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Abstract

This paper describes a geometrical method for constructing equilibrium distribu-

tion in the Colonel Blotto game with asymmetric battlefield values. It generalises to

the n-dimensional case a construction method first described by Gross and Wagner.

The proposed method does particularly well in instances of the Colonel Blotto game

in which the battlefield weights satisfy some clearly defined regularity conditions.

Though these conditions constrain the set of games in which this method reliably

generates equilibrium strategies, they are less restrictive than the condition of sym-

metry across all battlefields, hitherto common in the literature. The paper also

explores the parallel between these conditions and the integer partitioning problem

in combinatorial optimisation.
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1 Introduction

Budget-constrained multidimensional allocation problems were amongst the very first ones

considered in game theory. The first version can be found in Borel and Ville [1]. This

problem and similar ones later came to be known as “Colonel Blotto” games, after Gross

and Wagner’s approach [4] to the allocation problem.

In the simplest version of the Colonel Blotto game, two generals want to capture three

equally valued battlefields. Each general disposes of one divisible unit of military resources.

The generals have to simultaneously allocate these resources among the three battlefields.

A battlefield is captured by a general if he allocates more resources there than his opponent.

The goal of each general is to maximise the number of captured battlefields.

In that game, a pure strategy for player i is a 3-dimensional allocation vector xi =

(xi
1, x

i
2, x

i
3) where x

i
k is the amount of resources allocated to the kth city. The set of all pure

strategies is the 2-dimensional simplex ∆2. A mixed strategy is a trivariate distributions

function F : ∆2 → [0, 1].

This version of the game was considered in Borel’s course on probability [1] at the univer-

sity of Paris in 1936-37. The solutions given by Borel reappear in Gross’s and Wagner’s

unpublished research memorandum (1950) [4].

They state that a mixed strategy F constitutes a symmetric equilibrium of the game if

all one-dimensional margins of F are uniform over [0, 2
3 ]. One geometrical approach to

building such a distribution F consist of projecting a sphere, together with a uniform

generic point belonging to its surface, onto the disc inscribed in an equilateral triangle.

Gross and Wagner conjecture that this geometrical method of generating the equilibrium

distribution extends to Colonel Blotto games with more than three equally valued battle-

fields. This extension is formalised in Laslier and Picard (2002) [7]. It is worth noting

that Weinstein (2005) [9] presents a different geometric approach for case of n ≥ 3 equally

valued battlefields.

Roberson (2006) [8] addresses the question of whether the univariate marginal distributions

of the equilibrium strategies (n-variate distributions) are necessarily uniform for symmetric

battlefield weights but possibly asymmetric budgets, and finds that they indeed have to be.

That paper does not, however, solve the Blotto Game with asymmetric battlefield values.

Another related paper is Kvasov (2007) [6]. It looks at a variation of the Blotto Game in

which the allocation of resources is costly, and there too, battlefields are symmetric.
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The present paper generalises Gross and Wagner’s geometric approach to construct equi-

librium distributions of the n-dimensional Colonel Blotto game with asymmetric battlefield

weights. The difficulty lies in inscribing a circle within an irregular n-gon. The necessary

and sufficient conditions for this relate to the integer partitioning problem, a well-known

problem of combinatorial optimisation.

The next section describes the model, then generalises the proofs of the existing literature

to describe knows equilibria of this game. Section 3 presents geometrical methods of

constructing equilibrium distributions. It describes Borel’s solutions as formulated in Gross

and Wagner (1950), then Laslier and Picard’s geometric construction method. Section 4

constitutes the main contribution of this paper. It shows how, and under which conditions,

this method can be extended to asymmetric n-dimensional cases. The conditions are

related to a constrained version of the NP-complete “integer partitioning problem”. Section

5 illustrates the construction method using the example of US presidential elections. The

final section concludes.

2 Model and Equilibrium

Two players with identical budget normalised to one decide how to allocate their resources

across n battlefields indexed by k ∈ {1, ..., n}. The absolute value of battlefield k is the

positive integer Ek. For all k, denote ek = Ek/
∑n

k=1Ek the relative value of battlefield k

and note that
∑n

k=1 ek = 1. To make the game non-trivial, assume that 0 < ek < 1/2, or

equivalently that 0 < Ek <
∑

j !=k Ej, for all k = 1, ..., n.

Player i ∈ {1, 2} chooses a nonnegative vector of allocations xi = (xi
1, ..., x

i
n) where xi

k

is the amount of resources allocated to battlefield k. Player i wins in battlefield k if his

resources in that battlefield, xi
k, exceeds the resources xj

k of the other player. Ties are

resolved by flipping a coin. Both players are budget-constrained so the sum of a player’s

resources allocated across all battlefields cannot exceed that player’s budget of 1.

A pure strategy of player i is an n-dimensional vector xi satisfying the budget constraint.

Denote Si the set of pure strategies of player i:

Si =
{

x ∈ [0, 1]n :
n

∑

k=1

xk ≤ 1
}

Both players seek to maximise the aggregate value of captured battlefields. The function
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g : Si × Sj → R measures the excess aggregate value of battlefields captured by player i if

he plays the pure strategy xi while player j plays xj:

g(xi,xj) =
n

∑

k=1

ek sgn(xi
k − xj

k),

with sgn(u) = 1 if u > 0, 0 if u = 0 and −1 if u < 0.

A mixed strategy of player i is an n-variate joint distribution function F i : Si → [0, 1].

Denote F i
k the kth one-dimensional margin of F i, i.e. the unconditional distribution of xi

k.

For each k = 1, ..., n, F i
k maps [0, 1] into itself. Define the payoff to a mixed strategy as

the mathematical expectation of g(xi,xj) with respect to the strategy F i.

The following proposition generalises existing results on the form of equilibria in Blotto

games to the case of asymmetric battlefield weights. The proof is relegated to Appendix

7.1.

Proposition 1. Consider the Colonel Blotto Game with asymmetric battlefield weights.

(i) This game has no pure strategy Nash equilibrium

(ii) Both players meet their resource constraint in equilibrium.

(iii) Let F ∗ be a probability distribution of x ∈ ∆n−1 such that each vector coordinate xk

(k = 1, ..., n) is uniformly distributed on [0, 2ek]. Then (F ∗, F ∗) constitutes a symmetric

Nash equilibrium.

The first point implies that an equilibrium, if it exists, must be in mixed strategies. The sec-

ond point guarantees that the support of any equilibrium strategy is the (n−1)-dimensional

simplex.

Point three states that having univariate margins that are uniform on [0, 2ek] is a suffi-

cient condition for a mixed strategy with support ∆n−1 to constitute a symmetric Nash

equilibrium.

Roberson [8] shows that for homogeneous battlefield values (∀k ek = 1/n) uniform uni-

variate margins are also a necessary condition for equilibrium.

Is it always possible to build a joint distribution satisfying the properties of F ∗? The

following section describes the geometric construction method of Gross and Wagner, and
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later Laslier and Picard, while section 4 generalises it to accommodate asymmetric battle-

field values. We obtain conditions under which this construction method always produces

a joint distribution satisfying the properties of F ∗.

3 Multivariate Distributions - known cases

The aim is to construct a n-variate distribution function F ∗ from given one-dimensional

margins and given the equilibrium restrictions on the support of F ∗. Indeed, in equilibrium

candidates only use strategies in the (n − 1)-dimensional simplex, ∆n−1, which does not

include the whole of ×n
k=1[0, 2ek]. Were it otherwise, it would be possible to construct a

joint distribution with any correlation properties.

So the restriction of the support of F ∗ given its margins limits the number of possible

interactions between resource allocations to different battlefields. So far, I have not been

able to fully characterise the set of possible correlations satisfying the restrictions on F ∗.

This section presents a geometrical method of constructing F ∗ that this paper will refer

to as the generalised disk solution, in reference to the disk solution presented in Gross and

Wagner [4] and later with some modifications in Laslier and Picard [7].

Note that because this is not the only way to construct multivariate distributions satisfying

the restrictions above, this method might not describe the entire set of F ∗s even in cases

where the method is applicable.

3.1 Triangle Solution - Gross and Wagner 1950

First, consider the case presented in Gross and Wagner [4] for n = 3 asymmetric battlefield

weights. The following process generates three dimensional vectors x = (x1, x2, x3) in the

two dimensional simplex ∆2 such that each xk is distributed uniformly over [0, 2ek].

Think of the triangle of sides2 e1, e2, e3, as belonging to the plane with z-coordinate zero

in the three-dimensional space (x, y, z). Inscribe a disk of centre O and radius r within

that triangle. This disk is the projection (onto the plane (x, y, 0)) of the sphere S of centre

2For simplicity we identify a side of the triangle with its length. So we use ek to refer both to a segment

and to its length. Note also that this triangle always exists since ek < 1/2 ∀k.
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O and radius r belonging to the three dimensional space (x, y, z). Finally, let R be a

generic point that is uniformly distributed on the surface of the sphere S, and let P be

the projection of R onto the plane.

e1

h1

h2 e2e3 P

The triangle solution

For all k, hk is the distance of P from the side ek. In the three-dimensional space, it is

also the distance of R from Pk, the vertical plane tangent to the sphere of centre O and

which projects onto the side ek.

If R is uniformly distributed on the surface of the sphere, what is the distribution of hk?

For all t ∈ [0, 2r], the spherical cap of height t is the region of the sphere S that lies between

the vertical plane Pk, and the vertical plane parallel to Pk and at a distance t away from

it. Then, for all t ∈ [0, 2r], Pr(hk < t) = Pr(R ∈ cap of height t), and since R is uniformly

distributed on the surface of the sphere, this probability equals the surface area of the cap3

of height t, t ∈ [0, 2r], divided by the total surface area of the sphere:

Pr(hk < t) =
2π

∫ t

o
r dx

2π
∫ 2r

o
r dx

=
t

2r
,

and so hk is distributed uniformly on [0, 2r].

3 Note that the result of this sub-section is largely driven by the following

property of spheres: Consider the spherical segment of height h.

Its surface (excluding the bases) is called a zone. Its mathematical

expression is 2π
∫ b

a
r dx = 2πrh. Note that this area is independent of

the vertical position of the zone.
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Back in the two-dimensional plane, call Ak the area of the triangle of height hk and

side ek sustended by P . For all k, Ak = ekhk/2. Since hk ∼ U [0, 2r], it must be that

Ak ∼ U [0, 2rek/2] ≡ U [0, rek].

Letting A = A1 + A2 + A3 = (e1 + e2 + e3)r/2 = r/2 be the total area of the triangle, we

assimilate the fractions x1, x2, x3, which are assumed to belong to the two dimensional

simplex, to the fractions A1/A, A2/A, A3/A, which belong to the two dimensional simplex

by construction. So for all k, xk=Ak/A = 2Ak/r. Then finally, since Ak ∼ U [0, rek], it

must be that xk ∼ U [0, 2rek/r], i.e. xk ∼ U [0, 2ek]. QED.

Note that this construction is unique as there is only one cyclical permutation of 3 objects,

if we account for the orientation of the cycle (i.e. treat {x, y, z} and {z, y, x} as equivalent).

3.2 Regular n-gon - the disk solution - Laslier and Picard 2002

As n increases beyond three, note that different orderings of the ek’s create different sup-

ports for the equilibrium strategy. Moreover for n ≥ 4 it is not possible to inscribe a circle

in any n-gon. Irregular n-gons are the object of the next section.

Let us first consider the case of regular n-gons. As supported by the disk solution, it is

possible to construct a multivariate distribution F ∗ for the case in which all states carry the

same value: ek = 1/n for all k. Then, regardless of n, it is possible to inscribe a circle within

the n-gon ; and following the same method as in the triangle case, the process generates

n-dimensional vectors x = (x1, ..., xn) belonging to the (n − 1)-dimensional simplex, such

that each xk is distributed uniformly over [0, 2/n].

In the two-dimensional, oriented plane, consider the regular n-gon {P0, ..., Pn−1} centered

at zero such that

Pk =
(

ρ cos (2k−1)π
n

, ρ sin (2k−1)π
n

)

= ρ ei
(2k−1)π

n .

The disk that is inscribed within this n-gon is centered at zero and has radius r such that

∣

∣

∣

∣

Pk + Pk+1

2

∣

∣

∣

∣

=
ρ

2

√

2(1 + cos
4π

n
) = r.

This disk is the projection onto the plane of the sphere centered at zero of radius r. To gen-

erate the n-dimensional vector x, use the method corresponding to the three-dimensional

case described above.
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O
P0

P1P2

P3

P... Pn

r

Regular n-gon

Note that there are as many disk solutions as there are ways to order n objects in a circle

without taking into account the orientation of the circle, i.e. (n − 1)!/2. Even though

all sides have the same length, meaning that the n-gons {e1, e2, e3, e4} and {e3, e2, e1, e4}
say, look identical, the correlations of vector coordinates deriving from the resulting joint

distributions will be different.

4 Multivariate Distributions - Irregular case

In this section, we present a novel construction method for the case where battlefield

values differ. Note that if there exists an n-gon with sides of lengths corresponding to

the battlefield values and that admits an inscribed circle, we can use the method for

constructing F ∗ described above. But as noted in the previous section, for n ≥ 4 it is

not possible to inscribe a circle in any n-gon. Roughly, the figure needs to be sufficiently

regular. Indeed, for some {ek}nk=1, it may never be possible to inscribe a circle in an n-gon

of sides ek regardless of the ordering. This is the case for instance if one ek is much larger

than all the others.
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e1 e2

en ...
... e1

e2

...

...

...
en

Ill-behaved n-gons

The next sub-section describes how to construct an irregular n-gon admitting an incircle,

assuming this is possible. Then, sub-section 4.2 presents the necessary and sufficient

conditions on battlefield weights guaranteeing it is possible to construct an irregular n-gon

admitting an incircle.

4.1 Irregular n-gon - the modified disk solution

Consider the n-vector e = (e1, ..., en) of battlefield weights, and define the n-vector γ =

(γ1, ..., γn) to be a reordering of e satisfying conditions described in section 4.2. Let k, the

index of the coordinates of γ, be congruent modulo n.

Given γ, consider the following method of constructing an irregular n-gon of ordered sides

γ1, γ2, etc, such that a circle is inscribed in it.

For k = 1, ..., n, let Γ be a string of n connected segments [Pk−1, Pk] of length γk with the

following equidistance property: let Tk be a point of the segment [Pk−1, Pk] such that, for

each k, the distances ||TkPk|| and ||PkTk+1|| are the same, denoted tk. The points Tk will

be the tangency points between the n-gon and the circle inscribed in it.

T1 T2

T3
T4

P0

P1

P2

P3

t1

t2 t2
t3

t3

t4 t4

The set Γ
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Consider the disk (O, r) and two connected segments [AB] and [BC]. Let both segments

be tangent to the circle, and let K and L be the points of tangency of [AB] and [BC]

respectively. It is a well known result that the distances ||K − B|| and ||B − L|| are then

necessarily equal.

B

O

r

r

A

K

L C

Equidistance

Accordingly, if a sequence of connected segments can be wrapped around a circle (regardless

of the number of times the sequence goes around the circle) in such a way that all segments

are tangent to that circle, then the points of tangency of two consecutive segments are

equidistant from the point common to both segments.

O

P0

P1

P2

P...

Pn

r

T1
T2

T...

Tn

Wrapping Γn around a circle

This equidistance property is, by construction, satisfied by the set Γ. So Γ can be wrapped

around any circle (O, r). The number of times we can wrap this set of connected segments
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around a circle depends on r. Theorem 2 states that there is only one value of r for which

we can wrap a given Γ around a circle, such that Pn = P0, closing the n-gon. Denote θk

the angle (Pk−1, 0, Pk).

Theorem 2. For a given Γ,
∑n

k=1 θk = f(r) where f is a continuous, strictly monotone

function. Therefore, r∗ satisfying f(r∗) = 2π is unique.

Proof. Denote ak the angle (Tk, 0, Pk). Then
∑n

k=1 θk = 2
∑n

k=1 ak. The function

sin−1 is defined (and monotonically increasing) on [−1, 1], and since for all x ∈ R+∗,

0 < x/
√
x2 + r2 ≤ x/

√
x2 = 1, so

sin ak =
tk

√

t2k + r2
⇔ ak = sin−1

[

tk
√

t2k + r2

]

,

and
n

∑

k=1

θk = 2
n

∑

k=1

sin−1

[

tk
√

t2k + r2

]

= f(r),

which is strictly decreasing, and hence invertible in r for all n. The proposition follows. !

Note that r∗ depends on the particular choice of tk so that any vector e may be associated

with several r∗.

We now present the conditions on γ that are necessary and sufficient for the existence of

a set Γ, and hence for the existence of an n-gon of sides given by γ and admitting an

inscribed circle.

4.2 Necessary and sufficient conditions

When the n-gon is regular, it is always possible to inscribe a circle within it. As we deviate

from the regular n-gon, what are sufficient conditions on {ek}nk=1 and on the ordering of

the sides of the irregular n-gon that need to be satisfied to ensure that a circle can be

inscribed within it?

First note that the restriction ek < 1/2 ∀k guarantees that a convex n-gon with sides of

lengths given by {ek}nk=1 exists.

This section describes conditions for reordering the coordinates of the n-vector e = (e1, ..., en)

to form the n-vector γ = (γ1, ..., γn). Recall that k, the index of the coordinates of γ, is

congruent modulo n. The conditions are necessary and sufficient to be able to inscribe a
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circle in the irregular convex n-gon with ordered sides given by γ, and from there, to build

an equilibrium strategy F ∗.

It will be shown that some vectors e will not admit any reordering γ satisfying these con-

ditions so that it will not be possible to build a distribution with the properties of F ∗ using

the geometric method.

To be able to build such a set Γ, the vector γ needs to satisfy the following restrictions

(P1) and (P2), that are divided in sub-cases depending on whether n, the number of

battlefields, is odd or even.

(P1E) If n is even, then
n

∑

i=1

(−1)iγk+i = 0.

(P2E) If n is even, then for any k, there exists a constant c > 0 such that for ν = 1, 2, ..., n2 ,

max
ν

{
2ν
∑

i=1

(−1)i+1γ(k+i)} < c < min
ν

{
2ν−1
∑

i=1

(−1)i+1γ(k+i)}.

(P1O) If n is odd, then for any k,

tk =
1

2

n−1
∑

i=0

(−1)i+1γk+i.

(P2O) If n is odd, then for any k,

γk >
∥

∥

∥

n−1
∑

i=1

(−1)i+1γk+i

∥

∥

∥
.

These restrictions are all derived from the fact that by definition, γk = tk + tk+1, and from

the two following requirements:

1) Congruence ∀k, tk+n = tk.

2) Fit ∀k, 0 < tk < γk.

(P1) and (P2) hold if and only if congruence and fit are satisfied. The details can be

found in appendix 7.2.

Congruence and fit are necessary and sufficient conditions for γ for generate a set Γ as

defined in section 4.1. It follows that these properties of γ are necessary and sufficient for
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the resulting Γ to generate at least one n-gon admitting an incircle. Of course, they are all

satisfied when all the coordinates of γ are the same - corresponding to the case of Laslier’s

and Picard’s regular n-gon. The following theorem is the main result of this section:

Theorem 3. If for a vector e of battlefield weights we can find a reordering γ satisfying

(P1) and (P2), then we can construct an irregular n-gon with an inscribed circle of radius

r∗.

The radius r∗ is defined in theorem 2. In the remainder of this section, we provide some

insight into these properties and in particular (section 4.3), ask how easy they are to satisfy.

Conditions (P2E) and (P1O), relate to the tangency points between the inscribed circle

and the n-gon. They ensure that if tk belongs to the interval (0, γk), then tk+1, which is

equal to γk − tk, belongs to the following interval, (0, γk+1). We can see that while for n

odd, the conditions on the length tk are very strict (equality), for n even it will be sufficient

for tk to belong to the interval defined in (P2E):

(P2E)’ If n is even, then for all k,

tk ∈
(

max
ν

{
2ν
∑

i=1

(−1)i+1γ(k+i)} ,min
ν

{
2ν−1
∑

i=1

(−1)i+1γ(k+i)}
)

So for a given γ, if n is even, it is possible to build and infinity of sets Γ as long as (P2E)’

is satisfied, while for n odd, there exists a unique Γ with distances tk satisfying (P1O).

The remaining two conditions, (P1E) and (P2O), are discussed in the next sub-section.

4.3 The constrained integer partitioning problem

It is clear that while some vectors e may admit several corresponding vectors γ, others

may admit none. Indeed, the properties are all regularity restrictions on the ordering of

the coordinates of γ and impose some balance. Notice that (P1E) can be rewritten as:

(P1E)’ If n is even, then

n

2
∑

i=1

γ(k+2i) =

n

2
∑

i=1

γ(k+2i−1) =
1

2
,

and that (P2O) can be rewritten as:
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(P2O)’ If n is odd, then for any k,

γk >
∥

∥

∥

n−1
2

∑

i=1

γ(k+2i) −

n−1
2

∑

i=1

γ(k+2i−1)

∥

∥

∥
.

So the two conditions are similar in requiring that the n-gon generated by γ is balanced

in the sense that the summed length of odd sides and the summed length of even sides are

equal (for n even) or close in a precise sense (for n odd).

As a brief digression, note that they also can be interpreted as the requirement that there

exists a coalition of states such that each state in that coalition and each state in the

complement coalition is pivotal. Pivotality is not a very apt concept here, as players are

maximising their plurality. It would be more fitting in a context where players maximise

their probability of winning.

More can be said about when (P1E) and (P2O) may be satisfied by noting that these

conditions are related to the constrained integer partitioning problem, a classic problem

of combinatorial optimisation. The exercise consists in partitioning n integers into two

subsets of given cardinalities such that the discrepancy, the absolute value of the difference

of their sums, is minimized.

(P1E) corresponds to the constrained partitioning problem in which the cardinality of

the two resulting subsets is n/2 and the discrepancy is equal to zero. A partition with

a discrepancy of zero is called a perfect partition. (P2O) corresponds to n instances of

a more relaxed version of the constrained partitioning problem just described: for each

k = 1, ..., n, the aim is to partition n−1 integers into two subsets of equal cardinality, such

that the discrepancy is less than γk.

These are computationally difficult problems. The unconstrained partitioning problem

is NP-complete, and while some algorithms deliver good approximations of the optimal

partition (the partition with the lowest possible discrepancy), the brute force algorithms

that compares the discrepancies of all possible partitions is still the best known solution

to the problem.

Borgs et al. [2] identify two phases of the constrained problem depending on its compu-

tational difficulty. They study the typical behaviour of the optimal partition when the

n integers are i.i.d. random variables chosen uniformly from the set {1, ..., 2m} for some

integer m.
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They find that, for m and n tending to infinity in the limiting ratio m/n, with probability

tending to one, there exists a perfect partition when m/n < 1. They call this the perfect

phase of the problem. In the hard phase of the problem, for m/n > 1, the probability of

a perfect partition tends to zero and the optimal partition is unique, making computation

of the optimal partition more difficult there. Still, the minimum discrepancy, i.e. the

discrepancy of the optimal partition, can be bounded from above and below.

While in the limiting case, the phase transition is sharp at 1, in finite cases, the phase

transition happens within a specified interval containing 1, and it is not clear whether the

transition is sharp. Finally, the number of perfect partitions in the perfect phase is lower

than in the limiting case by about twenty percent for a given ratio m/n.

For the purpose of this paper, the results of Borgs et al. allow the conclusion that (P1E)

and (P2O) are likely to be more easily satisfied for m/n < 1 than for m/n > 1, and that

while (P2O) may be satisfied for m/n > 1, (P1E) never is.

m/n < 1 m/n > 1

(P1E) easy impossible

(P2O) easy hard

Finally note the importance of the assumption that battlefield values are integers. Indeed,

were battlefield values drawn from R, the condition for n even would hold with probability

zero.

5 Application

One compelling illustration of this model is the election of US presidents by electoral

college: first, during primaries , two candidates, one Democrat, the other Republican, are

chosen to represent their party in the general election, which is then held simultaneously in

all 51 US states (50 + D.C). Each state is allocated a number of electoral votes depending

on its population4. There are 538 electoral votes in total. A candidate gains all electoral

votes of a given state if he receives more than half the votes cast in that state. To win the

election, a candidate must win at least 270 electoral votes.

4For details, see Appendix 7.3
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This situation can be modeled as an asymmetric colonel Blotto game under the following

three assumptions: (i) presidential candidates face identical budget constraints, (ii) the

probability of winning the election in a given state increases with campaigning resource

allocated to that state, and (iii) candidates wish to maximise their plurality, rather than

the probability of winning the election.

The first two assumptions are the least controversial. In fact assumption (i) is trivially

satisfied if we think of the campaigning resource as time spent campaigning in each state.

What if we think of money as the resource? In practice, candidates can choose whether to

self-finance their general election campaign, or (since 1976) can accept public funding5. To

be eligible to receive the public funds, a candidate must limit spending to the donation6.

So if both candidates are publicly funded, it makes sense to assume that they both face

the same resource constraint.

The assumption of equal budgets becomes more trying if at least one of the candidates is

self-funded. Indeed, there is considerable evidence that in these cases, budgets differ, as

seen in the latest US presidential elections.

The positive relationship between campaign effort and votes is well documented, be it

whether campaigning effort is understood to be time spent campaigning in a state (Herr [5])

or financial campaign expenditures in that state (Chapman and Palda, [3]). So assumption

(ii) is also pretty unproblematic.

This is not so for the last assumption. In general, one would assume that candidates

maximise the probability of their winning the election. Nevertheless one could argue that

because presidential elections coincide with Senate and House of representative elections,

presidential candidates do campaign so as to maximise the plurality of votes in they favour,

not only so as to win the presidential election. This is more believable in cases where one

candidate already expects to win with a significant plurality, but surely not when elections

are close. Either way, it is fair to say that maximising the plurality in his favour is at least

a candidate’s secondary objective.

5For information on the Public Matching Fund scheme, visit the Federal Election Commission at

http://www.fec.gov/.
6In essence. More precisely, the candidate may not accept private contributions for the campaign.

Private contributions may, however, be accepted for a special account maintained exclusively to pay for

legal and accounting expenses associated with complying with the campaign finance law. These legal and

accounting expenses are not subject to the expenditure limit. For more detail, see the FEC brochure for

Public Funding of Presidential Elections at http://www.fec.gov/pages/brochures/pubfund.shtml.
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One strong argument supporting the claim that candidates care at least a little about

plurality is that they do indeed campaign in all states, while ignoring small states (states

with few electoral votes, that have little chance of being pivotal) would be consistent with

the strategy of a candidate solely trying to maximise his probability of winning the election.

So we can think of the US general election game as a Colonel Blotto game. In both cases

candidates choose how to allocate a fixed amount of resources across states. Strategic

considerations arise because of the positive relationship between campaign effort and votes.

By spending more in a state than his opponent, a candidate increases his chances to win

that state.

In this section we look for a solution to a Colonel Blotto game in which each state has a

value corresponding to its relative number of electoral votes. The distribution of electoral

votes across states is shown in Appendix 7.3.

Two candidates with budgets XA = XB = X decide how to allocate their campaigning

funds across n = 51 states indexed by k ∈ 1, ..., n. The value of state k is ek which

corresponds to the number of electoral votes allocated to state k as a fraction of the total

number of electoral votes, 538. For instance, the state of Alabama has 9 electoral votes,

so for that state, e = 9/538. Accordingly ek < 1 for all k and
∑n

k=1 ek = 1.

Candidate i’s plurality, i.e. the number of electoral votes won minus the number of electoral

votes lost is measured by the function gi : Si × Si → R defined in section 2.

Since this fits exactly into the setup of section 2, the results of all following sections

hold, including the existence of one equilibrium distribution. Indeed, consider the vector

γn presented in Appendix 7.4. It is such that each ek corresponds to the number of

electoral votes allocated to state k as a fraction of the total number of electoral votes,

538. For clarity, we multiply all numbers back by 538. Note that this solution uses the

current distribution of electoral votes (i.e. the third column in table 7.3), but that the

construction method works equally well for the other two distributions.

This vector satisfies the conditions (P1) and (P2) for n odd (n = 51). Note that within

the framework of section 4.3, the 51 partitioning problems corresponding to this exercise

are in the perfect phase. Here, the greatest of the n = 51 integers is 55, the number

of electoral votes for the state of California. So we can treat the electoral votes as n

i.i.d integers chosen uniformly from the set {1, ..., 2m} with m = 6, in which case m/n ,
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6/50 - 1 (perfect phase) so that the partitioning problem should be relatively easy to

solve. Indeed, a solution can be easily found heuristically, as shown in Appendix 7.4. This

illustrates one possible equilibrium of the US general elections game.

6 Conclusion and Open Questions

This paper describes a geometrical method for constructing equilibrium distribution in

the Colonel Blotto game with asymmetric battlefield values. The appeal of geometrical

methods for constructing n-dimensional distributions subject to restrictions on their sup-

port and their margins lies in the relative simplicity with which they describe complicated

multi-dimensional objects. The drawback is that they may fail to generate the full set

of distributions satisfying given restrictions on support and margins. This downside is

limited when that set is well defined, as it is here, so that the exercise becomes to generate

instances of these well-defined objects.

The method presented in this paper generalises to the n-dimensional case a construction

method first proposed by Gross and Wagner. It does particularly well in instances of the

Colonel Blotto game in which the battlefield weights satisfy some clearly defined regularity

conditions (Section 4.2). Though these conditions constrain the set of games in which this

method reliably generates equilibrium strategies, they are less restrictive than the condition

of symmetry across all battlefields (Laslier and Picard). Moreover, their implications

suggest directions for further research.

Noticing that the conditions on the reordering γ can be interpreted as the requirement that

there exists a coalition such that every battlefield is pivotal suggests a parallel between

behaviour of candidates seeking to maximise plurality and candidates seeking to maximise

probability of victory, though this paper leaves the exact relationship between these games

an open question.

Finally, the restrictions on the support of equilibrium distributions limit the number of

possible correlations across xk’s. This captures the idea that even though it is intuitive that

more resources are likely to be allocated to battlefields with greater weight, the solution

suggests that allocations to different battlefields interact in a particular way. Looking more

carefully at possible correlations across xk’s could be interesting from the empirical point

of view.
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7 Appendix

7.1 Proof of Proposition 1

Proof of (i) and (ii): Straightforward.

Proof of (iii): To prove this point, it is sufficient to show that the payoff to any pure

strategy y ∈ Si against F ∗ is non-positive. First we show that the expected payoff to player

i from playing F ∗ against F ∗ is zero. Let xi = (xi
1, ..., x

i
n) and xj = (xj

1, ..., x
j
n) be generated

by F ∗. Accordingly, for all k = 1, ..., n, xi
k and xj

k are drawn from the uniform distribution

over [0, 2ekX ] and Pr(xj
k < xi

k) = F ∗
k (x

i
k) =

xi
k

2ek
. So given xi, for all k = 1, ..., n,

E[sgn(xi
k − xj

k)|xi] = 2F ∗(xi
k)− 1 =

xi
k

ek
− 1.

And hence, for all k = 1, ..., n,

E[sgn(xi
k − xj

k)] =

∫ 2ek

0

(

t

ek
− 1

)

dF ∗
k (t)

=
1

ek

∫ 2ek

0

(

t

ek
− 1

)

dt

which is zero for all k = 1, ..., n so that:

E[g(F ∗, F ∗)] =
n

∑

k=1

ek · E[sgn(xi
k − xj

k)] = 0.

Now consider the payoff to player i of playing an arbitrary pure strategy y ∈ Si = ∆n−1

against F ∗. Since for all k = 1, ..., n, ek < 1
2 and F ∗

k is the uniform distribution on [0, 2ek],

F ∗
k (yk) = yk/2ek if yk ∈ [0, 2ek] and F ∗

k (yk) = 1 if yk > 2ek. So

E[sgn(yk − xj
k)|y] = 2F ∗

k (yk)− 1

= 2min

{

1,
yk
2ek

}

− 1.

Hence:

E[g(y, F ∗)] =
n

∑

k=1

ek min

{

1,
yk
ek

− 1

}

≤
n

∑

k=1

ek
(yk
ek

− 1
)

The last term equals
∑n

k=1 yk −
∑n

k=1 ek which is zero since y ∈ ∆n−1 and
∑n

k=1 ek = 1 by

construction. So g(y, F ∗) ≤ 0 = g(F ∗, F ∗) for all y ∈ Si. !
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7.2 Restrictions on γ, the reordering of e

In this appendix, I illustrate how to derive the conditions (P1) and (P2) from the property

tk + tk+1 = γk, and the requirements:

1) Congruence ∀k, tk+n = tk

2) Fit ∀k, 0 < tk < γk

First, let’s develop the first requirement. For n even:

tk+n = tk

⇔ tk = γk+n−1 − γk+n−2 + γk+n−3 − ...− γk + tk

⇔
∑n

i=1(−1)iγk+i = 0

⇔ (P1E)

For n odd:
tk+n = tk

⇔ tk = γk+n−1 − γk+n−2 + γk+n−3 − ... + γk − tk

⇔ 2tk = γk+n−1 − γk+n−2 + γk+n−3 − ...+ γk

⇔ 2tk =
∑n

i=1(−1)i+1γk+i

⇔ (P1O)

Now, let’s develop the second requirement.

For n odd, from (P1O) we know that tk =
1
2(γk − γk+1 + γk+2 − ...+ γk+n−1). So

0 < tk < γk

⇔ −γk < −γk+1 + γk+2 − ...+ γk+n−1 < γk

⇔ γk >
∥

∥

∥

i=1
∑

n−1

(−1)i+1γk+i

∥

∥

∥

⇔ (P2E)

For n even, the fit requirement, ∀k, 0 < tk < γk gives us n restrictions:

(1) 0 < tk < γk

(2) 0 < tk+1 < γk+1

(3) 0 < tk+2 < γk+2

...

(n) 0 < tk+n−1 < γk+n−1
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They can all be simplified to n restrictions on tk:

(1) 0 < tk < γk

(2) γk − γk+1 < tk < γk

(3) γk − γk+1 < tk < γk − γk+1 + γk+2

...

(n) γk − γk+1 + ...+ γk+n−2 − γk+n−1 < tk+n−1 < γk − γk+1 + ... + γk+n−2

Notice that tk faces n/2 upper bounds and n/2 lower bounds. All n conditions are satisfied

if:

max
ν

{
2ν
∑

i=1

(−1)i+1γ(k+i)} < tk < min
ν

{
2ν−1
∑

i=1

(−1)i+1γ(k+i)}

and for this to be possible, γ needs to satisfy (P2E).

7.3 Distribution of Electoral Votes (Source: FEC www.fec.gov)

State 1981-1990 1991-2000 2001-2010 State 1981-1990 1991-2000 2001-2010

Alabama 9 9 9 Missouri 11 11 11

Alaska 3 3 3 Montana 4 3 3

Arizona 7 8 10 Nebraska 5 5 5

Arkansas 6 6 6 Nevada 4 4 5

California 47 54 55 New Hampshire 4 4 4

Colorado 8 8 9 New Jersey 16 15 15

Connecticut 8 8 7 New Mexico 5 5 5

Delaware 3 3 3 New York 36 33 31

D.C 3 3 3 North Carolina 13 14 15

Florida 21 25 27 North Dakota 3 3 3

Georgia 12 13 15 Ohio 23 21 20

Hawaii 4 4 4 Oklahoma 8 8 7

Idaho 4 4 4 Oregon 7 7 7

Illinois 24 22 21 Pennsylvania 25 23 21

Indiana 12 12 11 Rhode Island 4 4 4

Iowa 8 7 7 South Carolina 8 8 8

Kansas 7 6 6 South Dakota 3 3 3

Kentucky 9 8 8 Tennessee 11 11 11

Louisiana 10 9 9 Texas 29 32 34

Maine 4 4 4 Utah 5 5 5

Maryland 10 10 10 Vermont 3 3 3

Massachusetts 13 12 12 Virginia 12 13 13

Michigan 20 18 17 Washington 10 11 11

Minnesota 10 10 10 West Virginia 6 5 5

Mississippi 7 7 6 Wisconsin 11 11 10

Wyoming 3 3 3
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7.4 One possible support of the modified disk solution applied

to US data.

For clarity, all numbers are multiplied by 538.

k ek tk tk+1 k ek tk tk+1

1 31 2 29 26 3 1 2

2 8 6 2 27 3 2 1

3 9 3 6 28 3 1 2

4 10 7 3 29 4 3 1

5 11 4 7 30 4 1 3

6 17 13 4 31 4 3 1

7 20 7 13 32 4 1 3

8 21 14 7 33 5 4 1

9 27 13 14 34 5 1 4

10 21 8 13 35 5 4 1

11 15 7 8 36 6 2 4

12 15 8 7 37 6 4 2

13 15 7 8 38 7 3 4

14 10 3 7 39 7 4 3

15 7 4 3 40 8 4 4

16 7 3 4 41 9 5 4

17 6 3 3 42 9 4 5

18 5 2 3 43 10 6 4

19 5 3 2 44 10 4 6

20 4 1 3 45 11 7 4

21 3 2 1 46 11 4 7

22 3 1 2 47 11 7 4

23 3 2 1 48 12 5 7

24 3 1 2 49 13 8 5

25 3 2 1 50 34 26 8

- - - - 51 55 29 26
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