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Abstract
In this paper, we generalize the General Lotto game (budget constraints satisfied in
expectation) and the Colonel Blotto game (budget constraints hold with probability
one) to allow for battlefield valuations that are heterogeneous across battlefields and
asymmetric across players and for the players to have asymmetric resource constraints.
We completely characterizeNash equilibrium in the generalized version of theGeneral
Lotto game and find that there exist sets of nonpathological parameter configurations
of positive Lebesgue measure with multiple payoff nonequivalent equilibria. Across
equilibria each player achieves a higher payoff when he more aggressively attacks
battlefields in which he has lower relative valuations. Hence, the best defense is a
good offense. We, then, show how this characterization can be applied to identify
equilibria in the Colonel Blotto version of the game.

Keywords Colonel Blotto game · General Lotto game · Multi-battle contest ·
Redistributive politics · All-pay auction

JEL Classification C72 · D72 · D74

1 Introduction

The Colonel Blotto game is a two-player resource allocation game in which each
player is endowed with a level of a resource to allocate across a set of battlefields;
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within each battlefield the player that allocates the higher level of the resource wins
the battlefield, and each player’s payoff is the sum of the valuations of the battle-
fields won. This simple game, which originates with Borel (1921), illustrates some of
the fundamental strategic considerations that arise in conflicts or competition involv-
ing multi-dimensional resource allocation such as political campaigns, research and
development competition (where innovation may involve obtaining a collection of
interrelated patents), and military and systems defense.

In this paper, we examine generalized formulations of the General Lotto (bud-
get constraints hold in expectation) and Colonel Blotto (budget constraints hold with
probability one) games in which battlefield (or component contest) valuations may be
heterogeneous across battlefields and asymmetric across players, and the players may
face asymmetric resource constraints.1 We completely characterize Nash equilibrium
in the General Lotto game. This generalizes the symmetric resource constraint ver-
sions of the General Lotto game examined in Bell and Cover (1980), Myerson (1993),
Sahuguet and Persico (2006), and Hart (2008), where the valuation in the single bat-
tlefield2 is symmetric across players, as well as Kovenock and Roberson (2008) and
Washburn (2013), in which battlefield valuations are heterogeneous across battlefields
but symmetric across players.3 We then show how this characterization can be applied
over a subset of the parameter space to identify equilibria in generalizations of the
Colonel Blotto game (in which budget constraints hold with probability one) that have
hitherto been unexplored.

In contrast to constant-sum formulations of General Lotto and Colonel Blotto
games, we find that the Nash equilibrium set of univariate marginal distributions is not
unique in the generalized (non-constant-sum) versions of the games examined here.
We also show that in the generalized versions of both the General Lotto and Colonel
Blotto games there exist sets of nonpathological parameter configurations of positive
Lebesgue measure with multiple payoff nonequivalent equilibria.

To provide intuition forwhymultiple payoff nonequivalent equilibria arise, consider
a single all-pay auction in which one player, A, has a low valuation vA and one
player B has a high valuation vB,, i.e., vB > vA. It is well known that in the unique
Nash equilibrium4 B’s expected payoff is vB − vA and A’s expected payoff is 0.
Now suppose vB decreases and vA increases maintaining the inequality vB ≥ vA. In
this case, the contest becomes more competitive, which results in higher equilibrium

1 Other notable formulations of Blotto-type games include Friedman (1958), which introduces a version
of the game with the lottery contest success function [see also Robson (2005)], and Hart (2008) which
introduces a version of the game in which resource allocations are restricted to be nonnegative integers [see
also Hortala-Vallve and Llorente-Saguer (2012) and Dziubiński (2013)].
2 The models in these papers may either be interpreted as having a single battlefield, where each player’s
allocation of the resource to this battlefield is drawn from his univariate distribution function that is budget
balancing on average, or as a continuum of homogeneous battlefields, where each point in the support of
a player’s univariate distribution function represents an allocation of the resource to a battlefield, and the
budget constraint is on the average resource allocation. In this paper, we focus on the first interpretation.
3 Following Myerson (1993), the General Lotto game has become a benchmark model of redistributive
politics. Related political economy applications include Lizzeri and Persico (2001, 2005), Sahuguet and
Persico (2006), Roberson (2008), and Crutzen and Sahuguet (2009). See also Laslier and Picard (2002) for
a similar application of the Colonel Blotto game.
4 See Baye et al. (1996) for further details.
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expenditures for both players and a lower equilibrium expected payoff for the high
valuation player (B). In the General Lotto game, the two players A and B each have
a (normalized) value for each battlefield j, vi, j > 0, where

∑n
j#1 vi, j # 1 for each

player i # A, B. The players are also resource constrained, where the expectation
of player i’s total expenditure across battlefields must be less than or equal to Xi ,

for i # A, B, and player B is assumed to have a resource advantage, XB ≥ XA >

0. Given an equilibrium mixed strategy of the rival player, the budget constrained
optimization problem of player i yields a Lagrange multiplier λi—the shadow value
of an increment to i’s budget—that serves as a unit cost to an incremental allocation
to each battlefield j. Player i maximizes his payoff by acting as if he is playing in an
all-pay auction in each battlefield with constant unit cost equal to the multiplier λi .
Because of invariance of behavior with respect to affine transformations of utility, this
implies that, in an equilibrium generating the pair of player multipliers (λA, λB), the
two players A and B behave in battlefield j as if they are engaged in an all-pay auction
with constant unit cost equal to one and valuations vA, j

λA
and vB, j

λB
,, respectively. In

this all-pay auction, player A has a higher valuation than player B if vA, j
vB, j

> λA
λB

≡ γ

and B has a higher value than A if the inequality is reversed. This implies that in
each equilibrium of the General Lotto game there exists a cut point, γ , equal to the
ratio of the two multipliers λA and λB induced by the equilibrium, such that for each
battlefield j with γ >

vA, j
vB, j

player B utilizes a strategy similar to that of the high
valuation player in the all-pay auction and player A utilizes a strategy similar to that
of the low valuation player in the all-pay auction. Similarly, for each battlefield j
with vA, j

vB, j
> γ , the roles are reversed with player A being the high valuation player

and B being the low valuation player. Multiple equilibria arise in this setting because
there exist multiple pairs of shadow values (λA, λB), or alternatively cut points γ , that
generate budget-balancing strategies that are mutual best responses and therefore form
an equilibrium. In moving across equilibria, as γ increases the set of battlefields for
which vA, j

vB, j
> γ (weakly) shrinks. Furthermore, in the remaining set of battlefields for

which vA, j
vB, j

> γ each battlefield becomes more competitive, thereby increasing both
players’ expected expenditures in those battlefields and lowering player A’s expected
payoff for those battlefields. Conversely, each battlefield j with γ >

vA, j
vB, j

becomes less
competitive as γ increases, thereby decreasing both players’ expected expenditures in
those battlefields and increasing player B’s expected payoff across such battlefields.
Therefore, inmoving from an equilibrium inwhich λA

λB
# γ to an equilibrium inwhich

λA
λB

# γ ′ > γ , the increased allocation to battlefields j with higher values of vA, j
vB, j

exactly offsets the reduced allocation to battlefields with lower values of vA, j
vB, j

, so that
budget balance holds.

When battlefield valuations are homogeneous across battlefields and symmetric
across players, it is known that for sufficiently asymmetric resource endowments the
relationship between the equilibria in the General Lotto and Colonel Blotto games
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Fig. 1 The weak player A’s equilibrium expected payoff in the General Lotto (dashed line) and Colonel
Blotto (solid line) games as a function of the ratio of the weak player’s resource endowment (XA) to the
strong player’s resource endowment (XB )

breaks down.5 In Fig. 1, the dashed line illustrates the (resource endowment) weak
player A’s maximal expected proportion of battlefields won in the General Lotto game
with n battlefields, and the solid curve is the weak player’s expected proportion of
battlefields won in the corresponding Colonel Blotto game, both as a function of the
ratio of the weak player’s and the strong player’s budgets ( XA

XB
). Note that the point of

departure between the weak player’s expected payoffs in the General Lotto game and
those arising in the Colonel Blotto game occurs at a ratio XA

XB
# 2

n . As the ratio of the

weak player’s budget to the strong player’s budget ( XA
XB

) decreases, the weak player
focuses his resources in smaller and smaller random subsets of battlefields. When the
ratio XA

XB
is less than or equal to 2

n , the fact that budgets bind with certainty in the
Colonel Blotto game results in a situation in which the weak player has exhausted
his ability to shrink the size of the subset of battlefields in which he focuses his
resources. This binding constraint is what causes the weak player’s expected payoffs
to decrease below the dashed line. Furthermore, once XA

XB
is less than 1

n , the strong
player has the ability to outbid the weak player on each and every battlefield. This
issue arises because, with sufficiently asymmetric resource endowments, the Colonel
Blotto game’s binding budget constraint makes it infeasible for the weak player to play
a multi-dimensional mixed strategy that is budget-balancing with certainty and that
provides the same set of univariate marginals as in the corresponding General Lotto
game in which the budget only holds in expectation.

5 For asymmetric resource endowments, the characterization of the equilibrium payoffs in the General
Lotto game is due to Sahuguet and Persico (2006) and for the Colonel Blotto game is due to Roberson
(2006).
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For the generalized version of the Colonel Blotto game examined in this paper,
we provide a sufficient condition for the existence of an equilibrium in which each
player’s univariate marginal distributions coincide with those of an equilibrium in the
corresponding General Lotto version of the game and a sufficient condition for the
equilibrium sets of univariate marginal distributions in the two versions of the game
to differ across all equilibria. Because the battlefield valuations may be heterogeneous
across battlefields and asymmetric across players, this condition involves the players’
resource endowments, as well as their n-tuples of battlefield valuations. Furthermore,
equilibrium univariate marginal distributions in the Colonel Blotto and General Lotto
games may differ in the case of symmetric resource endowments, if the players have
sufficiently different battlefield valuation n-tuples. That is, asymmetries in players’
valuations alone may be sufficient for the equilibria in the Colonel Blotto and General
Lotto games to differ.

Table 1 summarizes the branch of the Colonel Blotto literature that assumes an
auction contest success function, a finite number of battlefields, resource endow-
ments that are continuously divisible and are use-it-or-lose-it in the sense that unused
resources have no value (i.e., the per unit cost of allocating the resource is 0 up
to the budget constraint),6 and that each player’s payoff is the sum of the battle-
field valuations in the battlefields won.7 The type of player objective varies across
rows and the cost structure varies across columns. In describing the type of player
objective, linear pure count refers to games in which each player’s payoff is the sum
of the battlefield valuations in the battlefields won, where battlefield valuations are
homogeneous across battlefields and symmetric across players, so that each player’s
payoff is linear in the number, or pure count, of battlefields won. Linear heteroge-
neous symmetric (asymmetric) is similar, except that battlefield valuations are now
heterogeneous across battlefields but symmetric (asymmetric) across players, and
each player’s payoff is equal to the sum of the player’s valuations in the battlefields
won.

As shown in Table 1, this paper provides a partial result for each of the three checked
cells: linear heterogeneous symmetric objective with asymmetric budget constraints,
and linear heterogeneous asymmetric objective with both symmetric and asymmetric
budget constraints. Section 4 provides a detailed discussion of the literature in Table 1,
including a discussion of the relationship between the equilibrium joint distributions
that have been constructed for those formulations and the distributions that we utilize
in our analysis of theGeneralizedColonel Blotto game.As a point of reference, Table 1
also includes the corresponding results for the discrete version of the Colonel Blotto
game (in which the feasible sets of bids of the players are discrete). Lastly, the case
of n # 2 places a severe restriction on the set of available joint distributions, which
leads to a distinct set of strategic considerations. For both symmetric and asymmetric
budgets and both homogeneous and heterogeneous (symmetric) battlefield valuations,
the case of n # 2 was first examined in Gross and Wagner (1950). Macdonell and
Mastronardi (2015) complete the characterization for the case of n # 2 and pro-

6 For alternative cost functions see Kvasov (2007) and Roberson and Kvasov (2012).
7 For alternative definitions of success see Szentes and Rosenthal (2003a, b), Golman and Page (2009),
Tang et al. (2010), Rinott et al. (2012), Barelli et al. (2014), and Kovenock and Roberson (2018).
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vide a characterization of equilibrium in a version of the heterogeneous (symmetric)
battlefield valuation game with nonlinear asymmetric budgets.

The rest of the paper is organized as follows. In Sect. 2, we provide a description
of the General Lotto model. Section 3 provides the results for the General Lotto game
and an example of multiple payoff nonequivalent equilibria. Section 4 examines the
Generalized Colonel Blotto game and the relationship between our results and the
existing literature. Section 5 concludes.

2 Themodel

Two risk-neutral players, A and B, simultaneously allocate a resource across a positive
integer number n ≥ 1 of independent battlefields. Battlefield j has a (normalized)
value of vi, j > 0, where

∑n
j#1 vi, j # 1, for player i # A, B. Each player has a

fixed level of the available resource (or budget), Xi for i # A, B. Let XB ≥ XA > 0,
and let xi denote player i’s allocation of the resource (xi,1, . . . , xi, j , . . . , xi,n) across
the n-battlefields. In each battlefield, the player with the higher resource expenditure
wins, and in the event of a tie8 each player wins the battlefield with probability 1

2 .
In each battlefield j, the payoff to player i for a resource expenditure of xi, j is given

by

πi, j
(
xi, j , x−i, j

)
#






vi, j if xi, j > x−i, j
vi, j
2 if xi, j # x−i, j

0 if xi, j < x−i, j

Each player’s payoff across all n battlefields is the sum of the payoffs across the
individual battlefields.

We now define the Generalized Colonel Blotto and General Lotto games.

2.1 The Generalized Colonel Blotto game

The level of the resource allocated to each battlefield must be nonnegative. For player
i, the set of feasible resource allocations across the n battlefields is denoted by

Bi #




x ∈ Rn
+

∣∣∣∣
n∑

j#1

xi, j ≤ Xi




.

Amixed strategy, which we term a distribution of resources, for player i is an n-variate
distribution function Pi : Rn

+ → [0, 1] with support (denoted Supp(Pi )) contained in

8 The choice of tie-breaking rule is not critical for any of our results. This is generally true in the General
Lotto game and is true for the corresponding parameter ranges covered in our treatment of the Colonel
Blotto game. More generally, in the Colonel Blotto game the choice of a tie-breaking rule is important for
the parameter range in which the correspondence between General Lotto and Colonel Blotto breaks down.
In this range, the tie-breaking rule in the Colonel Blotto game must be chosen judiciously in order to avoid
the need for ε-equilibrium arguments. See Roberson (2006).
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player i’s set of feasible bids Bi and with one-dimensional marginal distribution
functions {Fi, j }nj#1, one univariate marginal distribution function for each battlefield
j. Player i’s allocation of the resource across the n battlefields is a random n-tuple
drawn from the n-variate distribution function Pi .

The Generalized Colonel Blotto game, which we abbreviate as the GCB game and
formally label as

GCB
{
XA, XB , n, {vA, j , vB, j }nj#1

}
,

is the one-shot game in which players compete by simultaneously announcing distri-
butions of the resource subject to their budget constraints; each battlefield is won by
the player that allocates the higher level of the resource to that battlefield (where in the
case of a tie the tie-breaking rule described above applies), and each player’s payoff
is the sum of the values of the individual battlefields that he wins.

2.2 The Generalized General Lotto game

In theGeneralizedGeneral Lotto game, amixed strategy for player i is still an n-variate
distribution function Pi : Rn

+ → [0, 1] with one-dimensional marginal distribution
functions {Fi, j }nj#1, one univariate marginal distribution function for each battlefield
j. And, the level of the resource allocated to each battlefield must be nonnegative,
Fi, j (x) # 0 for all x < 0. The General Lotto game differs from the Colonel Blotto
game in that each player i’s budget must hold in expectation,

∑n
j#1 EFi, j (x) ≤ Xi .

The Generalized General Lotto game, which we abbreviate as the GGL game and
formally label as

GGL
{
XA, XB, n, {vA, j , vB, j }nj#1

}
,

is the one-shot game in which players compete by simultaneously announcing distri-
butions of the resource subject to their budget constraints, each battlefield is won by
the player that allocates the higher level of the resource to that battlefield (where in the
case of a tie the tie-breaking rule described above applies), and each player’s payoff
is the sum of the values of the individual battlefields that he wins.

3 Generalized General Lotto results

In order to provide intuition for our main results, we begin this section with a few
informal insights regarding the necessary conditions for equilibrium in the GGL game.
First, note that any joint distribution may be broken into a set of univariate marginal
distribution functions and an n-copula, the function that maps the univariate marginal
distribution functions into a joint distribution function.9 Given that player−i’s strategy
is given by the n-variate distribution function P−i with the set of univariate marginal

9 See Nelsen (1999) or Schweizer and Sklar (1983) for an introduction to copulas.
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distribution functions {F−i, j }nj#1, note that player i’s expected payoff10 for any fea-
sible n-variate distribution function Pi with the set of univariate marginal distribution
functions {Fi, j }nj#1 is

πi

(
{Fi, j , F−i, j }nj#1

)
#

n∑

j#1

[∫ ∞

0
vi, j F−i, j

(
xi, j
)
dFi, j

]
. (1)

Recalling that the budget constraint holds in expectation, player i’s constrained opti-
mization problem may be written as

max{
{Fi, j }nj#1

}

n∑

j#1

[∫ ∞

0

[
vi, j F−i, j

(
xi, j
)
− λi xi, j

]
dFi, j

]
+ λi Xi , (2)

where λi is the multiplier on player i’s expected resource expenditure constraint. Note
that for the GGL game both the expected payoff in (1) and the budget constraint
depend on only the sets of univariate marginal distribution functions and not the joint
distribution function. That is, in the GGL game, any n-copula may be used to map a
set of equilibrium univariate marginal distribution functions into an equilibrium joint
distribution function. However, because the budget constraint in the GCB game holds
with probability one, the choice of a set of univariate marginal distribution functions
in that game is constrained in the sense that there must exist an n-copula for which the
resulting joint distribution is budget-balancing with probability one. We will return to
this issue in Sect. 4.

For each j # 1, . . . , n the corresponding first-order condition provides a necessary
condition for equilibrium and is given by

d
dxi, j

[
vi, j F−i, j

(
xi, j
)
− λi xi, j

]
# 0. (3)

Dividing both sides of (3) by λi > 0, we see that (3) is equivalent to the necessary
condition for a single all-pay auction, without a budget constraint, and in which player
i’s value for the prize is vi, j

λi
. In such an all-pay auction, the unique equilibrium11 is

described as follows. If vi, j
λi

≥ v−i, j
λ−i

, then

F−i, j (x) #
(

vi, j
λi

− v−i, j
λ−i

vi, j
λi

)

+ x
vi, j
λi

x ∈
[
0, v−i, j

λ−i

]

Fi, j (x) # x
v−i, j
λ−i

x ∈
[
0, v−i, j

λ−i

]
.

(4)

Next, to solve for the multipliers (λA, λB), let γ ≡ λA
λB

and let %A(γ ) denote the set

of battlefields in which vA, j
vB, j

> γ , or equivalently vA, j
λA

>
vB, j
λB

. The combination of (4)

10 This expression is for the case in which none of player −i’s univariate marginal distributions contains
a mass point.
11 For more details, see Baye et al. (1996).
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and budget-balance implies the following system of equations, which we refer to as
(&):

∑

j∈%A(γ )

vB, j

2λB
+
∑

j /∈%A(γ )

(
vA, j
λA

)2

2
(
vB, j
λB

) # XA (5)

∑

j∈%A(γ )

(
vB, j
λB

)2

2
(
vA, j
λA

) +
∑

j /∈%A(γ )

vA, j

2λA
# XB . (6)

λ∗
A andλ∗

B are implicitly defined byEqs. (5) and (6), henceforth referred to as a solution
to system (&).

Our first result is that, for every feasible configuration of battlefield values
{vA, j , vB, j }nj#1 and resource endowments {XA, XB}, there exists at least one solu-
tion to system (&).

Proposition 1 For any feasible configuration of battlefield values {vA, j , vB, j }nj#1 and
resource endowments {XA, XB} there exists a solution to system (&). If vA, j # vB, j
for all j, then there exists a unique solution to system (&).

Proof We begin with the proof that there exists a solution to system (&) and then
examine the issue of uniqueness in constant-sum versions of the game. Recall that
γ # λA

λB
and that %A(γ ) denotes the set of battlefields in which

vA, j
vB, j

> γ . Let ∂%A(γ )

denote the (possibly empty) set of battlefields for which vA, j
vB, j

# γ and let (̂ ⊂ R+

denote the set of γ such that ∂%A(γ ) ,# ∅—that is the set of γ that satisfy γ # vA, j
vB, j

for some j ∈ {1, . . . , n}. (̂ corresponds to the set of γ at which %A(γ ) ‘changes.’
Let

γ ≡ min





min
j

{
vA, j

vB, j

}
,
XB

XA




n∑

j#1

(vB, j )2

vA, j




−1




> 0

and let

γ ≡ max





XB

XA

n∑

j#1

(vA, j )2

vB, j
,max

j

{
vA, j

vB, j

}

 < ∞.

We first bound the set of potential solutions by showing that if there exists a solution
to system (&), then γ ∈

[
γ , γ

]
.
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Suppose that γ ≥ max j

{
vA, j
vB, j

}
. Because %A(γ ) is the set of j for which

vA, j
vB, j

> γ ,

it follows that if γ ≥ max j

{
vA, j
vB, j

}
then there exists no j such that vA, j

vB, j
> γ and

%A(γ ) # ∅. Then, because %A(γ ) # ∅ Eqs. (5) and (6) may be written as

λB

2λ2A

n∑

j#1

(vA, j )2

vB, j
# XA and

1
2λA

# XB . (7)

The unique solution to the system in (7) is λ∗
A # 1

2XB
, λ∗

B # XA
2X2

B

(∑n
j#1

(vA, j )2

vB, j

)−1
,

and γ ∗ # λ∗
A

λ∗
B

# XB
XA

∑n
j#1

(vA, j )2

vB, j
. If XB

XA

∑n
j#1

(vA, j )2

vB, j
≥ max j

{
vA, j
vB, j

}
, then there

exists a unique solution to system (&) for γ ≥ max j

{
vA, j
vB, j

}
, γ ∗ # XB

XA

∑n
j#1

(vA, j )2

vB, j
.

If XB
XA

∑n
j#1

(vA, j )2

vB, j
< max j

{
vA, j
vB, j

}
, then there exists no solution to system (&) with

γ ≥ max j

{
vA, j
vB, j

}
, and so, in any solution to system (&) γ < max j

{
vA, j
vB, j

}
.

Now, suppose that γ < min j

{
vA, j
vB, j

}
. Because%A(γ ) is the set of j for which

vA, j
vB, j

>

γ , it follows that if γ < min j { vA, jvB, j
} then vA, j

vB, j
> γ for all j and%A(γ ) # {1, 2, . . . , n}.

Then, because %A(γ ) # {1, 2, . . . , n} Eqs. (5) and (6) may be written as

1
2λB

# XA and
λA

2λ2B

n∑

j#1

(vB, j )2

vA, j
# XB . (8)

The unique solution to the system in (8) is λ∗
A # XB

2X2
A

(∑n
j#1

(vB, j )2

vA, j

)−1
, λ∗

B # 1
2XA

,

and γ ∗ # λ∗
A

λ∗
B

# XB
XA

(∑n
j#1

(vB, j )2

vA, j

)−1
. If XB

XA

(∑n
j#1

(vB, j )2

vA, j

)−1
< min j { vA, jvB, j

}, then
there exists a unique solution to system (&) for γ < min j { vA, jvB, j

}, γ ∗ # λ∗
A

λ∗
B

# XB
XA(∑n

j#1
(vB, j )2

vA, j

)−1
. If XB

XA

(∑n
j#1

(vB, j )2

vA, j

)−1
≥ min j { vA, jvB, j

}, then there exists no

solution to system (&) with γ < min j { vA, jvB, j
}, and so, in any solution to system

(&) γ ≥ min j { vA, jvB, j
}. This completes the proof that if there exists a solution to system

(&), then γ ∈
[
γ , γ

]
.

We now show that for any feasible configuration of battlefield values
{vA, j , vB, j }nj#1 and resource endowments {XA, XB}, there exists a solution to system
(&) with γ ∈

[
γ , γ

]
. Because γ ∈

[
γ , γ

]
, it follows directly that λA, λB ∈ (0,∞).

Multiplying both sides of (5) by λB and both sides of (6) by λA yields

λB XA #1
2

∑

j∈%A(γ )

vB, j +
1

2γ 2

∑

j /∈%A(γ )

(
vA, j

)2

vB, j
(9)
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λAXB #γ 2

2

∑

j∈%A(γ )

(
vB, j

)2

vA, j
+
1
2

∑

j /∈%A(γ )

vA, j . (10)

Then dividing (10) by (9), we have:

XBγ

XA
#

γ 2∑
j∈%A(γ )

(vB, j)
2

vA, j
+
∑

j /∈%A(γ ) vA, j

∑
j∈%A(γ ) vB, j +

1
γ 2

∑
j /∈%A(γ )

(vA, j)
2

vB, j

. (11)

The right-hand side of (11) is continuous with respect to γ . In particular, for each
γ̂ ∈ (̂, γ̂ vB,k # vA,k for each k ∈ ∂%A(γ̂ ). Thus, for each γ̂ ∈ (̂

lim
γ→γ̂ +

γ 2∑
j∈%A(γ )

(vB, j )
2

vA, j
+
∑

j /∈%A(γ ) vA, j

∑
j∈%A(γ ) vB, j +

1
γ 2

∑
j /∈%A(γ )

(vA, j )
2

vB, j

# lim
γ→γ̂ −

γ 2∑
j∈%A(γ )

(vB, j )
2

vA, j
+
∑

j /∈%A(γ ) vA, j

∑
j∈%A(γ ) vB, j +

1
γ 2

∑
j /∈%A(γ )

(vA, j )
2

vB, j

.

Next, note that if XB
XA

∑n
j#1

(vA, j )2

vB, j
≥ max j

{
vA, j
vB, j

}
then γ ∗ # XB

XA

∑n
j#1

(vA, j )2

vB, j
is a

solution to (11) in which %A(γ ∗) # ∅, and the result follows directly. Similarly, if
XB
XA

(∑n
j#1

(vB, j )2

vA, j

)−1
< min j

{
vA, j
vB, j

}
then γ ∗ # XB

XA

(∑n
j#1

(vB, j )2

vA, j

)−1
is a solution to

(11) in which %A(γ ∗) # {1, . . . , n} and the result follows directly.

We now examine the case in which XB
XA

∑n
j#1

(vA, j )2

vB, j
< max j

{
vA, j
vB, j

}
and XB

XA(∑n
j#1

(vB, j )2

vA, j

)−1
≥ min j

{
vA, j
vB, j

}
. Note first that if min j

{
vA, j
vB, j

}
# max j

{
vA, j
vB, j

}
, then

vA, j
vB, j

# 1 for all j and the first inequality becomes XB
XA

< 1, which is violated by the

assumption that XB
XA

≥ 1. Hence, in this case min j

{
vA, j
vB, j

}
< max j

{
vA, j
vB, j

}
. To verify

that a solution in γ to (11) exists multiply both sides of (11) by XA
XB

. The left-hand
side of (11) then equals γ and the right-hand side equals the following continuous and
increasing function:

f (γ ) #
(
XA

XB

)



γ 2∑

j∈%A(γ )
(vB, j)

2

vA, j
+
∑

j /∈%A(γ ) vA, j

∑
j∈%A(γ ) vB, j +

1
γ 2

∑
j /∈%A(γ )

(vA, j)
2

vB, j



.

Because, by assumption, XB
XA

∑n
j#1

(vA, j )2

vB, j
< max j

{
vA, j
vB, j

}
, it follows that

f
(
max

j

{
vA, j

vB, j

})
#
(
XA

XB

)




(
max j

{
vA, j
vB, j

})2

∑n
j#1

(vA, j)
2

vB, j



 > max
j

{
vA, j

vB, j

}
(12)
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and, as XB
XA

(∑n
j#1

(vB, j )2

vA, j

)−1
≥ min j

{
vA, j
vB, j

}
, it follows that

f
(
min
j
{vA, j
vB, j

}
)

#
(
XA

XB

)(
min
j
{vA, j
vB, j

}
)2



n∑

j#1

(
vB, j

)2

vA, j



 ≤ min
j

{
vA, j

vB, j

}
(13)

Combining (12), (13), with the continuity of f (γ ), it follows that there exists at least
one point γ ∗ ∈

[
γ , γ

]
such that f (γ ∗) # γ ∗. This completes the proof of the existence

of a γ ∗ that solves (11), and then given a solution γ ∗, (9) and (10) can be used to solve
for λB and λA (a solution to system (&)), respectively.

For uniqueness in the constant-sum game, note that when vA, j # vB, j for all j

then max j

{
vA, j
vB, j

}
# min j

{
vA, j
vB, j

}
# 1 for all j and γ # 1 ≤ γ # XB

XA
. Consequently,

%A(γ ∗) # ∅ and (11) becomes γ ∗ # XB
XA

. "

Although there exists a unique solution to system (&) when the game is constant-
sum, there may exist multiple solutions to system (&) in non-constant-sum versions of
the game, and these multiple solutions give rise to multiple equilibria. Following the
statement and proof of Theorem 1, we provide an example in which there are multiple
payoff nonequivalent equilibria.

We now examine equilibrium in the general case of the linear heterogeneous
asymmetric objective and, then, discuss the special case of the linear heterogeneous
symmetric objective.

Theorem 1 For each solution (λ∗
A, λ

∗
B) to system (&), each player in the GGL game

has a unique set of Nash equilibrium univariate marginals. If vi, j/λ∗
i ≥ v−i, j/λ

∗
−i ,

then

F−i, j (x) #
( vi, j

λ∗
i

− v−i, j
λ∗
−i

vi, j
λ∗
i

)

+ x
vi, j
λ∗
i

x ∈
[
0, v−i, j

λ∗
−i

]

Fi, j (x) # x
v−i, j
λ∗
−i

x ∈
[
0, v−i, j

λ∗
−i

]
.

Conversely, for each equilibrium of the GGL game, there exists a corresponding solu-
tion (λ∗

A, λ
∗
B) to system (&). For each solution (λ∗

A, λ
∗
B) to system (&), the expected

payoff for player A is
∑

j∈%A(γ ∗)

(
vA, j − γ ∗vB, j

2

)
+
∑

j /∈%A(γ ∗)

(
v2A, j

2γ ∗vB, j

)
and the

expected payoff for player B is
∑

j /∈%A(γ ∗)

(
vB, j − vA, j

2γ ∗

)
+
∑

j∈%A(γ ∗)

(
γ ∗v2B, j
2vA, j

)
.

Proof We now show that for each solution (λ∗
A, λ

∗
B) to system (&) any pair of joint

distributions (PA, PB) with the sets of univariate marginals specified in Theorem 1
is a Nash equilibrium of the GGL game. In Appendix 1, we show that: (i) for each
equilibrium of theGGLgame, there exists a corresponding solution (λ∗

A, λ
∗
B) to system

(&) and (ii) for each solution (λ∗
A, λ

∗
B) each player in the GGL game has a unique set

of Nash equilibrium univariate marginals.
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For the proof that for each solution (λ∗
A, λ

∗
B) to system (&) any pair of joint distribu-

tions (PA, PB) with the sets of univariate marginals specified in Theorem 1 is a Nash
equilibrium of the GGL game, we focus on player A, and note that the argument for
player B is symmetric. First, observe that because (λA, λB) is a solution to (&), this is
a feasible strategy for player A:

n∑

j#1

∫ ∞

0
xdFA, j #

∑

j∈%A(γ ∗)

vB, j

2λ∗
B
+

∑

j /∈%A(γ ∗)

(
vA, j
λ∗
A

)2

2
(
vB, j
λ∗
B

) # XA.

Then, given that player B is following the equilibrium strategy, player A’s payoff from
an arbitrary strategy with the set of univariate marginals

{
F̄A, j

}n
j#1 is:

πA

({
F̄A, j , FB, j

}n
j#1

)
#

n∑

j#1

∫ ∞

0
vA, j FB, j (x)dF̄A, j (x).

Because it is never a best response for player A to place strictly positive mass at zero
in any battlefield j ∈ %A(γ ∗) nor to provide offers outside of the support of any of
player B’s univariate marginal distributions, we have:

πA

({
F̄A, j , FB, j

}n
j#1

)
#

∑

j∈%A(γ ∗)

[(
vA, j − vB, jλ

∗
A

λ∗
B

)
+
∫ vB, j

λ∗
B

0
xλ∗

AdF̄A, j (x)

]

+
∑

j /∈%A(γ ∗)

∫ vA, j
λ∗
A

0
xλ∗

AdF̄A, j (x).

But from the budget constraint, it follows that

πA

({
F̄A, j , FB, j

}n
j#1

)
≤

∑

j∈%A(γ ∗)

(
vA, j − λ∗

AvB, j

λ∗
B

)
+ λ∗

AXA

which, together with (5), yields

πA

({
F̄A, j , FB, j

}n
j#1

)
≤

∑

j∈%A(γ ∗)

(
vA, j − γ ∗vB, j

2

)
+

∑

j /∈%A(γ ∗)

(
v2A, j

2γ ∗vB, j

)

,

which holds with equality if {F̄A, j }nj#1 is the equilibrium strategy. This completes the
proof that there are no payoff increasing deviations for playerA. A symmetric argument
applies to player B, and thus, any pair of joint distributions (PA, PB) providing the
sets of univariate marginal distributions

({
FA, j , FB, j

}n
j#1

)
is an equilibrium. "

Proposition 1 guarantees at least one solution to system (&) and Theorem 1 demon-
strates that corresponding to every such solution there is a unique set of Nash
equilibrium univariate marginal distributions in the General Lotto game. When there
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are multiple solutions to system (&), Theorem 1 establishes that the payoff to player A
decreases (and the payoff to player B increases) across equilibria as the corresponding
γ ∗ increases.

If the game is constant-sum (i.e., the players’ battlefield valuations are symmetric
for all battlefields), the unique solution to system (&)12 is λ∗

A # 1
2XB

and λ∗
B # XA

2X2
B
.

We then have the following corollary, which appears in a closely related form in Bell
and Cover (1980), Sahuguet and Persico (2006), and Washburn (2013).

Corollary 1 If vA, j # vB, j ≡ v j for all j, then the unique set of Nash equilibrium
univariate marginal distributions of the GGL game are, for all j ∈ {1, . . . , n}:

FA, j (x) #
(
1 − XA

XB

)
+ x

2v j XB

(
XA
XB

)
x ∈

[
0, 2v j XB

]

FB, j (x) # x
2v j XB

x ∈
[
0, 2v j XB

]

The expected payoff for player A is XA
2XB

and the expected payoff for player B is 1− XA
2XB

.

We now examine a special class of GGL games, labeled Quasi-Symmetric General
Lotto games, in which the players have symmetric resource endowments and the
players’ sets of battlefield valuations feature a form of symmetry with respect to the
ratio vA, j

vB, j
. Even in this simple case, we find that there arise multiple equilibria with

distinct payoffs and sets of Nash equilibrium univariate marginal distributions. The
parametric form used for battlefield valuations is useful in that it makes the calculation
of the set %A(γ ) easier, thereby simplifying the problem of solving system (&). In
moving from this example to an arbitrary configuration of battlefield valuations, the
calculation of the set %A(γ ) becomes more involved.

Quasi-Symmetric General Lotto and Colonel Blotto games Consider a GGL
[GCB] game in which XA # XB # 1, and the n(> 0) battlefields may be partitioned
into an agreement set, denoted A, in which vA, j # vB, j ≡ 1

n for each j ∈ A and∑
j∈A vA, j # nA

n ,where nA ≥ 0 is the number of battlefields in the agreement set, and
a disagreement set, denoted D, with an even number nD ≥ 0 of battlefields, where for
the first nD

2 battlefields vA, j # 2(1−ε)
n and vB, j # 2ε

n and for the last nD
2 battlefields

vA, j # 2ε
n and vB, j # 2(1−ε)

n , with ε ∈
(
0, 1

2

)
. A GGL [GCB] game with such a

configuration of battlefield values, for some (ε, nA, nD), and resource endowments
X A # XB # 1 is labeled a Quasi-Symmetric General Lotto game [Quasi-Symmetric
Colonel Blotto game], which we abbreviate as a Quasi-Symmetric GL game [Quasi-
Symmetric CB game].

Figure 2 illustrates a Quasi-Symmetric GL game configuration of battlefield values.
Given any Quasi-Symmetric GL game endowments and configuration of battlefield
valuations, it follows directly from system (&) that for all ε ∈ (0, 0.5), nD ≥ 0, and
nA ≥ 0 Eq. (11) has a solution at γ # 1. Furthermore, it follows from Theorem 1 that
the γ # λA

λB
# 1 equilibrium respects the quasi-symmetry, in the sense that for each

j in the first nD
2 battlefields in the disagreement set and corresponding mirror battle

j ′ in the last nD
2 battlefields in the disagreement set, player A’s equilibrium univariate

12 As XA
XB

≤ 1 it must be the case that λB ≤ λA .
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Fig. 2 Quasi-Symmetric GL game battlefield configuration [ε ∈ (0, 0.5)]

marginal distribution in battlefield j, FA, j (·), is the same as player B’s equilibrium
univariate marginal distribution in the corresponding mirror battlefield j ′, FB, j ′(·),
and vice versa.

Depending on the values of ε, nD , and nA there may exist multiple solutions and
thus multiple equilibria. To solve for all possible solutions to system (&), note that (11)
may be written as

γ 3
∑

j∈%A(γ )

(
vB, j

)2

vA, j
− XBγ 2

XA

∑

j∈%A(γ )

vB, j + γ
∑

j /∈%A(γ )

vA, j − XB

XA

∑

j /∈%A(γ )

(
vA, j

)2

vB, j
# 0.

(14)

Next, note that with symmetric resource constraints it must be the case that either
1−ε
ε > γ ≥ 1 or 1 > γ ≥ ε

1−ε .
13 If 1 > γ ≥ ε

1−ε , then %A(γ ) includes A and the

portion of D in which vA, j # 2(1−ε)
n and vB, j # 2ε

n , and (14) may be written as

γ 3
(

ε2

1 − ε
· nD
n

+
nA
n

)
− γ 2

(
ε · nD

n
+
nA
n

)
+ γ
(
ε · nD

n

)
−
(

ε2

1 − ε
· nD
n

)
# 0.

(15)

Similarly, if 1−ε
ε > γ ≥ 1, then %A(γ ) includes only the portion of D in which

vA, j # 2(1−ε)
n and vB, j # 2ε

n and (14) may be written as

γ 3
(

ε2

1 − ε
· nD
n

)
− γ 2

(
ε · nD

n

)
+ γ
(
ε · nD

n
+
nA
n

)
−
(

ε2

1 − ε
· nD
n

+
nA
n

)
# 0.

(16)

13 If γ < min j
{
vA, j
vB, j

}
# ε

1−ε then %A(γ ) # {1, . . . , n}, and if γ ≥ max j
{
vA, j
vB, j

}
# 1−ε

ε then

%A(γ ) # ∅. In either case, one player has a weakly higher expected expenditure of the resource in every
battlefield and a strictly higher expenditure in a nonempty subset of battlefields. With symmetric budget
constraints, it is clear that this is not possible.
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Table 2 Multiple equilibria in
example (ε # 0.10,
(nA/n) # 0.1, and
(nD/n) # 0.9)

γ ∗ λ∗
A λ∗

B π∗
A π∗

B

0.1604 0.0464 0.2893 0.9259 0.5383

0.5669 0.0627 0.1106 0.8650 0.7618

1.00 0.10 0.10 0.82 0.82

1.7640 0.1106 0.0627 0.7618 0.8650

6.2362 0.2893 0.0464 0.5383 0.9259

We now consider a Quasi-Symmetric GL game example that demonstrates the
‘quasi-symmetry’ of the γ # 1 equilibrium and, with five solutions to system (&),
demonstrates the multiplicity of equilibria issue.

Quasi-Symmetric Example If ε # 0.10, (nA/n) # 0.1, and (nD/n) # 0.9,
then there are five solutions to system (&)—Eq. (15) has two real roots for 1 > γ ≥

ε
1−ε # 1

9 and Eq. (16) has three real roots for 9 # 1−ε
ε > γ ≥ 1—and Theorem

1 provides the corresponding equilibrium expected payoffs and sets of univariate
marginal distributions. These five equilibria are summarized in Table 2.

For the two solutions with 1 > γ ≥ 1
9 equilibrium is described as follows: for all

battlefields j ∈ A let v j ≡ vA, j # vB, j

FB, j (x) #
(
1 − λA

λB

)
+ λAx

v j
x ∈

[
0, v j

λB

]

FA, j (x) # λB x
v j

x ∈
[
0, v j

λB

]
,

for j ∈ D such that vA, j # 9
5n and vB, j # 1

5n

FB, j (x) #
(
1 − λA

9λB

)
+ λAx

(9/5n) x ∈
[
0, 1

5nλB

]

FA, j (x) # λB x
(1/5n) x ∈

[
0, 1

5nλB

]
,

and for j ∈ D such that vA, j # 1
5n and vB, j # 9

5n

FA, j (x) #
(
1 − λB

9λA

)
+ λB x

(9/5n) x ∈
[
0, 1

5nλA

]

FB, j (x) # λAx
(1/5n) x ∈

[
0, 1

5nλA

]
.

The expected payoff for playerA is 91
100 − 19γ

200 +
1

200γ and the expected payoff for player

B is 81
100 − 9

200γ + 11γ
200 . Similarly, for the three solutions with 9 > γ ≥ 1 equilibrium

is described as follows: for all battlefields j ∈ A

FA, j (x) #
(
1 − λB

λA

)
+ λB x

v j
x ∈

[
0, v j

λA

]

FB, j (x) # λAx
v j

x ∈
[
0, v j

λA

]
,

for j ∈ D such that vA, j # 9
5n and vB, j # 1

5n
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FB, j (x) #
(
1 − λA

9λB

)
+ λAx

(9/5n) x ∈
[
0, 1

5nλB

]

FA, j (x) # λB x
(1/5n) x ∈

[
0, 1

5nλB

]
,

and for j ∈ D such that vA, j # 1
5n and vB, j # 9

5n

FA, j (x) #
(
1 − λB

9λA

)
+ λB x

(9/5n) x ∈
[
0, 1

5nλA

]

FB, j (x) # λAx
(1/5n) x ∈

[
0, 1

5nλA

]
.

The expected payoff for player A is 81
100 − 9γ

200 +
11

200γ and the expected payoff for player

B is 91
100 − 19

200γ + γ
200 . Note also that in the equilibriumwith λA # λB # 0.10, for each

j in the first nD
2 battlefields in the disagreement set and corresponding mirror battle

j ′ in the last nD
2 battlefields in the disagreement set, player A’s equilibrium univariate

marginal distribution in battlefield j, FA, j (·), is the same as player B’s equilibrium
univariate marginal distribution in the corresponding mirror battlefield j ′, FB, j ′(·),
and vice versa.

Although this example is a simple one in which only three values of the ratio vA, j
vB, j

arise, there continues to exist a multiplicity of payoff nonequivalent equilibria even
when all of the parameters of the example are slightly perturbed, so that the ratio vA, j

vB, j
may be distinct for every battlefield j. In fact, fixing n and taking the relevant space
of parameters to be (XA, XB, {vA, j }nj#1, {vB, j }nj#1) ∈ R2

++ × [Int(Sn−1)]2, where
Int(Sn−1) is the interior of the n − 1 dimensional unit simplex containing the values
{vi, j }nj#1, i # A, B, there is a set of positive Lebesgue measure inR2

++ × [Int(Sn−1)]2

which contains the parameters in our example and inwhich such amultiplicity exists.14

14 For a fixed number of battlefields n, the equilibrium values γ ∗ are the solutions in γ to Eq. (14). If the
set of indices %A(γ ) is invariant over an interval of γ ’s, the left-hand side of (14) is a cubic in γ over that
interval. In our specific numerical example with ε # 0.1, nA

n # 0.1, and nD
n # 0.9, the sets of indices

%A(γ ) are invariant in each of two adjacent domains of γ , 1 > γ ≥ 1
9 and 9 > γ ≥ 1, but differ across the

domains (represented, respectively, by Eqs. (15) and (16)).More generally, because the set of indices%A(γ )
changes only at values of γ for which γ # vA, j

vB, j
for some j, the coefficients of γ in the cubic are fixed over

distinct intervals between adjacent values of
vA, j
vB, j

and the left-hand side of (14) is, in fact, continuous in γ

over [γ , γ ], including at values of γ at which the set of indices %A(γ ) changes. Moreover, the left-hand
side of (14) is also continuous in the 2n + 2-tuple of parameters (XA, XB , {vA, j }nj#1, {vB, j }nj#1) over the
relevant domain. In the numerical example, two of the five solutions γ ∗ to (14) identified in Table 2 are
interior to [ 19 , 1) and two are interior to [1, 9). (The remaining solution γ ∗ # 1 is on the boundary of the two

sets.) It is easily verified that none of the four solutions to (14) that are interior to [ 19 , 1) or [1, 9) are multiple
roots of the polynomial in γ (for the fixed set of indices %A(γ ) applicable over the interval). Therefore,
they cannot represent tangencies to the γ -axis of the applicable polynomial, but rather represent values of
γ where the left-hand side of (14) cuts the origin. As a consequence, for sufficiently small perturbations
of the 2n + 2-tuple of parameters chosen in the example, for each of these four values of γ ∗ there exists a
neighborhood about γ ∗such that the set of indices contained in %A(γ ∗) coincides with the set of indices
in the example and for that fixed set %A(γ ∗), the polynomial in γ given by the left-hand side of (14) has a
root within the neighborhood. That is, there is an open set of parameters (XA, XB , {vA, j }nj#1, {vB, j }nj#1)
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That is, a multiplicity of payoff nonequivalent equilibria should not be viewed as an
anomaly.

4 Generalized Colonel Blotto results

As pointed out in Hart (2008, 2016), the General Lotto game can be used as an
intermediate step in solving the Colonel Blotto game. In moving from the GGL game
to theGCBgame,we face the added requirement that for each player a joint distribution
exists that satisfies the player’s budget constraint with probability one and not just in
expectation. From this, it is clear that if a pair of joint distributions is found that
yields for each player the set of univariate marginal distributions corresponding to an
equilibrium in the GGL game and each joint distribution satisfies the constraint that
the budget holds with probability one, then this pair will also be an equilibrium of the
Colonel Blotto version of the game.

In Sect. 4.1, we begin by identifying a sufficient condition for an equilibrium set
of univariate marginal distributions in a GGL game to be able to map, via a copula,
into an equilibrium joint distribution in the corresponding GCB game and then exam-
ine the converse issue of a sufficient condition for an equilibrium set of univariate
marginal distributions in the GGL game to not be able to map into an equilibrium joint
distribution in the corresponding GCB game. These two results only cover a subset of
the parameter space, and we conclude Sect. 4.1 by examining this gap in the case of
the Quasi-Symmetric GL game. In Sect. 4.2, we examine how the results in Sect. 4.1
relate to the existing literature on the Colonel Blotto game.

4.1 Sufficient conditions for arbitrary parameter configurations

The following proposition provides a sufficient condition for the set of univariate
marginal distributions corresponding to an equilibrium in the GGL game given in
Theorem 1 to be generated by a pair of joint distributions that balance the players’
respective budgetswith probability one. That is, it provides a sufficient condition for an
equilibrium set of univariate marginal distributions in the GGL game to be attainable
in equilibrium in the GCB game. In the analysis that follows, consider a partition of the
battlefields into subsets based on distinct pairs of valuations vA, j and vB, j so that two
battlefields h andm, where h,m ∈ {1, . . . , n}, are in the same set in the partition if and
only if vA,h # vA,m and vB,h # vB,m . Let k ≤ n denote the number of subsets in this
partition, j ∈ {1, . . . , k} index the distinct pairs of battlefield valuations (vA,j, vB,j),
)j denote the set of battlefields with battlefield valuations (vA,j, vB,j), and nj ≥ 1
denote the number of battlefields in )j.

Proposition 2 Given a solution (λ∗
A, λ

∗
B) to system (&), if for each distinct pair of

battlefield valuations (vA,j, vB,j) with
v−i,jλ

∗
i

vi,jλ
∗
−i

≤ 1, for some i ∈ {A, B}, it is the case
that 2

nj
≤ v−i,jλ

∗
i

vi,jλ
∗
−i
, then there exists a Nash equilibrium of the GCB game with the same

Footnote 14 continued
containing those in the example for which there are solutions to (14) ‘close’ to the four values of γ ∗
identified in the interior of [ 19 , 1) and [1, 9).
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set of univariate marginal distributions and expected payoffs as in the corresponding
equilibrium in Theorem 1.

Given the k ≤ n distinct pairs of battlefield valuations, we can form independent
nj-variate marginal distributions on each of the j # 1, . . . , k subsets of battlefields
with a distinct pair of valuations, where the budget constraint for each subset j is equal
to the expected expenditure from the Theorem 1 set of univariate marginal distribution
functions on that subset of battlefields. For example, if vi,j

λ∗
i

≥ v−i,j
λ∗

−i
, then from The-

orem 1 it follows that player −i’s expected expenditure on the jth set of battlefields

is nj
2

(
v−i,j
λ∗

−i

)2
/
(
vi,j
λ∗
i

)
and i’s expected expenditure on the jth set of battlefields is nj(

v−i,j
2λ∗

−i

)
. Then, the problem of constructing an equilibrium n-variate joint distribution

Pi , for each player i, that is budget balancing with probability one and that provides the
univariate marginals given in Theorem 1 is replaced by the problem of constructing
k nj-variate marginal distributions, denoted Pi,j, one for each of the k sets of bat-
tlefields with distinct valuations, and then letting each player i’s joint distribution be
defined as Pi (x) # ∏k

j#1 Pi,j(xj) where xj is the restriction of x to the battlefields in
set j. For each of the sets of battlefields j ∈ {1, . . . , k} if vi,j

λ∗
i

≥ v−i,j
λ∗

−i
and it is the case

that 2
nj

≤ v−i,jλ
∗
i

vi,jλ
∗
−i
, then player i’s nj-variate marginal distribution Pi,j may be formed

by deterministically allocating nj
(
v−i,j
2λ∗

−i

)
of i’s budget to the subset j of battlefields

and then constructing Pi,j using the existing construction methods in Gross and Wag-
ner (1950), Roberson (2006), or Weinstein (2012). Similarly, player −i’s nj-variate

marginal distribution P−i,j may be formed by deterministically allocating nj
2

(
v−i,j
λ∗

−i

)2
/

(
vi,j
λ∗
i

)
of−i’s budget to the subset j of battlefields and then constructing P−i,j using the

distribution from Roberson (2006, Theorem 4 p.9).15 Any such construction provides
the necessary univariate marginals characterized in Theorem 1 and the resulting joint
distributions Pi and P−i are budget-balancing with probability one.

To fix ideas regarding themulti-variate marginal distributions that are utilized in the
constructionmethod summarized above, it is instructive to briefly examine an example
of such a multi-variate marginal. For the case of nj # 3 and

v−i,jλ
∗
i

vi,jλ
∗
−i

> 2
nj
, the support

of P−i,j is given in Fig. 3. Note that the support of P−i,j lies on the budget hyperplane∑3
i#1 xi # 3

(
v−i,jλ

∗
i

vi,jλ
∗
−i

)(
v−i,j
2λ∗

−i

)
and, as is shown in Roberson (2006), there exists a

distribution of mass across this support that provides the set of univariate marginals
specified by Theorem 1. The role of the condition that 2

nj
≤ v−i,jλ

∗
i

vi,jλ
∗
−i

for each j ∈
{1, . . . , k} canbe seen inFig. 3,where the condition implies that that budget hyperplane
cuts through the nj-box, or hypercube, above its intercepts and thus the upper bound

15 In Roberson (2006), the construction is carried out with respect to the players’ aggregate resource
endowments XA ≤ XB . Note that in this paper’s subset j of battlefields player −i’s budget is X−i,j ≡
nj
2

(
v−i,j
λ∗
−i

)2
/

(
vi,j
λ∗
i

)
and player i’s budget is Xi,j ≡ nj

(
v−i,j
2λ∗

−i

)
, where X−i,j ≤ Xi,j. To apply the

construction in Roberson (2006) to an nj-variate marginal distribution in this paper, substitute player −i
and X−i,j for player A and XA , respectively, and player i and Xi,j for player B and XB , respectively.
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Fig. 3 Support of P−i,j for the case of
vi,j
λ∗
i

≥ v−i,j
λ∗
−i

of the support of each of the univariate marginals is feasible. Furthermore, Roberson
(2006) shows that, as long as the hyperplane cuts through the hypercube above its
intercepts, the constraint that the support of the joint distribution satisfies the budget
constraint with probability one is satisfied and the results in Theorem 1 extend directly
to the Colonel Blotto version of the game. Thus, the conditions of Proposition 2 are
sufficient for the existence of budget-balancing joint distributions, one for each player,
that provide the sets of equilibrium univariate marginal distributions in Theorem 1. It
follows directly that a necessary condition for the existence of such a joint distribution
is Xi ≥ maxj

{
min
{
v−i,j
λ∗

−i
,
vi,j
λ∗
i

}}
for each player i. This necessary condition states

that each player’s budget-balancing hyperplane cuts through the n-box formed by
the supports of each of the n univariate marginals specified by Theorem 1 above its
intercepts.

Proposition 2 provides a sufficient condition for any particular equilibrium set of
univariate marginal distributions in a GGL game to be able to map, via a copula, into
an equilibrium joint distribution in the corresponding GCB game. Note that if the set
of battlefields is replicated α ∈ Z+ times, then: (i) each nj increases to αnj but (ii) the
proportion of battlefields of type j remains constant. Thus, the set of solutions (λ∗

A, λ
∗
B)

to system (&) is invariant to any α-replication of the set of battlefields. It follows that
if the Proposition 2 condition of 2

nj
≤ v−i,jλ

∗
i

vi,jλ
∗
−i

fails to hold for some j ∈ {1, . . . , k},
then there exists an α ∈ Z+ such that 2

αnj
≤ v−i,jλ

∗
i

vi,jλ
∗
−i
, and Proposition 2 applies to the

α-replication of the set of battlefields.
We now examine the issue of a sufficient condition for any particular equilibrium

set of univariate marginal distributions in the GGL game to not be able to map into
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an equilibrium joint distribution in the corresponding GCB game. If XB > nXA then,
clearly, in any equilibrium of the GCB game player B wins every battlefield with
certainty. But, it turns out that there exists a stronger condition that can be invoked.
Recall that given a solution to system (&) a necessary condition for the existence of
a budget-balancing joint distribution that provides the Theorem 1 sets of univariate
marginals is Xi ≥ maxj

{
min
{
v−i,j
λ∗

−i
,
vi,j
λ∗
i

}}
for each player i. Thus, if in a GCB game

GCB
{
XA, XB, n, {vA, j , vB, j }nj#1

}
, it is the case that for each solution to system (&)

there exists a player i such that Xi < maxj
{
min
{
v−i,j
λ∗

−i
,
vi,j
λ∗
i

}}
, then there exists no

equilibrium in which both players utilize joint distributions providing the Theorem 1
sets of univariate marginals. That is, the constraint on the joint distribution function is
binding. This result is summarized in the following corollary.

Corollary 2 Given a solution (λ∗
A, λ

∗
B) to system (&), if there exists a player i ∈ {A, B}

such that Xi < maxj
{
min
{
v−i,j
λ∗

−i
,
vi,j
λ∗
i

}}
, then there does not exist a Nash equilibrium

of the GCB game with the same set of univariate marginal distributions and expected
payoffs as in the corresponding equilibrium in Theorem 1.

To illustrate that the Proposition 2 and Corollary 2 conditions only partially answer
the question of whether or not there exists an equilibrium set of univariate marginal
distributions in a GGL game that can be mapped into an equilibrium joint distribution
of the correspondingGCBgame, consider theQuasi-Symmetric CB game fromSect. 3
for which we have the following result.

Proposition 3 In a Quasi-Symmetric CB game with (ε, nA, nD):
(1) There exists a solution (λ∗

A, λ
∗
B) to system (&) that satisfies the condition in Propo-

sition 2 if and only if one of the following three conditions holds:

(i) nA # 0 and nD ≥ 4
ε − 4

(ii) nA ≥ 2 and nD # 0
(iii) nA ≥ 2 and nD ≥ 4

ε − 4.

(2) If nA + εnD
(1−ε) ≥ 2, then there exists no solution (λ∗

A, λ
∗
B) to system (& ) that

satisfies the condition in Corollary 2.

The proof of Proposition 3 is provided inAppendix 2. FromProposition 3, it follows
that in the Quasi-Symmetric CB game there is a gap between the Proposition 2 and
Corollary 2 conditions. For example, the parameter configuration nA # 1, nD # 2,
and ε ∈

[ 1
3 ,

1
2

)
does not satisfy the conditions for either Proposition 2 or Corollary 2.

That is, the Proposition 2 and Corollary 2 conditions do not completely answer the
question of whether or not there exists an equilibrium set of univariate marginal dis-
tributions in the Quasi-Symmetric GL game that can be mapped into an equilibrium
joint distribution of the corresponding Quasi-Symmetric CB game.

4.2 Relationship to the Colonel Blotto literature

As indicated in Table 1 of Sect. 1, Proposition 2 provides a partial characterization of
two variations of the (continuous) Colonel Blotto game that have not previously been
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A B

Fig. 4 Arbitrary points in a regular and an irregular 3-gon

examined. We now briefly summarize how our results relate to the literature on the
four variations that have been previously examined (linear-pure count objective with
symmetric and asymmetric budgets, and the linear heterogeneous symmetric objective
with symmetric and asymmetric budgets) and focus, in particular, on the equilibrium
joint distribution functions previously identified in the literature. For a more complete
summary of the related literature, see the survey Kovenock and Roberson (2012).

Because all of the constructions of the equilibrium joint distributions in the first two
rows of the symmetric budget column of Table 1—with the exception of Weinstein
(2012), which we will return to below—involve randomizing on the surface of an
n-gon, the two following properties of regular n-gons are worth noting: (1) the sum of
the perpendiculars from any point in a regular n-gon to the sides of the regular n-gon
is equal to n times the inradius, i.e., the radius of the incircle (the largest circle that
can be inscribed in the n-gon) and (2) if each side of the regular n-gon has length
(2/n) tan(π/n), then the inradius is equal to (1/n). Normalizing the symmetric budget
to one unit of a (use-it-or-lose-it) resource, these two properties of regular n-gons
imply that any arbitrary point in a regular n-gon with side length of (2/n) tan(π/n) is
budget balancing in that the perpendiculars sum to one, and, for the case of n # 3,
this is illustrated in panel A of Fig. 4 where x1 + x2 + x3 # 1. For n # 3 any
distribution on the surface of a regular 3-gon with side lengths (2/3) tan(π/3) that
generates uniform marginal distributions on [0, 2/3] for each of the three battlefields
is an equilibrium joint distribution, and Borel and Ville (1938) provide two such
equilibrium joint distributions.16 Gross and Wagner (1950), making use of the two
properties of regular n-gons listed above, show that both types of equilibria in Borel
and Ville (1938) for the linear pure-count objective game with symmetric budgets and
n # 3 can be directly extended to n > 3. They also provide a new fractal equilibrium.

16 Borel (1921), a paper on mixed strategies in zero-sum games, introduces the Colonel Blotto game as an
example, but does not provide a solution.
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For the case of symmetric budgets, the regular n-gon approach can be modified
to allow for battlefield valuations to be symmetric across players, but heterogeneous
across battlefields, i.e., the linear heterogeneous symmetric objective gamewith n ≥ 3
as in the second row of the first column of Table 1. Thomas (2018) provides an
interesting new construction method for the linear heterogeneous symmetric objective
game with symmetric budgets and n ≥ 3, which utilizes an irregular n-gon in which
the number of sides equals the number battlefields. Here we focus on Gross (1950)
and Laslier (2002), where the modification involves partitioning the n battlefields
into three sets, denoted A, B, and C, and then randomizing on the surface of the
irregular triangle with the three side lengths equal to the total valuations of each of the
three sets of battlefields, henceforth denoted VA, VB, and VC, respectively.17 Then, as
illustrated in panel B of Fig. 4, for each point on the surface of this irregular triangle
the sum across the three sides of the product of each perpendicular and the length of
its corresponding side is equal to a constant. That is, hAVA + hBVB + hCVC is equal
to twice the surface area of the triangle which, with VA + VB + VC # 1, is equal to the
inradius. Furthermore, note that hi ≤ 2r for all i, where r denotes the inradius. Thus,
for any tri-variate distribution on the incircle the random variable h̃i is contained in the
interval [0, 2r] for each i # A,B, C. Thus, we can construct an n-variate distribution

function where the random variable h̃A is transformed into x̃ j ≡ h̃Av j
r for each j ∈ A,

and a similar transformation is carried out for each j ∈ B and j ∈ C. The resulting n-
variate distribution function is budget-balancing with probability one (

∑n
j#1 x j # 1)

and for each j # 1, . . . , n, the random variable x̃ j is contained in [0, 2v j ]. Lastly, as
shown in Gross (1950) and Laslier (2002), one of the Borel and Ville (1938) solutions
can be used for the tri-variate distribution of the h̃i variables. In this case, each h̃i is
uniformly distributed on the interval [0, 2r]—so that each x̃ j is uniformly distributed
on the interval [0, 2v j ] for each battlefield j where v j is the value of battlefield j—and
with symmetric budgets, equilibrium in the linear heterogeneous symmetric objective
game requires, utilizing a similar argument as the linear-pure count game, that the
univariate marginal distribution functions are uniform on [0, 2v j ] for each battlefield j.

A drawback of using n-gons to construct budget-balancing joint distribution func-
tions is that this method reduces the dimensionality of the set of points that can be
used to form the support of the joint distribution function.With symmetric budgets and
symmetric battlefield valuations, this reduction in dimensionality does not preclude
the construction of equilibrium joint distribution functions. However, with asymmet-
ric budgets and/or asymmetric battlefield valuations it is easier, if not necessary, to
work directly with the budget hyperplane in Rn , as in Roberson (2006) and Weinstein
(2012). In this paper, we utilized this full dimensionality approach to examine a subset
of possible parameter configurations for each of the three checked cells in Table 1.
Closely related is Schwartz et al. (2014)18 who, for the case of the linear heterogeneous

17 This construction, and the following discussion, is for the case in which no battlefield has a value that
is over half of the total value of all battlefields and for which it is not possible to combine battlefields into
four groups with equal sums of valuations. For more details on the remaining two special cases, see Laslier
(2002).
18 An earlier version of our paper circulated under the title ‘Generalizations on the Colonel Blotto Game’
and was first presented at the 13th SAET Conference at MINES ParisTech in July of 2013. Following the
first circulated version of our paper, Schwartz et al. (2014) independently derived the special case of our
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symmetric objective with n ≥ 3, show how in that constant-sum case where battle-
field valuations are heterogeneous across battlefields but symmetric across players, the
construction utilized in Roberson (2006) can be extended, along the lines described
above, to construct a Nash equilibrium of the GCB game with the same set of equilib-
rium univariate marginal distributions and expected payoffs as in the corresponding
equilibrium in Corollary 1.

For the first two rows of the asymmetric budget column of Table 1, the case of
n # 2—where the Blotto game’s binding budget constraint implies that an increase
in the allocation of the resource in one battlefield necessarily implies a correspond-
ing decrease in the allocation of the resource to the remaining battlefield—leads to a
substantively different set of strategic considerations than those arising in the case of
n ≥ 3. For n # 2, Gross and Wagner (1950) provide an equilibrium for all feasible
parameter configurations in the first two rows of the asymmetric budget column of
Table 1. Macdonell and Mastronardi (2015) complete the characterization of equilib-
rium and examine the case of nonlinear budget constraints.

Also relevant is the related work on discrete versions of the Colonel Blotto game.
Table 1 lists two such papers, Hart (2008) and Hortala-Vallve and Llorente-Saguer
(2012). Hart (2008) examines the relationship between the discrete versions of the
General Lotto game and the Colonel Blotto game with symmetric and asymmetric
budgets. The characterization of the asymmetric-budget, discrete General Lotto game
is completed in Dziubiński (2013). In a related work, Hart (2016) examines the rela-
tionship between a discrete expenditure version of the all-pay auction and the discrete
General Lotto game. Hortala-Vallve and Llorente-Saguer (2012) also examine the dis-
crete Colonel Blotto game with asymmetric budgets but allow for heterogeneous and
asymmetric battlefield valuations, with a focus on pure-strategy equilibria.

5 Conclusion

In this paper, we provide a complete characterization of the set of Nash equilibria in the
Generalized General Lotto game in which battlefield valuations may be heterogeneous
across battlefields and asymmetric across players, and in which players’ budgets may
be asymmetric. We demonstrate that there exist nonpathological parameter configu-
rations for which multiple payoff nonequivalent equilibria exist.

We then show that this characterization may be applied to extend the existing
analysis of equilibrium in the Colonel Blotto game to incorporate a range of parameter
configurations with heterogeneous battlefield valuations and asymmetric valuations
and budgets across players. For the Generalized Colonel Blotto game we provide
sufficient conditions for the existence of an equilibrium pair of joint distributions with
univariate marginal distributions that coincide with those of an equilibrium in the
Generalized General Lotto game. Characterization of Colonel Blotto equilibria for
the remaining subset of parameter configurations remains an open question but, for
this region, we provide a sufficient condition for the sets of equilibrium univariate

Footnote 18 continued
construction for the constant-sum game with the linear heterogeneous symmetric objective and asymmetric
budgets.
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marginal distributions to differ from those arising in any equilibrium of the General
Lotto game.
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Appendix 1

Appendix 1 contains the remaining two parts of the proof of Theorem 1: (i) for each
equilibrium of the GGL game there exists a corresponding solution (λ∗

A, λ
∗
B) to system

(&) and (ii) for each solution (λ∗
A, λ

∗
B) to system (&) each player in the GGL game has

a unique set of Nash equilibrium univariate marginal distributions. We begin with the
proof of part (i) and then conclude with the proof of part (ii).

The proof of the converse claim in Theorem 1, that for each equilibrium of the
GGL game there exists a corresponding solution (λ∗

A, λ
∗
B) to system (&), extends the

arguments in Hart (2008) on the continuous General Lotto game and Hart (2016) on
the relationship between the all-pay auction and the continuous General Lotto game.
We begin by noting that the standard constant-sum continuous General Lotto game,
denoted L{XA, XB}, is a special case of the GGL game in which n # 1, vA # vB # 1,
and a strategy is a univariate distribution function denoted Fi , for i # A, B, with
EFi (x) ≤ Xi . Let x̃i denote the realization of a random variable distributed according
to the distribution function Fi . Player A’s expected payoff in the General Lotto game
is given by

πA(FA, FB) # Pr(̃xA > x̃B) +
1
2
Pr(̃xA # x̃B)

and player B’s expected payoff is given by

πB(FB, FA) # Pr(̃xB > x̃ A) +
1
2
Pr(̃xB # x̃ A) # 1 − Pr(̃xA > x̃B) − 1

2
Pr(̃xA # x̃B).

In this constant-sum game, playerA chooses FA tomaximize Pr(̃xA > x̃B)+ 1
2Pr(̃xA #

x̃B) and player B chooses FB to minimize Pr(̃xA > x̃B) + 1
2Pr(̃xA # x̃B).

Equilibrium in the (continuous) General Lotto gamewith strictly positive budgets is
characterized by Sahuguet and Persico (2006) andHart (2008). The following theorem
extends that characterization to allow for one or both of the players to have a budget
of 0. Unlike the case of XB ≥ XA > 0, if either XA # 0 and XB > 0 or XA > 0 and
XB # 0, then there are multiple equilibria.19 However, because the game is constant
sum, the equilibrium expected payoffs are unique for all possible resource endowments
(XA, XB).

19 For the player i with Xi # 0, the unique equilibrium strategy is F∗
i, j (0) # 1, but for player −i with

X−i > 0 any distribution function with F∗
−i, j (0) # 0 and EF−i, j (x) ≤ X−i is an equilibrium strategy.
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Theorem 2 For the General Lotto game L{XA, XB} with XB ≥ XA > 0, the unique
equilibrium strategies are

FA(x) #
(
1 − XA

XB

)
+
x · XA

2X2
B

for x ∈ [0, 2XB]

FB(x) # x
2XB

for x ∈ [0, 2XB]

and the equilibrium expected payoffs are XA
2XB

for player A and 1− XA
2XB

for player B.
For the General Lotto game L{XA, XB} with XB # 0 and/or X A # 0:

1. If X A # 0 and XB > 0, then the unique equilibrium expected payoffs are 0 for
player A and 1 for player B.

2. If X A > 0 and XB # 0, then the unique equilibrium expected payoffs are 1 for
player A and 0 for player B.

3. If X A # 0 and XB # 0, then the unique equilibrium strategies are F∗
A, j (0) #

F∗
B, j (0) # 1 and the equilibrium expected payoffs are 1

2 for player A and 1
2 for

player B.

In moving from the General Lotto game L{XA, XB} to the GGL game
GGL(XA, XB , n, {vA, j , vB, j }nj#1), recall that in the GGL game a strategy is an n-
variate distribution function, Pi for i # A, B, that satisfies the constraint that∑n

j#1 EFi, j (x) ≤ Xi , where Fi, j is the univariate marginal distribution of Pi for
battlefield j. Let x̃i, j denote the realization of a random variable distributed according
to the univariate marginal distribution Fi, j . Then, given the strategy profile (PA, PB),
player A’s expected payoff is given by

πA(PA, PB) #
n∑

j#1

vA, j

(
Pr(̃xA, j > x̃B, j ) +

1
2
Pr(̃xA, j # x̃B, j )

)

and player B’s expected payoff is given by

πB(PB, PA) #
n∑

j#1

vB, j

(
1 − Pr(̃xA, j > x̃B, j ) − 1

2
Pr(̃xA, j # x̃B, j )

)
.

Given an equilibrium (P∗
A, P

∗
B), let X

∗
i, j ≡ EF∗

i, j
(x) for i # A, B denote player i’s

expected allocation of the resource to battlefield j under the strategy P∗
i .

Lemma 1 If (P∗
A, P

∗
B) is an equilibrium of GGL(XA, XB, n, {vA, j , vB, j }nj#1), then

within each battlefield j, (F∗
A, j , F

∗
B, j ) is an equilibrium of L(X∗

A, j , X
∗
B, j ).

Proof If (P∗
A, P

∗
B) is an equilibrium of GGL(XA, XB, n, {vA, j , vB, j }nj#1), then there

are no payoff-increasing deviations for either player. But one feasible type of deviation
for player i is to hold constant X∗

i, j on each battlefield j and choose a feasible deviation
P̂i with the set of univariate marginals {F̂i, j }nj#1 with EF̂i, j (x) # X∗

i, j for all j. Let
x̂i, j denote the realization of a random variable distributed according to the univariate
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marginal distribution function F̂i, j . Because in battlefield j each player i does not have
a payoff increasing deviation F̂i, j with EF̂i, j (x) # X∗

i, j , it follows that

vi, j

(
Pr(̃xi, j > x̃−i, j ) +

1
2
Pr(̃xi, j # x̃−i, j )

)
≥ vi, j

(
Pr(̂xi, j > x̃−i, j ) +

1
2
Pr(̂xi, j # x̃−i, j )

)

(17)

for all possible univariate marginal distributions F̂i, j with EF̂i, j (x) # X∗
i, j . But it

follows directly from (17) that
(
Pr(̃xi, j > x̃−i, j ) +

1
2
Pr(̃xi, j # x̃−i, j )

)
≥
(
Pr(̂xi, j > x̃−i, j ) +

1
2
Pr(̂xi, j # x̃−i, j )

)

(18)

for all possible deviations F̂i, j with EF̂i, j (x) # X∗
i, j , and, thus, (F

∗
A, j , F

∗
B, j ) is an

equilibrium of L(X∗
A, j , X

∗
B, j ). "

To complete the proof of the claim that if (P∗
A, P

∗
B) is an equilibrium of

GGL(XA, XB , n, {vA, j , vB, j }nj#1), then there exists a corresponding solution (λ
∗
A, λ

∗
B)

to system (&), Lemmas 2-4 collectively establish that in any equilibrium (P∗
A, P

∗
B) of

GGL(XA, XB , n, {vA, j , vB, j }nj#1) it must be the case that min{X∗
A, j , X

∗
B, j } > 0 for

all j. Because min{X∗
A, j , X

∗
B, j } > 0 for all j, it follows from Lemma 1 and Theo-

rem 2 that the equilibrium univariate marginal distributions are uniquely determined.
Using the unique equilibrium univariate marginal distributions, Lemma 5 completes
the proof that there exists a corresponding solution (λ∗

A, λ
∗
B) to system (&).

Lemma 2 If (P∗
A, P

∗
B) is an equilibrium of GGL(XA, XB, n, {vA, j , vB, j }nj#1), then

max{X∗
A, j , X

∗
B, j } > 0 for all j .

Proof By way of contradiction, suppose that there exists an equilibrium (P∗
A, P

∗
B)

in which for some battlefield k max{X∗
A,k, X

∗
B,k} # 0, which implies that F∗

A,k(0) #
F∗
B,k(0) # 1.We beginwith the case inwhich

∑n
j#1 EF∗

A, j
(x) < XA and then examine

the case in which
∑n

j#1 EF∗
A, j

(x) # XA. If
∑n

j#1 EF∗
A, j

(x) < XA, then player A

can increase his payoff by vA,k
2 by allocating a strictly positive level of the resource

XA,k ≤ XA−∑n
j#1 EF∗

A, j
(x) to battlefield k and setting FA,k(0) # 0, a contradiction.

For
∑n

j#1 EF∗
A, j

(x) # XA > 0, there exists at least one battlefield j ′ in which
X∗
A, j ′ > 0 and there are two cases to consider: (i) X∗

B, j ′ # 0 and (ii) X∗
B, j ′ > 0.

In case (i), because
∑n

j#1 EF∗
A, j

(x) # XA > 0 and in battlefield j ′ X∗
A, j ′ > 0 and

X∗
B, j ′ # 0, player A can increase his payoff by vA,k

2 by shifting XA,k < X∗
A, j ′ of the

resource from battlefield j ′ to battlefield k and setting FA,k(0) # FA, j ′(0) # 0, a
contradiction.

In case (ii), X∗
A, j ′ > 0 and X∗

B, j ′ > 0, and it follows from Lemma 1 and
Theorem 2 that F∗

B, j ′(x) is the unique equilibrium strategy in the General Lotto
game L(X∗

A, j ′ , X
∗
B, j ′ ), where the support of F∗

B, j ′ (x), denoted supp(F∗
B, j ′(x)), is
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[0, 2max{X∗
A, j ′ , X

∗
B, j ′}]. Thus, player A can increase his total expected payoff by

an amount arbitrarily close to vA,k
2 by shifting, for a sufficiently small ε > 0, ε of

the resource from battlefield j ′ to battlefield k, in battlefield k choosing a distribution
function FA,k(x) with FA,k(0) # 0 and EFA,k (x) # ε, and in battlefield j ′ choos-
ing a distribution function FA, j ′ (x) with FA, j ′(0) # 0, EFA, j ′ (x) # X∗

A, j ′ − ε, and
supp(FA, j ′) ⊆ supp(F∗

B, j ′(x)). In battlefield j ′ player A’s expected payoff from the
distribution function FA, j ′ (x) when playerB’s distribution function is F∗

B, j ′(x) is given
by

vA, j ′

∫ ∞

0
F∗
B, j ′ (x)dFA, j ′ (x) #






vA, j ′

((
1 − X∗

B, j ′
X∗
A, j ′

)
+

(
X∗
A, j ′−ε

)
X∗
B, j ′

2
(
X∗
A, j ′
)2

)

if X∗
A, j ′ > X∗

B, j ′

vA, j ′

((
X∗
A, j ′−ε

)

2X∗
B, j ′

)

if X∗
A, j ′ ≤ X∗

B, j ′

Thus, the loss in player A’s payoff in battlefield j ′ approaches 0 as ε approaches
0, but the gain on battlefield k is vA,k

2 for all ε > 0. This is a contradiction to the
assumption that (P∗

A, P
∗
B) is an equilibrium and completes the proof that if (P∗

A, P
∗
B) is

an equilibrium of GGL(XA, XB , n, {vA, j , vB, j }nj#1) then max{X∗
A, j , X

∗
B, j } > 0 for

all j. "

Lemma 3 If (P∗
A, P

∗
B) is an equilibrium of GGL(XA, XB, n, {vA, j , vB, j }nj#1), then∑n

j#1 EF∗
i, j
(x) > 0 for each player i # A, B.

Proof By way of contradiction, suppose that there exists an equilibrium (P∗
A, P

∗
B) in

which
∑n

j#1 EF∗
i, j
(x) # 0 for some player i. From Lemma 2, it follows that for player

−i , X∗
−i, j > 0 for all j, which from Lemma 1 and Theorem 2 implies that player i

earns an equilibrium expected payoff of 0. If i # B, then because XB ≥ XA > 0, it is
clear that playerB has a payoff increasing deviation that involvesmimicking playerA’s
strategy, which yields B an expected payoff of 1

2
∑n

j#1 vB, j . Hence a contradiction.

If i # A, then player A can mimic player B’s strategy with probability XA
XB

and bid 0

in every battlefield with probability
(
1 − XA

XB

)
, which similarly yields A an expected

payoff of XA
2XB

∑n
j#1 vA, j . This yields a contradiction and completes the proof. "

Lemma 4 If (P∗
A, P

∗
B) is an equilibrium of GGL(XA, XB , n, {vA, j , vB, j }nj#1), then

min{X∗
A, j , X

∗
B, j } > 0 for all j .

Proof By way of contradiction, suppose that there exists an equilibrium (P∗
A, P

∗
B) in

which there is at least one battlefield k with min{X∗
A,k, X

∗
B,k} # 0. There are two

cases to consider: (i) min{X∗
A, j , X

∗
B, j } # 0 for all j or (ii) min{X∗

A, j , X
∗
B, j } # 0

for at least one, but not all j. Beginning with case (i), because min{X∗
A, j , X

∗
B, j } # 0

for all j, from Lemma 3
∑n

j#1 EF∗
i, j
(x) > 0 for each player i, and from Lemma 2

max{X∗
A, j , X

∗
B, j } > 0 for all j, there exists at least one battlefield j ′ with X∗

A, j ′ > 0
and X∗

B, j ′ # 0 and at least one battlefield j ′′ with X∗
A, j ′′ # 0 and X∗

B, j ′′ > 0. But,
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player B can strictly increase his total expected payoff by decreasing X∗
B, j ′′ by an

ε ∈ (0,min{X∗
B, j ′′ , X

∗
A, j ′}), allocating ε to battlefield j ′, and utilizing a univariate

marginal distribution on battlefield j ′ that places mass
(
1 − ε

X∗
A, j ′

)
on 0 and random-

izes according to F∗
A, j ′ with probability

ε
X∗
A, j ′

. Such a deviation would increase player

B’s expected payoff on battlefield j ′ by
εvB, j ′
2X∗

A, j ′
with no decrease in the expected payoff

on battlefield j ′′, a contradiction.
For case (ii), if min{X∗

A, j , X
∗
B, j } # 0 for at least one, but not all j, then there exists

at least one battlefield j ′ with min{X∗
A, j ′ , X

∗
B, j ′} > 0 and at least one battlefield k with

min{X∗
A,k, X

∗
B,k} # 0. Because from Lemma 2 max{X∗

A,k, X
∗
B,k} > 0, there exists a

player iwith Xi,k > 0 and a player−i with X−i,k # 0. Then, because from Lemma 1,
each player’s unique equilibrium univariate marginal distribution in battlefield j ′ is
given by Theorem 2, player i has a payoff increasing deviation that involves shifting
ε ∈ (0, X∗

i,k) of the resource from battlefield k to battlefield j ′, in battlefield k choosing
a distribution function Fi,k(x) with Fi,k(0) # 0 and EFi,k (x) # X∗

i,k − ε, in battlefield
j ′ choosing a distribution function Fi, j ′ (x) with Fi, j ′ (0) # 0, EFi, j ′ (x) # X∗

i, j ′ + ε,
and supp(Fi, j ′ ) ⊆ supp(F∗

−i, j ′ (x)). Such a deviation results in no loss to player i’s
expected payoff in battlefield k. In battlefield j ′, player i’s expected payoff from the
distribution function Fi, j ′ (x) when player −i’s distribution function is F∗

−i, j ′ (x) is
given by

vi, j ′

∫ ∞

0
F∗

−i, j ′ (x)dFi, j ′ (x) #






vi, j ′

((
1 − X∗

−i, j ′
X∗
i, j ′

)
+

(
X∗
i, j ′+ε

)
X∗

−i, j ′

2
(
X∗
i, j ′
)2

)

if X∗
i, j ′ > X∗

−i, j ′

vi, j ′

((
X∗
i, j ′+ε

)

2X∗
−i, j ′

)

if X∗
i, j ′ ≤ X∗

−i, j ′

.

Thus, for all ε ∈ (0, X∗
i,k) player i’s expected payoff in battlefield j ′ is strictly higher

under the deviation, and there is no loss to player i’s expected payoff in battlefield k.
This is a contradiction and completes the proof that if (P∗

A, P
∗
B) is an equilibrium of

GGL(XA, XB , n, {vA, j , vB, j }nj#1) then min{X∗
A, j , X

∗
B, j } > 0 for all j. "

Lemma 5 If (P∗
A, P

∗
B) is an equilibrium of GGL(XA, XB, n, {vA, j , vB, j }nj#1), then

there exists a corresponding solution (λ∗
A, λ

∗
B) to system (&).

Proof From Lemma 4, min{X∗
A, j , X

∗
B, j } > 0 for all j. Then, because (P∗

A, P
∗
B) is

an equilibrium of GGL(XA, XB, n, {vA, j , vB, j }nj#1) and min{X∗
A, j , X

∗
B, j } > 0 for

all j, it follows from Lemma 1 that in each battlefield j the players’ unique equilib-
rium univariate marginal distributions are given by Theorem 2. Because, the unique
equilibrium univariate marginal distributions given by Theorem 2 are linear, it fol-
lows that for player A any deviation PA that satisfies the following two conditions
is payoff maximizing and feasible: (i) in each battlefield j the associated univariate
marginal distribution function FA, j (x) satisfies FA, j (0) # 0 if X∗

A, j > X∗
B, j and

supp(FA, j ) ⊆ supp(F∗
B, j (x)), and (ii) across battlefields

∑n
j#1 EFA, j (x) # XA. Let-

ting XA, j # EFA, j (x), player A’s total expected payoff from such a joint distribution
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function PA, given that player B is using the joint distribution function P∗
B , is given

by

πA(PA, P∗
B ) #

n∑

j#1

vA, j

∫ ∞

0
F∗
B, j (x)dFA, j (x)

#
∑

j |X∗
A, j>X∗

B, j

vA, j

[(

1 −
X∗
B, j

X∗
A, j

)

+
XA, j X∗

B, j

2(X∗
A, j )

2

]

+
∑

j |X∗
A, j≤X∗

B, j

vA, j

(
XA, j

2X∗
B, j

)

.

(19)

Similarly, for player B the maximum achievable total expected payoff from a feasible
deviation PB with {XB, j }nj#1 is given by

πB (PB , P∗
A) #

n∑

j#1

vB, j

∫ ∞

0
F∗
A, j (x)dFB, j (x)

#
∑

j |X∗
A, j≥X∗

B, j

vB, j

(
XB, j

2X∗
A, j

)

+
∑

j |X∗
A, j<X∗

B, j

vB, j

[(

1 −
X∗
A, j

X∗
B, j

)

+
XB, j X∗

A, j

2(X∗
B, j )

2

]

(20)

Because (P∗
A, P

∗
B) is an equilibrium of GGL(XA, XB, n, {vA, j , vB, j }nj#1), it must be

the case that player A is maximizing Eq. (19) with respect to {XA, j }nj#1 and player B is
maximizing Eq. (20) with respect to {XB, j }nj#1. Then, because Eqs. (19) and (20) are
concave and continuously differentiable with respect to {Xi, j }nj#1 ∈ Rn

+, i # A, B,
respectively, it follows that there exists a Lagrange multiplier λ∗

i ≥ 0 such that the
Kuhn–Tucker first-order conditions hold:20






vi, j

(
1

2X∗
−i, j

)
− λ∗

i # 0 in each battlefield j with X∗
i, j ≤ X∗

−i, j

vi, j

(
X∗

−i, j

2(X∗
i, j )

2

)
− λ∗

i # 0 in each battlefield j with X∗
i, j > X∗

−i, j

, (21)

with complementary slackness condition λ∗
i ≥ 0,

∑n
j#1 X

∗
i, j ≤ Xi , and λ∗

i(∑n
j#1 X

∗
i, j − Xi

)
# 0. Complementary slackness is clearly satisfied because from

(19) and (20) it is clearly suboptimal to set
∑n

j#1 Xi, j < Xi .
From the first-order conditions in (21) we see that in each battlefield j with

X∗
i, j > X∗

−i, j : (i) X∗
i, j # v−i, j

2λ∗
−i

and (ii) X∗
i, j #

(
vi, j X∗

−i, j
2λ∗

i

)1/2

or equivalently

X∗
−i, j #

(
v−i, j /2λ∗

−i

)2

(vi, j /2λ∗
i )

. Combining (i) and (ii), it follows from budget balance that

λ∗
A and λ∗

B solve

20 For further details see p. 187 of Sundaram (1996).
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∑

j |X∗
A, j>X∗

B, j

vB, j

2λ∗
B
+

∑

j |X∗
A, j≤X∗

B, j

(
vA, j
λ∗
A

)2

2
(
vB, j
λ∗
B

) # XA (22)

and

∑

j |X∗
A, j≥X∗

B, j

(
vB, j
λ∗
B

)2

2
(
vA, j
λ∗
A

) +
∑

j |X∗
A, j<X∗

B, j

vA, j

2λ∗
A

# XB (23)

Because X∗
A, j # vB, j

2λ∗
B
and X∗

B, j # (vB, j /2λ∗
B)

2

(vA, j /2λ∗
A)

when X∗
A, j > X∗

B, j , and X∗
A, j #

(vA, j /2λ∗
A)

2

(vB, j /2λ∗
B)

and X∗
B, j # vA, j

2λ∗
A
when X∗

A, j ≤ X∗
B, j , it follows that

vA, j
λ∗
A

>
vB, j
λ∗
B

if and

only if X∗
A, j > X∗

B, j . Thus, the system (22) and (23) is equivalent to system (&).

This completes the proof of part (i), for each equilibrium of the GGL game, there
exists a corresponding solution (λ∗

A, λ
∗
B) to system (&).

We now conclude with the proof of part (ii), for each solution (λ∗
A, λ

∗
B) to system (&)

each player in the GGL game has a unique set of Nash equilibrium univariate marginal
distributions. From the argument utilized in the proof of Lemma 5, it follows that for
each solution (λ∗

A, λ
∗
B) each player i’s n-tuple of the expected allocation of the resource

to each of the n battlefields, {X∗
i, j }nj#1, is uniquely determined. Namely, X∗

A, j # vB, j
2λ∗

B

and X∗
B, j # (vB, j /2λ∗

B)
2

(vA, j /2λ∗
A)

when X∗
A, j > X∗

B, j , and X∗
A, j # (vA, j /2λ∗

A)
2

(vB, j /2λ∗
B)

and X∗
B, j # vA, j

2λ∗
A

when X∗
A, j ≤ X∗

B, j . From Lemma 4, each player’s expected allocation of the resource
to each battlefield is strictly positive, min{X∗

A, j , X
∗
B, j } > 0 for all j. Then, because

{X∗
A, j , X

∗
B, j }nj#1 is uniquely determined by (λ∗

A, λ
∗
B) and min{X∗

A, j , X
∗
B, j } > 0 for

all j, it follows from Lemma 1 that in each battlefield j the players’ unique equilibrium
univariate marginal distributions are given by Theorem 2. That is, for each solution
(λ∗

A, λ
∗
B) each player in the GGL game has a unique set of Nash equilibrium univariate

marginals, and this completes the proof of Theorem 1.

Appendix 2

Appendix 2 contains the proof of Proposition 3. As demonstrated by the Quasi-
Symmetric Example, there may exist multiple equilibria with distinct payoffs, but
there always exists an equilibrium with γ ∗ # 1. Note that if γ ∗ # 1, then λ∗

A # λ∗
B

which it will be convenient to denote by λ1.
We begin with part (1) of Proposition 3, where we provide the proof for case

(iii), i.e., nA ≥ 2 and nD ≥ 4
ε − 4. The proofs for the remaining two cases follow

directly. Recall that Proposition 2 provides the following sufficient condition for an
equilibrium set of univariate marginal distributions in a GGL game to be able to map,
via a copula, into an equilibrium joint distribution in the corresponding GCB game:
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if for each distinct pair of battlefield valuations (vA,j, vB,j) with
v−i,jλ

∗
i

vi,jλ
∗
−i

≤ 1, for some

i ∈ {A, B}, it is the case that 2
nj

≤ v−i,jλ
∗
i

vi,jλ
∗
−i
, then there exists a Nash equilibrium of

the GCB game with the same set of univariate marginal distributions and expected
payoffs as in the corresponding equilibrium in Theorem 1.

In a Quasi-Symmetric CB game, there are three distinct pairs of battlefield val-
uations to consider. We begin with the agreement set A and then examine the two
halves of the disagreement set D. At each battlefield j ∈ A,

(
vA,j, vB,j

)
#
( 1
n ,

1
n

)
.

For γ ∗ # 1, the Proposition 2 condition for the agreement set A may be stated as
nA ≥ 2. In the case that γ ∗ ,# 1, the Proposition 2 condition for the agreement set A
is nA ≥ 2

γ ∗ if γ ∗ ≤ 1 and nA ≥ 2γ ∗ if γ ∗ ≥ 1. Clearly the Proposition 2 condition
forA becomes more difficult to satisfy as γ ∗ moves away from the value of 1. That is,
if the Proposition 2 condition for A is not satisfied at γ ∗ # 1, then the Proposition 2
condition for A will not be satisfied for any γ ∗ ,# 1.

Moving on to the disagreement set D where either
(
vA,j, vB,j

)
#
(
2(1−ε)

n , 2ε
n

)
or

(
vA,j, vB,j

)
#
(
2ε
n ,

2(1−ε)
n

)
, for γ ∗ # 1 the Proposition 2 condition for both halves

of the disagreement setDmay be stated as 4
nD

≤ ε
1−ε , or equivalently as nD ≥ 4

ε − 4.
In the case that γ ∗ ,# 1, there are two cases to consider, which we label (♦) for
1 > γ ∗ ≥ ε

1−ε and ($) for 1−ε
ε > γ ∗ ≥ 1. Note that in case (♦)

(
ε

1−ε

)
γ ∗ < 1

and in case ($)
(

ε
1−ε

)
1
γ ∗ < 1. Thus for both cases (♦) and ($), the Proposition 2

condition for half of the disagreement setD is nD ≥
( 4

ε − 4
)
γ ∗ and for the other half

of the disagreement set D is nD ≥
( 4

ε − 4
) 1

γ ∗ . Because both of these Proposition 2
conditions for the disagreement set D must be satisfied, it follows that regardless of
the direction of the movement, one of these two conditions becomes more difficult to
satisfy as γ ∗ moves away from the value of 1. This completes the proof of part (1) of
Proposition 3.

For part (2) of Proposition 3, recall that Corollary 2 provides the following sufficient
condition for an equilibrium set of univariate marginal distributions in the GGL game
to not be able to map into an equilibrium joint distribution in the corresponding GCB
game: Xi < maxj

{
min
{
v−i,j
λ∗

−i
,
vi,j
λ∗
i

}}
. For γ ∗ # 1, we can use Eq. (&) to solve for λ1

in the Quasi-Symmetric GL game, where

1
λ1

(
nA
2n

+
nD
2n

(
ε

1 − ε

))
# 1. (24)

Next, note that for the Quasi-Symmetric GL game with γ ∗ # 1, it follows that

Xi # 1 <
1

nλ1
# max

j

{
min
{v−i,j

λ1
,
vi,j

λ1

}}
(25)

Combining λ1 fromEq. (24)with the Corollary 2 condition that 1 < 1
nλ1

fromEq. (25),
it follows that if nA + εnD

(1−ε) < 2, then for the γ ∗ # 1 solution to system (&) the
Quasi-Symmetric CB game with (ε, nA, nD) satisfies the condition in Corollary 2.
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Conversely, if nA+ εnD
(1−ε) ≥ 2 then for the γ ∗ # 1 solution to system (&) the Corollary 2

condition is not satisfied. We now show that if nA + εnD
(1−ε) ≥ 2, then there exists no

γ ∗ ,# 1 solution to system (&) that satisfies the Corollary 2 condition.
For γ ∗ ,# 1we have the two cases (♦) for 1 > γ ∗ ≥ ε

1−ε and ($) for 1−ε
ε > γ ∗ ≥ 1.

Beginningwith case (♦), letλ♦
i denote the value of themultiplier on player i’s expected

resource expenditure constraint in a case (♦) equilibrium and let γ ♦ # λ♦
A

λ♦
B
. Because

1 > γ ♦ ≥ ε
1−ε in case (♦), we have the following

min

{
1

nλ♦
A

,
1

nλ♦
B

}

# 1

nλ♦
B

,

min

{
2ε

nλ♦
A

,
2(1 − ε)

nλ♦
B

}

# 2ε

nλ♦
A

,

min

{
2(1 − ε)

nλ♦
A

,
2ε

nλ♦
B

}

# 2ε

nλ♦
B

. (26)

It then follows from Eq. (26) that

max
j

{

min

{
v−i,j

λ♦
−i

,
vi,j

λ♦
i

}}

#






1
nλ♦

B
if γ ♦ ∈ (2ε, 1]

2ε
nλ♦

A
if γ ♦ ∈

[
ε

1−ε , 2ε
] (27)

Recall that for the Quasi-Symmetric GL game Eq. (15) may be used to solve for all
possible solutions to system (&) with γ ♦ ∈

[
ε

1−ε , 1
)
. For each solution γ ♦ to equation

(15), we may use Eq. (&) to solve for (λ♦
A |γ ♦, λ♦

B |γ ♦),

λ♦
A |γ ♦ # (γ ♦)2

(nA
2n

)
+
nD
2n

(
ε + (γ ♦)2

(
ε2

(1 − ε)

))
,

λ♦
B |γ ♦ # nA

2n
+
nD
2n

(

ε +
(

1
γ ♦

)2( ε2

(1 − ε)

))

. (28)

For each γ ♦ ∈ (2ε, 1) that is a solution to Eq. (15), it follows from Eqs. (24), (27)
and (28) that

1
nλ1

≥ 1

nλ♦
B |γ ♦

. (29)

From the inequality in Eq. (29), it follows that the Corollary 2 condition for case (♦)
with γ ♦ ∈ (2ε, 1) (i.e., 1

nλ♦
B
> 1) cannot be satisfied unless the Corollary 2 condition

for γ ∗ # 1 is also satisfied, i.e., for γ ♦ ∈ (2ε, 1) it becomes more difficult to satisfy
the Corollary 2 condition as γ ∗ moves away from the value of 1.
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Next, for case (♦) and any γ ♦ ∈
[

ε
1−ε , 2ε

]
that is a solution to Eq. (15), the

Corollary 2 condition, which follows from Eqs. (27) and (28), is given by,

1 <
2ε

nλ♦
A |γ ♦

# 2ε

(γ ♦)2
( nA
2n

)
+ nD

2n

(
ε + (γ ♦)2

(
ε2

(1−ε)

)) (30)

Because the right-hand side of Eq. (30) is decreasing in γ ♦ it follows that,

2ε

nλ♦
A |γ ♦

≤ 1
nA
2n + nD

2n

(
ε +
( 1
2ε

)2( ε2

(1−ε)

)) ≤ 1
nλ1

.

Thus, for any γ ♦ ∈
[

ε
1−ε , 2ε

]
that is a solution to Eq. (15), the Corollary 2 condition

for case (♦) cannot be satisfied unless the Corollary 2 condition for γ ∗ # 1 is also
satisfied. This completes the proof of case (♦) of part (2) of Proposition 3. To complete
the proof of Proposition 3, note that the proof for case ($) of part (2) of Proposition 3
follows from a symmetric argument.
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