
Abstract
We present tournament results and several powerful strategies for the Iterated Prisoner’s Dilemma created using reinforcement
learning techniques (evolutionary and particle swarm algorithms). These strategies are trained to perform well against a corpus of
over 170 distinct opponents, including many well-known and classic strategies. All the trained strategies win standard tournaments
against the total collection of other opponents. The trained strategies and one particular human made designed strategy are the top
performers in noisy tournaments also.

Citation: Harper M, Knight V, Jones M, Koutsovoulos G, Glynatsi NE, Campbell O (2017) Reinforcement learning produces
dominant strategies for the Iterated Prisoner’s Dilemma. PLoS ONE 12(12): e0188046.
https://doi.org/10.1371/journal.pone.0188046

Editor: Yong Deng, Southwest University, CHINA

Received: August 11, 2017; Accepted: October 27, 2017; Published: December 11, 2017

Copyright: © 2017 Harper et al. This is an open access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Data Availability: Data are available at https://zenodo.org/record/832287 with DOI: 10.5281/zenodo.832287.

Funding: Google Inc. provided support in the form of salaries for author MH, but did not have any additional role in the study
design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors
are articulated in the ‘author contributions’ section.

Competing interests: The funder (Google Inc.) provided support in the form of salaries for the author MH, but did not have
any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The
specific roles of this author are articulated in the ‘author contributions’ section. This does not alter our adherence to PLOS
ONE policies on sharing data and materials.

Introduction
The Prisoner’s Dilemma (PD) is a two player game used to model a variety of strategic interactions. Each player chooses between

cooperation (C) or defection (D). The payoffs of the game are defined by the matrix , where T > R > P > S and 2R > T + S.

The PD is a one round game, but is commonly studied in a manner where the prior outcomes matter. This repeated form is called
the Iterated Prisoner’s Dilemma (IPD). The IPD is frequently used to understand the evolution of cooperative behaviour from
complex dynamics [1].

This manuscript uses the Axelrod library [2, 3], open source software for conducting IPD research with reproducibility as a principal
goal. Written in the Python programming language, to date the library contains source code contributed by over 50 individuals from
a variety of geographic locations and technical backgrounds. The library is supported by a comprehensive test suite that covers all
the intended behaviors of all of the strategies in the library, as well as the features that conduct matches, tournaments, and
population dynamics.

The library is continuously developed and as of version 3.0.0, the library contains over 200 strategies, many from the scientific
literature, including classic strategies like Win Stay Lose Shift [4] and previous tournament winners such as OmegaTFT [5],
Adaptive Pavlov [6], and ZDGTFT2 [7].

Since Robert Axelrod’s seminal tournament [8], a number of IPD tournaments have been undertaken and are summarised in Table
1. Further to the work described in [2] a regular set of standard, noisy [9] and probabilistic ending [10] tournaments are carried out
as more strategies are added to the Axelrod library. Details and results are available here: http://axelrod-
tournament.readthedocs.io. This work presents a detailed analysis of tournaments with 176 strategies.

Published: December 11, 2017 https://doi.org/10.1371/journal.pone.0188046

Reinforcement learning produces dominant strategies for
the Iterated Prisoner’s Dilemma
Marc Harper , Vincent Knight , Martin Jones , Georgios Koutsovoulos , Nikoleta E. Glynatsi , Owen Campbell

http://creativecommons.org/licenses/by/4.0/
https://zenodo.org/record/832287
https://doi.org/10.5281/zenodo.832287
http://axelrod-tournament.readthedocs.io/
https://doi.org/10.1371/journal.pone.0188046

Table 1. An overview of a selection of published tournaments.
Not all tournaments were ‘standard’ round robins; for more details see the indicated references.
https://doi.org/10.1371/journal.pone.0188046.t001

In this work we describe how collections of strategies in the Axelrod library have been used to train new strategies specifically to
win IPD tournaments. These strategies are trained using generic strategy archetypes based on e.g. finite state machines, arriving
at particularly effective parameter choices through evolutionary or particle swarm algorithms. There are several previous
publications that use evolutionary algorithms to evolve IPD strategies in various circumstances [13–22]. See also [23] for a strategy
trained to win against a collection of well-known IPD opponents and see [24] for a prior use of particle swarm algorithms. Our
results are unique in that we are able to train against a large and diverse collection of strategies available from the scientific
literature. Crucially, the software used in this work is openly available and can be used to train strategies in the future in a reliable
manner, with confidence that the opponent strategies are correctly implemented, tested and documented.

Materials and methods
The strategy archetypes

The Axelrod library now contains many parametrised strategies trained using machine learning methods. Most are deterministic,
use many rounds of memory, and perform extremely well in tournaments as will be discussed in the results Section. Training will be
discussed in a later section. These strategies can encode a variety of other strategies, including classic strategies like Tit For Tat
[25], handshake strategies, and grudging strategies, that always defect after an opponent defection.

LookerUp.

The LookerUp strategy is based on a lookup table and encodes a set of deterministic responses based on the opponent’s first n
moves, the opponent’s last m moves, and the players last m moves. If n > 0 then the player has infinite memory depth,
otherwise it has depth max(m , m). This is illustrated diagrammatically in Fig 1.

Fig 1. Diagrammatic representation of the looker up archetype.
https://doi.org/10.1371/journal.pone.0188046.g001

Training of this strategy corresponds to finding maps from partial histories to actions, either a cooperation or a defection. Although
various combinations of n , m , and m have been tried, the best performance at the time of training was obtained for n = m = m
= 2 and generally for n > 0. A strategy called EvolvedLookerUp2_2_2 is among the top strategies in the library.

This archetype can be used to train deterministic memory-n strategies with the parameters n = 0 and m = m = n. For n = 1, the
resulting strategy cooperates if the last round was mutual cooperation and defects otherwise, known as Grim or Grudger.

Two strategies in the library, Winner12 and Winner21, from [26], are based on lookup tables for n = 0, m = 1, and m = 2. The
strategy Winner12 emerged in less than 10 generations of training in our framework using a score maximizing objective. Strategies
nearly identical to Winner21 arise from training with a Moran process objective.

Gambler.

Gambler is a stochastic variant of LookerUp. Instead of deterministically encoded moves the lookup table emits probabilities which
are used to choose cooperation or defection. This is illustrated diagrammatically in Fig 2.

1
1 2 1
1 2

1 1 2 1 1 2
1

1 1 2

1 1 2

https://doi.org/10.1371/journal.pone.0188046.t001
https://doi.org/10.1371/journal.pone.0188046.g001
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.t001
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g001

Fig 2. Diagrammatic representation of the Gambler archetype.
https://doi.org/10.1371/journal.pone.0188046.g002

Training of this strategy corresponds to finding maps from histories to a probability of cooperation. The library includes a strategy
trained with n = m = m = 2 that is mostly deterministic, with 52 of the 64 probabilities being 0 or 1.

This strategy type can be used to train arbitrary memory-n strategies. A memory one strategy called PSOGamblerMem1 was
trained, with probabilities (Pr(C | CC), Pr(C | CD), Pr(C | DC), Pr(C | DD)) = (1, 0.5217, 0, 0.121). Though it performs well in
standard tournaments (see Table 2) it does not outperform the longer memory strategies, and is bested by a similar strategy that
also uses the first round of play: PSOGambler_1_1_1.

Table 2. Standard tournament: Mean score per turn of top 15 strategies (ranked by median over 50000 tournaments).
The leaderboard is dominated by the trained strategies (indicated by a *).
https://doi.org/10.1371/journal.pone.0188046.t002

These strategies are trained with a particle swarm algorithm rather than an evolutionary algorithm (though the former would
suffice). Particle swarm algorithms have been used to trained IPD strategies previously [24].

ANN: Single hidden layer artificial neural network.

Strategies based on artificial neural networks use a variety of features computed from the history of play:

These are then input into a feed forward neural network with one layer and user-supplied width. This is illustrated diagrammatically
in Fig 3.

1 1 2

Opponent’s first move is C!

Opponent’s first move is D!

Opponent’s second move is C!

Opponent’s second move is D!

Player’s previous move is C!

Player’s previous move is D!

Player’s second previous move is C!

Player’s second previous move is D!

Opponent’s previous move is C!

Opponent’s previous move is D!

Opponent’s second previous move is C!

Opponent’s second previous move is D!

Total opponent cooperations!

Total opponent defections!

Total player cooperations!

Total player defections!

Round number!

https://doi.org/10.1371/journal.pone.0188046.g002
https://doi.org/10.1371/journal.pone.0188046.t002
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g002
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.t002

Fig 3. Diagrammatic representation of the ANN archetype.
https://doi.org/10.1371/journal.pone.0188046.g003

Training of this strategy corresponds to finding parameters of the neural network. An inner layer with just five nodes performs quite
well in both deterministic and noisy tournaments. The output of the ANN used in this work is deterministic; a stochastic variant that
outputs probabilities rather than exact moves could be created.

Finite state machines.

Strategies based on finite state machines are deterministic and computationally efficient. In each round of play the strategy selects
an action based on the current state and the opponent’s last action, transitioning to a new state for the next round. This is illustrated
diagrammatically in Fig 4.

Fig 4. Diagrammatic representation of the finite state machine archetype.
https://doi.org/10.1371/journal.pone.0188046.g004

Training this strategy corresponds to finding mappings of states and histories to an action and a state. Figs 5 and 6 show two of the
trained finite state machines. The layout of state nodes is kept the same between Figs 5 and 6 to highlight the effect of different
training environments. Note also that two of the 16 states are not used, this is also an outcome of the training process.

Fig 5. Evolved_FSM_16: Trained to maximize score in a standard tournament.
https://doi.org/10.1371/journal.pone.0188046.g005

https://doi.org/10.1371/journal.pone.0188046.g003
https://doi.org/10.1371/journal.pone.0188046.g004
https://doi.org/10.1371/journal.pone.0188046.g005
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g003
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g004
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g005

Fig 6. Evolved_FSM_16_Noise_05: Trained to maximize score in a noisy tournament.
https://doi.org/10.1371/journal.pone.0188046.g006

Hidden markov models.

A variant of finite state machine strategies are called hidden Markov models (HMMs). Like the strategies based on finite state
machines, these strategies also encode an internal state. However, they use probabilistic transitions based on the prior round of
play to other states and cooperate or defect with various probabilities at each state. This is shown diagrammatically in Fig 7.
Training this strategy corresponds to finding mappings of states and histories to probabilities of cooperating as well as probabilities
of the next internal state.

Fig 7. Diagrammatic representation of the hidden markov model archetype.
https://doi.org/10.1371/journal.pone.0188046.g007

Meta strategies.

There are several strategies based on ensemble methods that are common in machine learning called Meta strategies. These
strategies are composed of a team of other strategies. In each round, each member of the team is polled for its desired next move.
The ensemble then selects the next move based on a rule, such as the consensus vote in the case of MetaMajority or the best
individual performance in the case of MetaWinner. These strategies were among the highest performing in the library before the
inclusion of those trained by reinforcement learning.

Because these strategies inherit many of the properties of the strategies on which they are based, including using knowledge of the
match length to defect on the last round(s) of play, not all of these strategies were included in results of this paper. These strategies
do not typically outperform the trained strategies described above.

Training methods

The trained strategies (denoted by a * in Appendix A) were trained using reinforcement learning algorithms. The ideas of
reinforcement learning can be attributed to the original work of [27] in which the notion that computers would learn by taking
random actions but according to a distribution that picked actions with high rewards more often. The two particular algorithms used
here:

The Particle Swarm Algorithm is implemented using the pyswarm library: https://pypi.python.org/pypi/pyswarm. This algorithm was
used only to train the Gambler archetype.

All other strategies were trained using evolutionary algorithms. The evolutionary algorithms used standard techniques, varying
strategies by mutation and crossover, and evaluating the performance against each opponent for many repetitions. The best
performing strategies in each generation are persisted, variants created, and objective functions computed again.

Particle Swarm Algorithm: [28].!

Evolutionary algorithm: [29].!

https://doi.org/10.1371/journal.pone.0188046.g006
https://doi.org/10.1371/journal.pone.0188046.g007
https://pypi.python.org/pypi/pyswarm
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g006
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g007

The default parameters for this procedure:

All implementations of these algorithms are archived at [30]. This software is (similarly to the Axelrod library) available on github
https://github.com/Axelrod-Python/axelrod-dojo. There are objective functions for:

These can be used in noisy or standard environments. These objectives can be further modified to suit other purposes. New
strategies could be trained with variations including spatial structure and probabilistically ending matches.

Results
This section presents the results of a large IPD tournament with strategies from the Axelrod library, including some additional
parametrized strategies (e.g. various parameter choices for Generous Tit For Tat [23]). These are listed in Appendix A.

All strategies in the tournament follow a simple set of rules in accordance with earlier tournaments:

Any strategy that does not follow these rules, such as a strategy that defects on the last round of play, was omitted from the
tournament presented here (but not necessarily from the training pool).

A total of 176 are included, of which 53 are stochastic. A standard tournament with 200 turns and a tournament with 5% noise is
discussed. Due to the inherent stochasticity of these IPD tournaments, these tournaments were repeated 50000 times. This allows
for a detailed and confident analysis of the performance of strategies. To illustrate the results considered, Fig 8 shows the
distribution of the mean score per turn of Tit For Tat over all the repetitions. Similarly, Fig 9 shows the ranks of of Tit For Tat for each
repetition. (We note that it never wins a tournament). Finally Fig 10 shows the number of opponents beaten in any given
tournament: Tit For Tat does not win any match. (This is due to the fact that it will either draw with mutual cooperation or defect
second).

Fig 8. Scores for Tit for Tat over 50000 tournaments.
https://doi.org/10.1371/journal.pone.0188046.g008

A population size of 40 individuals (kept constant across the generations);!

A mutation rate of 10%;!

10 individuals kept from one generation to the next;!

A total of 500 generations.!

total or mean payoff,!

total or mean payoff difference (unused in this work),!

total Moran process wins (fixation probability). This lead to the strategies named TF1, TF2, TF3 listed in Appendix A.!

Players are unaware of the number of turns in a match.!

Players carry no acquired state between matches.!

Players cannot observe the outcome of other matches.!

Players cannot identify their opponent by any label or identifier.!

Players cannot manipulate or inspect their opponents in any way.!

https://github.com/Axelrod-Python/axelrod-dojo
https://doi.org/10.1371/journal.pone.0188046.g008
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g008
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g009

Fig 9. Ranks for Tit for Tat over 50000 tournaments.
https://doi.org/10.1371/journal.pone.0188046.g009

Fig 10. Wins for Tit for Tat over 50000 tournaments.
https://doi.org/10.1371/journal.pone.0188046.g010

The utilities used are (R, P, T, S) = (3, 1, 5, 0) thus the specific Prisoner’s Dilemma being played is:

(1)

All data generated for this work is archived and available at [31].

Standard tournament

The top 11 performing strategies by median payoff are all strategies trained to maximize total payoff against a subset of the
strategies (Table 2). The next strategy is Desired Belief Strategy (DBS) [32], which actively analyzes the opponent and responds
accordingly. The next two strategies are Winner12, based on a lookup table, Fool Me Once [3], a grudging strategy that defects
indefinitely on the second defection, and Omega Tit For Tat [12].

For completeness, violin plots showing the distribution of the scores of each strategy (again ranked by median score) are shown in
Fig 11.

Fig 11. Standard tournament: Mean score per turn (strategies ordered by median score over 50000 tournaments).
https://doi.org/10.1371/journal.pone.0188046.g011

Pairwise payoff results are given as a heatmap (Fig 12) which shows that many strategies achieve mutual cooperation (obtaining a
score of 3). The top performing strategies never defect first yet are able to exploit weaker strategies that attempt to defect.

https://doi.org/10.1371/journal.pone.0188046.g009
https://doi.org/10.1371/journal.pone.0188046.g010
https://doi.org/10.1371/journal.pone.0188046.g011
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g010
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g011
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g012

Fig 12. Standard tournament: Mean score per turn of row players against column players (ranked by median over 50000 tournaments).
https://doi.org/10.1371/journal.pone.0188046.g012

The strategies that win the most matches (Table 3) are Defector [1] and Aggravater [3], followed by handshaking and zero
determinant strategies [33]. This includes two handshaking strategies that were the result of training to maximize Moran process
fixation (TF1 and TF2). No strategies were trained specifically to win matches. None of the top scoring strategies appear in the top
15 list of strategies ranked by match wins. This can be seen in Fig 13 where the distribution of the number of wins of each strategy
is shown.

Table 3. Standard tournament: Number of wins per tournament of top 15 strategies (ranked by median wins over 50000 tournaments).
https://doi.org/10.1371/journal.pone.0188046.t003

Fig 13. Standard tournament: Number of wins per tournament (ranked by median over 50000 tournaments).
https://doi.org/10.1371/journal.pone.0188046.g013

The number of wins of the top strategies of Table 2 are shown in Table 4. It is evident that although these strategies score highly
they do not win many matches: the strategy with the most number of wins is the Evolved FSM 16 strategy that at most won 60
(60/175 ≈ 34%) matches in a given tournament.

Table 4. Standard tournament: Number of wins per tournament of top 15 strategies (ranked by median score over 50000 tournaments) *
indicates that the strategy was trained.
https://doi.org/10.1371/journal.pone.0188046.t004

Finally, Table 5 and Fig 14 show the ranks (based on median score) of each strategy over the repeated tournaments. Whilst there is
some stochasticity, the top three strategies almost always rank in the top three. For example, the worst that the
EvolvedLookerUp_2_2_2 ranks in any tournament is 8th.

Table 5. Standard tournament: Rank in each tournament of top 15 strategies (ranked by median over 50000 tournaments) * indicates that the
strategy was trained.
https://doi.org/10.1371/journal.pone.0188046.t005

https://doi.org/10.1371/journal.pone.0188046.g012
https://doi.org/10.1371/journal.pone.0188046.t003
https://doi.org/10.1371/journal.pone.0188046.g013
https://doi.org/10.1371/journal.pone.0188046.t004
https://doi.org/10.1371/journal.pone.0188046.t005
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.t003
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g013
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.t004
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.t005

Fig 14. Standard tournament: Rank in each tournament (ranked by median over 50000 tournaments).
https://doi.org/10.1371/journal.pone.0188046.g014

Figs 15–17 shows the rate of cooperation in each round for the top three strategies. The opponents in these figures are ordered
according to performance by median score. It is evident that the high performing strategies share a common thread against the top
strategies: they do not defect first and achieve mutual cooperation. Against the lower strategies they also do not defect first (a
mean cooperation rate of 1 in the first round) but do learn to quickly retaliate.

Fig 15. Cooperation rates for EvolvedLookerUp_2_2_2 (strategies ordered by median score over 10000 tournaments).
https://doi.org/10.1371/journal.pone.0188046.g015

Fig 16. Cooperation rates for Evolved_HMM_5 (strategies ordered by median score over 10000 tournaments).
https://doi.org/10.1371/journal.pone.0188046.g016

https://doi.org/10.1371/journal.pone.0188046.g014
https://doi.org/10.1371/journal.pone.0188046.g015
https://doi.org/10.1371/journal.pone.0188046.g016
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g014
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g015
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g016

Fig 17. Cooperation rates for Evolved_FSM_16 (strategies ordered by median score over 10000 tournaments).
https://doi.org/10.1371/journal.pone.0188046.g017

Noisy tournament

Results from noisy tournaments in which there is a 5% chance that an action is flipped are now described. As shown in Table 6 and
Fig 18, the best performing strategies in median payoff are DBS, designed to account for noise, followed by two strategies trained
in the presence of noise and three trained strategies trained without noise. One of the strategies trained with noise (PSO Gambler)
actually performs less well than some of the other high ranking strategies including Spiteful TFT (TFT but defects indefinitely if the
opponent defects twice consecutively) and OmegaTFT (also designed to handle noise). While DBS is the clear winner, it comes at
a 6x increased run time over Evolved FSM 16 Noise 05.

Table 6. Noisy (5%) tournament: Mean score per turn of top 15 strategies (ranked by median over 50000 tournaments) * indicates that the
strategy was trained.
https://doi.org/10.1371/journal.pone.0188046.t006

Fig 18. Noisy (5%) tournament: Mean score per turn (strategies ordered by median score over 50000 tournaments).
https://doi.org/10.1371/journal.pone.0188046.g018

Recalling Table 2, the strategies trained in the presence of noise are also among the best performers in the absence of noise. As
shown in Fig 19 the cluster of mutually cooperative strategies is broken by the noise at 5%. A similar collection of players excels at
winning matches but again they have a poor total payoff.

https://doi.org/10.1371/journal.pone.0188046.g017
https://doi.org/10.1371/journal.pone.0188046.t006
https://doi.org/10.1371/journal.pone.0188046.g018
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g017
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.t006
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g018

Fig 19. Noisy (5%) tournament: Mean score per turn of row players against column players (ranked by median over 50000 tournaments).
https://doi.org/10.1371/journal.pone.0188046.g019

As shown in Table 7 and Fig 20 the strategies tallying the most wins are somewhat similar to the standard tournaments, with
Defector, the handshaking CollectiveStrategy [34], and Aggravater appearing as the top three again.

Table 7. Noisy (5%) tournament: Number of wins per tournament of top 15 strategies (ranked by median wins over 50000 tournaments).
https://doi.org/10.1371/journal.pone.0188046.t007

Fig 20. Noisy (5%) tournament: Number of wins per tournament (strategies ordered by median score over 50000 tournaments).
https://doi.org/10.1371/journal.pone.0188046.g020

As shown in Table 8, the top ranking strategies win a larger number of matches in the presence of noise. For example Spiteful Tit
For Tat [35] in one tournament won almost all its matches (167).

Table 8. Noisy (5%) tournament: Number of wins per tournament of top 15 strategies (ranked by median score over 50000 tournaments) *
indicates that the strategy was trained.
https://doi.org/10.1371/journal.pone.0188046.t008

Finally, Table 9 and Fig 21 show the ranks (based on median score) of each strategy over the repeated tournaments. We see that
the stochasticity of the ranks understandably increases relative to the standard tournament. An exception is the top three
strategies, for example, the DBS strategy never ranks lower than second and wins 75% of the time. The two strategies trained for
noisy tournaments rank in the top three 95% of the time.

https://doi.org/10.1371/journal.pone.0188046.g019
https://doi.org/10.1371/journal.pone.0188046.t007
https://doi.org/10.1371/journal.pone.0188046.g020
https://doi.org/10.1371/journal.pone.0188046.t008
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g019
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.t007
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g020
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.t008

Table 9. Noisy (5%) tournament: Rank in each tournament of top 15 strategies (ranked by median over 50000 tournaments) * indicates that the
strategy was trained.
https://doi.org/10.1371/journal.pone.0188046.t009

Fig 21. Noisy (5%) tournament: Rank in each tournament (strategies ordered by median score over 50000 tournaments).
https://doi.org/10.1371/journal.pone.0188046.g021

Figs 22–24 shows the rate of cooperation in each round for the top three strategies (in the absence of noise) and just as for the top
performing strategies in the standard tournament it is evident that the strategies never defect first and learn to quickly punish poorer
strategies.

Fig 22. Cooperation rates for DBS (strategies ordered by median score over 10000 tournaments).
https://doi.org/10.1371/journal.pone.0188046.g022

‘

Fig 23. Cooperation rates for Evolved_ANN_5_Noise_05 (strategies ordered by median score over 10000 tournaments).
https://doi.org/10.1371/journal.pone.0188046.g023

https://doi.org/10.1371/journal.pone.0188046.t009
https://doi.org/10.1371/journal.pone.0188046.g021
https://doi.org/10.1371/journal.pone.0188046.g022
https://doi.org/10.1371/journal.pone.0188046.g023
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.t009
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g021
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g022
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g023

Fig 24. Cooperation rates for Evolved_FSM_16_Noise_05 (strategies ordered by median score over 10000 tournaments).
https://doi.org/10.1371/journal.pone.0188046.g024

Discussion
The tournament results indicate that pre-trained strategies are generally better than human designed strategies at maximizing
payoff against a diverse set of opponents. An evolutionary algorithm produces strategies based on multiple generic archetypes that
are able to achieve a higher average score than any other known opponent in a standard tournament. Most of the trained strategies
use multiple rounds of the history of play (some using all of it) and outperform memory-one strategies from the literature.
Interestingly, a trained memory one strategy produced by a particle swarm algorithm performs well, better than human designed
strategies such as Win Stay Lose Shift and zero determinant strategies (which enforce a payoff difference rather than maximize
total payoff).

In opposition to historical tournament results and community folklore, our results show that complex strategies can be effective for
the IPD. Of all the human-designed strategies in the library, only DBS consistently performs well, and it is substantially more
complex than traditional tournament winners like TFT, OmegaTFT, and zero determinant strategies.

The generic structure of the trained strategies did not appear to be critical for the standard tournament—strategies based on lookup
tables, finite state machines, neural networks, and stochastic variants all performed well. Single layer neural networks performed
well in both noisy and standard tournaments though these had some aspect of human involvement in the selection of features. This
is in line with the other strategies also where some human decisions are made regarding the structure. For the LookerUp and
Gambler archetypes a decision has to be made regarding the number of rounds of history and initial play that are to be used. In
contrast, the finite state machines and hidden Markov models required only a choice of the number of states, and the training
algorithm can eliminate unneeded states in the case of finite state machines (evidenced by the unconnected nodes in the diagrams
for the included representations).

Many strategies can be represented by multiple archetypes, however some archetypes will be more efficient in encoding the
patterns present in the data. The fact that the Lookerup strategy does the best for the standard tournament indicates that it
represents an efficient reduction of dimension which in turn makes its training more efficient. In particular the first rounds of play
were valuable bits of information. For the noisy tournament however the dimension reduction represented by some archetypes
indicates that some features of the data are not captured by the lookup tables while they are by the neural networks and the finite
state machines, allowing the latter to adapt better to the noisy environment. Intuitively, a noisy environment can significantly affect a
lookup table based on the last two rounds of play since these action pairs compete with probing defections, apologies, and
retaliations. Accordingly, it is not surprising that additional parameter space is needed to adapt to a noisy environment.

Two strategies designed specifically to account for noise, DBS and OmegaTFT, perform well and only DBS performs better than the
trained strategies and only in noisy contexts. Empirically we find that DBS (with its default parameters) does not win tournaments
at 1% noise. However DBS has a parameter that accounts for the expected amount of noise and a followup study with various
noise levels could make a more complete study of the performance of DBS and strategies trained at various noise levels.

The strategies trained to maximize their average score are generally cooperative and do not defect first. Maximizing for individual
performance across a collection of opponents leads to mutual cooperation despite the fact that mutual cooperation is an unstable
evolutionary equilibrium for the prisoner’s dilemma. Specifically it is noted that the reinforcement learning process for maximizing
payoff does not lead to exploitative zero determinant strategies, which may also be a result of the collection of training strategies, of
which several retaliate harshly. Training with the objective of maximizing payoff difference may produce strategies more like zero
determinant strategies.

For the trained strategies utilizing look up tables we generally found those that incorporate one or more of the initial rounds of play
outperformed those that did not. The strategies based on neural networks and finite state machines also are able to condition
throughout a match on the first rounds of play. Accordingly, we conclude that first impressions matter in the IPD. The best strategies
are nice (never defecting first) and the impact of the first rounds of play could be further investigated with the Axelrod library in
future work by e.g. forcing all strategies to defect on the first round.

We note that as the library grows, the top performing strategies sometimes shuffle, and are not retrained automatically. Most of the
strategies were trained on an earlier version of the library (v2.2.0: [36]) that did not include DBS and several other opponents. The
precise parameters that are optimal will depend on the pool of opponents. Moreover we have not extensively trained strategies to
determine the minimum parameter spaces that are sufficient—neural networks with fewer nodes and features and finite state
machines with fewer states may suffice. See [37] for discussion of resource availability for IPD strategies.

https://doi.org/10.1371/journal.pone.0188046.g024
https://journals.plos.org/plosone/article/figure/image?size=medium&id=info:doi/10.1371/journal.pone.0188046.g024

Finally, whilst we have considered the robustness of our claims and results with respect to noise it would also be of interest to train
strategies for different versions of the stage game (also referred to as dilemma strength) [38, 39]. Our findings seems to indicate
that obtaining strong strategies for other games through reinforcement learning would be possible.

A Appendix A: List of players
The players used for this study are from Axelrod version 2.13.0 [3].

1. ϕ—Deterministic—Memory depth: ∞. [3]

2. π—Deterministic—Memory depth: ∞. [3]

3. e—Deterministic—Memory depth: ∞. [3]

4. ALLCorALLD—Stochastic—Memory depth: 1. [3]

5. Adaptive—Deterministic—Memory depth: ∞. [43]

6. Adaptive Pavlov 2006—Deterministic—Memory depth: ∞. [12]

7. Adaptive Pavlov 2011—Deterministic—Memory depth: ∞. [43]

8. Adaptive Tit For Tat: 0.5—Deterministic—Memory depth: ∞. [44]

9. Aggravater—Deterministic—Memory depth: ∞. [3]

10. Alternator—Deterministic—Memory depth: 1. [1, 45]

11. Alternator Hunter—Deterministic—Memory depth: ∞. [3]

12. Anti Tit For Tat—Deterministic—Memory depth: 1. [46]

13. AntiCycler—Deterministic—Memory depth: ∞. [3]

14. Appeaser—Deterministic—Memory depth: ∞. [3]

15. Arrogant QLearner—Stochastic—Memory depth: ∞. [3]

16. Average Copier—Stochastic—Memory depth: ∞. [3]

17. Better and Better—Stochastic—Memory depth: ∞. [35]

18. Bully—Deterministic—Memory depth: 1. [47]

19. Calculator—Stochastic—Memory depth: ∞. [35]

20. Cautious QLearner—Stochastic—Memory depth: ∞. [3]

21. CollectiveStrategy (CS)—Deterministic—Memory depth: ∞. [34]

22. Contrite Tit For Tat (CTfT)—Deterministic—Memory depth: 3. [48]

23. Cooperator—Deterministic—Memory depth: 0. [1, 33, 45]

24. Cooperator Hunter—Deterministic—Memory depth: ∞. [3]

25. Cycle Hunter—Deterministic—Memory depth: ∞. [3]

26. Cycler CCCCCD—Deterministic—Memory depth: 5. [3]

27. Cycler CCCD—Deterministic—Memory depth: 3. [3]

28. Cycler CCCDCD—Deterministic—Memory depth: 5. [3]

29. Cycler CCD—Deterministic—Memory depth: 2. [45]

30. Cycler DC—Deterministic—Memory depth: 1. [3]

31. Cycler DDC—Deterministic—Memory depth: 2. [45]

32. DBS: 0.75, 3, 4, 3, 5—Deterministic—Memory depth: ∞. [32]

33. Davis: 10—Deterministic—Memory depth: ∞. [25]

34. Defector—Deterministic—Memory depth: 0. [1, 33, 45]

35. Defector Hunter—Deterministic—Memory depth: ∞. [3]

36. Desperate—Stochastic—Memory depth: 1. [49]

37. DoubleResurrection—Deterministic—Memory depth: 5. [50]

38. Doubler—Deterministic—Memory depth: ∞. [35]

39. Dynamic Two Tits For Tat—Stochastic—Memory depth: 2. [3]

40. EasyGo—Deterministic—Memory depth: ∞. [35, 43]

41. Eatherley—Stochastic—Memory depth: ∞. [10]

42. Eventual Cycle Hunter—Deterministic—Memory depth: ∞. [3]

43. Evolved ANN—Deterministic—Memory depth: ∞. [3]

44. Evolved ANN 5—Deterministic—Memory depth: ∞. [3]

45. Evolved ANN 5 Noise 05—Deterministic—Memory depth: ∞. [3]

46. Evolved FSM 16—Deterministic—Memory depth: 16. [3]

47. Evolved FSM 16 Noise 05—Deterministic—Memory depth: 16. [3]

48. Evolved FSM 4—Deterministic—Memory depth: 4. [3]

49. Evolved HMM 5—Stochastic—Memory depth: 5. [3]

50. EvolvedLookerUp1_1_1—Deterministic—Memory depth: ∞. [3]

51. EvolvedLookerUp2_2_2—Deterministic—Memory depth: ∞. [3]

52. Feld: 1.0, 0.5, 200—Stochastic—Memory depth: 200. [25]

53. Firm But Fair—Stochastic—Memory depth: 1. [51]

54. Fool Me Forever—Deterministic—Memory depth: ∞. [3]

55. Fool Me Once—Deterministic—Memory depth: ∞. [3]

56. Forgetful Fool Me Once: 0.05—Stochastic—Memory depth: ∞. [3]

57. Forgetful Grudger—Deterministic—Memory depth: 10. [3]

58. Forgiver—Deterministic—Memory depth: ∞. [3]

59. Forgiving Tit For Tat (FTfT)—Deterministic—Memory depth: ∞. [3]

60. Fortress3—Deterministic—Memory depth: 3. [14]

61. Fortress4—Deterministic—Memory depth: 4. [14]

62. GTFT: 0.1—Stochastic—Memory depth: 1.

63. GTFT: 0.3—Stochastic—Memory depth: 1.

64. GTFT: 0.33—Stochastic—Memory depth: 1. [23, 52]

65. GTFT: 0.7—Stochastic—Memory depth: 1.

66. GTFT: 0.9—Stochastic—Memory depth: 1.

67. General Soft Grudger: n = 1, d = 4, c = 2—Deterministic—Memory depth: ∞. [3]

68. Gradual—Deterministic—Memory depth: ∞. [53]

69. Gradual Killer: (‘D’, ‘D’, ‘D’, ‘D’, ‘D’, ‘C’, ‘C’)—Deterministic—Memory depth: ∞. [35]

70. Grofman—Stochastic—Memory depth: ∞. [25]

71. Grudger—Deterministic—Memory depth: 1. [25, 43, 49, 53, 54]

72. GrudgerAlternator—Deterministic—Memory depth: ∞. [35]

73. Grumpy: Nice, 10, −10—Deterministic—Memory depth: ∞. [3]

74. Handshake—Deterministic—Memory depth: ∞. [55]

75. Hard Go By Majority—Deterministic—Memory depth: ∞. [45]

76. Hard Go By Majority: 10—Deterministic—Memory depth: 10. [3]

77. Hard Go By Majority: 20—Deterministic—Memory depth: 20. [3]

78. Hard Go By Majority: 40—Deterministic—Memory depth: 40. [3]

79. Hard Go By Majority: 5—Deterministic—Memory depth: 5. [3]

80. Hard Prober—Deterministic—Memory depth: ∞. [35]

81. Hard Tit For 2 Tats (HTf2T)—Deterministic—Memory depth: 3. [7]

82. Hard Tit For Tat (HTfT)—Deterministic—Memory depth: 3. [56]

83. Hesitant QLearner—Stochastic—Memory depth: ∞. [3]

84. Hopeless—Stochastic—Memory depth: 1. [49]

85. Inverse—Stochastic—Memory depth: ∞. [3]

86. Inverse Punisher—Deterministic—Memory depth: ∞. [3]

87. Joss: 0.9—Stochastic—Memory depth: 1. [7, 25]

88. Level Punisher—Deterministic—Memory depth: ∞. [50]

89. Limited Retaliate 2: 0.08, 15—Deterministic—Memory depth: ∞. [3]

90. Limited Retaliate 3: 0.05, 20—Deterministic—Memory depth: ∞. [3]

91. Limited Retaliate: 0.1, 20—Deterministic—Memory depth: ∞. [3]

92. MEM2—Deterministic—Memory depth: ∞. [57]

93. Math Constant Hunter—Deterministic—Memory depth: ∞. [3]

94. Meta Hunter Aggressive: 7 players—Deterministic—Memory depth: ∞. [3]

95. Meta Hunter: 6 players—Deterministic—Memory depth: ∞. [3]

96. Meta Mixer: 173 players—Stochastic—Memory depth: ∞. [3]

97. Naive Prober: 0.1—Stochastic—Memory depth: 1. [43]

98. Negation—Stochastic—Memory depth: 1. [56]

99. Nice Average Copier—Stochastic—Memory depth: ∞. [3]

100. Nydegger—Deterministic—Memory depth: 3. [25]

101. Omega TFT: 3, 8—Deterministic—Memory depth: ∞. [12]

102. Once Bitten—Deterministic—Memory depth: 12. [3]

103. Opposite Grudger—Deterministic—Memory depth: ∞. [3]

104. PSO Gambler 1_1_1—Stochastic—Memory depth: ∞. [3]

105. PSO Gambler 2_2_2—Stochastic—Memory depth: ∞. [3]

106. PSO Gambler 2_2_2 Noise 05—Stochastic—Memory depth: ∞. [3]

107. PSO Gambler Mem1—Stochastic—Memory depth: 1. [3]

108. Predator—Deterministic—Memory depth: 9. [14]

109. Prober—Deterministic—Memory depth: ∞. [43]

110. Prober 2—Deterministic—Memory depth: ∞. [35]

111. Prober 3—Deterministic—Memory depth: ∞. [35]

112. Prober 4—Deterministic—Memory depth: ∞. [35]

113. Pun1—Deterministic—Memory depth: 2. [14]

114. Punisher—Deterministic—Memory depth: ∞. [3]

115. Raider—Deterministic—Memory depth: 3. [17]

116. Random Hunter—Deterministic—Memory depth: ∞. [3]

117. Random: 0.1—Stochastic—Memory depth: 0.

118. Random: 0.3—Stochastic—Memory depth: 0.

119. Random: 0.5—Stochastic—Memory depth: 0. [25, 44]

120. Random: 0.7—Stochastic—Memory depth: 0.

121. Random: 0.9—Stochastic—Memory depth: 0.

122. Remorseful Prober: 0.1—Stochastic—Memory depth: 2. [43]

123. Resurrection—Deterministic—Memory depth: 5. [50]

124. Retaliate 2: 0.08—Deterministic—Memory depth: ∞. [3]

125. Retaliate 3: 0.05—Deterministic—Memory depth: ∞. [3]

126. Retaliate: 0.1—Deterministic—Memory depth: ∞. [3]

127. Revised Downing: True—Deterministic—Memory depth: ∞. [25]

128. Ripoff—Deterministic—Memory depth: 2. [58]

129. Risky QLearner—Stochastic—Memory depth: ∞. [3]

130. SelfSteem—Stochastic—Memory depth: ∞. [59]

131. ShortMem—Deterministic—Memory depth: 10. [59]

132. Shubik—Deterministic—Memory depth: ∞. [25]

133. Slow Tit For Two Tats—Deterministic—Memory depth: 2. [3]

134. Slow Tit For Two Tats 2—Deterministic—Memory depth: 2. [35]

135. Sneaky Tit For Tat—Deterministic—Memory depth: ∞. [3]

136. Soft Go By Majority—Deterministic—Memory depth: ∞. [1, 45]

137. Soft Go By Majority: 10—Deterministic—Memory depth: 10. [3]

138. Soft Go By Majority: 20—Deterministic—Memory depth: 20. [3]

139. Soft Go By Majority: 40—Deterministic—Memory depth: 40. [3]

140. Soft Go By Majority: 5—Deterministic—Memory depth: 5. [3]

141. Soft Grudger—Deterministic—Memory depth: 6. [43]

142. Soft Joss: 0.9—Stochastic—Memory depth: 1. [35]

143. SolutionB1—Deterministic—Memory depth: 3. [15]

144. SolutionB5—Deterministic—Memory depth: 5. [15]

145. Spiteful Tit For Tat—Deterministic—Memory depth: ∞. [35]

146. Stochastic Cooperator—Stochastic—Memory depth: 1. [60]

147. Stochastic WSLS: 0.05—Stochastic—Memory depth: 1. [3]

1.

View Article Google Scholar

2.

3.

View Article PubMed/NCBI Google Scholar

4.

View Article Google Scholar

5.

148. Suspicious Tit For Tat—Deterministic—Memory depth: 1. [46, 53]

149. TF1—Deterministic—Memory depth: ∞. [3]

150. TF2—Deterministic—Memory depth: ∞. [3]

151. TF3—Deterministic—Memory depth: ∞. [3]

152. Tester—Deterministic—Memory depth: ∞. [10]

153. ThueMorse—Deterministic—Memory depth: ∞. [3]

154. ThueMorseInverse—Deterministic—Memory depth: ∞. [3]

155. Thumper—Deterministic—Memory depth: 2. [58]

156. Tit For 2 Tats (Tf2T)—Deterministic—Memory depth: 2. [1]

157. Tit For Tat (TfT)—Deterministic—Memory depth: 1. [25]

158. Tricky Cooperator—Deterministic—Memory depth: 10. [3]

159. Tricky Defector—Deterministic—Memory depth: ∞. [3]

160. Tullock: 11—Stochastic—Memory depth: 11. [25]

161. Two Tits For Tat (2TfT)—Deterministic—Memory depth: 2. [1]

162. VeryBad—Deterministic—Memory depth: ∞. [59]

163. Willing—Stochastic—Memory depth: 1. [49]

164. Win-Shift Lose-Stay: D (WShLSt)—Deterministic—Memory depth: 1. [43]

165. Win-Stay Lose-Shift: C (WSLS)—Deterministic—Memory depth: 1. [7, 52, 61]

166. Winner12—Deterministic—Memory depth: 2. [26]

167. Winner21—Deterministic—Memory depth: 2. [26]

168. Worse and Worse—Stochastic—Memory depth: ∞. [35]

169. Worse and Worse 2—Stochastic—Memory depth: ∞. [35]

170. Worse and Worse 3—Stochastic—Memory depth: ∞. [35]

171. ZD-Extort-2 v2: 0.125, 0.5, 1—Stochastic—Memory depth: 1. [62]

172. ZD-Extort-2: 0.1111111111111111, 0.5—Stochastic—Memory depth: 1. [7]

173. ZD-Extort-4: 0.23529411764705882, 0.25, 1—Stochastic—Memory depth: 1. [3]

174. ZD-GEN-2: 0.125, 0.5, 3—Stochastic—Memory depth: 1. [62]

175. ZD-GTFT-2: 0.25, 0.5—Stochastic—Memory depth: 1. [7]

176. ZD-SET-2: 0.25, 0.0, 2—Stochastic—Memory depth: 1. [62]

Acknowledgments
This work was performed using the computational facilities of the Advanced Research Computing @ Cardiff (ARCCA) Division,
Cardiff University.

A variety of software libraries have been used in this work:

References
Axelrod RM. The evolution of cooperation. Basic books; 2006.

Knight V, Campbell O, Harper M, Langner K, Campbell J, Campbell T, et al. An Open Framework for the Reproducible Study of the Iterated Prisoner’s
Dilemma. Journal of Open Research Software. 2016;4(1).

project developers TA. Axelrod-Python/Axelrod: v2.13.0; 2017. https://doi.org/10.5281/zenodo.801749.

Nowak M, Sigmund K. A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner’s Dilemma game. Nature. 1993;364(6432):56.
pmid:8316296

Slany W, Kienreich W. On some winning strategies for the Iterated Prisoner’s Dilemma, or, Mr. Nice Guy and the Cosa Nostra. The Iterated Prisoners’
Dilemma: 20 Years on. 2007;4:171.

The Axelrod library (IPD strategies and Tournaments) [3].!

The matplotlib library (visualisation) [40].!

The pandas and numpy libraries (data manipulation) [41, 42].!

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188046%23
http://scholar.google.com/scholar?q=An+Open+Framework+for+the+Reproducible+Study+of+the+Iterated+Prisoner%E2%80%99s+Dilemma+Knight+2016
https://doi.org/10.1038/364056a0
http://www.ncbi.nlm.nih.gov/pubmed/8316296
http://scholar.google.com/scholar?q=A+strategy+of+win-stay,+lose-shift+that+outperforms+tit-for-tat+in+the+Prisoner%E2%80%99s+Dilemma+game+Nowak+1993
https://doi.org/10.1142/9789812770684_0008
http://scholar.google.com/scholar?q=On+some+winning+strategies+for+the+Iterated+Prisoner%E2%80%99s+Dilemma,+or,+Mr.+Nice+Guy+and+the+Cosa+Nostra+Slany+2007
https://doi.org/10.5281/zenodo.801749

View Article Google Scholar
6.

View Article Google Scholar

7.

View Article Google Scholar
8.

View Article Google Scholar
9.

View Article Google Scholar
10.

View Article Google Scholar

11.

12.

13.

14.

View Article Google Scholar

15.

16.

17.

18.

View Article Google Scholar
19.

View Article Google Scholar
20.

21.

22.

View Article Google Scholar

23.

View Article Google Scholar

24.

View Article Google Scholar
25.

26.

View Article Google Scholar
27.

Li J. How to design a strategy to win an IPD tournament. The iterated prisoner’s dilemma. 2007;20:89–104.

Stewart AJ, Plotkin JB. Extortion and cooperation in the Prisoner’s Dilemma. Proceedings of the National Academy of Sciences. 2012;109(26):10134–
10135.

Axelrod R. Effective Choice in the Prisoner’s Dilemma. Journal of Conflict Resolution. 1980;24(1):3–25.

Bendor J, Kramer RM, Stout S. When in doubt…: Cooperation in a noisy prisoner’s dilemma. Journal of Conflict Resolution. 1991;35(4):691–719.

Axelrod R. More Effective Choice in the Prisoner’s Dilemma. Journal of Conflict Resolution. 1980;24(3):379–403.

Stephens DW, McLinn CM, Stevens JR. Discounting and reciprocity in an Iterated Prisoner’s Dilemma. Science (New York, NY). 2002;298(5601):2216–
2218.

Kendall G, Yao X, Chong SY. The iterated prisoners’ dilemma: 20 years on. vol. 4. World Scientific; 2007.

Ashlock D. Training function stacks to play the iterated prisoner’s dilemma. In: Computational Intelligence and Games, 2006 IEEE Symposium on. IEEE;
2006. p. 111–118.

Ashlock W, Ashlock D. Changes in prisoner’s dilemma strategies over evolutionary time with different population sizes. In: Evolutionary Computation,
2006. CEC 2006. IEEE Congress on. IEEE; 2006. p. 297–304.

Ashlock D, Brown JA, Hingston P. Multiple Opponent Optimization of Prisoner’s Dilemma Playing Agents. IEEE Transactions on Computational
Intelligence and AI in Games. 2015;7(1):53–65.

Ashlock W, Ashlock D. Shaped prisoner’s dilemma automata. In: Computational Intelligence and Games (CIG), 2014 IEEE Conference on. IEEE; 2014. p.
1–8.

Ashlock W, Tsang J, Ashlock D. The evolution of exploitation. In: Foundations of Computational Intelligence (FOCI), 2014 IEEE Symposium on. IEEE;
2014. p. 135–142.

Barlow LA, Ashlock D. Varying decision inputs in Prisoner’s Dilemma. In: Computational Intelligence in Bioinformatics and Computational Biology
(CIBCB), 2015 IEEE Conference on. IEEE; 2015. p. 1–8.

Fogel DB. Evolving behaviors in the iterated prisoner’s dilemma. Evolutionary Computation. 1993;1(1):77–97.

Marks RE. Niche strategies: the Prisoner’s Dilemma computer tournaments revisited. In: JOURNAL OF EVOLUTIONARY ECONOMICS. Citeseer; 1989.

Sudo T, Goto K, Nojima Y, Ishibuchi H. Effects of ensemble action selection with different usage of player’s memory resource on the evolution of
cooperative strategies for iterated prisoner’s dilemma game. In: Evolutionary Computation (CEC), 2015 IEEE Congress on. IEEE; 2015. p. 1505–1512.

Vassiliades V, Christodoulou C. Multiagent reinforcement learning in the iterated prisoner’s dilemma: fast cooperation through evolved payoffs. In: Neural
Networks (IJCNN), The 2010 International Joint Conference on. IEEE; 2010. p. 1–8.

Gaudesi M, Piccolo E, Squillero G, Tonda A. Exploiting evolutionary modeling to prevail in iterated prisoner’s dilemma tournaments. IEEE Transactions on
Computational Intelligence and AI in Games. 2016;8(3):288–300.

Franken N, Engelbrecht AP. Particle swarm optimization approaches to coevolve strategies for the iterated prisoner’s dilemma. IEEE Transactions on
Evolutionary Computation. 2005;9(6):562–579.

Axelrod R. Effective choice in the prisoner’s dilemma. Journal of conflict resolution. 1980;24(1):3–25.

Mathieu P, Delahaye JP. New Winning Strategies for the Iterated Prisoner’s Dilemma (Extended Abstract). 14th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2015). 2015; p. 1665–1666.

Turing AM. Computing machinery and intelligence. Mind. 1950;59(236):433–460.

https://doi.org/10.1142/9789812770684_0004
http://scholar.google.com/scholar?q=How+to+design+a+strategy+to+win+an+IPD+tournament+Li+2007
https://doi.org/10.1073/pnas.1208087109
http://scholar.google.com/scholar?q=Extortion+and+cooperation+in+the+Prisoner%E2%80%99s+Dilemma+Stewart+2012
https://doi.org/10.1177/002200278002400101
http://scholar.google.com/scholar?q=Effective+Choice+in+the+Prisoner%E2%80%99s+Dilemma+Axelrod+1980
https://doi.org/10.1177/0022002791035004007
http://scholar.google.com/scholar?q=When+in+doubt%E2%80%A6:+Cooperation+in+a+noisy+prisoner%E2%80%99s+dilemma+Bendor+1991
https://doi.org/10.1177/002200278002400301
http://scholar.google.com/scholar?q=More+Effective+Choice+in+the+Prisoner%E2%80%99s+Dilemma+Axelrod+1980
https://doi.org/10.1126/science.1078498
http://scholar.google.com/scholar?q=Discounting+and+reciprocity+in+an+Iterated+Prisoner%E2%80%99s+Dilemma+Stephens+2002
https://doi.org/10.1109/TCIAIG.2014.2326012
http://scholar.google.com/scholar?q=Multiple+Opponent+Optimization+of+Prisoner%E2%80%99s+Dilemma+Playing+Agents+Ashlock+2015
https://doi.org/10.1162/evco.1993.1.1.77
http://scholar.google.com/scholar?q=Evolving+behaviors+in+the+iterated+prisoner%E2%80%99s+dilemma+Fogel+1993
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188046%23
http://scholar.google.com/scholar?q=Niche+strategies:+the+Prisoner%E2%80%99s+Dilemma+computer+tournaments+revisited+Marks+1989
https://doi.org/10.1109/TCIAIG.2015.2439061
http://scholar.google.com/scholar?q=Exploiting+evolutionary+modeling+to+prevail+in+iterated+prisoner%E2%80%99s+dilemma+tournaments+Gaudesi+2016
https://doi.org/10.1109/TEVC.2005.856202
http://scholar.google.com/scholar?q=Particle+swarm+optimization+approaches+to+coevolve+strategies+for+the+iterated+prisoner%E2%80%99s+dilemma+Franken+2005
https://doi.org/10.1177/002200278002400101
http://scholar.google.com/scholar?q=Effective+choice+in+the+prisoner%E2%80%99s+dilemma+Axelrod+1980
https://doi.org/10.1093/mind/LIX.236.433
http://scholar.google.com/scholar?q=Computing+machinery+and+intelligence+Turing+1950

View Article Google Scholar
28.

View Article Google Scholar
29.

30.

31.

32.

View Article PubMed/NCBI Google Scholar

33.

View Article PubMed/NCBI Google Scholar

34.

35.

36.

37.

View Article Google Scholar
38.

View Article PubMed/NCBI Google Scholar

39.

View Article Google Scholar
40.

41.

View Article Google Scholar

42.

View Article Google Scholar
43.

44.

View Article Google Scholar

45.

View Article PubMed/NCBI Google Scholar
46.

View Article Google Scholar
47.

View Article Google Scholar
48.

49.

Imran M, Hashim R, Khalid NEA. An overview of particle swarm optimization variants. Procedia Engineering. 2013;53:491–496.

Moriarty DE, Schultz AC, Grefenstette JJ. Evolutionary algorithms for reinforcement learning. J Artif Intell Res(JAIR). 1999;11:241–276.

Harper M, Knight V, Jones M, Koutsovoulos G. Axelrod-Python/axelrod-dojo: V0.0.2; 2017. https://doi.org/10.5281/zenodo.832282.

Knight V, Harper M. Data for: Reinforcement Learning Produces Dominant Strategies for the Iterated Prisoner’s Dilemma; 2017.
https://doi.org/10.5281/zenodo.832287.

Au TC, Nau D. Accident or intention: that is the question (in the Noisy Iterated Prisoner’s Dilemma). In: Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems. ACM; 2006. p. 561–568.

Press WH, Dyson FJ. Iterated Prisoner’s Dilemma contains strategies that dominate any evolutionary opponent. Proceedings of the National Academy of
Sciences of the United States of America. 2012;109(26):10409–13. pmid:22615375

Li J, Kendall G. A strategy with novel evolutionary features for the iterated prisoner’s dilemma. Evolutionary Computation. 2009;17(2):257–274.
pmid:19413490

LIFL. PRISON; 2008. http://www.lifl.fr/IPD/ipd.frame.html.

project developers TA. Axelrod-Python/Axelrod: v2.2.0; 2016. https://doi.org/10.5281/zenodo.211828.

Ashlock D, Kim EY. The impact of varying resources available to iterated prisoner’s dilemma agents. In: Foundations of Computational Intelligence
(FOCI), 2013 IEEE Symposium on. IEEE; 2013. p. 60–67.

Wang Z, Kokubo S, Jusup M, Tanimoto Jun. Universal scaling for the dilemma strength in evolutionary games. Physics of life reviews. 2015;(14):1–30.

Tanimoto J, Sagara H. Relationship between dilemma occurrence and the existence of a weakly dominant strategy in a two-player symmetric game.
BioSystems. 2007 Aug 31;90(1):105–14. pmid:17188808

Hunter JD. Matplotlib: A 2D graphics environment. Computing In Science & Engineering. 2007;9(3):90–95.

McKinney W, et al. Data structures for statistical computing in python. In: Proceedings of the 9th Python in Science Conference. vol. 445. van der Voort S,
Millman J; 2010. p. 51–56.

Walt Svd, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient numerical computation. Computing in Science & Engineering.
2011;13(2):22–30.

Li J, Hingston P, Member S, Kendall G. Engineering Design of Strategies for Winning Iterated Prisoner’ s Dilemma Competitions. 2011;3(4):348–360.

Tzafestas E. Toward adaptive cooperative behavior. From Animals to animals: Proceedings of the 6th International Conference on the Simulation of
Adaptive Behavior (SAB-2000). 2000;2:334–340.

Mittal S, Deb K. Optimal strategies of the iterated prisoner’s dilemma problem for multiple conflicting objectives. IEEE Transactions on Evolutionary
Computation. 2009;13(3):554–565.

Hilbe C, Nowak MA, Traulsen A. Adaptive dynamics of extortion and compliance. PloS one. 2013;8(11):e77886. pmid:24223739

Nachbar JH. Evolution in the finitely repeated prisoner’s dilemma. Journal of Economic Behavior & Organization. 1992;19(3):307–326.

Wu J, Axelrod R. How to cope with noise in the iterated prisoner’s dilemma. Journal of Conflict resolution. 1995;39(1):183–189.

van den Berg P, Weissing FJ. The importance of mechanisms for the evolution of cooperation. In: Proc. R. Soc. B. vol. 282. The Royal Society; 2015. p.
20151382.

https://doi.org/10.1016/j.proeng.2013.02.063
http://scholar.google.com/scholar?q=An+overview+of+particle+swarm+optimization+variants+Imran+2013
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188046%23
http://scholar.google.com/scholar?q=Evolutionary+algorithms+for+reinforcement+learning+Moriarty+1999
https://doi.org/10.1073/pnas.1206569109
http://www.ncbi.nlm.nih.gov/pubmed/22615375
http://scholar.google.com/scholar?q=Iterated+Prisoner%E2%80%99s+Dilemma+contains+strategies+that+dominate+any+evolutionary+opponent+Press+2012
https://doi.org/10.1162/evco.2009.17.2.257
http://www.ncbi.nlm.nih.gov/pubmed/19413490
http://scholar.google.com/scholar?q=A+strategy+with+novel+evolutionary+features+for+the+iterated+prisoner%E2%80%99s+dilemma+Li+2009
https://doi.org/10.1016/j.plrev.2015.04.033
http://scholar.google.com/scholar?q=Universal+scaling+for+the+dilemma+strength+in+evolutionary+games+Wang+2015
https://doi.org/10.1016/j.biosystems.2006.07.005
http://www.ncbi.nlm.nih.gov/pubmed/17188808
http://scholar.google.com/scholar?q=Relationship+between+dilemma+occurrence+and+the+existence+of+a+weakly+dominant+strategy+in+a+two-player+symmetric+game+Tanimoto+2007
https://doi.org/10.1109/MCSE.2007.55
http://scholar.google.com/scholar?q=Matplotlib:+A+2D+graphics+environment+Hunter+2007
https://doi.org/10.1109/MCSE.2011.37
http://scholar.google.com/scholar?q=The+NumPy+array:+a+structure+for+efficient+numerical+computation+Walt+2011
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188046%23
http://scholar.google.com/scholar?q=Engineering+Design+of+Strategies+for+Winning+Iterated+Prisoner%E2%80%99+s+Dilemma+Competitions+Li+2011
https://doi.org/10.1109/TEVC.2008.2009459
http://scholar.google.com/scholar?q=Optimal+strategies+of+the+iterated+prisoner%E2%80%99s+dilemma+problem+for+multiple+conflicting+objectives+Mittal+2009
https://doi.org/10.1371/journal.pone.0077886
http://www.ncbi.nlm.nih.gov/pubmed/24223739
http://scholar.google.com/scholar?q=Adaptive+dynamics+of+extortion+and+compliance+Hilbe+2013
https://doi.org/10.1016/0167-2681(92)90040-I
http://scholar.google.com/scholar?q=Evolution+in+the+finitely+repeated+prisoner%E2%80%99s+dilemma+Nachbar+1992
https://doi.org/10.1177/0022002795039001008
http://scholar.google.com/scholar?q=How+to+cope+with+noise+in+the+iterated+prisoner%E2%80%99s+dilemma+Wu+1995
https://doi.org/10.5281/zenodo.832282
https://doi.org/10.5281/zenodo.832287
http://www.lifl.fr/IPD/ipd.frame.html
https://doi.org/10.5281/zenodo.211828

50.

View Article Google Scholar
51.

View Article PubMed/NCBI Google Scholar

52.

53.

View Article Google Scholar
54.

View Article PubMed/NCBI Google Scholar

55.

56.

View Article Google Scholar
57.

View Article Google Scholar

58.

View Article Google Scholar
59.

View Article PubMed/NCBI Google Scholar

60.

View Article Google Scholar
61.

62.

Arnold E. CoopSim v0.9.9 beta 6; 2015. https://github.com/jecki/CoopSim/.

Frean MR. The prisoner’s dilemma without synchrony. Proceedings of the Royal Society of London B: Biological Sciences. 1994;257(1348):75–79.

Nowak M, Sigmund K. A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner’s Dilemma game. Nature. 1993;364(6432):56–58.
pmid:8316296

Beaufils B, Delahaye JP, Mathieu P. Our meeting with gradual, a good strategy for the iterated prisoner’s dilemma. In: Proceedings of the Fifth
International Workshop on the Synthesis and Simulation of Living Systems; 1997. p. 202–209.

Banks JS, Sundaram RK. Repeated games, finite automata, and complexity. Games and Economic Behavior. 1990;2(2):97–117.

Robson AJ. Efficiency in evolutionary games: Darwin, Nash and the secret handshake. Journal of theoretical Biology. 1990;144(3):379–396.
pmid:2395377

Unknown. www.prisoners-dilemma.com; 2017. http://www.prisoners-dilemma.com/.

Li J, Kendall G, Member S. The effect of memory size on the evolutionary stability of strategies in iterated prisoner’s dilemma. 2014;X(X):1–8.

Ashlock D, Kim EY. Fingerprinting: Visualization and automatic analysis of prisoner’s dilemma strategies. IEEE Transactions on Evolutionary Computation.
2008;12(5):647–659.

Carvalho AL, Rocha HP, Amaral FT, Guimaraes FG. Iterated Prisoner’s Dilemma-An extended analysis. 2013;.

Adami C, Hintze A. Evolutionary instability of zero-determinant strategies demonstrates that winning is not everything. Nature communications.
2013;4(1):2193. pmid:23903782

Kraines D, Kraines V. Pavlov and the prisoner’s dilemma. Theory and decision. 1989;26(1):47–79.

Kuhn S. Prisoner’s Dilemma. In: Zalta EN, editor. The Stanford Encyclopedia of Philosophy. spring 2017 ed. Metaphysics Research Lab, Stanford
University; 2017.

https://doi.org/10.1098/rspb.1994.0096
http://scholar.google.com/scholar?q=The+prisoner%E2%80%99s+dilemma+without+synchrony+Frean+1994
https://doi.org/10.1038/364056a0
http://www.ncbi.nlm.nih.gov/pubmed/8316296
http://scholar.google.com/scholar?q=A+strategy+of+win-stay,+lose-shift+that+outperforms+tit-for-tat+in+the+Prisoner%E2%80%99s+Dilemma+game+Nowak+1993
https://doi.org/10.1016/0899-8256(90)90024-O
http://scholar.google.com/scholar?q=Repeated+games,+finite+automata,+and+complexity+Banks+1990
https://doi.org/10.1016/S0022-5193(05)80082-7
http://www.ncbi.nlm.nih.gov/pubmed/2395377
http://scholar.google.com/scholar?q=Efficiency+in+evolutionary+games:+Darwin,+Nash+and+the+secret+handshake+Robson+1990
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188046%23
http://scholar.google.com/scholar?q=The+effect+of+memory+size+on+the+evolutionary+stability+of+strategies+in+iterated+prisoner%E2%80%99s+dilemma+Li+2014
https://doi.org/10.1109/TEVC.2008.920675
http://scholar.google.com/scholar?q=Fingerprinting:+Visualization+and+automatic+analysis+of+prisoner%E2%80%99s+dilemma+strategies+Ashlock+2008
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188046%23
http://scholar.google.com/scholar?q=Iterated+Prisoner%E2%80%99s+Dilemma-An+extended+analysis+Carvalho+2013
https://doi.org/10.1038/ncomms3193
http://www.ncbi.nlm.nih.gov/pubmed/23903782
http://scholar.google.com/scholar?q=Evolutionary+instability+of+zero-determinant+strategies+demonstrates+that+winning+is+not+everything+Adami+2013
https://doi.org/10.1007/BF00134056
http://scholar.google.com/scholar?q=Pavlov+and+the+prisoner%E2%80%99s+dilemma+Kraines+1989
https://github.com/jecki/CoopSim/
http://www.prisoners-dilemma.com/
http://www.prisoners-dilemma.com/

