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Abstract

We derive a class of macroscopic differential equations that describe collective adaptation, starting from a discrete-time
stochastic microscopic model. The behavior of each agent is a dynamic balance between adaptation that locally achieves the
best action and memory loss that leads to randomized behavior. We show that, although individual agents interact with their
environment and other agents in a purely self-interested way, macroscopic behavior can be interpreted as game dynamics.
Application to several familiar, explicit game interactions shows that the adaptation dynamics exhibits a diversity of collective
behaviors. The simplicity of the assumptions underlying the macroscopic equations suggests that these behaviors should be
expected broadly in collective adaptation. We also analyze the adaptation dynamics from an information-theoretic viewpoint
and discuss self-organization induced by the dynamics of uncertainty, giving a novel view of collective adaptation.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Collective behavior in groups of adaptive systems is an important and cross-cutting topic that appears under
various guises in many fields, including biology, neuroscience, computer science, and social science. In these
fields, adaptive systems consist of individual agents that interact with one another and modify their behaviors
according to the information they receive through those interactions. Often, though, collective behaviors emerge
that are beyond the individual agent’s perceptual capabilities and that sometimes frustrate satisfying their local
goals. With competitive interactions dynamic adaptation can produce rich and unexpected behaviors. This kind
of mutual adaptation has been discussed, for example, in studies of biological group interaction [1-3], interactive
learning [4-6], large-scale adaptive systems [7,8], and learning in games [9,10].
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Here we develop a class of coupled differential equations for mutual adaptation in agent collectives —systems in
which agents learn how to act in their environment and with other agents through reinforcement of their actions. We
show that the adaptive behavior in agent collectives, in special cases, reduces to a generalized form of multipopulation
replicator equations and, generally, can be viewed as an information-theoretic self-organization in a collective
adaptive system.

Suppose that many agents interact with an environment and each independently attempts to adjust its behavior
to the environment based on its sensory stimuli. The environment consists of other agents and other exogenous
influences. The agents could be humans, animals, or machines, but we make no assumptions about their detailed
internal structure. That is, the central hypothesis in the following is that collective adaptation is a dynamical behavior
driven by agents’ environment-mediated interactions. By separating the time scales of change in the environment,
of agents’ adaptation, and of agent—agent interactions, our models describe, not the deterministic decision-making
itself, but the temporal change in the probability distribution of choices.

1.1. Related work

This approach should be compared and contrasted with a game-theoretic view [11]. First, classical game theory
often assumes that players have knowledge of the entire environmental structure and of other players’ decision-
making processes. Our adaptive agents, however, have no knowledge of a game in which they might be playing.
Thus, unlike classical game theory, in our setting there is no bird’s eye view for the entire collective that is available
to the agents. Agents have only a myopic model of the environment, since any information external to them
is given implicitly via the reinforcements for their action choices. Second, although we employ game-theoretic
concepts such as Nash equilibria, we focus almost exclusively on dynamics—transients, attractors, and so on—of
collective adaptation, while, naturally, making contact with the statics familiar from game theory. Finally, despite
the differences, game structures can be introduced as a set of parameters corresponding to approximated static
environments.

While replicator dynamics were introduced originally for evolutionary game theory [12—14], the relationship
between learning with reinforcement and replicator dynamics has been discussed only recently [9,10]. Briefly
stated, in our model the state space represents an individual agent’s probability distribution to choose actions
and the adaptation equations describe the temporal evolution of choice probabilities as the agents interact. Here,
we extend these considerations to collective adaptation, introducing the theory behind a previously reported
model [15,16]. The overall approach, though, establishes a general framework for dynamical-systems model-
ing and analysis of adaptive behavior in collectives. It is important to emphasize that our framework goes be-
yond multipopulation replicator equations and asymmetric game dynamics since it does not require a static en-
vironment (cf. refs. [17,18] for dynamic environments) and it includes the key element of the temporal loss of
memory.

We model adaptation in terms of the distribution of agents’ choices, developing a set of differential equations
that are a continuous-time limit of a discrete-time stochastic process; cf. ref. [19]. We spend some time discussing
the origin of action probabilities, since this is necessary to understand the model variables and also to clarify the
limits that we invoke to arrive at our model. One is tempted to give a game-theoretic interpretation of the model
and its development. For example, mixed strategies in game play are often interpreted as weights over all (complete
plans of) actions. However, the game-theoretic view is inappropriate for analyzing local, myopic adaptation and the
time evolution of collective behavior.

Another interpretation of our use of action probabilities comes from regarding them as frequencies of action
choices. In this view, one needs long-time trials so that the frequencies take on statistical validity for an agent.
Short of this, they would be dominated by fluctuations, due to undersampling. In particular, one requires that stable
limit distributions exist. Moreover, the underlying deterministic dynamics of adaptation should be ergodic and have
strong mixing properties. Finally, considering agent—agent interactions, one needs to assume that their adaptation
is very slow compared to interaction dynamics. For rapid, say, real-time adaptation, these assumptions would be
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invalid. Nonetheless, they are appropriate for long-term reinforcement, as found in learning motion through iterated
exercise and learning customs through social interaction, for example.

1.2. Synopsis

The approach we take is ultimately phenomenological. We are reminded of the reaction-diffusion models of
biological morphogenesis introduced originally in ref. [20]. There, the detailed processes of biological development
and pattern formation were abstracted, since their biochemical basis was (and still is) largely unknown, and a
behavioral phenomenology was developed on this basis. Similarly, we abstract the detailed and unknown perceptual
processes that underlie agent adaptation and construct a phenomenology that captures adaptive behavior at a larger
scale in agent collectives.

The phenomenology that we develop for this is one based on communications systems. Agents in a collective are
confronted with the same three problems of communication posed by Weaver in the founding work of information
theory — The Mathematical Theory of Communication [21]: (a) “How accurately can the symbols of communica-
tion be transmitted?”, (b) “How precisely do the transmitted symbols convey the desired meaning?” and (c) “How
effectively does the received meaning affect conduct in the desired way?”. Shannon solved the first problem de-
veloping his theory of error-free transmission [21]. In their vocabulary adaptive agents are information sources.
Each (a) receives information transmitted from the external environment, which includes other agents, (b) interprets
the received information and modifies its internal model accordingly, and then, (c) making decisions based on the
internal model, generates future behavior.

We will show that this information-theoretic view provides useful tools for analyzing collective adaptation and
also an appropriate description for our assumed frequency dynamics. Using these we derive a new state space
based on the self-information of agent’s actions and this allows one to investigate the dynamics of uncertainties
in collective adaptation. It will become clear, though, that the assumption of global information maximization has
limited relevance here, even for simple mutual adaptation in a static environment. Instead, self-organization that
derives from the dynamics of uncertainties gives us a new view of collective adaptation.

To illustrate collective adaptation, we present several simulations of example environments; in particular, those
having frustrated agent—agent interactions [22]. Interestingly, for two agents with perfect memory interacting via
zero-sum rock-scissors-paper interactions the dynamics exhibits Hamiltonian chaos [15]. With memory loss, though,
the dynamics becomes dissipative and displays the full range of nonlinear dynamical behaviors, including limit
cycles, intermittency, and deterministic chaos [16].

The examples illustrate that Nash equilibria often play little or no role in collective adaptation. They are fixed
points determined by the intersections of nullclines of the adaptation dynamics and sometimes the dynamics is ex-
plicitly excluded from reaching Nash equilibria, even asymptotically. Rather, it turns out that the network describing
the switching between deterministic actions is a dominant factor in structuring the state-space flows. From it, much
of the dynamics, including the origins of chaos becomes intuitively clear.

In the next section (Section 2), we develop a dynamical system that models adaptive behavior in collectives.
In Section 3, we introduce an information-theoretic view and coordinate-transformation for adaptation dynamics
and discuss self-organization induced by the dynamics of uncertainty. To illustrate the rich range of behaviors, in
Section 4, we give several examples of adaptive dynamics based on non-transitive interactions. Finally, in Section
5, we interpret our results and suggest future directions.

2. Dynamics for collective adaptation
Before developing the full equations for a collective of adaptive agents, it is helpful to first describe the dynamics

of how an individual agent adapts to the constraints imposed by its environment using the memory of its past
behaviors. We then build up a description of how multiple agents interact, focusing only on the additional features



24 Y. Sato et al./ Physica D 210 (2005) 21-57

that come from interaction. The result is a set of coupled differential equations that determine the behavior of adaptive
agent collectives and that are amenable to various kinds of geometric, statistical, and information-theoretic analyses.

2.1. Individual agent adaptation

Here we develop a continuous-time model for adaptation in an environment with a single adaptive agent. Although
the behavior in this case is relatively simple, the single-agent case allows us to explain several basic points about
dynamic adaptation, without the complications of a collective and agent—agent interactions. In particular, we discuss
how and why we go from a discrete-time stochastic process to a continuous-time limit. We also describe an agent’s
effective internal model of the environment and how we model its adaptation process via the temporal evolution of
a probability distribution of action choices.

An agent takes one of N possible actions: i = 1,2, ..., N at each time step t. Let the probability for the agent
to choose action i be x;(t), where t is the number of steps from the initial state x;(0). The agent’s state vector—its
choice distribution—at time 7 is X(t) = (x1(7), x2(7), ..., xn(7)), Where Efl\’:]xn(r) = 1. In the following we call

the temporal behavior of x(t) as the dynamics of adaptation.

Let r;(7) denote the reinforcement the agent receives for its taking action i at step 7. Denote the collection of
these by the vector r(z) = (r1(7), ..., rn(7)). The agent’s memories—denoted Q(z) = (Q1(7), ..., On(7))—of
past rewards from its actions are updated according to

1
Qi(t+1)— Qi(r) = ?[Si(f)”i(f) —aQ(7)], (D
where
1, action i chosen at stept
bi(7) = 0, otherwise 2
withi=1,..., N. T is a constant that sets the agent—environment interaction time scale. « € [0, 1) controls the

agent’s memory loss rate. For o = 0, the agent has a perfect memory as the sum of the past reinforcements; for
o > 0 the memory is attenuated in that older reinforcements have less effect on the current Q;s and more recent
reinforcements are given larger weight. One imagines that the agent constructs a histogram of past reinforcements
and this serves as a simple internal memory of its environment.

An agent chooses its next action according to its choice distribution which is updated from the reinforcement
memory according to:

eBQi(™)
(7)) — , 3
xi(®) SN eh.0) )
wherei =1,2,..., N. B € [0, oo] controls the adaptation rate: how much the choice distribution is changed by the

memory of past reinforcements. For example, if 8 = 0, the choice distribution is unaffected by past reinforcements.
Specifically, it becomes independent of Q and one has x;(r) = 1/N. In this case, the agent chooses actions with
uniform probability and so behaves completely randomly. In a complementary fashion, in the limit 8 — oo, an
agent chooses that action i with the maximum Q;(t) and x;(t) — 1.

Given Eq. (3) the time evolution of agent’s choice distribution is:

i(T 1) = ,
st D Zrllvzlxn(f)eﬁ(Qn(r-i-l)—Qn(f))

“

wherei = 1,2, ..., N.Egs. (1)-(4) determine how the agent adapts its choice distribution using reinforcements it
has received from the environment for its past actions.
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This simple kind of adaptation was introduced as a principle of behavioral learning [23,24] and as a model of
stochastic learning [25]. It is sometimes referred to as reinforcement learning [26,27]. Arguably, it is the simplest
form of adaptation in which an agent develops relationships or behavior patterns through reinforcements from
external stimuli.

Starting with the discrete-time model above, one can develop a continuous-time model that corresponds to the
agent performing a large number of actions, iterates of Eq. (1), for each choice distribution update, iterates of Eq.
(3). Thus, we recognize two different time scales: one for agent—environment interactions and one for adaptation
of the agent’s internal model based on its internal memory. We assume that the adaptation dynamics is very slow
compared to interactions and so x is essentially constant during interactions; see Fig. 1.

Starting from Eq. (1), one can show that the continuous-time dynamics of memory updates is given by the
differential equations

Qi(1) = Ri(1) — a Q;(1), (&)

withi =1,2,..., N; see Appendix A. Here R; is the reward the environment gives to the agent choosing action i:
the average of r;(t) during the time interval between updates of x at ¢ and ¢ 4 dr.
From Eq. (3) one sees that the map from Q(#) to x(¢) at time ¢ is given by

BOID)
=S o,w ©
wherei = 1,2, ..., N. Differentiating Eq. (6) gives the continuous-time dynamics
N
xi(t) = Bxi(t) (Qi(t) > 0,x, (t)) , (7)
n=I

withi=1,2,..., N.
Assembling Eqgs. (5)—(7), one finds the basic dynamic that governs agent behavior on the adaptation time-scale:

Y _ B(R — R)+ a(H; — H) = BAR: + aAH, ®)

i

wherei =1,2,..., N.Here

N
R=>) xR, )
n=1
is the net reinforcement averaged over the agent’s possible actions. And,

H; = — logx,- (10)
/\Adama.ﬁ/\
[ t
Idt!
| I
| |
L
- Interaction

Fig. 1. The time scale (7) of a single agent interacting with its environment and the time scale () of the agent’s adaptation: 7 < ¢.
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wherei = 1,2, ..., N,is the self-information or degree of surprise when the agent takes action i [21]. The average
self-information, or Shannon entropy of the choice distribution, also appears as

N N
H=) x,Hy=-) x,logx,. a1
n=1 n=1

These are the entropies of the agent’s choice distribution measured, not in bits (binary digits), but in nats (natural
digits), since the natural logarithm is used. The entropy measures the choice distribution’s flatness, being maximized
when the choices all have equal probability.

Fortunately, the basic dynamic captured by Eq. (8) is quite intuitive, being the balance of two terms on the right-
hand side. The first term describes adaptation dynamics, whose time scale is controlled by 8. The second describes
the loss of memory with a time scale controlled by «. That is, the adaptation in choice probabilities is driven
by a balance between two forces: the tendency to concentrate the choice probability based on the reinforcement
R = (R, Ry, ..., Ry) and the tendency to make choices equally likely. Finally, on the lefthand side, one has the
logarithmic derivative of the choice probabilities: x;/x; = d/dt(log x;).

Note that each of the terms on the righthand side is a difference between a function of a particular choice
and that function’s average. Specifically, the first term AR; = R; — R is the relative benefit in choosing action i
compared to the mean reinforcement across all choices. Other things being held constant, if this term is positive,
then action i is the better choice compared to the mean and x; will increase. The second term A H; = H; — H is the
relative informativeness of taking action i compared to the average H, that is Shannon entropy. Thus, x; decreases
in proportion to the entropy at time ¢ and so this term works to increase the uncertainty of agent’s actions, flattening
the choice distribution by increasing the probability of unlikely actions. When x; = N~!, the distribution is flat
(purely random choices), AH = 0, and memory loss effects disappear.

Mathematically, the adaptation equations have quite a bit of structure and this has important consequences, as
we will see. Summarizing, the adaptation equations describe a dynamic that balances the tendency to concentrate
on choices associated with the best action against the tendency to make the choices equally likely. The net result
is to increase the choice uncertainty, subject to the constraints imposed by the environment via the reinforcements.
Thus, the choice distribution is the least biased distribution consistent with environmental constraints and individual
memory loss. We will return to discuss this mechanism in detail using information theory in Section 3 (Fig. 2).

Since the reinforcement determines the agent’s interactions with the environment, there are, in fact, three different
time scales operating: that for agent—environment interactions, that for each agent’s adaptation, and that for changes
to the environment. However, if the environment changes very slowly compared to the agent’s internal adaptation,
the environment r;(¢) can be regarded as effectively constant, as shown in Fig. 3.

In this case r;(¢) can be approximated as a static relationship between an agent’s actions and the reinforcements
given by the environment. Let r;(¢) = a;, where a = (ay, . .., ay) are constants that are normalized: Zfl\’:lan =0.
Given this, the agent’s time-averaged reinforcements are a; (R; = a;) and the continuous-time dynamics simplifies

—_— <+— Adaptation

Probability

Distribution —> Memory Loss

|||||||||

Fig. 2. A dynamic balance of adaptation and memory loss: adaptation concentrates the probability distribution on the best action. Memory loss
of past history leads to a distribution that is flatter and has higher entropy.
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Environment

Interaction

Fig. 3. The time scales of dynamic adaptation: agent adaptation is slow compared to agent—environment interaction and environmental change
is slower still compared to adaptation.

Fig. 4. Dynamics of single-agent adaptation: here there are three actions, labeled 1-3, and the environment gives reinforcements according to
a= (%e, -1 - %e, 1- %e). The figure shows two trajectories from simulations with € = 0.5 and 8 = 0.1 and with « = 0.0 (right) and @ = 0.3
(left).

to:

. N N
Xi

—=Ba— anxp | +a | —logx; + xplogx, |, (12)
Xi ,; ;
wherei =1,2,..., N.

The behavior of single-agent adaptation given by Eq. (12) is very simple. When « is small, so that adaptation
is dominant x; — 1, where i is the action with the highest reward a;, and x; — 0 for j # i. The agent receives
this information from the fixed environment and its behavior is simply to choose the action with the maximum
reward and the choice distribution moves to the associated simplex vertex x* = (0, ..., 1,...,0). In the special
case when « = 0, it is known that for arbitrary a Eq. (12) moves x to the vertex corresponding to the maximum a;
[2]. In a complementary way, when « is large enough to overcome the relative differences in reinforcements —that
is, when /a — 0—memory loss dominates, the agent states goes to a uniform choice distribution (x; = N~!) and
the system converges to the simplex center. Note that in machine learning this balance between local optimization
and randomized behavior, which selects non-optimal actions, is referred to as the exploitation—exploration trade-off
[27].

For instance, consider an agent that takes N = 3 actions {1, 2, 3} in an environment described by a = (%e, —1 -
%e, 1— %e), with € € [—1, 1]. In the perfect memory case (« = 0), the choice distribution converges to a stable

fixed point (0,0,1). x* = (%, % %) is an unstable hyperbolic fixed point. In the memory loss case (¢ > 0), dynamics
converges to a stable fixed point inside the simplex. (These cases are illustrated in Fig. 4.)
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Even when the environment is time-dependent, the agent’s behavior can track the highest-reward action as long
as the time scale of environment change is slow compared to the agent’s adaptation. However, the situation is more
interesting when environment change occurs at a rate near the time-scale set by adaptation. Mutual adaptation in
agent collectives, the subject of the following sections, corresponds to just this situation. Other agents provide,
through their own adaptation, a dynamic environment to any given agent and if their time scales of adaptation are
close, the dynamics can be quite rich and difficult to predict and analyze.

2.2. Two agent adaptation

To develop equations of motion for adaptation in an agent collective we initially assume, for simplicity, that there
are only two agents. The agents, denoted X and Y, at each moment take one of N or M actions, respectively. The
agents states at time f are X = (x1,...,xy)andy = (y1, ..., yu), with E,Ilvzlxn = E%I:lym = 1.x(0) and y(0) are
the initial conditions. We view the time evolution of each agent’s state vector in the simplicesx € Ax andy € Ay
and the group dynamics in the collective state space A which is the product of the agent simplices:

X=(X,y)e A=Ay x Ay. (13)

There are again three different time scales to consider: one for agent—agent interaction, one for each agent’s internal
adaptation, and one for the environment which now mediates agent interactions via the reinforcements given to
the agents. The external environment controls, for example, the degree of coupling between the agents. In contrast
with the single-agent case, in the many-agent setting each agent’s behavior produces a dynamic environment for the
other agents. This environmental dynamics is particularly important when the adaptation time scales of each agent
are close.

Following the single-agent case, though, we assume that the adaptation dynamics is very slow compared to that
of agent—agent interactions and that the dynamics of the external environment changes very slowly compared to
that of agents’ mutual adaptation. Under these assumptions the agent state vectors x and y are effectively constant
during the agent—agent interactions that occur between adaptation updates. The immediate consequence is that one
can describe the collective state space in terms of the frequencies of actions (the choice distributions). Additionally,
the environment is essentially constant relative to changes in the states x and y.

Denote the agents’ memories by Q¥ = (0%, ..., Q%) for X and QY = (Qf, e, QX,[) for Y. For the dynamic
governing memory updates we have

0¥+ 1) - 0¥ = ;[Z 8y(Drf(m) — ax QX (@)1,
J

(14)
1
Qf(r+1) = Qf(®) = 1> _8;(D)rji(v) — ay (D)),
i
where
1, pair of actions (7, j) chosen atstep t
8ij(7) = 0, otherwise (5)
withi=1,...,Nand j=1,..., M. T is the time constant, as before. Then the continuous-time dynamics of
memory updates for X and Y are given by the differential equations
5 X X X
. =R —« al
QY i —oaxQ; (16)

_ pY _ Y
Qj—Rj aYQj,
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fori=1,2,...,Nand j=1,2,..., M. RIX is the reward for agent X choosing action i, averaged over agent ¥’s
actions between adaptive updates; and R}/ is Y’s. The parameters oy, ay € [0, 1) control each agent’s memory loss
rate, respectively.

The map from Q¥ (7) to x(¢) and from QY (¢) to y(¢) at time ¢ is

Bx 0¥ )
(1) =
)Cz( ) Zﬁl\[_l eﬁXQé’(t)’
- 1
HProjo (a7
yl() ZnAle engQ%(t)’
fori=1,...,Nand j=1,..., M. Here Bx, By € [0, oo] control the agents’ adaptation rates, respectively. Dif-
ferentiating Eq. (17) with respect to ¢, the continuous-time adaptation for two agents is governed by
X N X
Xi = Bxxi (Qi -> 0, Xn) ;
n=1 (18)

M
yi=Bryj (Qj -> Q;}%) :
m=1

fori=1,...,Nand j=1,..., M.
Putting together Eqgs. (16)—(18), one finds the coupled adaptation equations for two agents:
X—.
= = Bx(RX — RY) + ax(HY — HY) = BxARY + ax AH,

Xi
¥ (19)
L = y(RY — R) + ay(H) — H') = By ARY + ayAHY,

Yj

fori=1,...,Nand j=1,..., M and where
N M
R¥=>"x,RY.R' = yuR,
n=1 m=1

~ - (20)
HY =Y " x,HX H' =) ynH,).
n=1 m=1

The interpretations of the AR = R; — Rand AH = H; — H terms are not essentially different from those introduced
to describe the single-agent case. That is, the behavior of each agent is a dynamic balance between (i) adaptation—
concentrating the choice probability on the best action at 7—and (ii) memory loss —increasing the choice uncertainty.
What is new here is that there are two (and eventually more) agents attempting to achieve this balance together
using information that comes from their interactions with the dynamic environment which includes other agents.

As given, the adaptation equations include the possibility of a time-dependent environment, which would be
implemented, say, using a time-dependent reinforcement scheme. However, as with the single-agent case, it is
helpful to simplify the model by assuming a static external environment and, in particular, static relationships
between the agents.

Assume that the external environment changes slowly compared to the dynamics of mutual adaptation, as
illustrated in Fig. 3. This implies a nearly static relationship between pairs of action choices (i, j) and reinforcements

ri)f and r;-; for both agents. Since the environmental dynamics is very slow compared to each agents’ adaptation,
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ri); (t) and r}’i(t) are essentially constant during adaptation. The rs can be approximated then as constant:

rii(0) = ayj,
Y 21D
r ji(t) =b jis
fori=1,...,Nand j=1,..., M.qa;; and bj; are normalized over j and i so that when summing over all actions
the reinforcements vanish:
N
Zn:l a"j = 0’
- (22)
Zm:l bmi =0.

Given the form of AR in the adaptation equations, this normalization does not affect the dynamics.

Assume further that x and y are independently distributed. This is equivalent to agents never having a global
view of the collective or their interactions with the environment (other agents). Each agent’s knowledge of the
environment is uncorrelated, at each moment, with the state of the other agents. The time-average rewards for X
and Y now become

M
RiX = Z AimYm = (AY)i,
" (23)
RY =Y "bjux, = (Bx);,
n=1
fori=1,...,Nand j=1,..., M. In this restricted case, the continuous-time dynamic is given by the coupled

adaptation equations

. N
N
= Bxl(Ay)y —x- Ay +ax [~ logxi + Y, 10%] ’

l —

| )
Vi
3 = BrlB;j —y- Bxl ey | —logy; + > ym10g ym | -

J m=1

fori=1,...,Nandj=1,...,M.Aisan N x M matrixand Bisa M x N matrix with (A);; = a;;and (B);; = bj;,
respectively. x - Ay is the inner product between x and Ay and similarly for y - Bx:

N M
XAy =2 > dundndm,
n=1m=1 (25)

M N
y-Bx= Z menymxn-

m=1 n=1

2.3. Collective adaptation

Generalizing to an arbitrary number of agents at this point should appear straightforward. It simply requires
extending Egs. (19) to a collection of adaptive agents. Suppose there are S agents labeled s = 1, 2, ..., S and each
agent can take one of N* actions. One describes the time evolution of the agents’ state vectors in the simplices
x! € A1, x? € Ay, -+, and x5 € Ag. The adaptation dynamics in the higher-dimensional collective state space
occurs within

X=xx%....x5 e A=A, x Ay x ... As. (26)
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Then we have the dynamics for collective adaptation as
-x"?s
—; = Bs(Rjs — R®) + as(Hy — H*) = B AR} + asAH}. 27
lS
fori*=1,...,N'ands=1,...,S. R and Hj; are the reinforcement and the self-information for s to choose
action i*, respectively. Egs. (27) constitute our general model for adaptation in agents collective.

With three agents X, Y, and Z, the collective state space is
X=(X,y,2) € A=Ax X Ay X Ay, (28)

one obtains:

.X.-'

= = Bx(RY — RY) + ax[HY — HX] = BxARY + ax AHY,
l

;}j: = ﬂY(Ri'/ - R") +01Y[H}/ —H'= ,3yAR}, +ozyAHjY, (29)
J

Zk
s Bz(RZ — R?) + az[HE — H?] = B7AR? + az AHE,

fori=1,...,N,j=1,...,M,and k = 1, ..., L. The static environment version reduces to

“ N

— = Bxl(Ayz); —x - Ayzl +ax | —logxi + ) xlog xn] :
! n=1

) M

y .

y% = Pyl(Bzx); —y - Bzx] +ay |—logy;+ Y ymlog ym] : (30)
J m=1

2k

o BzI(Cxy)y —z- Cxy] + oz

L
—log zx + Z z1log Zz] ,
I=1

fori=1,...,N,j=1,...,M,andk =1, ..., L, and with tensors (A);jx = ajjk, (B) jxi = bjki,and (C)rij = ckij-

(Ay2)i = > ) dimiymz (31)

and
N

M L
X-Ayz = Z Z Z AnmiXnYmZl (32)

n=1m=1 I=1

and similarly for Y and Z. Note that the general model includes heterogeneous network settings with local interactions
rather than global interactions; see Appendix B.

2 4. Evolutionary dynamics and game theory

We now interrupt the development to discuss the connections between these models and those from population
dynamics and game theory. There are interesting connections and also several important distinctions that need to
be kept in mind, before we can move forward.

The special case that allows us to make contact with evolutionary dynamics and game theory is the restriction
to agents with perfect memory interacting in a static environment. (For further details see Appendix C.) In the
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two agent, static external environment case we set «y = ay = 0 and equal adaptation rates, 8x = By. Under these
assumptions our model, Egs. (24), reduces to what is either called multipopulation replicator equations [13] or
asymmetric game dynamics [9,10,13]. The equations are:

Xi

— = (Ay)i —x - Ay,

Xi

5 (33)
L= (Bx); —y - Bx.

Yj

From the perspective of game theory, one regards the interactions determined by A and B as X’s and Y’s payoff
matrices, respectively, for a linear game in which X plays action i against Y’s action j. Additionally, x and y, the
agent state vectors, are interpreted as mixed strategies. In fact, x - Ay and y - Bx in Eqgs. (33) formally satisfy von
Neumann—Morgenstern utilities [11]. If they exist in the interior of the collective simplices Ax and Ay, interior
Nash equilibria of the game (A, B) are the fixed points determined by the intersections of the x- and y-nullclines of
Egs. (33).

One must be careful, though, in drawing parallels between our general dynamic setting and classical game
theory. In idealized economic agents, it is often assumed that agents have knowledge of the entire game structure
and of other agents’ decision-making processes. Game theory’s central methodology derives from how these ra-
tional players should act. Our adaptive agents, in contrast, have no knowledge of a game in which they might be
playing, only a myopic model of the environment and, even then, this is given only implicitly via the reinforce-
ments the agents receive from the environment. In particular, the agents do not know whether they are playing a
game or not, how many agents there are beyond themselves, or even whether other agents exist or not. Our model
of dynamic adaptation under such constraints is appropriate nonetheless for many real world adaptive systems,
whether animal, human, or economic agent collectives [28]. The bi-matrix game (A, B) appears above as a de-
scription of the collective’s global dynamic only under the assumption that the external environment changes very
slowly.

The connection with evolutionary dynamics is formal and comes from the fact that Egs. (33) are the well known
replicator equations of population dynamics [2]. However, the interpretation of the variables is rather different.
Population dynamics views x and y as two separate, but interacting (infinite population size) groups. These two
populations are described as distributions of various organismal phenotypes. The equations of motion determine the
evolution of these populations over generations and through interaction. In our model, in contrast, x and y represent
the probability to choose actions for each agent. The equations of motion describe their dynamic adaptation to each
other through interaction.

Despite the similarities that one can draw in this special case, it is important to emphasize that our framework
goes beyond the multipopulation replicator equations and asymmetric game dynamics. First, the reinforcement
scheme R need not lead to linear interactions. Second, the model does not require a static environment described
by a constant bi-matrix (A, B). Finally, the occurrence of the memory loss term is entirely new and not found in
game theory or evolutionary dynamics.

3. Information, uncertainty, and dynamic adaptation

We now shift away from a dynamical systems view and, as promised earlier, begin to think of the agent collective
as a communication network. Although initially this will appear unrelated, we will show that there is a close con-
nection between the dynamical and information-theoretic perspectives—connections that have both mathematical
and pragmatic consequences.

We consider the adaptive agents in the collective to be information sources. First, each agent receives information
from its environment, which includes other agents. Next, they interpret the received information and modify their
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behavior (and so the structure of information source) accordingly, changing from x(¢) to x(t + dr). Finally, they
generate a series of messages (actions) based on their updated internal model, introducing the new behavior back
into the environment. This is a different interpretation of the interaction process in the collective which we motivated
up to this point only as a dynamical process. Now we discuss the adaptive dynamics from information theoretic
viewpoint.

3.1. Dynamics in information space

In this section, we introduce a new state space that directly represents the uncertainties of agent actions. First,
as before, for clarity we focus on the two-agent static-environment case, Eqs. (24). Since the components of the
agents’ states are probabilities, the quantities

& = —logx;,

(34
nj = —logyj,
are the self-informations of agents X and Y choosing actions i and j, respectively. When x; is small, for example, the
self-information &; is large since action i is rarely chosen by agent X. Consider the resulting change in coordinates
inRY x RM:
+ +

E=Emn==E,....&n0) xO1,- .o m). (35)

The normalization conditions— Elﬁv:lxn = Erﬁle ym = 1 —that restrict the agent states to lie in simplices become
N —Sn — M —MNm — m =
Y€ .5 =X, e = lin &. .
In this space the equations of motion become:

& = —Bx[(Aexp(—n); — exp(—§) - Aexp(—n)] — ax[& — exp(—€) - &I, 36)
nj = —PBrl(Bexp(—§)); — exp(—n) - Bexp(—§)] — ay[n; —exp(—n) - 1],

fori=1,...,Nand j=1,..., M and where exp(—&) = (¢!, ..., e ") and exp(—n) = (¢, ..., e M),
Recall that both the A R interaction term and the A H memory-loss term are differences from means. This suggests
yet another transformation to remove these comparisons to the mean:

N
ui=E-N"'Y"¢,
= (37)
vi=nj =MD i,
m=1
withi=1,...,Nand j = 1,..., M. This leads to the normalized space in R¥ x RM:
U=,v)=y,...,uy) X (v,...,vy), (38)

with the constraints 2111\/:1 Up = Z,[Z[:l vy, = 0.uand v are the normalized self-informations relative to their means.
We refer to this state space as information space.
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The combined coordinate transformation, Eqs. (37) composed with Eqgs. (34), gives the well known centered
log-ratio coordinates [29]. The inverse transformation is:

—u;

e
Xi= >
_ €7 n
Z";L,j (39)
yj= s
’ Enﬂle e tm
or, by using the notation exp(—u) = (e™*!, ..., e V) and exp(—v) = (e7", ..., e" "),
x = Z ' (u)exp(—u ,
(u) exp(—u) 40)

y = Z'(v)exp(—v),

where Z(u) = Zflv:l e " and Z(v) = Z%:l e~V The resulting transformed adaptation equations directly model

the dynamics of uncertainties of agents’ behavior:

N
u=—gxZ '(v) [Aexp(-v) = > (A exp(—v)),,] — ayu,
g @1
V= —,ByZ_l(u) [B exp(—u) — Z(B exp(—u))m] — ayVv.
m=1

When the interaction matrices are normalized to zero mean, Znﬂle Ay = Z,I:]:l bj, =0, the equations simplify
even further to

u = —BxA[Z7 (v)exp(—V)] — axu,

(42)

v = —ByBIZ™(w)exp(—u)] — ayv.
The origin O = (0,0, ..., 0) of the normalized information space U corresponds to random behavior: (x,y) =
(1/N,...,1/N,1/M, ..., 1/M). The Shannon entropy of the choice distribution is maximized at this point. In
contrast, when agents choose an action with probability 1, the entropy vanishes and the agent state is located in A
at the simplex vertices and in U at infinity.

Eqgs. (42) directly describe the dynamics of uncertainties of individual behavior interacting with other agents’
uncertainties. In Egs. (42) the first term comes from mutual adaptation—uncertainty change by interacting with
other information sources with interaction matrices (A, B). The second term comes from internal memory loss—
uncertainty gain based on past self-information of their own behavior. Eqs. (42) are useful for theory, for analysis
in certain limits, as we will shortly demonstrate, and for numerical stability during simulation, which we will
illustrate when considering example collectives below. Note that Eqgs. (24), (36), and (41) are topologically orbit
equivalent.

3.2. Self-organization induced by the dynamics of uncertainty

Eqgs. (42) describe the dynamics of uncertainty between deterministic and random behavior in the information
space U. Uncertainties change when the agents adapt to environmental constraints and accordingly modify their
choice distribution. Uncertainties increase when memory loss dominates and agents behave more randomly with
less regard to the environmental constraints. The dissipation rate y of the dynamics in U is controlled entirely by
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x Ay
Y
<

D(x*[Ix) D(y*[ly)

Fig. 5. Dynamics of zero-sum interaction without memory loss: constant of motion £ = /3;(1 D(x*||x) + /3;1 D(y*|ly) keeps the linear sum of
the distances between the interior Nash equilibrium and each agent’s state.

the memory loss rate o:

N o M 50
y=3 2 NI ey — Moy, 43)
n

n=

Therefore, Egs. (42) are volume preserving in U when ax = ay = 0.
In the case that agents behave without memory loss («¢x = ay = 0), if the interaction specified by (A, B) is

zero-sum, B = — AT, and if, in addition, it determines an interior Nash equilibrium (x*, y*) (see Appendix C), then
the collective has a constant of motion:
E = x' DX*[x) + By D(y*|ly). (44)

where D(p|lq) = Xk pr log(px/qr) is the relative entropy or the information gain which measures the similarity
between probability distributions p and q [30]. (Appendix D gives the derivation of Eq. (44).)

Since the constant of motion E is a linear sum of relative entropies, the collective maintains the information-
theoretic distance between the interior Nash equilibrium and each agent’s state. Thus, in the perfect memory case
(e = 0), by the inequality D(p||q) > 0, the interior Nash equilibrium cannot be reached unless the initial condition
itself starts there (Fig. 5). This is an information-theoretic interpretation of the constant of motion noted in ref. [31].
Moreover, when N = M the dynamics has a symplectic structure in U with the Hamiltonian E given in Eq. (44)
[31]. In this case, Egs. (41) are described quite simply,

U= JVyE, (45)

with a Poisson structure

o P
J=|_pr o with P=—Bxpra. (46)

Again, see Appendix D.

When the bi-matrix interaction (A, B) satisfies B = AT, in generic cases where there’s no payoff tie, E is
a Lyapunov function of the dynamics and decreases to O over time [2]. In this case, each agent can adapt to
the environment independently and the collective adaptation dynamics reaches one of the stable states. In some
circumstances, though, the Nash equilibria (x*, y*) may not be in the interior of the collective simplex A. (Note
that symmetric artificial neural networks have similar properties [32].)

In some cases when neither B = —AT nor B = AT, E increases non-monotonically, the dynamics in U diverges,
and the Shannon entropies of agents’ choice distribution asymptotically decreases (see Figs. 17 and 20 below).
Note that in single-agent adaptation with state x and normalizing the environment’s reinforcements to a probability
distribution p., D(p.||x) is always a Lyapunov function of the dynamics and decreases monotonically. In mutual
adaptation, however, agents adapt to a dynamic environment that includes the other agents. As aresult, in some cases,
E, a linear sum of agent relative entropies, will itself exhibit nontrivial dynamics and, in addition, the uncertainties
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Adaptation and Memory loss Non-transitive interaction

Fig. 6. Smale’s horseshoe in mutual adaptation: mutual adaptation and memory loss produce unstable and stable directions. The non-transitive
structure of interactions leads to state-space folding.

of agents’ choices will asymptotically decrease. When agents adapt with memory loss (@ > 0), the dynamics is
dissipative. The dynamics varies between random and deterministic behavior in the information space U. Notably,
when the agents attempt to achieve this balance together by interacting and, in particular, when the interaction has
non-transitive structure, the dynamics can persistently wander in a bounded area in information space. Since, in
some cases, mutual adaptation and memory loss produce successive stretching and folding, deterministic chaos can
occur within a significant range of «, even with only two agents. A schematic view of Smale’s horseshoe in mutual
adaptation is given in Fig. 6.

In the case that the agents are completely decoupled or in the case that B = AT and oy = ay = O for two agents,
information space locally splits into two subspaces governed by the effects of mutual adaptation and memory loss.
They correspond to unstable and stable flow directions as in single-agent adaptation. However, in the case that
agents are coupled via non-transitive interaction, mutual adaptation and memory loss nonlinearly interact with
each other and Smale’s horseshoe can be produced. In a general scheme, we can say that flow of information in
mutual adaptation is multidimensional since each agent obtains information from its environment, organizes its
behavior based on that information, and that local adaptation is then fed back into the environment affecting other
agents.

In this case, “weak” uncertainty of behavior plays an important role in the self-organization of the collective
behavior. Small fluctuations in the certainty of individual decision-making are amplified through mutual adaptation
via non-transitive interactions. At the same time, memory loss increases the choice uncertainty and so stabilizes
the collective’s behavior.

Now consider many agents interacting. In the perfect memory case, when the game is zero-sum and has an
interior Nash equilibrium (x'*, x>, . . ., x5%), following Eq. (44), the following constant of motion exists:

E= Z D(xs*||xs)_zﬁ

Although, strictly speaking, Hamiltonian dynamics and the associated symplectic structure of information space
occurs only for two agents, one can describe multiple agent dynamics as a generalized Hamiltonian system [33].
In the general case with o > 0, dissipative dynamics and high-dimensional chaotic flows can give rise to several
unstable directions, since information flow has a network structure relative to the other agents. At least S stable
directions are expected since memory loss comes from each individual’s internal dynamics.

Summarizing, in single-agent adaptation, information flows unidirectionally from the environment to the agent
and the agent adapts its behavior to the environmental constraints. Adaptation leads to D(p,|[x) — 0. For mutual
adaptation in an agent collective, however, information flow is multidimensional since each agent obtains information
from an environment that includes other agents. In this situation, £ need not be a Lyapunov function for the dynamics.
As we will see, when the dynamics is chaotic, global information maximization is of doubtful utility and the dynamic
view of adaptation shown in Fig. 6 is more appropriate. When dynamic memory stored in collectives emerges,
collective adaptation becomes a non-trivial problem. A detailed dynamical and information theoretic analysis along
these lines will be reported elsewhere.

In the next section, we will give several phenomenological examples that illustrate collective adaptation.

47

ns=1
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4. Examples

To illustrate collective adaptation, we now give several examples of the dynamics in a static environment with two
and three agents interacting via versions of Matching Pennies and Rock-Scissors-Paper, games with non-transitive
structures. Appendix E gives the details of the reinforcement schemes for these cases. The agents will have equal
adaptation rates (8x = By = - - -) and the same number of actions (N = M = L = - --). In these simplified cases,
the equations of motion for two agents are given by

Xi N
= = [(Ay)i —x- Ayl + ax |—logxi + Y x,logx, |,
i n=1
5 u (48)
L =[(Bx)j—y-Bx]+ay |—logyj+ Y ym logym] :
Y m=1
fori, j=1,..., N. A detailed analysis of this case with zero memory loss (o = 0) is given in ref. [2] in terms of
asymmetric game dynamics. We will present results for zero and positive memory loss rates.
We then consider three agents, for which the adaptation equations are
. N
Xi
— = [(Ayz); — x - Ayz] + ax | —logx; + an logx,,] ,
i n=1
V, M
3= (B0, —y - Bax] +ay | ~logy; + > ymlog ym] : (49)
J m=1
Zk -
= [(Cxyy —z- Cxyl +az |~ log 2t + > zlog Zz] ,
k
I=1
fori, jk=1,..., N. We also will describe cases with and without memory loss.

Computer simulations are executed in the information spaces U and the results are shown in the state spaces A,
Ax, Ay, and Az.

4.1. Two agents adapting under Matching Pennies interaction

In the matching pennies game, agents play one of two actions: heads (H) or tails (7). Agent X wins when the plays
do not agree; agent Y wins when they do. Agent X’s state space is Ax = (x1, x2) with x; € (0, 1) and x; +x2 = 1.
That is, x| is the probability that agent X plays heads; x», tails. Agent Y is described similarly. Thus, each agent’s
state space is effectively one dimensional and the collective state space A = Ay x Ay, two dimensional.

The environment for two agents interacting via the matching pennies game leads to the following matrices for
Eqgs. (48):

—€x €x —€y €y
A= and B = , (50)
€X  —€x €y —€y
where ex € (0.0, 1.0] and —ey € (0.0, 1.0].
Fig. 7 shows a heteroclinic cycle of adaptation dynamics on the boundary of A when the os vanish. Flows on the

border occur only when agents completely ignore an action at the initial state; that is, when x;(0) = 0 or y;(0) =0
for at least one i or j. Each vertex of the simplex is a saddle since the interaction is non-transitive.
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(H,T) ~ (T, T)
Y
A 4 A
L’ X
(H, H) ] (T, H)

Fig.7. Flows on the boundary in Matching Pennies interaction: actions H and 7 correspond to “heads” and “tails”, respectively. Arrows indicate
the direction of adaptation dynamics on the boundary of the state space A.

=
=<

0 X4 1 0 X, 1

Fig. 8. Adaptation dynamics in Matching Pennies interaction: here ey = 0.5 and ey = —0.3 with (left) vy = oy = 0 and (right) ax = 0.02
and ay = 0.01.

The Nash equilibrium (x*, y*) of the Matching Pennies game is in the center of A: (x*, y*) = (1/2,1/2,1/2,1/2)
and this is also a fixed point of the adaptation dynamics. The Jacobian at (x*, y*) is

—“7"(1 +log2) —%X
/= cr (1 +1og2) eb
2 2 T8
and its eigenvalues are
4); dexey
—_ = + —ay)+ ——. 52
I+ log2 (ax + ay) \/(O!X ay) +(1+10g2)2 (52)

In the perfect memory case (¢x = ay = 0), trajectories near (x*, y*) are neutrally stable periodic orbits, since A; =
+(1/2)./€xey are pure imaginary. In the memory loss case (ay > 0 and ay > 0),(x*, y*)is globally asymptotically
stable, since Re(11) and Re(A;) are strictly negative. Examples of the trajectories in these two cases are given in
Fig. 8.

4.2. Three agents adapting under Even—Odd interaction

Now consider extending Matching Pennies for two agents so that it determines the interactions between three.
Here we introduce the Even—Odd interaction in which there are again two actions, H and 7', but agents win according
to whether or not the number of heads in the group of three plays by the agents is even or odd. The environment
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(T, H, H)

Fig.9. Flows on the state space boundary under Even—Odd interactions: H and T correspond to “heads” and “tails”, respectively. Arrows indicate
the direction of adaptation dynamics on A’s boundary when the «s vanish.

Fig. 10. Dynamics of adaptation in the Even—odd interaction: ex = 0.5, ¢y = 0.2, and €z = —0.3 with ax = @y = oz = 0 in (left) and with
ax = ay = 0and az = 0.01 in (right). The trajectories with several initial conditions are shown in (left). The neutral subspace is shown as the
horizontal cross and the trajectory chosen illustrates the attraction to a point in this subspace in (right).

now is given by, for agent X,

€x, number of Hsis even

o ‘ 53
dijk —ey, otherwise (53)

with actions for agents X, Y, and Z given by i, j, k = {H, T} and €x € (0.0, 1.0]. The interaction matrices b j;; and
ckij for agents Y and Z, respectively, are given similarly, but with ey € (0.0, 1.0] and €z € [—1.0,0.0). Appendix E
gives the details of the reinforcement scheme.

Following the reasoning used in Matching Pennies, the collective state space A = Ax X Ay X Az is now a
solid three-dimensional cube. Fig. 9 shows a heteroclinic network of adaptation dynamics on the boundary of A
when as vanish. Flow on A’s boundary is also indicated there.

A is partitioned into four prism-shaped subspaces. Each prism subspace has a heteroclinic cycle on the face that
is also a face of A.
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The Nash equilibrium of the Even—Odd interaction is (x*, y*, z*) = (1/2, 1/2,1/2,1/2,1/2, 1/2) at the center
of A and this is also a fixed point of the adaptation dynamics. The Jacobian there is simply

—ux 0 0

J = 0 —ay O i (54)
0 0 —ay

Its eigenvalues are A = —ax, —ay, —az. Thus, in the complete memory case (vxy = ay = az = 0), trajectories
near (x*, y*, z*) are neutrally stable periodic orbits. With memory loss (ax, ay, az > 0),the (x*, y*, z*) is globally
asymptotically stable. The hyperbolic fixed points in the top and bottom faces are unstable in all cases. Examples
of the trajectories are given in Fig. 10, where the prism partitioning is clear.

Notably, when a single agent (say, Z) has memory loss and others have perfect memory, the crossed lines given by
{z =x=0.5,z =y =0.5} become an invariant subspace and trajectories are attracted to points in this subspace.
Thus, there are infinitely many neutrally stable points. This is shown in the right diagram of Fig. 10.

With ey = ay =0 and oz = 0.01, as in Fig. 10 for example, the adaptive dynamics alternates between a
Matching Pennies interaction between agents X and Z by one between agents Y and Z during the transient relaxation
to a point on the invariant subspace.

4.3. Two agents adapting under Rock—Scissors—Paper interaction

In this subsection we give an example of an environment in which agents have three actions. One of the most
commonly studied games with three actions is the Rock—Scissors—Paper (RSP) game, in which an agent playing
Rock beats one playing Scissors, which in turn beats an agent playing Paper, which finally beats Rock.

First we examine two agents, which is a straightforward implementation of the RSP game and then extend the
RSP interaction to three agents and analyze the higher-dimensional behavior. The interaction matrices for these
cases are given in Appendix E.

Under the RSP interaction each agent has the option of playing one of three actions: “rock” (R), “scissors” (S),
and “paper” (P). Agent X’s probability of playing these are denoted x1, x2, and x3 and x; + x» +x3 = 1. Agent Y
probabilities are given similarly. Thus, the agent state spaces, Ay and Ay, are each two dimensional simplices, and
the collective state space A = Ay x Ay is four dimensional.

For two agents the environment is given by the interaction matrices

€X 1 -1 €y 1 —1
A= |—-1 ex 1 and B=|—1 ey 1 , (55)

1 —1 ex 1 -1 ey

where €y, €y € [—1.0, 1.0] are the rewards for ties and normalized to

B 2 1 1
S€x 1 —3ex —1—3ex
1 2 1
A= |-1-tex 2y 1-ley (56)
1 1 2
1— §€X -1 - §€X §EX
and
B 2 1 1
§€Y 1 — §€Y -1 - §€Y
1 2 1
B = |—-1— 3¢y 3€Y 1l —zey |. 57
1 1 2
l—3ey —1—3ey F€y

Note that the reinforcements are normalized to zero mean and that this does not affect the dynamics.
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(P, P) (R, P)

Fig. 11. Flows on the boundary of the simplex in the Rock—Scissors—Paper interaction for two agents: R, S, and P denote “rock”, “scissors”,
and “paper”, respectively. The arrows indicate the direction of the adaptation dynamics on the boundary of the collective state space A when
the as vanish.

The flow on A’s boundary is shown in Fig. 11. This represents the heteroclinic network of adaptation dynamics
on A’s edges when the as vanish. Each vertex is a saddle since the interaction has non-transitive structure.
The Nash equilibrium (x*, y*) is given by the centers of the simplex:

. 111111
w=(333333) 9
This is also a fixed point of the adaptation dynamics. The Jacobian there is
P (59)
3 3 oy 0
3 0w

Its eigenvalues are

d(exey — 3+ +/—3(ex + €r)?)
9 )

20 = —(ax +ay) = \/(ozx —ay)? + (60)
Thus, when (A, B) is zero-sum (ex + €y = 0) and agents have complete memory (¢y = ay = 0), trajectories near
(x*, y*) are neutrally stable periodic orbits since all A’s are pure imaginary. The dynamics is Hamiltonian in this
case. With memory loss (ax, ay > 0) and |ax — ay| < %(6%( + 3), (x*, y*) is globally asymptotically stable.

For the nonzero-sum case, we will give examples of dynamics with ex = 0.5, ey = —0.3, ay = 0.01. In this
case, when ay > o, (x*, y*) is globally asymptotically stable. At the point o, ~ 0.055008938, a period-doubling
bifurcation occurs. The example of two agents adapting in the Rock—Scissors—Paper interaction adaptation dynamics
illustrates various types of low-dimensional chaos. We now explore several cases.

4.3.1. Hamiltonian limit

When the agent memories are perfect (¢x = ay = 0) and the game is zero-sum (ex = —ey), the dynamics in
the information space U is Hamiltonian with an energy E = D(x*||x) + D(y*|ly). The left columns of Figs. 12
and 13 give trajectories in the collective state space A, while the plots given in the middle and right columns are
these trajectories projected onto the individual agent simplices, Ax and Ay. The trajectories were generated using
a 4th-order symplectic integrator [34] in U.
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Fig. 12. Quasiperiodic tori: collective dynamics in A (left column) and individual dynamics projected onto Ay and Ay, re-
spectively (right two columns). Here ex = —ey =0.0 and ox = oy =0. The initial condition is (A): (x,y) = (0.26,0.113333,
0.626667,0.165, 0.772549, 0.062451) for the top and (B): (x, y) = (0.05, 0.35, 0.6, 0.1, 0.2, 0.7) for the bottom. The constant of motion (Hamil-
tonian) is £ = 0.74446808 = Ej. The Poincaré section used for Fig. 14 is given by x; = x» and y; < y, and is indicated here as the straight
diagonal line in agent X’s simplex Ay.

When ex = —ey = 0.0 it appears that the dynamics is integrable since only quasiperiodic tori exist for almost all
initial conditions in our simulation. For some initial conditions, tori are knotted and form a trefoil. Otherwise, when
€x = —ey > 0.0, Hamiltonian chaos occurs with positive—negative pairs of Lyapunov exponents (see Table 1). The
game-theoretic behavior of this example was investigated briefly in ref. [15]. The dynamics is very rich. For example,
there are infinitely many distinct behaviors near the fixed point at the center—the interior Nash equilibrium —and
a periodic orbit arbitrarily close to any chaotic one.

A more detailed view of the complex dynamics is given in Fig. 14 which shows Poincaré sections of Eq. (48)’s
trajectories. The Poincaré section is given by i#3 > 0 and v3 = 0. In (x, y) space the section is determined by the
constraints:

2
(I—ex)y1 — (A +ex)y2 + zex <0,
3 1)
2
(I —ey)x1 — (1 +ey)x2 + 3 = 0.

These sections are indicated as the straight lines drawn in the Ay simplices of Figs. 12 and 13. In Fig. 14, when
ex = —ey = 0.0, closed loops depending on the initial conditions exhibits tori in the Poincaré section. When
ex = —ey = 0.5, some tori collapse and become chaotic. The scatter of dots among the remaining tori show
characteristic Hamiltonian chaos.
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(8, 8)
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(S, R) S S
(P, S) »@S‘P) = e )
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Fig. 13. Quasiperiodic tori and chaos: collective dynamics in A (left column) and individual dynamics projected onto Ax and Ay, respectively
(right two columns). Here ex = —ey = 0.5 and ax = oy = 0. The initial conditions are the same as in Fig. 12, (A) for top row and (B)
for bottom rows, respectively. Also, the constant of motion is the same: E = Ey. The Poincaré section is given by 3x; — x, —2/3 =0 and
y1 — 3y2 +2/3 < 0 and this is indicated as a straight line in Ay.

Table 1

Lyapunov spectra for different initial conditions (columns) and different values of the tie-breaking parameter €x

€x A x1(0) = 0.05 0.06 0.07 0.08 0.09 0.10
A +0.881 +0.551 +0.563 +0.573 +0.575 +0.589

0.0 A2 0436 +0.447 +0.464 +0.467 +0.460 +0.461
A3 —0.436 —0.447 —0.464 —0.467 —0.460 —0.461
A4 —0.881 —0.551 —0.563 —0.573 —0.575 —0.589
A +36.4 +41.5 +0.487 +26.3 +0.575 +0.487

0.5 A2 +0.543 +0.666 +0.204 +0.350 +0.460 +0.460
A3 —0.637 —0.666 —0.197 —0.338 —0.460 —0.467
Ag -36.3 —41.5 —0.494 —26.3 —0.575 —0.480

The initial conditions are (xy, x2, X3, ¥1, ¥2, y3) = (x1,0.35,0.65 — x1,0.1, y2,0.9 — yp) with E = Ey = 0.74446808 fixed. We choose the
initial conditions (x;, y2) = (0.05, 0.2),(0.06,0.160421),(0.07,0.135275),(0.08,0.117743),(0.09,0.104795), (0.10,0.0948432). The Lyapunov
exponents are multiplied by 10%. Note that A, ~ 0.0, A3 ~ 0.0 and A4 ~ —A; as expected. The Lyapunov exponents indicating chaos are shown
in boldface.

Table 1 shows Lyapunov spectra in U for dynamics withey = —ey = 0.0 and ex = —ey = 0.5, initial condition
(x(0), y(0)) = (x1,0.35,0.65 — x1,0.1, y2,0.9 — y2) and energy E = Ey = 0.74446808 fixed. (x1, y2) satisfies

6_3(E0+2 log 3)

= .05 — 9 — ). 2
0.035 x1(0.65 — x1)y2(0.9 — y2) (62)
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Fig. 14. Poincaré sections of the behavior in the preceding two figures. Thatis,ex = —ey = 0.0 (left) and ex = —ey = 0.5 (right). The Poincaré

section is given by x; = xp and y; < yp (left) and 3x; — xp —2/3 =0 and y; — 3y2 + 2/3 < 0 (right). There are 25 randomly selected initial
conditions, including the two (A) and (B), used in Figs. 12 and 13. The constant of motion (E = Ejy) forms the outer border of the Poincaré
sections.

When x1(0) = 0.05, the initial condition is (B): (x,y) = (0.05, 0.35, 0.6, 0.1, 0.2, 0.7), which we gave in the pre-
ceding examples. When ex = 0.5, the Lyapunov exponents indicate positive-negative pairs for x1(0) = 0.05, 0.06
and 0.08, which clearly show Hamiltonian chaos. Note that A, >~ 0.0, A3 >~ 0.0, and A4 ~ —AX, as expected.

4.3.2. Conservative dynamics

With perfect memory (¢x = oy = 0) and a game that is not zero-sum (ex # —ey) the dynamics is conservative
in U and one observes transients that are attracted to heteroclinic networks in the state space X (see Fig. 15).

When ex + €y < 0, the behavior is intermittent and orbits are guided by the flow on A’s edges, which describes
a network of possible heteroclinic cycles. Since action ties are not rewarded there is only one such cycle. It is shown
in the top row of Fig. (15): (R, P) — (S, P) = (S, R) —> (P, R) — (P, S) — (R, S) — (R, P). Note that during
the cycle each agent switches between almost deterministic actions in the order R — S — P. The agents are out
of phase with respect to each other and they alternate winning each turn.

With ex + ey > 0, however, the orbit is an infinitely persistent chaotic transient [35]. Since, in this case, agent
X can choose a tie, the cycles are not closed. For example, with €ex > 0, at (R, P), X has the option of moving to
(P, P) instead of (S, P) with a positive probability. This embeds an instability along the heteroclinic cycle and so
orbits are chaotic (see Fig. 15, bottom row).

Fig. 16 shows the time series for these behaviors. Usually, in transient relaxation to heteroclinic cycle,
the duration over which orbits stay near saddle vertices increases exponentially. However, for our case, it
appears to increase subexponentially. This is because of the very small exponent; (1 +6)* ~1+nd+---
(6 < 1). In the second chaotic transient case, it still increases subexponentially, but the visited vertices change
irregularly.

Fig. 17 shows the behavior of the entropies HX and HY and the energy E. For both cases E eventually increases
monotonically and H* and HY asymptotically decrease. The agents show a tendency to decrease choice uncertainty
and to switch between almost deterministic actions. HX and HY oscillate over the range [0, log 2] for ex = —0.1
and ey = 0.05 and over [0, log 3] for ex = 0.1 and ey = —0.05.
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4.3.3. Dissipative dynamics

If the memory loss rates («x and ay) are positive, the dynamics becomes dissipative in information space U and
exhibits limit cycles and chaotic attractors (see Fig. 18). Fig. 19 (top) shows a diverse range of bifurcations as a
function of «x. It shows the dynamics on the surface specified by i3 < 0 and v3 = 0 projected onto vs3. The fixed
point (x*, y*) becomes unstable when «x is larger than . =~ 0.055008938. Typically, period-doubling bifurcation
to chaos occurs with decreasing oy . Chaos can occur only when €x + €y > 0 [16].

Fig. 19 (bottom) shows that the largest Lyapunov exponent in U is positive across a significant fraction of the
parameter space; indicating that chaos is common. The dual aspects of chaos, coherence and irregularity, imply
that agents may behave cooperatively or competitively (or switch between both). This ultimately derives from the
agents’ successive mutual adaptation and memory loss in non-transitive interactions, such as in the RSP game; as
was explained in Section 3. Note that such global behavior organization is induced by each agents’ self-interested
and myopic adaptation and “weak” uncertainty of their environment.

Fig. 20 shows dynamics of HX, HY , and E in dissipative adaptive dynamics. For both cases shown E does not
diverge due to memory loss. When axy = 0.025, HX and HY converge to oscillations over the range [log 2, log 3].
When ax = 0.01, HX and HY exhibit chaotic behavior over the range [0, log 3].

(8,8)
Ax XA
Y (S.R)
<
(P, S . (S P), & ,S)
N 7/ 7 \\‘\\
(
(P,R |
\
(P, P) (R, P)
(8,8
Ax X Ay
(S, R) S S

.S (517 .S) // \ //\
l : Ax 0 Ay

(P,R (R, R)

(P, P) (R, P)

Fig. 15. Heteroclinic cycle with ex = —0.1 and ey = 0.05 (top row). Chaotic transient to a heteroclinic network (bottom row) with ex = 0.1
and ey = —0.05). For both ay = ay = 0.
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Fig. 16. Time series of action probabilities during the heteroclinic cycles of Fig. 15. ex = —0.1 and ey = 0.05 for the left column. The right
column shows the chaotic transient to a possible heteroclinic cycles when ex = 0.1 and ey = —0.05. For both ax = ay = 0.

4.4. Three agents adapting under Rock—Scissors—Paper interaction

Consider three agents adapting via (an extension of) the RSP interaction. Here the environment is given by the
following interaction

(2 Win over the others.

—2 Lose to the other two.
aijp =< 1 Win over one other. (63)
—1 Lose to one other.

ex Tie.

and similarly for b j; and ¢k, withi, j, k = {R, S, P}.Hereey, €y, €z € (—1.0, 1.0) (see Appendix E for the detailed
listing of the reinforcement scheme).

J/ﬁ
E s
ST HOHY
In3 = ,|ffw,|v AN I}‘I\
hei— %A‘* Wit W""ml“‘ KW}““A;',‘H
0 t 5000

Fig. 17. Dynamics of HX, HY and E in conservative adaptive dynamics: ex = —0.1 and ey = 0.05 for the left plotand ey = 0.1 and ey = —0.05
for the right. For both ay = ay = 0. Note that E increases asymptotically and HX and H" tend to decrease.
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Fig. 18. Dissipative adaptive dynamics: stable limit cycle for ax = 0.025 (top), ax = 0.021 (middle) and chaotic attractors with «x = 0.0198
(bottom). All cases have ex = 0.5, ey = —0.3 and ey = 0.01. Period-doubling bifurcation to chaos occurs with decreasing oy .
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Fig. 19. Bifurcation diagram (top) of dissipative dynamics (adapting with memory loss) projected onto coordinate v3 from the Poincaré section
(i3 > 0,v3 = 0) and the largest two Lyapunov exponents A; and A, (bottom) as a function of ay € [0.01, 0.03]. Here withex = 0.5,ey = —0.3
and oy = 0.01. Simulations show that A3 and A4 are always negative.

The normalization does not affect the dynamics.
The Nash equilibrium (x*, y*, z*) is at the simplex center:

« " = 111111111 65)
X z = N A A A A A A A A
Y 3°3'3°3'3°3°3°3'3
3 3
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HX HY \ X Y
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Fig. 20. Dynamics of HX, HY and Ein dissipative adaptive dynamics: ex = 0.5, ey = —0.3, and oy = 0.01 for both. ax = 0.025 for the left

plot and arx = 0.01 for the right. * 2 10® in the right figure is the (rather long) transient time. In both cases E does not diverge due to memory
loss.
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It is also a fixed point of the adaptation dynamics. The Jacobian there is

1 2 1 2

X 3 3 3 3
. 2 1 2 1
X T3 T3 T3 T3
1 2 1 2
3 3 o 03 3
J=1 7 1 2 1 (66)
3 3 3 3
1 2 1 2
e
3 3 3 3
2 1 2 1
_L 2 20 —ay
3 3 3 3
When ax = ay = az = «, its eigenvalues are
Moo= ——(—1,—1,-2,1,1,2). (67)

NE]

In the perfect memory case (¢y = ay = az = 0), trajectories near (x*, y*, z*) are neutrally stable periodic orbits,
since the As are pure imaginary. In the memory loss case (ax, ay, @z > 0), (x*, y*, z*) is asymptotically stable,
since all Re(A;) are strictly negative. One expects multiple attractors in this case.

The collective state space A is now six-dimensional, being the product of three two-dimensional agent simplices
A = Ax x Ay x Az.The flow on A’s boundary is shown in Fig. 21, giving the adaptation dynamics on the edges
of A when the «s vanish.

We give two examples with ax = ay = az =0.01, ex =0.5, ey = —0.365, ¢z = 0.8 (top: limit cy-
cle) and ex =0.5, ey = —0.3, €z = 0.6 (bottom: chaos) in Fig. 22. Chaos is typically observed when
€x + €y + €z > 0. Limit cycles are highly complex manifolds depending on the six-dimensional hetero-

clinic network on the simplex boundary. The Lyapunov spectrum for the chaotic dynamics is (Aq, ..., Ag) =
(S.S,9)
Y, X, (S. R, S)
" §/s S
X, S
z, :
R, R, S)
©.s, PAS R Y/S)
'R
R
P, S
(S. R. R)
( R R/s
(P, F,
( (R, R, R)
(P,P,R) (R, P,R)

Fig. 21. Flows on the simplex edges in three-agent RSP: arrows indicate the direction of adaptation dynamics on A’s boundary when the as
vanish.
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Fig.22. Periodic orbit (top: ex = 0.5,y = —0.365, €z = 0.8) and chaotic orbit (bottom: ex = 0.5,ey = —0.3,€z = 0.6); the other parameters
are ay = ay = oz = 0.01. The Lyapunov spectrum for chaotic dynamics is (A1, ..., A¢) = (+45.2, +6.48, —0.336, —19.2, —38.5, —53.6) %
1073,

(+45.2, +6.48, —0.336, —19.2, —38.5, —53.6) x 1073, The dynamics has two positive Lyapunov exponents. Note
that this dynamics could have many neutrally stable subspaces in three or more dimensions. These subspaces act
as quasistable attractors and may even have symplectic structure. These properties of high-dimensional dynamics
will be reported elsewhere.

5. Concluding remarks
We developed a class of dynamical systems to model collective adaptation. We started with very sim-

ple agents, whose adaptation was a dynamic balance between adaptation to environmental constraints and
memory loss. A macroscopic description of a network of adaptive agents was produced. In one special
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case we showed that the dynamical system reduces to replicator equations, familiar in evolutionary game
theory and population biology. In a more general setting, we investigated several of the resulting peri-
odic, intermittent, and chaotic behaviors in which agent-agent interactions were explicitly given as game
interactions.

Self-organization induced by the dynamics of uncertainty has been discussed from an information-theoretic
viewpoint. We pointed out that unlike single-agent adaptation, the flow of information is multidimensional in
collective adaptation. In this case global information maximization is of doubtful utility and a dynamic view of
adaptation is more appropriate. We also noted that with only two agents interacting via a non-transitive game, a
Smale horseshoe can be produced in information space. This occurs due to the agents’ mutual adaptation, which
amplifies the fluctuations in certainty of an individual’s decision-making, and to memory loss which increases the
choice uncertainties and so stabilizes the collective behavior.

Since deterministic chaos occurs even in this simple setting, one expects that in higher-dimensional and het-
erogeneous adaptive systems intrinsic unpredictability is a dominant collective behavior. When dynamic memory
stored in a collective emerges, collective adaptation becomes a non-trivial problem. A detailed information theoretic
and dynamical systems theoretic analysis will be reported elsewhere.

We close by indicating some future directions in which to extent the model.

First, as we alluded to during the development, there are difficulties of scaling the model to large numbers of
agents. We focused on collectives with global coupling between all agents. However, in this case, the complexity of
interaction terms grows exponentially with the number of agents, which is both impractical from the viewpoints of
analysis and simulation, and unrealistic for natural systems that are large collectives. The solution to this, given in
Appendix B, is to develop either spatially distributed agent collective or to extend the equations to include explicit
communication networks between agents. Both of these extensions will be helpful in modeling the many adaptive
collectives noted in the introduction.

Second, important for applications, is to develop the stochastic generalization of the deterministic equations
of motion which accounts for the effects of finite and fluctuating numbers of agents and also finite histories for
adaptation. Each of these introduces its own kind of sampling stochasticity and will require a statistical dynamics
analysis reminiscent of that found in population genetics [36]. It is also important to consider the effects of asynchrony
of adaptive behavior in this case.

Third, one necessary and possibly difficult extension will be to agents that adapt continuous-valued actions—
say, learning the spatial location of objects—to their environments. Mathematically, this requires a continuous-
space extension of the adaptation equations (Eq. (19)) and this results in models that are described by PDEs
[37].

Finally, another direction, especially useful if one attempts to quantify global function in large collectives,
will be structural and information-theoretic analyses of local and global adaptive behaviors [38,39]. Analyzing
the stored information and the causal architecture [40,41], and quantifying “information influx” and “information
dissipation” in individual adaptive behavior versus that in the collective are projects now made possible using this
framework.
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Appendix A. Continuous time

Here we give the derivation of the continuous-time limits that lead to the deterministic differential equations
from the original stochastic discrete-time adaptation model.

Denote the agent—agent interaction time scale, number of interactions per adaptation interval, and adaptation time
scale as dt, T, and ¢, respectively. We assume that adaptation is very slow compared to agent—agent interactions and
take the limits dt — 0 and T — oo, keeping d¢r = T'dt finite. Then we take the limit dr — O to get the derivative
of the vector QX (¢).

With Egs. (14) and (15), we have

T [ M
1
0f (N =23 [Z Sim (ke (k) — orx fo(k)] : (A1)
k=1 Lm=1
Thus, for continuous-time,
Ot +dn—0f® _ 1 T(t+dt)[M 8 <k> X <k> QX<k>] (A2)
= im\ = ) Tim \ &= ] —ox&; | = : .
dr T dt = L= T T T
Taking T — oo and dt — 0, we have
Q,X(t + dl) _ Q,X(t) 1 t+dt [ M ¥ 1 t+dt ¥
i -5 3 00| o5 gy | ot (A3)

Assuming ri)f (t) changes as slowly as the adaptive dynamics, ri)f (#) is constant during the adaptation interval ¢ ~
t + dr. If we assume, in addition, that the behaviors of two agents X and Y are statistically independent at time ¢,
then the law of the large numbers gives

1

t+dt [ M M
dt ¢ [mZ:l (Sim(S)ri)fn(s)] ds — Z Fim(O)ym(t) = RiX(l‘). (Ad)

m=1

Now take dt — 0. Egs. (A.3) and (A.4) together give

OX(t) = R¥(t) — ax 0 ), (A5)

for the continuous-time updating of the reinforcement memory. If the environment is static, then ri)j(- (t) = a;;j and

N
RE@W =) ainyi(0). (A.6)

n=1

The single-agent case is given by settingy = (1,0,0,...,0)and q¢;; = ag;,i =1,..., N.

Appendix B. Network interactions

We can describe heterogeneous network interactions within our model. We give an example of a
model for lattice interactions here. Agents s =1,2,...,S are on a spatial lattice: agent s interacts with
agent s — 1 through bi-matrices (A%, BS~') and agent s+ 1 through (B, A*!). Each bi-matrix is 2 x 2
(see Fig. 23).
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OLIOREC

Fig. 23. Agent s interacts with agent s — 1 through bi-matrices (A*, B*~!) and agent s + 1 through (B°,

A‘Hl),

Agents choose actions among the 2 x 2 action pairs for both the right and left neighboring agents. The action pairs
are (1, 1),(1,2), (2, 1), (2, 2) and are weighted with probabilities x1, ..., x4. Inserting the interaction bi-matrices
into the S-agent adaptive dynamics of Eq. (27) gives

4
= BlAX T — p* AT (BT — ¢ BT g (‘ logx{ =), 1ogxfz> - @BD

n=1

Kl RS

where Xxj = 1 and p° = (x] + x3, X3 + x3), ¢° = (x] + x3, x5 + x3). In a similar way, arbitrary network interac-
tions can be described by our adaptive dynamics given in Eq. (27).

Appendix C. Nash equilibria

The Nash equilibria (x*, y*) of the bi-matrix game (A, B) are those states in which all players can do no better
by changing state; that is,

x*Ay* > xAy* and y*"Bx* > yBx", (C.1)

forall (x,y) € Ax x Ay.If they exist in the interior, the solutions of the following simultaneous equations are Nash
equilibria:

(Ay)i = (Ay)1 and (Bx); = (Bx)| <= (Ay)i —xAy =0 and (Bx); —yBx =0, (C2)

where E —1Xn = E —1ym = 1.

Itis known that N M is a necessary condition for the existence of a unique Nash equilibrium in the interior of
A. With N = M in the perfect memory case (¢x = oy = 0), the unique Nash equilibrium, if it exists, is the fixed
point given by the intersection of the x- and y-nullclines of Eqgs. (24).

This Nash equilibrium is not asymptotically stable, but the time average of trajectories converges to it. To see
this, suppose that x;(t) > § for all ¢ sufficiently large, we have

*(log Xj) = . = (Ay); — xAy,

.’ (C3)
f(log yj) = — = (Bx); — yBx.
y]
Integrating the both sides from O to T and dividing by T, we get
lo x~(T) log x;(0)
g g Z AimYm — SA,
log y;(T) — log y(0) . 9
ogyi(T)—logy;
B4 R4 Zb nXn — SB,

T

n=1
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where
T T
X = T—l/ x;dt and y;= T—l/ y;dt, (C.5)
0 0
and
T T
Sy=T"" / xAydt and Sp=T"" / yBx dr. (C.6)
0 0
Letting T — oo, the left-hand sides converge to 0. Thus, X and y are a solution of Eq. (C.2). (This proof follows

Ref. [42].)

Appendix D. Hamiltonian dynamics

Consider a game (A, B) that admits an interior Nash equilibrium (x*,y*) € Ax x Ay and is zero-sum (B =
—AT), then

E = By DX*[IX) + By ' Dy*Ily) (D.1)
is a constant of the motion. This follows by direct calculation:
N . M .
SRR o ST TR T
dr Bx =1 " Xn By " Ym
= —(x"Ay — xAy) — (y'Bx —yBx) = (X" —0)AQY" —y) + (" —y)BE" —x) =0. (D2)

This holds for any number of agents. Give the agents equal numbers of actions (N = M) and set « to zero (perfect
memory) and make all Bs finite and positive. Then the adaptive dynamics is Hamiltonian in the information space
U = (u, v) with the above constant of motion E,

U= JVyE, (D.3)
with Poisson structure J,
(0] P '
J = _pT o with P = —BxfBrA. (D.4)
Proof.
N N
oE d _ _ _
— = By Y xilogxi+ By D yrlogyi — By
ou; ou; o =
N N N N
n=1 n=1 n=1 n=1 (DS)
_ p—1 * e Ui e .
=Px | X — N = By (&7 —xi),
Sew
n=1
oFE _
— =By O — v (D.6)

ov;
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Since (x*, y*) is an interior Nash equilibrium, with Eq. (21), (Ay*); = (Bx*); = 0. Thus,

oE 1
o Y
Y
9E 1 D.7)
B— = ——2Bx,
ou Bx
and
By p AaE
TRPXPY A —BxA u )
JVUE = 3V8E - [ ﬁXBy] - [ - U. (D.8)
—(—BxBr A PrBx
Jdu
We can transform U = (u, v) to canonical coordinates U = (p, q):
U = SVy E, (D.9)

with
o -1
S = I o (D.10)
where I isan N x N identity matrix and with a linear transformation U' = MU to the Hamiltonian form. [J

Appendix E. Reinforcement schemes and interaction matrices

Here we give the reinforcement scheme interaction matrices for the constant-environment collectives investigated
in Section 4.

E.l. Matching Pennies

This game describes a non-transitive competition. Each agent chooses a coin, which turns up either heads (H)
or tails (T). Agent X wins when the coins differ, otherwise agent Y wins. Table E.1 gives the reinforcement scheme
for the various possible plays. Note that the es determine the size of the winner’s rewards. When ex + ey = 0, the
game is zero-sum. The Nash equilibrium is x* = y* = (1/2, 1/2).

Various extensions of Matching Pennies to more than two players are known. We give the Even-Odd game as an
example for three agents X, ¥, and Z in a collective. All flip a coin. Agents X and Y win when the number of heads is
even, otherwise Z wins. Table E.2 gives the reinforcement scheme. When the es add to zero, the game is zero-sum.
The unique mixed Nash equilibrium is x* = y* = z* = (1/2, 1/2, 1/2)—the simplex center.

Table E.1

The two-person Matching Pennies game: ex € (0.0, 1.0] and ey € [—1.0,0.0)

X Y X rY
H H —€x —€y
H T €x €y
T H €x €y
T T —€x —€y
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Table E.2

The three-player Even—Odd game: €x € (0.0, 1.0] and €y, €z € [—1.0, 0.0)

X Y Z rX rY rZ
H H H —€x —€y —€z
H H T €x €y €7
H T H €x €y €7
H T T —€x —€y —€z
T H H €x €y €7
T H T —€x —€y —€z
T T H —€x —€y —€z
T T T €x €y €7

E.2. Rock—Scissors—Paper

This game describes a non-transitive three-sided competition between two agents: rock (R) beats scissors (S),
scissors beats paper (P), but paper beats rock. Table E.3 gives the reinforcement scheme. The es here control the
rewards for ties. When they add to zero, the game is zero-sum. The unique mixed Nash equilibrium is x* = y* =
(%, % %)—again, the center of the simplex.

The extension of RSP interaction to three agents is straightforward. The reinforcement scheme is given in Table
E.4. When e€x + €y + €z = 0, the game is zero-sum. The Nash equilibrium is x* = y* = z* = (1/3, 1/3, 1/3).

Table E.3

The two-person Rock—Scissors—Paper game: €x, ey € (—1.0, 1.0)

X Y rX rY
R R €x €y
R S 1 -1
R P —1 1
S R -1 1

S S €x €y
S P 1 -1
P R 1 -1
P S —1 1
P P €x €y
Table E 4

The three-person Rock—Scissors—Paper game: €x, €y, €z € (—1.0, 1.0)

X Y V4 X rY rZ X Y Z X rY rZ X Y V4 X rY rZ
R R R €x €y €z S R R -2 1 1 P R R 2 —1 -1
R R S 1 1 -2 S R S —1 2 -1 P R S €x €y €z
R R P —1 —1 2 S R P €x €y €z P R P 1 -2 1
R S R 1 -2 1 S S R -1 -1 2 P S R €x €y €z
R S S 2 —1 —1 S S S €x €y €z P S S -2 1 1
R S P €x €y €z S S P 1 1 -2 P S P -1 2 -1
R P R -1 2 —1 S P R €x €y €z P P R 1 1 -2
R P S €x €y €7 S P S 1 -2 1 P P S —1 —1 2
R P P -2 1 1 S P P 2 -1 -1 P P P €x €y €z
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