
Chapter 1
Dynamics associated to games (fictitious play)
with chaotic behavior

Colin Sparrow and Sebastian van Strien

Abstract In this survey we will discuss some recent results on a certain class of dy-
namical systems, called fictitious play which are associated to game theory. Here we
simply aim to show that the dynamics one encounters in these systems is unusually
rich and interesting. This paper does not require a background in game theory.

1.1 Introduction

Consider games with two players A and B which both can play, randomised, n strate-
gies. So the state space of the players is described by two probability vectors

pA ∈ ΣA and pB ∈ ΣB

where ΣA and ΣB are the space of probability vectors in Rn. By convention, pA is a
row vector and pB a column vector. We assume that player A has utility (i.e. payoff)
pAApB and player B has payoff pABpB where A and B are n×n matrices.

At a given moment in time, player A can best improve her utility by choosing the
unit vector BRA(pB) which corresponds to the largest component of ApB. This is
the best response of player A to position pB. Formally,

BRA(pB) := argmax
pA

pA A pB. (1.1)

Of course, BRA(pB) can be a whole collection of vectors. However, when A is a
non-degenerate matrix, this happens only for pB in certain hyperplanes. (More pre-
cisely, in one of the n×(n−1)/2 hyperplanes in ΣB corresponding to pB ∈ΣB where
ApB has two or more equal components.) Outside these hyperplanes, BRA(pB) is a
unit basis vector. Similarly denote the best response of player B by BRB(pA).
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A Nash equilibrium is a choice of strategies from which no unilateral devia-
tion by an individual player is profitable for that player. That is, (pA

∗ , pB
∗ ) is a Nash

equilibrium if
pA
∗ ∈BRA(pB

∗ ) and pB
∗ ∈BRB(pA

∗ ).

The Nash equilibrium is unique, if A and B are invertible and if, moreover, there ex-
ists a purely mixed Nash equilibrium (EA,EB) (see, for example, [vSS09, Theorem
1.5]). In this case EB ∈ ΣB is the vector so that all components of AEB are the same
(so player A is indifferent to all different strategies). The vector EA can be found
similarly.

In the 1950s Brown [Bro51] proposed fictitious play as a way in which players
are able to naturally find the Nash equilibrium by flowing according to the following
differential equation:

d pA/dt = BRA(pB)− pA

d pB/dt = BRB(pA)− pB (1.2)

where BRA(pB)∈ ΣA is the best response of player A to players B position, and sim-
ilarly for BRB(pA)∈ ΣB. So each player’s tendency is to adjust his or her strategy in
a straight line from his/her (current) strategy towards their (current) best response.

There is an interpretation of this game as a mechanism by which the players
learn from the other player’s previous actions and then one often writes

d pA/ds =
(
BRA(pB)− pA

)
/s

d pB/ds =
(
BRB(pA)− pB

)
/s,

(1.3)

see for example the monograph [FL98]. The dynamics of this system and the pre-
vious are the same up to time-parametrisation s = et . Since BRA and BRB are not
necessarily single-valued, (1.2) and (1.2) are really differential inclusions, rather
than differential equations. Under mild assumptions, see [AC84], these differential
inclusions have solutions. In actual fact, as we shall see, in many examples the so-
lutions are even still unique.

This survey will describe some results on the dynamics of these games and pose
some conjectures and open questions.

1.2 A short introduction into game theory and some simple 2×2
examples

Let us discuss first the simplest (and essentially trivial) case, where both players
have only two strategies to choose from, i.e. when ΣA and ΣB both correspond to
the one-dimensional simplex {(p1, p2) ∈ R2; pi ≥ 0, p1 + p2 = 1}. Often instead of

writing A =
(

a1 a2
a3 a4

)
and B =

(
b1 b2
b3 b4

)
, these two matrices are denoted using the

following notation
(

(a1,b1) (a2,b2)
(a3,b3) (a4,b4)

)
. Equivalently, these matrices are encoded
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in the following way:
Payoff’s Player B Player B

chooses left chooses right
Player A chooses top (a1,b1) (a2,b2)
Player A chooses bottom (a3,b3) (a4,b4)

 ,

where the 2nd part of each entry corresponds to the payoff to player B (the column
player). As mentioned, ΣA×ΣB can be thought of as [0,1]× [0,1] and because of
this notation it is traditional (and convenient) to identify the vertical side with the
position of player A (the player with the row vector pA) and the top left corner of

[0,1]× [0,1] with (10),
(

1
0

)
∈ ΣA×ΣB. When we use this identification, payoffs

the each of the corners of the square is the corresponding entry of the matrix. (We
note that pA is a row vector, even though pA represents the position of player A and
is displayed on the vertical side of the square.)
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Fig. 1.1 The identification for 2× 2 games: the horizontal side corresponds to player B and the
top left corner corresponds to the first unit base vector for both players (i.e. the first strategy)

Of course, the evolution described by fictitious play, i.e. the differential inclusion

d pA/dt = BRA(pB)− pA

d pB/dt = BRB(pA)− pB (1.4)

is completely determined by the (multivalued) functions BRA(pB) and BRB(pA).
Note that (BRA(pB),BRB(pA)) corresponds to one of the corners of [0,1]× [0,1],
except where it is multivalued. So where it is not multivalued, the motion of (1.4)
is towards one of the corners. There is a vertical line which determines where
BRB(pA) changes, i.e. where the motion (1.4) switches direction (moving towards
one of the top corners on one side and to one of the bottom corners on the other
side), and a horizontal line where player A switches direction (moving towards one
of the left corners on one side and to one of the right corners on the other side). In
Figure 1.2 we have drawn a few cases. Case (1) corresponds to a situation where
the player A always prefers to move up (except on the segment marked in the figure
on the left side, where she is indifferent). There are many matrices which would
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correspond to this situation, for example when
(

(0,−1) (0,0)
(0,0) (−1,−1)

)
. Case (2) cor-

responds to
(

(−1,1) (0,0)
(0,0) (−1,1)

)
. Here both players have opposite interests (the sum

of the payoff’s is always zero). Player B is copying A’s behavior (because the largest
component of pAB is then equal to the largest component of pA), whereas player
A is doing the opposite to what player B is doing. Finally, Case (3) corresponds

to
(

(1,1) (0,0)
(0,0) (1,1)

)
where both players agree to choose the same strategy. In the

prisoner dilemma
(

(3,3) (0,5)
(5,0) (1,1)

)
the players always move to the bottom right cor-

ner, see Case (4) and for both players the best response is always the 2nd strategy
(BRA,BRB are both constant in this case), even though they both would receive
higher payoffs playing the first strategy.
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Fig. 1.2 The possible motions in 2×2 games (up to relabeling, and shifting the indifference lines
(drawn in dotted lines).

In fact, it is easy to see that the dynamics in any 2× 2 game is topologically of
one of these types. Therefore, from this point of view, the next interesting case is
that of a 3× 3 game. (The dynamics of 2× 3 games can be essentially reduced to
that of a 2×2 game, with a normal direction added, see [vSS09, Theorem 1.5].) In
a later section we will review some results on 3× 3 games, and see that these are
much more complicated than 2×2 games.

1.3 Convergence to Nash equilibria in the zero-sum case

If B+A = 0 then we have a so-called zero-sum game. It was shown in the 1950s by
Robinson [Rob51] that then the differential inclusion (1.4) converges (albeit slowly)
to the set of Nash equilibria. This situation corresponds to Case (2) in Figure 1.2.

Of course, matrices A,B for which A + B 6= 0, could have the same best re-
sponses BRA and BRB as matrices Ã, B̃ for which Ã+ B̃ = 0. For example, (A,B) =(

(2,−1) (1,0)
(1,0) (2,−1)

)
and (Ã, B̃) =

(
(1,−1) (0,0)
(0,0) (1,−1)

)
have the same best responses.

(Indeed, since pB is a probability vector, ApB = pB +
(

1
1

)
= ÃpB +

(
1
1

)
and hence

player A has for both games the same best-response; for player B the same holds be-
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cause his matrix is the same for both games.) Because of this, one calls two matrices
A,B zero-sum if and only if they induce the same best reponses as two matrices Ã, B̃
for which Ã+ B̃ = 0.

In the zero-sum case, it is easy to see that the motion (1.4) converges. Indeed,
take

H(pA, pB) = BRA(pB)A pB− pA ABRB(pA).

Note that BRA(pB)A pB≥ pA A pB≥ pA ABRB(pA). That is, H ≥ 0 and H(pA, pB)=
0 iff (pA, pB) is a Nash equilibrium. Since BRA and BRB are piecewise constant,
(1.2) implies

dH
dt

= BRA(pB)A
d pB

dt
− d pA

dt
ABRB(pA)

= BRA(pB)A(BRB(pA)− pB)− (BRA(pB)− pA)ABRB(pA) =−H.

It follows that solutions go to the zero-set of H, i.e. to the set of Nash equilibria.
There are other examples for which it is shown that the game converges (for

example in 2×n games see [Ber05], and games with some other special properties,
see for example [Hah08], [MS96], [Ber07], [MR91], [Kri92]. However, for all those
other cases the Nash equilibrium is on the boundary of the state space ΣA×ΣB, and
usually in those cases the Nash equilibrium is not unique and the flow does not have
unique attractor. Therefore, following [Hof95], we would like to pose the following:

Conjecture 1. Assume that all solutions of (1.2) converge to a unique equilibrium.
Then (1.2) is associated to a zero-sum game.

We would like to mention here that we have shown in [vS09] that for any zero
sum game (with some non-degeneracy conditions), the motion (1.4) can be viewed

as the product of the Hamiltonian motion
d p̄
dt

=
∂H
∂ q̄

,
dq̄
dt

= −∂H
∂ p̄

on ΣA×ΣB as-

sociated to the (Hamilton) function H and a motion towards the Nash equilibrium.
More precisely, because of the non-degeneracy conditions, the game has a unique

Nash equilibrium E = (EA,EB) ∈ Σ := ΣA×ΣB and H−1(1) is the boundary of a
ball around E. Moreover, there exists a continuous map π : Σ \{E} → H−1(1)∩Σ

so that π(pA, pB) = λ (pA, pB) ·(EA,EB)+(1−λ (pA, pB)) ·(pA, pB) for some scalar
λ (x) > 0 and π(x) ∈ H−1(1). (Take λ (x) = 1−1/H(pA, pB).) So

(pA, pB) 7→ (π(pA, pB),λ (pA, pB)) ∈ (H−1(1)∩Σ)×R+

can be viewed as (higher dimensional) spherical coordinates around E. The dy-
namics (1.3) in these spherical coordinates (p̄A, p̄B) = π(pA, pB),λ = λ (pA, pB)
becomes

d p̄
dt

=
∂H
∂ q̄

,
dq̄
dt

=−∂H
∂ p̄

on ΣA×ΣB,

dλ

dt
=−λ .

(1.5)
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Of course, the Hamiltonian is not smooth. It is continuous and piecewise affine,
and locally the flow is just a translation flow. However, as is shown in [vS09], the
associated Hamiltonian flow is unique and continuous.

1.4 A family of (not necessarily non-zero) sum games containing
Shapley’s example displaying a periodic orbit

In the case of non-zero sum games, one certainly does not always convergence.
Indeed, there is a famous example due to Shapley [Sha64] from the 1960s which
shows that in general the evolution does NOT converge to a Nash equilibrium of the
game. The Shapley example exhibits periodic behavior.

Indeed, take the family of 3×3 games

Aβ =

 1 0 β

β 1 0
0 β 1

 Bβ =

−β 1 0
0 −β 1
1 0 −β

 , (1.6)

which depend on a parameter β ∈ R.
This family of examples was chosen in [SvSH08] because it contains Shapley’s

example (when β = 0) for which he had shown the existence of a periodic attractor.
For β = σ , where σ := (

√
5−1)/2≈ 0.618 is the golden mean, the game is equiva-

lent to a zero-sume game (rescaling B to B̃ = σ(B−1) gives A+ B̃ = 0), so then play
always converges to the interior equilibrium EA,EB as we have seen in the previous
section. So varying β ∈ [0,1) should reveal how this periodic orbit disappears. In
fact, it reveals a lot more interesting behavior!

In the case of 3× 3 games, ΣA,ΣB are both the set of probability vectors in R3

and so they are both a triangular simplex. So the state space is the product of two
such triangular simpleces (i.e. topologically a ball in R4). Shapley’s periodic orbit is
drawn Figure 1.3. The periodic orbit, which lives in ΣA×ΣB, spirals in a clockwise
fashion when projected on each of the triangles ΣA and ΣB (where the corners are
labelled as in Figure 1.6).

For the family of games (1.6), when β = 0, the sets where the players are indiffer-
ent to two or more strategies are marked in dotted lines in Figure 1.4. In [SvSH08]
it was proven that for β ∈ (0,σ) where σ = (

√
5−1)/2 there still exists a periodic

attractor.
Throughout the remaing part of this survey we will only consider games coming

from this family (1.6).
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! = 0

"A simplex "B simplex

Fig. 1.3 Shapley’s periodic orbit.

..........................................................................................................................................................................................................................................................................
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
....................................................................................................................................................................................................................................................................

pA ∗...................................................................................... ..........
...

........

.....

........

.....

........

.....

..

............. ............. .............

.......................................

PA
1

PA
2

PA
3

B→ PB
2 B→ PB

1

B→ PB
3

pA ∈ ΣA pB ∈ ΣB
β = 0

..........................................................................................................................................................................................................................................................................
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
....................................................................................................................................................................................................................................................................

pB ∗....................................................................................................................

........

.....

........

.....

........

.....

..

............. ............. .............

.......................................

PB
1

PB
2

PB
3

A→ PA
1

A→ PA
2

A→ PA
3

Fig. 1.4 The preferences of the players when β = 0.

1.5 Analysis of stationary points of flow: stable sets of the
stationary point are extremely complicated

In this section we will give a more detailed description of some results about the
dynamics associated to the above family of games and show that the situation is
rather different than that of smooth dynamical systems.

Let EA = (EB)T = (1/3,1/3,1/3) and E = (EA,EB). At this point, the players
are indifferent between all three strategies (i.e. BRA(EB) = ΣA and BRB(EA) =
ΣB). So the right hand side of (1.2) includes the zero vectors, and E can be thought
of as a stationary point of (1.2). (In fact, E is the only point in ΣA×ΣB where the
right hand side of (1.2) can be zero.)

It seems reasonable to expect that we should be able to determine the local be-
havior near the Nash equilibrium E. It turns out that this question is rather subtle.

Theorem 1 (Continuity of flow).

• For β ∈ (0,1), the differential inclusion (1.2) has a unique continuous flow out-
side E.

• For β < (−1,0], the differential inclusion (1.2) has a flow which is not continuous
(in many places).



8 Colin Sparrow and Sebastian van Strien

This theorem is proved in [vSS09] and, as it turns out, when β 6= σ , orbits which
start in E can choose to remain there or can leave this set. So E is not genuinely a
stationary point.

Theorem 2 (Stable manifold of equilibrium is extremely complicated). Consider
β ∈ (0,σ) and let φt be the flow of the fictitious play (1.2). Then the stable manifold

W s(E) = {x ∈ E;φt(x)→ E as t→ ∞}

of E is extremely complicated:

• There exists a countable infinite number of polygons in Σ \E so that the cone
with apex E over all these polygons is contained in the stable manifold of E.

• There exists an attracting periodic orbit γ in Σ \E (the continuation of Shapley’s
periodic orbit) and which also attracts points arbitrarily close to E.

So the (local) stable manifold of the Nash equilibrium E is definitely not a full
neighbourhood of E, but does contain a countable union of codimension-one sets.
We believe that the stable manifold of E is equal to this set:

Conjecture 2. The stable manifold of E is a union of codimension-one sets (cones
over certain polygons with apex E).

Question 1. Is the (local) stable manifold of E a closed set?

Usually, in smooth dynamical systems a stable manifold of a singular point is
a manifold. Here the situation is rather more complicated, regardless whether the
above conjecture is true or not.

The stable manifold of the attracting periodic orbit γ contains a neighbourhood
of γ and points arbitrarily close to E, but definitely not a countable union of cones
with apex E. So we would like to ask the following:

Question 2. Determine the global topology of the stable manifold of γ .

1.6 Bifurcations of periodic orbits of this family

Let us concentrate on some simple periodic orbits of the fictitious play (1.3) as-
sociated to the matrices (1.6). One way of describing an orbit is by a symbolic
sequence, indicating the sequence of corners of ΣA×ΣB the solution is successively
heading for. Indeed, note that the best response of A to any pB 6= EB is either an
integer i ∈ {1,2,3} or a mixed strategy set ī where ī := {1,2,3}\{i} corresponding
to where player A is indifferent between two strategies but will not play i. Sim-
ilarly for B. Hence one can associate to any orbit (pA(t), pB(t)) outside E, a se-
quence of times t0 := 0 < t1 < t2 < .. . and a sequence of best-response strategies
(i0, j0),(i1, ji),(i2, j2), . . . where
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(in, jn) = (BRA(pB(t),BRB(pA(t)))) for t ∈ (tn, tn+1)

with in and jn equal to 1, 2, 3, 1̄, 2̄ or 3̄ for each n = 0,1,2, . . . and so that

(in, jn) 6= (in+1, jn+1) for all n≥ 0

(i.e. the players really do switch strategy at time tn).
So (1̄, 1̄),(1̄, 2̄),(2̄, 2̄),(2̄, 3̄),(3̄, 3̄),(3̄, 1̄) means that during the first leg of the

orbit both players initially do not play strategy 1, and so the leg of the orbit lies in
the set where the players are indifferent to strategy 2 and 3. During the 2nd leg of
the orbit player A is still indifferent between 2 and 3, and player B between 1 and
3. Such an orbit lies on the dashed lines indicated in Figure 1.4 for the case when
β = 0. For β ∈ (0,1) the corresponding dashed lines will be tilted clockwise.

Shapley’s orbit is of the following type (1,2), (2,2), (2,3), (3,3), (3,1), (1,1).
So this periodic orbit, heads successively in six directions, and indeed is a hexagon.
In the theorem below we describe the periodic orbits which form hexagons.

Theorem 3 (The existence and stability of simple periodic orbits). There exists
τ ∈ (σ ,1) (here τ ≈ 0.915 is a root of some polynomial of degree 6) with the fol-
lowing property.

• For β ∈ (0,σ) the clockwise periodic Shapley orbit, which has symbolic sequence
(1,2), (2,2), (2,3), (3,3), (3,1), (1,1), exists and is (locally) attracting.

• For β ∈ (σ ,1) there exists another periodic orbit. We call this the anti-Shapley
orbit, because it goes anticlockwise around the triangles and has symbolic se-
quence (1,3),(1,2),(3,2),(3,1), (2,1),(2,3). This orbit is of saddle-type when
β ∈ (σ ,τ) and attracting when β ∈ (τ,1).

• For β ∈ (σ ,1) there exists a third periodic orbit, called Γ , where both players
choose mixed strategies (1̄, 1̄),(1̄, 2̄),(2̄, 2̄),(2̄, 3̄),(3̄, 3̄),(3̄, 1̄).

• This sequence of strategies corresponds to a fully-invariant set C(Γ ) (so an or-
bit starting in this set remains in this set, and an orbit starting outside this set
remains outside this set); this fully invariant set exists for each β ∈ (0,1) and
contains a periodic orbit when β ∈ (σ ,1).

There are no other periodic orbits with a symbolic sequence of length at most six.

We would like to state the following:

Conjecture 3. There are no periodic orbits other than the Shapley orbit when β ∈
(0,σ).

Conjecture 4. There are no periodic orbits attracting periodic orbits when β ∈
(σ ,τ).

The bifurcation which occurs when β = σ is somewhat reminiscent of that of a
Hopf bifurcation, except that one has immediately complicated dynamics right after
the bifurcation.
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Theorem 4 (The bifurcation at β = σ ). At the bifurcation β = σ the following
happens:

• As β ↑ σ , the Shapley orbit shrinks to E;
• When β = σ the Nash equilibrium E is a global attractor;
• When β > σ there exists infinitely many periodic orbits.
• When β ↓ σ all periodic orbits, including the anti-Shapley orbit and Γ shrink to

E.

At β = τ the anti-Shapley periodic orbit undergoes a non-generic periodic dou-
bling bifurcation: at β = τ there exists a whole continuum of periodic orbits.

1.7 Random walk behavior

The dynamics is indeed much more complicated than one normally encounters.

Theorem 5 (The Hamiltonian flow acts like a ‘random walk’: an example in
R4). There exists a periodic orbit Γ (described in Theorem 3) with the following
property: If one takes the first return map F to a section Z transversal to Γ (through
some point x ∈ Γ ), then for each k ∈ N

• there exists a sequence of periodic points xn ∈ Z of exactly period k of the first
return to Z accumulating to x;

• the first return map F to Z has infinite topological entropy.
• The dynamics acts as a random-walk. More precisely, there exist annuli An in Z

(around Γ ∩Z so that ∪An ∪{x} is a neighbourhood of x in Z) shrinking geo-
metrically to Γ ∩Z, so that for each sequence n(i)≥ 0 with |n(i+1)−n(i)| ≤ 1
there exists a point z ∈ Z so that F i(z) ∈ An(i) for all i≥ 0.

One obvious consequence of the random walking described in the theorem, is
the following unusual behavior. Take ε > 0 small and define the local and unstable
stable set corresponding to rate τ as

W s,τ
ε (Γ ) := {x;dist(φt(x),Γ )≤ ε for all t ≥ 0 and

lim
t→∞

1
|t|

log(dist(φt(x),Γ ))→ τ}

W u,τ
ε (Γ ) := {x;dist(φt(x),Γ )≤ ε for all t ≤ 0 and

lim
t→−∞

1
|t|

log(dist(φt(x),Γ ))→ τ}.

Then the above system has for each ε > 0 and each τ ≥ 0 close enough to zero, that
both W s,τ

ε and W s,τ
ε are non-empty in any neighbourhood of Γ .
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The reason why one has such strange dynamics is that the first return map P : Z→
Z near to Γ has a very special form. If we identify Z with R2 and Γ ∩Z with 0 ∈R2

(by projecting using the projection π introduced in Section 1.3, then P is essentially
a composition of maps of the form

P(x) = A◦R1/||x||(x).

Here ||(x1,x2)||= |x1|+ |x2| is the l1 norm on R2, Rt is a rotation through angle t
leaving the ‘circles’ in the l1 norm invariant (i.e. ||Rt(x)|| = ||x||) and A is a matrix

of the form A =
(

λ1 0
0 λ2

)
with 0 < λ1 < 1 < λ2.

1.8 Robustness

The above results do not require the matrices A and B to be of a special form, and
hold for games corresponding to an open set of matrices:

Theorem 6 (Robustness). For each β ∈ (0,1) with β 6= σ ,
there exists ε > 0 so that for all 3×3 matrices A and B with

||A−Aβ ||, ||B−Bβ ||< ε

the previous theorems also hold.

1.9 Connection with other results on non-smooth dynamical
systems

The transition map of (1.3) between hyperplanes are piecewise projective maps. In
fact, as we show in [vS09], taking the appropriate induced flow, we get that the
transition map is piecewise a translation. This connects this paper with an excit-
ing body of work on piecewise isometries (with papers by R. Adler, P.Ashwin, M.
Boshernitzan, A. Goetz, B. Kichens, T. Nowicki, A. Quas, C. Tresser and many
others). Most of these paper deal with piecewise continuous maps, while the maps
we encounter are continuous. Another loose connection of our work is to that of
the huge and very active field of translation flows (associated to interval exchange
transformations, translation surfaces and Teichmüller flows) (with recent papers by
A. Avila, Y. Cheung, A. Eskin, G. Forni, P. Hubert, H. Masur, C. McMulen, M.
Viana, J-C. Yoccoz, A. Zorich and many many others). But of course our flow does
not act on a surface with a hyperbolic metric, and so this connection seems also
rather remote. Finally, there is a growing literature on bifurcations on nonsmooth
dynamical systems, mainly motivated by mechanical systems with ‘dry friction’,
’sliding’, ‘impact’ and so on. As the number of workers in this field is enormous,
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we just refer to the recent survey of M. di Binardo et al [dBBC+08] and the mono-
graph by M. Kunze [Kun00]. Of course our paper is very much related to this work,
although the motivation and the result seem to be of a different nature from what
can be found in those papers.

1.10 Conclusion

We have seen that there is a lot of complicated behavior associated to fictitious play.
Of course an economist can say: people behave rationally and if they do not con-

verge then they will notice this. So periodic behaviour and chaos is a mathematical
curiosity. Perhaps this is not so clear though.

But this reminds us how chemists and other scientists have changed their ap-
proach. They used to be only interested in stationary processes. But now they realize
that non-stationary processes are often more efficient, and certainly that they occur
in a wide-range of important situations.

Moreover, perhaps it is to be expected that learning behaviour does not converge
to equilibria except in somewhat exceptional cases, such as zero-sum games?
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