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Abstract In the Colonel Blotto game, two players simultaneously distribute forces
across n battlefields. Within each battlefield, the player that allocates the higher
level of force wins. The payoff of the game is the proportion of wins on the indi-
vidual battlefields. An equilibrium of the Colonel Blotto game is a pair of n-variate
distributions. This paper characterizes the unique equilibrium payoffs for all (sym-
metric and asymmetric) configurations of the players’ aggregate levels of force,
characterizes the complete set of equilibrium univariate marginal distributions for
most of these configurations, and constructs entirely new and novel equilibrium
n-variate distributions.

Keywords Colonel Blotto game · Redistributive politics · All-pay auction

JEL Classification Numbers D7

1 Introduction

The Colonel Blotto game, which originates with Borel (1921), is a constant-sum
game involving two players, A and B, and n independent battlefields. A has XA

units of force to distribute among the battlefields, and B has XB units. Each player
must distribute their forces without knowing the opponent’s distribution. If A sends
xk

A units and B sends xk
B units to the kth battlefield, the player who provides the
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higher level of force wins battlefield k. The payoff for the whole game is the propor-
tion of the wins on the individual battlefields. An equilibrium1 of this game is a pair
of n-variate distributions, and the first solutions appear in Borel and Ville (1938),2

who solve the problem for the case of n = 3 and XA = XB . In a 1950 RAND
research memorandum Gross and Wagner extend these solutions to allow for any
finite n ≥ 3, but still require that the players’ are symmetric in their aggregate
levels of force, XA = XB .

Although the Colonel Blotto game captured the attention of some of the great-
est operations researchers of recent generations (see, for instance, Bellman 1969;
Blackett 1954, 1958; Shubik and Weber 1981; Tukey 1949) heretofore, the techni-
cal difficulty of this problem has restricted the scope of examination to a simplified
discrete Colonel Blotto game and symmetric configurations of the players’ aggre-
gate levels of force in the continuous Colonel Blotto game.3 This paper extends the
literature on the continuous Colonel Blotto game by characterizing the unique equi-
librium payoffs for all symmetric and asymmetric configurations of the players’
aggregate levels of force, characterizing the complete set of equilibrium univariate
marginal distributions for most of these configurations, and constructing entirely
new and novel equilibrium n-variate distributions.4

Gross and Wagner’s (1950) generalizations of Borel’s two solutions to the
Colonel Blotto game with symmetric forces exploit properties of regular n-gons.5

However, for n > 3 the use of regular n-gons severely limits the set of n-tuples from
which the support of equilibrium n-variate distributions can be formed. Further-
more, the equilibrium n-variate distributions of the game with asymmetric forces
examined in this paper cannot be constructed by distributing mass on the surface
of regular n-gons. This paper establishes entirely new and novel solutions which
do not use regular n-gons.

Since the appearance of the solutions to the symmetric case, it has been an
open question whether uniform univariate marginal distributions are a necessary
condition for equilibrium.6 We show that the answer to this question is yes. To char-
acterize the equilibrium univariate marginal distributions, we utilize n-copulas, the
functions that map univariate marginal distributions into joint distributions, to sep-
arate the players’ best response correspondences into a set of univariate marginal
distributions and a mapping of this set into an n-variate distribution.7 Additionally,

1 Throughout this paper the term “equilibrium” refers to Nash equilibrium although, since the
game is constant sum, these are also optimal strategies.

2 In Borel’s course on probability at the University of Paris (1936–1937) two solutions to this
problem were given. These are commonly referred to as the disk and hexagonal solutions and
were published in Borel and Ville (1938).

3 Gross and Wagner (1950) solve the Colonel Blotto game with asymmetric forces in the
special case of n = 2.

4 In particular for 1
n−1 ≤ XA

XB
≤ 1, this paper completely characterizes the equilibrium univar-

iate marginal distributions. For the case 1
n

< XA

XB
< 1

n−1 , this paper provides an equilibrium and

the unique equilibrium payoffs. The remaining case XA

XB
≤ 1

n
is trivial.

5 In particular, the sum of the perpendiculars from any point in a regular n-gon to the sides of
the regular n-gon is equal to n times the inradius, and letting s be the side length and r be the
inradius, s = 2r tan π

n
for all regular n-gons.

6 See for example Gross and Wagner (1950), Kvasov (2005), and Laslier and Picard (2002)
who discuss this issue.

7 See Nelson (1999) for an introduction to copulas.
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both Borel’s solutions and Gross and Wagner’s (1950) generalizations rely on the
connectedness of the support. The equilibrium n-variate distributions examined in
this paper do not rely on the connectedness of the support, and this paper highlights
the fact that the connectedness (or disconnectedness) of the support is a property
of the n-copula.

The Colonel Blotto game is a fundamental model of strategic resource alloca-
tion in multiple dimensions. Strategic resource allocation in a single dimension,
such as the all-pay auction, has been widely used in economics to model contests
such as political campaigns, political lobbying, research and development races,
litigation and a number of other applications. Most if not all of these applica-
tions have multiple dimension analogs. In addition, the Colonel Blotto game has
recently been used to analyze electoral competition over redistribution of a fixed
budget (Laslier 2002; Laslier and Picard 2002). In the model of redistributive poli-
tics candidates simultaneously announce how they will allocate a budget, if elected,
by making binding promises to each voter. Each voter votes for the candidate offer-
ing the higher level of utility, and each candidate’s payoff is the vote share that
they receive. The Colonel Blotto game with asymmetric forces, characterized in
this paper, corresponds directly to a model of redistributive politics in which one
candidate has a valence advantage.8 Also related is Kvasov (2005), who examines
a non-constant-sum version of the Colonel Blotto game in which the allocation of
force is costly. That paper alludes to a connection between the standard (constant-
sum) Colonel Blotto game with symmetric forces and a non-constant-sum version
of the Colonel Blotto game with symmetric forces. This paper formally estab-
lishes the connection between the two games for all symmetric and asymmetric
configurations of the players’ aggregate levels of force.

Section 2 presents the model. Section 3 completely characterizes the equi-
librium univariate marginal distributions of the Colonel Blotto game for most of
the parameter space. Using a new method for constructing equilibrium n-variate
distributions, Section 4 demonstrates the existence of n-copulas with the neces-
sary properties. Section 4 also provides an equilibrium and the unique equilibrium
payoffs for the remaining subset of the parameter space. Section 5 concludes.

2 The model

Players Two players, A and B, simultaneously allocate their forces XA and XB ,
respectively, across a finite number, n ≥ 3, of homogeneous battlefields.9 Each bat-
tlefield j has a payoff of 1

n
. Each player’s payoff is the sum of the payoffs across

all of the battlefields or, equivalently, the proportion of the battlefields to which
the player sends a higher level of force. Let XA ≤ XB . In the case that the players
allocate the same level of force to a battlefield, it is assumed that player B wins
that battlefield. The specification of the tie-breaking rule does not affect the results

8 See for example Sahuguet and Persico (2006) who examine a related model of redistributive
politics, based on Myerson’s (1993) model of redistributive politics with a continuum of voters,
in which one candidate has a valence advantage.

9 The case of n = 2, with symmetric and asymmetric forces, is discussed by Gross and Wagner
(1950). Moving from n = 2 to n ≥ 3 greatly enlarges the space of feasible n-variate distribution
functions, and the equilibrium strategies examined in this paper differ dramatically from the case
of n = 2.
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as long as 2
n
XB ≤ XA. However, in the case that 2

n
XB > XA, this specification

of the tie-breaking rule avoids the need to have player B allocate a level of force
arbitrarily close to, but above, player A’s maximal allocation of force, XA. A range
of tie-breaking rules yield similar results. The force allocated to each battlefield
must be nonnegative. For player i, the set of feasible allocations of force across the
n battlefields is denoted by

�i =




x ∈ R

n
+|

n∑

j=1

xj ≤ Xi





.

Strategies It is well known that for 1
n
XB < XA ≤ XB there is no pure strategy

equilibrium for this class of games.10 A mixed strategy, which we term a distribu-
tion of force, for player i is an n-variate distribution function Pi : R

n
+ → [0, 1]

with support contained in the set of player i’s feasible allocations of force, �i , and

with one-dimensional marginal distribution functions
{
F

j

i

}

j∈{1,... ,n}
, one univari-

ate marginal distribution function for each battlefield j . The n-tuple of player i’s
allocation of forces across the n battlefields is a random n-tuple drawn from the
n-variate distribution function Pi with the set of univariate marginal distribution

functions
{
F

j

i

}n

j=1
.

The Colonel Blotto game The Colonel Blotto game, which we label

CB {XA, XB, n} ,

is the one-shot game in which players compete by simultaneously announcing dis-
tributions of force subject to their budget constraints, each battlefield is won by the
player that provides the higher allocation of force on that battlefield (where player
B wins the battlefield in the case of a tie), and players’payoffs equal the proportion
of battles won.

3 Optimal univariate marginal distributions

We begin with the case of 1
n−1 ≤ XA

XB
≤ 1. The remaining case 1

n
< XA

XB
< 1

n−1 is
addressed in section 4. To completely characterize the equilibrium univariate mar-
ginal distribution functions for 1

n−1 ≤ XA

XB
≤ 1, we utilize n-copulas, the functions

that map univariate marginal distribution functions into joint distribution functions.

Definition 1 Let I denote the unit interval [0, 1]. An n-copula is a function C from
I n to I such that

1. For all x ∈ I n, C (x) = 0 if at least one coordinate of x is 0, and if all
coordinates of x are 1 except xk , then C (x) = xk .

10 In the case that 1
n
XB ≥ XA, there, trivially, exists a pure strategy equilibrium, and player B

wins all of the battlefields.
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2. For every x, y ∈ I n such that xk ≤ yk for all k ∈ {1, . . . , n}, the C-volume of
the n-box [x1, y1] × . . . × [xn, yn],

VC

([
x, y

]) = �yn

xn
�yn−1

xn−1
· · · �y2

x2
�y1

x1
C (t)

where

�yk

xk
C (t) = C (t1, . . . , tk−1, yk, tk+1, . . . , tn)

−C (t1, . . . , tk−1, xk, tk+1, . . . , tn)

is greater than or equal to 0.

Given the definition of an n-copula, we can state the crucial property of n-cop-
ulas that we will use.

Theorem 1 (Sklar’s Theorem in n-dimensions) Let H be an n-variate distri-
bution function with univariate marginal distribution functions F1, F2, . . . , Fn.
Then, there exists an n-copula C such that for all x ∈ R

n,

H (x1, . . . , xn) = C (F1 (x1) , . . . , Fn (xn)) . (1)

Conversely, if C is an n-copula and F1, F2, . . . , Fn are univariate distribution
functions, then the function H defined by equation (1) is an n-variate distribution
function with univariate marginal distribution functions F1, F2, . . . , Fn.

The proof of the two-dimensional version of Sklar’s theorem is due to Sklar (1959).
For a proof of the n-dimensional version see Schweizer and Sklar (1983).

One additional definition that will be used throughout the paper is the support
of an n-variate distribution function.

Definition 2 The support of an n-variate distribution function, H , is the comple-
ment of the union of all open sets of R

n with H -volume zero.

We now show that the univariate marginal distribution functions and the n-cop-
ula are separate components of the players’ best response correspondences.

Proposition 1 In the game CB {XA, XB, n}, for a given P−i , with the set of uni-

variate marginal distribution functions
{
F

j

−i

}n

j=1
, the Lagrangian of each player

i’s optimization problem11 can be written as

max{
F

j

i

}n

j=1

λi

n∑

j=1

[∫ ∞

0

[
1

nλi

F
j

−i (x) − x

]

dF
j

i

]

+ λiXi (2)

where the set of univariate marginal distribution functions
{
F

j

i

}n

j=1
satisfy the

constraint that there exists an n-copula, C, such that the support of the n-variate
distribution C

(
F 1

i

(
x1

)
, . . . , F n

i (xn)
)

is contained in �i .

11 This formulation assumes that for all battlefields the players’ univariate marginal distribu-
tions do not place an atom on the same value. However, it is straightforward to incorporate the
tie-breaking rule into the Lagrangian of each player’s optimization problem.
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Proof In the game CB {XA, XB, n}, for a given P−i , each player i maximizes the
sum of the expected payoffs across the individual battlefields

max
Pi

n∑

j=1

∫ ∞

0

1

n
F

j

−i (x) dF
j

i

subject to the constraint that the support of the distribution of force Pi is contained
in �i .

For a given Pi , let Gi denote the distribution function of
∑n

j=1 x
j

i and

recall that Gi (z) is the Pi-volume over the region
{

x ∈ R
n
+|∑n

j=1 xj ≤ z
}

. Given

that the Pi-volume over the region
{

x ∈ R
n
+|∑n

j=1 xj > Xi

}
is 0, it follows that

EPi

(∑n
j=1 x

j

i

)
≤ Xi . Furthermore, EPi

(∑n
j=1 x

j

i

)
= Xi if and only if

Gi (z) =
{

0 if z < Xi

1 if z ≥ Xi

Recalling that EPi

(∑n
j=1 x

j

i

)
= ∑n

j=1 E
F

j

i
(x), it follows that the restriction

on the support of the joint distribution, Pi , implicitly places a restriction on the
set of univariate marginal distributions. In particular,

∑n
j=1 E

F
j

i
(x) ≤ Xi which

holds with equality if and only if the budget is spent with probability 1. Finally,
from Theorem 1 the n-variate distribution function Pi is equivalent to the set of

univariate marginal distribution functions
{
F

j

i

}n

j=1
combined with an appropriate

n-copula, C. The result follows directly. ��
Note that from Theorem 1 an n-variate distribution function is equivalent to a

set of univariate marginal distribution functions,
{
F

j

i

}n

j=1
, and an n-copula, C. This

in combination with the payoff function of this class of games allows us to separate
the players’ best response correspondences into the set of univariate marginal dis-
tribution functions and n-copula components. Moreover, contrary to the concerns
stated by Gross and Wagner (1950), the existence of equilibrium n-variate distri-
bution functions without a connected support is not problematic.12 Connectedness
of the support is a property that arises from the n-copula. Proposition 1 makes no
requirement on the connectedness of the resulting n-variate distribution function.
In particular, the only requirement on the set of feasible n-copulas is that given a set

of optimal univariate marginal distribution functions,
{
F

j

i

}n

j=1
, the combination

of the n-copula and the set of univariate marginal distribution functions must have
support contained in �i .

12 For example consider the Colonel Blotto game CB {1, 1, 3}. It is straightforward to estab-
lish that the trivariate distribution with support that uniformly places mass 1

2 on each of the
two following line segments

(
0, 2

3 , 1
3

)
to

(
2
3 , 1

3 , 0
)

and
(
0, 1

3 , 2
3

)
to

(
2
3 , 0, 1

3

)
is an equilibrium

trivariate distribution that has a disconnected support. See Section 4 for details. After this article
was accepted for publication, I learned that this equilibrium in the symmetric case was derived
independently by Weinstein (2005), who also examines majority Blotto games.
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We begin by completely characterizing the set of equilibrium univariate mar-
ginal distribution functions for 1

n−1 ≤ XA

XB
≤ 1 and then move on to constructing

sufficient n-copulas. Theorem 2 examines the case of 2
n

≤ XA

XB
≤ 1 and Theo-

rem 3 examines the case of 1
n−1 ≤ XA

XB
< 2

n
. The remaining parameter range,

1
n

< XA

XB
< 1

n−1 , is addressed in Section 4.13 In this parameter range the equilib-
rium univariate marginal distributions differ dramatically from those examined in
this section.

Theorem 2 Let XA, XB , and n ≥ 3 satisfy 2
n

≤ XA

XB
≤ 1. The unique Nash equi-

librium univariate marginal distribution functions of the game CB {XA, XB, n}
are for each player to allocate its forces according to the following univariate
distribution functions. For player A

∀ j ∈ {1, . . . , n} F
j

A (x) =
(

1 − XA

XB

)
+ x

2
n
XB

(
XA

XB

)
x ∈ [

0, 2
n
XB

]
.

Similarly for player B

∀ j ∈ {1, . . . , n} F
j

B (x) = x
2
n
XB

x ∈ [
0, 2

n
XB

]
.

The expected payoff for player A is XA

2XB
, and the expected payoff for player B is

1 − XA

2XB
.

The formal proof of Theorem 2 is given in Appendix A. However, it is useful to
provide some intuition for the uniqueness of the univariate marginal distribution
functions.

Beginning with the characterization of n independent and identical simulta-
neous two-bidder all-pay auctions with complete information, let F

j

i represent
bidder i’s distribution of bids for auction j , and v

j

i represent the value of auction
j for bidder i. Each bidder i’s problem is

max{
F

j

i

}n

j=1

n∑

j=1

∫ ∞

0

[
v

j

i F
j

−i (x) − x
]
dF

j

i .

Since each auction is independent, we can apply the equilibrium characterization
of the single all-pay auction with complete information (see Hillman and Riley
1989; Baye, Kovenock, and de Vries 1996). Thus, there exists a unique equilib-
rium distribution function F

j

i for each auction j . For each auction j and bidder i
we have the following three cases:

if v
j

i > v
j

−i F
j

i (x) = x

v
j

−i

x ∈
[
0, v

j

−i

]

if v
j

i = v
j

−i F
j

i (x) = x

v
j

i

x ∈
[
0, v

j

i

]

if v
j

i < v
j

−i F
j

i (x) =
(

v
j

−i−v
j

i

v
j

−i

)

+ x

v
j

−i

x ∈
[
0, v

j

i

]
.

13 The case of 1
n
XB ≥ XA is trivial.
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Now consider a Colonel Blotto game CB {XA, XB, n}. From equation (2) in
Proposition 1, each player’s Lagrangian can be written as

max{
F

j

i

}n

j=1

λi

n∑

j=1

[∫ ∞

0

[
1

nλi

F
j

−i (x) − x

]

dF
j

i

]

+ λiXi

subject to the constraint that there exists an n-copula, C, such that the support of
the n-variate distribution C

(
F 1

i

(
x1

)
, . . . , F n

i (xn)
)

is contained in �i . Assuming
that a sufficient n-copula exists, Appendix A establishes a one-to-one correspon-
dence between the set of equilibrium univariate marginal distribution functions and
the equilibrium distribution functions of bids from a unique set of n independent
and identical simultaneous two-bidder all-pay auctions. It is important to note the
role of the Lagrange multipliers in this correspondence. In particular, the Lagrange
multipliers establish a shadow value, 1

nλi
, for the independent and identical simul-

taneous all-pay auctions. Appendix A establishes the uniqueness of the Lagrange
multipliers.

It is also important to note how the constraint on the set of feasible n-cop-
ulas affects the correspondence between the Colonel Blotto game and a unique
set of independent and identical simultaneous all-pay auctions. In particular, a
potential issue that arises is whether this additional constraint leads to equilibria of
the Colonel Blotto game which do not have univariate marginal distributions that
correspond to the equilibrium distributions of bids from a set of independent and
identical simultaneous all-pay auctions.14 However, if a sufficient n-copula exists
this constraint places no restrictions on the set of potential univariate marginal dis-
tribution functions, but rather the set of univariate marginal distributions places a
constraint on the set of feasible n-copulas. Section 4, then, establishes the existence
of sufficient n-copulas. Thus, the equilibrium univariate marginal distributions of
the Colonel Blotto game are equivalent to the equilibrium distributions of bids from
a unique set of independent and identical simultaneous all-pay auctions. However,
the restriction on the set of feasible n-copulas in the Colonel Blotto game implies
that the set of equilibrium n-variate distributions for the game forms a strict subset
of the set of all n-variate distribution functions with univariate marginal distribu-
tions that coincide with the equilibrium distributions of the corresponding set of
all-pay auctions.

The following Theorem addresses the case of 1
n−1 ≤ XA

XB
< 2

n
.

Theorem 3 Let XA, XB , and n ≥ 3 satisfy 1
n−1 ≤ XA

XB
< 2

n
. The unique Nash equi-

librium univariate marginal distribution functions of the game CB {XA, XB, n}
are for each player to allocate its forces as follows:

For player A

∀ j ∈ {1, . . . , n} F
j

A (x) = (
1 − 2

n

) + x
XA

(
2
n

)
x ∈ [0, XA] .

Similarly for player B

∀ j ∈ {1, . . . , n} F
j

B (x) =
{

2x
(
XA− XB

n

)

(XA)2 x ∈ [0, XA) ,

1 x ≥ XA.

14 Thanks to an anonymous referee for this remark.
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The expected payoff for player A is 2
n

− 2XB

n2XA
, and the expected payoff for player

B is 1 − 2
n

+ 2XB

n2XA
.

The formal proof of Theorem 3 is similar to the proof contained in Appendix A
for Theorem 2, and is thus omitted. The intuition for this parameter range follows
from a one-to-one correspondence with a unique set of n independent and identical
simultaneous two-bidder all-pay auctions in which player A has a cap of XA on
bids. The characterization of the all-pay auction in which only one bidder faces a
cap on bids follows along lines similar to the all-pay auction with a symmetric cap
on bids due to Che and Gale (1998).

4 Existence of sufficient n-copulas

Subject to the constraint that there exist sufficient n-copulas, Theorems 2 and 3
characterize the unique sets of equilibrium univariate marginal distribution func-
tions for 2

n
≤ XA

XB
≤ 1 and 1

n−1 ≤ XA

XB
< 2

n
, respectively. There is no known

existence result for an n-copula, C, with the necessary property that, given a set

of univariate marginal distribution functions
{
F

j

i

}n

j=1
, the support of the n-variate

distribution C
(
F 1

i

(
x1

)
, . . . , F n

i (xn)
)

is contained in
{

x ∈ R
n
+|∑n

j=1 xj = Xi

}
.

However from Theorem 1, it is sufficient to show that for each player there exists
an n-variate distribution function that allocates all of that player’s forces with
probability 1 and that provides the unique sets of equilibrium univariate marginal
distribution functions characterized in Theorems 2 and 3. Much of this section is
devoted to a proof of the existence of such n-variate distributions. This section
concludes by addressing the remaining parameter range, 1

n
< XA

XB
< 1

n−1 .

Theorem 4 For each unique set of equilibrium univariate marginal distribution

functions,
{
F

j

i

}n

j=1
, characterized in Theorems 2 and 3, there exists an n-copula, C,

such that the support of then-variate distribution functionC
(
F 1

i

(
x1

)
, . . . , F n

i (xn)
)

is contained in
{

x ∈ R
n
+|∑n

j=1 xj = Xi

}
.

The discussion that follows establishes an entirely new and novel way to construct
sufficient n-variate distribution functions for the symmetric and most asymmetric
configurations of force in the Colonel Blotto game. Recall that the ceiling function
	x
 gives the smallest integer greater than or equal to x, and that the floor function
�x� gives the largest integer less than or equal to x. We begin with the case that
2
n

≤ XA

XB
≤ 1 as in Theorem 2. This proof is for player A. The proof for player B

follows directly as the special case of player A where XA

XB
= 1. The construction of

the n-variate distribution function is outlined as follows:

1. Player A selects n −
⌈

nXA

XB

⌉
of the battlefields, each battlefield chosen with

equal probability, and provides zero forces to those battlefields.

2. If
⌈

nXA

XB

⌉
−

⌊
nXA

XB

⌋
= 1, then:

(a) Player A selects
⌊

nXA

XB

⌋
of the remaining

⌈
nXA

XB

⌉
battlefields, each of the

battlefields chosen with equal probability.
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(b) On the randomly selected
⌊

nXA

XB

⌋
battlefields, player A randomizes uni-

formly on
[
0, 2

n
XB

]
on each of these battlefields such that, letting z be the

sum of player A’s allocations of force on these
⌊

nXA

XB

⌋
battlefields and G (z)

be the distribution of z,

G (z) =





(z−(XA− 2
n
XB))

(
1−

⌈
nXA
XB

⌉
+ nXA

XB

)

2
n
XB

z ∈ [
XA − 2

n
XB, XA

)
,

1 z ≥ XA.

The precise construction generating G (z) is discussed in detail directly
following this outline.

(c) Defining the allocation of force on the remaining battlefield as XA − z,
it follows directly that the univariate distribution of force on the remain-

ing battlefield places mass
⌈

nXA

XB

⌉
− nXA

XB
at 0 and randomizes uniformly on

(
0, 2

n
XB

]
with the remaining mass. In addition, for all realizations, x ∈ R

n
+,

of this strategy
∑n

j=1 xj = XA with probability 1.
(d) There are nC

⌈
nXA
XB

⌉ ×⌈
nXA
XB

⌉ C1 ways of dividing n battlefields into disjoint

subsets such that n−
⌈

nXA

XB

⌉
battlefields receive zero forces with probability

1,
⌊

nXA

XB

⌋
battlefields involve randomizations of force as in 2(b) above, and

one battlefield involves randomization as in 2(c). The n-variate distribution
function formed by placing probability [nC⌈

nXA
XB

⌉ ×⌈
nXA
XB

⌉ C1]−1 on each of

these n-variate distribution functions has univariate marginal distribution

functions which each have a mass point of
(

1 − XA

XB

)
at 0 and randomize

uniformly on
(
0, 2

n
XB

]
.

3. If
⌈

nXA

XB

⌉
−

⌊
nXA

XB

⌋
= 0, then:

(a) On the remaining nXA

XB
battlefields, player A randomizes uniformly on

[
0, 2

n
XB

]
on each of these battlefields such that, letting z be the sum of

player A’s allocations of force on these battlefields and G (z) be the distri-
bution of z,

G (z) =
{

0 z < XA,
1 z ≥ XA.

The precise construction generating G (z) is discussed in detail directly
following this outline.

(b) There are nCnXA
XB

ways of dividing the n battlefields into disjoint subsets

such that n − nXA

XB
battlefields receive zero forces with probability 1 and

nXA

XB
battlefields involve randomizations of force as in 3(a). The n-variate

distribution function formed by placing probability [nCnXA
XB

]−1 on each of

these n-variate distribution functions has univariate marginal distribution

functions which each have a mass point of
(

1 − XA

XB

)
at 0 and randomize

uniformly on
(
0, 2

n
XB

]
.
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The pivotal steps in this construction are points 2 (b) and 3 (a), and we will now
show that there exist such multivariate distribution functions. Beginning with the
case that 2

n
≤ XA

XB
≤ 3

n
, from points 2 and 3 player A allocates force to at least

two and not more than three battlefields, which we label battlefields 1, 2, and 3.
Let xi denote the allocation of force to battlefield i ∈ {1, 2, 3}, z = x2 + x3, and
x1 = XA − z. Consider the support of a bivariate distribution function, F , for x2
and x3 which uniformly places mass

(
XA/ 2

n
XB

)− 1 on each of the two following
line segments:

(
2
n
XB, XA − 2

n
XB

)
to

(
XA − 2

n
XB, 0

)
,

(
XA − 2

n
XB, 2

n
XB

)
to

(
0, XA − 2

n
XB

)
,

and uniformly places the remaining mass, 3 − (nXA/XB), on the line segment

(
2
n
XB, XA − 2

n
XB

)
to

(
XA − 2

n
XB, 2

n
XB

)
.

This support is shown in Figure 1.
In the expression for this bivariate distribution function we will use the follow-

ing notation:

R1:
{
(x2, x3) ∈ [

0, 2
n
XB

]2 |x2 >
4
n
XB−XA

XA− 2
n
XB

x3 + XA − 2
n
XB

}

R2:
{
(x2, x3) ∈ [

0, 2
n
XB

]2 |x3 >
4
n
XB−XA

XA− 2
n
XB

x2 + XA − 2
n
XB

}

R3:
{
(x2, x3) ∈ [

0, 2
n
XB

]2 |x2 + x3 > XA

}

R4:
{
(x2, x3) ∈ [

0, 2
n
XB

]2 | (x2, x3) /∈ R1 ∪ R2 ∪ R3
}

Fig. 1 Support of the bivariate distribution F
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The bivariate distribution function for x2, x3 is given by

F (x2, x3) =






x3
2
n
XB

(x2, x3) ∈ R1
x2

2
n
XB

(x2, x3) ∈ R2
x2+x3

2
n
XB

− 1 (x2, x3) ∈ R3

max{x2−XA+ 2
n
XB,0}+max{x3−XA+ 2

n
XB,0}

2
n
XB

[
4
n XB −XA

XA− 2
n XB

] (x2, x3) ∈ R4

The univariate marginal distributions are given by F
(
x2,

2
n
XB

) = x2
2
n
XB

and

F
(

2
n
XB, x3

) = x3
2
n
XB

. Thus, F provides the necessary univariate marginal dis-

tributions for battlefields 2 and 3.
If 2

n
= XA

XB
, then player A randomizes on only 2 battlefields and the support

of this bivariate distribution function F collapses to the line segment
(

2
n
XB, 0

)
to

(
0, 2

n
XB

)
, i.e. the support is

{
(x1, x2) ∈ R

2
+|x1 + x2 = XA

}
.15

If 2
n

< XA

XB
< 3

n
, then, from the support of the bivariate distribution function F ,

it follows that

G (z) =
{(

z−(XA− 2
n
XB)

2
n
XB

) (
nXA

XB
− 2

)
z ∈ [

XA − 2
n
XB, XA

)

1 z ≥ XA

.

Since x1 ≡ XA − x2 − x3, the univariate marginal distribution for battlefield 1
places an atom of size 3 − nXA

XB
at 0 and randomizes uniformly on

(
0, 2

n
XB

]
with

the remaining mass, and for all realizations of (x1, x2, x3), x1 + x2 + x3 = XA

with probability 1. Equivalently, the combination of x1 = XA − z with the bivari-
ate distribution F for x2 and x3 defines a trivariate distribution function, F ′, with
support that uniformly places mass

(
XA/ 2

n
XB

) − 1 on each of the two following
line segments:
(
0, 2

n
XB, XA − 2

n
XB

)
to

(
2
n
XB, XA − 2

n
XB, 0

)
,

(
0, XA − 2

n
XB, 2

n
XB

)
to

(
2
n
XB, 0, XA − 2

n
XB

)
,

and uniformly places the remaining mass, 3 − (nXA/XB), on the line segment
(
0, 2

n
XB, XA − 2

n
XB

)
to

(
0, XA − 2

n
XB, 2

n
XB

)
.

The projections of this support onto the x2, x3-, x2, x1-, and x3, x1-planes are given
in Figure 2.

15 It should be pointed out that in the case that 2
n

= XA

XB
, the bivariate distribution function F is

exactly the Fréchet–Hoeffding lower bound two-copula,

W = max {F (x1) + F (x2) − 1, 0}

combined with F (xi) = xi
2
n
XB

for xi ∈ [
0, 2

n
XB

]
and i = 1, 2.
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Fig. 2 Projections of the support of the trivariate distribution F ′ onto the x2, x3−, x2, x1−, and
x3, x1− planes

If XA

XB
= 3

n
, then player A randomizes on three battlefields according to the

trivariate distribution function F ′ which has support that for XA

XB
= 3

n
uniformly

places mass 1
2 on each of the two following line segments:

(
0, 2

n
XB, 1

n
XB

)
to

(
2
n
XB, 1

n
XB, 0

)
,

(
0, 1

n
XB, 2

n
XB

)
to

(
2
n
XB, 0, 1

n
XB

)
.

From the preceding discussion it is clear that each of the three univariate mar-
ginal distribution functions randomizes uniformly on

[
0, 2

n
XB

]
and that for all
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realizations of (x1, x2, x3), x1 + x2 + x3 = XA with probability 1. Furthermore, it
is also clear that this support is not a connected set.

Similarly, for 3
n

< XA

XB
≤ 4

n
player A allocates force to at least three and not

more than four battlefields. In this case, let z = x2 + x3 + x4 and x1 = XA − z.
Consider the support of the trivariate distribution function, F , for x2, x3, and x4
which uniformly places mass 2 − (

XA/ 2
n
XB

)
on each of the two following line

segments:
(
0, 2

n
XB, XA − 2

n
XB

)
to

(
2
n
XB, XA − 2

n
XB, 0

)
,

(
0, XA − 2

n
XB, 2

n
XB

)
to

(
2
n
XB, 0, XA − 2

n
XB

)
,

and uniformly places mass
(
XA/ 2

n
XB

) − (3/2) on each of the two following line
segments:
(
0, 0, XA − 2

n
XB

)
to

(
2
n
XB, XA − 2

n
XB, 0

)
,

(
0, XA − 2

n
XB, 0

)
to

(
2
n
XB, 0, XA − 2

n
XB

)
.

This support is shown in Figure 3.
Given this support, it is straightforward to establish that each of the three univar-

iate marginal distribution functions randomizes uniformly on
[
0, 2

n
XB

]
. In addition,

this trivariate distribution function has the property that the distribution of z places
an atom of size 4− nXA

XB
at XA and randomizes uniformly on

[
XA − 2

n
XB, XA

)
with

the remaining mass. Since at every point on the support x1 + x2 + x3 + x4 = XA,
it follows directly that the univariate marginal distribution on battlefield 1 places
an atom of size 4 − nXA

XB
at 0 and randomizes uniformly on

(
0, 2

n
XB

]
with the

remaining mass.

Fig. 3 Support of the trivariate distribution F



The Colonel Blotto game 15

Since we can always use independent combinations of the bivariate and trivar-
iate distributions used to establish that points 2 (b) and 3 (a) hold for 2

n
≤ XA

XB
≤ 3

n
,

the remaining cases, 4
n

< XA

XB
≤ 1, follow directly. For example, in the case that

4
n

< XA

XB
≤ 5

n
it is clear that 2

n
< XA

XB
− 2

n
≤ 3

n
. Thus, player A can independently use

the construction in 3(a) of the outline for XA

XB
= 2

n
and the construction in 2(b) of the

outline for 2
n

< XA

XB
≤ 3

n
. In this case, player A randomly selects n − 5 battlefields

which each receive zero force and breaking the remaining five battlefields into a
set of two battlefields and a set of three battlefields, independently randomizes on
these two disjoint subsets as described above. Since the bivariate and trivariate
distribution functions are independent it is straightforward to show that the support

across all five battlefields is contained in
{

x ∈ R
5
+|∑5

i=1 xi = XA

}
. In general,

for all 4
n

< XA

XB
≤ 1 there exist combinations of independent bi- and trivariate

distribution functions to establish that points 2 (b) and 3 (a) hold.
We now examine the case that 1

n−1 ≤ XA

XB
< 2

n
as in Theorem 3. The existence

of a sufficient n-variate distribution for player A in this parameter range is a special
case of the Theorem 2 parameter range when XA = 2

n
XB . This proof is for player

B. The construction of the n-variate distribution function is outlined as follows:

1. Player B selects
⌊

2XB

XA

⌋
− n of the battlefields, each battlefield chosen with

equal probability, and provides a force of XA to each of those battlefields.

2. If
⌈

2XB

XA

⌉
−

⌊
2XB

XA

⌋
= 1, then:

(a) Player B selects 2n−
⌈

2XB

XA

⌉
of the remaining 2n−

⌊
2XB

XA

⌋
battlefields, each

of the battlefields chosen with equal probability.

(b) On the randomly selected 2n−
⌈

2XB

XA

⌉
battlefields, player B randomizes uni-

formly on [0, XA] on each of the battlefields such that, letting z be the sum
of player B’s allocations of force on all n − 1 of the battlefields addressed
in 2(a) and 2(b) and G (z) be the distribution of z,

G (z) = 1 +
(

z − XB

XA

)(

1 − 2XB

XA

+
⌊

2XB

XA

⌋)

for z ∈ [XB − XA, XB]. The precise construction of G (z) is given in detail
directly following this outline.

(c) Defining the allocation of force on the remaining battlefield as XB − z, it
follows directly that the univariate distribution of force on the remaining

battlefield places mass 2XB

XA
−

⌊
2XB

XA

⌋
at XA and randomizes uniformly on

[0, XA) with the remaining mass. In addition for all realizations, x ∈ R
n
+,

of this strategy
∑n

j=1 xj = XB with probability 1.
(d) There are nC

(
2n−

⌊
2XB
XA

⌋) ×(
2n−

⌊
2XB
XA

⌋) C1 ways of dividing n battlefields into

disjoint subsets such that
⌊

2XB

XA

⌋
− n battlefields receive XA forces with

probability 1, 2n−
⌈

2XB

XA

⌉
battlefields involve randomizations of force as in

2(b), and one battlefield involves randomization as in 2(c). The n-variate dis-
tribution function formed by placing probability [nC(

2n−
⌊

2XB
XA

⌋)×(
2n−

⌊
2XB
XA

⌋)
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C1]−1 on each of these n-variate distribution functions has univariate mar-

ginal distribution functions which each have a mass point of
2
n
XB

XA
−1 at XA

and randomize uniformly on [0, XA).

3. If
⌈

2XB

XA

⌉
−

⌊
2XB

XA

⌋
= 0, then:

(a) On the remaining 2n− 2XB

XA
battlefields, player B randomizes uniformly on

[0, XA] on each of these battlefields such that, letting z be the sum of player
B’s allocation of force on all of the battlefields and G (z) be the distribution
of z,

G (z) =
{

0 z < XB,
1 z ≥ XB.

The precise construction of G (z) is given in detail directly following this
outline.

(b) There are nC
(

2n− 2XB
XA

) ways of dividing the n battlefields into disjoint sub-

sets such that 2XB

XA
− n battlefields receive XA forces with probability 1 and

2n − 2XB

XA
battlefields involve randomizations of force as in 3(a). The n-

variate distribution function formed by placing probability [nC(
2n− 2XB

XA

)]−1

on each of these n-variate distribution functions has univariate marginal

distribution functions which each have a mass point of
( 2

n
XB

XA
− 1

)
at XA

and randomize uniformly on [0, XA).

The pivotal steps in this construction are, again, points 2 (b) and 3 (a), and we will
now show that there exist such multivariate distribution functions. In fact these
multivariate distributions are quite similar to those used for the Theorem 2 param-
eter range. We will, thus, only provide the supports of the bivariate and trivariate
distributions that establish that points 2 (b) and 3 (a) hold. Beginning with the case
that n − 3 ≤ 2XB

XA
− n ≤ n − 2 (or equivalently 1

n−1 ≤ XA

XB
≤ 1

n− 3
2
), from points

2 and 3 player B allocates a force of XA to at least n − 3 and not more than
n − 2 battlefields. Given that n − 3 battlefields have received a force of XA, for
the three remaining battlefields let xi denote the allocation of force to battlefield
i ∈ {1, 2, 3}. Consider the support of a trivariate distribution function for x1, x2, x3
which uniformly places mass n − 1 − (XB/XA) on each of the two following line
segments:

(0, XA, XB − XA (n − 2)) to (XA, XB − XA (n − 2) , 0) ,

(0, XB − XA (n − 2) , XA) to (XA, 0, XB − XA (n − 2))

and uniformly places the remaining mass, (2XB/XA)−2n+3, on the line segment

(XA, 0, XB − XA (n − 2)) to (XA, XB − XA (n − 2) , 0).

This support is shown in Figure 4.
Given this support, it is straightforward to establish that the univariate marginal

distribution functions on battlefields 2 and 3 randomize uniformly on [0, XA] and
that the univariate marginal distribution function for battlefield 1 places an atom of
size 2XB

XA
− 2n + 3 at XA and randomizes uniformly on [0, XA) with the remaining

mass.
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Fig. 4 Support of the trivariate distribution F

Similarly, forn−4 ≤ 2XB

XA
−n < n−3 (or equivalently 1

n− 3
2

< XA

XB
≤ 1

n−2 ) player

B allocates a force of XA to at least n−4 and not more than n−3 battlefields. Given
that n−4 battlefields have received a force of XA, for the four remaining battlefields
let xi denote the allocation of force to battlefield i ∈ {1, 2, 3, 4}, z′ = x2 + x3 + x4
and x1 = XB − z′ − XA (n − 4). Consider the support of a trivariate distribution
function for x2, x3, x4 which uniformly places mass 2 + (XB/XA) − n on each of
the two following line segments:

(0, XA, XB − XA (n − 2)) to (XA, XB − XA (n − 2) , 0) ,

(0, XB − XA (n − 2) , XA) to (XA, 0, XB − XA (n − 2))

and uniformly places mass n − (XB/XA) − (3/2) on each of the two following
line segments:

(0, XA, XB − XA (n − 2)) to (XA, XB − XA (n − 2) , XA) ,

(0, XB − XA (n − 2) , XA) to (XA, XA, XB − XA (n − 2)).

This support is shown in Figure 5.
Given this support, it is straightforward to establish that each of the three univar-

iate marginal distribution functions randomizes uniformly on [0, XA]. In addition,
this trivariate distribution function has the property that the distribution of z′ places
an atom of size 4 + 2XB

XA
− 2n on XB − XA (n − 3) and randomizes uniformly on

((XB − XA (n − 3) , XB − XA (n − 4)] with the remaining mass. Since at every
point on the support x1 + x2 + x3 + x4 = XB − (n − 4) XA, it follows directly
that the univariate marginal distribution on battlefield 1 places an atom of size
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Fig. 5 Support of the trivariate distribution F

4 + 2XB

XA
− 2n at XA and randomizes uniformly on [0, XA) with the remaining

mass.
Since we can always use independent combinations of the bivariate and tri-

variate distributions used to establish that points 2 (b) and 3 (a) hold for n − 4 ≤
2XB

XA
− n ≤ n − 2, the remaining cases, 0 ≤ 2XB

XA
− n < n − 4, follow directly.

In the remaining case that 1
n

< XA

XB
< 1

n−1 , Theorem 3 would provide the unique
set of equilibrium univariate marginal distributions if a sufficient n-copula were to
exist for each player. However, such an n-copula does not exist for player B, and
thus, the Lagrange multipliers in the players’ optimization problems may equal
zero. This follows from the fact that for player B the univariate marginal distribu-
tions in Theorem 3 require an atom of size 2XB

nXA
−1 at XA and randomize uniformly

over the interval [0, XA) with the remaining mass. However, for 1
n

< XA

XB
< 1

n−1 the

intersection of the set
{

x ∈ R
n
+|∑n

j=1 xj = XB

}
with the n-box [0, XA]n contains

no n-tuples in which one battlefield receives 0 forces. That is, if player B uses all
of its forces it can allocate XA forces to n − 1 battlefields and the force allocated
to the remaining battlefield must be XB −XA (n − 1) which is greater than 0 since
XA

XB
< 1

n−1 . Thus, for 1
n

< XA

XB
< 1

n−1 it is not possible for player B to allocate all
of its forces with probability 1 and use the univariate marginal distributions given
by Theorem 3.

For the case that 1
n

< XA

XB
< 1

n−1 one equilibrium is given by an extension
of the case of n = 2 with asymmetric forces discussed by Gross and Wagner
(1950). This equilibrium is not unique. However, since the Colonel Blotto game is
a constant-sum game the equilibrium payoffs are unique.
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Theorem 5 Define k =
⌈

XA

XB−XA(n−1)

⌉
. Let XA, XB , and n satisfy 1

n
< XA

XB
< 1

n−1

(i.e. 2 ≤ k < ∞). A Nash equilibrium of the game CB {XA, XB, n} is for each
player to allocate its forces according to the following n-variate distributions:

Player A randomly allocates 0 forces to n−2 of the battlefields, each battlefield
chosen with equal probability, n−2

n
. On the remaining two battlefields player A uti-

lizes a bivariate distribution function with k mass points, each mass point receiving
the same weight, 1

k
. Player A’s mass points on these two remaining battlefields are

located at the points
(

(k − 1 − i)
XA

k − 1
, i

XA

k − 1

)

, i = 0, . . . , k − 1.

Player B randomly allocates XA forces to n − 2 battlefields, each battlefield
chosen with equal probability, n−2

n
. On the remaining two battlefields player B uti-

lizes a bivariate distribution function with k mass points, each mass point receiving
the same weight, 1

k
. Player B’s mass points on the two remaining battlefields are

located at
(

XA − i
nXA − XB

k − 1
, XA − (k − 1 − i)

nXA − XB

k − 1

)

, i = 0, . . . , k − 1.

The unique expected payoff for player A is 2k−2
kn2 , and the unique expected payoff

for player B is 1 − 2k−2
kn2 .

The proof of Theorem 5 is given in Appendix B. In the case that n = 2, Theorem 5
coincides with Gross and Wagner’s (1950) equilibrium for the Colonel Blotto game
with asymmetric forces and n = 2. It is also important to note that in the limit as
XA

XB
approaches 1

n−1 from below this set of equilibrium univariate marginal distribu-
tions converges to the unique set of equilibrium univariate marginal distributions
given by Theorem 3 and the players’ payoffs converge to those in Theorem 3.

5 Conclusion

The Colonel Blotto game is a fundamental model of strategic resource allocation in
multiple dimensions. This paper extends the literature on the Colonel Blotto game
in several important ways. In particular, the technical difficulty of the Colonel
Blotto game has, heretofore, restricted the focus to the case of symmetric configu-
rations of the players’aggregate levels of force. This paper extends the literature on
the Colonel Blotto game by characterizing the unique equilibrium payoffs for all
symmetric and asymmetric configurations of the players’ aggregate levels of force
and characterizing the complete set of equilibrium univariate marginal distributions
for most of these configurations.

Gross and Wagner’s (1950) generalizations of Borel’s two solutions to the
Colonel Blotto game with symmetric forces exploit properties of regular n-gons.
However, the equilibrium n-variate distributions of the Colonel Blotto game with
asymmetric forces cannot be constructed from distributing mass on the surface of
regular n-gons, and this paper establishes entirely new and novel solutions which
do not use regular n-gons. Furthermore, unlike both Borel’s solutions and Gross
and Wagner’s generalizations, the equilibrium n-variate distributions examined in
this paper do not rely on the connectedness of the support.
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Appendix A

The proof of Theorem 2, which is contained in the following lemmas, establishes
that there exists a one-to-one correspondence between the equilibrium univariate
marginal distributions of the Colonel Blotto game and the equilibrium distributions
of bids from a unique set of two-bidder independent and identical simultaneous
all-pay auctions. The uniqueness of the equilibrium univariate marginal distribu-
tions then follows from the characterization of the all-pay auction by Hillman and
Riley (1989) and Baye et al. (1996). In the discussion that follows, s̄

j

i and s
j

i are
the upper and lower bounds of candidate i’s distribution of force for battlefield j
and 2

n
≤ XA

XB
≤ 1.

Lemma 1 For each i ∈ {A, B} and for 2
n

≤ XA

XB
≤ 1, λi > 0.

Proof The fact that the univariate marginal distributions provided in Theorem 2
and the corresponding n-variate distributions constructed in Theorem 4 form an
equilibrium is easily verified. It is also easily verified that in this equilibrium λi > 0
for each player i. By way of contradiction, suppose that there exists an equilibrium
in which player −i does not use their entire budget, X−i , with probability 1. For
any parameter configuration such that 2

n
≤ XA

XB
≤ 1, a feasible strategy for player i

is the joint distribution constructed in Theorem 4 that corresponds to the univariate
marginal distributions, given in Theorem 2, for this parameter configuration. In this
case, player −i’s expected payoff would be strictly less than the expected payoff
given in Theorem 2. This is a contradiction since player −i can obtain the expected
payoff given in Theorem 2 by using the feasible strategy of the joint distribution
constructed in Theorem 4 that corresponds to the univariate marginal distributions,
given in Theorem 2, for this parameter configuration. ��

The next four lemmas follow along the lines of the proofs in Baye et al. (1996).

Lemma 2 For each j ∈ {1, . . . , n}, s̄
j

−i = s̄
j

i = s̄j .

Lemma 3 In any equilibrium
{
F

j

i , F
j

−i

}

j∈{1,... ,n}
, no F

j

i can place an atom in the

half open interval
(
0, s̄j

]
.

Lemma 4 For each j ∈ {1, . . . , n} and for each i ∈ {A, B}, 1
nλi

F
j

−i (x) − x is

constant ∀ x ∈ (
0, s̄j

]
.

Lemma 5 ∀ j ∈ {1, . . . , n}, F
j

B (0) = 0 and, thus, 1
nλA

F
j

B (x) − x = 0 ∀ x ∈
[
0, s̄j

]
.

The following lemma characterizes the relationship between λA and λB .

Lemma 6 In equilibrium λA = λB
XB

XA
.

Proof By way of contradiction, suppose that λA �= λB
XB

XA
. For Theorem 2’s param-

eter range, in any equilibrium each player allocates all of their forces with certainty
and in expectation, thus

XB

n∑

j=1

∫ s̄j

0
xdF

j

A (x) = XA

n∑

j=1

∫ s̄j

0
xdF

j

B (x) . (3)
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But, from Lemmas 3, 4, and 5, it follows that

dF
j

A (x) = nλBdx (4)

for all x ∈ (
0, s̄j

]
, and

dF
j

B (x) = nλAdx (5)

for all x ∈ [
0, s̄j

]
. Substituting equations (4) and (5) in equation (3), we have

λBXB

n∑

j=1

∫ s̄j

0
nx dx = λAXA

n∑

j=1

∫ s̄j

0
nx dx

which is a contradiction since

n∑

j=1

∫ s̄j

0
nx dx =

n∑

j=1

∫ s̄j

0
nx dx

but λA �= λB
XB

XA
. ��

The following lemma establishes the value of s̄j .

Lemma 7 s̄j = 1
nλA

.

Proof From Lemmas 4 and 5, we know that for each player i and any battlefield j

1

nλi

F
j

−i (x) − x

is constant ∀x ∈ (
0, s̄j

]
. It then follows that player i would never use a strategy

that provides offers in
(

1
nλi

, ∞
)

since an offer of zero strictly dominates such a

strategy. Noting that 1
nλA

≤ 1
nλB

, we have that s̄j ≤ 1
nλA

and that ∀x ∈ (
0, s̄j

]

1

nλi

F
j

−i (x) − x ≥ 1

nλi

− s̄j .

By way of contradiction, assume that s̄j < 1
nλA

then by allocating a level of force
to battlefield j that is greater than s̄j by an arbitrarily small amount, player A
can earn arbitrarily close to 1

nλA
− s̄j > 0 on battlefield j , which contradicts

Lemma 5. ��
The following lemma establishes that there exists a unique pair λA, λB that

satisfies the budget constraint.

Lemma 8 There exists a unique value for λA, and thus for λB . λA = 1
2XB

and thus

λB = XA

2X2
B

.
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Proof The budget constraint determines the unique pair λA, λB . Thus, λA solves

n

∫ 1
nλA

0
xnλAdx = XB.

Solving for λA we have that

λA = 1

2XB

.

It follows directly from Lemma 6 that λB = XA

2X2
B

. ��

This completes the proof of Theorem 2.

Appendix B

The proof of Theorem 5, stated below, establishes the existence of an equilibrium
in the game CB {XA, XB, n} for XA, XB , and n such that 1

n
< XA

XB
< 1

n−1 . In the

discussion that follows, recall that k =
⌈

XA

XB−XA(n−1)

⌉
, and thus, 2 ≤ k < ∞.

First, the strategies in the statement of Theorem 5 are feasible since for player
A

(k − 1 − i)
XA

k − 1
+ i

XA

k − 1
= XA,

and for player B

XA (n − 2) + XA − i
nXA − XB

k − 1
+ XA − (k − 1 − i)

nXA − XB

k − 1
= XB

for all i = 0, . . . , k − 1.
Second, each player is indifferent between each point in the support of their

strategy. For this equilibrium the univariate marginal distributions for player A and
∀ j ∈ {1, . . . , n} are

F
j

A (x) =






kn−2k+2
kn

x ∈ [
0, XA

k−1

)
,

kn−2k+4
kn

x ∈ [
XA

k−1 , 2 XA

k−1

)
,

...
...

kn−2k+2(i+1)

kn
x ∈ [

i XA

k−1 , (i + 1) XA

k−1

)
,

...
...

kn−2
kn

x ∈
[

(k−2)XA

k−1 , XA

)
,

1 x ≥ XA.
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Similarly for player B and ∀ j ∈ {1, . . . , n}

F
j

B (x) =






0 x ∈ [0, XB − XA (n − 1)) ,
2
kn

x ∈
[
XB − XA (n − 1) , XA − (k−2)(nXA−XB)

k−1

)
,

...
...

2(i+1)

kn
x ∈

[
XA − (k−1−i)(nXA−XB)

k−1 , XA − (k−2−i)(nXA−XB)

k−1

)
,

...
...

2(k−1)

kn
x ∈ [

XA − nXA−XB

k−1 , XA

)
,

1 x ≥ XA.

In addition note that for i = 1, . . . , k − 1,16

XA − (k − i)
nXA − XB

k − 1
< i

XA

k − 1
≤ XA − (k − 1 − i)

nXA − XB

k − 1
.

Thus, given that player B is following the equilibrium strategy, player A’s alloca-
tion of the level of force i XA

k−1 to a battlefield yields the expected payoff 2i
kn2 for each

i = 0, . . . , k − 1. Similarly, player A’s remaining force (k − 1 − i) XA

k−1 has an

expected payoff of 2(k−1−i)

kn2 . Thus, for each i = 0, . . . , k − 1 player A’s allocation
of force

(

(k − 1 − i)
XA

k − 1
, i

XA

k − 1

)

has an expected payoff of 2k−2
kn2 . The argument for player B is symmetric.

Third, neither player can increase their payoff by deviating to another feasible
strategy. Given that player B is following the equilibrium strategy, the payoff to
player A for any allocation of force in which no battlefield is allocated a level of
force above XB − XA (n − 1) is zero. Similarly, if, for some i = 1, . . . , k − 2,17

player A allocates a level of force of XA − (k − 1 − i) nXA−XB

k−1 + ε to a battlefield

the expected payoff on that battlefield is 2(i+1)

kn2 . Player A’s remaining forces are
(k − 1 − i) nXA−XB

k−1 − ε and

(k − 1 − i)
nXA − XB

k − 1
− ε ≤ XA − (i + 1)

nXA − XB

k − 1

since, from the definition of k, nXA − XB ≤ XA
k−1
k

. If player A allocates all of
its remaining force to a single battlefield the maximum expected payoff on that
battlefield is 2(k−i−2)

kn2 . Thus, for player A any feasible allocation of force in which
only one or two battlefields receive a strictly positive level of force has a maximum

16 For the remaining case that i = 0, 0 < XB − XA (n − 1).
17 For the remaining case that i = k − 1, player A’s payoff from allocating all XA forces to

a given battlefield is the same as if player A allocates XA − nXA−XB

k−1 + ε to the battlefield. This
follows from the tie-breaking rule and the fact that in this case player A’s remaining forces are
nXA−XB

k−1 − ε, and nXA−XB

k−1 − ε < XB − XA (n − 1), for all admissible k and ε > 0, so that the
payoff from player A’s remaining forces is 0.
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expected payoff of 2k−2
kn2 . In addition, since the step size between each mass point in

player B’s equilibrium strategy is nXA−XB

k−1 , player B’s minimal allocation of force

is XB − XA (n − 1) ≥ nXA−XB

k−1 , and each mass point has the same weight, player
A cannot achieve a higher expected payoff from dividing these remaining forces
among more than one battlefield. Thus, given that player B is following the equi-
librium strategy, the expected payoff to player A for an arbitrary strategy x ∈ �A

is

1

n

n∑

j=1

F
j

B

(
xj

) ≤ 2k − 2

kn2
.

The argument for player B is symmetric.
This completes the proof of Theorem 5. ��
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