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Three Different Projects

(A) Real one-dimensional dynamics: builds on analysis from
the first year.

(B) Complex dynamics: ask you to computer experiments and
computer coding.

(C) Complex dynamics: looks ahead at material from the 2nd
year, but requires no material except what you already know
from the first year (and knowledge about complex numbers -
what you already know from secondary school).

Does anybody already know which topic he/she wants to do?
They will all be fun!
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Next, I will discuss each of the projects in some more detail and
will tell you exactly what you would need to do by next
Wednesday if you choose that topic.

This will make up about 1/3 of the project.

For the week after, I will give guidance, but you will have more
freedom how to take it further.
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Topic A: The Sarkovskii Theorem

Let us motivate the so-called Sarkovskii ordering on N

3 ≺ 5 ≺ 7 ≺ 9 · · · ≺ 2 · 3 ≺ 2 · 5 · · · ≺ 8 ≺ 4 ≺ 2 ≺ 1.

Let f : [0, 1]→ [0, 1] be continuous and consider successive iterates
xn+1 = f (xn) of a point x0 = x ∈ [0, 1]. So xn = f n(x0) where

f n = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

.

We say that x is periodic if f n(x) = x for some n ≥ 1. The
minimal such number is called the period of x .

Theorem (Sarkovskii 1964)

If p ≺ q and f has a periodic point of (minimal) period p then it
also has a periodic point of minimal period q.

In particular, period three implies all periods. We will see that the
main ingredient for this is the intermediate value theorem.
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Topic A:

The task for this week is to understand

some background and

all the ingredients for the proof of this theorem.
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Topic A: Examples of interval maps

f (x) = x : then each point has period one and no point has
period > 1. This is a pretty boring map.

f (x) = 2x(1− x) (draw graph).

Then f (0) = 0 and for each x ∈ [0, 1/2],

f (x) = 2x(1− x) ≤ 1/2 and x < f (x).

So when x ∈ [0, 1] we get x < f (x) < f 2(x) < · · · < 1/2 and
hence f n(x) is a bounded increasing sequence. So it has a
limit y . Since f n(x)→ y we also have that y = f (y). Hence
y = 1/2 (check).
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Topic A: Examples of interval maps

f (x) = 2x(1− x)

Similarly for x ∈ [1/2, 1], f (x) = 2x(1− x) ≤ 2x ≤ 1/2 and
so then again f n(f (x))→ 1/2. In other words, there are no
periodic points in [0, 1] except 0, 1/2.

f (x) = 4x(1− x) (draw graph). Let us show that this map
has a point of period three.

Take z0 ∈ [0, 1/2] so that f (z0) = 1/2 (how can you know
such a point exists and is unique?).

Then take z1 ∈ [0, z0] so that f (z1) = z0 (how can you know
such a point exists and is unique?).
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Topic A: Examples of interval maps (continued)

So f maps
1 [z1, z0] continuously onto [z0, 1/2], monotone increasingly
2 [z0, 1/2] continuously onto [1/2, 1], monotone increasingly
3 [1/2, 1] continuously onto [1/2, 1], monotone decreasingly

So f 3 maps [z1, z0] continuously onto [0, 1], monotone
decreasingly.

The next lemma will imply that there exists x ∈ [z1, z0] so
that f 3(x) = x .
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Topic A: A lemma

Lemma

Let J ⊂ [0, 1] be an interval and g : J → [0, 1] continuous and
surjective. Then there exists x ∈ J so that g(x) = x.

Proof: If not, then consider h(x) = g(x)− x and we get h 6= 0. By
the intermediate value theorem h(x) > 0 or h(x) < 0 for all x ∈ J.

So g(x) < x for all x ∈ J ⊂ [0, 1] or g(x) > x for all such points.
Let’s assume we are in the former case.

Write J = [a, b]. Since J ⊂ [0, 1], we have 0 ≤ a < b ≤ 1.

Hence g(x) < x ≤ b ≤ 1 for all x ∈ [a, b]. So there exists no x ∈ J
so that g(x) = 1.
This contradicts that g is supposed to be surjective.

Sebastian van Strien (Dynamical Systems Group / Imperial) Period Three, Chaos and Fractals



Topic A: Second Task for this week

Prove the following lemma, and if you get stuck ask questions next
week.
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Topic A: Prove the main lemma

Lemma

Let f : [0, 1]→ [0, 1] be continuous and J ⊂ [0, 1] be an interval.

1 Then f (J) is also an interval;

2 If f n(J) ⊃ J then there exists x ∈ J with f n(x) = x;

3 If J0, J1 ⊂ [0, 1] are intervals and f (J0) ⊃ J1 then there exists
an interval J ⊂ J0 so that f (J) = J1;

4 Let J0, J1, . . . , Jm be intervals in [0, 1] so that f (Ji ) ⊃ Ji+1 for
i = 0, . . . ,m − 1. Then there exists an interval J ⊂ J0 so that
f i (J) ⊂ Ji for i = 0, 1, . . . ,m − 1 and f m(J) = Jm.

The proof of this lemma relies on the
Intermediate Value Theorem:
if g : [0, 1]→ R is continuous and g(0)g(1) < 0 then there exists
x ∈ (0, 1) with g(x) = 0.

Your project could include a detailed proof of the above lemma.
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Topic A: Final Task for this week

Look through the first page of the proof of Sarkovskii’s theorem,
and ask questions about it if you do not follow the proof.

We will discuss this more in detail next week.
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Project B: Computing Julia sets

Take a polynomial f : C→ C, say f (z) = z2 + c . So you take a
complex number z ∈ C, compute z · z and then add c . Then
repeat this again and again.

This week you will take the Julia set J(f ) of f (z) = z2 + c when
c 6= 0 to be defined in the following way:

J(f ) = ∂B(∞) = ∂{z ; |f n(z)| → ∞ as n→∞}.

Next week you then will also consider another method and begin
to understand the Julia set and the Mandelbrot set even better.
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Project B: Computing Julia sets

Let’s try to compute/draw the Julia set

J(f ) = ∂B(∞) = ∂{z ; |f n(z)| → ∞ as n→∞}.

Take R = max(|c |, 3). Then for each z ∈ C with |z | > R,

|f (z)| = |z2 + c| ≥ |z ||z | − |c | ≥ R|z | − |c | ≥ 2|z |,

because R − 2 ≥ 1 and |z | ≥ R ≥ |c |. Hence when |c | ≤ 10 and
|z | > 10 then |f n(z)| → ∞ and

B(∞) ⊃ {z ; |z | ≥ 10}

To draw points which points are not in B(∞), take |c | < 10, pick
some integer, say 30, and compute for each z ∈ C with |z | < 10
(or rather each pixel point) the minimal value n = n(z) ≤ 30 so
that |f n(z)| ≥ 10 and plot this point z on the computer screen
with a colour which depend on n(z).
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c = 0.36 + i*0.1; 
x = -2:0.02:2; y = -2:0.02:2; 
[x0, y0] = meshgrid(x,y); 
n = zeros(size(x0)); 
for k = 1:length(y), 
  for m = 1:length(x), 
    z = x0(k,m) + i*y0(k,m); 
    for itr = 1:30, 
      z = z.^2 + c; 
      if abs(z) > 10, 
        n(k,m) = itr; break, 
      end, 
    end, 
  end, 
end, 
plotcolour(x0,y0,n); 
pixgrid(size(x0)); 
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Project B: Computing Julia sets

What do you need to do this week:

Get this code to work on matlab and do some experiments
(see lecture)

Understand why the regions with the same colour split in
several areas if |f (0)| = |c | ≥ 10. Hint: consider the set

U := {z ; |z2 + c | ≤ 10} = {z ; z2 ∈ B(−c ; 10)}

where B(−c ; 10) is the ball with radius 10 and centre
−c = −f (0). If B(−c ; 10) does not contain 0 then this U
consists of two pieces. Now consider this argument when
|f 2(0)| = |f (c)| ≥ 10.
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Project C: Some theorems s on polynomials acting on the complex
plane

This week you are going to analyse the following theorem.

Theorem

A polynomial f : C→ C of deg > 1 has ∞ many periodic points.
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Project C: Some examples: f (z) = z2

Take f (z) = z2. By the theorem, this is supposed to have infinitely
many periodic points. Where are they?

If |z | > 1 then |f (z)| = |z |2 > 1 and more generally |f n(z)| = |z |2n

and so |f n(z)| → ∞ as n→∞.

If |z | < 1 then |f (z)| = |z |2 < 1 and more generally |f n(z)| = |z |2n

and so |f n(z)| → ∞ as n→∞.

So periodic points have to be on the unit circle {z ; |z | = 1} (or
equal to the fixed point 0).

If |z | = 1 then z = e iφ with φ ∈ [0, 2π). Hence f (z) = e2iφ and
f n(z) = e2

niφ.

So z = f n(z) is equivalent to φ = 2niφmod2π. That is,
(2n − 1)φ ∈ 0mod2π.
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Project C: Some examples: f (z) = z2

So z = f n(z) is equivalent to (2n − 1)φ ∈ 0mod2π when z = e iφ.

n = 1 then φ = 0.

n = 2 then φ = 0, π/3, 2π/3. Which are the periodic points of
period two?

n = 3 then φ = 0, π/7, 2π/7, 3π/7, 4π/7, 5π/7, 6π/7. Which are
the periodic points of period three? What are the orbits

0→ 0

π/7→ 2π/7→ 4π/7→ π/7

and
3π/7→ 6π/7→ 5π/7→ 3π/7.
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Project C: Some examples: f (z) = z2 − 2

How many periodic points does the map f (z) = z2− 2 have? Note
that f maps [−2, 2] onto [−2, 2]. So we can apply Sharkovskii’s
theorem.

From what we did in the beginning of this session, f has a periodic
point of period three. So there are infinitely many periodic points
in [−2, 2].

In fact, the Julia set of this map is equal [−2, 2]. So when
z ∈ [−2, 2] then it is not the case that |f n(z)| → ∞. It follows
that [−2, 2] ⊂ J(f ).

Let us now show that J(f ) = [−2, 2].
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Project C: Some examples: f (z) = z2 − 2

Proof that J(f ) ⊂ [−2, 2]. To prove this, we shall use the result
(we discussed last time):

Theorem

Take p so that #f −2(p) ≥ 3. Then for each δ > 0 there exists n
so that for each point w ∈ J(f ) = ∂B(∞) there exists z ∈ f −n(p)
with |z − w | < δ.

Note that f (z) ∈ [−2, 2] then z ∈ [−2, 2]. In other words, if
z ∈ [−2, 2] then f −1(z) ⊂ [−2, 2]. Repeating this gives
f −n(z) ⊂ [−2, 2].

Moreover, #f −2(0) ≥ 3 (see graph).

By the above theorem, for each δ > 0 there exists n so that the
Julia set J(f ) lies δ close to the set f −n(0) ⊂ [−2, 2].

So J(f ) ⊂ [−2, 2].
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Project C: Final task for this week

Read and understand the proof of the following

Theorem

A polynomial f : C→ C of deg > 1 has ∞ many periodic points.
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