U. S. AIR FORCE

PROJECT RAND

RESEARCH MEMORANDUM

4 )

A CONTINUOUS COLONEL BLOTTO GAME

O. Gross
R. Wagner

RM-408

17 June 1950

\_ /

Assigned to

This is a working paper. Because it may be expanded, modified, or withdrawn
at any time, permission to quote or reproduce must be obtained from RAND.
The views, conclusions, and recommendations expressed herein do not neces-
sarily reflect the official views or policies of the United States Air Force.

13

7te RU 1 D o

1700 MAIN ST. » SANTA MONICA « CALIFORNIA







P
h!

P

ot e

-1-
RM-L408

Colonel Blotto and the enemy are confronted with the !olloving situstion:
. Colonel Blotto has at his disposal a total of B( > O)?units of attack,

capable of continuous partition; whereas the enemy has E( ? 0) units of like
cheracter. They are to attack simultaneously and in full force & set of n
hille of different value, such that the payoff by the ememy to C. B. for
the 3¢ 111 is 42 J( > 0) 1f Blotto's forces exoced hia thers, -a, if the
enemy's exceed Blotto's, and O otherwise. How should they play?

Stated as & continuous two-person, zero-sum geme, the foregoing
becomes:

Let B>0,E>0, 2, >0, J=1(l)n vhere n is a given positive integer.

J
1. The maximizing player (C.B.) chooses a point x in Euclidean space,

n
having coordinates x,, 1 = 1(1)n subject to x5, 20 end Z x, = B.
i=1

2. The minimizing player chooses & point y with similar properties,

n
nemely y; > 0, i=131(1)n and Zlyi=E.
i=

%, TFor any pair (x,y) of pure strategies, the payoff to the maximlzing

player is given by M(x,y) where
n
M(Ily) = Z 8‘1 591(11-3'1) .
i=1

Solutions for the above game have been obtained in the following cases,

which we shall treat in order:

T. n=2 (sall cases)
IJI. n=3 end B=E
III. &, = aJ; 1,5=1(1)n >3 and B = E.



ase (n=2)

S — .

- Without loss of generality, assume ao > &; and let c = reg Write
ot

X5 -xandyl=y. :
S

In the symmetric cese, B = E, the optimal strategy is .’
F(x) = I(x)
for which
- 1 +
K (3) = / M(x, Y)dF (x)
o
= a; sgn(- ¥) +82(7).

>20=v.

IfFB>E, letd =B -EF, and let m (an integer) and.r be such that

B=md+r. (0 <r<a).
m-l,j
Takepintheintervalr<p<da.ndlets=:c.
3=0

Then,

2a
-71-1£ when az = &)

v = (al/s)(cm+ 1) =

/_——h,__/‘\__-———“.\

n n
az + al
(az - &) when 2> > &3
n
&> - ax

and an optimal strategy for the meximizing player (B) is
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for which

K (y)

Since

and since

then
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F*( x) =

@i

m m'kI
1o Tpux-al®

RN IO,

\

al m m'k "’ - - r 1’
— Y _ ¢ {sgn ipH(k-1)d-y_ - ¢ sgn | pH(k-2)d-y
L )

~,

{ m m e )
a—lg I ™ sgn [pr(e-1)a-y] - T _ & (1) ggn [pa(x-2) d-z_?i
=1 |

(k=1 /
ey ' B py - B oy r 2
=2 _ " g [pHEl)a-y -} _ ¢ sen [pH(k-1)a-y
‘\k=l k=0 .
-3 / T -0
g-l— c® sgn (p + (m-l)d-y] - c® sen 1 p-a-y \} .
p+md >r+md =3

P 4+ (»-1)d >B-4 = E

P + (m-1)d-y > E-y > O,
p-4<0,

K*(y) = % (2+¢") = v.



for which

Since

then

An optimel strategy for the minimizing player 1s

" 1 m-1 3 : E
¢*(y) = 3 % e 3y(3)s R

» o, i 5 .
E(x) == }J:o cv Isgn(x-Jq) - ¢ agn(x—jq-d)j .

E(x) <2

A
wl?

——

(m-1)d < B-d = E

d<aq,

( n-1 m-1 i

{2 o) sen(xa) - ¢ sgn [x - (341)q)
3=0 3=0 -

\

B
[

3 Z g "
¢V sgn(x-Jq) - Z; ¢’ egn(x-Jo)
J:

Cu
1}
(@]

!
i

{ ¢® sen(x) - ¢ sgn(x-mq):
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fCase IT o -

_ The game is clearly symmetric and hence v = O. We aha:il shov that the
following strategy of Blotto's (and hence of his opponent) is an optimal ome.
{It appears to the writer that a geametric description of Biotto's behavior
1s handier and more interesting than an enalytic formulation.)

If Blotto cannot form a non-degenerate triangle having sides of lengths
a;, 8z, and ag, he attacks the hill of greatest value with all of hils forces
(pure strategy). If otherwise, he constructs such a triangle (figure 1). He
then inscribes & circle within it and erects & hemisphere upon this circle.
He next chooses & point from a density uniformly distributed over the surface
of the hemisphere and projects this point etraight down into the plane of the
triangle (point P in figure 1). He then divides his forces in respective

proportion to the triangular areas subtendied dby P and the sides, 1.e.

N
S

Figure 1.
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i1 a solution and hence we confine ourselves to testing the optimality of F .
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X1: Xp: Xp = Aj: Ap: Ag. Call thisjstrategny

T
=

Verification:
In the first instance 1t is umnecessary to show thaet tﬁe pure strategy
-
Since the game is symmetric we need show only that K*(y) > 0 for each y.
Let F,;(xi) denote the respective marginal d.f's of Blotto's continuous
mixed strategy F“-. Blotto's expectation from e.g. hill No. 1 ie then given

by
* * -
8y [1 - FI(YI)} - ayFi(n) =2 [1 - zﬁ‘t(y)_j ’

and hence his total expectation is given by

¥ ¥ o
K (y) = zi'_ e, [1 - 2F(5,)- (1)
let h:1 denote the altitude of the triangle of area Ai subtended by P (figure 1).

From a well-known property of the surface area of a sphere, we see that
h, is distributed uniformly over (0O, 2r), r being the radius of the sphere.
Now, A, = % a;h,, and hence A, 1s distributed uniformly over (O, air) . Also,

since X, + Xp + X3 = B and X3¢ Xp: Xg = Ayt Azt Ag, it follows that

A
x, = —AiT B vhere A\ 1is the area of the originally constructed triangle. Thus
\
a.irZB 1
x, is uniformly distributed over (O, A Y. But A = 5(31!‘ + apr + &gr),
2a.B :
i H
hence x; is uniformly distributed over (O, e‘-1_'.a:2+8‘3), 1.0.'
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Ry >3 ‘14&2% Q-
| F,(x,) = min [1, ——2313 x’_} [ z, >0.
£
Consequently, (on substituting in (1)) &
L |
¥ { a 48048z
K (y) = z%t a l-2min {1 y.J~ .
e » 2B i
k e

Note, that if @ > 0, y > 0, then min(l, @, y) < ay, and hence

+2

¥y
B

a) + az + 8g - (8 +ap+ag)

0 (since ) _ y, = B).

This completes the verification.
Case TII
Forn > 3 (ai = aﬁ and B = Ej)an obvious solution consists in a special
generalization of case II, since a circle can always be inscribed in a
regular n-gon. In other words, an optimal strategy for Blotto in this case
is to inscribe a circle in & regular n-gon the sides of which correspond to the
hills to be attacked. He erects a hemlsphere upon this circle and chooses
e point on its surface from e density uniformly distributed over the

gsurface of the hemlsphere. He then projects this point down to the plane of

o
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Zf;‘\:he n-gon and divides his forces in respective proporition to the distances

of this projected point from the eides of the n-gon. We sha]l not treat

this case in detail, but rather discuse some more solutions for the special
case n = 5, 8 = 82 = 8. An interesting result here ie that given any & >0,
there exists & bivariate density function solution such that the simplicial
sub-region which is played with positive probabllity has ean area less then

Consider figure 2.

{0,0,1)

- /\«»3»—

2 l
(5) ) 5) ’ 3’ 9
(1,0,0) & 3 L ) 3 5 0 (0,1,0)

Figure 2.
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“fhere 1s mo loss in gemerality in aseuming that B = E = 1. i Thus the
% equilateral triangle of wnit altitude is the simplex of :Bldtto'- pure

strategios X = (X1, X2, Ya). We shall describe en optimal strategy (differ-

ing from the hemispherical construction) and indicate the method of veri-

YR,

fication. Colonel Blotto might do the following: He plays & continuous

density function p over the regular hexagon (of figure 2), 1.e.

1f 40 denotes an element of area at point x within this hexagon, the probability
thet he chooses & point within d 0 is given by p(x)d 6 . The density function

1l
p is determined as follows: P is constant on the pesrimeter of the hexagon,
zero at the center, and linear along any straight line segment Joining the center

with an arbitrary point on the perimeter.

In order to see that the foregoing is a solution, it suffices to show
that, as in the case of the hemispherical construction, the marginals of p
are wiform over (O, %), i.e. Fy(x,) =min (1, 2 x). The reader is invited
to do thls.

One might now ask ™Is every solution a linear combination of the hexagonal
and hemispherical constructions?”™ From the ¢-remark made at the begimming of

this section, one suspects ‘a negative answer. Indeed, consider the followling

construction (figure 3):

T Normalization reveals the value of this constant to be g s .
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(0,0,1)

\VAVAVAVA

(1,0.0) %J %:0) (0,1,0)

Figure 3.

Here, the wily Blotto's density is distributed over the six regular

hexagons (: heavy lines in figure 3), each hexagon being & replica of the one
originally described and each having weight %. In other words, Blotto tosses
an unbissed die to determine which of the hexagons in figure 3 he 1is to mske
his selection from. He then plays over this hexagon as in ;he original
construction, dividing his forces according to the simpliciél coordinates

of the point finally chosen.

PP
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% Here, also, the marginals are wniform. It 1s, in fa.ctJ: believed

{though the writer has not been able to show this) that thea totality of
solutions for the case under discussion is characterized by?mifom
margin=]l 4f's.

To see how it is poesible to construct a solution such that the region
over which Blotto plays with positive probability has an arbitrarily amall
area, note that every ome of the eix hexagons of figure 3 can be replaced
by six smaller equally weighted hexagons similarly placed (as in figure %)
thereby yielding a walid solution. The ares, however, has been decreased by
e factor of % This process can be repeated as often as desired, the
successive "snowflakes" approaching a discontinuum of zero area.

Many more combinations are possible; for example, in a "snowflake"
solution, any one of the hexagons can be replaced by an equally weighted

hemisphere.

Je
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FIG. 4
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