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Abstract

Repeated interaction promotes cooperation among rational individuals under the
shadow of future, but it is hard to maintain cooperation when a large number of
error-prone individuals are involved. One way to construct a cooperative Nash
equilibrium is to find a ‘friendly rivalry’ strategy, which aims at full cooperation but
never allows the co-players to be better off. Recently it has been shown that for the
iterated Prisoner’s Dilemma in the presence of error, a friendly rival can be designed
with the following five rules: Cooperate if everyone did, accept punishment for your own
mistake, punish defection, recover cooperation if you find a chance, and defect in all the
other circumstances. In this work, we construct such a friendly-rivalry strategy for the
iterated n-person public-goods game by generalizing those five rules. The resulting
strategy makes a decision with referring to the previous m = 2n− 1 rounds. A
friendly-rivalry strategy inherently has evolutionary robustness in the sense that no
mutant strategy has higher fixation probability in this population than that of neutral
drift, and our evolutionary simulation indeed shows excellent performance of the
proposed strategy in a broad range of environmental conditions.

Author summary

How to maintain cooperation among a number of self-interested individuals is a difficult 1

problem, especially if they can sometimes commit error. In this work, we propose a 2

strategy for the iterated n-person public-goods game based on the following five rules: 3

Cooperate if everyone did, accept punishment for your own mistake, punish others’ 4

defection, recover cooperation if you find a chance, and defect in all the other 5

circumstances. These rules are not far from actual human behavior, and the resulting 6

strategy guarantees three advantages: First, if everyone uses it, full cooperation is 7

recovered even if error occurs with small probability. Second, the player of this strategy 8

always never obtains a lower long-term payoff than any of the co-players. Third, if the 9

co-players are unconditional cooperators, it obtains a strictly higher long-term payoff 10

than theirs. Therefore, if everyone uses this strategy, no one has a reason to change it. 11

Furthermore, our simulation shows that this strategy will become highly abundant over 12

long time scales due to its robustness against the invasion of other strategies. In this 13

sense, the repeated social dilemma is solved for an arbitrary number of players. 14
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Introduction 15

The success of Homo sapiens can be attributed to its ability to organize collective action 16

toward a common goal among a group of genetically unrelated individuals [1], and this 17

ability is becoming more and more important as the world is getting close to each other. 18

Researchers have identified several mechanisms to promote cooperation in terms of 19

evolutionary game theory [2, 3]. For example, the folk theorem holds that repeated 20

interaction can establish cooperation through reciprocal strategies, and this mechanism 21

is called direct reciprocity [4]. Yet, how to resolve a conflict between individual and 22

collective interests is a hard problem, especially when a large number of players are 23

involved and they are prone to error [5–7], because an individual player has very limited 24

control over co-players. 25

In this respect, the discovery of the zero-determinant (ZD) strategies in the iterated 26

prisoner’s dilemma (PD) has been deemed counter-intuitive because a ZD-strategic 27

player can unilaterally fix the co-player’s long-term payoff or enforce a linear 28

relationship between their long-term payoffs [8]. For instance, one can design an 29

extortionate ZD strategy, with which the player’s long-term payoff will increase by χ ≥ 1 30

whenever the co-player’s does by one unit payoff. Another counter-intuitive aspect of 31

the ZD strategy is that it is a memory-one strategy referring only to the previous round, 32

so that such a simple strategy can perfectly constrain the co-player’s long-term payoff 33

regardless of the co-player’s strategic complexity. Of course, the excellent performance 34

in a one-to-one match does not necessarily mean evolutionary success: It is difficult for 35

an extortionate strategy to proliferate in a population because, as its fraction increases, 36

two extortionate players are more likely to meet and keep defecting against each 37

other [9–12]. For this reason, especially in a large population, selection tends to favor a 38

generous ZD strategy whose long-term payoff does not exceed the co-player’s [11]. A 39

generous ZD strategy does not aim at winning a match, but it is efficient by forming 40

mutual cooperation when they meet each other. 41

The important point in this line of thought is that a player’s strategy can 42

unilaterally impose constraints on the co-player’s long-term payoff, so that we can now 43

characterize strategies according to the constraints that they impose. One such 44

meaningful characterization scheme is to ask if a strategy works as a ‘partner’ or as a 45

‘rival’ [13,14]: By ‘partner’, we mean that the strategy seeks for mutual cooperation, but 46

that it will make the co-player’s payoff less than its own if the co-player defects from it. 47

It has also been called ‘good’ [15,16], and the generous ZD strategies can be understood 48

as an intersection between the ZD and partner strategies [11]. On the other hand, a 49

rival strategy always makes its long-term payoff higher than or equal to the co-player’s, 50

so it has been called ‘unbeatable’ [17], ‘competitive’ [13], or ‘defensible’ [18, 19]. A 51

trivial example of a rival strategy is unconditional defection (AllD), and an extortionate 52

ZD strategy also falls into this class. Most of well-known strategies in the iterated PD 53

game are classified either as a partner or as a rival [14]. However, which class is more 54

favored by selection depends on environmental conditions such as the population size 55

and the benefit-to-cost ratio of cooperation: If the population is small and cooperation 56

is costly, it is better off to play a rival strategy than to play a partner strategy, and vice 57

versa [11, 14, 20]. If a single strategy acts as a partner and a rival simultaneously, it has 58

important implications in evolutionary dynamics because it possesses evolutionary 59

robustness regardless of the environmental conditions, in the sense that no mutant 60

strategy can invade a population of this strategy with greater fixation probability than 61

that of neutral drift [11, 20–22]. To indicate the partner-rival duality, such a strategy 62

will be called a ‘friendly rival’ [22]. Tit-for-tat (TFT), a special ZD strategy having 63

χ = 1, is a friendly rival in an error-free environment [14], but a friendly rival generally 64

requires a far more complicated structure in the presence of error. So far, the existence 65

of friendly-rivalry strategies has been reported by a brute-force enumeration method in 66
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TFT-ATFT
FUSSCAPRI

CAPRI-n

theoretical lower bound

Fig 1. Memory length m required for each of currently known friendly-rivalry
strategies in the n-person PG game [18,19,22]. The dashed blue line depicts a
theoretical lower bound m = n for friendly rivalry [19], and the strategy proposed in
this work, called CAPRI-n, has m = 2n− 1.

the iterated PD game [18,22,23] and the three-person public-goods (PG) game [19]. 67

However, it is not straightforward to extend these findings to the general n-person PG 68

game. For example, a naive extension of a solution in the iterated PD game fails to solve 69

the three-person PG game because the third player cannot tell if one of the co-players is 70

correcting the other’s error with good intent or just carrying out a malicious attack [19]. 71

To resolve the ambiguity, a strategic decision must be based on more information of the 72

past interactions: In fact, if a player refers to the previous m rounds to choose an action 73

in the n-person PG game, we can show that m must be greater than or equal to n as a 74

necessary condition to be a friendly rival [19]. Unfortunately, the existing brute-force 75

approach then becomes simply unfeasible because the number of possible strategies 76

expands super-exponentially as 22mn

. For example, in the three-person game (n = 3), it 77

means that we have to enumerate 2512 ∼ 10154 possibilities to find an answer. Although 78

the symmetry among co-players reduces this number down to 2288 ∼ 1086, it is still 79

comparable to the estimated number of protons in the universe. 80

In this work, by using an alternative method to generalize behavioral patterns of a 81

friendly rival for the iterated PD game [22], we construct a friendly-rivalry strategy for 82

the n-person PG game. This approach makes use of the fact that it greatly lessens the 83

computational burden if we only check whether a given strategy qualifies as a friendly 84

rival. The required memory length of our strategy is m = 2n− 1, which satisfies the 85

necessary condition m ≥ n as shown in Fig. 1. We will also numerically confirm that it 86

shows excellent performance in evolutionary dynamics due to its evolutionary 87

robustness. 88

Materials and methods 89

Public-goods game 90

Let us consider the n-person public-goods (PG) game, in which a player may choose 91

either cooperation (c), by contributing a token to a public pool, or defection (d), by 92

refusing it. Let the number of cooperators be denoted as nc. The nc tokens in the 93

public pool are multiplied by a factor of ρ, where 1 < ρ < n, and then equally 94

redistributed to the n players. We assume that the tokens are infinitely divisible. A 95

July 30, 2020 3/15

.CC-BY 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 5, 2020. . https://doi.org/10.1101/2020.08.05.237552doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.05.237552
http://creativecommons.org/licenses/by/4.0/


player’s payoff is thus given as 96{
ρnc

n when the player chooses c,

1 + ρnc

n when the player chooses d.
(1)

Clearly, it is always better off to choose d regardless of nc, so full defection is the only 97

Nash equilibrium of this one-shot game. In this study, this game will be repeated 98

indefinitely with no discounting factor to facilitate direct reciprocity. Every player can 99

choose an action between c and d by referring to the previous m rounds. At the same 100

time, a player can make implementation error, e.g., by choosing d while intending c and 101

vice versa, with small probability e� 1. 102

Axiomatic approach 103

Let us consider a strategy profile P = {Σ1,Σ2, . . . ,Σn} of n players. Player X’s 104

long-term payoff is defined as 105

ΠX ≡ lim
T→∞

1

T

T−1∑
t=0

π
(t)
X , (2)

where π
(t)
X is player X’s instantaneous payoff in round t. If e > 0, the Markovian 106

dynamics of strategic interaction for a given strategy profile P converges to a unique 107

stationary distribution, from which ΠX can readily be calculated [24,25]. In terms of 108

the players’ long-term payoffs, we wish to propose the following three criteria that a 109

successful strategy Ω should satisfy [18,19,22,26]. 110

1. Efficiency: Mutual cooperation must be achieved with probability one as e→ 0 if 111

all the players have adopted Ω. In other words, this criterion requires 112

lime→0+ ΠX = ρ when P = PΩ ≡ {Ω,Ω, . . . ,Ω}. 113

2. Defensibility: It must be guaranteed that none of the co-players can obtain higher 114

long-term payoffs against Ω regardless of their strategies and initial states when 115

e = 0. It implies that lime→0+ (ΠX −ΠY ) ≥ 0, where player X is using strategy 116

ΣX = Ω and Y denotes any possible co-player of X. 117

3. Distinguishability: If ΣX = Ω and all the co-players are unconditional cooperators 118

(AllC), player X can exploit them to earn a strictly higher long-term payoff than 119

theirs. That is, ΠX > ΠY when Y is an AllC player. 120

When a strategy satisfies defensibility and efficiency, the strategy is a friendly rival. A 121

symmetric strategy profile which consists of a friendly-rivalry strategy forms a 122

cooperative Nash equilibrium [18,19,22]. The third criterion is a requirement to 123

suppress invasion of AllC due to neutral drift in the evolutionary context [27–29]. We 124

call a strategy ‘successful’ if it meets all the above three criteria. Depending on the 125

definition of successfulness, one could choose a different set of axioms for an alternative 126

characterization [30]. 127

Strategy design 128

Let us construct a deterministic strategy with memory length m = 2n− 1 and show 129

that the proposed strategy indeed meets all of the above three criteria. In the following, 130

we will take an example of three players (n = 3) who are called Alice (A), Bob (B), and 131

Charlie (C), respectively, and choose Alice as a focal player playing this strategy. 132
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Before proceeding, it is convenient to introduce some notations for the sake of brevity. 133

The three players’ history profile over the previous m = 5 rounds can be represented as 134

ht = (At−5At−4At−3At−2At−1;Bt−5Bt−4Bt−3Bt−2Bt−1;Ct−5Ct−4Ct−3Ct−2Ct−1), 135

where Aτ , Bτ , and Cτ denote their respective actions at round τ . The last round of full 136

cooperation will be denoted by t∗. In addition, we introduce a binary variable λ
(t)
X 137

which equals one if Xt = d and zero otherwise for player X ∈ {A,B,C}. According to 138

the payoff matrix [Eq. (1)], Alice’s payoff in round t can be rewritten as 139

π
(t)
A = ρ

[
1− 1

n

∑
X

λ
(t)
X

]
−
[
1− λ(t)

A

]
, (3)

which has linear dependence on λ
(t)
X for every X. This linearity implies that Alice’s 140

total payoff
∑
t π

(t)
A in the iterated game is fully determined by counting every player’s 141

total number of defections, i.e.,
∑
t λ

(t)
X for every X: For example, if all the players have 142

defected the same number of times, their payoffs must be the same irrespective of the 143

exact history. Let ∆τ1,τ2
A thus denote Alice’s number of defections in [τ1, τ2]. Likewise, 144

we can define ∆τ1,τ2
B for Bob and ∆τ1,τ2

C for Charlie. We also define Nd as the maximum 145

difference among the players in numbers of defections over the previous m rounds: 146

Nd ≡ max
i,j∈{A,B,C}

∣∣∣∆t−m,t−1
i −∆t−m,t−1

j

∣∣∣ . (4)

With these notations, we can now design a successful strategy satisfying all the three 147

criteria simultaneously. To this end, we divide the set of history profiles into three 148

mutually exclusive cases: The first case is that full cooperation occurred in the last 149

round (t∗ = t− 1). The second case is that it is not in the last round but still in their 150

memory (t−m ≤ t∗ < t− 1). The third case is that no player remembers the last round 151

of full cooperation (t∗ < t−m). Let us consider these cases one by one, together with 152

adequate rules for each. 153

1. t∗ = t− 1 154

• Cooperate: If this is the case, Alice has to choose c under the condition that 155

Nd < n. For example, the inequality is true for (ccccc; cccdc; ccccc), for 156

which Nd = 1. On the other hand, it is not true for (cdddc; ccddc; ccccc) 157

because its Nd = 3 is equal to n. 158

2. t−m ≤ t∗ < t− 1 159

• Accept: Alice has to accept punishment from the co-players by choosing c, 160

under the condition that ∆t∗,t−1
A ≥ ∆t∗,t−1

B and ∆t∗,t−1
A ≥ ∆t∗,t−1

C in 161

addition to Nd < n. For example, c will be prescribed to Alice at 162

(cccdc; ccccd, ccccc), where we have t∗ = t− 3, ∆t∗,t−1
A = ∆t∗,t−1

B = 1, 163

∆t∗,t−1
C = 0, and Nd = 1, which satisfies the above inequalities. On the other 164

hand, the condition is not met by (ccddd; ccddd; ccccc) which gives Nd = 3. 165

• Punish: Alice has to punish the co-players by choosing d, under the 166

condition that ∆t∗,t−1
A < ∆t∗,t−1

B or ∆t∗,t−1
A < ∆t∗,t−1

C in addition to Nd < n. 167

For example, d is prescribed at (ccccd; cccdd, ccccc) because Nd = 2 and 168

Alice has defected fewer times than Bob since the last round of full 169

cooperation at t∗ = t− 3. 170

3. t∗ < t−m 171
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I

A

I

(relative payoff) < 0
against a co-player

(relative payoff) ≥ 0
against all co-players

when all co-
players 

cooperated 
at mutual 
defection 

t⇤ = t � 1
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AND

Fig 2. Schematic diagram of the transition between states of CAPRI-n. The five rules
of the strategy can be identified with the player’s internal states [26], each of which is
represented as a node in this diagram. An exception is state I, which corresponds to two
nodes to clarify the following point: when t∗ ≥ t−m, I may have outgoing connections
to A and P . When t∗ < t−m, on the other hand, the only possible next state is limited
to R. A blue (red) node means that the player has to choose c (d) at the internal state.
We have omitted error-caused transitions for the sake of simplicity.

• Recover: Alice has to recover cooperation by choosing c, under the condition 172

that all the players except one cooperated in the last round. For n = 3, it 173

means (ddddd, ddddc, ddddc) and its permutations. 174

4. In all the other cases, defect. 175

A strategy of this sort for the n-person PG game will be called CAPRI-n after the first 176

letters of the five constitutive rules. Note that these five rules may be implemented in a 177

number of different ways [22], and we take this way because it provides the most 178

straightforward way to prove the three criteria. Each of the rules can also be regarded 179

as the player’s internal state consisting of multiple history profiles [26]. For example, 180

Alice can find herself at state R, the abbreviation for ‘Recover’, when her history profile 181

is (ddddd, ddddc, ddddc), at which she must choose c. The connection structure of the 182

above five states is graphically represented in Fig. 2, which is helpful for understanding 183

how defensibility and efficiency are realized as shown below. 184

Let us begin by checking defensibility. Our CAPRI-n player Alice cooperates only at 185

states C, A, and R, so the question is whether she can be forced to visit one of these 186

states repeatedly with giving a strictly higher payoff to one of her co-players. If Alice’s 187

state is C, it means that everyone cooperated at t− 1. If some of her co-players defect 188

from this full cooperation at t, she will retaliate at t+ 1 with state P, so she experiences 189

unilateral defection at most once. Full cooperation is already broken, so it must be only 190

through state A or R if she comes back to C. The former case means that Alice has 191

already been compensated for the payoff loss. In the latter case, the only possible 192
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history profile is (ddddd, ddddc, ddddc) unless she made a mistake, which means the 193

compensation has been done in the last round. Finally, state A can be accessed from 194

states P and I, at both of which one cannot exploit Alice who chooses d. To sum up, it 195

is impossible to have the unilateral cooperation of a CAPRI-n player repeatedly. 196

The next criterion is efficiency. Provided that CAPRI-n is employed by all the 197

players, only full cooperation or full defection can be a stationary state, and we can 198

verify this statement by checking each possible case: 199

• If t∗ = t− 1, everyone have to cooperate again as prescribed at state C, so full 200

cooperation will continue. 201

• If t−m ≤ t∗ < t− 1 and Nd < n, some players must be at state A while the 202

others are at state P. The latter players at P will keep defecting until satisfying 203

∆t∗,t−1
A = ∆t∗,t−1

B = ∆t∗,t−1
C . If they make it with keeping t∗ ≥ t−m, all of them 204

should choose c as prescribed at state A, and the resulting mutual cooperation 205

will continue. If they don’t, the situation to everyone reduces to state I, at which 206

they will defect over and over. 207

• The remaining state is R, but it is always transient. 208

In order to judge efficiency, we need to consider error-caused transition between these 209

two stationary states, i.e., full cooperation and full defection. The transition from the 210

latter to the former is possible only through state R, which occurs with probability of 211

O(en−1). On the other hand, full cooperation can be made robust against every possible 212

type of (n− 1)-bit error if m = 2n− 1: Imagine that a player, say, Bob, mistakenly 213

defects from full cooperation at t = 1. He will have state A at t = 2, while the others 214

have state P, so their payoffs should be equalized at t = 3 as a result of punishment. 215

Note that this simple recovery from a single-bit error takes only two rounds. However, if 216

this is interrupted at t = 3 by another mistake occurring to any of the players, it will 217

need additional two rounds to reach full cooperation at t = 5. The following example 218

shows how Bob’s mistakes at t = 1 and 3 are corrected: 219

A : ccccc ccccd cccdc ccdcd cdcdc
B : ccccd cccdc ccdcd cdcdc dcdcc
C : ccccc ccccd cccdc ccdcd cdcdc

. (5)

Among all types of (n− 1)-bit error, the longest memory length is needed to correct this 220

kind of error that occurs every other round, so it requires m = 2(n− 1) + 1 in total, 221

where the last bit has been added to memorize the last round of full cooperation. 222

Therefore, with memory length m = 2n− 1, the transition probability from mutual 223

cooperation to defection can be suppressed down to O(en). Therefore, the players form 224

full cooperation in the limit of e→ 0, fulfilling the efficiency criterion. 225

The last criterion is distinguishability. If the others are AllC players, our CAPRI-n 226

player will continue unilateral defection when she defected n consecutive times by error, 227

as prescribed by I. One can escape from such a state with probability of O(en) due to 228

the condition of Nd < n for the rule C, so this stationary state coexists with full 229

cooperation in the limit of e→ 0. 230

Evolutionary simulation 231

We consider a standard stochastic model proposed in [29], where a well-mixed 232

population of size N evolves over time by an imitation process. A key assumption of 233

this model is that the mutation rate is low so that at most one mutant strategy can 234

exist in the resident population. In other words, the time that it takes to go extinct or 235

occupy the whole population by selection is assumed to be much shorter than the time 236
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scale of mutation. Let us assume that a mutant strategy x is introduced to a population 237

of strategy y. The population dynamics is modeled by the frequency-dependent Moran 238

process, in which the fixation probability of the mutant is given in a closed from: 239

φxy =

N−1∑
i=0

i∏
j=1

Γj

−1

(6)

with Γj ≡ Pj,j−1/Pj,j+1, where Pj,j±1 denotes the probability that the number of 240

mutants increases or decreases from j by one. 241

For n = 2, the fixation probability is calculated in the following way: Suppose that 242

we have j individuals of the mutant strategy and N − j individuals of the resident 243

strategy. If we randomly choose a mutant and a resident individual, their average 244

payoffs are obtained as 245{
sx = 1

N−1 [(j − 1)sxx + (N − j)sxy]

sy = 1
N−1 [(N − j − 1)syy + jsyx] ,

(7)

respectively, where sαβ is α’s long-term payoff against β. According to the imitation 246

process, x can change to y with probability fx→y defined as follows: 247

fx→y =
1

1 + exp [σ(sx − sy)]
, (8)

where σ means the strength of selection. Then, we have 248

Γj = exp [σ(sy − sx)] , (9)

and the fixation probability is calculated as 249

φ−1
xy =

N−1∑
i=0

i∏
j=1

eσ[(N−j−1)syy+jsyx−(j−1)sxx−(N−j)sxy]/(N−1) (10)

=
N−1∑
i=0

eσi[(−i+2N−3)syy+(i+1)syx−(−i+2N−1)sxy−(i−1)sxx]/[2(N−1)]. (11)

For n = 3, the fixation probability is calculated in a similar way. We randomly pick 250

up three players from a well-mixed population, and the respective average payoffs of 251

playing x and y can be written by using the binomial coefficients as follows: 252sx = 1
(N−1)(N−2)

[(
j−1

2

)
sxxx +

(
j−1

1

)(
N−j

1

)
sxxy +

(
N−j

2

)
sxyy

]
sy = 1

(N−1)(N−2)

[(
j
2

)
syxx +

(
N−j−1

1

)(
j
1

)
syyx +

(
N−j−1

2

)
syyy

]
,

(12)

where sαβγ is player α’s long-term payoff against co-players β and γ. Plugging these 253

expressions into Eqs. (6) and (9), one can calculate the fixation probability φxy for the 254

three-person case as well. 255

We can interpret φxy as transition probability from y to x from the viewpoint of the 256

population. From the stationary distribution of this Markovian dynamics, we can thus 257

calculate abundance of each available strategy in a numerically exact manner [31,32]. 258

For the sake of simplicity, we use the donation game as a simplified form of the PD 259

game as well as its generalization to n players in the numerical calculation. That is, 260

with the benefit of cooperation b > 1, each player can donate b/(n− 1) to each co-player 261

at the unit cost, which corresponds to ρ = nb/[b+ (n− 1)] up to scaling. 262
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payoff of CAPRI-n
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Fig 3. Distribution of long-term payoffs when a CAPRI-n player meets co-players
whose pµν ’s are randomly sampled from the unit interval. The multiplication factors for
n = 2, 3, and 4 are 1.5, 2, and 3, respectively, and the solid lines indicate the region of
feasible payoffs. In each case, the filled circle means the long-term payoffs when
CAPRI-n is adopted by all the players, whereas the cross shows those of TFT players as
a reference point.

Results 263

Friendly rivalry 264

To check the validity of our construction, we examined the three criteria by using 265

graph-theoretic calculations [19, 22, 33]. For n = 2, we directly confirmed that CAPRI-n 266

is indeed a successful strategy satisfying all the three criteria. For n = 3, we conducted 267

mapping to an automaton to obtain a simplified yet equivalent graph representation [26], 268

and the resulting automaton indeed passed all the criteria. For n = 4, the required 269

amount of calculation to directly check the criteria was beyond our computational 270

resources, so we employed a Monte Carlo method to simulate the game. The Monte 271

Carlo method was also used to double-check the performance of CAPRI-2 and CAPRI-3. 272

The Monte Carlo calculation was performed as follows: Let us denote a memory-one 273

strategy as (pcc, pcd, pdc, pdd) where pµν means the player’s probability to cooperate 274

when the player and the co-player did µ and ν, respectively, in the previous round. The 275

initial µ and ν can be omitted in the strategy description because they are irrelevant to 276

the long-term payoff as long as e > 0. Figure 3 shows the distribution of payoffs when 277

Alice used CAPRI-n whereas each of her co-players’ strategies was composed of four 278

pµν ’s randomly sampled from the unit interval. The co-players’ payoffs never exceeded 279

Alice’s, as required by defensibility. 280

We also calculated the probability of full cooperation for n = 2, 3 and 4 when 281

CAPRI-n was adopted by all the players in order to check efficiency. By using 282

linear-algebraic [18,19] or Monte Carlo calculation, For e = 10−4, we obtained 0.999, 283

0.997, 0.978 for n = 2, 3, and 4, respectively, which supports the conclusion that they 284

all satisfy the efficiency criterion. 285

Evolutionary robustness 286

Before checking the evolutionary performance of our proposed strategy, we conducted 287

simulations without CAPRI-n for comparison. Figures 4(a) and 5(a) show the results 288

when the strategies were sampled from deterministic memory-one for n = 2 and 3. 289

When b was low and/or N was small, defensible strategies such as AllD tended to be 290

favored by selection, and the resulting cooperation level was low. On the other hand, 291
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n = 2(a) without CAPRI-2

(b) with CAPRI-2

defensible efficient

other

defensible
efficient

other

defensible
efficient

other

CAPRI-2 CAPRI-2

efficientdefensible

other

Fig 4. Abundance of strategies for n = 2 as the benefit-to-cost ratio b and the
population size N vary. The default values were b = 3 and N = 30 unless otherwise
specified. The strength of selection and the error probability were set to be σ = 1 and
e = 10−4, respectively. (a) Simulation result with 16 memory-one deterministic
strategies, classified into three categories, i.e., efficient, defensible, and the other
strategies. (b) Effect of CAPRI-2 when it was added to the available set of strategies.

when b or N was large, efficient strategies were favored, and they achieved a high level 292

of cooperation. The reason is that cooperative strategies maintained high payoffs by 293

interacting with many other cooperators even if they were exploited by a small number 294

of aggressive mutants. 295

When CAPRI-n was introduced, it occupied a large amount of the population as 296

shown in Figs. 4(b) and 5(b). Whereas each memory-one strategy flourished depending 297

on the environmental parameters b and N , CAPRI-n was found abundant in the entire 298

parameter region. In particular, it is striking that CAPRI-3 overwhelms all the other 299

strategies in the three-person PG game for any moderate sizes of b and N [Fig. 5(b)]. 300

It is nevertheless worth pointing out that CAPRI-2 gave more and more room to 301

efficient strategies in the iterated PD game as b or N increases [Fig. 4(b)], and this is 302

due to neutral drift: Although CAPRI-2 earns a strictly higher long-term payoff than 303

AllC= (1, 1, 1, 1) and Win-Stay-Lose-Shift (WSLS) = (1, 0, 0, 1), it does not with respect 304

to (1, 1, 1, 0), which can, in turn, be invaded by WSLS. For this reason, WSLS can 305

become abundant in the presence of (1, 1, 1, 0) when the environmental conditions are 306

favorable. 307
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n = 3(a) without CAPRI-3

(b) with CAPRI-3

defensible
efficient

other

other

defensible

efficient

CAPRI-3

defensible
other

CAPRI-3

defensible
other

Fig 5. Abundance of strategies for n = 3 as the benefit-to-cost ratio b and the
population size N vary. The default values were b = 3 and N = 30 unless otherwise
specified. The strength of selection and the error probability were set to be σ = 1 and
e = 10−4, respectively. (a) Simulation result with 64 memory-one deterministic
strategies, classified into three categories, i.e., efficient, defensible, and the other
strategies. (b) Effect of CAPRI-3 when it was added to the available set of strategies.
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Discussion 308

In summary, we have constructed a friendly-rivalry strategy for the iterated n-person 309

PG game. It maintains a cooperative Nash equilibrium in the presence of 310

implementation error with probability e� 1, and it has evolutionary robustness 311

regardless of the environmental conditions such as the population size and the strength 312

of selection. In this sense, the n-person social dilemma is solved. The strategy requires 313

memory of the previous m = 2n− 1 rounds and consists of the following five rules: 314

Cooperate if everyone did, accept punishment for your own mistake, punish others’ 315

defection, recover cooperation if you find a chance, and defect in all the other 316

circumstances. 317

Although we have considered only implementation error, perception error can also be 318

corrected if it occurs with sufficiently low probability: The disagreement between the 319

players’ history profiles due to the perception error will soon be removed at full 320

defection, and the players will escape from mutual defection with probability of O(en). 321

Unless another perception error perturbs this process, the players will eventually arrive 322

at full cooperation, overcoming the perception error. 323

Another important solution concept to the n-person dilemma can be derived from a 324

different set of criteria: By requiring mutual cooperation, error correction, and 325

retaliation with a time scale of k rounds, one can characterize the all-or-none (AON-k) 326

strategy, which is defined as prescribing c only when everyone cooperated or no one did 327

in each of the previous k rounds [30,34,35]. For example, WSLS= (1, 0, 0, 1) is 328

equivalent to AON-1. For each k, one can find a threshold of the multiplication factor 329

above which AON-k constitutes a subgame-perfect equilibrium [30]. AON-k performs 330

well in evolutionary simulation because it prescribes d as the default action, just as 331

CAPRI-n does in state I, unless the players have synchronized their behavior over the 332

previous k rounds. As a result, it earns a strictly higher payoff against a broad range of 333

strategies. 334

In general, CAPRI-n with m = 2n− 1 can repeatedly exploit the other co-players 335

playing AON-k if k < m− 1, which means that an AON-k population can readily be 336

invaded by CAPRI-n unless k is large enough. Considering the condition for AON-k to 337

be subgame perfect, one could speculate that AON with small k can be abundant in an 338

environment with a high multiplication factor. However, our finding implies that such a 339

simple solution may not be sustained when CAPRI-n is available. This is especially 340

crucial when population size is not large enough because AON-k lacks defensibility. 341

Still, AON-k remains as a strong competitor to CAPRI-n in evolutionary simulation: 342

For example, although WSLS earns a strictly less payoff against CAPRI-2, it 343

circumvented the difficulty of fixation with the aid of a third strategy (1, 1, 1, 0). 344

From a practical point of view, it is worth noting that the five rules of CAPRI-n 345

mostly refer to two factors: One is the players’ last action at t− 1, and the other is the 346

differences in the players’ respective numbers of defections over the previous m rounds. 347

In other words, exact details of the history profile are irrelevant, and this point greatly 348

reduces the cognitive burden to play this strategy. In fact, according to a recent 349

experiment, people assign reputation to their co-players based mainly on their last 350

action and their average numbers of defection [36]. This could explain the reason that 351

such a delicate relationship called friendly rivalry can develop spontaneously and 352

unwittingly among a group of people. How to keep such a relation healthy and 353

productive has so far been acquired as tacit knowledge surrounded by anecdotes and 354

experiences, and CAPRI-n expresses its essential how-tos in a form of explicit 355

knowledge which can be designed, analyzed, and transmitted systematically. 356
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