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Abstract A class of integer-valued allocation games—“General Lotto games”—is
introduced and solved. The results are then applied to analyze the classical discrete
“Colonel Blotto games”; in particular, optimal strategies are obtained for all symmetric
Colonel Blotto games.

1 Introduction

There are two players, Player A and Player B. Player A is given A alabaster marbles
to distribute any way he wants into K urns, and Player B is given B black marbles to
(simultaneously) distribute into the same K urns. One urn is chosen at random (each
urn is equally likely to be chosen); if it contains more alabaster marbles than black
marbles, A wins; if it contains more black marbles than alabaster marbles, B wins;
otherwise it is a draw. This two-person zero-sum game (a win is +1, a loss is −1,

and a tie is 0), which we denote B(A, B; K ), is known in the literature as a Colonel
Blotto game: each urn represents a “battlefield,” and the number of marbles in urn
i corresponds to the number of “battalions” sent to battlefield i ; see Borel (1921),
Tukey (1949), Shubik (1982). This class of games is a prime example of “allocation”
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games, where sides compete on different “fronts” and need to allocate their resources
optimally among them. Some examples are lobbying and campaigning by political
parties, research and development competitions among firms, and multi-unit and all-
pay auctions.

How should the game be played? For example, when A = 24, B = 18, and K = 8?
The problem turns out to be quite difficult, in part due to the integer restriction on the
number of balls in each urn. Most of the literature has relaxed this condition; see
Robertson (2006) for a complete solution of the “continuous” version and a survey of
the literature.

Here we will proceed along a different route, one that respects the integer constraint.
Specifically, we consider in Sect. 2 a variant of Colonel Blotto games—the “General
Lotto games”—which we solve in Sect. 3: we find the value and optimal strategies.
In Sect. 4 we show that certain optimal strategies of General Lotto games can be
implemented in Colonel Blotto games. This yields, in particular, optimal strategies for
all symmetric Colonel Blotto games (i.e., when A = B), as well as for other cases.
We conclude with a discussion in Sect. 5.

2 Lotto Games

We consider two variants of the Colonel Blotto games, which we call “Colonel Lotto
games” and “General Lotto games.”

2.1 Colonel Lotto Games

Assume that the K urns are indistinguishable. This is easily seen to be equivalent to
the following. Player A has K alabaster urns of his own, Player B has K black urns of
his own, and, after each player distributes his marbles into his own urns, one alabaster
urn and one black urn are chosen at random (all urns have the same probability of being
chosen), and the contents of the two urns are compared to determine the winner.1 This
is a “symmetrized-across-urns” version of the Colonel Blotto game; we will refer to
it as a Colonel Lotto game, and denote it L(A, B; K ).

In both games a pure strategy of Player A is a K-partition x = 〈 x1, x2, . . . , xK 〉
of A, i.e., nonnegative integers x1, x2, . . . , xK with x1 + x2 + · · · + xK = A, and a
pure strategy of Player B is a K-partition y = 〈 y1, y2, . . . , yK 〉 of B. The payoff in
the Colonel Blotto game is2

hB(x, y) = 1
K

K∑

k=1

sign (xk − yk),

1 Avrahami and Kareev (2005) have conducted a laboratory experiment on this specific version of the
game.
2 sign (z) = 1 when z > 0; sign (z) = −1 when z < 0; and sign (0) = 0.
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whereas in the Colonel Lotto game it is

hL(x, y) = 1
K 2

K∑

k=1

K∑

!=1

sign (xk − y!).

For a pure strategy x of Player A, let σ (x)be the mixed strategy that gives probability
1/K ! to each one of the K ! permutations of x; then3 hB(σ (x), y) = hL(x, y) for all
pure strategies y of Player B. For a mixed strategy ξ of Player A, let σ (ξ) be the mixed
strategy obtained by replacing each pure x in the support of ξ by its corresponding4

σ (x); then hB(σ (ξ), y) = hL(ξ, y) for all pure y, and so hB(σ (ξ), η) = hL(ξ, η)

for all mixed strategies η of Player B (we will refer to the strategies σ (x) and σ (ξ) as
symmetric across urns). The same holds for Player B, and we thus have:

The Colonel Blotto game B(A, B; K ) and the Colonel Lotto game L(A, B; K )

have the same value. Moreover, the mapping σ maps the optimal strategies in the
Colonel Lotto game onto the optimal strategies in the Colonel Blotto game that are
symmetric across urns.5

2.2 General Lotto Games

Let x = 〈 x1, x2, . . . , xK 〉 be a pure strategy of Player A, i.e., a K-partition of A. We
will view x as a random variable X whose values are x1, x2, . . . , xK with probability
1/K each. For example, x = 〈 0, 0, 0, 0, 5, 5, 5, 9 〉 (for A = 24 and K = 8) yields
P(X = 0) = 4/8 = 1/2, P(X = 5) = 3/8, and P(X = 9) = 1/8; we will
write this as6 X = (1/2)10 + (3/8)15 + (1/8)19. The expectation of X is E(X) =
(1/K )

∑K
i=1 xi = A/K , which is the average number of marbles per urn. Similarly,

let the random variable Y correspond to the strategy y = 〈 y1, y2, . . . , yK 〉 of Player
B; then the (expected) payoff hL(x, y) in the Colonel Lotto game equals

H(X, Y ) := P(X > Y ) − P(X < Y ). (1)

We now consider the generalization where X and Y are allowed to be any non-
negative integer-valued random variables with expectations E(X) = A/K = a and
E(Y ) = B/K = b, respectively. That is, we remove the restriction that they can be
derived from probability distributions on K-partitions.

For each a, b > 0 we thus define the game %(a, b) where Player A chooses a
(distribution of a) nonnegative integer-valued random variable X with expectation
E(X) = a, and Player B chooses a (distribution of a) nonnegative integer-valued

3 We will write h also for the (bilinear) extension of the payoff function to pairs of mixed strategies.
4 Equivalently, choose a random numbering of the K urns and use ξ .
5 However, there may be optimal strategies in Colonel Blotto games that are not symmetric across urns.
6 1i denotes the Dirac measure which puts probability one on i . For simplicity, we will identify a random
variable with its distribution.
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random variable Y with E(Y ) = b, and the payoff is given by (1) with X and Y taken
to be independent.7 We will call %(a, b) a General Lotto game.

In Sect. 3 we will prove that each General Lotto game has a minimax value; we do
so by providing explicit optimal strategies for both players (see Fig. 1 for a summary).8

2.3 Continuous General Lotto Games

Before proceeding to the analysis of the General Lotto games, it is instructive to present
a further generalization, which dispenses also with the integer-valued restriction. In
a Continuous General Lotto game, which we denote &(a, b), Player A chooses a
(distribution of a) nonnegative random variable X with E(X) = a, Player B chooses
a (distribution of a) nonnegative random variable Y with E(Y ) = b, and the payoff is
given by H(X, Y ) as defined in (1) with X and Y independent.

Theorem 1 Let a ≥ b > 0. The value of the Continuous General Lotto game &(a, b)

is

val &(a, b) = a − b
a

= 1 − b
a

,

and the unique optimal strategies are X∗ = U (0, 2a) for Player A and Y ∗ =
(1 − b/a)10 + (b/a)U (0, 2a) for Player B.9

When a > b the strategies of Theorem 1 can be interpreted as follows. The stronger
Player A plays a uniform distribution with expectation a, on the interval (0, 2a). The
weaker Player B “gives up” and plays 0 with probability 1 − b/a, and with the
remaining probability b/a he “matches” the stronger player (by playing the same
uniform distribution on (0, 2a)); the probability b/a is chosen so that the expectation
will indeed be b. The special case where the game is symmetric, i.e., a = b, has
been solved by Bell and Cover (1980, Sect. 2); see also Myerson (1993) and Lizzeri
(1999). The solution of the nonsymmetric case (a > b) is due to Sahuguet and Persico
(2006). In the Appendix we will provide an elementary direct proof (the difficulty
lies in showing the uniqueness of the optimal strategies; Sahuguet and Persico use a
reduction to “all-pay auction” games and apply known results there, which makes the
proof quite complex).

7 Equivalently, let the payoff be sign(X − Y ) where X and Y are two independent draws from the two
chosen distributions.
8 Since the game %(a, b) has infinitely many pure strategies, the classical Minimax Theorem for finite
games does not apply to it. However, the existence of value can be shown also by finite-approximation
arguments (as pointed out by Abraham Neyman). Finally, as the set of distributions of nonnegative integer-
valued random variables X with a given expectation is already convex (and the payoff is linear in the
distribution of X), no further mixtures are needed.
9 Throughout this paper we identify a random variable with its distribution; thus Y = λ10 + (1 − λ)U
means that Y = 0 with probability λ and Y = U with probability 1−λ. The notation U (c, d) stands for the
uniform distribution on the interval (c, d); the cumulative distribution functions are thus FX∗ (x) = x/(2a)
for all x ∈ [0, 2a], and FY ∗ (y) = by/(2a2) for all y ∈ (0, 2a] and FY ∗ (0) = 1 − b/a.
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3 Solution of the General Lotto Games

In this section we will solve the General Lotto games. We will assume throughout that
all random variables are nonnegative and integer-valued. Every such random variable
X is

∑∞
i=0 pi 1i where pi = P(X = i) (so pi ≥ 0 for all i and

∑
i pi = 1). Also,

E(X) = ∑∞
i=1 i P(X = i) = ∑∞

i=1 P(X ≥ i). For every Y we have

H(X, Y ) =
∞∑

i=0

pi [P(i > Y ) − P(i < Y )]

=
∞∑

i=0

pi [1 − P(Y ≥ i) − P(Y ≥ i + 1)]

= 1 −
∞∑

i=0

pi [P(Y ≥ i) + P(Y ≥ i + 1)] .

For every positive integer m we define three uniform distributions, each one with
expectation m:

U m := U ({0, 1, . . . , 2m}) =
2m∑

i=0

(
1

2m + 1

)
1i ;

U m
o := U ({1, 3, . . . , 2m − 1}) =

m∑

i=1

(
1
m

)
12i−1; and

U m
e := U ({0, 2, . . . , 2m}) =

m∑

i=0

(
1

m + 1

)
12i

(think of U m
o and U m

e as “uniform on odd numbers” and “uniform on even numbers,”
respectively; note that U m is the average of U m

o and U m
e , with weights m/(2m + 1)

and (m + 1)/(2m + 1), respectively). For every Y we get

H(U m
o , Y ) = 1 − 1

m

m∑

i=1

[P(Y ≥ 2i − 1) + P(Y ≥ 2i)]

= 1 − 1
m

2m∑

j=1

P(Y ≥ j) ≥ 1 − E(Y )

m
, (2)

with equality if and only if
∑∞

j=2m+1 P(Y ≥ j) = 0, or Y ≤ 2m; and

H(U m
e , Y ) = 1 − 1

m + 1

m∑

i=0

[P(Y ≥ 2i) + P(Y ≥ 2i + 1)]
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= 1 − 1
m + 1




2m+1∑

j=1

P(Y ≥ j) + P(Y ≥ 0)





≥ 1 − E(Y ) + 1
m + 1

, (3)

with equality if and only if
∑∞

j=2m+2 P(Y ≥ j) = 0, or Y ≤ 2m + 1.

Let a ≥ b > 0; we will distinguish three cases in the analysis of %(a, b):

• a is an integer (Theorem 2);
• a is not an integer and10 )a* < +b, (Theorem 3); and
• a is not an integer and )a* ≥ +b, (Theorem 4).

See the table of Fig. 1 at the end of this section for a summary of the results. As in
the Continuous General Lotto games, the main difficulties lie in characterizing the
optimal strategies.

Theorem 2 Let a ≥ b > 0 where a is an integer. Then the value of the General Lotto
game %(a, b) is

val %(a, b) = a − b
a

= 1 − b
a

.

The optimal strategies are as follows:

(i) When a = b the strategy X is optimal (for either player) if and only if11

X ∈ conv{U a
o , U a

e }.
(ii) When a > b the strategy U a

o is the unique optimal strategy of Player A.

(iii) When a > b the strategies (1 − b/a)10 + (b/a)V with V ∈ conv{U a
o , U a

e } are
optimal strategies of Player B.

(iv) Every optimal strategy Y of Player B satisfies Y ≤ 2a and

1 − b
a

≤ P(Y = 0) ≤ 1 − b
a + 1

.

Proof Using (2), (3), and H(X, Y ) = −H(Y, X) we get the following: in the game
%(a, a) (i.e., when a = b), for all X and Y with E(X) = E(Y ) = a,

H(U a
r , Y ) ≥ 0 ≥ H(X, U a

s ) (4)

for r, s ∈ {o,e}. In the game %(a, b) with a > b, for all X with E(X) = a and Y with
E(Y ) = b we get

H(U a
o , Y ) ≥ 1 − b

a
≥ H

(
X, Y a,b

r

)
(5)

10 )z* is the largest integer ≤ z, and +z, is the smallest integer ≥ z.
11 conv{U1, U2} denotes the convex hull of U1 and U2, i.e., the set of λU1 + (1 − λ)U2 for all λ ∈ [0, 1].
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for r ∈ {o,e}, where Y a,b
r = (1 − b/a)10 + (b/a)U a

r , with the second inequality
obtained as follows:

H
(

X, Y a,b
r

)
=

(
1 − b

a

)
P(X > 0) +

(
b
a

)
H(X, U a

r )

=
(

1 − b
a

)
P(X > 0) −

(
b
a

)
H(U a

r , X)

≤
(

1 − b
a

)
1 −

(
b
a

)
0 = 1 − b

a
. (6)

This proves that the value of %(a, b) is 1 − b/a, and that all the strategies above are
optimal (and so are their convex combinations).

To prove (i), let X0 be an optimal strategy12 in %(a, a), i.e., H(X0, Y ) ≥ 0 for all
Y with E(Y ) = a; therefore H(X0, U a

r ) = 0 for r ∈ {o,e} (since the U a
r are optimal),

which implies equality in (2), and so X0 ≤ 2a.

For every i, j with 0 ≤ i ≤ a ≤ j ≤ 2a, let Ti, j ≡ T a
i, j be the distribution

λ1i + (1 − λ)1 j with expectation a, i.e., λ = ( j − a)/( j − i) (when i = a or j = a
this is just 1a). The distribution U a gives positive probability to both i and j, so we
can express it as U a = τT a

i, j + (1 − τ )W for some 0 < τ < 1 and W ≥ 0 with
E(W ) = a (indeed, take τ > 0 so that both τλ and τ (1 − λ) are ≤ 1/(2a + 1)). Now
H(X0, T a

i, j ) ≥ 0 and H(X0, W ) ≥ 0 (since T a
i, j and W each have expectation a) and

H(X0, U a) = 0 (since U a is optimal), so we must have equality: H(X0, T a
i, j ) = 0.

Therefore λH(X0, 1i ) + (1 − λ)H(X0, 1 j ) = 0, or, denoting wi := H(X0, 1i )

( j − a)wi + (a − i)w j = 0 (7)

for every 0 ≤ i ≤ a ≤ j ≤ 2a. Taking i = a − 1 gives w j = −( j − a)wa−1 =
(a − j)wa−1 for all j ≥ a, in particular wa+1 = −wa−1; taking j = a + 1 gives
wi = −(a − i)wa+1 = (a − i)wa−1 for every i ≤ a, so wi = (a − i)wa−1 holds for
all 0 ≤ i ≤ 2a. Therefore

wi − wi+1 = wa−1 for all 0 ≤ i ≤ 2a − 1. (8)

Let qi :=P(X0 = i); then wi −wi+1 =
(
P(X0 > i)−P(X0 < i)

)
−

(
P(X0 > i + 1)−

P(X0 < i + 1)
)

= qi + qi+1, so (8) implies qi + qi+1 = qi+1 + qi+2, or qi =
qi+2, for all 0 ≤ i ≤ 2a − 2. Therefore X0 = ∑a

i=0 q012i + ∑a
i=1 q112i−1 =

((a + 1)q0)U a
e + (aq1)U a

o , or X0 ∈ conv{U a
o , U a

e }, which completes the proof of (i).
To prove (ii), let X0 be optimal for Player A in %(a, b) when a > b. Equality in

(6) for X = X0 implies P(X > 0) = 1 and X0 ≤ 2a (recall (2)), or 1 ≤ X0 ≤ 2a.

Therefore, for every Y with E(Y ) = a we have 1 − b/a ≤ H(X0, (1 − b/a)10 +
(b/a)Y ) = (1 − b/a) + (b/a)H(X0, Y ); hence H(X0, Y ) ≥ 0. So X0 is an optimal
strategy in %(a, a), and therefore X0 ∈ conv{U a

o , U a
e} by (i). But P(U a

e = 0) > 0
whereas P(X0 = 0) = 0, so X0 = U a

o , which completes the proof of (ii).

12 For either player, since the game %(a, a) is symmetric.
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(iii) we have already seen in (6). To prove (iv), let Y 0 be an optimal strategy of Player
B in%(a, b).We must have equality in (2), so Y 0≤2a.Let X = U ({2, 4, . . . , 2a−2}) =∑a−1

i=1 (1/(a − 1))12i ; then E(X) = a and

1 − b
a

≥ H(X, Y 0) = 1 − 1
a − 1

a−1∑

i=1

[
P(Y 0 ≥ 2i) + P(Y 0 ≥ 2i + 1)

]

= 1 − 1
a − 1

2a−1∑

j=2

P(Y 0 ≥ j) ≥ 1 − 1
a − 1

(
E(Y 0) − P(Y 0 ≥ 1)

)

= 1 − 1
a − 1

(
b − 1 + P(Y 0 = 0)

)
,

from which it follows that P(Y 0 = 0) ≥ 1 − b/a.

Next, H(T a
1,2a−1, Y 0) = 1 − b/a (since, as in the proof of (i) above, the optimal

strategy U a
o of Player A can be expressed as τT1,2a−1 + (1−τ )W for some 0 < τ < 1

and W with E(W ) = a). Denoting qi := P(Y 0 = i), we have

1
2
(2q0 + q1 − 1) + 1

2
(1 − 2q2a − q2a−1) = 1 − b

a
.

Also, H(T a
1,2a, Y 0) ≤ 1 − b/a, i.e.,

a
2a − 1

(2q0 + q1 − 1) + a − 1
2a − 1

(1 − q2a) ≤ 1 − b
a

.

Multiplying this inequality by (2a − 1)/(a − 1) and subtracting the previous equation
from it yields

a + 1
a − 1

q0 + a + 1
2(a − 1)

q1 + 1
2

q2a−1 − 1
a − 1

≤ a
a − 1

(
1 − b

a

)
;

hence P(Y 0 = 0) = q0 ≤ 1 − b/(a + 1) (we have used q1, q2a−1 ≥ 0), which
completes the proof of (iv). ./

When a > b Player B may have additional optimal strategies beyond those in
(iii); for example, when a = 4 and b = 1 (the value of %(4, 1) is 3/4), the strategy
Y 0 = (25/32)10 +(1/16)12 +(1/32)14 +(1/16)15 +(1/16)17, which is not a convex
combination of (3/4)10 +(1/4)U 4

o and (3/4)10 +(1/4)U 4
e , is nevertheless optimal.13

We now come to the second case, where a is not an integer and )a* < +b, .

13 Let X = ∑
i pi 1i with E(X) = 4 be a best reply to Y ∗; then X ≤ 8, and a straightforward computation

shows that H(X, Y ∗)−3/4 = H(X, Y ∗)−(1/2)
∑

i pi −(1/16)
∑

i i pi = −(23/32)p0 −(1/32)p4 ≤ 0.
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Theorem 3 Let a = m + α and b = m + β where m ≥ 0 is an integer and
0 < α,β < 1. Then the value of the General Lotto game %(a, b) is

val %(a, b) = a − b
+a, = α − β

m + 1
,

and the unique optimal strategies are X∗ = (1 − α)U m
e + αU m+1

o for Player A and
Y ∗ = (1 − β)U m

e + βU m+1
o for Player B.

Proof For every Y with E(Y ) = b we have

H(X∗, Y ) = (1 − α)H(U m
e , Y ) + αH(U m+1

o , Y )

≥ (1 − α)

(
1 − E(Y ) + 1

m + 1

)
+ α

(
1 − E(Y )

m + 1

)
= α − β

m + 1

(by (3) and (2)). Similarly, H(X, Y ∗) = −H(Y ∗, X) ≤ −(β − α)/(m + 1) for every
X with E(X) = a (interchange α and β in the previous inequality), showing that the
value is indeed (a − β)/(m + 1).

Consider first the case where a = b, i.e., 0 < α = β < 1, and let X0 be an optimal
strategy in %(a, a). We have just seen that (1−α)U m

e +αU m+1
o is an optimal strategy;

since it gives positive probability to all 0 ≤ i ≤ 2m + 1, it follows, as in the proof of
Theorem 2 (i), that H(X0, T a

i, j ) = 0 for all 0 ≤ i ≤ m and m + 1 ≤ j ≤ 2m + 1.

Thus ( j − a)wi + (a − i)w j = 0, from which we get (as in the proof there, taking
i = m and j = m + 1; see (7) and (8)) that wi − wi+1 = wm/α for all 0 ≤ i ≤ 2m.

Therefore P(X0 = i) = P(X0 = i + 2) for all 0 ≤ i ≤ 2m − 1, and so X0 ∈
conv{U m+1

o , U m
e }. But E(U m

e ) = m, E(U m+1
o ) = m + 1 and E(X0) = a = m + α,

so X0 = (1 − α)U m
e + αU m+1

o = X∗.
Consider next the case where a > b, i.e., 0 < β < α < 1, let X0 be an optimal

strategy of Player A. For every Z with E(Z) = a, put Y := (1 −β/α)U m
e + (β/α)Z;

then H(X0, Y ) ≤ (1 − β/α)(α/(m + 1)) + (β/α)H(X0, Z) = (α − β)/(m + 1) +
(β/α)H(X0, Z) (by (3)). But E(Y ) = m + β = b and X0 is optimal in %(a, b), so
H(X0, Y ) ≥ (α − β)/(m + 1); the two inequalities together imply, since β > 0,
that H(X0, Z) ≥ 0 for all Z with E(Z) = a. Therefore X0 is an optimal strategy in
%(a, a), and thus X0 = X∗.

Finally, let Y 0 be an optimal strategy of Player B in %(a, b). Let W 0 := λY 0 +
(1 − λ)U m+1

o , where λ = (1 − α)/(1 − β) ∈ (0, 1); then E(W 0) = m + α = a,

and, for every X with E(X) = a we have H(X, Y 0) ≤ (α − β)/(m + 1) (since Y 0

is optimal) and H(X, U m+1
o ) ≤ −1 + a/(m + 1) = −(1 − α)/(m + 1) (by (2)), and

so H(X, W 0) = λH(X, Y 0) + (1 − λ)H(X, U m+1
o ) ≤ 0. Therefore W 0 is optimal

in %(a, a), so λY 0 + (1 − λ)U m+1
o = W 0 = (1 − α)U m

e + αU m+1
o , from which it

follows that Y 0 = (1 − β)U m
e + βU m+1

o = Y ∗. ./

In the last case, a is not an integer and )a* ≥ +b, .

Theorem 4 Let a = m + α and b ≤ m where m ≥ 1 is an integer and 0 < α < 1.

Then the value of the General Lotto game %(a, b) is
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val %(a, b) = (1 − α)
)a* − b

)a* + α
+a, − b

+a, = 1 − (1 − α)b
m

− αb
m + 1

.

The optimal strategies are as follows:

(i) The strategy Y ∗ = (1 − b/m)10 + (b/m)U m
e is the unique optimal strategy of

Player B.
(ii) The strategy X∗ = (1 − α)U m

o + αU m+1
o is an optimal strategy of Player A,

and, when b = m, so are (1 − α)V + αU m+1
o for all V ∈ conv{U m

o , U m
e }.

(iii) Every optimal strategy X of Player A satisfies X ≤ 2m + 1; moreover, it also
satisfies X ≥ 1 when b < m, and

P(X = 0) ≤ 1 − α

m + 1

when b = m.

Proof Let v := 1 − (1 − α)b/m − αb/(m + 1). For each Y with E(Y ) = b, (2) gives

H(X∗, Y ) = (1 − α)H(U m
o , Y ) + αH(U m+1

o , Y )

≥ (1 − α)

(
1 − E(Y )

m

)
+ α

(
1 − E(Y )

m + 1

)
= v.

Next, for each X with E(X) = a, (3) gives

H(X, Y ∗) =
(

1 − b
m

)
P(X > 0) +

(
b
m

)
H(X, U m

e )

≤
(

1 − b
m

)
−

(
b
m

) (
1 − E(X) + 1

m + 1

)
= v. (9)

So the value is indeed v, and X∗ and Y ∗ are optimal strategies.
To prove (i), let Y 0 be an optimal strategy of Player B. For every X with E(X) = m,

take X ′ = (1 − α)X + αU m+1
o ; then E(X ′) = a and so H(X ′, Y 0) ≤ v = (1 − α)

(1 − b/m) + α(1 − b/(m + 1)) by the optimality of Y 0. Now H(X ′, Y 0) ≥ (1 − α)

H(X, Y 0)+α(1−b/(m +1)) and 1−α > 0, so H(X, Y 0) ≤ 1−b/m. Therefore Y 0

is optimal for Player B in %(m, b). A similar argument (using (1−α)U m
o +αX where

E(X) = m+1; recall thatα > 0) shows that Y 0 is also optimal in%(m+1, b).Theorem
2 (iv) applied to both %(m, b) and %(m + 1, b) implies that Y 0 ≤ 2m and P(Y 0 = 0)

= 1 − b/(m + 1), so we can express Y 0 as Y 0 = (1 − b/(m + 1))10 + (b/(m + 1))Z
where Z ≥ 1 and E(Z) = m + 1, so Z = Z ′ + 1 with E(Z ′) = m.

For every X with E(X) = m we have E(X + 1) = m + 1 and, therefore, since Y 0

is optimal in %(m + 1, b),
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1 − b
m + 1

≥ H(X + 1, Y 0)

=
(

1 − b
m + 1

)
P(X + 1 > 0) +

(
b

m + 1

)
H(X + 1, Z ′ + 1)

= 1 − b
m + 1

+
(

b
m + 1

)
H(X, Z ′);

hence14 H(X, Z ′) ≤ 0. Therefore Z ′ is optimal in %(m, m), which implies by
Theorem 2 (i) that Z ′ ∈ conv{U m

o , U m
e }. We have seen above that Y 0 ≤ 2m, so

Z ≤ 2m and Z ′ ≤ 2m − 1, which implies that in fact Z ′ = U m
o (since U m

e , and
thus all other elements of conv{U m

o , U m
e }, give positive probability to 2m). Hence

Y 0 = (1 − b/(m + 1))10 + (b/(m + 1))(U m
o + 1) = (1 − b/m)10 + (b/m)U m

e = Y ∗,
which proves (i).

To prove (ii): We have already seen that X∗ is an optimal strategy of Player A.
When b = m, for every Y with E(Y ) = m we have H((1 − α)U m

r + αU m+1
o , Y ) =

(1−α) 0+α(1/(m+1)) = 1−(1−α)(m/m)−α(m/(m+1)), so (1−α)U m
r +αU m+1

o
is indeed optimal for Player A in %(m + α, m).

Finally, to show (iii), let X0 be an optimal strategy of Player A. Equality in (9)
implies that it must satisfy X0 ≤ 2m + 1 (recall (3)) and, when b < m, also P(X0 >

0) = 1. When b = m, take Y = (1/(m +1))10 + (m/(m +1))U m+1
o ; then E(Y ) = m

and

α

m + 1
= val %(m + α, m) ≤ H(X0, Y )

= 1
m + 1

P(X0 > 0) + m
m + 1

H(X0, U m+1
o )

≤ 1
m + 1

(1 − P(X0 = 0)) − m
m + 1

(
1 − m + α

m + 1

)

(recall (2)), which yields P(X0 = 0) ≤ (1 − α)/(m + 1). ./

Again, there are additional optimal strategies for Player A; for example, X =
(1/2)11 + (1/2)12 is optimal in %(3/2, 1) and X = (5/12)11 + (1/4)13 + (1/3)14 is
optimal in %(5/2, 1/2).

The table in Fig. 1 provides a summary of the results of this section: the first two
rows correspond to Theorem 2, the third row to Theorem 3, and the last two rows to
Theorem 4.

As we have seen, the main difference between the strong player and the weak
player lies in the probability of “giving up,” i.e., choosing 0 (see also Theorem 1
on the continuous version and the discussion following it). Our results yield precise
bounds on these probabilities.15

14 For the last equality we have used the fact that H(X, Y ) is a function of X − Y only (see (1)).
15 Interestingly, the experiments of Avrahami and Kareev (2005) have shown that the number of empty
urns is a significant variable.
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Fig. 1 Values and optimal strategies of the General Lotto games %(a, b) (m denotes an integer; 0<α,β<1;
a star (*) indicates that these are the only optimal strategies; and Um

o/e stands for conv{Um
o , Um

e })

Corollary 5 Let X0 and Y 0 be optimal strategies of Player A and Player B, respec-
tively, in the General Lotto game %(a, b) with a ≥ b > 0. Then X0, Y 0 ≤ 2 )a* + 1
and16

[
1 − a

+b,

]

+
≤ P(X0 = 0) ≤

[
1 − a

)b* + 1

]

+
and

[
1 − b

+a,

]

+
≤ P(Y 0 = 0) ≤

[
1 − b

)a* + 1

]

+
.

Proof This is easily verified when the optimal strategies are fully characterized
(* in Fig. 1). The remaining cases are covered in Theorems 2 (iv) and 4 (iii). 17

./
Thus, when b is not an integer we have +b, = )b* + 1 and so P(X0 = 0) =

[1 − a/ +b,]+; similarly for a and Y 0. Also, X0 ≥ 1 when a ≥ )b* + 1. Moreover,
in all cases the bounds are attained (in particular, by the strategies in Fig. 1).

4 Colonel Blotto Games

Having solved the General Lotto games %(a, b), we will now show how certain optimal
strategies in these games can be implemented in the Colonel Blotto games B(A, B; K )

(as well as in the Colonel Lotto games L(A, B; K )).

16 [z]+ = max{z, 0} is the “positive part” of z.
17 In fact, )a* + +a, is a more precise bound on X0 and Y 0.
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Let A ≥ 1 and K ≥ 2 be integers. Recall (Sect. 2.2 ) that we identify a
K-partition x = 〈 x1, x2, . . . , xK 〉of A (i.e., x1+x2+· · ·+xK = A,where the xk are K
nonnegative integers) with the distribution it generates, X = ∑K

k=1(1/K )1xk ;note that
E(X) = A/K . A nonnegative integer-valued random variable Z will be called (A, K )-
feasible if Z can be obtained from a probability distribution on
K-partitions of A. That is, Z is a mixed strategy of Player A in the Colonel Blotto
game B(A, B; K ). Formally, it means that Z = ∑n

i=1 λi Xi , where each Xi is (the
distribution of) a K-partition of A, each λi > 0, and

∑n
i=1 λi = 1. For example,

let Z = U 3
e = (1/4)10 + (1/4)12 + (1/4)14 + (1/4)16; then Z is (6, 2)-feasible:

put mass 1/2 on the partition 〈 0, 6 〉 and 1/2 on the partition 〈 2, 4 〉 (their distribu-
tions are, respectively, (1/2)10 + (1/2)16 and (1/2)12 + (1/2)14). However, Z is not
(9, 3)-feasible, since the support of Z consists of even numbers only, whereas every
3-partition of 9 must contain an odd number.

We have

Proposition 6 Let A ≥ 1 and K ≥ 2 be integers.

(i) If A = mK where m ≥ 1 is an integer, then U m
o is (A, K )-feasible if and only

if A and K have the same parity (i.e., both are even or both are odd).
(ii) If A = mK where m ≥ 1 is an integer, then U m

e is (A, K )-feasible if and only
if A is even.

(iii) If A = mK + r where m ≥ 0 and 1 ≤ r ≤ K − 1 are integers, then

(
1 − r

K

)
U m

e +
( r

K

)
U m+1

o

is (A, K )-feasible.

When A/K = m is an integer, (i) and (ii) can be restated as follows. If K is even,
both U m

o and U m
e are feasible; if K is odd, only one of them is feasible: U m

o when A
is odd and U m

e when A is even. As we will see immediately below, it turns out that
U m

o and U m
e are feasible except when this is ruled out by trivial parity considerations.

The proof of Proposition 6 provides explicit constructions of the appropriate distri-
butions on partitions; a number of illustrative examples follow the Proof of Theorem 7.

Proof First, we note that the conditions of feasibility in (i) and (ii) are clearly necessary.
Indeed, if A is the sum of K odd numbers then A has the same parity as K ; hence U m

o ,

whose support consists of odd numbers only, cannot be obtained from K-partitions of
A when A and K have different parity. Similarly, if U m

e , whose support consists of
even numbers only, is (A, K )-feasible, then A is the sum of K even numbers, so it
must be even.

We will now construct for each case an appropriate ! × K matrix S, such that each
row is a K-partition of A (i.e., all the row sums equal A), and the required distribution
X is obtained by assigning equal probability of 1/! to each row. We will say that in
this case S implements X (by K-partitions of A).

We first deal with (ii) and (iii); we distinguish two cases, according to the parity
of K .

123



454 S. Hart

Fig. 2 The matrix S0 in Case 1

Fig. 3 The matrix S0 in Case 2.1

Case 1 K is even, say K = 2k. For every m ≥ 0, let S0 = (s0
i j )i=0,...,m, j=1,...,2k be

the (m+1)×K matrix of Fig. 2 (column 1 and column k+1 are repeated k times each):
for each i = 0, 1, . . . , m, put s0

i j = 2i for j ≤ k and s0
i j = 2m − 2i for j ≥ k + 1.

The sum of each row of S0 is 2mk = mK , and each column is a permutation of
{0, 2, . . . , 2m}. Therefore each row is a K-partition of A = mK , and S0 implements
the distribution U m

e : assigning probability 1/(m + 1) to each row generates U m
e in

each column, hence U m
e overall. This proves (ii) for K even and A = mK even.

Next, for each 1 ≤ r ≤ K − 1, let Sr be the matrix obtained by adding 1 to all
elements of S0 in, say, the first r columns 1, 2, . . . , r. The sum of each row is now
K m +r, so each row is a K -partition of A = mK +r. Assigning probability 1/(m +1)

to each row generates the distribution (r/K )U m+1
o + (1 − r/K )U m

e (since each one
of the first r columns is a permutation of {1, 3, . . . , 2m + 1} and thus yields U m+1

o ,

and each one of the remaining K − r columns yields U m
e , as before). This proves (iii)

for K even.

Case 2 K is odd, say K = 2k + 1. We distinguish two subcases, according to the
parity of m.

Case 2.1 m is even, say m = 2n, and 0 ≤ r ≤ K − 1. We start with the (m + 1) × K
matrix S0 = (s0

i j )i=0,...,2n, j=1,...,2k+1 of Fig. 3: for each i = 0, 1, . . . , 2n, let s0
i j = 2i

for j ∈ {1, . . . , k}, s0
i j = 4n − 2i for j ∈ {k + 1, . . . , 2k − 1}, s0

i,2k = 2n + 2i and
s0

i,2k+1 = 4n − 4i, all modulo 4n + 2. It can be verified that the sum in each row is
2n(2k + 1) = mK , and each column is a permutation of {0, 2, . . . , 4n}. Therefore
S0 implements U 2n

e = U m
e by K-partitions of A = mK , which proves (ii) when

K is odd and A = mK is even. As in case 1, for each 1 ≤ r ≤ K − 1 we add 1
to all elements in the first r columns of S0 to obtain the matrix Sr that implements
(r/K )U m+1

o + (1 − r/K )U m
e , which proves (iii) here.
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Fig. 4 The matrix S1 in Case 2.2

Case 2.2 m is odd, say m = 2n − 1, and 1 ≤ r ≤ K − 1. Let S1 =
(s1

i j )i=0,1,...,4n−1, j=1,...,2k+1 be the (2m+2)×K matrix of Fig. 4: for each i = 0, 1, . . . ,

4n − 1, put s1
i j = 2i for j ∈ {1, . . . , k}, s1

i j = 4n − 2 − 2i for j ∈ {k +
1, . . . , 2k − 1}, s1

i,2k = i and s1
i,2k+1 = 2n + i, all modulo 4n. The sum in each

row is (2n − 1)(2k + 1) + 1 = mK + 1; the distribution in each one of the first
2k − 1 columns is U 2n−1

e = U m
e , and in each one of the last two columns is

U 4n−1 = (1/2)U 2n−1
e + (1/2)U 2n

o = (1/2)U m
e + (1/2)U m+1

o . Therefore S1 im-
plements, by K -partitions of A = mK + 1, the distribution ((2k − 1)/K )U m

e +
(2/K )((1/2)U m

e + (1/2)U m+1
o ) = (1 − 1/K )U m

e + (1/K )U m+1
o , which proves (iii)

for r = 1. For each 2 ≤ r ≤ K − 1, add 1 to all entries in the first r − 1 co-
lumns (so the last two columns are never changed), to obtain Sr that implements
(1 − r/K )U m

e + (r/K )U m+1
o by K-partitions of A = mK + r, completing the proof

of (iii) in this case too.
We have completed the constructions for (ii) and (iii) in all cases. To prove (i), let

K and A = mK have the same parity. Then A′ = A − K = (m − 1)K is even, so
U m−1

e is (A′, K )-feasible by (ii). Transform each K-partition of A′ into a K -partition
of A = A′ + K by adding 1 to every element of the partition; this transforms the
distribution U m−1

e into U m−1
e + 1 = U m

o (in terms of the implementing matrices
above, it corresponds to the matrix SK obtained by adding 1 to all entries in all K
columns of the matrix S0 for K and m − 1). ./

Consider now a Colonel Blotto Game B(A, B; K ) and the associated General Lotto
game %(a, b), where a := A/K and b := B/K . An optimal strategy X of Player A
in %(a, b) guarantees a payoff of at least val %(a, b) against any strategy of Player
B there, and so, a fortiori, against any strategy of Player B in B(A, B; K ). The-
refore, if such an X is feasible in B(A, B; K ), i.e., if X is (A, K )-feasible, then
val B(A, B; K ) ≥ val %(a, b). Similarly, for Player B, if an optimal strategy Y in
%(a, b) is (B, K )-feasible, then val B(A, B; K ) ≤ val %(a, b). If both X and Y are
feasible, then val B(A, B; K ) = val %(a, b), and X and Y (more precisely, their
implementations by K-partitions) are optimal strategies in the Colonel Blotto game
B(A, B; K ).

We start with the symmetric case where A = B (and the value is 0).

Theorem 7 Proposition 6 provides optimal strategies for every symmetric Colonel
Blotto game B(A, A; K ).
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Proof If A/K = m is an integer, at least one of U m
o and U m

e is (A, K )-feasible by
Proposition 6 (i) and (ii), and we apply Theorem 2. Otherwise, A/K = m + α where
α = r/K for some 1 ≤ r ≤ K − 1, and then the strategy (1 − α)U m

e + αU m+1
o is

(A, K )-feasible by Proposition 6 (iii); apply Theorem 3. ./

We illustrate this with some examples. First, let A = 7 and K = 3 (the case
presented, without solution, in Borel 1921). Thus m = 2 and r = 1, and the Proof of
Proposition 6, specifically Case 2.1 with k = 1 and n = 1, gives the matrices

S0 =




0 2 4
2 4 0
4 0 2



 and S1 =




1 2 4
3 4 0
5 0 2



 ,

so an optimal strategy in B(7, 7; 3) can be read from S1 (since r = 1): it is

1
3

〈 1, 2, 4 〉 + 1
3

〈 0, 3, 4 〉 + 1
3

〈 0, 2, 5 〉

(it generates (2/9)(10 + 12 + 14) + (1/9)(11 + 13 + 15) = (2/3)U 2
e + (1/3)U 3

o).

Next, let A = 7 and K = 4 (so m = 1 and r = 3); Case 1 gives

S0 =
[

0 0 2 2
2 2 0 0

]
and S3 =

[
1 1 3 2
3 3 1 0

]
,

therefore an optimal strategy in B(7, 7; 4) is

1
2

〈 1, 1, 2, 3 〉 + 1
2

〈 0, 1, 3, 3 〉

(it generates (1/8)(10 + 12) + (3/8)(11 + 13) = (1/4)U 1
e + (3/4)U 2

o ).
Finally, when A = 7 and K = 5, Case 2.2 gives

S1 =





0 2 2 0 2
2 0 0 1 3
0 2 2 2 0
2 0 0 3 1



 and S2 =





1 2 2 0 2
3 0 0 1 3
1 2 2 2 0
3 0 0 3 1



 ,

and an optimal strategy in B(7, 7; 5) is thus18

1
2

〈 0, 1, 2, 2, 2 〉 + 1
2

〈 0, 0, 1, 3, 3 〉

(it generates (3/10)(10 + 12) + (2/10)(11 + 13) = (3/5)U 1
e + (2/5)U 2

o ).

18 Another optimal strategy, (1/2) 〈 0, 0, 2, 2, 3 〉 + (1/2) 〈 0, 1, 1, 2, 3 〉 , is obtained by adding 1 to all
entries in the second column of S1.
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The next three results deal with nonsymmetric Colonel Blotto games.

Proposition 8 Let m < A/K , B/K < m + 1 where m is an integer. The value of the
Colonel Blotto game B(A, B; K ) is

val B(A, B; K ) = A − B
K (m + 1)

,

and optimal strategies for Player A and Player B are those of Proposition 6 (iii) that
correspond to

(
m + 1 − A

K

)
U m

e +
(

A
K

− m
)

U m+1
o , and

(
m + 1 − B

K

)
U m

e +
(

B
K

− m
)

U m+1
o ,

respectively.

Proof Recall Theorem 3. ./

In the following two cases we obtain bounds on the values of Colonel Blotto games.

Proposition 9 Let A > B. If A/K is an integer and A and K have the same parity,
then the value of the Colonel Blotto game B(A, B; K ) satisfies

val B(A, B; K ) ≥ A − B
A

.

Proof Let a := A/K and b := B/K . Proposition 6 (i) and Theorem 2 imply that
U a

o , the optimal strategy in %(a, b), is feasible for Player A in B(A, B; K ), so
val B(A, B; K ) ≥ val %(a, b) = (a − b)/b = (A − B)/B. ./

Proposition 10 Let B/K ≤ m ≤ A/K < m + 1 where m is an integer. If B is even
and B/m is an integer, then the value of the Colonel Blotto game B(A, B; K ) satisfies

val B(A, B; K ) ≤ 1 − (1 − α)
B

mK
− α

B
(m + 1)K

,

where α := A/K − m.

Proof Put a := A/K = m + α, b := B/K and K ′ := B/m; by assumption K ′ is an
integer and B is even. Therefore the strategy U m

e is (B, K ′)-feasible by Proposition 6
(ii). From each K ′-partition of B one obtains a K-partition of B by adding to it K − K ′

zeroes;19 thus the strategy ((K −K ′)/K )10+(K ′/K )U m
e = (1−b/m)10+(b/m)U m

e ,

which is optimal for Player B in %(a, b) (by Theorem 2 when α = 0 and by Theorem
4 when α > 0), is (B, K )-feasible. Therefore val B(A, B; K ) ≤ val %(a, b). ./

19 K ′ ≤ K since B/K ≤ m.
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5 Discussion

We have introduced the General Lotto games as a generalization and technical tool
for studying Colonel Blotto games. However, these games are clearly of interest in
their own right, as natural models of optimal resource allocation in competitive envi-
ronments.

For example, Continuous General Lotto games are used in various models of
political competition (Myerson 1993; Lizzeri 1999; Sahuguet and Persico 2006; Dekel
et al. 2004, and others). Requiring the allocations there to be integer-valued is only
natural: it corresponds to having a minimum unit of exchange.

An interesting connection has been made to “all-pay auctions” (see, e.g., Appendix
A in Sahuguet and Persico 2006). Auctions, particularly multi-object auctions, are
natural instances of allocation games—so, again, the games studied here should be
useful. Yet another connection is to tournaments (Groh et al. 2003).

We have not fully solved all Colonel Blotto games. However, it is clear that the
methods we have used may be extended to cover various additional cases. First, one
would need to extend the class of strategies that can be implemented by partitions,
beyond those of Proposition 6. Second, it would be useful to find the additional optimal
strategies of General Lotto games in those cases where we have not obtained complete
characterizations (i.e., there is no * in the corresponding row of Fig. 1); this will provide
additional candidates to be implemented by partitions in Colonel Blotto games.

A Appendix: Proof of Theorem 1

All random variables in this appendix will be assumed to be nonnegative. For every
such Z ,

E(Z) =
∞∫

0

P(Z ≥ z) dz

(see, e.g., Billingsley 1986, (21.9)). From (1) we get

1 − 2P(Y ≥ X) ≤ H(X, Y ) ≤ 2P(X ≥ Y ) − 1. (10)

Proof of Theorem 1. For every Y with E(Y ) = b,

P(Y ≥ X∗) = 1
2a

2a∫

0

P(Y ≥ x) dx ≤ 1
2a

∞∫

0

P(Y ≥ x) dx

= 1
2a

E(Y ) = b
2a

, (11)
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hence H(X∗, Y ) ≥ 1−2P(Y ≥ X∗) ≥ 1−b/a. Similarly, for every X with E(X) = a,

P(X ≥ Y ∗) =
(

1 − b
a

)
P(X ≥ 0) +

(
b
a

)
1

2a

2a∫

0

P(X ≥ y) dy

≤ 1 − b
a

+ b
2a2 E(X) = 1 − b

2a
, (12)

hence H(X, Y ∗) ≤ 2P(X ≥ Y ∗)−1 ≤ 1−b/a. The value of &(a, b) is thus 1−b/a,

and X∗ and Y ∗ are optimal strategies.
Let X0 be an optimal strategy of Player A, i.e., H(X0, Y ) ≥ 1 − b/a, hence

P(X0 ≥ Y ) ≥ 1 − b/(2a) (recall (10)), for all Y with E(Y ) = b. When Y = Y ∗ we
have equality, so (12) implies

∫ ∞
2a P(X0 ≥ y) dy = 0, or

P(X0 > 2a) = 0. (13)

We will now show that, for every t ∈ [0, 2a],

P(X0 ≥ t) ≥ 1 − t
2a

. (14)

Indeed, when t ∈ [b, 2a], take Y = (1 − b/t)10 + (b/t)1t ; then P(X0 ≥ Y ) =
(1 − b/t) + (b/t)P(X0 ≥ t), and the inequality P(X0 ≥ Y ) ≤ 1 − b/(2a) yields
(14). When t ∈ [0, b), for any small ε > 0 take Y = λ1t + (1 − λ)12a+ε with
λ = (2a + ε − b)/(2a + ε − t); then E(Y ) = b, and 1 − b/(2a) ≥ P(X0 ≥ Y ) =
λP(X0 ≥ t) (recall (13)) yields (14). Now

a = E(X0) ≥
2a∫

0

P(X0 ≥ t) dt ≥
2a∫

0

(
1 − t

2a

)
dt = a,

so we must have equality in (14) for almost every t ∈ [0, 2a], and thus for every
t ∈ [0, 2a] (take t ′ arbitrarily close to t), so X0 = X∗.

Next, let Y 0 be an optimal strategy of Player B, i.e., H(X, Y 0) ≤ 1 − b/a, hence
P(Y 0 ≥ X) ≥ b/(2a) (recall (10)), for all X with E(X) = a. When X = X∗ we have
equality, so (11) implies

P(Y 0 > 2a) = 0. (15)

For every small ε > 0, let X = U (ε, 2a − ε); then E(X) = a and

b
2a

≤ P(Y 0 ≥ X) = 1
2a − 2ε

2a−ε∫

ε

P(Y 0 ≥ x) dx

≤ 1
2a − 2ε

(
E(Y 0) − εP(Y 0 ≥ ε)

)
,
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which implies that

P(Y 0 ≥ ε) ≤ b
a

. (16)

We will now show that, for every t ∈ (0, 2a],

P(Y 0 ≥ t) ≥ b
a

(
1 − t

2a

)
. (17)

Indeed, when t ∈ (a, 2a], take X = λ1ε + (1 − λ)1t with λ = (t − a)/(t − ε);
then E(X) = a and b/(2a) ≤ P(Y 0 ≥ X) = λ(b/a) + (1 − λ)P(Y 0 ≥ t) (by
(16)); as ε → 0 we get (17). When t ∈ (0, a), take X = λ1t + (1 − λ)12a+ε with
λ = (a + ε)/(2a + ε − t); then E(X) = a and b/(2a) ≤ P(Y 0 ≥ X) = λP(Y 0 ≥ t)
(recall (15)), which yields (17) as ε → 0. To complete the proof we proceed similarly
to X0 above: integrating (17) over t and using E(Y 0) = b implies equality in (17) for
almost every t, thus for all t, so Y 0 = Y ∗. ./
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