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Direct reciprocity is a mechanism for sustaining mutual cooperation in repeated social dilemma games,
where a player would keep cooperation to avoid being retaliated by a co-player in the future. So-
called zero-determinant (ZD) strategies enable a player to unilaterally set a linear relationship between
the player’s own payoff and the co-player’s payoff regardless of the strategy of the co-player. In the
present study, we analytically study zero-determinant strategies in finitely repeated (two-person) pris-
oner’s dilemma games with a general payoff matrix. Our results are as follows. First, we present the
forms of solutions that extend the known results for infinitely repeated games (with a discount factor
w of unity) to the case of finitely repeated games (0 <w < 1). Second, for the three most prominent ZD
strategies, the equalizers, extortioners, and generous strategies, we derive the threshold value of w above
which the ZD strategies exist. Third, we show that the only strategies that enforce a linear relationship
between the two players’ payoffs are either the ZD strategies or unconditional strategies, where the lat-
ter independently cooperates with a fixed probability in each round of the game, proving a conjecture

previously made for infinitely repeated games.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The prisoner’s dilemma game models situations in which two
individuals are involved in a social dilemma and each individual
selects either cooperation (C) and defection (D) in the simplest set-
ting. Although an individual obtains a larger payoff by selecting D
regardless of the choice of the other individual, mutual defection,
which is the unique Nash equilibrium of the game, yields a smaller
benefit to both players than mutual cooperation does. We now
know various mechanisms that enable mutual cooperation in the
prisoner’s dilemma game and other social dilemma games (Nowak,
2006; Rand and Nowak, 2013; Sigmund, 2010), which inform us
how cooperation is probably sustained in society of humans and
animals and how to design cooperative organisations and society.

One of the mechanisms enabling mutual cooperation in social
dilemma games is direct reciprocity, i.e., repeated interaction, in
which the same two individuals play the game multiple times.
An individual that defects would be retaliated by the co-player
in the succeeding rounds. Therefore, the rational decision for
both players in the repeated prisoner’s dilemma game is to keep
mutual cooperation if the number of iteration is sufficiently large
(Axelrod, 1984; Nowak, 2006; Trivers, 1971). Generous tit-for-tat
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(Nowak and Sigmund, 1992) and win-stay lose-shift (often called
Pavlov) (Kraines and Kraines, 1993; Nowak and Sigmund, 1993)
strategies are strong competitors in evolutionary dynamics of the
repeated prisoner’s dilemma game under noise, and a population
composed of them realizes a high level of mutual cooperation.

In 2012, when the study of direct reciprocity seemed to be
matured, Press and Dyson proposed a novel class of strategies
in the repeated prisoner’s dilemma game, called zero-determinant
(ZD) strategies (Press and Dyson, 2012). ZD strategies impose a
linear relationship between the payoff obtained by a focal indi-
vidual and its co-player regardless of the strategy that the co-
player implements. A special case of the ZD strategies is the equal-
izer, with which the focal individual unilaterally determines the
payoff that the co-player gains regardless of what the co-player
does, within a permitted range of the co-player’s payoff value (see
Boerlijst et al., 1997 and Sigmund, 2010 for the previous accounts
for this strategy). As a different special case, the focal individual
can set an “extortionate” share of the payoff that the individual
gains as compared to the co-player’s payoff. The advent of the ZD
strategies has spurred new lines of investigations of direct reci-
procity. They include the examination and extension of ZD strate-
gies such as their evolution (Adami and Hintze, 2013; Akin, 2017;
Chen and Zinger, 2014; Hilbe et al., 2013a; 2013b; 2015b; Liu et al.,
2015; Stewart and Plotkin, 2012; Szolnoki and Perc, 2014a; 2014b;
Wu and Rong, 2014; Xu et al, 2017), multiplayer games (Hilbe
et al., 2014b; 2015b; Milinski et al., 2016; Pan et al., 2015; Stewart
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et al,, 2016), continuous action spaces (McAvoy and Hauert, 2016;
2017; Milinski et al., 2016; Stewart et al., 2016), alternating games
(McAvoy and Hauert, 2017), human reactions to computerized ZD
strategies (Hilbe et al., 2014a; Wang et al., 2016), and human-
human experiments (Hilbe et al., 2016; Milinski et al., 2016).

Most of the aforementioned mathematical and computational
studies of the ZD strategies have been conducted under the as-
sumption of infinitely repeated games. While mathematically more
elegant and advantageous, finitely repeated games are more real-
istic than infinitely repeated games and comply with experimental
studies. In the present study, we examine the ZD strategies in the
finitely repeated prisoner’s dilemma game. There are a few studies
that have investigated ZD strategies in finitely repeated games.
Hilbe and colleagues defined and mathematically characterized ZD
strategies in finitely repeated games (Hilbe et al., 2015a) (also see
Hilbe et al, 2014a). McAvoy and Hauert analyzed ZD strategies
in the finitely repeated donation game (i.e., a special case of
the prisoner’s dilemma game) in a continuous strategy space
(McAvoy and Hauert, 2016; 2017). Given these studies, our main
contributions in the present article are summarized as follows.
First, we derive expressions for ZD strategies in finitely repeated
games that are straightforward extensions of those previously
found for the infinitely repeated game. Second, for the three most
studied ZD strategies, we derive the threshold discount factor
(i.e., how likely the next round of the game occurs in the finitely
repeated game) above which the ZD strategy can exist. Third,
we prove that imposing a linear relationship between the two
individuals’ payoffs implies that the focal player takes either the
ZD strategy defined for finitely repeated games (Hilbe et al., 2015a)
or an unconditional strategy (e.g., unconditional cooperation and
unconditional defection), proving the conjecture in Hilbe et al.
(2013b) in the case of finitely repeated games.

2. Preliminaries

In this section, we explain the finitely repeated prisoner’s
dilemma game, the strategies of interest (i.e., memory-one strate-
gies), and the expected payoffs. More thorough discussion of them
is found in Nowak et al. (1995), Sigmund (2010) and Hilbe et al.
(2015a).

We consider the symmetric two-person prisoner’s dilemma
game whose payoff matrix is given by

C D

C(R S
D(T P)' M

The entries represent the payoffs that the focal player, denoted by

X, gains in a single round of a repeated game. Each row and col-
umn represents the action of the focal player, X, and the co-player
(denoted by Y), respectively. We assume that

T>R>P>S, (2)

which dictates the prisoner’s dilemma game. Both players obtain
a larger payoff by selecting D than C because T>R and P>S. We
also assume that

2R>T+S, (3)

which guarantees that mutual cooperation is more beneficial than
the two players alternating C and D in the opposite phase, i.e., CD,
DC, CD, DG, ..., where the first and second letter represent the
actions selected by X and Y, respectively (Axelrod, 1984; Rapoport
and Chammah, 1965). The two players repeat the game whose
payoff matrix in each round is given by Eq. (1). A next round
given the current round takes place with probability w (0 <w < 1),
which is called the discount factor.

Consider two players X and Y that adopt memory-one strate-
gies, with which they use only the outcome of the last round
to decide the action to be submitted in the current round. A
memory-one strategy is specified by a 5-tuple; X’s strategy is
given by a combination of

P = (Pcc. Pep- Poc: Pob) (4)

and po, where 0<pcc, Pcp, Ppc, Pops Po < 1. In Eq. (4), pcc is the
conditional probability that X cooperates when both X and Y co-
operated in the last round, pcp is the conditional probability that
X cooperates when X cooperated and Y defected in the last round,
Ppc is the conditional probability that X cooperates when X de-
fected and Y cooperated in the last round, and ppp is the condi-
tional probability that X cooperates when both X and Y defected in
the last round. Finally, pg is the probability that X cooperates in the
first round. Similarly, Y's strategy is specified by a combination of

q = (qcc. 9ep- Goe. 9op) (5)

and the probability to cooperate in the first round, qo, where
0 =<qcc, qep, doc: dop, do < 1.

We refer to the first round of the repeated game as round 0.
Because both players have been assumed to use a memory-one
strategy, the stochastic state of the two players in round t (t>0)
is specified by

v(t) = (Vee(t), vep(t), vpe(t), vpp (1)), (6)

where vcc(t) is the probability that both players cooperate in round
t, vep(t) is the probability that X cooperates and Y defects in round
t, and so forth. The normalization is given by vcc(t) + vep(t) +
vpc(t) +vpp(t) =1 (t =0,1,...). The initial condition is given by

v(0) = (Poqo. Po(1 — qo). (1 — po)qo. (1 — po) (1 — qo)). (7)

Because the expected payoff to player X in round t is given by
v(t)Sy, where

Sx = (R, S5, T,P), (8)

the expected per-round payoff to player X in the repeated game is
given by

Tx = (1-w) ) wo(t)sy. (9)
=0

The transition-probability matrix for v(t) is given by

Pecqee Pec(1 —qec) (1= pec)qee (1= pec) (1 = qec)
pepgdoe Pep (1 —=gpc) (1= pep)goe (1 — pep) (1 —gpc)
Pocqdep Poc(1 —gep) (1 —poc)dep (1 — ppc)(1 —qep)
Popgop Poo(1 —gpp) (1 — ppp)gop (1 — ppp) (1 — qpp)

(10)
By substituting
v(t) = v(0)M! (11)
in Eq. (9), one obtains
¢ = (1 w)(0) Y (WS
= —w)v(O)(tI_O— wM)~1Sy, (12)

where [ is the 4 x4 identity matrix. Similarly, the expected
per-round payoff to player Y is given by
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7y = (1 = w)v(0)(I — wM)~'S/, (13)
where

Sy =(R.T,S,P). (14)
3. Results

We search player X’s strategies that impose a linear relationship
between the two players’ payoffs, i.e.,

amy + By +y =0. (15)

When o #0, we set x = —f/a and k = —y/(a + ) to transform
Eq. (15) to

mx — Kk = X (7Ty — k). (16)
3.1. Equalizer

3.1.1. Expression

By definition, the equalizer unilaterally sets the co-player’s
payoff, my, to a constant value irrespectively of the co-player’s
strategy (Boerlijst et al., 1997; Press and Dyson, 2012; Sigmund,
2010). To derive an expression for the equalizer strategies in the
finitely repeated game, we proceed along the following idea: If
a strategy p ensures that the payoffs of the two players are on
a horizontal line in the my — my space, irrespective of the co-
player’s strategy, then the payoffs must be on that horizontal line
if the co-player uses unconditional cooperation or unconditional
defection. Substituting the co-player’s unconditional coopera-
tion and unconditional defection into the payoff formulas gives
necessary conditions imposed on X's strategy. A straightforward
computation then shows that these necessary conditions are in
fact often sufficient; even if the co-player uses strategies that are
not unconditional cooperation or defection, the two payoffs lie on
the same line. We will use the same idea in Section 3.2 as well.

Because the equalizer is equivalent to o =0 in Eq. (15) and
hence not covered by Eq. (16), we start by rewriting Eq. (13) as
follows:

my = (1 —w)v(0)u

= (1 =w)(Poqo. Po(1 —qo). (1 — Po)qo, (1 — Po)(1 —qo))

X . (17)

=(1-w) [Po%uiq + po(1 — qo)u3’
+(1 = po)gous? + (1 = po) (1 — go)ug’|

where

utl = = (- wM)'S]. (18)

We denote u®® when Y's strategy is q = (0,0,0,0) by ued 0000,
Note that u¢% 0000 js independent of the probability that Y co-
operates in the initial round, i.e., qo. We denote by my gooo the
payoff of Y when q = (0,0, 0, 0). Similarly, we denote u®4 when
Y's strategy is ¢ = (1,1,1,1) by u®® "1 and by 7y 11 the payoff
of Y when q=(1,1,1,1). The expressions of u°® %000 sy 5540,
ud M and 7y g1y are given in Appendix A. If X applies an
equalizer strategy, 7y gooo = 7Ty,1111 must hold true regardless of
go- Therefore, we obtain

(1 = W)[Poqots®®® + po(1 — go)us*®® 4 (1 — pg)gous®®*®
+(1 = po) (1 — go)u® ]
= (1= w)[poqots§* ™" + po (1 — go)us® ™™
+(1 = Po)gous™ ™ + (1 = po) (1 — qo)ug™ ™, (19)
which leads to
ol po (uiq,oooo _ u?q'm]) ~ o (u;q,oooo _ u;q,nu)
+(1 - po)(ugq,oooo _ ugq.llll) (- po)(uiq.oooo _ uiq,]l]l)]
[ pou§+00% — 5o
+(1 = po) (uE*09%0 _yealy] — o (20)

Eq. (20) must hold true for arbitrary 0<gqy<1. Therefore, we
obtain

po(uiq.OOOO _ u?q.llll) + (l _ po)(ugq,OOOO _ u;q,]l]l) _ 07 (21)

po(u;q,OOOO _ ugq.llll) + («1 _ po)(uiq,oooo _ uiq,]]]l) - 0. (22)

Combination of Eqs. (18), (21), and (22) leads to the following
necessary conditions:

pec(T —P) — (& + ppp)(T —R)

o = P (23)
(& = pcc)(P—S) + ppp(R-S)
Ppc = R_P ) (24)

and pcc, Ppp, and pg are arbitrary under the constraint O < pcc, Pcp,
Ppc, Pops Po < 1. Egs. (23) and (24) extend the results previously
obtained for w =1 (Press and Dyson, 2012).

Surprisingly, Eqs. (23) and (24) are also sufficient for p to be an
equalizer strategy. In other words, if a strategy of player X satisfies
Eqgs. (23) and (24), then every co-player Y’s strategy, not restricted
to unconditional cooperation or unconditional defection, yields the
same payoff of Y. To verify this, we substitute

B < pec(T — P) — (3 + poo) (T —R)
p Pcc, )

- R-P
(3 = pcc)(P=S) + pop(R—S) )
,» Dpbp

R_p (25)
and q = (qcc. 9ep- 9oc- 9op) in Eq. (18) to obtain
B 1
~ (1-w)(1 —wpcc +Wppp)
w(1 — pcc)P+ (1 —w+wppp)R
w(1 — pcc)P+ (1 —w+wppp)R
(1 —wpcc)P +wpppR ’
(1 —wpcc)P + wpppR

which does not contain q. By substituting Eq. (26) in Eq. (17), we

obtain

_ (1= po+wpo —wpcc)P + (po — Wpo + Wppp)R
1 —wpcc +wppp ’

which is independent of q and q,. Therefore, the set of the equal-

izer strategies is given by Eq. (25), where 0 <pcc, Pcps Pbcs Pop < 1,

combined with any 0 <pg < 1.

It should be noted that an equalizer does not require any
condition on pg. However, Eq. (27) indicates that the payoff
that an equalizer enforces on the co-player, my, depends on
the value of py. Because Eq. (27) is a weighted average of P
and R with non-negative weights, an equalizer can impose any
payoff value my such that P<my<R. If P is enforced, it holds
that pg — wpo+wppp =0, and hence ppp = po =0. Therefore,
the equalizer is a cautious strategy (i.e., never the first to co-
operate) (Hilbe et al., 2015a). If R is enforced, it holds that

u®

(26)

Tty (27)
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»Pcc

0 / 1

Fig. 1. Region in the pcc-ppp space where the equalizer strategy exists (shaded re-
gion). The border line of the half plane specified by Eqs. (30) and (31) are shown
by the solid and dashed lines, respectively. We set R=3, T=5, S=0, P=1, and
w=0.8.

1—-pog+wpg—wpcc=0, and hence pcc=pg=1. Therefore,
the equalizer is a nice strategy (i.e., never the first to detect)
(Hilbe et al., 2015a). We remark that the equalizer is a ZD strategy
for finitely repeated games as defined in Hilbe et al. (2015a) be-
cause it satisfies Eq. (31) of Hilbe et al. (2015a) with o = 0.

3.1.2. Minimum discount rate

In this section, we identify the condition for w under which
equalizer strategies exist. Eq. (25) indicates that an equalizer
strategy exists if and only if

0= pec(T~P)~ (4 +poo) (T~ R) <R~ P (28)
and

1
0= (4~ Pec)(P=5)+ pon(R—5) <R—P (29)

for some O <pcc, ppp < 1. Note that we used Eq. (2). Independently
of w, any pair of pcc and ppp satisfies the second inequality of
Eq. (28) and the first inequality of Eq. (29) because they are satis-
fied in the most stringent case, i.e., pcc = 1 and ppp = 0. The first
inequality of Eq. (28) and the second inequality of Eq. (29) read

T-P 1
Pop = T_RPcc— w (30)
and

P-S 1P-S R-P
Ppp = mpcc—wm*'m, (31)

respectively. Eqgs. (30) and (31) specify a pcc — ppp region in
the square 0<pcc, ppp <1, near the corner (pcc, ppp) = (1,0)
(shaded region in Fig. 1). The feasible set (pcc, ppp) monotonically
enlarges as w increases. Therefore, we obtain the condition under
which an equalizer exists by substituting pcc =1 and ppp =0 in
Egs. (30) and (31), i.e.,
T-R P-S

T—P ﬁ)'
When w = wc, the unique equalizer strategy is given by pcc =1,
ppp =0, and either pcp or ppc is equal to zero, depending on
whether (T —R)/(T —P) is larger than (P—-S)/(R—S) or vice
versa. The condition w > (T —R)/(T — P) in Eq. (32) coincides with

wzwczmax< (32)

that for the GRIM or tit-for-tat strategy to be stable against the
unconditional defector (Axelrod, 1984).

Eq. (32) is consistent with the result for the continuous dona-
tion game (McAvoy and Hauert, 2016). Their result adapted to the
case of two discrete levels of cooperation is w. = ¢/b, where b and
c are the usual benefit and cost parameters in the donation game,
respectively. We verify that Eq. (32) with R=b—-c, T=b, S= —c,
and P = 0 yields w¢ = c/b.

3.2. General cases

All strategies but the equalizer in which a linear relationship
is imposed between mx and my are given in the form of Eq. (16).
In this section, we derive expressions of X’s strategy that realizes
Eq. (16).

By substituting Eqs. (12) and (13) in Eq. (16), we obtain
(1 =w)r)(I —wM)71S; —k

= x[(A=ww @) U -wM)~'sy —«]. (33)
Eq. (33) yields

vO) {1 —w)(I—wM)'[Sg — xSy |+ (x — D1} =0,  (34)

where
1
1
1=, | (35)
1
We set
uzd
d uz! 1[eT T
usd — it = (1-w)(I —wM)"'[Sg — xSy | + (x — D«1.
uzd
(36)
Then, Eq. (34) is rewritten as
v(0)u?d =0, (37)
which is equivalent to
qo[ Poui — pous® + (1 — po)us* — (1 — po)uy’]

+ [potz® + (1 - po)uz’] = 0. (38)
Because Eq. (38) must hold true irrespectively of gy, we require
pot3® + (1 = po)uj® = 0. (39)
pous® + (1 — po)uf® = 0. (40)

Let us denote by u?d0000 3pd yzd 111 the vector u when
q=(0,0,0,0) and q=(1,1,1,1), respectively. The expressions
of 1740000 3nq zd. 1111 3re given in Appendix B. By substituting
uzd. 0000 5pd g2d. 111 i Eqs. (39) and (40), we obtain the four
necessary conditions, Eqs. (91)-(94), given in Appendix B.

If we assume k-S+x(T—-«)#0, we can
Eq. (92) as

rewrite

Ppp
(A =w)po[(x — 1P +S— xT]+ (1 —wpep)(x —1)(k —P)
a W[k =S+ x (T —«)] '

(41)

If we assume T —k + x (k —S) # 0, we can rewrite Eq. (93) as
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— (1 =wW)po[(x =1DR+T — xS]+T — xS+ (1 +wppc)(x — 1)k —wppc(x — DR

WI[T —k + x(k —5)] (42)

Pcc =

We will deal with the case k =S+ x (T —«x)=0or T —x + x(k —S) = 0 later in this section.
By substituting Eqs. (41) and (42) in Eq. (91), we obtain an equation containing pcp, Ppc, Po, &, and x as unknowns. This equation can
be factorized. By equating each of the two factors with 0, we obtain two types of solutions. The one type of solution is given by

(A =w)po[(x —DR+S— xT]— (1 —=wpep)(x — DR+ xT —S—wpep(x — Dk
wik =S+ x(T —«)]

Dcp
p= — (1 =w)po(x + (T =) + (1 ~wpep)[ (X — Dk + T~ x5] : (43)
Wik =S+ x (T —«)]

(A =w)po[(x = DP+S— xT]+ (1 —wpep)(x — 1Dk - P)
wlk =S+ x(T —«)]

Eq. (43) also satisfies Eq. (94). To verify that Eq. (43) is sufficient, we substitute Eq. (43) in Eq. (36) to obtain

1-po
1-w)[S — Dk —xTl 1
yzd — (L=WIS+ O — Dk — xT] 17 Po | (44)
1-wpep — (1 -w)po Po
—Po

which does not contain q. Using Eqgs. (7) and (44), we verify Eq. (37). Therefore, Eq. (43) is a set of strategies that impose the linear
relationship between the payoff of the two players, i.e., Eq. (16).

The strategies given by Eq. (43) are ZD strategies for w<1 as defined in Hilbe et al. (2015a), which is verified as follows. Assume
that o #0 in Eq. (31) of Hilbe et al. (2015a) because « = 0 corresponds to the equalizer. Then, let us substitute o = ¢, 8 = —¢x, and
y =@ (x — 1)k in Eq. (31) of Hilbe et al. (2015a) without loss of generality. Note that this transformation is a bijection because (i) ¢ >0
and (ii) either y >1 or x <0 is required (in the notation of Hilbe et al. (2015a), ¢ >0 and x <1 because their x is defined as the
reciprocal of our yx ). Then, we obtain

T-¢(x —1DR-«) - (1-w)po

1+¢[(x — Dk —xT+S]— (1 -w)po
wp = , (45)
Ol(x —Dx+T = xS - (1 =w)po

¢(x =D —P)— (1 -w)po
which is equivalent to Eq. (33) of Hilbe et al. (2015a). Eq. (45) combined with
6= 1—wpep — po(1 —w)
Tk =S+ x(T-x)

is equivalent to Eq. (43). It should also be noted that Eq. (45) extends Eq. (9) of Chen and Zinger (2014), which has been obtained for
w =1, to general w, R, and P values.
The other type of solution that we obtain by substituting Eqs. (41) and (42) in Eq. (91) is given by

(46)

PolT—R+ x(R=S)]=T -k + x(k =5). (47)
Substitution of Eqs. (41) and (42) in Eq. (94) yields either Eq. (43) or

po[P =S+ x (T =P)] = (x - D(k = P). (48)
The combination of Eqs. (47) and (48) is equivalent to that of

K = PgR+ po(1 — po)(T +S) + (1 — po)*P (49)
and

(1 —po)(T —P) + po(R —5)
X =- . (50)
(1= po)(P=S) + po(T - R)
However, Eqs. (41), (42), (49), and (50) do not provide a sufficient condition for Eq. (37) to hold true for arbitrary q and qq. Therefore, we
additionally consider the vector u?d when q = (1,0,0,0) and q = (0,0, 0, 1), which we denote by u?d 1000 apd yzd. 0001 " respectively. The
calculations shown in Appendix C lead to

Po=DPcc =Pcp =Poc =Pop (0 <pg<1). (51)
To verify that the unconditional strategies given by Eq. (51) are a sufficient condition for Eq. (16) to hold true for arbitrary q and qq,

we substitute Eqgs. (49)-(51) in Eq. (36) to obtain

d T=w)(T-9)

W = A ) P+S+po(R—S—T)
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—(1 = po)[—(1 = po)P + (1 + po)R — po(T +5)]

~(1=po)[-(2 = po)P+T +S+ po(R-S—T)]
Po[—(1 = po)P + (1 4+ po)R — po(T + 5)] '
Po[—(2 —po)P+T +S+po(R-S—-T)]

which does not contain q. Using Eqs. (7) and (52), we verify Eq. (37). The unconditional strategy given by Eq. (51) is not a ZD strategy in
the sense of Hilbe et al. (2015a) unless R+ P =T + S (Appendix D), which is the same condition as that for the infinitely repeated game
(Hilbe et al., 2013b).

The obtained solution, i.e., Eq. (51) combined with Egs. (49) and (50), is equivalent to the previously derived solution for w=1
(Hilbe et al., 2013b). This set of solutions contains the unconditional cooperator and unconditional defector as special cases, and always
realizes y <0 (Eq. (50)).

When ¥« =S+ x(T—k)=0 or T—k + x(k —S) =0, the calculations shown in Appendix E and Appendix F reveal the following
three types of solutions: (i) a subset of the ZD strategies given by Eq. (43) (Appendix F.2), (ii) a subset of the strategies given by
Eq. (51) (Appendices E.1, E.2 and F.2), and (iii) the set of strategies given by

B 1 WPec(x+ Dk —T) —wIR— (x + DT + xk]— (k —R) wpee(k —P) ~w(R—P) — (k —R) _1
P=|pec © w(x —R) ’ w(x —R) o=

(52)

(53)

where 0 <pcc <1 and k #R (Appendix E.2). Although Eq. (53) is a sufficient condition and the resulting solutions are distinct from those
given by Eq. (43), in fact Eq. (53) yields x <0 (Appendix E.2).

To summarize, the set of X’s strategies that enforce Eq. (16) is the union of the strategies given by the ZD strategies, Eq. (43), and the
non-ZD unconditional strategies, Eq. (51). In the next sections, we examine two special cases, which have been studied in the literature,
and derive wc in each case.

3.3. Extortioner

3.3.1. Expression
The extortioner is defined as a strategy that enforces an extortionate share of payoffs larger than P (Press and Dyson, 2012). We obtain
the extortioner by setting k = P in Eq. (16). By setting x = P in Eq. (43), we obtain
(1 =w)po[(x —DR+S5— xT]— (1 —wpep)(x — DR+ xT =S —wpep(x — 1P
W[P-S+ x(T - P)]

DPcp
p= — (1= W)po(x + DT =) + (1 = wpep)[(x — DP+T = x5 4
W[P-S+ x(T - P)]
(I =w)po
w
Because ppp = —(1 —w)pg/w >0 and w <1, we obtain pg =0 and ppp = 0, which is consistent with the previously obtained result

(Hilbe et al., 2015a). Therefore, the extortioner is never the first to cooperate and hence a so-called cautious strategy (Hilbe et al., 2015a).
By setting po = 0 in Eq. (54), we obtain
—wpep (X — P — (1 =wpep) (X — DR-S+ xT
W[P - S+ x (T — P)]
DPcp
(1 —wpep)[(x —DP+T — 5]
W[P —S+ x (T — P)]
0

3.3.2. Minimum discount rate
By setting k = P and py = 0 in Eq. (45), we obtain

1-¢(x —1)(R-P)

1+¢[(x —1)P— xT +5]
wp = : (56)
dl(x —DP+T - xS]

0

Because pcc <1 and w <1, Eq. (56) implies that ¢(x — 1) > 0 must hold true. We consider the case ¢ >0 and x >1 in this section. We
can exclude the case ¢ <0 and x <1 because a strategy with x <O is not considered as an extortionate strategy (Chen and Zinger, 2014;
Hilbe et al., 2013a; 2013b; 2015a; McAvoy and Hauert, 2016; 2017; Pan et al., 2015; Press and Dyson, 2012; Stewart and Plotkin, 2013; Xu
et al,, 2017) and x <1 implies y <0 (Appendix G.1).
When ¢ > 0, the application of 0 <pcc, pcp, Poc <1 to Eq. (56) yields
R-P R-P
(X _11)13,5 < 1 < (X _])‘lp,s

w

: (57)

<

1
w
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1 I-p 1 I-p
Hf”fls fXP’S, (58)
¥ ¢~ L-1
T - 1
X*Pp—s=¢ 59
The condition under which a positive ¢ value that satisfies Eqs. (57)-(59) exists is given by
Y P =
(X . )p,s < - X P=s ’ (60)
w w
T+x4¢  (x—-D5%
1 - 1_ ’ (61)
w w
T-P _ (x—-1)5=%
Xt ps="11 - (62)
w
T-P 1+ )=
X+ P-S— 1_7 (63)
w
Eq. (60) is always satisfied. Eqs. (61)-(63) yield
X[w(T -P)—(T—-R)]>R-S—w(P-2S5), (64)
X[W(T-S)—(P-5)]>T-P-—w(T -5), (65)
X[WR—-S)—(P—-S)]>T—-P—-w(T -R), (66)

respectively.

The left-hand side of Eq. (65) is always larger than that of Eq. (66), and the right-hand side of Eq. (65) is always smaller than that of
Eq. (66). Therefore, Eq. (65) is satisfied if Eq. (66) is satisfied. The right-hand sides of Eqs. (64) and (66) are positive. Therefore, w(T — P) —
(T—R)>0and w(T —S) — (P-S) > 0 are required for x to be positive. On the other hand, if w(T —P) — (T —R) > 0 and w(T —S) — (P —
S) > 0, Eqgs. (64) and (66) guarantee that x >1 and that a x(> 1) value exists. Therefore, an extortioner with y > 1 exists if and only if
w > wc, where the w, value coincides with that for the equalizer; it is given by Eq. (32). Under w > wc, Eqs. (64) and (66) imply

> Xc(W) = max R-S-wP-S) T-P-w(T-R)
X = Xe(w) = w(T—P)—(T-R)’w(R-5)—(P-5) )

(67)

Eq. (67) gives the range of x values for which the extortioner strategy exists. The conditions for the existence of an extortionate
strategy are easier to satisfy for large w in the sense that x.(w) monotonically decreases as w increases. In particular, we obtain
limy_, w10 Xc(W) = 0o and limy,_.q xc(W) = 1.

For a given y value, the substitution of R=b—c, T=b, S= —c, and P =0 in Eq. (32) yields

_Xc+b

T xbtc (68)

C

which is consistent with Eq. (7) of McAvoy and Hauert (2016).

3.4. Generous strategy

3.4.1. Expression

The generous strategy, also called compliers, is defined as a strategy that yields a larger shortfall from the mutual cooperation payoff
R for the player as compared to that for the co-player (Hilbe et al., 2013b; Stewart and Plotkin, 2012; 2013). We obtain the generous
strategy by setting x = R in Eq. (16). By setting ¥ = R in Eq. (43), we obtain

1-po(1-w)
w
DPcp
P=| — (A —wpo(x + (T =S)+ (1 —wpe)[(x — DR+T - x8] | (69)
WIR—-S+ x(T —R)]
(1 —w)pol(x - DP+S — xT]+ (1 —wpep)(x — (R - P)

WR=S+ x (T —R)]

Because pcc =[1 - (1 —w)pgl/w <1, we obtain pg =1 and pcc = 1, which is consistent with the previously obtained result (Hilbe et al.,
2015a). Therefore, the generous strategy is never the first to detect and hence a so-called nice strategy (Axelrod, 1984; Hilbe et al., 2015a).
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gz=(1'W)g1

: > g,
0
7Eiﬁil 55-1 1

Fig. 2. Region in the g;-g, space where the generous strategy exists (shaded region). If (g1, g2) is located in this region (e.g., filled circle labeled pcp = 0), the square given
by 1/w -1 < g1,8, < 1/w intersects the line segment connecting the assumed (g7, g2) and the origin. Note that any point on the line segment is realized by the solution by

a value of pcp (Egs. (71) and (72)).

By setting po = 1 in Eq. (69), we obtain
1

Pcp

p=| ~ A=W +D(T -5+ A -wpep)[(x —1DR+T — xS]
W[R—S+ x(T —R)]

(A -wW[(x -DP+S—xT]+ (1 -wpep)(x —1)(R-P)
W[R—-S+ x(T —R)]
1
Pcp

= 1 (1-p)[(x —DR+T - xS]

N i R—S+ x(T—R)
1 (s (- HR=P)
w R—S+xT—R

3.4.2. Minimum discount rate
By applying 0 < ppc, ppp <1 to Eq. (70), we obtain

1 1

W_l <(1-pcp)g < "
1 1

W_l <(1—-pcp)g < "
where

_ (X —DR+T - xS
'"“ RS+ xT-R"
_ (X-DR-P)
2T R-S+x(T—-R)
The necessary and sufficient condition for 0 <pcp <1 that satisfies Eqs. (71) and (72) to exist is given by (Fig. 2)

1
ngw—]s

(70)
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1
gzzw—lv (76)
1—w< ] (77)
g " 1-w

In the remainder of this section, we assume y >0, which a generous strategy requires (Chen and Zinger, 2014; Hilbe et al., 2013b;
2015a; McAvoy and Hauert, 2016; 2017; Stewart and Plotkin, 2013), and examine the conditions given by Eqs. (75)-(77). For mathematical
interests, the analysis of the minimum discount rate for y <0 is presented in Appendix G.2. First, because dg;/dx >0, which one can
derive using Eq. (3), and g is continuous for x >0, Eq. (75) is equivalent to

R—S—w(T—5)
XZ TRy +w(T -5 (78)
and
T—-R
W>T_S. (79)

When w < (T —R)/(T —S), a positive x value that satisfies Eq. (75) does not exist. Second, because dg,/dx >0 and g, is continuous for
X >0, Eq. (76) is equivalent to

R—S—w(P-5)
=T R +wT_P) (80)
and
T—R
w>—p. (81)

When w < (T — R)/(T — P), a positive x value that satisfies Eq. (76) does not exist. Third, because d(g,/g;)/dx >0 and g,/g; is continuous
for x >0, Eq. (77) is equivalent to

T—P—w(T-R)

A= 2P TwR-9) (82)
and
w > % (83)

When w < (P-S)/(R-S), a positive x value that satisfies Eq. (77) does not exist.

By combining Eqgs. (79), (81), and (83), we find that a generous strategy exists if and only if w> w., where w¢ is given by Eq. (32).
Therefore, the threshold w value above which a ZD strategy exists is the same for the equalizer, extortioner, and generous strategy.
It should be noted that w=wc is allowed for the equalizer, but not for the extortioner and the generous strategy. When w > w,
Eqg. (80) implies Eq. (78), and hence one obtains

R-S—-wP-S) T-P-w(T-R)
—T-R) +w(T—-P) —(P=S) +w(R-S5)

X > Xc(w) = max( (84)
Note that x(w)>1 and x.(w) decreases as w( >wc) increases. Eq. (84) implies that limy,_, ..o Xc(W) = oo and lim,,_,; xc(w) = 1, which
are the same asymptotic as the case of the extortioner.

4. Conclusions

We analyzed ZD strategies in finitely repeated prisoner’s dilemma games with general payoff matrices. Apart from the derivation of
convenient expressions for ZD strategies, the novel results derived in the present article are two-fold. First, we derived the threshold dis-
count factor value, we, above which the ZD strategies exist for three commonly studied classes of ZD strategies, i.e., equalizer, extortioner,
and generous strategies. They all share the same threshold value. Similar to the case of the condition for mutual cooperation in direct
reciprocity, ZD strategies can exist only when there are sufficiently many rounds. Second, we showed that the memory-one strategies
that impose a linear relationship between the payoff of the two players are either ZD strategies (Eqgs. (43) and (53)) or an unconditional
strategy (Eq. (51)). The latter class includes the unconditional cooperator and unconditional defector as special cases. Therefore, for
finitely repeated prisoner’s dilemma games (i.e., w < 1), we answered affirmatively to the conjecture posed in Hilbe et al. (2013b). With
a continuity argument, our results also cover the infinite case, by the consideration of the limit w— 1. In other words, if the two payoffs
are in a linear relationship for any w = 1 — €, where € « 1, then the payoffs are also on a line as € goes to 0. For a similar argument, see
Egs. (5) and (6) in Hilbe et al. (2015a). The present results also hold true when the co-player employs a longer-memory strategy, because
it is straightforward to apply the proof for the infinite case (Press and Dyson, 2012) to the finite case.

Our analytical approach is different from the previous approaches. Press and Dyson’s derivation is based on the linear algebra of matri-
ces (Press and Dyson, 2012). The proof in Hilbe et al. (2013a) considers certain telescoping sums. The approach considered in the present
study is more elementary than theirs, i.e., to derive necessary conditions and show that they are sufficient by straightforward calculations.

We mention possible directions of future research. First, we conjecture that the w, value is the same for all ZD strategies because it
takes the same value for the three common ZD strategies. Second, the explicit forms of our solutions (Eqs. (25) and (43)) may be useful
for exploring features of ZD strategies in finitely repeated games. For example, investigation of evolutionary dynamics and extensions to
multiplayer games, which have been examined for infinitely repeated games (see Section 1 for references), in the case of finitely repeated
games may benefit from the present results.
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Appendix A. Expression of ueq"m“o, TTy,0000/ ueq'"“. and Ty

By substituting q = (0, 0,0, 0) in Eq. (10) and then substituting the obtained M in Eq. (18), we obtain

ueq.OOOO — 1
(1 -w)(1 —wpcp +wppp)
(1 -=w)(1 —=wpcp +wppp)R + w(1 — pcc + Wpcee — Wpep)P + W(pcec — Wpee + wppp)T
w(1l - pep)P + (1 —w +wppp)T
x , (85)
(1-=w)(1 —=wpcp +wppp)S + W(1 — ppc — Wpcp + Wppc)P + w(ppc — Wppc + Wppp)T
(1 —=wpep)P +wpppT

which leads to

Tty.0000 = (1 — w)v(0)ue®00%, (86)
Similarly, by substituting q = (1, 1,1, 1) in Eq. (10) and then substituting the obtained M in Eq. (18), we obtain
ueq.l]l] _ 1

T (A-w)(1- Wpcc + Wppc)
w(1 - pcc)S+ (1 —w+wppc)R

(1 =w)(1 = wpce +wppc)T +w(1 = pep — Wpce +Wpep)S + W(Pep — WPep + Wppc)R
(1 —wpcc)S +wppcR
(1 =w)(1 = wpce +wppc)P +w(1 — ppp — Wpcc + Wppp)S + W(ppp + WpPpc — Wppp)R
which leads to

7y 111 = (1 —w)v(0)uss M, "
Appendix B. Expression of 1?4000 and 441", and four necessary conditions in Section 3.2

By substituting q = (0, 0,0, 0) in Eq. (10) and then substituting the obtained M in Eq. (36), we obtain

—w(1 = pcc + Wpee —wpep) (X — 1)P + w(pcc — Wpee + wppp) (S — xT)
1 —wpcep + Wppp
—w( —pep)(x —DP+ (1 -—w+wppp)(S— xT)

+(x-De-1-w)(x - DR

+(x -k
44724.0000 _ 1 —wpcp + wppp (89)
—w(1 = ppc —Wpcp + Wppc) (X — 1)P +w(ppc — Wppc + Wppp) (S — xT)
+ (- + 1 -=w)(T-xS)
1 —wpcp + Wppp
— (1 =wpep)(x — 1P +wppp(S — xT)
+(x -k
1 —wpcp + Wppp
By substituting q = (1,1, 1, 1) in Eq. (10) and then substituting the obtained M in Eq. (36), we obtain
w(1 = pcc)(T = xS) — (1 —=w+wppc)(x — DR
+(x - Dk
1 —wpce + wppce
w(l — —Wpcc+W T—xS)—-w —Wpep +W — 1R
(1 = pcp = wpcee +wpep)(T = xS) —w(pep — Wpep +wppc) (X — 1) =Dk (1—w)S— xT)
u2d 1 _ 1 —wpce +wpnc (90)

(1 =wpce)(T — xS) —wppc(x — 1R
1 —wpcc +wpnc
w(1 — ppp — Wpcc +wppp) (T — xS) —w(ppp + Wppc — Wppp) (X — DR
1 —wpcc +wppc
Note that the denominator on the right-hand side of Eqs. (89) and (90) is positive.
By substituting Eq. (89) in Eq. (39), we obtain
(1 =w)po{(1 = wpcp +wppp)[—(X — )R =T + xS] +w(pcc — poc)[(x = 1)P+S— xT1}
+ (1 =wpep +wppp)[(X — Dk 4+ (1 =w)(T = xS)]+w[-(1 = ppc —Wpcp +wWppc) (X — 1)P
+ (Ppc —Wppc +wppp)(S - xT)] = 0. (91)
By substituting Eq. (89) in Eq. (40), we obtain

+(x - Dk

+ (X —De-0-w)(x -1P
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(1 =w)po[(x —1P+S— xT]— (1 —wpep)(x — 1P +wppp(S— xT) + (1 —wpcep +wppp) (x — 1)k =0. (92)
By substituting Eq. (90) in Eq. (39), we obtain

(1 =w)po[—(x —DR-T + xS]
+ (1 =wpcc)(T = xS) —wppc(x — DR+ (1 = wpec +wppc) (x — Dk = 0. (93)
By substituting Eq. (90) in Eq. (40), we obtain

(1 =w)po{(1 —wpcc +wppc)[(X = DP+S— xT]+w(pcp — pop)[—(X — DR—T + xS[}
+ (1 = wpcee +wppe) (X — DIk — (1 =w)P]+w[(1 — ppp — Wpcc + wppp) (T — xS)
— (pop + Wppc —wppp)(x — 1)R] = 0. (94)

Appendix C. Derivation of Eq. (51)

In this section, we derive Eq. (51) from Eqs. (49) to (50).
We obtain

1
(1 —wpce) (1 —wpcep +wppp)
< {{=1 =w)(1 = wpep + wppp)R — w? (1 = pec)[1 = (1 = w) poc — wpep P} (x — 1)
+w(1 — pcc){(1 = w)(1 = wpep +wppp) (T — xS) +W[(1 —w)ppc +wppp](S — xT)}} + (x — Dk
741000 _ - w(1 —pep)(x — 1P+ (1 _W+WpDD)(S_XT)+(X 1)k ) (95)
1 —wpcep + wppp
—w(1 — ppc — Wpcp +wppc) (X — 1)P + w(ppc — Wppc +wppp) (S — xT)
1 —wpcp +wWppp
— (1 =wpep) (X — 1)P+wppp(S— xT)
1 —wpcep + wppp

Note that the denominator on the right-hand side of Eq. (95) is positive. By substituting Eq. (95) in Eq. (40), we obtain Eq. (92). By
substituting Eq. (95) in Eq. (39), we obtain

+(x =Dk +1A-=w)(T-xS)

+(x — Dk

po(1 =w){{-(1 —wpcp +wppp)R+ w[1 — (1 —w)ppc —wpep]P}(x — 1)

—(1=w)(1 —=wpcp +wppp)(T — xS) = w[(1 = w)ppc +wpppl(S — xT)}

+(1 =wpco){-w[1 — (1 —=w)ppc — wpep](x — 1P +w[(1 —w)ppc +wppp](S — xT)}

+(1 = wpce) (1 —wpep +wppp) (X — 1)k + (1 —wpee) (1 — wpep + wppp) (1 = w)(T — xS) = 0. (96)
Substitution of Eqs. (41) and (42) in Eq. (96) yields either the third entry of Eq. (43) or
(Po — poc) (kK —R)Y(A —w)w(yx — D[(x - DP+S—XT] _

[T—k+xk&-=9]Kk—-S+x(T—-«)]

The case in which the denominator on the right-hand side of Eq. (97) is equal to 0 is covered in Appendix E and Appendix F. We note
that x #1 because x = 1 substituted in Eq. (50) yields T =S, which contradicts Eq. (2). By combining this observation with 0 <w <1, we
obtain
(Po — poc) (k —R)[(x —1DP+5— xT]=0. (98)

By substituting Eqs. (49) and (50) in Eq. (98), we obtain the following four possible cases: pg = ppc, po=1, po= (R-P)/(T+S—-R—-DP),
and pg=(T+S-2P)/(T+S—-R-P).

First, assume that py = ppc. By substituting py = ppc and Eq. (47) in Eq. (93), we obtain (pcc — ppc)[T — k + x (k —S)] = 0. Because
we have excluded the case T — x + x (k —S) = 0, which we deal with in Appendix E, we obtain pcc = ppc. Therefore, we obtain

Po = Pcc = Pbc- (99)

Second, assume that py = 1. Substitution of py =1 in Eq. (49) yields « = R. Substitution of po =1 and « =R in Eq. (42) yields pcc = 1.
Substitution of pg =1 in Eq. (50) yields x = —(R—S)/(T — R). Substitution of py =1, x = —(R-S)/(T —R), and k¥ =R in Eq. (92) yields
(1 - pcp)(T —S)(R - P) =0, which implies pcp = 1. Therefore, pg = 1 combined with Eqs. (49) and (50) results in

0. (97)

Po = Pcc = pep = 1. (100)
Third, we note that
R—P
PO7TiS—R-P (101)

because combination of pg=(R—P)/(T+S—R—-P) and O0<pg<1 leads to T+S—R—P >0 and 2R <T +S, and the latter inequality
contradicts Eq. (3).

Fourth, assume that pg = (T +S —2P)/(T +S — R — P). By substituting pg = (T +S —2P)/(T +S — R — P) in Egs. (49) and (50), we obtain
X =—(P-S)/(T —P) and k = P, respectively. Then, we obtain ¥k — S+ x (T — k) = 0, which we have decided to deal with later.

To summarize, Eq. (98) leads to either Eq. (99) or (100).

We obtain
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1
1 1
WA= (e - D 1 * (1+w)(1 —wpcep) + W[ ppc(1 — pop) + PccPop)]
{[-1+wpco +w?(1 = ppc) (1 = pop) = W?(Pep — Poc) (1 = pop) |R
+W[-1+ (1 =w)pcc + wpep P} (x — 1) + w{w(1 — pop)[(1 = wpcep) — (1 = W) pecl(T — XS)
+[Pcc —w?(1 = ppp) (Pec — pDC)](S - XT)}
W(1 — peo)[—(P+ WPooR)(x — 1) + (1 — poo)(T ~ x5)] (102)
x| +[1—=w*(1 = poc — PccPob + PocPop) (S — xT)
w[—=1+wpcp + (1 —w)poc|(P +wpppR) (x — 1)
+{1=w?ppp[1 - (1 = w)pcc] — wpen (1 — w?pop) }(T = xS) + W[ poc + W? (pec — Poc) Poo |(S — X T)
—[(1 =wpcp)P +wppp (1 —wpep)R](x — 1) +w{(1 — ppp) (1 = wpep)(T — x5)
+W(Ppc + PccPop — PocPop) (S — xT)}
Note that the denominator on the right-hand side of Eq. (102) is positive. By substituting Eq. (102) in Eq. (40), we obtain
(1 =w)po{(P+wpppR) (x = 1) =w(1 — ppp)(T = xS) + (1 +w)(S— xT)} - [(1 = wpcep)P
+wppp (1 = wpep)R](x — 1) + w{(1 = ppp) (1 = wpep) (T — xS) + w[ppc + Pop (Pec — Poc) (S = xT)}
+{1+w(1 - pow) = w?[peo — Poc — Poo(Pec — poc) ]} (X — 1k =0. (103)
Substitution of Eqs. (41) and (42) in Eq. (103) yields either the third entry of Eq. (43) or
1

T 7 Sk ST 7T " {w(x = 1)** =[1 = (1 =w)po — wpepl(x — DIT =R+ x (R—S)IP

+{w(T - xS)+ (A =w)po[T =R+ x (R—S)[}(S— xT) — {—(1 —wpep)(x — R
—[14+w(@ = pep — ))IT +[x —w( — x + peo))IS}H(x — D} =0. (104)

We examine the case in which the denominator on the right-hand side of Eq. (104) is zero in Appendix E and Appendix F. Therefore,
we ignore the denominator and substitute Eqgs. (49) and (50) in Eq. (104) to obtain pg= pcp, Po=0, po= (R—-P)/(T+S—-R-P),
or po=(T+S-2P)/(T+S—R—-P). Among these four possible options, we have excluded py=(R-P)/(T+S—-R-P) and
po = (T+S—2P)/(T +S—R—P) in the course of the analysis of 4241000,

First, assume that pg = pcp. By substituting py = pcp and Eq. (48) in Eq. (92), we obtain (pcp — ppp)[k — S + x (T — k)] = 0. Because
we have excluded the case k — S+ x (T — k) =0, which we deal with in Appendix E, we obtain ppp = pcp. Therefore, we obtain

Po = Pcp = Pop- (105)

Second, assume that py = 0. Substitution of pg = 0 in Eq. (49) yields k = P. Substitution of py =0 and « = P in Eq. (41) yields ppp = 0.
Substitution of pg = 0 in Eq. (50) yields x = —(T — P)/(P —S). Substitution of pg =0, x = —(T —P)/(P-S), and « = P in Eq. (93) yields
wppc(R — P) = 0, which implies ppc = 0. Therefore, pg = 0 combined with Egs. (49) and (50) results in

Po = Poc = pop = 0. (106)

A solution must simultaneously satisfy either Eq. (99) or (100), and either Eq. (105) or (106). The combination of Egs. (99) and
(105) provides the set of unconditional strategies, i.e., Eq. (51). The combination of Eqs. (99) and (106) provides a subset of the strategies
given by Eq. (51). The combination of Eqs. (100) and (105) also provides a subset of the strategies given by Eq. (51). Egs. (100) and
(106) are inconsistent with each other. Therefore, the set of solutions is given by Eq. (51).

Appendix D. An unconditional strategy is not a ZD strategy unless R+ P =T +S

In this section, we show that the unconditional strategy given by Eq. (51) is not a ZD strategy in the sense of Hilbe et al. (2015a) if
R+P#T+S.
By substituting ppc = ppp in Eq. (45), we obtain

PlXx —Dk+T—xS|-(A-w)pg  ¢(x — Dk —P) = (1 -w)po
w - w ’

(107)
which leads to
Ol(x — D +T - xSI=¢(x — Dk —P).

If ¢ =0, we substitute ¢ =0 in the expression of ppp in Eq. (45) to obtain ppp = —(1 — w)pg/w. This equation holds true if and only if
Po = ppp = 0. Next, we substitute ¢ = 0 in the expression of pcc in Eq. (45) to obtain pcc =[1— (1 — w)pg]/w. This equation holds true
if and only if pg = pcc = 1, which contradicts py = 0. Therefore, we obtain ¢ # 0. Given ¢ #0, Eq. (107) implies

T-P

X=-7—< (108)
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By setting pcc = pep in Eq. (45) and using ¢ #0, we obtain

R-S
X=-7"p% (109)
By combining Eqs. (108) and (109), we obtain
R+P=T+S. (110)
Eqg. (110) is a sufficient condition for the unconditional strategy to be a ZD because substitution of Eqs. (49), (50), (110) and
T—-R
= —T-S®R-P) (1

in Eq. (45) yields Eq. (51).
Appendix E. Case k —S+ x(T —k) =0

In this section, we assume
K-S+ x(T—-k)=0 (112)
and derive the set of strategies that satisfy Eq. (16).

By substituting Eq. (112) in Eq. (92), we obtain
(x =D =P)[(1-=w)po — 1+ wpep] = 0. (113)
Eq. (112) does not allow x = 1 because substitution of x =1 in Eq. (112) yields T = S, which contradicts Eq. (2). Substitution of k = P in

Eq. (112) yields x = —(P —S)/(T — P). Alternatively, if we set (1 —w)pg— 1+ wpcp =0, we obtain pg = pcp = 1. Therefore, we consider
the following two subcases, i.e., subcase (A) specified by

k=P (114)
and
P-S

X = P (115)
and subcase (B) specified by

kK—S+x(T-x)=0 (116)
and

Po=Dpcom =1 (117)

E1. Subcase (A): k =P and x = —(P-S)/(T — P)

By substituting Eqs. (114) and (115) in Eq. (91), we obtain
(1 =w)[1 = w(pcp — pop)[=po(T +S—R-P)+T+S—-2P|(T -S) _
T-P -
Because T>P>S, 0 <w <1, and there exists no pair of pcp and ppp (0 <pcp, ppp < 1) that satisfies pcp — ppp = 1/w, we obtain
po(T+S—R—-P)=T+S-2P. (119)
If we set T+S—R—P =0, we obtain T +S — 2P =R — P > 0, which contradicts Eq. (119). Therefore, Eq. (119) leads to T +S—R—P # 0,
and hence
_ T+S5-2pP
" T+S—-R-P
If T+S—R—-P> 0, the condition py <1 applied to Eq. (120) yields R <P, which contradicts Eq. (2). Therefore, we obtain T+S—-R—-P <0
and hence T+S—-2P <0.
By substituting Eqs. (114) and (115) in Eq. (96), we obtain
(1 —=w)[1 = w(pcp — pop) {Po[R — (1 =w)(T +9)] + (1 = wpcc)(T +5) — [2 — (1 — 2wW) po — 2wpcc[PHT - S)
T-P -

0. (118)

Po (120)

0. (121)

Because 1 — w(pcp — ppp) > 0, Eq. (121) implies
po[R— (1 =wW)(T + 9]+ (1 =wpcc)(T +5) —[2 — (1 = 2Zw)po — 2WPpcc]P = 0. (122)
Substitution of Eq. (120) in Eq. (122) yields

W[-pcc(T+S—R—-P)+T+S-2P)(T +S-2P)

T+S—R—P 0. (123)
We will deal with the case T + S — 2P = 0 later in this section. Therefore, by assuming T + S — 2P < 0, we obtain
T+S-2P
P TIS—R-P (124)

By substituting Eqs. (114) and (115) in Eq. (93), we obtain

{(1 =w)po(R—S—T) +wppcR — wpcc(T +S) —[2 — (1 = w)po — 2wpcc + Wppc]P+T + ST - S)

—> 0. (125)
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By substituting pg = pcc = (T +S —2P)/(T +S —R —P) in Eq. (125), we obtain
W[—ppc(T+S—R-P)+T+S-2P|(P-R)(T-S)

(T-P)(T+S—R-P) 0 (126)
which leads to
T+S—2P
PoC= Ty S—R-P (127)

By substituting Eqs. (114) and (115) in Eq. (103), we obtain
w[1 -wpep — (1 =w)pol[-ppop(T+S—R—-P)+T+S—-2P|(T -S) B

. 12
T—P 0 (128)
If 1 —wpcep — (1 —w)pg =0, we obtain pg = pcp = 1, which contradicts Eq. (120). Therefore, Eq. (128) implies

T+S-2P
P =TS R-P (129)

To derive another condition, we use the vector u when player Y adopts the tit-for-tat strategy, i.e., ¢ = (1,0, 1, 0). This vector, denoted
by uzd1010 s given by

1
+
(1 —=wpce)(1 —w2ppe) + W2 peppoc(1 —w) +w(1 +w) ppp (1 — wpee) + w3 pep Pop

uzd,]O]O — (X _ 1)/(

—_—

{11 =w( - ppp) = W?ppc(1 = pen) + W (1 = peo) (Poc — Pop) IR
=w?(1 = pec)(1 = ppc)P}(x = 1) + w(1 = pcc)[1 —w(1 — ppp) (T — xS)
+w?(1 - pce)[poc — w(ppe — pop)1(S — xT)

{-w?(1 = poo)[1 = (1 = w)pep — wpcclP — wpep[1 = w(l — pop) IR}(x — 1)
X +w[1 — (1 =w)pcp — wpccll1 —w(1 — ppp) (T — xS) + (1 = wpcc)[1 —w(1 — ppp)](S — xT)|. (130)

w{—(1 — ppc)(1 —wpcc)P —wpep[ (1 —w)ppc + Wppp IR} (x — 1)
+(1 = wpcec)[1 —w(1 — ppp) (T — xS) + w[(1 —w)ppc + wppp](1 —wpec)(S— xT)

{1 =w?ppc[1 = peo (1 = w)] = wpcee(1 — w?ppe) }P — w2 pep pooR} (x — 1)
+w?ppp[1 — pep (1 —w) —wpec (T — xS) +wppp (1 —wpee) (S — xT)
Note that the denominator on the right-hand side of Eq. (130) is positive. By substituting Eq. (130) in Eq. (40), we obtain
(1 =w)po{{-wpcoR + [1 + w(1 = pcc) = W (pec — Peo) P} (x = 1) +w[1 = (1 = W) pep — wpec|(T — xS)
+(1=wpee) (S — xT)} + {{=1+w?ppc[1 — (1 = w)pep] + wpec (1 = WP ppc) P — w? peppooR} (X — 1)
+w?ppp[1 = (1 = w)pep — wpee)(T = xS) + wppp (1 = wpee) (S — xT)
+{1 = w?ppc + (1 = W)W’ peopoc + Wppp (1 +W +w?pep) — wpeel1 — w?pc + (1+w)wppp]} (x — 1)k =0. (131)
By substituting x =P and x = —(P-S)/(T — P) in Eq. (131), we obtain
wl(d =w)po + wpppl{Pco[R = (1 = W) (T + )] + (1 =wpcc) (T +5) = [2 = peo — 2w(Pcc — Peo) IPHT =S) _

TP 0. (132)
By substituting pg = pcc = ppp = (T +S - 2P)/(T +S — R—P) in Eq. (132), we obtain
[-pecp(T+S—R—-P)+T+S—-2P]|-w(T+S—-2P)+T+S—R—P|(T +S-2P) 0 (133)

(T+S—R-P)2

If -w(T+S-2P)+T+S—-R-P=0, Eq. (120) implies that w = 1/pg, i.e.,, w= pg = 1, which contradicts 0 <w < 1. Because we decided

to treat the case T +S — 2P = 0 later, Eq. (133), implies
T+S-2P

Poo =73 s"R—P

In sum, we obtain pg = pcc = Pcp = Poc = Pop = (T+S—2P)/(T+S—R-P) if T+S— 2P < 0. Substitution of py in Egs. (49) and
(50) yields x = —-(P—-S)/(T—P) and « =P, respectively, coinciding with the condition for subcase (A). Therefore, the strategy
Po = Pcc = Pcp = Poc = Ppop = (T+S—2P)/(T+S—R—P), where T +S — 2P < 0, is a special case of Eq. (51).

Finally, let us consider the case T+S—2P =0. By combining this condition with Eq. (120), we obtain py = 0. By substituting
T+S—-2P=0 and pg =0 in Eq. (125), we obtain w(R — P)ppc = 0, which implies that ppc = 0. By substituting T +S—2P =0 and py =0
in Eq. (128), we obtain (1 — wpcp) (R — P)ppp = 0, which implies that ppp = 0. Because py = ppc = ppp = 0, the focal player X never uses
Pcc and pep. Therefore, pg = ppc = ppp = 0 specifies a strategy. By substituting py = 0 in Eqs. (49) and (50) and using T +S — 2P =0, we
obtain x = —(T -P)/(P-S) =—-(P-S)/(T —P) = —1 and k = P, respectively, coinciding with the condition for subcase (A). Therefore, the
strategy po = Ppc = Ppp = 0 is a special case of Eq. (51).

(134)
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E2. Subcase (B): k =S+ x(T—k)=0and pg=pcp =1

By substituting Eqs. (116) and (117) in Eq. (91), we obtain
(1 =w)(x — D[wppp(k —R) —wpcc(k —P) + W(R—P) + k —R]
=0. (135)
Note that O<w<1 Because x =1 s
Kk —S+ x(T —k) =0, Eq. (135) yields
Wpcc(k —P) —w(R—P) — (k —R)
w(k —R)

provided that k # R. We will deal with the case x = R later in this
section. By substituting Eqs. (116) and (117) in Eq. (93), we obtain

inconsistent with

Pop = (136)

(x — D{wppc(k —R) —wpcc(x + Dk —T)

+W[R—(x +1)T+ x«]+k —R} =0, (137)
which yields
~ Wpee(x + 1D (k =T) =w[R—(x + DT + x«] - (k —R)
e = w(k —R)
(138)

provided that k #R. Therefore, we obtain

p= (pcc, 1,

wpee(X + 1)k =T) =w[R— (x + DT + x«] - (k —R)
w(k —R) ’

wpec(k —P) —w(R—-P) — (k —R)
=B ),pozl, (139)

i.e.,, Eq. (53), as a necessary condition for the linear relationship
between the payoff of the two players, i.e., Eq. (16).

To verify that Eq. (53) is sufficient, we substitute Eq. (53) (i.e.,
Eq. (139)) in Eq. (36) to obtain

yd (0,07 _(d-w(x-Dk-R)

w(1 - pcc)
1-w)(x -1k -R)
- w(1 = pcc) ) (140)

which is independent of q. By combining Eqs. (7), (140), and
po =1, we obtain v(0)u?d =0, i.e., Eq. (37). Therefore, Eq. (53) is
a solution that satisfies Eq. (16).

The strategy given by Eq. (53) is expressed in the form of
Eq. (45) if we set ¢ = —w(1— pcc)/[(k —R)(x —1)] (and use
K-S+ x(T—k)=0 and pg=1). As an example, we consider
the repeated PD game defined by R=3, T=5, S=-2, P=1,
and w = 0.8. We set k = 2. Because this solution requires x — S +
X (T —«) =0 (Eq. (116)), we obtain y = —4/3. If we set pcc =0,
we obtain p= (0, 1, 3/4, 3/4) and py = 1. This solution cannot
be represented in the form of Eq. (43) because Eq. (43) requires
Kk —S+ x (T — k) # 0. Consistent with this example, Eq. (45) com-
bined with ¢ = —w(1 — pcc)/[(k =R)(x —1)], k =S+ x(T — k) =
0, and pg =1 yields x <0. This can be shown as follows. By sub-
stituting k — S+ x (T —k) =0 and pg =1 in Eq. (45), we obtain

1 — $U=DR=)
w
1

P=11 1 dunergy (141)
1- % + W

Because pcc <1 must hold true in Eq. (141), we obtain

¢(x ~DR-x)=0. (142)

Because ppp >0 must hold true in Eq. (141), we obtain

d(x -1 —-P)=0. (143)

Given ¢(x — 1) # 0 (Section 3.2) and R> P, we find that P<k <R
must hold true for Eqs. (142) and (143) to be simultaneously
satisfied. Therefore, using «k —-S+ x(T—k)=0 we obtain
X=—-(k-5)/(T-«k)<0.

Finally, let us consider the case x = R. By substituting x =R
in Eq. (135), we obtain wpcc(R—P) =w(R - P), which implies
that pcc =1. By combining this result with Eq. (117), we ob-
tain pg = pcc = pcp = 1, which implies that player X never uses
ppc and ppp. Therefore, py = pcc=pcp =1 specifies a strat-
egy. By substituting po=1 in Egs. (49) and (50), we obtain
X =—(R-=5)/(T-R) and « =R, respectively, and the former
equality coincides with Eq. (117) when k =R. Therefore, the
strategy po = Pcc = Pcp = 1 is a special case of Eq. (51).

Appendix F. Case T —k + x(k —S) =0

In this section, we assume

T-k+xk-=-5=0 (144)
and derive the set of strategies that satisfy Eq. (16).

By substituting Eq. (144) in Eq. (93), we obtain
(x =D —R)[(1 —w)po +wppc| = 0. (145)

Eq. (144) does not allow x =1 because substitution of y =1 in
Eq. (144) yields T =S, which contradicts Eq. (2). Substitution of
k =R in Eq. (144) yields x = —(T — R)/(R - S). Alternatively, if we
set (1 —w)pg +wppc =0, we obtain pg = ppc = 0. Therefore, we
consider the following two subcases, i.e., subcase (C) specified by

k=R (146)
and

X = —,27:? (147)
and subcase (D) specified by

T-k+xk-S)=0 (148)
and

Po = ppc = 0. (149)

F1. Subcase (C): k =R and x = —-(T-R)/(R-Y5)

By substituting Eqs. (146) and (147) in Eq. (94), we obtain

(1 =w)[1 —w(pcc — poc))[-po(T +S—R—-P) +R—P|(T - 5)
R-S
=0. (150)
Eq. (150) does not hold true because 0 <w <1, (R—P) — po(T +S —

R—P) #0 due to Eq. (101), and 1 —w(pcc — ppc) > 0. Therefore
there is no solution in this case.

F2. Subcase (D): T —k + x(k —=S)=0and pg=ppc =0

By substituting Eqs. (148) and (149) in Eq. (91), we obtain
w(x — D[wppp(k —S)(x +1) + (1 —wpep)(k —P)]=0. (151)

We obtain x #1 because x =1 substituted in Eq. (148) yields
T =S, which contradicts Eq. (2). Therefore, Eq. (151) implies

~ wppp(x +D(k =S)+« =P

w(k —P) (152)

Dcp
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provided that x #P. We will deal with the case x =P later in
this section. By substituting Eqs. (148) and (149) in Eq. (94), we
obtain

(x =D =w)[wppp(k —R) + (1 =wpcc)(k —P)] =0.  (153)
Because 0 <w <1 and x # 1, we obtain
wppp(k —R) +k —P
Pec = Wk —P) (154)
provided that k # P. Therefore, we obtain
_ (wppp(k —R) +Kk —P
- w(k —P) ’
wppp(x +1)(k —=S) +« —P _
W(K —P) s 0’ Pop |, Do = 0! (155)

where 0<ppp <1 is a necessary condition for the linear rela-
tionship between the payoff of the two players, ie., Eq. (16).
In fact, we substitute pcp given by Eq. (155) in pcp given by
Eq. (43) and use Eqgs. (148) and (149) to find that pcc, pPpe, Pop
given by Eq. (43) coincide with those given by Eq. (155). Therefore,
Eq. (155) is a special case of ZD strategies given by Eq. (43).

Finally, let us consider the case k = P. By substituting x =P
in Eq. (153), we obtain wppp(R—P) =0, which implies that
ppp = 0. By combining this result with Eq. (149), we obtain
Po = Ppoc = Ppp = 0, which implies that player X never uses
pcc and pcp. Therefore, pg = ppc = ppp =0 specifies a strat-
egy. By substituting po =0 in Egs. (49) and (50), we obtain
X =—(T—-P)/(P-S) and « =P, respectively, and the former
equality coincides with Eq. (151) when « =P. Therefore, the
strategy po = ppc = Ppp = 0 is a special case of Eq. (51).

Appendix G. Minimum discount rate for x <0
G1. ZD strategies with k = P
Let us consider Eq. (56) under ¢ <0 and x < 1. In this case, we

obtain Eqs. (57)-(59), but with all the inequalities flipped (i.e., >
instead of <). Then, we obtain

(x-Dps _ 1+ x5s

: > — , (156)
w w
1 I-p —1)R=L
Hf =S > (X1 )”*5, (157)
w w
T-P (x-1D&E
X+p—<= T (158)
T-P +x =2
X+ﬁf 1 (159)
Egs. (156)-(159) yield
P-S+(1-w)(R-P)
X T -Rrwr-p " (160)
[R=P)—(1-=w)(T-P)]x <R-P+ (1 -w)(P-5), (161)

[WR=P)— (1 -=w)(P-9)]x <wR-P)+ (1 -w)(T -P),
(162)

[-P=S)+wW(T -S)|x <—wP-S+1-w)(T-P), (163)

respectively. When w is sufficiently large, the coefficients of x
on the left-hand sides of Eqs. (161)-(163) are positive. In this
situation, Eqs. (160)-(163) are satisfied by a sufficiently negative
large x( <O0). This result is consistent with the previously obtained
result (Hilbe et al., 2015a).

G2. ZD strategies with k =R

In this section, we examine Eq. (75)-(77) under the assump-
tion that x <O. First, because dg,/dy >0, g, is discontinuous at
X=—-(R-S5)/(T-R), and g, <0 for —(R-S)/(T—-R) < x <0,
Eq. (76) is equivalent to

R-S

if w> (T -R)/(T —P) and
R—-S—w(P-5) R-S
—T-R+w(T-P) X~ "T-R (165)

if w<(T-R)/(T-P). Second, using Eq. (164), dg;/dx >0,
and that g; is discontinuous at y = —(R—S)/(T —R), we find
that Eq. (164) implies Eq. (75) if w> (T —R)/(T —S) and that
Eq. (75) is equivalent to
R—-S—w(T-5)
TR +w(T-5) T—R
if w<(T-R)/(T-S). Third, because d(g»/g1)/dx >0, g/g
is discontinuous at y =—(T-R)/(R-S), and gp/g; <0 for
—(T-R)/(R-S) < x <0, Eq. (77) is equivalent to

R-S

(166)

X<

T—R
. (167)
ifw>(P-S5)/(R-S) and

T—P—w(T —R) T-R

“P-S +w®R=5 X~ "R=s (168)

ifw< (P-S)/(R-S5).

To summarize these results, if w>we, generous strategies
with

. R-S T-R ]

X <mm(_T—R’_R—S> < -
exist because Eq. (169) yields Eqs. (75)-(77). This result is consis-
tent with the previously obtained results (Hilbe et al., 2015a). Note
that we have used Eq. (3) to derive the last inequality in Eq. (169).
Even if w<we, negative x values that satisfy all the conditions,
i.e., the set of equations out of Eqs. (164)-(168), corresponding to
the given value of w, may exist.

(169)
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