA(P̃A, PB) = nv



1 − EPB




n∑

j=1

F̃∗
A, j

(
xB, j

)






 − M̃X A

≥ nv

(
1 − MX B

2M̃X A

)
− M̃X A . (32)

If Supp(PB) ⊂ [0, 2
n M̃X A ]n , then Eq. (32) holds with equality.

Recall that in the equilibrium {PA, PB} Eq. (31) provides an upper bound on player
A’s expected payoff. However, P̃A is a feasible payoff increasing deviation from PA.
That is, because MX A + MX B ≤ nv and by assumption MX A > MX B , it follows that
MX B < (nv/2). Thus, MX B < M̃X A < (nv/2), and it follows from Eqs. (31) and (32)
that πA(P̃A, PB) > πA(PA, PB). A contradiction to the assumption that there exists
an equilibrium {PA, PB} in which MX A > MX B .

The proof of case (ii) follows along a similar line as the proof for case (i). By
way of contradiction, suppose that there exists an equilibrium {PA, PB} in which
MX A ≤ MX B , MX A > (2v/n), and MX B > (nvMX A/2)1/2. Parallel to the lower
bound of player B’s expected payoff in case (i) given in Eq. (30), in case (ii) player
A can establish a lower bound on his expected payoff. As with the upper bound of
player A’s expected payoff in case (i) given in Eq. (31), in case (ii) the upper bound
on player B’s expected payoff is given by nv(1 − αA) − MX B . It can then be shown
that there exists a profitable deviation for player B, a contradiction to the assumption
that such an equilibrium exists. This completes the proof of Lemma 1. 12

Lemma 2 If (X A, X B) ∈ T1, then in any equilibrium {PA, PB}, the pair of total
expected expenditures (MX A , MX B ) is equal to the pair of equilibrium total expected
expenditures uniquely determined by (X A, X B) in Theorem 1. Furthermore, the equi-
librium expected payoffs are also uniquely determined by (X A, X B).

Proof By way of contradiction suppose that for some (X A, X B) ∈ T1, there exists an
equilibrium {PA, PB} with a pair of total expected expenditures (MX A , MX B ) that sat-
isfies Lemma 1 [i.e., (MX A , MX B ) is contained in the set of equilibrium total expected
expenditures for Theorem 1] but in which the pair (MX A , MX B ) differs from the pair
of total expected expenditures uniquely determined by (X A, X B) in Theorem 1.

The outline of the proof is as follows. First, we show how feasible and total-
expected-expenditure invariant deviations from {PA, PB} may be used to determine
the payoffs in the original equilibrium {PA, PB}. Then, we show that because the pair
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(MX A , MX B ) differs from the pair of total expected expenditures uniquely determined
by (X A, X B) in Theorem 1, at least one player i has a strictly payoff increasing devi-
ation—in which player i’s total-expected-expenditure differs from MXi —from the
assumed equilibrium {PA, PB}.

Beginning with the first step, because (MX A , MX B ) satisfies Lemma 1, we know
from Roberson (2006) that there exists a joint distribution function P∗

A which satisfies
the two following properties: Supp(P∗

A) ⊂ BA and the set of univariate marginal
distributions are given by

∀ j ∈ {1, . . . , n} F∗
A, j (x) =

(
1 − MX A

MX B

)
+ x

(2/n)MX B

(
MX A
MX B

)
for x ∈

[
0, 2

n MX B

]

Observe that the feasible deviation P∗
A has a total expected expenditure of MX A . Such

a feasible deviation ensures that

αA ≥ MX A

2MX B

and αB ≤ 1 − MX A

2MX B

. (33)

Similarly, there exists a feasible deviation P∗
B with Supp(P∗

B) ⊂ BB and the set of
univariate marginal distributions:

∀ j ∈ {1, . . . , n} F∗
B, j (x) = x

(2/n)MX B
for x ∈

[
0, 2

n MX B

]

Note that P∗
B is a feasible deviation which is invariant with respect to the total expected

expenditure MX B . Such a strategy ensures that

αA ≤ MX A

2MX B

and αB ≥ 1 − MX A

2MX B

. (34)

From Eqs. (33) and (34), it follows that the original equilibrium strategy profile
{PA, PB} yields the respective total expected fractions of contests won

αA = MX A

2MX B

and αB = 1 − MX A

2MX B

. (35)

Inserting Eq. (35) back into Eq. (28), the players’ expected payoffs from the original
equilibrium strategy profile {PA, PB} are

πA(PA, PB) = nvMX A

2MX B

− MX A and πB(PB, PA) = nv
(
1 − MX A

2MX B

)
− MX B .

(36)

We now show that because the pair of total expected expenditures (MX A , MX B ) in
the original equilibrium strategy profile {PA, PB} differ from the pair of total expected
expenditures uniquely determined by (X A, X B) in Theorem 1 (denoted M∗

Xi
for
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i = A, B), at least one player has a strictly payoff increasing deviation from the
assumed equilibrium {PA, PB}.

By assumption {PA, PB} is an equilibrium, and thus neither player i can increase his
expected payoff by deviating to a feasible strategy with a different total expected expen-
diture MXi . Recall that in Theorem 1 player A’s equilibrium total expected expenditure
is M∗

X A
= min{X A, (nv/2)}. By way of contradiction assume that MX A += M∗

X A
. If

MX B = (nv/2), then because (MX A , MX B ) satisfies Lemma 1 it must be the case that
MX A = (nv/2). A contradiction to the assumption that MX A += M∗

X A
. We now exam-

ine the remaining case that MX B < (nv/2). Because (MX A , MX B ) satisfies Lemma 1
and MX A += M∗

X A
, it follows that either: (a) X A ≥ (nv/2) and MX A < (nv/2) or (b)

X A < (nv/2) and MX A < X A. Following along similar lines to the feasible devia-
tions outlined above, from Roberson (2006), there exists a joint distribution function
P̃A that satisfies the property that Supp(P̃A) ⊂ BA, has a total expected expenditure
M̃X A such that MX A < M̃X A ≤ M∗

X A
, and ensures that α̃A ≥ (M̃X A/2MX B ). Thus,

it follows from Eq. (36) that in both cases, player A has a strictly payoff increasing
deviation. A contradiction to the assumption that {PA, PB} is an equilibrium.

A similar argument shows that if MX B += M∗
X B

, then at least one player has a
feasible strictly payoff increasing deviation. To summarize, we have shown that if
(X A, X B) lies in the T1 parameter range and {PA, PB} is an equilibrium with the
pair of total expected expenditures (MX A , MX B ), then MX A = min{X A, (nv/2)} and
MX B = min{X B, (nv/2), (nvX A/2)1/2}.

Given the uniqueness of the equilibrium total expected expenditures, the uniqueness
of the equilibrium payoffs follows directly. 12
Lemma 3 If (X A, X B) ∈ T1, then any equilibrium {PA, PB} is interchangeable with
any equilibrium {P∗

A, P∗
B} which satisfies the conditions of Theorem 1.

Proof Suppose that—in addition to an equilibrium {P∗
A, P∗

B} which satisfies the con-
ditions in Theorem 1—there exists an equilibrium {PA, PB} that violates condition
(2) of Theorem 1 [i.e., the condition on the sets of univariate marginal distributions].
From Lemma 2, all equilibria have the same expected expenditures (MX A , MX B ) and
the same expected payoffs. From Eq. (28), it follows that there is a unique equilibrium
pair (α∗

A,α∗
B).

If {PA, PB}, with (MX A , MX B ), is an equilibrium, then it must be the case that
neither player has a feasible payoff increasing deviation. Without loss of generality,
suppose that player A deviates to the strategy P∗

A which satisfies the conditions in
Theorem 1. Because this is a feasible deviation which is invariant to the expected
expenditure MX A and player A’s expected payoff πA does not increase, it follows that
αA does not increase. As αA +αB = 1, this implies directly that αB does not decrease.

Conversely, because {P∗
A, P∗

B} is an equilibrium neither player has a feasible payoff
increasing deviation. Thus, if player B deviates from P∗

B to PB , player B’s expected
payoff πB does not increase. Then, because the deviation PB is invariant to the expected
expenditure MX B , it follows that αB must not increase under this deviation. Because
αA + αB = 1 and αB does not increase, it must be the case that αA does not decrease.

Because, when player B chooses PB and player A choose P∗
A, both αA and αB

neither increase nor decrease we can conclude that they stay at the unique values
(α∗

A,α∗
B), and that the players’ expected payoffs remain at the unique levels specified
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by Lemma 2. Furthermore, neither player has a feasible payoff increasing deviation. We
have thus shown that if player B chooses PB and player A chooses P∗

A, then {P∗
A, PB}

forms an equilibrium which satisfies Lemmas 1 and 2. By a symmetric argument,
it follows that {PA, P∗

B} also forms an equilibrium which satisfies Lemmas 1 and 2.
Thus, any equilibrium {PA, PB} is interchangeable with any equilibrium {P∗

A, P∗
B}

which satisfies the conditions in Theorem 1. 12

Because of Lemma 3’s result on the interchangeability of equilibria, arguments
along the lines of the proofs in Baye et al. (1996) can be used to establish the next
three lemmas.

Lemma 4 If (X A, X B) ∈ T1, then in any equilibrium {PA, PB}, s̄i, j = s̄ =
(2/n)MX B and si, j = s = 0 for each i ∈ {A, B} and j ∈ {1, . . . , n}.

Lemma 5 If (X A, X B) ∈ T1, then in any equilibrium {PA, PB} no Fi, j can place an
atom in the half-open interval (0, (2/n)MX B ]

Lemma 6 If (X A, X B) ∈ T1, then in any equilibrium {PA, PB} there exists, for
i = A, B, a λi ≥ 0 such that ∀ j = 1, . . . , n, vF−i, j (x) − (1 + λi )x is constant
∀x ∈ (0, (2/n)MX B ].

Note that the conditions stated in Lemma 6 are equivalent to the Euler–Lagrange
equations given in Eq. (5) of Section 3. We now complete the proof of the uniqueness
of the univariate marginals.

Lemma 7 If (X A, X B) ∈ T1, then in any equilibrium {PA, PB}, λA = −1 +
((nv)/(2MX B )) and λB = −1 + ((nvMX A )/(2M2

X B
)). Therefore, each set of uni-

variate marginal distribution functions {Fi, j }n
j=1, i = A, B satisfies the conditions in

Theorem 1.

Proof By definition MXi = ∑n
j=1

∫ s̄
0 x dFi, j (x). From Lemma 4, s̄ = (2/n)MX B

and the lower bound for each univariate marginal distribution is 0. From Lemma 6,
d Fi, j (x) = ((1 + λ−i )/v)dx .

For player B,

MX B = (1 + λA)

v

n∑

j=1

(2/n)MX B∫

0

x dx . (37)

Solving Eq. (37) for λA, uniquely yields λA = −1+((nv)/(2MX B )). From Lemmas 5
and 6, it follows that for each auction j, FB, j (x) = FB, j (0) + x(n/2MX B ) for x ∈
[0, (2/n)MX B ]. Then, because FB, j ((2/n)MX B ) = 1 it follows that FB, j (0) = 0.

For player A,

MX A = (1 + λB)

v

n∑

j=1

(2/n)MX B∫

0

x dx . (38)
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Solving Eq. (38) for λB , uniquely yields λB = −1 + ((nvMX A )/(2M2
X B

)). From
Lemmas 5 and 6, it follows that for each auction j, FA, j (x) = FA, j (0) +
x((nMX A )/(2M2

X B
)) for x ∈ [0, (2/n)MX B ]. Then, because FA, j ((2/n)MX B ) = 1 it

follows that FA, j (0) = 1 − MX A/MX B .
In the Theorem 1 range, there were three cases: (a) neither player uses all of his

resources, (b) only the weaker player (A) uses all of his resources, and (c) both players
use all of their resources. In case (a), it follows that λA = λB = 0. Otherwise, at
least one player i would have an incentive to increase his expenditure up toward Xi .
Similarly, in case (b), it follows that λB = 0, and λA ≥ 0, and in case (c) λB ≥ 0, and
λA ≥ 0. Returning to the definition of MXi and the expressions for each Fi, j given
above, it follows that in the Theorem 1 parameter range, MX A = min{X A, (nv/2)}
and MX B = min{X B, (nvMX A/2)1/2}. 12

We conclude the Appendix with a brief discussion of how these results extend to
the case of n = 2 and the Theorem 2 parameter range with X A += (2v/n) and n ≥ 3.
Note that Lemma 1 holds for all n ≥ 2 and can be extended to cover all parameter
configurations. Similarly, Lemma 2 holds for all n ≥ 2, but the lemma can only be
extended to the case in which the player’s resources (X A, X B) lie in the Theorem 2
parameter range with X A += (2v/n). If MX A = (2v/n) then MX B can take any value
in the interval [v(2−(2/n)), X B ]. That is any feasible pair of strategies {PA, PB} with
MX A = (2v/n) and MX B ∈ [v(2 − (2/n)), X B] and which provide the correspond-
ing sets of univariate marginal distributions stated in Theorem 2 is an equilibrium.
Similar issues regarding the nonuniqueness of the players’ equilibrium total expected
expenditures arise in the Theorems 3 and 5 parameter ranges.

In the Theorem 2 parameter range with X A += (2v/n), Lemma 4 applies to both
players but s = X A. For this parameter range, Lemma 5 only applies to player A. The
issue is that when (X A, X B) is in the Theorem 2 parameter range, interchangeability
of equilibrium strategies is no longer sufficient to rule out mass points in player B’s
univariate marginal distributions. In particular, because s = X A each FB, j can now
place an atom at s̄ = X A. Furthermore, mass points may exist in the interior of the
domain of player B’s univariate marginals. Consider an equilibrium {PA, PB}, with
MX A = X A and MX B = X B = (n/2)X A, in which player A uses a strategy consistent
with Theorem 2 and player B uses the strategy formed by player B bidding (X A/2) in
each auction with probability (1−(2/n)) and with probability (2/n) player B utilizing
a strategy consistent with Theorem 2. This is a feasible strategy for player B [which
satisfies Lemma 2], and in this strategy player B’s univariate marginals are given by:

∀ j ∈ {1, . . . , n} FB, j
(
x j

)
=






2x j
nX A

for x j ∈
[
0, X A

2

)

1 − 2
n + 2x j

nX A
for x j ∈

[
X A
2 , X A

] .

As long as player A uses all of his available resources X A and bids above (X A/2) in
a single auction—as is the case if player A is using a strategy consistent with Theo-
rem 2—this yields the unique equilibrium expected payoff [v − X A] for player A.17

17 Note that if player A bids (X A/2) in two auctions, then the tie-breaking rule applies and player A’s
expected payoff is equal to the unique equilibrium payoff.
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Furthermore, it is straightforward to show that there are no profitable deviations for
player A, and thus, such a pair of joint distributions forms an equilibrium. The issue
here is that at those points in the support of player A’s equilibrium strategy where ties
occur with positive probability: (i) player A is at his budget constraint and (ii) ties
occur in at most two auctions. In order for player B to create such a situation, it must
be the case that X B ≥ (n/2)X A, and so this issue does not arise in the Theorem 1
range.

Because the extension of Lemma 5 to the Theorem 2 parameter range applies to
only player A’s set of univariate marginal distributions, it clearly follows that the
extensions of Lemmas 6 and 7 also only apply to player A’s set of univariate marginal
distributions.
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