Period Three, Chaos and Fractals

Sebastian van Strien (Dynamical Systems Group / Imperial)

Imperial, May 2012

- (A) Real one-dimensional dynamics: builds on analysis from the first year.
- (A) Real one-dimensional dynamics: builds on analysis from the first year.
- (B) Complex dynamics: ask you to computer experiments and computer coding.
- (A) Real one-dimensional dynamics: builds on analysis from the first year.
- (B) Complex dynamics: ask you to computer experiments and computer coding.
- (C) Complex dynamics: looks ahead at material from the 2nd year, but requires no material except what you already know from the first year (and knowledge about complex numbers what you already know from secondary school).

Topic A: The Sarkovskii Theorem

Let us motivate the so-called Sarkovskii ordering on \mathbb{N}

$$
3 \prec 5 \prec 7 \prec 9 \cdots \prec 2 \cdot 3 \prec 2 \cdot 5 \cdots \prec 8 \prec 4 \prec 2 \prec 1 .
$$

Let us motivate the so-called Sarkovskii ordering on \mathbb{N}

$$
3 \prec 5 \prec 7 \prec 9 \cdots \prec 2 \cdot 3 \prec 2 \cdot 5 \cdots \prec 8 \prec 4 \prec 2 \prec 1 .
$$

Let $f:[0,1] \rightarrow[0,1]$ be continuous and consider successive iterates $x_{n+1}=f\left(x_{n}\right)$ of a point $x_{0}=x \in[0,1]$. So $x_{n}=f^{n}\left(x_{0}\right)$ where

$$
f^{n}=\underbrace{f \circ f \circ \cdots \circ f}_{n \text { times }} .
$$

Let us motivate the so-called Sarkovskii ordering on \mathbb{N}

$$
3 \prec 5 \prec 7 \prec 9 \cdots \prec 2 \cdot 3 \prec 2 \cdot 5 \cdots \prec 8 \prec 4 \prec 2 \prec 1 .
$$

Let $f:[0,1] \rightarrow[0,1]$ be continuous and consider successive iterates $x_{n+1}=f\left(x_{n}\right)$ of a point $x_{0}=x \in[0,1]$. So $x_{n}=f^{n}\left(x_{0}\right)$ where

$$
f^{n}=\underbrace{f \circ f \circ \cdots \circ f}_{n \text { times }} .
$$

We say that x is periodic if $f^{n}(x)=x$ for some $n \geq 1$. The minimal such number is called the period of x.

Let us motivate the so-called Sarkovskii ordering on \mathbb{N}

$$
3 \prec 5 \prec 7 \prec 9 \cdots \prec 2 \cdot 3 \prec 2 \cdot 5 \cdots \prec 8 \prec 4 \prec 2 \prec 1 .
$$

Let $f:[0,1] \rightarrow[0,1]$ be continuous and consider successive iterates $x_{n+1}=f\left(x_{n}\right)$ of a point $x_{0}=x \in[0,1]$. So $x_{n}=f^{n}\left(x_{0}\right)$ where

$$
f^{n}=\underbrace{f \circ f \circ \cdots \circ f}_{n \text { times }} .
$$

We say that x is periodic if $f^{n}(x)=x$ for some $n \geq 1$. The minimal such number is called the period of x.

Theorem (Sarkovskii 1964)

If $p \prec q$ and f has a periodic point of (minimal) period p then it also has a periodic point of minimal period q.

In particular, period three implies all periods.

Let us motivate the so-called Sarkovskii ordering on \mathbb{N}

$$
3 \prec 5 \prec 7 \prec 9 \cdots \prec 2 \cdot 3 \prec 2 \cdot 5 \cdots \prec 8 \prec 4 \prec 2 \prec 1 .
$$

Let $f:[0,1] \rightarrow[0,1]$ be continuous and consider successive iterates $x_{n+1}=f\left(x_{n}\right)$ of a point $x_{0}=x \in[0,1]$. So $x_{n}=f^{n}\left(x_{0}\right)$ where

$$
f^{n}=\underbrace{f \circ f \circ \cdots \circ f}_{n \text { times }} .
$$

We say that x is periodic if $f^{n}(x)=x$ for some $n \geq 1$. The minimal such number is called the period of x.

Theorem (Sarkovskii 1964)

If $p \prec q$ and f has a periodic point of (minimal) period p then it also has a periodic point of minimal period q.

In particular, period three implies all periods. We will see that the main ingredient for this is the intermediate value theorem.

Lemma

Let $J \subset[0,1]$ be an interval.
(1) Then $f(J)$ is also an interval;

Topic A. The main lemma

Lemma

Let $J \subset[0,1]$ be an interval.
(1) Then $f(J)$ is also an interval;
(2) If $f^{n}(J) \supset J$ then there exists $x \in J$ with $f^{n}(x)=x$;

Topic A. The main lemma

Lemma

Let $J \subset[0,1]$ be an interval.
(1) Then $f(J)$ is also an interval;
(2) If $f^{n}(J) \supset J$ then there exists $x \in J$ with $f^{n}(x)=x$;
(3) If $J_{0}, J_{1} \subset[0,1]$ are intervals and $f\left(J_{0}\right) \supset J_{1}$ then there exists an interval $J \subset J_{0}$ so that $f(J)=J_{1}$;

Lemma

Let $J \subset[0,1]$ be an interval.
(1) Then $f(J)$ is also an interval;
(2) If $f^{n}(J) \supset J$ then there exists $x \in J$ with $f^{n}(x)=x$;
(3) If $J_{0}, J_{1} \subset[0,1]$ are intervals and $f\left(J_{0}\right) \supset J_{1}$ then there exists an interval $J \subset J_{0}$ so that $f(J)=J_{1}$;
(4) Let $J_{0}, J_{1}, \ldots, J_{m}$ be intervals in $[0,1]$ so that $f\left(J_{i}\right) \supset J_{i+1}$ for $i=0, \ldots, m-1$. Then there exists an interval $J \subset J_{0}$ so that $f^{i}(J) \subset J_{i}$ for $i=0,1, \ldots, m-1$ and $f^{m}(J)=J_{m}$.
(1) is the intermediate value theorem, (2) was proved last time.
(4) follows from repeatedly applying (3). So why is (3) true: draw pictures!!! (Add some explanation during the lecture....)

Let x be a point of period three, so the set $x, f(x), f(x), \ldots$ consists of three distinct points $a<b<c$.
Let

$$
I_{1}=[a, b] \text { and } I_{2}=[b, c] .
$$

Since f permutes points from the set $\{a, b, c\}$ (fixing none of these points), depending on whether the middle point goes to the left or to the right,

$$
f(b)=a \text { and } f(a)=c \text { and } f(c)=b
$$

or

$$
f(b)=c \text { and } f(a)=b \text { and } f(b)=a .
$$

Let us assume the former (the latter case goes the same up to relabelling). Then Statement (1) of the previous lemma implies

$$
f\left(I_{1}\right) \supset I_{1} \cup I_{2} \text { and } f\left(I_{2}\right) \supset I_{1}
$$

A more abstract way to encapsulate the outcome of Step 1 is to say that we have the following graph.

$$
I_{1} \rightleftharpoons I_{2}
$$

Figure: The Markov graph associated to a periodic point of period three.

The periodic orbits we construct correspond to paths in this graph.

$$
I_{1} \rightarrow I_{1} \rightarrow \ldots I_{1} \rightarrow I_{2} \rightarrow I_{1}
$$

Topic A. Step 2: Constructing periodic points

Remember that

$$
f\left(I_{1}\right) \supset I_{1} \cup I_{2} \text { and } f\left(I_{2}\right) \supset I_{1}
$$

Let m be an integer and let us take

$$
\begin{gathered}
J_{0}, \ldots, J_{m-2} \text { all equal to } I_{1}, \\
J_{m-1}=I_{2} \text { and } J_{m}=I_{1} .
\end{gathered}
$$

Topic A. Step 2: Constructing periodic points

Remember that

$$
f\left(I_{1}\right) \supset I_{1} \cup I_{2} \text { and } f\left(I_{2}\right) \supset I_{1}
$$

Let m be an integer and let us take

$$
\begin{gathered}
J_{0}, \ldots, J_{m-2} \text { all equal to } I_{1}, \\
J_{m-1}=I_{2} \text { and } J_{m}=I_{1} .
\end{gathered}
$$

Since $f\left(J_{i}\right) \supset J_{i+1}$ for each $i=0,1, \ldots, m-1$, by Part (4) of the lemma, there exists an interval $J \subset J_{0}=I_{1}$ so that $f^{i}(J) \subset J_{i}$ for $i=0,1, \ldots, m-1$ and

$$
f^{m}(J)=J_{m}=I_{1} \supset J .
$$

The last inclusion and Part (2) of the lemma implies that there exists $x \in J$ so that $f^{m}(x)=x$.

Topic A. Step 3: why has x minimal period n

Remember that

$$
\begin{gather*}
I_{1}=[a, b], I_{2}=[b, c] \text { and } f(a)=c, f(b)=a, f(c)=b \tag{1}\\
x, f(x), \ldots, f^{m-2}(x) \in I_{1} \text { and } f^{m-1}(x) \in I_{2} . \tag{2}
\end{gather*}
$$

Topic A. Step 3: why has x minimal period n

Remember that

$$
\begin{gather*}
I_{1}=[a, b], I_{2}=[b, c] \text { and } f(a)=c, f(b)=a, f(c)=b \tag{1}\\
x, f(x), \ldots, f^{m-2}(x) \in I_{1} \text { and } f^{m-1}(x) \in I_{2} . \tag{2}
\end{gather*}
$$

Suppose by contradiction that not all the points $x, f(x), \ldots, f^{m-1}(x)$ are distinct.

Remember that

$$
\begin{gather*}
I_{1}=[a, b], I_{2}=[b, c] \text { and } f(a)=c, f(b)=a, f(c)=b \tag{1}\\
x, f(x), \ldots, f^{m-2}(x) \in I_{1} \text { and } f^{m-1}(x) \in I_{2} . \tag{2}
\end{gather*}
$$

Suppose by contradiction that not all the points
$x, f(x), \ldots, f^{m-1}(x)$ are distinct. Then $f^{i}(x)=f^{j}(x)$ for some
$0 \leq i<j<m$ and therefore $f^{i+k}(x)=f^{j+k}(x)$ for all $k \geq 0$. So

$$
f^{i^{\prime}}(x)=f^{m-1}(x) \text { for some } 0 \leq i^{\prime}<m-1
$$

By (2), $f^{i^{\prime}}(x)=f^{m-1}(x)=b$. Hence, using (1),

$$
\begin{equation*}
f^{i^{\prime}+1}(x)=f^{m}(x)=f(b)=a \text { and } x=f^{m}(x)=a \tag{3}
\end{equation*}
$$

But then

$$
f(x)=f(a)=c \notin I_{1}
$$

contradicting (2) unless $m=2$. If $m=2$ then $i^{\prime}=0$ and (3) gives $f(a)=a$, contradicting (1) and that a, b, c are all distinct.

What if you consider the map $f(x)=4 x(1-x)$ and $I_{1}=[0,1 / 2]$ and $I_{2}=[1 / 2,1]$. Then

$$
f\left(I_{1}\right) \supset I_{1} \cup I_{2} \text { and } f\left(I_{2}\right) \supset I_{1} \supset I_{2}
$$

Figure: The Markov graph associated to the map $f(x)=4 x(1-x)$.

How many periodic points are there? Yes, there is a periodic point associated to

$$
I_{1} \rightarrow I_{2} \rightarrow I_{1} \rightarrow I_{2} \ldots I_{1} .
$$

Topic A. Some more examples

What if you consider the map $f(x)=2 x(1-x)$ and $I_{1}=[0,1 / 2]$ and $I_{2}=[1 / 2,1]$. Then

$$
f\left(I_{1}\right) \supset I_{1} \text { and } f\left(I_{2}\right) \supset I_{1} .
$$

Figure: The Markov graph associated to the map $f(x)=2 x(1-x)$.

How many periodic points are there? Only the one associated to

$$
I_{1} \rightarrow I_{1} \rightarrow I_{1} \rightarrow I_{1} \rightarrow \cdots \rightarrow I_{1} .
$$

Task for the next session: take a periodic point of period 5 and let I_{1}, \ldots, I_{4} be the four intervals associated to these five points. Can you associate a graph to this? Consider several possibilities, on how the five points are permuted. Can you make a general conclusion?

As agreed, these two topics are now merged, but you can choose to emphasise in your presentation the numerical or the mathematical part.

As agreed, these two topics are now merged, but you can choose to emphasise in your presentation the numerical or the mathematical part.

Take a polynomial $f: \mathbb{C} \rightarrow \mathbb{C}$, say $f(z)=z^{2}+c$.

As agreed, these two topics are now merged, but you can choose to emphasise in your presentation the numerical or the mathematical part.

Take a polynomial $f: \mathbb{C} \rightarrow \mathbb{C}$, say $f(z)=z^{2}+c$.
We showed that $J(f)=[-2,2]$ when $f(z)=z^{2}-2$. Please include a proof of this in your presentation.

As agreed, these two topics are now merged, but you can choose to emphasise in your presentation the numerical or the mathematical part.

Take a polynomial $f: \mathbb{C} \rightarrow \mathbb{C}$, say $f(z)=z^{2}+c$.
We showed that $J(f)=[-2,2]$ when $f(z)=z^{2}-2$. Please include a proof of this in your presentation.

We also showed that f has infinitely many periodic points. Also include a proof of this in your presentation.

Any questions on this?

Topics B/C: Julia sets

Last time we discussed whether the Julia set was 'connected'.
Let's make precise what we mean by this,

- a set $A \subset \mathbb{C}$ is called open if around each $x \in A$ there exists a ball $B(x, r)$ so that $B(x, r) \subset A$.

Last time we discussed whether the Julia set was 'connected'. Let's make precise what we mean by this,

- a set $A \subset \mathbb{C}$ is called open if around each $x \in A$ there exists a ball $B(x, r)$ so that $B(x, r) \subset A$.
- $X \subset \mathbb{C}$ is called not connected, if there exist disjoint open sets U_{1}, U_{2} so that
- $X \cap U_{1}, X \cap U_{2} \neq \emptyset$ and
- $U_{1} \cup U_{2} \supset X$.

Reminder:

- a set $A \subset \mathbb{C}$ is called open if around each $x \in A$ there exists a ball $B(x, r)$ so that $B(x, r) \subset A$.

Reminder:

- a set $A \subset \mathbb{C}$ is called open if around each $x \in A$ there exists a ball $B(x, r)$ so that $B(x, r) \subset A$.
- $X \subset \mathbb{C}$ is called not connected, if there exist disjoint open sets U_{1}, U_{2} so that $X \cap U_{1}, X \cap U_{2} \neq \emptyset$ and $U_{1} \cup U_{2} \supset X$.

Reminder:

- a set $A \subset \mathbb{C}$ is called open if around each $x \in A$ there exists a ball $B(x, r)$ so that $B(x, r) \subset A$.
- $X \subset \mathbb{C}$ is called not connected, if there exist disjoint open sets U_{1}, U_{2} so that $X \cap U_{1}, X \cap U_{2} \neq \emptyset$ and $U_{1} \cup U_{2} \supset X$.

Example 1: A ball is connected. More generally, a convex set is connected.

Reminder:

- a set $A \subset \mathbb{C}$ is called open if around each $x \in A$ there exists a ball $B(x, r)$ so that $B(x, r) \subset A$.
- $X \subset \mathbb{C}$ is called not connected, if there exist disjoint open sets U_{1}, U_{2} so that $X \cap U_{1}, X \cap U_{2} \neq \emptyset$ and $U_{1} \cup U_{2} \supset X$.

Example 1: A ball is connected. More generally, a convex set is connected.

Example 2: The set $\mathbb{C} \backslash \mathbb{R}$ is not connected. This follows from the definition: let U_{i} be the upper and lower half planes.

Topics B/C: Julia sets

- a set $A \subset \mathbb{C}$ is called open if around each $x \in A$ there exists a ball $B(x, r)$ so that $B(x, r) \subset A$.

Topics B/C: Julia sets

- a set $A \subset \mathbb{C}$ is called open if around each $x \in A$ there exists a ball $B(x, r)$ so that $B(x, r) \subset A$.
- $X \subset \mathbb{C}$ is called not connected, if there exist disjoint open sets U_{1}, U_{2} so that
- $X \cap U_{1}, X \cap U_{2} \neq \emptyset$ and
- $U_{1} \cup U_{2} \supset X$.
- a set $A \subset \mathbb{C}$ is called open if around each $x \in A$ there exists a ball $B(x, r)$ so that $B(x, r) \subset A$.
- $X \subset \mathbb{C}$ is called not connected, if there exist disjoint open sets U_{1}, U_{2} so that
- $X \cap U_{1}, X \cap U_{2} \neq \emptyset$ and
- $U_{1} \cup U_{2} \supset X$.

Example 3: Assume that $\alpha:[0,1] \rightarrow \mathbb{C}$ is a closed path without self-intersections (i.e. $\alpha(0)=\alpha(1)$ and $\alpha(s) \neq \alpha(t)$ for all $0<s<t<1)$. Then $\mathbb{C} \backslash \alpha[0,1]$ is not connected.
The proof of this is challenging, and I do not expect you to include a proof. This result is closely related to the Jordan Theorem, which is a deep theorem.

- a set $A \subset \mathbb{C}$ is called open if around each $x \in A$ there exists a ball $B(x, r)$ so that $B(x, r) \subset A$.
- $X \subset \mathbb{C}$ is called not connected, if there exist disjoint open sets U_{1}, U_{2} so that
- $X \cap U_{1}, X \cap U_{2} \neq \emptyset$ and
- $U_{1} \cup U_{2} \supset X$.

Example 3: Assume that $\alpha:[0,1] \rightarrow \mathbb{C}$ is a closed path without self-intersections (i.e. $\alpha(0)=\alpha(1)$ and $\alpha(s) \neq \alpha(t)$ for all $0<s<t<1)$. Then $\mathbb{C} \backslash \alpha[0,1]$ is not connected.
The proof of this is challenging, and I do not expect you to include a proof. This result is closely related to the Jordan Theorem, which is a deep theorem.

Example 4: Let $f(z)=z^{2}$, let B be a ball and $X=f^{-1}(B)$. Then

- X is connected if $0 \in B$ and
- X is not connected if $0 \notin B$.

More generally, if X is 'disk-like' then the same holds.
What happens if X is an annulus?

Example 4: Let $f(z)=z^{2}$, let B be a ball and $X=f^{-1}(B)$. Then

- X is connected if $0 \in B$ and
- X is not connected if $0 \notin B$.

More generally, if X is 'disk-like' then the same holds.
What happens if X is an annulus?
Hint (if you prefer to do something more computational): Use Matlab or Maple to draw $f^{-1}(B)$ for various choice of balls B and annuli. Observe whether the resulting set if connected.

Let's apply this to the Julia set

$$
J(f)=\partial B(\infty)=\partial\left\{z ;\left|f^{n}(z)\right| \rightarrow \infty \text { as } n \rightarrow \infty\right\}
$$

and assume that c so that each point outside the ball $B(0,10)$ centred at 0 and with radius goes off to infinity.

Let's apply this to the Julia set

$$
J(f)=\partial B(\infty)=\partial\left\{z ;\left|f^{n}(z)\right| \rightarrow \infty \text { as } n \rightarrow \infty\right\}
$$

and assume that c so that each point outside the ball $B(0,10)$ centred at 0 and with radius goes off to infinity.

Then

$$
J(f)=\partial\left\{z ;\left|f^{n}(z)\right| \geq 10 \text { for some } n \geq 0\right\}
$$

So

$$
J(f) \subset \partial \cap_{n \geq 0} f^{-n}(B(0 ; 10))
$$

Proposition
If $|f(0)| \geq 10$ then $J(f)$ is not connected.

Proposition

If $\left|f^{n}(0)\right| \geq 10$ for some $n \geq 0$ then $J(f)$ is not path connected.

Theorem

The Julia set of $f_{c}(z)=z^{2}+c$ is connected if and only if the sequence $\left|f_{c}^{n}(0)\right|$ is bounded.

The Mandelbrot set is the set of c so that $\left|f_{c}^{n}(0)\right|_{n \geq 0}$ is bounded.

Theorem

The Julia set of $f_{c}(z)=z^{2}+c$ is connected if and only if the sequence $\left|f_{c}^{n}(0)\right|$ is bounded.

The Mandelbrot set is the set of c so that $\left|f_{c}^{n}(0)\right|_{n \geq 0}$ is bounded.
Hint: for presentation. Draw pictures, either by hand or by computer of the set $f^{-2}(B(0,10))$ when $f(0) \notin B(0,10)$.

Your presentation could include the following:

- Draw pictures of regions D in \mathbb{C} and determine $f^{-1}(D)$. Here you do not need to be formal, but just to show understanding.
- Try to show that a line segment in \mathbb{C} is connected.
- Try to show that the union of several segments in \mathbb{C} which all go through $0 \in \mathbb{C}$ is connected.
- Show pictures of the Julia set of $f(z)=z^{2}+c$ for various choices of c.

