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Three Different Projects

(A) Real one-dimensional dynamics: builds on analysis from
the first year.

(B) Complex dynamics: ask you to computer experiments and
computer coding.

(C) Complex dynamics: looks ahead at material from the 2nd
year, but requires no material except what you already know
from the first year (and knowledge about complex numbers -
what you already know from secondary school).
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Topic A: The Sarkovskii Theorem

Let us motivate the so-called Sarkovskii ordering on N

3 ≺ 5 ≺ 7 ≺ 9 · · · ≺ 2 · 3 ≺ 2 · 5 · · · ≺ 8 ≺ 4 ≺ 2 ≺ 1.

Let f : [0, 1]→ [0, 1] be continuous and consider successive iterates
xn+1 = f (xn) of a point x0 = x ∈ [0, 1]. So xn = f n(x0) where

f n = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

.

We say that x is periodic if f n(x) = x for some n ≥ 1. The
minimal such number is called the period of x .

Theorem (Sarkovskii 1964)

If p ≺ q and f has a periodic point of (minimal) period p then it
also has a periodic point of minimal period q.

In particular, period three implies all periods. We will see that the
main ingredient for this is the intermediate value theorem.
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Topic A. The main lemma

Lemma

Let J ⊂ [0, 1] be an interval.

1 Then f (J) is also an interval;

2 If f n(J) ⊃ J then there exists x ∈ J with f n(x) = x;

3 If J0, J1 ⊂ [0, 1] are intervals and f (J0) ⊃ J1 then there exists
an interval J ⊂ J0 so that f (J) = J1;

4 Let J0, J1, . . . , Jm be intervals in [0, 1] so that f (Ji ) ⊃ Ji+1 for
i = 0, . . . ,m − 1. Then there exists an interval J ⊂ J0 so that
f i (J) ⊂ Ji for i = 0, 1, . . . ,m − 1 and f m(J) = Jm.

(1) is the intermediate value theorem, (2) was proved last time.
(4) follows from repeatedly applying (3). So why is (3) true: draw
pictures!!! (Add some explanation during the lecture....)
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Topic A. The proof of Sarkovski theorem / Step 1

Let x be a point of period three, so the set x , f (x), f (x), . . .
consists of three distinct points a < b < c .
Let

I1 = [a, b] and I2 = [b, c].

Since f permutes points from the set {a, b, c} (fixing none of these
points), depending on whether the middle point goes to the left or
to the right,

f (b) = a and f (a) = c and f (c) = b

or
f (b) = c and f (a) = b and f (b) = a.

Let us assume the former (the latter case goes the same up to
relabelling). Then Statement (1) of the previous lemma implies

f (I1) ⊃ I1 ∪ I2 and f (I2) ⊃ I1
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Topic A. Step 1: The upshot

A more abstract way to encapsulate the outcome of Step 1 is to
say that we have the following graph.

I1 I2
.............................................................................................................................. ..........................

........................................................................................................................................................

........
.........

............
.............................................................................................................................................................................................................
...........
.........
.......

..............................

...........................

Figure: The Markov graph associated to a periodic point of period three.

The periodic orbits we construct correspond to paths in this graph.

I1 → I1 → . . . I1 → I2 → I1.
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Topic A. Step 2: Constructing periodic points

Remember that

f (I1) ⊃ I1 ∪ I2 and f (I2) ⊃ I1

Let m be an integer and let us take

J0, . . . , Jm−2 all equal to I1,

Jm−1 = I2 and Jm = I1.

Since f (Ji ) ⊃ Ji+1 for each i = 0, 1, . . . ,m − 1, by Part (4) of the
lemma, there exists an interval J ⊂ J0 = I1 so that f i (J) ⊂ Ji for
i = 0, 1, . . . ,m − 1 and

f m(J) = Jm = I1 ⊃ J.

The last inclusion and Part (2) of the lemma implies that there
exists x ∈ J so that f m(x) = x .

Sebastian van Strien (Dynamical Systems Group / Imperial) Period Three, Chaos and Fractals



Topic A. Step 2: Constructing periodic points

Remember that

f (I1) ⊃ I1 ∪ I2 and f (I2) ⊃ I1

Let m be an integer and let us take

J0, . . . , Jm−2 all equal to I1,

Jm−1 = I2 and Jm = I1.

Since f (Ji ) ⊃ Ji+1 for each i = 0, 1, . . . ,m − 1, by Part (4) of the
lemma, there exists an interval J ⊂ J0 = I1 so that f i (J) ⊂ Ji for
i = 0, 1, . . . ,m − 1 and

f m(J) = Jm = I1 ⊃ J.

The last inclusion and Part (2) of the lemma implies that there
exists x ∈ J so that f m(x) = x .

Sebastian van Strien (Dynamical Systems Group / Imperial) Period Three, Chaos and Fractals



Topic A. Step 3: why has x minimal period n

Remember that

I1 = [a, b] , I2 = [b, c] and f (a) = c , f (b) = a, f (c) = b (1)

x , f (x), . . . , f m−2(x) ∈ I1 and f m−1(x) ∈ I2. (2)

Suppose by contradiction that not all the points
x , f (x), . . . , f m−1(x) are distinct. Then f i (x) = f j(x) for some
0 ≤ i < j < m and therefore f i+k(x) = f j+k(x) for all k ≥ 0. So

f i
′
(x) = f m−1(x) for some 0 ≤ i ′ < m − 1.

By (2), f i
′
(x) = f m−1(x) = b. Hence, using (1),

f i
′+1(x) = f m(x) = f (b) = a and x = f m(x) = a. (3)

But then
f (x) = f (a) = c /∈ I1

contradicting (2) unless m = 2. If m = 2 then i ′ = 0 and (3) gives
f (a) = a, contradicting (1) and that a, b, c are all distinct.
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Topic A. Some more examples

What if you consider the map f (x) = 4x(1− x) and I1 = [0, 1/2]
and I2 = [1/2, 1]. Then

f (I1) ⊃ I1 ∪ I2 and f (I2) ⊃ I1 ⊃ I2.

I1 I2
.............................................................................................................................. ..........................

........................................................................................................................................................

........
.........

............
.............................................................................................................................................................................................................
...........
.........
....... ..............................................................................

...........
.........
........
.......
.......
.......
.......
.......
.......
.......
........
.........
...........

......................
........................................................

..............................

...........................

..............................

...........................

Figure: The Markov graph associated to the map f (x) = 4x(1− x).

How many periodic points are there? Yes, there is a periodic point
associated to

I1 → I2 → I1 → I2 . . . I1.
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Topic A. Some more examples

What if you consider the map f (x) = 2x(1− x) and I1 = [0, 1/2]
and I2 = [1/2, 1]. Then

f (I1) ⊃ I1 and f (I2) ⊃ I1.

I1 I2........................................................................................................................................................

........
.........

............
.............................................................................................................................................................................................................
...........
.........
.......

..............................

...........................

Figure: The Markov graph associated to the map f (x) = 2x(1− x).

How many periodic points are there? Only the one associated to

I1 → I1 → I1 → I1 → · · · → I1.
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Topic A. Task for the next session

Task for the next session: take a periodic point of period 5 and let
I1, . . . , I4 be the four intervals associated to these five points. Can
you associate a graph to this? Consider several possibilities, on how
the five points are permuted. Can you make a general conclusion?
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Topics B/C: Julia sets

As agreed, these two topics are now merged, but you can choose
to emphasise in your presentation the numerical or the
mathematical part.

Take a polynomial f : C→ C, say f (z) = z2 + c .

We showed that J(f ) = [−2, 2] when f (z) = z2 − 2. Please
include a proof of this in your presentation.

We also showed that f has infinitely many periodic points. Also
include a proof of this in your presentation.

Any questions on this?
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Topics B/C: Julia sets

Last time we discussed whether the Julia set was ‘connected’.
Let’s make precise what we mean by this,

a set A ⊂ C is called open if around each x ∈ A there exists a
ball B(x , r) so that B(x , r) ⊂ A.

X ⊂ C is called not connected, if there exist disjoint open
sets U1,U2 so that

X ∩ U1,X ∩ U2 6= ∅ and
U1 ∪ U2 ⊃ X .
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Reminder:

a set A ⊂ C is called open if around each x ∈ A there exists a
ball B(x , r) so that B(x , r) ⊂ A.

X ⊂ C is called not connected, if there exist disjoint open
sets U1,U2 so that X ∩ U1,X ∩ U2 6= ∅ and U1 ∪ U2 ⊃ X .

Example 1: A ball is connected. More generally, a convex set is
connected.

Example 2: The set C \ R is not connected. This follows from the
definition: let Ui be the upper and lower half planes.
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Topics B/C: Julia sets

a set A ⊂ C is called open if around each x ∈ A there exists a
ball B(x , r) so that B(x , r) ⊂ A.

X ⊂ C is called not connected, if there exist disjoint open
sets U1,U2 so that

X ∩ U1,X ∩ U2 6= ∅ and
U1 ∪ U2 ⊃ X .

Example 3: Assume that α : [0, 1]→ C is a closed path without
self-intersections (i.e. α(0) = α(1) and α(s) 6= α(t) for all
0 < s < t < 1). Then C \ α[0, 1] is not connected.

The proof of this is challenging, and I do not expect you to include
a proof. This result is closely related to the Jordan Theorem,
which is a deep theorem.
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The proof of this is challenging, and I do not expect you to include
a proof. This result is closely related to the Jordan Theorem,
which is a deep theorem.
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Topics B/C: Julia sets

Example 4: Let f (z) = z2, let B be a ball and X = f −1(B). Then

X is connected if 0 ∈ B and

X is not connected if 0 /∈ B.

More generally, if X is ‘disk-like’ then the same holds.

What happens if X is an annulus?

Hint (if you prefer to do something more computational): Use
Matlab or Maple to draw f −1(B) for various choice of balls B and
annuli. Observe whether the resulting set if connected.
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Let’s apply this to the Julia set

J(f ) = ∂B(∞) = ∂{z ; |f n(z)| → ∞ as n→∞}

and assume that c so that each point outside the ball B(0, 10)
centred at 0 and with radius goes off to infinity.

Then
J(f ) = ∂{z ; |f n(z)| ≥ 10 for some n ≥ 0}.

So
J(f ) ⊂ ∂ ∩n≥0 f −n(B(0; 10)).

Proposition

If |f (0)| ≥ 10 then J(f ) is not connected.

Proposition

If |f n(0)| ≥ 10 for some n ≥ 0 then J(f ) is not path connected.
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Project B/C: A dichotomy

Theorem

The Julia set of fc(z) = z2 + c is connected if and only if the
sequence |f nc (0)| is bounded.

The Mandelbrot set is the set of c so that |f nc (0)|n≥0 is bounded.

Hint: for presentation. Draw pictures, either by hand or by
computer of the set f −2(B(0, 10)) when f (0) /∈ B(0, 10).
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Project B/C: What to do by the next session

Your presentation could include the following:

Draw pictures of regions D in C and determine f −1(D). Here
you do not need to be formal, but just to show understanding.

Try to show that a line segment in C is connected.

Try to show that the union of several segments in C which all
go through 0 ∈ C is connected.

Show pictures of the Julia set of f (z) = z2 + c for various
choices of c.
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