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Abstract. In this note we will discuss the notion of robust chaos, and show that
(i) there are natural one-parameter families with robust chaos and (ii) hyperbolicity
is dense within generic one-parameter families (and so these families are not robustly
chaotic).

1. Statement of Results

In [BYG98] the notion of robust chaos was introduced. A family of maps {ft}t∈[0,1] is
said to have robust chaos (or to be robustly chaotic) if there exists no parameter t ∈ [0, 1]
for which the map ft has a periodic attractor. Examples of families with robust chaos
where given in that paper, but in these families the maps are non-smooth. The authors
conjectured that robust chaos does not occur within smooth families of intervals maps
ft : [0, 1] → [0, 1]. Contradicting this conjecture, in [AA01b], [AA01a], [Let01] [ES08]
and [Agu09], examples where given of families of smooth one-dimensional maps with
robust chaos. Since there is a huge literature on bifurcations of one-parameter families
of dynamical systems (starting perhaps with, for example, [NPT83]), we shall clarify the
situation in this note.

1.1. Theorem (Robust unimodal families are ‘constant’).
If {ft} is a smooth unimodal family with robust chaos, then all maps within this family
are topologically conjugate.

So the family of robustly chaotic unimodal maps given in the papers cited above are
all topologically conjugate to each other. That the family is robustly chaotic is therefore
not surprising! For multimodal families this need not be the case:

1.2. Theorem (A family of cubic maps with robust chaos).
There exists a one-parameter family {ft} of smooth multimodal interval maps which is
robustly chaotic.

On the other hand, the above example is special: generic one-parameter families are
never robustly chaotic. In fact, hyperbolicity is dense within such families:

1.3. Theorem (Hyperbolicity is dense within generic families, and so only exceptional
families are robustly chaotic).
Near any one-parameter family of smooth interval maps there exists a one-parameter
family {ft} of smooth intervals maps for which

• the number of critical points of each of the maps ft is bounded;
• the set of parameters t for which
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– all critical points of ft are in basins of periodic attractors (such a map ft
is called hyperbolic),

– critical points of ft are not eventually mapped onto other critical points
(such a map ft is said to satisfy the no-cycle condition),

is open and dense.

In particular, a generic family {ft}t∈[0,1] is not robustly chaotic. We should also point
out the following two facts , see [dMvS93]: maps ft which are hyperbolic and satisfy the
no-cycle condition, are (i) structurally stable and (ii) Lebesgue almost every x is in the
basin of a hyperbolic periodic attractor of ft.

2. The Proofs

Let us start with the proof of Theorem 1.1. Take a robustly chaotic family {ft} of
unimodal maps ft : [0, 1] → [0, 1]. The itinerary of the critical point ct of ft can only
change as t varies, if fnt (ct) = ct for some n. But since {ft} is robustly chaotic, this does
not happen. So ft has the same kneading invariant for each t ∈ [0, 1]. Since ft has no
periodic attractors at all, it follows from the non-existence of wandering intervals (see
Chapter IV of [dMvS93]) that ft′ and ft are topologically conjugate for all t, t′ ∈ [0, 1].

Let us now prove Theorem 1.2 and show that there exists a family of cubic maps with
robust chaos and which does not have constant kneading invariant. Consider polynomials
f : [0, 1]→ [0, 1] of degree three, so that f(0) = 0, f(1) = 1 (which implies that f(x) =
ax + bx2 + (1 − a − b)x3) and with two critical points 0 < c1 < c2 < 1 so that 0 <
c1 < f(c2) < f 3(c2) = f 4(c2) < c2 < f 2(c2) < f(c1) < 1. The set of such polynomials
corresponds to a real analytic curve in the (a, b) plane (defined by the condition that
f 4(c2) = f 3(c2)). Hence it contains a one-parameter family of maps {ft}t∈[0,1]. Since ft
is a polynomial with only real critical points, it has negative Schwarzian (see [dMvS93,
Exercise IV.1.7]). Hence by Singer’s result, each of its periodic attractors has a critical
point in its immediate basin. Since [f(c2), 1] is mapped into itself, and f(c1) ∈ [f(c2), 1]
any periodic attractor of ft would have to lie in [f(c2), 1]. Since c2 is the only critical
point in [f(c1), 1], it follows that if ft has a periodic attractor, then c2 would have to be
in its basin. But since f 4(c2) = f 3(c2) is a repelling fixed point, this does not happen.
It follows that these maps define a one-parameter family {ft} of smooth bimodal maps
which are robustly chaotic. Since ft(c1) can vary with t (to be anywhere within the
interval [ft)

2(c2), 1]), the kneading invariant of ft is not constant. Note that the example
is based on the map having a trapping region.

Let us finally prove Theorem 1.3. Take a one-parameter {ft}t∈[0,1] family of real
polynomial interval maps of degree d. By taking d large enough, we can take this family
arbitrarily close to the original family of interval maps (in any topology). Let P be the
space of all real polynomial interval maps of degree d. By [KSvS07b] (which is based
on [KSvS07a]) each map g ∈ P can be approximated by a map ĝ for which all critical
points are in basins of periodic attractors. Hence we can identify P with Rn, {ft} with
a curve c : [0, 1] → Rn and the set of maps in P for which all critical points are in
basins of periodic attractors with an open and dense subset X of Rn. Maps which fail
the no-cycle condition correspond to maps for which an iterate of a critical point lands
on another critical point; the corresponding parameters lie on analytic codimension-one
varieties. So we can and will assume that X corresponds to hyperbolic maps for which
the no-cycle conditions holds. Hence Theorem 1.3 follows from
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2.1. Lemma.
Let c : [0, 1]→ Rn be a curve, and let X be an open and dense subset of Rn. Then there
exist a set A ⊂ Rn which is dense (in fact of 2nd Baire category) so that for each α ∈ A,
Fα := {t ∈ [0, 1]; c(t) + α ∈ X} is open and dense.

Proof. Since the curve c is continuous and X is open, Fα is open for each α ∈ Rn. To
prove that Fα is dense, take δ > 0 and define the set Aδ of α ∈ Rn so that for each
t ∈ [0, 1] there exists t′ with |t− t′| < δ and so that t′ ∈ Fα.

Let us show that Aδ is dense. Assume by contradiction it is not dense. Then there
exists an open set U of α ∈ Rn for which there exists tα ∈ [0, 1] so that for each t ∈ [0, 1]
with |t− tα| < δ one has t /∈ Fα. So if we take n > 1/δ then for each α ∈ U there exists
k ∈ {0, 1, . . . , n} so that k/n /∈ Fα, i.e. c(k/n) + α /∈ X. Let Uk be the set of α ∈ U so
that c(k/n) +α /∈ X. Note that U0∪ · · · ∪Un = U . It follows that the closure of at least
one of the sets Uk0 contains an open set (otherwise U − U i is dense in U for each i, and
so

⋂
i=0,...,n(U − U i) = U −

⋃
i=0,...,n U i is dense in U , a contradiction). It follows that

there exists a subset U ′
k0
⊂ Uk0 so that U ′

k0
contains an open set. Since U ′

k0
⊂ Uk0 , for

each α ∈ U ′
k0

one has c(k0/n) + α /∈ X. But since X is open then for each α ∈ U ′
k0

one
has c(k0/n) + α /∈ X. But this contradicts the assumption that X is open and dense.
Thus we have shown that Aδ is dense for each δ > 0.

Since Aδ is also open, it follows by the Baire property that A := ∩δ>0Aδ is dense. By
construction, for each α ∈ A, we have that Fα is dense. �
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