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The Sarkovskii Theorem

Let us motivate the so-called Sarkovskii ordering on N

3 ≺ 5 ≺ 7 ≺ 9 · · · ≺ 2 · 3 ≺ 2 · 5 · · · ≺ 8 ≺ 4 ≺ 2 ≺ 1.

Let f : [0, 1]→ [0, 1] be continuous and consider successive iterates
xn+1 = f (xn) of a point x0 = x ∈ [0, 1]. So xn = f n(x0) where

f n = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

.

We say that x is periodic if f n(x) = x for some n ≥ 1. The
minimal such number is called the period of x .

Theorem (Sarkovskii 1964)

If p ≺ q and f has a periodic point of (minimal) period p then it
also has a periodic point of minimal period q.

In particular, period three implies all periods. We will see that the
main ingredient for this is the intermediate value theorem.
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The main lemma

Lemma

Let J ⊂ [0, 1] be an interval.

1 Then f (J) is also an interval;

2 If f n(J) ⊃ J then there exists x ∈ J with f n(x) = x;

3 If J0, J1 ⊂ [0, 1] are intervals and f (J0) ⊃ J1 then there exists
an interval J ⊂ J0 so that f (J) = J1;

4 Let J0, J1, . . . , Jm be intervals in [0, 1] so that f (Ji ) ⊃ Ji+1 for
i = 0, . . . ,m − 1. Then there exists an interval J ⊂ J0 so that
f i (J) ⊂ Ji for i = 0, 1, . . . ,m − 1 and f m(J) = Jm.

The proof of this lemma relies on the
Intermediate Value Theorem:
if g : [0, 1]→ R is continuous and g(0)g(1) < 0 then there exists
x ∈ (0, 1) with g(x) = 0.

Your project could include a detailed proof of the above lemma.
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Proof of Sarkovskii’s theorem for the period three case: Step 1

Let x be a point of period three, so the set x , f (x), f (x), . . .
consists of three distinct points a < b < c .
Let

I1 = [a, b] and I2 = [b, c].

Since f permutes points from the set {a, b, c} (fixing none of these
points), depending on whether the middle point goes to the left or
to the right,

f (b) = a and f (a) = c and f (c) = b

or
f (b) = c and f (a) = b and f (b) = a.

Let us assume the former (the latter case goes the same up to
relabelling). Then Statement (1) of the previous lemma implies

f (I1) ⊃ I1 ∪ I2 and f (I2) ⊃ I1
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Step 2: For any m there exists a point with f m(x) = x

Remember that

f (I1) ⊃ I1 ∪ I2 and f (I2) ⊃ I1

Let m be an integer and let us take

J0, . . . , Jm−2 all equal to I1,

Jm−1 = I2 and Jm = I1.

Since f (Ji ) ⊃ Ji+1 for each i = 0, 1, . . . ,m − 1, by Part (4) of the
lemma, there exists an interval J ⊂ J0 = I1 so that f i (J) ⊂ Ji for
i = 0, 1, . . . ,m − 1 and

f m(J) = Jm = I1 ⊃ J.

The last inclusion and Part (2) of the lemma implies that there
exists x ∈ J so that f m(x) = x .
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Step 3: x has exactly period m

Remember that

I1 = [a, b] , I2 = [b, c] and f (a) = c , f (b) = a, f (c) = b (1)

x , f (x), . . . , f m−2(x) ∈ I1 and f m−1(x) ∈ I2. (2)

Suppose by contradiction that not all the points
x , f (x), . . . , f m−1(x) are distinct. Then f i (x) = f j(x) for some
0 ≤ i < j < m and therefore f i+k(x) = f j+k(x) for all k ≥ 0. So

f i ′(x) = f m−1(x) for some 0 ≤ i ′ < m − 1.

By (2), f i ′(x) = f m−1(x) = b. Hence, using (1),

f i ′+1(x) = f m(x) = f (b) = a and x = f m(x) = a. (3)

But then
f (x) = f (a) = c /∈ I1

contradicting (2) unless m = 2. If m = 2 then i ′ = 0 and (3) gives
f (a) = a, contradicting (1) and that a, b, c are all distinct.
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Sarkovskii’s theorem is sharp: Period 5 does not imply period 3

Let us show that there exists a continuous map f : [1, 5]→ [1, 5]
with period 5 and no period 3. To do this take f piecewise affine
with f (1) = 3, f (3) = 4, f (4) = 2, f (2) = 5, f (5) = 1.
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By inspection f 3[1, 2] = [2, 5],f 3[2, 3] = [3, 5],f 3[4, 5] = [1, 4] and
there are no fixed points of f 3 on these intervals. f 3 maps [3, 4]
monotonically decreasing onto [1, 5]: it is a composition of
monotone decreasing maps [3, 4]→ [2, 4]→ [2, 5]→ [1, 5]. So the
fixed point of f 3 on [3, 4] agrees with the fixed point of f on this
interval.
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Suggestions for project A (on Sarkovskii’s theorem

Adapt the above proof to show that the existence of a point
of period 5 implies the existence of periodic points of any
period (except 3). For a complete proof see for example

1 R.L. Devaney, An introduction to chaotic dynamical systems or
2 W. de Melo and S. van Strien, One dimensional dynamics,

Section II.1. You will be able to download this book from the
module webpage).

Show that the map f (x) = 4x(1− x) has a periodic point of
any period. Do this by drawing a graph of the map
f (x) = 4x(1− x) and ‘constructing’ a point x ∈ (0, 1/2) so
that x < f (x) < · · · < f m−2(x) < 1/2 < f m−1(x) and
f m(x) = x .

Show that the only periodic points of the map
f (x) = 3x(1− x) are the two fixed points 0 and 2/3. (Hint:
analyse the graph of f 2.)

More suggestions will be posted on the webpage of this
module.
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Iterating polynomials acting on the complex plane

Theorem

A polynomial f : C→ C of deg > 1 has ∞ many periodic points.

Before proving this, we remark (without proof) that all but finitely
many of these periodic points p have the property:

if f n(p) = p then |(f n)′(p)| > 1.

Such periodic points are called repelling because by the Mean
Value Theorem

|f n(x)− p| = |f n(x)− f n(p)| = (f n)′(ξ)|x − p| > |x − p|.

We denote the set of repelling periodic points by Perrep(f ).
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Theorem

A polynomial f : C→ C of deg > 1 has ∞ many periodic points.

Prerequisite for the proof: Fundamental Theorem of Algebra
(which is taught in year two). Let f be a polynomial f of degree d ,

f (z) = adzd + ad−1zd−1 + · · ·+ a0 with ad 6= 0.

Then
f (z) = a(z − z1)d1 · · · · · (z − zk)dk

where z1, . . . , zk are all distinct and d1 + · · ·+ dk = d . The
positive integer di is called the multiplicity of the zero wi . In
particular we get:

deg(f ) = sum of multi. at zeroes of f .
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Proof of the existence of ∞ many periodic points. Assume by
contradiction that

p1, . . . , pk are the only periodic pts (with periods n1, . . . , nk). (4)

• Let N = n1 · · · nk . For each i = 1, . . . , k , N is a multiple of ni

and so f N(pi ) = pi .
• By an explicit calculation the multiplicity m of f N(z)− z and
f 2N(z)− z at each pi is the same. Indeed, w.l.o.g. we can assume
pi = 0 and f N(z) = z + azm + h.o.t. and so
f 2N(z) = (z + azm + . . . ) + a(z + azm + . . . )m = z + 2azm + . . . .
• By (4) the only zeroes of f 2N(x)− x are p1, . . . , pk . Hence∑

mult. at zeroes of f N(z)−z =
∑

mult. of zeroes of f 2N(z)−z .

• This and the Fund. Thm of Algebra gives the middle equality in:

deg(f N(z)) = deg(f N(z)− z) = deg(f 2N(z)− z) = deg(f 2N(z)).

• But this is impossible since deg(f 2N) > deg(f N).
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The basin at infinity

Define the basin of infinity B(∞) = {x ; f n(x)→∞ as n→∞}.

Lemma

Let f be a polynomial. Then there exists K > 0 so that if |z | ≥ K
then z ∈ B(∞).

Proof when f (z) = z2 + c . Take K = max(3, |c |) and z ∈ C with
|z | ≥ K . Then

|f (z)| = |z2 + c | ≥ |z ||z | − |c| ≥ K |z | − |c| ≥ 3|z | − |z | = 2|z |

and so
|f n(z)| ≥ 2n|z | → ∞ as n→∞.
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The Julia set of a polynomial

There are several equivalent definitions of the Julia set J(f ) of a
polynomial f . We will give two. Project B will explore how to show
their equivalence, and how to effectively compute the Julia set.

Let A ⊂ C and define the boundary ∂A (resp. the closure A) of A
as the set of points x so that within each ball Br (x) around x
there are points from A and also points from the complement of A
(resp. so that Br (x) ∩ A 6= ∅). Let #A be the cardinality of a set.

Theorem (Definition of Julia set)

J(f ) := ∂B(∞) = Perrep(f ).

Theorem (Useful way of computing/drawing a Julia set)

Take p so that #f −2(p) ≥ 3. Then for each δ > 0 there exists n so
that each point x ∈ J(f ) is at most δ apart from some z ∈ f −n(p).
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Below are some examples of Julia sets of f (z) = z2 + c for various
choices of c . It turns out that whether or not |f n(0)| → ∞
determines whether J(f ) is ‘connected’.

f n(0)→∞ Is 0 in the basin of
a periodic attractor?

0 is in basin of
attracting fixed point
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The previous theorem can be proved using:

Theorem (Montel)

Let pn, qn be a sequence polynomials and D a disc in C so that
qn 6= 0 for all z ∈ D and all n. Define Rn := pn/qn. If none of the
sets D,R1(D),R2(D), . . . contains 0 or 1 then there exists M <∞
so that |Rn(z)| ≤ M and |R ′n(z)| ≤ M for all n and all z ∈ D.

Let us show how this implies:

Theorem (Useful way of computing/drawing a Julia set)

Take p so that #f −2(p) ≥ 3. Then for each δ > 0 there exists n
so that for each point w ∈ J(f ) = ∂B(∞) there exists z ∈ f −n(p)
with |z − w | < δ.

Step 1. Take r1, r2, r3 distinct with f 2(r1) = f 2(r2) = f 2(r2) = p.
(Check that there are plenty of p’s #f −2(p) ≥ 3 when f has
degree ≥ 2).
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Step 2. Take w ∈ ∂B(∞) and a disc D 3 w . Since w ∈ ∂B(∞),
there exists z ∈ D so that |f n(z)| → ∞. Taking
Sn := (2/δ)(f n − r1) we get Sn(z)→∞. Hence, by Montel, there
exists n and z ∈ D so that Sn(z) is equal to 0 or 1. If Sn(z) = 0
then f n(z) = r1 and so f n+2(z) = f 2(r1) = p and we are done. So
we can assume that there exist z ∈ D and n so that Sn(z) = 1
which means f n(z) = r1 + δ/2. (We will use this in Step 4.)

Step 3. Define

Rn(z) :=
(f n(z)− r2)

(f n(z)− r1)

(p − r1)

(p − r2)
.

It follows from Montel that either

there exists z ∈ D with Rn(z) ∈ {0, 1,∞} or

there exists M <∞ so that |Rn(z)| ≤ M for all n and all
z ∈ D.

In the former case, f n(z) = r2, f n(z) = r1 or f n(z) = p (check
this!) Hence f n+2(z) = p and we are done.
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Step 4. In the latter case, for each z ∈ D and each n the norm of
Rn(z) = (f n(z)−r2)

(f n(z)−r1)
(p−r1)
(p−r2) is at most M and so there exists M1 with

|f n(z)−r2|
|f n(z)−r1| ≤ M1 for all n and all z ∈ D. Hence there exists δ > 0 so

that |f n(z)− r1| ≥ δ for all z ∈ D. But this contradicts that there
exists z and n so that f n(z) = r1 + δ/2.
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Suggestions for project B (on Julia sets):

1 Draw the Julia set of z2 + c for a number of choices of c ,
either in Matlab or in Maple (or in any other computer
language of your choice). You can do this by using the
algorithm suggested by the previous theorem. You may also
use some software freely available on the web. It is absolutely
fine if you concentrate your project on this part, but then you
need to add to your presentation the code you have written
and give a lively description of the computer experiments you
made (with lots of pictures)!!

2 Determine by hand the Julia set of the function f (z) = z2.

3 Use the previous theorem to show that the Julia set of z2 − 2
is contained in [−2, 2]. (Hint: use the previous theorem,
#f −2(0) ≥ 3 and that f −1([−2, 2]) ⊂ [−2, 2]. In actual fact,
one can prove that the Julia set of this map is equal to [−2, 2].
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4 Let p be a repelling periodic point. Show that p ∈ ∂B(∞).
(Hint: if p /∈ ∂B(∞) then (since p is periodic) there exists a
disc D around p so that no point in D is in B(∞). Then use:

Lemma

Let f be a polynomial. Then there exists K > 1 so that if |z | ≥ K
then z ∈ B(∞).

So there exists K > 1 so that |f n(z)| ≤ K for all n and all
z ∈ D. Now define Rn(z) = 3K − f n(z). So Rn does not take
the values 0 and 1 on D. Hence, by Montel, there exists
A <∞ so that |(Rn)′(z)| ≤ A for all z ∈ D and all n. But this
is impossible because (Rn)′(p) = (f n)′(p)→∞ because p is a
repelling periodic point. Here you need to use the chain rule.)
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5 Let w ∈ ∂B(∞). Show that for each δ > 0 there exists a
periodic point p so that |p − w | < δ. (Hint: see below.)

For (5) you need to use a slightly more general version of the
theorem of Montel where one can take pn and qn of the form
f n(z)− φ1(z) and where φi are inverse functions of f . You will
also need the following fact (which you can use without proof): If
D is a disc containing w and f n(D) ⊃ D then there exists p ∈ D
with f n(p) = p.
You will be given some extra help on this during the project
meetings.

There are many popular books on chaos and fractals.
H.O. Peitgen and P.H. Richter, The Beauty of fractals, Springer
Verlag, Berlin 1986). (With lots of pictures but with not so much
maths.)
R.L. Devaney, An introduction to chaotic dynamical systems,
Addison-Wesley, 1986. (A very nice introduction to dynamical
systems.)
R.L. Devaney wrote several popularising texts. For school kids:
The Mandelbrot and Julia Sets: A Toolkit of Dynamics Activities
and also Complex Dynamical Systems: The Mathematics Behind
the Mandelbrot and Julia Sets
http://www.mandel.org.uk/
The area of research is extremely active. For some recent texts, see
for example Complex Dynamics and Renormalization, by the Field
Medalist C. McMullen and Complex Dynamics: Families and
Friends, edited by Dierk Schleicher. These texts require more
background. Something to look forward to during your degree!

Sebastian van Strien (Dynamical Systems Group / Imperial) Period Three, Chaos and Fractals


