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S
elf-serving, rational agents some-
times cooperate to their mutual
benefit. However, when and why
cooperation emerges is surprisingly

hard to pin down. To address this
question, scientists from diverse disciplines
have used the Prisoner’s Dilemma,
a simple two-player game, as a model
problem. In PNAS, Press and Dyson (1)
dramatically expand our understanding of
this classic game by uncovering strategies
that provide a unilateral advantage to
sentient players pitted against unwitting
opponents. By exposing these results,
Press and Dyson have fundamentally
changed the viewpoint on the Prisoner’s
Dilemma, opening a range of new possi-
bilities for the study of cooperation.
For nearly a century now game theory

has influenced the way we think about the
world. It has entered into the study of
almost every type of human interaction,
including economics, political science, war
games, and evolutionary biology. This is
because, at its core, game theory seeks to
explain how rational players should
behave to best serve their own interests.
Game theory emerged as a field of active
research with the work of John von
Neumann on mathematical economics (2,
3). John Nash built on this foundation
when he introduced the concept of a Nash
Equilibrium (4), which occurs when no
player can gain by unilaterally changing
strategy. The impact of Nash’s work, which
began with economics, was soon felt in
evolutionary biology, when John Maynard
Smith and George Price introduced
a variant form of equilibrium, the evolu-
tionary stable strategy (5), which, when
dominant in an evolving population,
cannot be invaded and replaced by any
other strategy.
The Prisoner’s Dilemma itself is well

established as a way to study the emer-
gence of cooperative behavior. Each
player is simultaneously offered two
options: to cooperate or defect. If both
players cooperate, they each receive the
same payoff, R; if both defect, they each
receive a lower payoff, P. However, if one
player cooperates and the other defects,
the defector receives the largest possible
payoff, T, and the cooperator the lowest
possible payoff, S.
If the Prisoner’s Dilemma is played only

once, it always pays to defect—even
though both players would benefit by both
cooperating. Thus, the game seems to of-
fer a grim, and unfamiliar, view of social
interactions. If the game is played more

than once, however, other strategies, that
reward cooperation and punish defection,
can dominate the defectors, especially
when played in a spatial context or for an
indeterminate number of rounds (6–8).
Thus, the Iterated Prisoner’s Dilemma
(IPD) offers a more hopeful, and more
recognizable, view of human behavior.
What strategy is best in the IPD, however,
is not straightforward. Beginning in the
1950s with the RAND Corporation, right
up to today, people have looked to real-
life experiments to understand how vari-
ous strategies perform. The most in-
fluential experiments were performed by
Robert Axelrod in the early 1980s with his
IPD tournaments (6, 7). These established
the simple Tit-For-Tat strategy as an
extraordinarily successful way to foster
cooperation and accumulate a large
payoff: a player should cooperate if her
opponent cooperated on the last round,
and otherwise defect. Nonetheless, no
strategy is universally best in such a tour-
nament (8, 9), because a player’s
performance depends on the strategies of
her opponents. This is true even in the
simple, one-shot Prisoner’s Dilemma,
a fact that is now commonly known and

exploited, to entertaining effect, by the
British game show Golden Balls (10).
Press and Dyson (1) now illustrate like

never before the power granted to a player
with a theory of mind (i.e., a player who
realizes that her behavior can influence
her opponents’ strategies). Their article
contains a number of remarkable, unique
results on the IPD, and indeed, all iterated
two-player games. First, they prove that
any “long-memory” strategy is equivalent
to some “short-memory” strategy, from
the perspective of a short-memory player.
This means that an opponent who decides
his next move by analyzing a long se-
quence of past encounters might as well
play a much simpler strategy that considers
only the immediately previous encounter,
when playing against a short-memory
player. Thus, the possible outcomes of the
IPD can be understood by analyzing
strategies that remember only the
previous round.
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Fig. 1. How to extort your opponent, and what you stand to gain by extortion. A ZD strategy is
specified in terms of four probabilities: the chance that a player will cooperate, given the four possi-
bilities for both players’ actions in the previous round. Left: A specific example, called Extort-2, forces the
relationship SX − P = 2(SY − P) between the two players’ scores. Extort-2 guarantees player X twice the
share of payoffs above P, compared with those received by her opponent Y. A related ZD strategy that
we call ZDGTFT-2 forces the relationship SX − R = 2(SY − R) between the players’ scores. ZDGTFT-2 is more
generous than Extort-2, offering Y a higher portion of payoffs above P. Right: We simulated (13) these
two strategies in a tournament similar to that of Axelrod (6, 7). ZDGTFT-2 received the highest total
payoff, higher even than Tit-For-Tat and Generous-Tit-For-Tat, the traditional winners. Extort-2 received
a lower total payoff (because its opponents are not evolving), but it won more head-to-head matches
than any other strategy, save Always Defect.
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Press and Dyson derive a simple for-
mula for the long-term scores of two IPD
players, in terms of their one-memory
strategies. Their formula naturally
suggests a special class of strategies, called
zero determinant (ZD) strategies, that
enforce a linear relationship between the
two players’ scores. The existence of such
strategies has far-reaching consequences.
For example, if a player X is aware of ZD
strategies, then she can choose a strategy
that determines her opponent Y’s long
term score, regardless of how Y plays.
There is nothing Y can do to improve his
score, although his choices may affect X’s
score. This is similar to the “equalizer”
strategies, discussed in the context of folk
theorems (11). Such a strategy is essen-
tially just mischievous, because it does not
guarantee that X will receive a high payoff,
or even that she will outperform Y.
However, ZD strategies offer more than

just mischief. Suppose once again that X is
aware of ZD strategies, but that Y is an
“evolutionary player,” who possesses no
theory of mind and instead simply seeks to
adjust his strategy to maximize his own
score in response to whatever X is doing,
without trying to alter X’s behavior. X can
now choose to extort Y. Extortion strate-
gies, whose existence Press and Dyson
report, grant a disproportionate number of
high payoffs to X at Y’s expense (example
in Fig. 1). It is in Y’s best interest to
cooperate with X, because Y is able to
increase his score by doing so. However, in
so doing, he ends up increasing X’s score
even more than his own. He will never
catch up to her, and he will accede to her
extortion because it pays him to do so.
Another possibility is that X alone is

aware of ZD strategies, but Y does at least
have a theory of mind. X can once again
decide to extort Y. However, Y will
eventually notice that something is amiss:
whenever he adjusts his strategy to im-

prove his own score, he improves X’s score
even more. With a theory of mind he may
then decide to sabotage both his own score
and X’s score, by defection, in the hopes
of altering X’s behavior. The IPD has thus
reduced to the ultimatum game (12), with

Press and Dyson have

fundamentally changed

the viewpoint on the

Prisoner’s Dilemma.

X proposing an unfair ultimatum and Y
responding either by acceding or by sabo-
taging the payoffs for both players.
Finally, if both players are sentient and

witting of ZD strategies, then each will
initially try to extort the other, resulting
in a low payoff for both. The rational thing
to do, in this situation, is to negotiate
a fair cooperation strategy. Players igno-
rant of ZD strategies might eventually
adopt something like the Tit-For-Tat
strategy, which offers each player a high
score for cooperation but punishes
defection. However, knowledge of ZD
strategies offers sentient players an even
better option: both can agree to unilater-
ally set the other’s score to an agreed
value (presumably the maximum possible).
Neither player can then improve his or
her score by violating this treaty, and
each is punished for any purely malicious
violation.
Extortion strategies work best when

other players do not realize they are being
extorted. Press and Dyson discuss how
extortion strategies allow a sentient player
to dominate an evolutionary player, who
mindlessly updates his strategy to increase
his payoff. However, this is not the only
use of ZD strategies. Had Press and Dyson

kept their results to themselves, they may
have enjoyed an advantage in tournaments
like those set up by Axelrod (6, 7), in
which a variety of fixed strategies compete.
To test whether this is true, we reran
Axelrod’s original tournament, but with
the addition of some ZD strategies (Fig.
1). We found ZD strategies that foster
cooperation and receive the highest total
payoff in the tournament—higher even
than Tit-For-Tat’s payoff. In addition, we
found extortion strategies that win the
largest number of the head-to-head
competitions in the tournament.
Following Press and Dyson, future

research on the IPD will surely be framed
in terms of ZD strategies. How do such
strategies fare in iterated games with finite
but undetermined time horizons, or in
the presence of noise, or in a spatial
context, etc.? Additionally, what does the
existence of ZD strategies mean for evo-
lutionary game theory: can such strategies
naturally arise by mutation, invade, and
remain dominant in evolving populations?
What is immediately clear is that, by

publishing their results, Press and Dyson
have changed the game. Readers of
PNAS, some of whom have a theory of
mind, will now be tempted to use an
extortion strategy when faced with an IPD
opponent. Yet even in a game as simple as
the Prisoner’s Dilemma, even knowing
that a long-term memory does not provide
an advantage and that ZD strategies exist,
a sentient player after Press and Dyson
is still faced with a kind of Turing test each
time she meets an opponent: she must
determine what her opponent knows
about the game, what he knows about her,
and what he might be able to learn, and
only then, in the face of these tentative
assumptions, can she apply her own
understanding to devise a strategy that
best serves her interest.
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