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Abstract

In situations such as political and military campaigns, two players must al-
locate resources across multiple contests. We analyze these environments in
terms of the canonical Colonel Blotto game, where two o�cers simultaneously
allocate their forces across multiple fronts, attempting to win battles. Prior
work on Blotto games has generally been quite technical, and often only pro-
vided example equilibria. We remedy both issues simultaneously by providing
an intuitive, graphical algorithm for constructing the complete set of equilibria
to all two battle�eld Blotto games. We show how our method easily extends
to address previously unsolved games. We �nd the complete set of equilibria to
one generalization of the game and a large class of equilibria when relaxing the
constant-sum assumption. We then discuss several other ways our results could
aid further Blotto research.
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1. Introduction

In Gross and Wagner's (1950) canonical paper, two o�cers, Colonel Blotto
and Enemy, are each endowed with a quantity of B and E soldiers, respectively.
They compete on multiple battle�elds, simultaneously deciding how to allocate
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their soldiers across each. The o�cer with more resources on a particular front
wins that battle, and an o�cer's payo� is the sum of the values of the fronts
won.3

These Colonel Blotto games have a wide range of potential applications in-
cluding: military and political campaigns, network defense, and strategic hiring
situations such as pro sports or the economics job market. For example, con-
sider two Economics departments that have received �use-it or lose-it� grants
to hire new faculty and suppose they are both interested in hiring the same
candidates. Should the departments make many modest o�ers or fewer o�ers
with higher salaries? To which candidates should they make which o�ers?

When studying Colonel Blotto interactions, researchers would like to know
what strategies to expect in equilibrium. Perhaps just as importantly, we would
like to know what types of behavior should never occur. In that vein, we com-
pletely characterize the set of Nash Equilibria in all two battle�eld versions of
this game.

Our characterization comes from a simple graphical algorithm which we
think provides important intuition to this long studied game. Despite nearly
a century of research, the literature's understanding of Blotto games is still
limited. Perhaps much of this de�cit can be attributed to the dimensionality of
the problem. A strategy for either player is a joint distribution over each of the
battle�elds, and a Nash Equilibrium is then a pair of joint distributions.

Borel (1921) posited the �rst Colonel Blotto game nearly 90 years ago, but
the �rst large set of solutions came from Gross andWagner (1950). They provide
example equilibria to many versions of the game. Much of the subsequent
research explored the implications of modifying the standard Blotto game. For
instance, Blackett (1954, 1958); Golman and Page (2009) all examine Blotto
games where the payo� on an individual battle�eld changes continuously as
players alter their allocations, instead of discretely as one player outspends the
other. Work by Kovenock and Roberson (2007), Powell (2009) and Roberson
and Kvasov (2008) consider other modi�cations to the game, including relaxing
the constant-sum assumption. Szentes and Rosenthal (2003) provide a bridge to
the auction literature and compare solutions to some Blotto games to solutions
to their �chopstick� auctions.4

While a few example equilibria to canonical Blotto games were provided
over the 56 years5 following Gross and Wagner's (1950) work, the next major
theoretical contribution to the classic game came from Roberson (2006) who
examines Blotto games on three or more equally valued battle�elds. In most
cases, he provides a complete characterization of the univariate marginal distri-
butions of each players' strategies in any Nash Equilibrium.6 Additionally, he

3We use the terms �battle�eld� or �front� to refer to the location where the individual
�battles� occur.

4Three chopsticks are being auctioned, and winning only one is worthless.
5e.g. see Weinstein (2005).
6He also uses these marginals to construct joint distributions that are a part of some

equilibrium. This method does leave room for other, uncharacterized, joint distributions
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�nds example equilibria in the other cases.7

We return to the two battle�eld canonical game and introduce an intuitive
algorithm which characterizes the complete set of equilibria for the two bat-
tle�eld game for any relative level of resources. Importantly, our paper deals
with Blotto games where thus far we've at best had only example equilibria. In
fact, it turns out that our algorithm deals quite easily with versions of the game
where previously no equilibria were known.

Roberson (2006) examines Blotto play on more than two battle�elds, but
does not consider possible asymmetries across the fronts. We make an opposite
trade-o� and examine Blotto games with asymmetric battle�elds, but restrict
our analysis to two fronts.8

Our work makes two main contributions to the literature. First, we provide
a simple graphical method for �nding the complete set of equilibria to any two
battle�eld Blotto game. Our method provides important intuition previously
missing from Blotto research. In fact, we start with the simple logic of the trivial
case and extend it to cases that otherwise seem quite complicate. Second, we �nd
the complete set of Nash Equilibria under a previously unsolved generalization
of the Blotto game,9 as well as a characterize a large class of equilibrium under
a generalization relaxing the constant-sum assumptions.

The organization for the remainder of this paper is as follows: Section 2
formally describes the game we will start with. Section 3 provides the graphical
algorithm we use to construct the complete set of equilibrium in the case of
equally weighted battle�elds. Section 4 demonstrates how to extend this algo-
rithm to construct a similar set of equilibrium in two previously unsolved games:
non-constant-sum Blotto games, and games where one player's forces may be
relatively more e�ective on a particular front. Section 5 formalizes our intuition.
Section 6 discusses other ways our results can aid further Blotto research and
Section 7 Concludes.

2. Model

We start by analyzing the following version of Gross and Wagner's (1950)
game. The two players, Blotto and Enemy, have a continuously divisible quan-
tity of soldiers, B and E, available, respectively. Without loss of generality,
normalize B = 1 and assume that Blotto is the advantaged player (E < 1).10

De�ne Blotto's advantage as δ ≡ 1 − E. In a two battle�eld game players si-
multaneously set, {bi}2i=1 and {ei}2i=1, denoting Blotto and Enemy's respective

which may also be a part of some equilibrium, but they must yield his marginals.
7Interestingly, extending our analysis to 3 or more battle�eld games would seem to apply

most directly to the case where he only provides example equilibria. For more see Section 6
8Thomas (2009) takes a third approach to this trade-o�. She allows for asymmetric fronts

and more than two battle�elds, but she assumes that B = E.
9Interestingly, we completely characterize the set of equilibria in terms of joint strategy

distributions, not just the corresponding marginal distributions. To our knowledge, this has
not yet been done for any non-trivial canonical Blotto games.

10E = 1 is trivial.
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Table 1: Objectives and Constraints

Blotto Enemy

Objective max
b1,b2

(
2∑
i=1

(Prob(bi≥ei|µE))

)
max
e1,e2

(
2∑
i=1

(Prob(ei > bi|µB))

)
Constraints b1 ≥ 0, b2 ≥ 0 and b1 + b2 ≤ 1 e1 ≥ 0, e2 ≥ 0, and e1 + e2 ≤ E

Table 2: Payo�s by Region

Region Bounds Blotto's Payo� Enemy's Payo�

i E ∈ [0, 1
2B] 2 0

ii E ∈ ( 1
2B,

2
3B] 3

2
1
2

iii E ∈ ( 2
3B,

3
4B] 4

3
2
3

iv E ∈ ( 3
4B,

4
5B] 5

4
3
4

n E ∈ (n−1
n B, n

n+1B] n+1
n

n−1
n

allocations to Battle�eld i, subject to their resource constraints. The player
with more soldiers on Battle�eld i wins that battle and receives payo� 1. The
losing player receives a payo� of 0 on that front. A strategy for Blotto, or En-
emy is then a randomization over pairs of b1 and b2, or e1 and e2 respectively.
Blotto's allocation are constrained by b1 ≥ 0, b2 ≥ 0 and b1 + b2 ≤ 1. Enemy is
constrained by e1 ≥ 0, e2 ≥ 0, and e1 + e2 ≤ E.

A strategy for Blotto or Enemy can be represented with a probability mea-
sure µB or µE , respectively.

11 Table 1 provides the objective functions and
resource constraints for this game. You can see from the payo� functions that,
in the case of a tie we assume the battle�eld goes to Blotto. This assumption
is standard in most of the literature (Kvasov, 2007).12

Given this formal construction, equilibrium payo�s of the game are already
known for any E. Figure 1 displays the possible resource endowments for Blotto
and Enemy and shows the separate payo� regions. (It also relaxes the normal-
ization that B = 1.) The payo�s and bounds for each region are displayed in
Table 2 as an aid to the reader.13

11For readers not familiar with probability measures, just think of µB as a function which
takes a region in (b1, b2) space and returns the probability that a point in the region will be
played, given Blotto's randomization. For example, if half the time Blotto plays allocations
in S, then µB(S) = 1

2
.

12This assumption is not important. If we instead assumed ties were decided by the �ip of
a fair coin, we could redo our analysis just by swapping some weak and strict inequalities.

13These payo�s and bounds were �rst reported in Gross and Wagner (1950). However,
a reader familiar with their work may notice two di�erences. We have swapped the weak
and strict inequalities in our bounds when compared to their results. This is due to our
di�erent assumptions regarding ties. We are also using di�erent normalizations of the objective
functions that we �nd more intuitive. So, we've normalized the payo�s appropriately.
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Figure 1: Payo� Regions

3. Equilibrium Construction Intuition

In this section we provide the intuition behind our algorithm. We leave the
formal characterization for Section 5. Section 3.1 graphically constructs the set
of all Nash equilibrium in the trivial case where E ≤ 1

2B (Region 1). Section
3.2 constructs the slightly more complicated set of all Nash equilibrium in the
case where 1

2B < E ≤ 2
3B (Region 2). Section 3.3 shows how we can continue

using our method in other regions.

3.1. The Trivial Region (Region 1)

We begin considering the case where Blotto has at least double the resources
of Enemy, E ≤ 1

2B. The results here may seem trivial, and in fact they are.
However, the method of analysis we use here proves useful when considering
more complicated versions of the game. The intuition for the region is simple.
If Colonel Blotto has twice the forces of Enemy, he can guarantee himself victory
on both battle�elds by deploying forces (E,E) and earning payo� of 2. In fact,
any allocation where Blotto allocates at least E to both battle�elds will ensure
Blotto a payo� of 2.

Figure 2 shows all feasible Blotto and Enemy allocations on one graph.
On the graph, Blotto could potentially play any allocation within the simplex
bounded by the axes and his full expenditure boundary (the line from (0, B) to
(B, 0), representing his budget constraint). Similarly, Enemy could potentially
play any allocation within the simplex bounded by the axes and his full expen-
diture boundary (the line from (0, E) to (E, 0)). A strategy for either player
is a randomization over his feasible allocations. Therefore, we take the general
approach of �nding the set of points over which each player may randomize in
some equilibrium. It turns out that these sets are easily graphed areas. Subject
to their constraints, Blotto can play any strategy that always sends at least
E to both battle�elds (the striped region in Figure 2), and Enemy can play
any strategy at all (the checkered region). When Blotto plays in this manner,
Enemy can never win on either battle�eld.
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Figure 2: The Trivial Region

As already mentioned, Blotto should ensure victory on both fronts. In order
to see where Blotto can do so, we bound the area labeled Blotto in Figure
2 with three lines. Playing above the horizontal dotted line (a) ensures that
Blotto plays at least E on Battle�eld 2 and guarantees victory there. Playing
to the right of the vertical dotted line (b) ensures that Blotto plays at least E
on Battle�eld 1, guaranteeing victory there. Finally the line from (1, 0) to (0, 1)
ensures that Blotto plays only feasible allocations. When playing inside this
region Blotto guarantees himself victory on both battle�elds while respecting his
resource constraint. When playing outside this region Blotto is either presenting
Enemy with an opportunity to take one of the battle�elds, or violating his
resource constraint. Therefore, the complete set of equilibrium Blotto strategies
is the set of strategies where Blotto randomizes over this region and this region
only. As you can the only restriction on Enemy's strategy is that he must play
within his constraints.

3.2. Region 2

Region 2 is somewhat more complicated and consists of all possible resource
endowments where Enemy has more than half of Blotto's resources (E > B

2 ),
but no more than two-thirds (E ≤ 2B

3 ). In region 1 Blotto was able to guarantee
victory on both fronts by sending at least E soldiers to each battle�eld.

While Blotto no longer has enough soldiers to guarantee victory on both
fronts, he has enough resources to do the following: choose a battle�eld by the
�ip of a fair coin; send E soldiers to that front and E

2 to the other front. The
best that Enemy can do against this strategy is send more than half of his forces
(for example all his forces) to one front. Enemy hopes he chooses the front to
which Blotto sent E

2 in which case he will win one battle. Otherwise, he will
�nd the bulk of his forces facing E of Blotto's soldiers, and less than half his
troops facing E

2 of Blotto's. In this case he loses both battles.
Intuitively, in equilibrium, each player heavily attacks one front and sends a

smaller force to the other front. Blotto hopes they both heavily attack the same
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front, while Enemy hopes they mismatch. Half the time Blotto wins both, and
the rest of the time they each win one.

There are many strategies which loosely �t our above description. In order
to construct the complete set of equilibrium strategies, we now consider this
region graphically in Figure 3. Figure 3a shows that Blotto has two separate
areas where he may play while attacking one battle�eld heavily. Line (a) shows
that he must play more than E on Battle�eld 2 if he is to ensure victory there
when he attacks that front heavily. Line (b) shows a similar condition when he
decides to attack the other front heavily. If Blotto plays in each of these areas
with a 50/50 chance, Enemy will not know which battle�eld to avoid.

Figure 4b shows that when Enemy attacks a front heavily, he needs to ensure
that he will win there when Blotto attacks the other front heavily. For instance,
the horizontal line (c) shows that when Enemy is attacking Battle�eld 2 heavily,
he needs to be sure his force is large enough to beat any force Blotto might send
to Battle�eld 2 when Blotto is attacking Battle�eld 1 heavily.14 The vertical
line (d) shows a similar condition when Enemy decides to attack Battle�eld 1
heavily. If Enemy plays in each of the two regions with equal probability Blotto
wont know which battle�eld to attack heavily, and which only needs a smaller
force.

When Blotto attacks a battle�eld heavily, he needs to ensure he has enough
left over troops to ensure victory on the other front when Enemy sends his
smaller force there. For instance, randomizing between playing (B, 0) and (0, B)
would not be a good idea. Enemy could play (E2 ,

E
2 ) and always win one battle.

Figure 3c demonstrates this restriction. The horizontal line (e) shows that when
Blotto attacks Battle�eld 1 heavily, he needs to send enough forces to Battle�eld
2 to ensure victory there if Enemy attacks Battle�eld 1 heavily, but still sends a
small force to Battle�eld 2. The vertical line (f) demonstrates a similar condition
when Blotto attacks Battle�eld 2 heavily.

We now have two areas for both Blotto and Enemy, and we know they must
play in both areas 1

2 of the time. We now need to know how they may choose to
distribute mass within those two areas. In equilibrium Blotto expects a payo�
of 1 1

2 and Enemy expects 1
2 . The only condition on the distribution of mass

within the two areas is that it cannot provide the other player with a higher
expected payo� if they deviate. We demonstrate these conditions in Figure 4.
Figure 4a demonstrates how certain Blotto distributions could provide Enemy
with pro�table deviation from his prescribed strategy. Observe the potential
deviating (e∗1, e

∗
2). Line (h) divides the area where Blotto is attacking Battle�eld

2 heavily into two parts. In j, b1 < e∗1, and in m, b1 ≥ e∗1. Line (g) similarly
divides the area where Blotto is attacking Battle�eld 1 heavily. In k, b2 < e∗2
and in l, b2 ≥ e∗2. We know that Enemy can only expect a payo� of at most 1

2
if he were to play here.

Playing (e∗1, e
∗
2) he may end up winning either front. He may win on Bat-

14Recall that Enemy can never when on Battle�eld 2 when Blotto is also attacking Battle-
�eld 2 heavily.
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Figure 3: Region 2 Construction

(a) (b)

(c)
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Figure 4: Region 2 Mass Restrictions

(a) (b)

tle�eld 1 when Blotto plays in region j, and he may win on Battle�eld 2 when
Blotto plays in region k. In either of these cases he will win one battle�eld.
When Blotto plays in either of the other regions (l or m) Enemy loses on both
fronts. Therefore, the total mass Blotto plays over regions j and k can be no
more than 1

2 . Figure 4b demonstrates how similar restrictions a�ect Enemy's
potential distributions.

Notice that we chose (e∗1, e
∗
2) (and (b∗1, b

∗
2)) somewhat arbitrarily. Any full

expenditure deviating (e∗1, e
∗
2) would have done. As such, there are a continuum

of such restrictions on how Blotto and Enemy can randomize over the two
areas. However, we now have graphical representations of the complete set of
equilibrium Blotto and Enemy strategies. They are the set of randomizations
that place 1

2 of the mass on the player's two areas shown above, and distribute
the mass within those two areas in such a way that their opponent has no
pro�table deviations (as shown in Figure 4).

3.3. The General Approach

Here we will explain our graphical algorithm for �nding the set of equilibrium
in a generic region n. Recall that in region n we have E ∈ (n−1

n B, n
n+1B]. As an

aid to the reader, we provide an illustration of our method for n = 3 in Figure
5.

Our graphical algorithm for �nding the set of equilibrium to any two bat-
tle�eld Blotto game is a three step process. In step one, as shown in Figure 5a,
we draw a (solid) vertical line coming out of the point (E, 0). Every time this
line intersects a resource constraint we re�ect it 90 degrees. We can stop the
re�ections once we reach a point (x1, x2) on Blotto's resource constraint where
x2 > E. Every time the solid line intersects Enemy's resource constraint we
also draw the line's continuation (shown as a dotted line).

Step two is similar to Step one. As in Figure 5b, we draw a (solid) horizontal
line coming out of the point (0, E). Again, when the line intersects a resource
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Figure 5: The General Graphical Method

(a) (b)

(c) (d)
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constraint we re�ect it 90 degrees. We can now stop the re�ections once we reach
a point (x1, x2) on Blotto's resource constraint where x1 > E. We again draw
a dotted line showing how the solid line would continue every time it intersects
Enemy's resource constraint. After doing both steps one and two we will have
a graph like Figure 5c.

In step three we use our graph to �nd the regions over which each player
will randomize. After completing steps one and two we have n triangles directly
below Enemy's resource constraint and 2n− 1 triangles directly below Blotto's
resource constraint as shown in Figure 5c.15 We label the triangles directly
below Enemy's resource constraint T e1 , ..., T

e
n, from top left to bottom right as

in Figure 5d. These will be the areas over which Enemy can randomize in
equilibrium. For the triangles directly below Blotto's resource constraint we
label the top left T b1 . As we move down and right along the resource constraint
we skip the next triangle and then label T b2 , skip another, label T b3 and so on
until we reach T bn. We can see this in Figure 5d. In equilibrium each player will
play in each of their Ti's with probability 1

n .
16

If they play this way, with probability 1
n they will �match,� or for some

j Blotto and Enemy will play allocations in T bj and T ej , respectively. In this

case, Blotto wins both battle�elds. Otherwise (with probability n−1
n ) they will

�mismatch.� Blotto and Enemy will play allocations in T bi and T ej , respectively,
such that i 6= j. In this case each player wins one front. Thus, for any allocation
in one of their Ti's, Blotto expects a payo� of n+1

n while Enemy expects n−1
n .

Before we can say we've completely characterized the set of equilibrium
strategies, we need to discuss additional restrictions on how player's can ran-
domize within their Ti's. These restrictions are very similar to the restrictions
shown earlier in Figure 4; they prevent possible deviations by the opponent.
Since either player's expected payo� is weakly increasing in allocations on ei-
ther battle�eld, ensuring that there are no full expenditure, expected payo�
increasing deviations is su�cient.

Consider, e∗ = (e∗1, e
∗
2), a generic full expenditure deviation by Enemy like

that shown in Figure 6a. Any such e∗ will always lie on Enemy's resource
constraint between some T ei and T ei+1. To understand how this deviation will
a�ect Enemy's expected payo�, compare e∗ to any allocation ē ∈ T ei . Enemy's
realized payo�s will be the same unless Blotto plays in T bi or T bi+1. If Blotto
plays certain allocations in T bi (allocations in j in the Figure) Enemy will win
on Battle�eld 1 with e∗ when he would have lost with ē. The trade-o� is that if
Blotto plays certain allocations in T bi+1, (allocations in m in the picture) Enemy
will lose on Battle�eld 2 with e∗ when he would have won with ē. In order
for Enemy to not have any payo� improving deviations the added probability of
losing Battle�eld 2 must be at least as great as the added probability of winning

15We are not discussing any of the larger triangles in the graph which contain smaller
shapes (e.g. the axes and the resource constraints form triangles, but these are not what we
are interested in). The triangles we are discussing are empty in Figure 5c

16Whether the bounds of the various Ti's are open or closed is left for Section 5.



12

Figure 6: Region 3 Mass Restrictions

(a) (b)

on Battle�eld 1. In terms of Figure 6a this requires that µB(m) ≥ µB(j). This
type of condition must be satis�ed for any deviating full expenditure e∗. Figure
6b graphically demonstrates the similar restrictions on Enemy's randomization.

We now have a graphical method for depicting the complete set of equilib-
rium strategies for Blotto and Enemy. For each player it is the set of strategies
where they allocate within each of their Ti's with probability 1

n , and random-
ize within the Ti's in such a way that their opponent has no full expenditure,
expected payo� improving deviations. We provide a graphical algorithm for con-
structing the Ti's and for visualizing the deviation preventing condition. The
complete set of equilibria is the set of pairs of Blotto and Enemy equilibrium
strategies and is given formally in Section 5.

4. Applications

In this section we demonstrate the ability of our algorithm to aid further
Blotto research. Speci�cally, we use the algorithm to �nd the complete set of
equilibria for two previously unsolved generalizations of Gross and Wagner's
(1950) original game. In this section we again just discuss intuition and leave
the formal characterization for Section 5.

4.1. Unique Battle�eld Values

Now we relax our earlier assumption that both players care about both
battle�elds equally. The game remains the same except for the following modi-
�cation. If Blotto or Enemy wins Battle�eld i they receive a payo� there of abi
or aei , respectively. Both players will face the same constraints as before, but
their objective functions are now di�erent. Blotto's objective is now:

max
b1,b2

(
2∑
i=1

(
Prob(bi≥ei|µE) · abi

))
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Figure 7: Weights

(a) (b)

while now Enemy's is:

max
e1,e2

(
2∑
i=1

(Prob(ei > bi|µB) · aei )

)
.

To simplify the analysis, normalize the weight each player places on Battle�eld 1
to 1 (ab1 = ae1 = 1). Then, let wB > 0 and wE > 0 be the relative weight Blotto

and Enemy, respectively, place on Battle�eld 2 (wB ≡ ab
2
ab
1
and wE ≡ ae

2
ae
1
). To

our knowledge, no equilibrium to these Blotto games have been found before.17

However, we can characterize a large set of equilibria with a small extension of
our graphical method.18

While we explain how to �nd our set of equilibrium strategies in a generic
region, Figure 7 shows how our process applies to Region three. We follow the
process in Section 3.3 to �nd the Ti's over which players may randomize (Figure
7a). Previously, player's would play in each Ti with probability 1

n . Now that
the players place di�erent weights on the two battle�elds, they need to play in
each Ti with a di�erent probability in order to make their opponent indi�erent
between his own Ti's.

Suppose Enemy is examining the expected payo� of playing in some T ei
compared to playing in T ei+1 (e.g. T e1 v.s. T e2 in Figure 7a). The realized
payo� of playing in either will be the same unless Blotto plays in T bi or T bi+1.
Moving from T ei+1 to T ei allows Enemy to now win Battle�eld 2 if Blotto plays
in T bi+1 but at the cost of now losing on Battle�eld 1 when Blotto plays in T bi .
Since Enemy values Battle�eld 2 wE times as much as Battle�eld 1, his added

17Except in the constant sum case where wB = wE in Gross and Wagner (1950).
18In fact, it seems as though the set we characterize is indeed complete, but we leave the

proof of this fact for future work.
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chance of losing Battle�eld 1 needs to be wE times his added chance of winning
Battle�eld 2. This implies that µB(T bi ) = wE · µB(T bi+1). As this must hold for
all i:

µB(T bi ) =
wn−iE
n−1∑
j=0

wjE

,

as shown in Figure 7b.
We can also perform a similar analysis to �nd the the probability Enemy will

play in each T ei . Suppose now that Blotto is examining the expected payo� of
playing in some T bi+1 compared to playing in T bi (e.g. T b2 v.s. T b1 in Figure 8a).
The realized payo� of playing in either will be the same unless Enemy plays in
T ei or T ei+1. Moving from T bi to T bi+1 allows Blotto to now win Battle�eld 1 if
Enemy plays in T ei+1 but at the cost of now losing on Battle�eld 2 when Enemy
plays in T ei . Since Blotto values Battle�eld 2 wB times as much as Battle�eld
1, his added chance of winning Battle�eld 1 needs to be wB times his added
chance of losing Battle�eld 2. This implies that µE(T ei+1) = wB · µE(T ei ). As
this must hold for all i:

µE(T ei ) =
wi−1
B

n−1∑
j=0

wjB

,

as shown in Figure 7b.
We will still need to place additional restrictions on how player's can ran-

domize within their Ti's. However, we can show the restrictions in the same
manner as before in Figure 6. The only di�erence is that now we need to ac-
count for the di�erent weights. This is easily reconciled. In terms of Figure 6a
the restriction now becomes µB(m) ≥ wE · µB(j) and similarly for µE . Our set
of equilibrium in these non-constant sum Blotto games is going to be the set
of pairs of Blotto and Enemy strategies that satisfy the conditions we've just
described.

4.2. Force E�ectiveness

We may wish to consider Blotto games where one player's forces have an
advantage on one of the battle�elds. For instance, suppose Blotto's forces are
marines, while Enemy's are general infantry and attacking Battle�eld 2 involves
a water landing. We would expect that adding forces to Battle�eld 2 will increase
Blotto's strength there more than a similar increase by Enemy. As far as we
know, there are no prior solutions to this generalization of the Blotto game, but
our graphical method allows us to address it quite easily.

In order to deal with this case we need rede�ne a few parts of the game. The
winner of a battle�eld is no longer contingent only upon who has the largest
force, but on who has the strongest force. So, we recast the problem as one
of choosing a strength of force on each battle�eld. First, consider Blotto and
Enemy both committing all their forces to Battle�eld 1. Without loss of gener-
ality, assume this means Blotto has a stronger force on Battle�eld 1. Normalize
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Figure 8: Force E�ectiveness

(a) (b)

(c)

there
(d)

the strength of Blotto's force there to 1, and that of Enemy to E. We continue
assuming that E < 1.

Since a player's forces may now be better at attacking either battle�eld, each
player will face their own trade-o� when moving forces from one battle�eld to
the other. For now consider cases where each player can trade strength between
the two battle�elds linearly. So we normalize the rate at which Blotto can trade
strength on Battle�eld 1 for strength on Battle�eld 2 to 1 and let Enemy trade
o� strength on Battle�eld 1 for strength on Battle�eld 2 at rate s. So, if Blotto
and Enemy sent all their forces to Battle�eld 2, their strengths there would be
1 and s · E, respectively. These trade-o�s are re�ected by the constraints in
Figure 8.

Our previous graphical algorithm described in Section 3.3 works here with-
out modi�cation. We only need to use the new budget constraints. Figure 8
demonstrates how our method works here in the same way as Figure 5 did for
the case where forces were equally e�ective on all battle�elds. If we wanted
allow for this modi�cation and general battle�eld weights, the analysis from
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Figure 9: Generic Budget Constraints

Section 4.1 would carry over directly.
Note that if Blotto's forces were relatively ine�ective when attacking Bat-

tle�eld 2 the resource constraints could cross and our method would no longer
work. However, in this case there is a very simple Nash equilibrium. Both play-
ers can �hunker down� and send their full force to the battle�eld where they are
the stronger and guarantee victory there.

In fact, the assumption of linear budget constraints isn't necessary. Our
algorithm appears to be able to deal with any strictly decreasing budget con-
straints (so long as Enemy's budget constraint is completely within Blotto's
and Enemy's budget constraint intersects both axes). Figure 9 shows how our
graphical algorithm could be applied in these cases. In Section 5 we will formally
describe our set of equilibrium in this general case.

5. Again, With More Rigor

Here we generalize and formalize the above. Speci�cally, we consider the
following very generic two battle�eld Blotto game: The two players simultane-
ously set {bi}2i=1 and {ei}2i=1, denoting Blotto and Enemy's respective strength
of force on Battle�eld i. If Blotto has a (weakly) stronger force on Battle�eld
i he wins that battle and receives a payo� on that front of abi > 0. Otherwise,
Enemy wins that battle and receives aei > 0. The losing player receives a payo�
of 0 from that front. Players attempt to maximize the expected sum of their
payo�s across the fronts. We denote Blotto's or Enemy's strategy as µB or µE ,
respectively. Blotto's allocation is constrained by b1 ≥ 0, b2 ≥ 0 and a generic
resource constraint, b2 ≤ f(b1). So, his optimization problem is:

max
b1,b2

(
2∑
i=1

(
Prob(bi≥ei|µE) · abi

))
s.t. (1)

b1 ≥ 0, b2 ≥ 0 b2 ≤ f(b1) (2)
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Similarly, Enemy is constrained by e1 ≥ 0, e2 ≥ 0, and e2 ≤ g(e1) and his
optimization problem is:

max
e1,e2

(
2∑
i=1

(Prob(ei > bi|µB) · aei )

)
s.t. (3)

e1 ≥ 0, e2 ≥ 0, e2 ≤ g(e1). (4)

To make the problem easier we make the following assumptions. Without
loss of generality normalize ab1 = ae1 = 1. Now we only care about relative weight

each player places on Battle�eld 2. So, let wb = ab
2
ab
1
and we = ae

2
ae
1
. Also assume

that
∃ B1, B2 > 0 s.t. f(B1) = 0, f(0) = B2. (5)

∃ E1, E2 > 0 s.t. g(E1) = 0, g(0) = E2. (6)

In other words, there exist x and y intercepts, E1 and E2 (B1 and B2), of
Enemy's (Blotto's) resource constraint.19 Furthermore, assume that both f
and g are continuous, strictly decreasing functions. Finally, we need to make
an assumption so that Blotto is always the advantaged player. We do this
by assuming that there is some minimum amount by which Blotto's budget
constraint is always higher than Enemy's20 or

∃ε > 0 s.t. ∀x1 ∈ [0, E1] f(x1) ≥ g(x1) + ε (7)

Also, we will use the following to composite functions:

h(x) ≡ g−1(f(x)). (8)

p(x) ≡ g(f−1(x)) (9)

Consider a generic two battle�eld Blotto game in Region n.21 Speci�cally,22

E2 ∈ (hn−2 (f (E1)) , hn−1 (f (E1))]. (10)

Also de�ne the following sets of allocations:23

∀i = 1, ..., n T bi ≡ {(b1, b2) : (b1 ≥ hn−i(E1), b2 ≥ pi−1(E2), b2 ≤ f(b1)}
(11)

19We could relax this assumption somewhat for Blotto. However, it seems realistic and
makes the proof cleaner.

20This rules out the possibility that the budget constraints cross, but often such games
have simple equilibria. For instance, if the budget constraints cross exactly once (or any odd
number of times), each player can guarantee victory on exactly one battle�eld. The simple
Nash is for each player to �hunker-down� and always send an unbeatable force to the front on
which they can guarantee victory.

21Any generic Blotto game must be in some such region. Speci�cally since f(x) ≥ g(x) + ε,

our graphical algorithm will �nd n ≤
l
E2
ε

m
.

22The conditions for Region 1, the trivial region, are slightly di�erent. There, E2 ≤ f(E1)
23We follow the standard convention where f0(x) = x.
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∀i = 2, 3, ..., n−1 T ei ≡ {(e1, e2) : (e1 > f−1
(
pi−2 (E2)

)
, e2 > f

(
hn−i−1 (E1)

)
, e2 ≤ g(e1))}

(12)
T e1 ≡ {(e1, e2) : (e1 ≥ 0, e2 > f

(
hn−2 (E1)

)
, e2 ≤ g(e1))} (13)

T en ≡ {(e1, e2) : (e1 > f−1
(
pn−2 (E2)

)
, e2 ≥ 0, e2 ≤ g (e1))} (14)

The above sets correspond to the triangles we found in the prior sections which
bounded the players' equilibrium allocations. Since we are allowing nonlinear
budget constraints these sets may no longer correspond to triangles, but we use
the notation T as is corresponds directly to the simple case. We also need to
de�ne some sets that so that we can restrict how players can randomize over
these �triangles� (as we did in the prior sections). ∀i < 1, 2, ..., n− 1,∀x ∈ R:

jx,ib ≡ {(b1, b2) : ((b1, b2) ∈ T bi , b1 < x)} (15)

kx,ib ≡ {(b1, b2) : ((b1, b2) ∈ Ti+1, b2 ≥ g (x))} (16)

jx,ie ≡ {(e1, e2) : ((e1, e2) ∈ T ei+1, e1 ≤ x)} (17)

kx,ie ≡ {(e1, e2) : ((e1, e2) ∈ T ei , e2 > f (x))} (18)

If Enemy were to play (x, g(x)), jx,ib represents the portion of T bi where Blotto

would lose on Battle�eld 1. While kx,ib represents the portion of Ti+1 where
Blotto would win on Battle�eld 2. Conversely, if Blotto were to play (x, f (x)) ,
jx,ie represents the portion of T ei+1 where Blotto would win on Battle�eld 1.
While kx,ie represents the portion of T ei where Blotto would lose on Battle�eld
2.

Now, de�ne ΩB as the set of probability measures, µB , which satisfy the
following two properties:

Property 1b) ∀i = 1, ...n

µB(T bi ) =
wn−iE
n−1∑
j=0

wjE

Property 2b) ∀i < 1, 2, ..., n− 1, ∀x ∈ [hn−i(E1), f−1
(
pi−2 (E2)

)
]:

µB(jx,ib )− µB(kx,ib ) · wE ≤ 0

Now, de�ne ΩE as the set of probability measures, µE , with the following
two properties:

Property 1e) ∀i = 1, ..., n

µE(T ei ) =
wi−1
B

n−1∑
j=0

wjB

Property 2e) ∀i = 1, 2, ..., n− 1 ∀x ∈ (f−1
(
pi−1 (E2)

)
, hn−i−1(E1))

µE(jx,ie )− µE(kx,ie ) · wB ≤ 0
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These de�nitions lead to two Theorems which we prove in Appendix Ap-
pendix A:

Theorem 1. Any pair of strategies {µB , µE} such that µB ∈ ΩB and µE ∈ ΩE

form a Nash equilibrium to the two battle�eld Colonel Blotto game.

In other words if you pair a Blotto strategy from ΩB , with an Enemy strategy
from ΩE , you will have formed a Nash equilibrium.

Theorem 2. When wB = wE the complete set of Nash Equilibrium to any two
battle�eld Colonel Blotto game is the set of pairs (µB , µE) such that µB ∈ ΩB

and µE ∈ ΩE .

While we wait to prove Theorems 1 and 2 until Appendix Appendix A, the
underlying conditions on the Ω's correspond quite directly to the conditions we
found graphically in Sections 3 and 4. Property 1b(e) simply requires that Blotto
(Enemy) randomizes over the areas we found in Figures 5d, 8, and 9 and that
he plays within each area with the probabilities found in Section 4.1. Property
2b(e) simply requires that Blotto (Enemy) distributes his mass over the areas
from Property 1b(e) in such a way that he does not provide his opponent with
any pro�table deviations. This condition re�ects the requirements we found
graphically in Figures 4a and 6a (4b and 6b).

6. Extensions

Experimentally, Chowdhury and Sheremeta (2009) are able to con�rm most
of Roberson's (2006) theoretical predictions. Prior to our work, the literature
only knew of a �nite number of equilibria to any two battle�eld Blotto game.
This would have made testing two battle�eld Blotto predictions (experimentally
or empirically) problematic. The set of Nash equilibrium strategies we �nd is
in�nite. Even if one used data that came from Nash equilibrium two battle�eld
Blotto play, there would have been no reason to assume that the data came
from one of the previously known equilibria.

For a larger number of battle�elds (m ≥ 3) our analysis would seem to apply
most directly to the region where Roberson (2006) only provided example equi-
libria. We refer to this region, where B ∈ [(m−1)E,mE], as �very asymmetric.�
Speci�cally, consider the case where B ∈ [(m− 1/2)E,mE). In relation to our
above analysis, this would be analogous to Region 2 where E > δ ≥ 1

2E; Blotto
can guarantee himself victory on (m− 1) battle�elds, and give Enemy only one
shot at attacking the less defended battle�eld. Blotto can randomly choose one
battle�eld and send 1

2E units there, and send E units to the rest. The best
Enemy can then do is randomly choose a front and attack it with full force.24

We have yet to characterize the complete set of equilibrium in this case, but it

24If the fronts have di�erent values to di�erent players, as in Section 4.1, players could
weight their randomizations to make each other indi�erent. As far as we know this would be
a new equilibrium to a previously unsolved Blotto game.
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seems as though it will satisfy properties similar to 1b(e) and 2b(e). Analogous
to property 1e) Enemy will randomize which battle�eld he attacks heavily, and
analogous to property 2e) will be a set of conditions that ensure Blotto does not
wish to deviate.

7. Conclusion

We provide a graphical algorithm for constructing the set of all Nash equilib-
rium strategies to any canonical two battle�eld Colonel Blotto game. Further-
more, we provide a formal de�nition of these sets and prove their completeness.
Our algorithm takes a very technical game and makes it far more accessible.
We are able to start with the simple logic of the trivial case and show how that
logic extends to much more complicated versions of the canonical game. In fact,
our algorithm demonstrates further utility; it applies easily to two previously
unsolved generalizations of the game.

Our work could prove useful for further empirical or theoretical work. While
the set of equilibria we �nd is in�nite, our characterization provides some easily
testable criteria: In equilibrium each player should only play allocations from
one of n distinct areas. We de�ne these areas and provide the probability with
which they should play in each. We have already shown how to our graphical
algorithm can advance theoretical work on Blotto games. We used it to easily
characterize a set of equilibria to two previously unsolved generalizations of the
canonical Blotto game. It also seems that work on �very asymmetric� Blotto
games with three or more battle�elds may be able to use a higher dimensional
version of our algorithm.

Characterizing the complete set of equilibrium strategies to the canonical
Blotto game exposes new equilibrium and the full set of conditions constrain-
ing them. Interestingly, there exist equilibria where neither player fully expends
their resources, even though there is no payo� to unallocated resources (perhaps
this suggests possible equilibrium re�nement techniques or potential insight into
the shadow value of the players' resources). Additionally, extending the logic of
the equilibrium construction algorithm begins to yield insight into more compli-
cated variants of the game, which may be more representative of real military,
political, or academic environments.
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Appendix A. Proofs of Theorems 1 and 2

First we prove that all pairs of strategies from ΩB and ΩE constitute a Nash
Equilibrium. We then show that in the constant sum case (wB = wE) no other
strategies are a part of any Nash Equilibrium. For the sake of readability start
with several de�nitions. First, de�ne two projection operators. Ψ1(S) is the set
of all scalars that are the �rst dimension of some two dimensional point in the
set of two dimensional points, S.

Ψ1(S) ≡ {x1 : (∃x2 ∈ R s.t. (x1, x2) ∈ S)}

Ψ2(S) is de�ned similarly:

Ψ2(S) ≡ {x2 : (∃x1 ∈ R s.t. (x1, x2) ∈ S)}

25We also de�ne the set of all points in some T bi (T ei ):

T b ≡ T b1 ∪ T b2 ∪ ... ∪ T bn

T e ≡ T e1 ∪ T e2 ∪ ... ∪ T en
Finally, we de�ne the sets of all feasible Blotto and Enemy allocations:

F b ≡ {(b1, b2) : b1, b2 ≥ 0 and b2 ≤ fb (b1)}

F e ≡ {(e1, e2) : e1, e2 ≥ 0 and e2 ≤ fe (e1)}.

The following Lemma gives us the intervals of battle�eld allocations within
the various T xi 's (∀x = b, e).

Lemma 3. ∀i = 1, 2, ..., n :

Ψ1(T ei ) = (f−1
(
pi−2 (E2)

)
, hn−i(E1)) (A.1)

26

Ψ1(T bi ) = [hn−i(E1), f−1
(
pi−1 (E2)

)
] (A.2)

Ψ2(T ei ) = (f
(
hn−i−1 (E1)

)
, pi−1(E2)) (A.3)

27

Ψ2(T bi ) = [pi−1(E2), f
(
hn−i (E1)

)
] (A.4)

25For instance, if S = {(1, 3), (2, 5)}, then Ψ1(S) = {1, 2} and Ψ2(S) = {3, 5}.
26For i = 1, the lower bound becomes f−1

`
p−1 (E2)

´
= f−1

`
f
`
g−1 (E2)

´´
= 0 and is

actually a closed boundary. For i = n, the upper boundary becomes h0(E1) = E1 and is
actually a closed boundary.

27For i = 1, the upper bound becomes p0(E2) = E2 and is actually a closed boundary. For
i = n, the lower boundary becomes f

`
h−1 (E1)

´
= f

`
f−1 (g (E1))

´
= 0 and is actually a

closed boundary.
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We will simultaneously prove Lemma 3 with our proof of the next lemma. In-
formally and abusing notation, we can rewrite the interval

[
0, f−1

(
pn−1 (E2)

)]
as

[Ψ1(T e1 ),Ψ1(T b1 ),Ψ1(T e2 ),Ψ1(T b2 ), ...,Ψ1(T en),Ψ1(T bn)]

or we could write the interval Ψ2(T e) ∪Ψ2(T b) =
[
0, f

(
hn−1 (E1)

)]
as

[Ψ2(T en),Ψ2(T bn),Ψ2(T en−1),Ψ2(T bn−1), ...,Ψ2(T e1 ),Ψ2(T b1 )].

.

Lemma 4. Formally, Ψ1(T e) ∪ Ψ1(T b) =
[
0, f−1

(
pn−1 (E2)

)]
and Ψ2(T e) ∪

Ψ2(T b) =
[
0, f

(
hn−1 (E1)

)]
while Ψ1(T e) ∩ Ψ1(T b) = {E1} and Ψ2(T e) ∩

Ψ2(T b) = {E2}.

Proof. Refer back to equations 13-14. Consider the bounds for any e1 ∈ Ψ1(T ei ).
Its open28 in�mum is f−1

(
pi−2 (E2)

)
. Changing the two other constraints on

T ei to equalities and solving we �nd that for e1 ∈ Ψ1(T ei ) the open29 supremum
is hn−i(E1), which is the closed in�mum of b1 ∈ Ψ1(T bi ). Similar algebra for
the other relevant bounds in Lemma 3 combined with simple induction con�rms
Lemmas 3 and 4.

Remark 5. ∀i ∈ {1, ..., n} any e1 ∈ Ψ1(T ei ) is strictly less than any b1 ∈ Ψ1(T bi )
which is strictly less than any e1 ∈ Ψ1(T ei+1).30 Also, ∀i ∈ {1, ..., n} any e2 ∈
Ψ2(T ei−1) is strictly greater than any b2 ∈ Ψ2(T bi ) which is strictly greater than
any e2 ∈ Ψ2(T ei ).31 Formally,

∀i ∈ {1, ..., n−1} (ei1 ∈ Ψ1(T ei ), ei+1
1 ∈ Ψ1(T ei+1), bi1 ∈ Ψ1(T bi )) =⇒ (ei1 < bi1 < ei+1

1 )
(A.5)

(en1 ∈ Ψ1(T en), bn1 ∈ Ψ1(T bn)) =⇒ en1 ≤ bn1 (A.6)

∀i ∈ {2, 3, ..., n} (ei−1
2 ∈ Ψ2(T ei−1), ei2 ∈ Ψ2(T ei ), bi2 ∈ Ψ2(T bi ) =⇒ (ei2 < bi2 < ei−1

2 )
(A.7)

(e12 ∈ Ψ2(T e1 ), b12 ∈ Ψ2(T e2 )) =⇒ e12 ≤ b12 (A.8)

Remark 5 follows directly by examining the bounds in Lemma 3.

Appendix A.1. Proof of Theorem 1

In this section we will prove that satisfying our characterization is a su�cient
condition for Nash equilibrium. In other words, any pair of strategies we've
characterized in fact forms a Nash Equilibrium to this game. Before proceeding
with the formal proof we provide the intuition. Properties 1b and 1e specify
that in any equilibrium Blotto and Enemy each randomize over n distinct areas

28closed when i = 1
29closed when i = n
30The former inequality is weak when i = n. Obviously, we ignore the latter when i = n.
31The later inequality is weak when i = 1. Obviously, we ignore the former when i = 1.
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(T b1 , ..., T
b
n and T

e
1 , ..., T

e
n). Blotto and Enemy's potential equilibrium allocations

on either battle�eld only overlap at one point in the following sense:

Ψ1(T b) ∩Ψ1(T e) = {E1},

Ψ2(T b) ∩Ψ2(T e) = {E2}.
Given that ties always go to Blotto, we can calculate players' expected payo�s .32

When they both play strategies satisfying Properties 1b and 1e, Blotto achieves

an expected payo� of
Pn

j=0 w
j
BPn−1

j=0 w
j
B

while Enemy earns
Pn−1

j=1 w
j
EPn−1

j=0 w
j
E

. Given these payo�s,

Property 2b(e) ensures that Enemy (Blotto) has no full expenditure allocation

outside the T ei 's (T bi 's) which provide a payo� strictly greater than
Pn−1

j=1 w
j
EPn−1

j=0 w
j
E

(
Pn

j=0 w
j
BPn−1

j=0 w
j
B

). Since all allocations in the players' supports provide the same payo�,

and there exist no allocations providing higher payo�s, pairs of strategies from
these distributions constitute a Nash equilibrium.

Proposition 6. Any pair of strategies satisfying properties 1b, 1e, 2b, and 2e
constitutes a Nash Equilibrium to the two battle�eld Colonel Blotto Game in
region n.

Proof. This Proposition is simply an alternative way of stating Theorem 1.
Given Remark 5 and Property 1b, we know that against any Blotto strategy
from our de�nition, when Enemy plays in T ei his probability of winning on
Battle�eld 1 is:

µB(T b1 ∪ ... ∪ T bi−1) =

∑n−1
j=n−(i−1) w

j
E∑n−1

j=0 w
j
E

and his probability of winning Battle�eld 2 is:

µB(T bi+1 ∪ ... ∪ T bn) =

∑n−i−1
j=0 wjE∑n−1
j=0 w

j
E

.

The total expected payo� is then:

1 ·
∑n−1
j=n−(i−1) w

j
E∑n−1

j=0 w
j
E

+ wE ·
∑n−i−1
j=0 wjE∑n−1
j=0 w

j
E

=

∑n−1
j=1 w

j
E∑n−1

j=0 w
j
E

(A.9)

for any allocation in any T ei . Similarly, against any Enemy strategy from above,
when Blotto plays in T bi his probability of winning Battle�eld 1 is:

µE (T e1 ∪ ... ∪ T ei ) =

∑i−1
j=0 w

j
B∑n−1

j=0 w
j
B

32If we instead assumed that ties were decided by a coin �ip, we would come up with nearly
the same equilibria. However, ties would no longer be possible, Blotto's T bi 's would have
open boundaries, Enemy's T ei 's would have only closed boundaries, and the open and closed
boundaries of the regions would be swapped.
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and his probability of winning Battle�eld 2 is:

µE (T ei ∪ ... ∪ T en) =

∑n−i
j=i−1 w

j
B∑n−1

j=0 w
j
B

The total expected payo� is then

1 ·
∑i−1
j=0 w

j
B∑n−1

j=0 w
j
B

+ wB ·
∑n−i
j=i−1 w

j
B∑n−1

j=0 w
j
B

=

∑n
j=0 w

j
B∑n−1

j=0 w
j
B

(A.10)

for any allocation in any T bi .
We now show that there are no allocations for Enemy or Blotto that provide

a strictly higher expected payo� than we found in the previous paragraph. Note
that if either player were to have an expected payo� improving deviation from
the strategies we de�ned, they must have a full expenditure payo� improving
deviation.33 Therefore, we only need to show that there are no payo� improving
full expenditure deviations. So, we check full expenditure deviations outside of
any T ei or T bi .

Consider a generic full expenditure Enemy deviation (e∗1, e
∗
2).34 Given that

(0, E2) is in T e1 and (E1, 0) is in T en, (e∗1, e
∗
2) must lie �between� some T ei and

T ei+1.
35 Let (e1, e2) be a non-deviating allocation in T ei . Examine Property 2b

with x = e∗1. The realized payo� to Enemy of playing (e∗1, e
∗
2) against any of our

Blotto strategies will be the same as if he had played (e1, e2) unless Blotto plays
in T bi or T bi+1. If Blotto plays in T bi the deviant strategy may do better36 on
Battle�eld 1 (without changing the outcome on Battle�eld 2). The cost is that if
Blotto plays in T bi+1 the deviant strategy may do worse on Battle�eld 2 (without
changing the outcome on Battle�eld 1). Using the notation of Property 2b, any

b1 in j
e∗1 ,i
b will lose to e∗1 (while it would have beat e1) and any b2 in k

e∗1 ,i
b will beat

e∗2 (while it would have lost to e2). Property 2b then says that by moving from
any (e1, e2) in T ei to (e∗1, e

∗
2) the additional probability of winning on Battle�eld

1 is weakly less than the additional probability of losing on Battle�eld 2 times
the weight placed on that battle�eld. Therefore, no full expenditure deviation
(e∗1, e

∗
2) is payo� improving, and therefore no deviation is payo� improving.

The same line of reasoning applies directly to Property 2e and full expendi-
ture deviations which lie �between� some T bi and T bi+1.

37 Additionally, there are
full expenditure deviations which do not lie �between� some T bi and some T bi+1.

38

33As the expected payo� must be weakly increasing in expenditure on either battle�eld.
34Clearly e∗2 = g(e∗1).
35By �between� we mean: ∀ei1 ∈ Ψ1(T ei ), ei+1

1 ∈ Ψ1(T ei+1) ei1 < e∗1 < ei+1
1 , and similarly

for e∗2.
36By �do better� we mean e∗1 would be larger than Blotto's Battle�eld 1 allocation, whereas

e1 would be weakly less.
37Speci�cally, Property 2e ensures that a full expenditure deviating allocation by Blotto,

(b∗1, b
∗
2), cannot be payo� improving. Simply set b∗1 = x in the property and the same line of

reasoning follows.
38For instance, (B, 0) and (0, B).
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Speci�cally, there are two more deviating types of full expenditure allocations:
a (b∗1, b

∗
2) where ∀(b1, b2) ∈ T b1 b∗1 < b1 and b∗2 > b2 or a (b#1 , b

#
2 ) where

∀(b1, b2) ∈ T bn b#1 > b1 and b#2 < b2.
39 In the former, Blotto increases allo-

cations to Battle�eld 2 at the expense of Battle�eld 1, relative to T b1 . However,
in T b1 , Blotto is guaranteeing victory on Battle�eld 2, so this can not be payo�
improving. Similar logic applies to the later type of allocations.

Thus, if Blotto plays µB ∈ ΩB and Enemy plays µE ∈ ΩE , they would
both be playing best responses to the other's strategy. Therefore any such pair
{µB , µE} constitutes a Nash equilibrium.

Appendix A.2. Proof of Theorem 2

We now prove that in the constant sum case there are no other strategies
which could be part of a Nash equilibrium. Speci�cally, we consider the version
of the Blotto game from Section 5 while assuming w = wB = wE . Before
proceeding we need the following de�nition and lemma:40

De�nition 7. A game is said to feature Constant Payo�s if, for each player,
the expected payo� is the same in all equilibria.

Our constant-sum Blotto games features Constant Payo�s as a direct appli-
cation of Sion's (1958) general minimax theorem.41

Lemma 8. (Equilibrium Interchangeability)
In any two-player, constant-sum game which features Constant Payo�s, ev-

ery strategy from any equilibrium is a best response to any opponent strategy
from any (other) equilibrium.

Lemma 8 follows quite directly from Constant Payo�s and is proven in Ap-
pendix Appendix C.42 Equilibrium Interchangeability allows us to consider
equilibrium strategies for Blotto and Enemy separately. Unlike with most mul-
tiple equilibria games, there is no need to worry about pairing with a particular
opponent equilibrium strategy. This turns out to be quite a powerful tool. If we
discover just one Nash Equilibrium (pair of strategies) all the remaining equi-
librium are simply the cross of all the Blotto strategies that form an equilibrium
with the one known Enemy strategy, and all the Enemy strategies that form an
equilibrium with the one known Blotto strategy.

Our proof will be organized as follows. First of all, any strategy satisfying
Property 1b(e) while violating property 2b(e) cannot be a part of any Nash

39Given Lemma 3, Remark 5 and Property 1b, there are no other full expenditure deviations.
40Vega-Redondo (2003, pp. 47-50) provides an excellent discussion of Constant Payo�s and

Equilibrium Interchangeability in �nite games.
41The relevant theorem in Sion (1958) is 3.4. Thanks to Brian Roberson for providing this

reference.
42We are not the �rst to use these two properties when analyzing Blotto Games (e.g. see

Roberson (2006)). However, we generally see weaker statements of Lemma 8. Therefore, we
provide a proof for the sake of completeness, even though similar proofs already exist (e.g.
see Vega-Redondo (2003, pp. 50)).
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Equilibrium as it provides Enemy (Blotto) with an allocation whose payo� is
strictly greater than his constant equilibrium payo�. Then we show that any
strategy violating property 1b(e) does not form an equilibrium with speci�c
Enemy (Blotto) equilibrium strategies. Therefore such strategies are not a part
of any equilibrium by Equilibrium Interchangeability.

Proposition 9. In the constant sum game (w = wB = wE) any Enemy strategy
which is a part of some Nash Equilibrium is in ΩE.

Proof. Because of Equilibrium Interchangeability, all we need to show in or-
der to prove that a strategy is not a part of any Nash Equilibrium is that
the strategy does not form a Nash Equilibrium when paired with a strat-
egy that we've already shown was a part of some Nash Equilibrium. We
make use of the Blotto strategy µ∗B , where in each T bi Blotto plays the allo-
cations

(
hn−i(E1), f

(
hn−i(E1)

))
and

(
f−1

(
pi−1 (E2)

)
, pi−1 (E2)

)
with proba-

bility wn−i

2·
n−1P
j=0

wj

each .43 Clearly, this means he plays all other allocations with

probability zero.44

We prove Proposition 9 by contradiction. Suppose there exists a Nash Equi-
librium Enemy strategy that is not in ΩE . Such a strategy must then either
violate Property 1e or satisfy Property 1e and violate Property 2e. In proving
that all our strategies were indeed part of a Nash Equilibrium, we've already
shown how a violation of Property 2e alone would provide Blotto with a pay-
o� improving deviation, so we rule out that possibility. The only other way
Proposition 9 could be false is if there were a Nash equilibrium Enemy strategy
which violated property 1e. We divide deviations from property 1e into three
possible cases. Figure A.10 provides a graphical reference (in Region 3) to aid
the reader.

Deviation 1) Enemy could play over an area that sends less to both fronts
than some (e1, e2) in some T ei . Formally, this would have Enemy play a µd1E (Y )
such that the following three statements hold for some set of points S:

S ∩ T e = ∅

µd1E (S) > 0

∀(e∗1, e∗2) ∈ S, ∃(e1, e2) ∈ T e s.t. e∗1 ≤ e1 and e∗2 ≤ e2

The �rst condition implies that at least one of these inequalities in the third
holds strictly. We already have a contradiction as this could not be a best
response to µ∗B which has Blotto playing the lower bounds of e1and e2 in T ei

43A simple algebraic or graphical analysis shows that these strategies are in ΩB . These are
the intersections of Blotto's resource constraint with the two other bounds on T bi .

44As
Pn
i=1 2 · wn−i

2·
n−1P
j=0

wj

= 1.
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Figure A.10: Enemy Deviations in Region 3

with positive probability. All (e∗1, e
∗
2) ∈ S must then provide a strictly lower

expected payo� than playing in some T ei .
This only leaves two possible types of deviations by Enemy: He could play

with mass other than wi−1

n−1P
j=0

wj

over some T ei (Deviation 3) and/or he could play

with mass over a region S45 where ∀(e∗1, e∗2) ∈ S, ∀(e1, e2) ∈ T e either:

e∗1 > e1 or e
∗
2 > e2

(Deviation 2). Given the bounds of the T ei 's any such region S must be a
within the set of points De

i , indexed by i = 1, 2, . . .n− 1, where

De
i ≡

{
(e1, e2) : (e1 ≥ hn−i(E1), e2 ≥ pi(E2), and e2 ≤ g (e1))

}
.

Intuitively Deviation 1 represents Enemy placing some mass on allocations
which, relative to some T ei , always send less to one battle�eld, without increasing
the allocation to the other. Deviation 3 has him playing an �incorrect� mass
on some T ei . Deviation 2 represents Enemy placing mass on allocations which,
relative to any T ei always send less to one battle�eld, but increase the allocation
to the other.

We simultaneously, inductively prove that neither of the latter two deviations
is possible. Consider a generic T ei and De

i and a deviating Enemy strategy
µdE that forms an Nash equilibrium with any µB ∈ ΩB . Consider some i ∈
{1, 2, 3, ..., n− 1}. Assume that

∀j = 1, 2, . . . , i− 1, µdE(De
j ) = 0 and µdE(T ej ) =

wi−1
B

n−1∑
j=0

wjB

(A.11)

In other words, there has not �yet� been a Deviation 2 or Deviation 3.

45Again assume S ∩ T e = ∅
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Note that ∀e∗2 ∈
[
0, g

(
hn−i (E1)

)]
it cannot be the case that

((
hn−i (E1)

)
, e∗2
)

is a best response to µ∗B . Relative to any (e1, e2) ∈ T ei ,
((
hn−i (E1)

)
, e∗2
)
has

the same probability of winning on Battle�eld 1,46 but has a lower probability

of winning on Battle�eld 2.47 Now, suppose the mass over µdE(T ei ) < wi−1

n−1P
j=0

wj

.

Given equation A.11 and the fact that we've ruled out Deviation 1, when
Blotto plays

(
hn−i(E1), f

(
hn−i(E1)

))
,48 he wins Battle�eld 1 with probabil-

ity µdE (T e1 ∪ ... ∪ T ei ) <
Pi−1

j=0 w
jPn−1

j=0 w
j
but still wins Battle�eld 2 with probability

1 − µdE
(
T e1 ∪ ... ∪ T ei−1

)
=

Pn−i
j=i−1 w

jPn−1
j=0 w

j
for a total expected payo� strictly less

than
Pn

j=0 w
jPn−1

j=0 w
j
, which is Blotto's constant expected payo� in all equilibrium.

Similarly, if µdE (T ei ) > wi−1

n−1P
j=0

wj

then when Blotto plays
(
hn−i(E1), f

(
hn−i(E1)

))
,

he wins Battle�eld 1 with probability µdE (T e1 ∪ ... ∪ T ei ) >
Pi−1

j=0 w
jPn−1

j=0 w
j
but still wins

Battle�eld 2 with probability 1 − µdE
(
T e1 ∪ ... ∪ T ei−1

)
=

Pn−i
j=i−1 w

jPn−1
j=0 w

j
for a total

expected payo� strictly greater than
Pn

j=0 w
jPn−1

j=0 w
j
again a contradiction. Therefore,

µdE(T ei ) = wi−1

n−1P
j=0

wj

.

Now suppose µdE(De
i ) > 0. Now, when Blotto plays

(
f−1

(
pi−1 (E2)

)
, pi−1 (E2)

)
49

he expects to win on Battle�eld 1 with probability µdE (T e1 ∪ ... ∪ T ei ∪De
i ) >Pi−1

j=0 w
jPn−1

j=0 w
j
and expects to win on Battle�eld 2 with probability 1−µdE

(
T e1 ∪ ... ∪ T ei−1

)
=Pn−i

j=i−1 w
jPn−1

j=0 w
j
. Therefore his total expected payo� is greater than

Pn
j=0 w

jPn−1
j=0 w

j
, his con-

stant equilibrium payo�, another contradiction. Therefore, µdE(De
i ) must equal

zero.

As the above analysis holds for all i = 1, 2, . . . , n−1, simple induction shows

that the mass over all such T ei and De
i must equal wi−1

n−1P
j=0

wj

and 0, respectively.

46As Blotto never plays in b1 ∈ (f−1
b

`
gi−2 (E2)

´
, hn−i(E1)) and wins ties on Battle�eld 1

when he plays b1 =
`
hn−i (E1)

´
.

47As Blotto plays
`
hn−i−1(E1), f

`
hn−i−1(E1)

´´
with probability wn−i−1

2·
n−1P
j=0

wj

when playing

µ∗B and f
`
hn−i−1(E1)

´
= g

`
hn−i (E1)

´
by de�nition.

48Which he does with probability wn−i

2·
n−1P
j=0

wj

in strategy µ∗B

49Which he does with probability wn−i

2·
n−1P
j=0

wj

in strategy µ∗B(.)
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Figure B.11: Blotto Deviations in Region 3

The remaining mass of wn−1

n−1P
j=0

wj

must then be distributed over the only region left,

T en. Therefore, µdE satis�es property 1e. We've already discussed why it must
also satisfy 2e. Therefore, µdE ∈ ΩE , and there can be no enemy strategies which
are a part of some Nash equilibrium which do not satisfy our characterization.

We've ruled out any potential Enemy strategies that deviate from our char-
acterization of possible Nash Equilibrium Enemy strategies. As the logic is quite
similar, we rule out any potential Blotto deviations in our proof of Proposition
10 in a separate Appendix (Appendix Appendix B.) Therefore, the charac-
terization is complete. Therefore, the complete set of Nash equilibria to any
constant sum two battle�eld Blotto game is the set of all pairs of Blotto and
Enemy strategies satisfying our characterization.

Appendix B. Proof of Completeness of the Blotto Strategies

The proof that we've characterized the complete set of Blotto's equilibrium
strategies in the constant sum game proceeds much the same way as the proof
of completeness for Enemy's strategies. However, due to the open boundaries
of the T ei 's, the proof is slightly more complicated.

Proposition 10. In the constant sum game (w = wB = wE) any Blotto strategy
which is a part of some Nash Equilibrium satis�es properties 1b and 2b.

Proof. Suppose not. Then there exists at least one Blotto strategy which is
a part of some Nash Equilibrium that does not satisfy properties 1b and 2b.
Call such a strategy µdB We've already shown how a strategy that satis�ed
property 1b, but violated property 2b would give Enemy an allocation o�ering
a payo� higher than his constant equilibrium payo�. So, any uncharacterized
Blotto strategy which is part of some Nash equilibrium must violate property
1b. In general, there are two ways Blotto could violate this property: He could
sometimes play outside of T b, or his µB could allocate play inappropriately
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within T b. We break the former down into two separate deviations. The �rst
type of deviations we consider (Deviation 1) are where Blotto mixes over
allocations that send weakly less to both battle�elds than some non-deviating
allocation. Formally a strategy, µd1B , exhibits Deviation 1 if the following
conditions hold for some S :

µd1B (S) > 0 (B.1)

S ∩ T b = ∅ (B.2)

∀(b∗1, b∗2) ∈ S, ∃(b1, b2) ∈ T b s.t. b∗1 ≤ b1 and b∗2 ≤ b2 (B.3)

The second condition implies that one of the two inequalities in the third holds
strictly.

The next type of deviation we consider (Deviation 2) are the remaining
feasible allocations outside of T b. Speci�cally, these are the allocations that are
outside T b, and send strictly more to one battle�eld than any allocation inside
T b. Formally a strategy, µd2B , exhibits Deviation 2 if the following conditions
hold for some S:

µd2B (S) > 0 (B.4)

S ∩ T b = ∅ (B.5)

∀(b∗1, b∗2) ∈ S, (b1, b2) ∈ T b either b∗1 > b1 or b∗2 > b2 (B.6)

Consider the following triangles:

Db
i ≡ {(b1, b2) : (b1 > f−1

(
pi−1 (E2)

)
), (b2 > f

(
hn−i−1 (E1)

)
), (b2 ≤ f (b1))} ∀i = 0, 1, ..., n.

(B.7)
50 A strategy, µd2B , satisfying Deviation 2 must allocate some mass over at least
one of the Db

j 's as these are the only regions where conditions B.4-B.6 hold.
The last type of deviation we consider (Deviation 3) is simply where Blotto

plays inappropriate mass over one of his T bi . Formally, a strategy µd3B exhibits
Deviation 3 if the following condition holds for at least one of Blotto's T bi 's:

µd3B
(
T bi
)
6= wn−i

n−1∑
j=0

wj
.

Because of Lemma 8 (Equilibrium Interchangeability), any Blotto strategy
from any Nash equilibrium must form a Nash equilibrium with any Enemy strat-
egy from ΩE . Speci�cally, we consider the following sequence of Enemy strate-
gies: For any k = 1, 2, ... let µkE be the strategy where in each T ei Enemy plays
points

(
f−1

(
pi−2 (E2)

)
+ ε

k , g
(
f−1

(
pi−2 (E2)

)
+ ε

k

))
and

(
hn−i(E1)− ε

k , g
(
hn−i(E1)− ε

k

))
with probability wi−1

2·
n−1P
j=0

wj

. Clearly this implies Enemy plays nowhere else.51 Note

50Technically, for j = 0 the �rst inequality is weak, and for j = n the second is weak.

51As
Pn
i=1 2 · wi−1

B

2·
n−1P
j=0

w
j
B

= 1.
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that ε needs to be su�ciently small in order for µ1
E (and any other µkE) to satisfy

properties 1e and 2e. Assume that it is. Intuitively, this is a sequence of strate-
gies that has Enemy playing arbitrarily close to the �endpoints� in his T ei 's. In
other words, for any T ei we will be able to �nd some µkE where Enemy plays
arbitrarily close to the intersection of his resource constraint and the either of
other two bounds for T ei with strictly positive probability.

Now we are ready to start considering Blotto's potential deviations. De-
viation 1 has Blotto mix over allocations which send weakly less to both
battle�elds than than some allocation in some T bi . Since these deviating al-
locations are not themselves in T bi they must send strictly less to at least one
battle�eld. Consider a particular allocation (b∗1, b

∗
2) which satis�es Deviation

1 relative to T bi . Suppose it sends strictly less to Battle�eld 1, or b∗1 < hn−i(E1)
(and b∗2 ≤ f

(
hn−i (E1)

)
). Let δ = hn−i(E1) − b∗1. There exists some k∗ where

δ > ε
k∗ . Now, we know (b∗1, b

∗
2) cannot be a best response to µk

∗

E . Blotto could
play

(
hn−i(E1), f

(
hn−i(E1)

))
, but he plays (b∗1, b

∗
2) which strictly lowers his

probability of winning on Battle�eld 1 when Enemy plays µk
∗

E , and it does so
without increasing Blotto's probability of winning on Battle�eld 2. Therefore
(b∗1, b

∗
2) provides a strictly lower payo� and cannot be a best response. Sim-

ilar logic applies to (b∗1, b
∗
2) that send strictly less to Battle�eld 2 (or where

b∗1 ≤ f−1
(
pi−1 (E2)

)
and b∗2 < pi−1(E2)). Therefore, all allocations required

for Deviation 1 are not best responses to some µkE . Therefore, no equilibrium
Blotto strategy exhibits Deviation 1.

Intuitively Deviation 1 represents Blotto placing some mass on allocations
which, relative to some T bi , always send less to one battle�eld, without increasing
the allocation to the other. Deviation 2 represents Blotto placing mass on
allocations which, relative to any T bi , always send less to one battle�eld, but
increase the allocation to the other. Deviation 3 has him playing an �incorrect�
mass on some T bi .

Consider a deviating Blotto strategy µdB that forms an Nash equilibrium
with any µE ∈ ΩE . First o� realize that all allocations in Db

0 and Db
n are

not best responses to certain Nash equilibrium Enemy strategies. For instance,
take an allocation (b∗1, b

∗
2) ∈ Db

0. Blotto is increasing his Battle�eld 2 alloca-
tion while reducing his Battle�eld 1 allocation relative to T b1 . However, in T b1
Blotto was already guaranteeing victory on Battle�eld 2 so this cannot be pay-
o� improving. Clearly b∗1 < hn−1(E1). We can �nd some k∗ ∈ N such that
b∗1 < hn−1(E1)− ε

k∗ < hn−1(E1). As Enemy plays hn−1(E1)− ε
k∗ on Battle�eld

1 with positive probability in µk
∗

E , (b∗1, b
∗
2) must provide Blotto with a strictly

lower payo� than
(
hn−1(E1), f

(
hn−1(E1)

))
, which guarantees victory on Bat-

tle�eld 2. Therefore, µdB
(
Db

0

)
= 0. Similar logic implies that µdB

(
Db
n

)
= 0.

We now simultaneously, inductively prove that neither Deviations 2 or
3 are possible in a Nash equilibrium. Consider some i ∈ {1, 2, 3, ..., n− 1} .
Assume that

∀j = 1, 2, . . . , i− 1, µdB(T bj ) = µdB(Db
j) = 0 and

wn−j

n−1∑
l=0

wl
(B.8)
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In other words, there has not �yet� been a Deviation 2 or Deviation 3.

Consider possible versions of Deviation 3. First suppose, µdB
(
T bi
)
>

wn−i

n−1P
j=0

wj

. Given equation B.8 and the fact that we've already ruled out Devi-

ation 1, when Enemy plays in T ei his probability of winning on Battle�eld 1

is µdB
(
T b1 ∪ ... ∪ T bi−1

)
=

Pn−1
j=n−(i−1) w

jPn−1
j=0 w

j
. However, his probability of winning on

Battle�eld 2 is 1− µdB(T b1 ∪ ... ∪ T bi ) <
Pn−i−1

j=0 wjPn−1
j=0 w

j
. Therefore, Enemy's total ex-

pected payo� is then strictly less than
Pn−1

j=1 w
jPn−1

j=0 w
j
which is his constant equilibrium

payo�, a contradiction.

Second, suppose µdB
(
T bi
)
< wn−i

n−1P
j=0

wj

. The only way Blotto plays a Battle�eld

2 allocation weakly greater than pi−1(E2) is if he plays in one of T b1 , ..., T
b
i .

Therefore the probability that Blotto plays a Battle�eld 2 allocation strictly

less than pi−1(E2) is 1− µdB(T b1 ∪ ... ∪ T bi ) >
Pn−i−1

j=0 wjPn−1
j=0 w

j
. Therefore, we can �nd

some δ > 0 such that the probability that Blotto plays a Battle�eld 2 alloca-

tion strictly less than pi−1(E2) − δ is also greater than
Pn−i−1

j=0 wjPn−1
j=0 w

j
. For k∗ ∈ N

large enough g
(
f−1

(
pi−2 (E2)

)
+ ε

k∗

)
> pi−1(E2) − δ. Enemy could therefore

play
(
f−1

(
pi−2 (E2)

)
+ ε

k∗ , g
(
f−1

(
pi−2 (E2)

)
+ ε

k∗

))
∈ T ei and his probability

of winning on Battle�eld 1 would be µB(T b1∪...∪T bi−1) =
Pn−1

j=n−(i−1) w
jPn−1

j=0 w
j

, while his

probability of winning on Battle�eld 2 would be greater than
Pn−i−1

j=0 wjPn−1
j=0 w

j
. There-

fore his expected payo� would be greater than
Pn−1

j=1 w
jPn−1

j=0 w
j
, his constant equilibrium

payo�, a contradiction. Therefore, µdB
(
T bi
)

= wn−i

n−1P
j=0

wj

.

Now consider a possible Deviation 2. Speci�cally, µdB
(
Db
i

)
> 0. Note that

all Battle�eld 2 allocations in Db
i are strictly greater than f

(
hn−i−1 (E1)

)
.

De�ne Si (δ) =
{

(b1, b2) : (b1, b2) ∈ Db
i and b2 ≥ f

(
hn−i−1 (E1)

)
+ δ
}
. We are

then assured that ∃δ > 0 su�ciently small that µdB (Si (δ)) > 0. Then we are also
assured then that ∃k∗ ∈ N such that f

(
hn−i−1 (E1)

)
+ δ > g

(
hn−i(E1)− ε

k∗

)
.

Note that Enemy plays
(
hn−i(E1)− ε

k , g
(
hn−i(E1)− ε

k

))
in µk

∗

E .When he does

so the probability that he wins on Battle�eld 1 is µB(T b1∪...∪T bi−1) =
Pn−1

j=n−(i−1) w
jPn−1

j=0 w
j

,

but the probability he wins on Battle�eld 2 is 1− µB(T b1 ∪ ... ∪ T bi−1 ∪ Si(δ)) <Pn−i−1
j=0 wjPn−1

j=0 w
j
. Therefore his expected payo� is strictly less than

Pn−1
j=1 w

jPn−1
j=0 w

j
, his con-

stant equilibrium payo�, a contradiction. Therefore, µdB does not violate Prop-
erty 1b. Since we've already shown it can't violate property 2b, it is the case
that µdB ∈ ΩB .
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Appendix C. Constant Payo�s and Equilibrium Interchangeability

Consider a two-player constant-sum game where Player 1 chooses a strategy
x ∈ X and Player 2 chooses a strategy y ∈ Y . Let f i(x, y) denote the expected
payo�s to Player i when Player 1 plays x and Player 2 plays y. This game
then satis�es the Constant payo�s property if in every equilibrium {xj , yj},
f i(xj , yj) = ci for all i = 1, 2. Let Ωi denote the set of player i strategies that
are a part of some equilibrium. Lemma 8, Equilibrium Interchangeability, can
then be stated as follows:

For all x∗ ∈ Ω1 and all y∗ ∈ Ω2, (x∗, y∗) constitutes a Nash Equilibrium.
Proof: Suppose not. Then ∃x∗ ∈ Ω1, and y∗ ∈ Ω2, such that (x∗, y∗)

does not constitute an equilibrium. Therefore, at least one player must not
be playing a best response. Without loss of generality assume it is player 1.
There must exist an alternate x′ ∈ X such that f1(x′, y∗) > f1(x∗, y∗). As
there exists an equilibrium where Player 2 plays y∗ and Player 1 expects payo�
c1, f

1(x′, y∗) ≤ c1. Therefore f1(x∗, y∗) < c1. As this game is constant-sum
this means f2(x∗, y∗) > c2. This means Player 2 has a strategy available that
when played against x∗ provides a payo� greater than their constant equilibrium
payo�. Therefore x∗ /∈ Ω1. This is a contradiction, and therefore Lemma 8 is
true.


