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Abstract

We prove the topological (or combinatorial) rigidity property for
real polynomials with all critical points real and non-degenerate, which
completes the last step in solving the density of Axiom A conjecture
in real one-dimensional dynamics.
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1 Introduction

1.1 Statement of Results

It is a long standing open problem whether Axiom A (hyperbolic) maps are
dense in reasonable families of one-dimensional dynamical systems. In this
paper, we prove the following.

Density of Axiom A Theorem. Let f be a real polynomial of degree d ≥ 2.
Assume that all critical points of f are real and that f has a connected Julia
set. Then f can be approximated by hyperbolic real polynomials of degree d
with real critical points and connected Julia sets.

Here we use the topology given by convergence of coefficients. Recall that
a polynomial is called hyperbolic if all of its critical points are contained in the
basin of an attracting cycle or infinity. A polynomial with a connected Julia
set cannot have critical points contained in the attracting basin of infinity.

The quadratic case was solved earlier by Graczyk-Swiatek and Lyubich,
[10, 20] (see also [38]).

We have required that the polynomial f has a connected Julia set, because
such a map has a compact invariant interval in R, and thus is of particular
interest from the viewpoint of real one-dimensional dynamics. In fact, our
method shows that the theorem is still true without this assumption: given
any real polynomial f with all critical points real, we can approximate it
by hyperbolic real polynomials with the same degree and with real critical
points (which may have disconnected Julia sets).

In a sequel to this paper we shall show that Axiom A maps on the real line
are dense in the Ck topology (for k = 1, 2, . . . ,∞, ω), and discuss connections
with the Palis conjecture [34] and connections with previous results [12], [7],
[16], [37] and also with [2].

Our proof is through the quasi-symmetric rigidity approach suggested by
Sullivan [41].

For any positive integer d ≥ 2, let Fd denote the family of polynomials f
of degree d which satisfy the following properties:

• the coefficients of f are all real;

• f has only real critical points which are all non-degenerate;
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• f does not have any neutral periodic point;

• the Julia set of f is connected.

Rigidity Theorem. Let f and f̃ be two polynomials in Fd. If they are
topologically conjugate as dynamical systems on the real line R, then they are
quasiconformally conjugate as dynamical systems on the complex plane C.

In fact, if F ′
d is the family of real polynomials f of degree d with only real

critical points of even order, then the methods in this paper can be used to
prove the following:

Rigidity Theorem’. Let f and f̃ be two polynomials in F ′
d. If f and f̃ are

topologically conjugate as dynamical systems on the real line R, and corre-
sponding critical points have the same order and parabolic points correspond
to parabolic points, then f and f̃ are quasiconformally conjugate as dynamical
systems on the complex plane C.

For real polynomials f and f̃ in Fd which are topologically conjugate on
the real line, it is not difficult to see that they are combinatorially equivalent
to each other in the sense of Thurston, i.e., there exist two homeomorphisms
Hi : C → C which are homotopic rel PC(f), where PC(f) denote the union
of the forward orbit of all critical points of f , such that f̃ ◦ H1 = H0 ◦ f .
This observation reduces the Rigidity Theorem to the following.

Reduced Rigidity Theorem. Let f and f̃ be two polynomials in the class
Fd. Assume that f and f̃ are topologically conjugate on the real line via a
homeomorphism h : R → R. Then there is a quasisymmetric homeomor-
phism φ : R → R such that for any critical point c of f and any n ≥ 0, we
have

φ(fn(c)) = h(fn(c)).

Like the previous successful approach in the quadratic case, we exploit the
powerful tool, Yoccoz puzzle. Also we require a “complex bounds” theorem
to treat infinitely renormalizable maps. The main difference is as follows. In
the proof of [10, 20], a crucial point was that quadratic polynomials display
decay of geometry: the moduli of certain dynamically defined annuli grow at
least linearly fast, which is a special property of quadratic maps. The proof in
[38] does not use this property explicitly, but instead a combinatorial bound
was adopted, which is also not satisfied by higher degree polynomial. So
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all these proofs break down even for unimodal polynomials with degenerate
critical points. Our approach was inspired by a recent observation of Smania
[40], which was motivated by the works of Heinonen and Koskela [13], and
Kallunki and Koskela [15]. The key estimate (stated in the Key Lemma) is
the control of geometry for appropriately chosen puzzle pieces. For example,
if c is a non-periodic recurrent critical point of f with a minimal ω-limit
set, and if f is not renormalizable at c, our result shows that given any
Yoccoz puzzle piece P 3 c, there exist a constant δ > 0 and a sequence of
combinatorially defined puzzle pieces Qn, n = 1, 2, . . ., which contain c and
are pullbacks of P with the following properties:

• diam(Qn) → 0;

• Qn contains a Euclidean ball of radius δ · diam(Qn);

• there is a topological disk Q′
n ⊃ Qn such that Q′

n −Qn is disjoint from
the orbit of c and has modulus at least δ.

In [40], Smania proved that in the non-renormalizable unicritical case
this kind of control implies rigidity. To deduce rigidity from puzzle geom-
etry control, we are not going to use this result of Smania directly - even
in the non-renormalizable case - but instead we shall use a combination of
the well-known Spreading Principle (see Section 5.3) and the QC-Criterion
stated in Appendix 1. This Spreading Principle states that if we have a K-qc
homeomorphism h : P → P̃ between corresponding puzzle neighbourhoods
P, P̃ of the critical sets (of the two maps f, f̃) respecting the standard bound-
ary marking (i.e. agrees on the boundary of these puzzle pieces with what
is given by the Bötcher coordinates at infinity), then we can spread this to
the whole plane to get a K-qc partial conjugacy. Moreover, together with
the QC-Criterion this also gives a method of constructing such K-qc home-
omorphisms h, which relies on good control on the shape of puzzle pieces
Qi ⊂ P , Q̃i ⊂ P̃ with deeper depth. This different argument enables us to
treat infinitely renormalizable maps as well. In fact, in that case, we have
uniform geometric control for a terminating puzzle piece, which implies that
we have a partial conjugacy up to the first renormalization level with uni-
form regularity. Together with the “complex bounds” theorem proved in [37],
this implies rigidity for infinitely renormalizable maps, in a similar way as in
[10, 20].

In other words, everything boils down to proving the Key Lemma. It
is certainly not possible to obtain control on the shape of all critical puzzle
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pieces in the principal nest. For this reason we introduce a new nest which we
will call the enhanced nest. In this enhanced nest, bounded geometry and de-
cay in geometry alternate in a more regular way. The successor construction
we use, is more efficient than first return domains in transporting informa-
tion about geometry between different scales. In addition we use an ‘empty
space’ construction enabling us to control the nonlinearity of the system.

1.2 Organization of this work

The strategy of the proof is to reduce the proof in steps. In §2 we reduce the
Density of Axiom A to the Rigidity Theorem stated above. Then, in §3, we
reduce it to the Reduced Rigidity Theorem. This two sections can be read
independently from the rest of this paper, which is occupied by the proof of
the Reduced Rigidity Theorem.

The idea of the proof of the Reduced Rigidity Theorem is to reduce all
difficulties to the Key Lemma.

In §4, we give the precise statement of the Key Lemma on control of
puzzle geometry for a polynomial-like box mapping which naturally appears
as the first return map to a certain open set. In §5, we review a few facts on
Yoccoz puzzles. These facts will be necessary to derive our Reduced Rigidity
Theorem from the Key Lemma, which is done in the next two sections, §6
and §7.

The remaining sections are occupied by the proof of the Key Lemma. In
§8 we construct the enhanced nest, and show how to derive the Key Lemma
from lower and upper control of the geometry of the puzzle pieces in this nest.
In §9, we analyze the geometry of the real trace of the enhanced nest. These
analysis will be crucial in proving the lower and upper geometric control for
the puzzle pieces, which will be done in §10 and §11 respectively.

The statement and proof of a QC-Criterion are given in Appendix 1 and
some general facts about Poincaré discs are given in Appendix 2.

1.3 General terminologies and notations

Given a topological space X and a connected subset X0, we use CompX0
(X)

to denote the connected component of X which contains X0. Moreover, for
x ∈ X, Compx(X) = Comp{x}(X).

For a bounded open interval I = (a, b) ⊂ R, CI = C− (R− I). For any
θ ∈ (0, π) we use Dθ(I) to denote the set of points z ∈ CI such that the angle
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(measured in the range [0, π]) between the two segments [a, z] and [z, b] is
greater than θ.

We usually consider a real–symmetric proper map f : U → V , where each
of U and V is a disjoint union of finitely many simply connected domains in C,
and U ⊂ V . Here “real–symmetric” means that U and V are symmetric with
respect to the real axis, and that f commutes with the complex conjugate.
A point at which the first derivative f ′ vanishes is called a critical point. We
use Crit(f) to denote the set of critical points of f . We shall always assume
that fn(c) is well defined for all c ∈ Crit(f) and all n ≥ 0, and use PC(f)
to denote the union of the forward orbit of all critical points:

PC(f) =
⋃

c∈Crit(f)

⋃
n≥0

{fn(c)}.

As usual ω(x) is the omega-limit set of x.
An interval I is a properly periodic interval of f if there exists s ≥ 1

such that I, f(I), . . . , f s−1(I) have pairwise disjoint interiors and such that
f s(I) ⊂ I, f s(∂I) ⊂ ∂I. The integer s is the period of I. We say that f
is infinitely renormalizable at a point x ∈ U ∩ R if there exists a properly
periodic interval containing x with an arbitrarily large period.

A nice open set P (with respect to f) is a finite union of topological disks
in V such that for any z ∈ ∂P and any n ∈ N, fn(z) 6∈ P as long as fn(z) is
defined. The set P is strictly nice if we have fn(z) 6∈ P .

Given a nice open set P , let D(P ) = {z ∈ V : ∃k ≥ 1, fk(z) ∈ P}. The
first entry map

RP : D(P ) → P

is defined as z 7→ fk(z)(z), where k(z) is the minimal positive integer with
fk(z)(z) ∈ P . The restriction RP |P is called the first return map to P . The
first landing map

LP : D(P ) ∪ P → P

is defined as follows: for z ∈ P , LP (z) = z, and for z ∈ D(P ) \ P , LP (z) =
RP (z). A component of the domain of the first entry map to P is called
an entry domain. Similar terminologies apply to return, landing domain.
For x ∈ D(P ), Lx(P ) denotes the entry domain which contains x. For
x ∈ D(P ) ∪ P , L̂x(P ) denote the landing domain which contains x. So if
x ∈ D(P ) \ P , Lx(P ) = L̂x(P ). We also define inductively

Lk
x(P ) = Lx(Lk−1

x (P )).
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We shall also frequently consider a nice interval, which means an open
interval I ⊂ V ∩ R such that for any x ∈ ∂I and any n ≥ 1, fn(x) 6∈ I. The
terminologies strictly nice interval, the first entry (return, landing) map to I
as well as the notations Lx(I), L̂x(I) are defined in a similar way as above.

By a pullback of a topological disk P ⊂ V , we mean a component of
f−n(P ) for some n ≥ 1, and a pullback of an interval I ⊂ V ∩R will mean a
component of f−n(I) ∩ R (rather than f−n(I)) for some n ≥ 1.

See §4 for the definition of a polynomial-like box mapping, child, persis-
tently recurrent, a set with bounded geometry and related objects.

See §9 for the definition of a chain and its intersection multiplicity and
order. Also the notions of scaled neighbourhood and δ-well-inside are defined
in that section.

For definitions of quasi-symmetric (qs) and quasi-conformal (qc) maps,
see Ahlfors [1].

2 Density of Axiom A follows from the Rigid-

ity Theorem

One of the main reason for us to look for rigidity is that it implies density
of Axiom A among certain dynamical systems. Our rigidity theorem implies
the following, sometimes called the real Fatou conjecture.

Theorem 2.1. Let f be a real polynomial of degree d ≥ 2. Assume that all
critical points of f are real and that f has a connected Julia set. Then f can
be approximated by hyperbolic real polynomials with real critical points and
connected Julia sets.

The rigidity theorem implies the instability of non-hyperbolic maps. As
is well-known, in the unicritical case the above theorem then follows easily:
if a map f is not stable, then the critical point of some nearby maps g will
be periodic, and so g will be hyperbolic. In the multimodal case, the fact
that the kneading sequence of nearby maps is different from that of f , does
not directly imply that one can find hyperbolic maps close to f . The proof
in the multimodal case, given below, is therefore more indirect.

By means of conjugacy by a real affine map, we may assume that the
intersection of the filled Julia with R is equal to [0, 1]. Let Pold denote the
family of all complex polynomials g of degree d such that g(0) = f(0) and
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g(1) = f(1). Note that this family is parameterized by an open set in Cd−1.
Let PolRd denote the subfamily of Pold consisting of maps with real coefficients
and let X denote the subfamily of PolRd consisting of maps g which have only
real critical points and connected Julia set (so no escaping critical points).
Moreover, let Y denote the subset of X consisting of maps g satisfying the
following properties:

• every critical point of g is non-degenerate;

• every critical point and every critical value of g are contained in the
open interval (0, 1).

Note that Y is an open set in PolRd .

Lemma 2.1. X = Y .

Proof. This statement follows from Theorem 3.3 of [33]. In fact X is the
family of boundary anchored polynomial maps g : [0, 1] → [0, 1] with a
fixed degree and a specified shape which are determined by the degree and
the sign of the leading coefficient of f . Recall that given a real polynomial
g ∈ X, its critical value vector is the sequence (g(c1), g(c2), · · · , g(cm)), where
c1 ≤ c2 ≤ · · · ≤ cm are all critical points of g. That theorem claims that
the critical value vector determines the polynomial, and any vector v =
(v1, v2, . . . , vm) ∈ Rm such that these vi lie in the correct order is the critical
value vector of some map in X. In any small neighborhood of the critical
value vector of f , we can choose a vector v = (v1, v2, · · · , vm) so that v
satisfies the strict admissible condition, i.e., these vi are pairwise distinct.
The polynomial map corresponding to this v is contained in Y .

Therefore by a perturbation if necessary we may assume that f ∈ Y . For
every g ∈ Y , let τ(g) be the number of critical points which are contained in
the basin of a (hyperbolic) attracting cycle. Note the map τ : Y → N ∪ {0}
is lower semicontinuous. Let

Y ′ = {g ∈ Y : τ(g) is locally maximal at g}.

As τ is uniformly bounded from above, Y ′ is dense in Y . Moreover, from the
lower semicontinuity of τ , it is easy to see that τ is constant in a neighborhood
of any g ∈ Y ′. Thus Y ′ is open and dense in Y . Note also that every map
in Y ′ does not have a neutral cycle (this is well-known, because one can
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perturb the map so the neutral cycle becomes hyperbolic attracting, see for
example the proof of Theorem VI.1.2 in [8]). Doing a further perturbation if
necessary, let us assume that f ∈ Y ′. Let r = τ(f).

Let

QC(f) = {g ∈ Pold : g is quasiconformally conjugate to f}.

By Theorem 1 in [35], f does not support an invariant line field in its Julia set,
and thus by Theorem 6.9 of [29], the (complex) dimension of the Teichmüller
space of f is at most r. Consequently, QC(f) is covered by countably many
embedded complex submanifolds of Pold which have (complex) dimension at
most r, and hence

QCR(f) = QC(f) ∩ PolRd

is covered by countably many embedded real analytic submanifolds Mi of X
which have (real) dimension at most r. The same argument applies to any
map in Y ′.

Let c1 < c2 < · · · < cd−1 be the critical points of f , and let Λ denote
the set of i such that ci ∈ AB(f), where AB(f) is the union of basins of
attracting cycles. Let U be a small ball in Pold centered at f . (Recall
that Pold is canonically identified with an open set Cd−1.) Then there exist
holomorphic functions

ci : U → C, 1 ≤ i ≤ d− 1,

such that ci(g) are all the critical points of g. By shrinking U if necessary,
we may assume that for any g ∈ U ∩X, c1(g) < c2(g) < · · · < cd−1(g) and
for any g ∈ U and for any i ∈ Λ, ci(g) ∈ AB(g).

For a map g ∈ U , by a critical relation we mean a sequence (n, i, j) of
positive integers such that gn(ci(g)) = cj(g). Given any submanifold S of U
which contains g, we say that the critical relation is persistent within S if for
any h ∈ S, we have hn(ci(h)) = cj(h).

By a further perturbation if necessary, we may assume that there is no
critical relation (n, i, j) for f with i ∈ Λ. By shrinking U if necessary, this
statement remains true for any g ∈ U .

Completion of proof of Theorem 2.1. Let us keep the notation and assump-
tion on f as above. We are going to prove that U∩PolRd contains a hyperbolic
map. Arguing by contradiction, assume that every map g in U ∩ PolRd is not
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hyperbolic. Then r = τ(f) < d − 1. Since QCR(f) is covered by count-
ably many embedded submanifolds of X with dimension at most r, QC(f)
is nowhere dense in U ∩X = U ∩ Y ′.

For positive integers n, 1 ≤ i, j ≤ d− 1, let

Mn,i,j = {g ∈ U ∩X : gn(ci(g)) = cj(g)}.

Each of these Mn,i,j is a subvariety of U ∩X with dimension at most d− 2.
By assumption Mn,i,j = ∅ for i ∈ Λ. We claim that there exists some (n, i, j)
such that the dimension of Mn,i,j is d− 2.

To see this we use the following fact, whose proof is easy and left to the
reader.

Fact 2.1. Let m be a positive integer, and let B be a Euclidean ball in Rm.
Let Mi, i = 1, 2, . . . be embedded real analytic submanifolds of B such that
dim(Mi) ≤ m− 2. Then B −

⋃∞
i=1Mi is arc-connected.

If all the Mn,i,j’s have dimension less than d−2, then Ω = U∩X−
⋃
Mn,i,j

is arc-connected. By the standard kneading theory, [32, 25], it follows that
any g ∈ Ω is topologically conjugate to f on the real line. By our Rigidity
Theorem, g ∈ QC(f). As Ω is dense in U ∩ PolRd , this is a contradiction.

Therefore, we obtain a real analytic codimension-one embedded subman-
ifold V1 of U ∩X which has a persistent critical relation (n, i, j) with i 6∈ Λ.
Let us now apply the same arguments to the new (d− 2)-dimensional family
V1. More precisely, if r = d − 2, then this implies that every map in V1

is hyperbolic, which is a contradiction. So r < d − 2. Take any f1 ∈ V1.
As the Teichmüller space of f1 also has (complex) dimension r, QC(f1) ∩X
is nowhere dense in V1. Proceeding as above, we will find a real analytic
embedded submanifold V2 of V1 which has dimension d− 3 and has two dis-
tinct persistent critical relations. Repeating this argument we complete the
proof.

3 Derivation of the Rigidity Theorem from

the Reduced Rigidity Theorem

Definition 3.1. Let f and f̃ be two polynomials of degree d, d ≥ 2. We say
that they are Thurston combinatorially equivalent if there exist homeomor-
phisms Hi : C → C, i = 0, 1, such that f̃ ◦ H1 = H0 ◦ f , and H0 ∼ H1 rel
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PC(f) (i.e., H0 and H1 are homotopic rel PC(f)). The homeomorphism H0

is called a Thurston combinatorial equivalence between these two polynomi-
als, and H1 is called a lift of H0 (with respect to f and f̃).

Proposition 3.1. Let f and f̃ be real polynomials of degree d ≥ 2 with
only non-degenerate real critical points. Assume that they are topologically
conjugate on the real axis, and let h : R → R be a conjugacy. Let H : C → C
be a real–symmetric homeomorphism which coincides with h on PC(f). Then
H is a Thurston combinatorial equivalence between f and f̃ .

Remark 3.1. Let H,H ′ be two real–symmetric homeomorphisms of the
complex plane which coincide on a set E ⊂ R. Then it is clear that H ∼ H ′

rel E.

Proof. Without loss of generality, let us assume that h is orientation-preserving.
Let c1 < c2 < · · · < cd−1 and c̃1 < c̃2 < · · · < c̃d−1 be the critical points of
f and f̃ respectively. It suffices to prove that there exists a real–symmetric
homeomorphism H1 : C → C such that f̃ ◦H1 = H ◦ f and H1|R preserves
the orientation. Indeed, we will then have H1 = H on PC(f) automatically,
which implies that H1 ∼ H rel PC(f).

Let us add a circle X = {∞ei2πt : t ∈ R/Z} to the complex plane. Then
C ∪ X is naturally identified with the closed unit disk, and f extends to a
continuous map from C∪X to itself, which acts on X by the formula t 7→ dt
if the coefficient of the highest term of f is positive, or t 7→ dt+1/2 otherwise.

Let T = f−1(R), and T0 = T −Crit(f). Note that T0 is a (disconnected)
one-dimensional manifold.

Let xi = ∞e(d−i)π/d for each 0 ≤ i ≤ 2d−1. Since each component of C−T
is a univalent preimage of one of the half planes, it is obviously unbounded.
Therefore there cannot be a closed curve in T0, and thus each component of
T0 is diffeomorphic to the real line. The ends of these components can only
be a critical point or a point xi. By local behaviour of the critical points, for
each critical ci, there is a component γi of T0 which is contained in the upper
half plane and has ci as one end. Note that the other end of γi must be in
X, for otherwise, C− T would have a bounded component. As these curves
γi, 1 ≤ i ≤ d − 1 are pairwise disjoint, the end of γi at infinity must be xi.
We have proved that the intersection of T with the upper half plane consists
of d − 1 curves γi, which connects xi and ci. By symmetry, the intersection
of T with the lower half plane consists of d− 1 curves γi, d+ 1 ≤ i ≤ 2d− 1
which connects xi and c2d−i.
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Similarly, T̃ = f̃−1(R) has the same structure as T . Thus we can define a
real–symmetric homeomorphism H1 : T → T̃ as a lift of the map H : R → R.
Since each component of C−T is a univalent preimage of the upper or lower
half plane, H1 extends to a homeomorphism of C, as a lift of H : C → C.

Derivation of the Rigidity Theorem from the Reduced Rigidity Theorem. Let
f and f̃ be two real polynomials as in the Rigidity Theorem, and let h : R →
R be a homeomorphism such that f̃ ◦ h = h ◦ f . The Reduced Rigidity
Theorem implies that we can find a real–symmetric qc map Φ : C → C such
that Φ = h on PC(f), and such that f̃ ◦Φ = Φ ◦ f holds on a neighborhood
of infinity and also on a neighborhood of each periodic attractor of f . By
Proposition 3.1, Φ is again a Thurston combinatorial equivalence between f
and f̃ . Let Φ0 = Φ and let Φn, n ≥ 1, be the successive lifts. Then all these
homeomorphisms Φn are quasiconformal with the same maximal dilatation
as that of Φ. Note that Φn is eventually constant out of the Julia set J(f)
of f . Since J(f) is nowhere dense, Φn converges to a qc map which is a
conjugacy between f and f̃ .

Although our main interest is at real polynomials with real critical points,
we shall frequently need to consider a slightly larger class of maps: real
polynomials with real critical values. This is because compositions of maps in
Fd may have complex critical points but only real critical values. Proposition
3.1 is no longer true if we only require f to have real critical values, and this
is the reason why we need to assume that f have only real critical points
(rather than real critical values) in our main theorem. It is convenient to
introduce the following definition.

Definition 3.2. Let f and f̃ be polynomials with real coefficients such that
all critical values belong to the real line. We say that they are strongly
combinatorially equivalent if they are Thurston combinatorially equivalent,
and there exists a real–symmetric homeomorphism H : C → C such that
f̃ ◦H = H ◦ f on the real axis.

By Proposition 3.1, if f and f̃ have only real non-degenerate critical
points, and they are topologically conjugate on R, then they are strongly
combinatorially equivalent.
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4 Statement of the Key Lemma

In this section, we give the precise statement of our Key Lemma on puzzle
geometry. As we will need universal bounds to treat the infinitely renormal-
izable case, we shall not state this lemma for a general real polynomial which
does not have a satisfactory initial geometry. Instead, we shall first introduce
the notion of “polynomial-like box mappings”, and state the puzzle geometry
for this class of maps. These polynomial-like box mappings appear naturally
as first return maps to certain puzzle pieces, see for example Lemma 6.7.

Definition 4.1. Let b ≥ 1 and m ≥ 0 be integers. Let Vi, 0 ≤ i ≤ b − 1,
be topological disks with pairwise disjoint closures, and let Uj, 0 ≤ j ≤
m, be topological disks with pairwise disjoint closures which are compactly
contained in V0. We say that a holomorphic map

f :

(
m⋃

j=0

Uj

)
∪

(
b−1⋃
i=1

Vi

)
→

b−1⋃
i=0

Vi (1)

is a polynomial-like box mapping if the following hold:

• for each 1 ≤ j ≤ m, there exists 0 ≤ i = i(j) ≤ b − 1 such that
f : Uj → Vi is a conformal map;

• for U equal to U0, V1, . . . , Vb−1, there exists 0 ≤ i = i(U) ≤ b− 1 such
that f : U → Vi is a 2-to-1 branched covering.

The filled Julia set of f is defined to be

K(f) = {z ∈ Dom(f) : fn(z) ∈ Dom(f) for any n ∈ N};

and the Julia set is J(f) = ∂K(f).

In fact, everything we do will go through in the case where critical points
are degenerate of even order. If b = 1, then such a map is frequently called
generalized polynomial-like.

We say that f is real–symmetric if each of the topological disks Vi, Uj are
symmetric with respect to the real axis, and f commutes with complex con-
jugation map. Throughout this paper, we shall only consider real–symmetric
polynomial-like box mappings. Let Pb denote the set of real–symmetric
polynomial-like box mappings (1) satisfying the following properties:
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• the critical points of f are contained in the filled Julia set of f , and
they are all non-periodic recurrent with the same ω-limit set;

• each branch of f is contained in the Epstein class, that is, for any
interval J ⊂ Dom(f) ∩ R which does not contain a critical point of f ,
then f−1|f(J) extends to a univalent map defined on Cf(J).

Given a polynomial-like box mapping as above, a puzzle piece of depth
n is a component of f−n(V0). Let Pn(x) denote the puzzle piece of depth
n which contains x. A puzzle piece is called critical if it contains a critical
point. Given two critical puzzle pieces P,Q, we say that Q is a child of P if
it is a unimodal pullback of P , i.e., if there exists a positive integer n such
that fn : Q→ P is a double branched covering.

Definition 4.2. We say that f is persistently recurrent if each critical puzzle
piece has only finitely many children.

We say that f is renormalizable at a critical point c, if there is a puzzle
piece Pn(c) and a positive integer s such that f j(c) 6∈ Pn(c) for all 1 ≤ j ≤
s− 1 and f s(c) ∈ Pn(c), and the map f s : Pn+s(c) → Pn(c) is a polynomial-
like mapping (in the sense of Douady and Hubbard [9]) with a connected
Julia set. In other words, f is renormalizable at c if c returns to all puzzle
pieces Pn(c) and the return times are all the same for sufficiently large n. For
a map in Pb, since the critical points have all the same ω-limit set, the map
is renormalizable at one critical point if and only if it is renormalizable at
any critical point. Note that a renormalizable polynomial-like box mapping
is persistently recurrent.

Definition 4.3. A critical puzzle piece Pn(c) is called terminating if the
return time of c to Pm(c) is the same for each m ≥ n.

We say that f is τ -extendible if there are topological disks V ′
i ⊃ Vi,

0 ≤ i ≤ b− 1 with mod(V ′
0 − V0) ≥ τ such that the following hold:

1. for each 1 ≤ i ≤ b− 1, if 0 ≤ k ≤ b− 1 is so that f(Vi) = Vk, then f |Vi

extends to a holomorphic 2-to-1 branched covering from V ′
i to V ′

k ;

2. for each 0 ≤ j ≤ m, if k is such that f(Uj) = Vk, then there exists
a topological disk U ′

j ⊃ Uj, so that f |Uj extends to a holomorphic
map from U ′

j to V ′
k which is conformal if j 6= 0 and a 2-to-1 branched

covering if j = 0;
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3. moreover, U ′
j ⊂ V0, and (U ′

j − Uj) ∩ PC(f) = ∅.

We are most interested in real–symmetric polynomial-like box mappings
with further properties:

Dπ−σ(V0 ∩ R) ⊂ V0 ⊂ Dσ(V0 ∩ R), (2)

PC(f) ∩ V0 ⊂
1

1 + 2τ
V0 ∩ R, (3)

where σ ∈ (0, π/2). Let Pτ,σ
b denote the set of τ -extendible maps in Pb with

the properties (2) and (3).

Definition 4.4. We say that a topological disk Ω has ξ-bounded geometry if
it contains a Euclidean ball of radius ξ diam(Ω).

Key Lemma. (Puzzle Geometry Control) Let f ∈ Pτ,σ
b be a persistently

recurrent polynomial-like box mapping, and let c be a critical point of f .
Then there is a constant ξ = ξ(τ, σ, b) > 0 with the following properties.

1. Assume that f is non-renormalizable. Then for any ε > 0, there is a
puzzle piece Y which contains c and a topological disk Y ′ with V0 ⊃
Y ′ ⊃ Y such that

• diam(Y ) < ε;

• (Y ′ − Y ) ∩ PC(f) = ∅, and mod(Y ′ − Y ) ≥ ξ;

• Y has ξ-bounded geometry, i.e., Y ⊃ B(c, ξ diam(Y )).

2. Assume that f is renormalizable. Then there are terminating puzzle
pieces Y ′ ⊃ Y 3 c, such that Y ⊃ B(c, ξ diam(Y )) and mod(Y ′− Y ) ≥
ξ.

Furthermore, if f̃ ∈ Pτ,σ
b is a map which is strongly combinatorially equiva-

lent to f , then the geometric bounds also apply to the corresponding puzzle
pieces for f̃ .

Here, we say that f : U → V and f̃ : Ũ → Ṽ are strongly combinatorially
equivalent if there are real–symmetric homeomorphismsHi : V → Ṽ , i = 1, 2,
such that the following hold:

• f̃ ◦H1 = H0 ◦ f on U ;
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• H1 = H0 on V \ U ;

• H1 = H0 on V ∩ R.

Note that H1 ∼ H0 rel (V \ U) ∪ (V ∩ R). So by lift of homotopy, we can
find a sequence of real–symmetric homeomorphisms Hn : V → Ṽ , n ≥ 0,
such that f̃ ◦Hn+1 = Hn ◦ f , and Hn ∼ Hn+1 on f−n(V \ U). In particular,
given a puzzle piece P of depth m for f , P̃ := Hm(P ) = Hm+1(P ) = · · · is a
puzzle piece for f̃ , which is called the puzzle piece (for f̃) corresponding to
P .

5 Yoccoz puzzle

5.1 External angles

Let f be a polynomial with degree greater than 1. Assume that the filled
Julia set K(f) is connected. Then by Riemann mapping theorem, there is a
unique conformal map

B = Bf : C−K(f) → C− D

which is tangent to the identity at infinity. The B-preimage Rθ of a radical
line {reiθ : 1 < r < ∞} is called an external ray of angle θ, and the B
preimage of the round circle {|z| = R} with R > 1 is called an equipotential
curve. Recall that the Green function of f is defined as

G(z) = Gf (z) =


log |B(z)| if z ∈ C−K(f)

0 otherwise.

Proposition 5.1. Let f and f̃ be two polynomials of degree d ≥ 2 with
real coefficients and real critical values which are strongly combinatorially
equivalent and let H be a strong combinatorial equivalence between them.
Assume that neither of these polynomials has a neutral periodic point, and
assume that h = H|R preserves the orientation. Then for any preperiodic
point p ∈ J(f) ∩ R of f , the f -external ray of angle θ lands at p if and only
if the f̃ -external ray of angle θ lands at p̃ = H(p).

We first prove that at each periodic point p which is contained in the
interior of K(f) ∩ R, there are exactly two external rays landing at p.
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Lemma 5.1. Let f be a polynomial of degree ≥ 2. Assume that f has a
connected Julia set. For any repelling periodic point p, if γi, 1 ≤ i ≤ n are
the external rays landing at p, and V is a component of C− (

⋃n
i=1 γi)∪ {p},

then V intersects the orbit of some critical value.

Proof. It is well known that there exists a positive integer m such that
fm(γi) = γi for all i. See [30]. Thus f−m(V ) has a component U which
is contained in V and has p on its boundary. If V is disjoint from the orbits
of the critical values, then fm : U → V must be a conformal map, which
implies that U = V . Let g denote the inverse of fm|V . By the local dynamics
at p, for any z which is close to p, we have gk(z) → p as k → ∞. So p is
a Denjoy-Wolff point of g, that is, gk(z) → p holds for any z ∈ V . Since
V contains infinitely many points from the Julia set, we know that this is
impossible.

Applying this result to real polynomials, we have

Lemma 5.2. Let f be a real polynomial with all critical values real. Assume
that the Julia set is connected. Then for each repelling periodic point p of f ,

• if p 6∈ R, then there exists exactly one external ray landing at p;

• if p is contained in the interior of K(f) ∩ R, then there exists exactly
two external rays landing at p.

Proof. Let γi, 1 ≤ i ≤ n be the external rays landing at p. By the previous
lemma, we know that any component V of C −

⋃n
i=1 γi − {p} intersect the

orbit of a critical value. Since all critical values are on the real axis and since
f is real, the orbit of any critical value is on the real axis. Thus V intersects
the real axis. The statements follow.

Proof of Proposition 5.1. Let f , f̃ and H be as in Proposition 5.1. For any
repelling periodic point z ∈ int(K(f)∩R), let A(z) denote the angles of the f -
external rays landing at z, let γ+

z (γ−z , respectively) denote the f -external ray
in the upper (lower, respectively) which lands at p, and let γz = γ+

z ∪γ−z ∪{z}.
For z̃ = h(z), let Ã(z̃), γ̃+

z̃ , γ̃−z̃ , γ̃z̃ be the corresponding objects for f̃ .
For a region V bounded by f -external rays, let ang(V ) denote the length

of the set of angles of f -external rays which are contained in V . (We consider
this set of angles as a subset of R/Z, endowed with the standard Lebesgue
measure.) Note that if V ′ is a component of f−1(V ) then

deg(f)ang(V ′) = kang(V ),
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where k is the degree of the proper map f : V ′ → V , and deg(f) is the degree
of f : C → C. Similarly we define ˜ang(V ) for regions bounded by f̃ -external
rays.

Now let p be a repelling periodic point of f which is contained in the
interior of K(f) ∩R, and let P be the f -orbit of p. By possibly changing H
on C− R, we may assume that

• for any z ∈ P , H(γi
z) = γ̃i

z̃ and G̃(H(w)) = G(w) for any w ∈ γi
z,

where i ∈ {+,−}, and G and G̃ are the Green functions of f and f̃
respectively.

Let H0 = H, and for n ≥ 0, inductively define Hn+1 to be the lift of Hn (so
Hn+1|R = H|R; for the definition of a lift see Section 3). Note that H1 = H
on the set

X = (
⋃
z∈P

γz) ∪ R,

and thus H ∼ H1 rel X. Consequently, for each n ≥ 0, we have

Hn+1 ∼ Hn rel f−n(X).

Let s be the period of p. Then f 2s(γi
p) = γi

p for i ∈ {+,−}. Let U− (U+,
respectively) denote the component of C− γp which contains the left (right,
respectively) component of R− {p}. As we have noted, H2s = H on γp. Let
Vi, i = 1, . . . , N be the components of C − f−2s(γp) which are contained in
U+, and let Ṽi = H2s(Vi). Let ki denote the degree of the proper map f 2s|Vi.
Note that ki is also the degree of f̃ 2s|Ṽi, and that f 2s(Vi) = U+ if and only
f̃ 2s(Ṽi) = Ũ+. Let Λ− and Λ+ denote the set of i’s with f 2s(Vi) = U− and
f 2s(Vi) = U+ respectively. Note that

deg(f)ang(U+) =
N∑

i=1

deg(f)ang(Vi)

=
∑
i∈Λ−

kiang(U−) +
∑
i∈Λ+

kiang(U+)

=
∑
i∈Λ−

ki + (
∑
i∈Λ+

ki −
∑
i∈Λ−

ki)ang(U+),

where in the last equality, we used the relation ang(U−) + ang(U+) = 1.
Therefore,

ang(U+) =

∑
i∈Λ− ki

deg(f) +
∑

i∈Λ− ki −
∑

i∈Λ+ ki

.
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The same equality is true for ˜ang(Ũ+), and thus ang(U+) = ˜ang(Ũ+). There-
fore the f -external rays landing at p and f̃ -external rays landing at h(p) have
the same angles.

Now we see that we can choose the homeomorphism H so that it coincides
with B−1

f̃
◦Bf onX ′ = {G(z) ≥ 1}∪γ+

p ∪γ−p . ThenHn = B−1

f̃
◦Bf on f−n(X ′),

which implies the angles of the f -external rays landing at any preimage q of
p coincide with that of the f̃ -external rays landing at q̃ = h(q).

5.2 Yoccoz puzzle partition

Given a polynomial with a connected Julia set, Yoccoz introduced the power-
ful method of cutting the complex plane using external rays and equipotential
curves. We are going to review this concept in this section.

Let f be a polynomial with a connected Julia set. To define a Yoccoz
puzzle, we specify a forward invariant subset Z of the Julia set and a positive
number r. We require that the set Z satisfies the following properties:

1. for each z ∈ Z, there are at least two external rays landing at z;

2. Z ∩ PC(f) = ∅;

3. each periodic point in Z is repelling.

Let Γ0 be the union of the equipotential curve {G(z) = r}, the external rays
landing on Z and the set Z. We call a bounded component of C − Γ0 a
puzzle piece of depth 0 (with respect to (Z, r)). Similarly, for each n ∈ N, a
bounded component of C − f−n(Γ) is called a puzzle piece of depth n (with
respect to (Z, r)).

Let Yn denote the family of puzzle pieces of depth n, and let Y =
⋃∞

n=0 Yn.
A puzzle piece P is a nice open set in the sense that fk(∂P )∩P = ∅ for any
k ≥ 1. Any two puzzle pieces P,Q are either disjoint, or nested, i.e., one is
contained in the other.

Fact 5.1. If U ⊃ Crit(f) is a union of puzzle pieces, then

E(U) = {z ∈ K(f) : fn(z) 6∈ U for all n ∈ N}

is a nowhere dense compact set with zero measure.
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Proof. Since U is open, the set E(U) is certainly closed and thus compact.
To show the other statements, we may assume that all components of U
are puzzle pieces of the same depth. Using the “thickening” technique, one
shows that the set E(U) is expanding, i.e., there is a conformal metric ρ,
defined on a neighborhood of E(U) such that for some C > 0 and λ > 1,
‖Dfn(z)‖ρ ≥ Cλn holds for any z ∈ E(U) and n ∈ N. It follows that E(U)
is nowhere dense and has zero Lebesgue measure. For details, see [31].

Now let us consider two strongly combinatorially equivalent polynomials
f and f̃ which have real coefficients and real critical values and do not have
neutral periodic points. Let homeomorphism H : C → C be a strongly
combinatorial equivalence between f and f̃ . Without loss of generality, let
us assume that h = H|R is orientation-preserving.

Definition 5.1. A f -forward invariant set Z is called admissible (with respect
to f) if it is a finite set contained in the interior of K(f) ∩ R and disjoint
from PC(f).

Given an f -admissible set Z and any r > 0, let us construct a Yoccoz
puzzle Y for f . Note that Z̃ is an f̃ -admissible set, so we can construct a
Yoccoz puzzle Ỹ for the map f̃ using the set Z̃ = h(Z) and the same r.
Re-choosing H if necessary, we may assume that it coincides with B−1

f̃
◦ Bf

on {G(z) ≥ r} as well as on Γ0 − J(f). Let H0 = H, and for each n ≥ 1
inductively define Hn to be the lift of Hn−1 so that Hn = h on R. Set
X = Γ0 ∪ (K(f) ∩ R). Then Hn+1 ∼ Hn on f−n(X). In particular, for any
puzzle piece P ∈ Yn, Hn(P ) is a puzzle piece in Ỹn, and Hn = B−1

f̃
◦ Bf on

(∂P − J(f)). Let us denote P̃ = Hn(P ). Note that Hn+i(P ) = Hn(P ) = P̃
for any n, i ≥ 0.

Definition 5.2. Let P be a puzzle piece in Yn, and let P̃ be the corre-
sponding puzzle piece in Ỹn. We say that a homeomorphism φ : P → P̃
respects the standard boundary marking if φ extends continuously to ∂P , and
φ|∂P = Hn|∂P .

Lemma 5.3. For every puzzle piece P , there exists a qc map φ : P → P̃
which respects the standard boundary marking.

Proof. For each z ∈
⋃∞

n=0 f
−n(Z), let Rz be the union of the f -external rays

landing at z, and let R̃z̃ be the union of the f̃ -external rays landing at z̃. A
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neighborhood Ω of z is called f -transversal if it is a Jordan disk bounded by a
smooth curve which intersects each ray in Rz transversally at a single point,
and G(∂Ω∩Rz) consists of one point. An f̃ -transversal neighborhood of z̃ is
defined in an analogous way. Clearly, for any ε > 0 and any z ∈

⋃∞
n=0 f

−n(Z),

there exists an f -transversal (f̃ -transversal, respectively) neighborhood Ω of
z ( Ω̃ of z̃, respectively) which has diameter less than ε. Moreover for a
given ε, there exists η > 0 such that for any 0 < ρ < η we can find such
neighborhoods with the property that G(Ω ∩Rz) = G̃(Ω̃ ∩ R̃z̃) = ρ.

Claim. For any z ∈
⋃∞

n=0 f
−n(Z), there exists ε > 0 such that the following

holds. Let Ω be an f -transversal neighborhood of z which is contained in
B(z, ε), and let Ω̃ be an f̃ -transversal neighborhood of z̃ which is contained
in B(z̃, ε). Assume that G(∂Ω ∩Rz) = G̃(∂Ω̃ ∩ R̃z̃). Then there exists a qc
homeomorphism φ : Ω → Ω̃ such that

• B−1

f̃
◦Bf on Ω ∩Rz,

• φ : ∂Ω → ∂Ω̃ is a diffeomorphism.

First notice that we may assume that z is a periodic point of f , as z is
f -preperiodic and the orbit of z is disjoint from Crit(f). Let s be a positive
integer such that f s leaves each ray in Rz invariant. Since |(f s)′(z)| > 1, if ε
is sufficiently small, f s|B(z, ε) is a conformal map onto its image, which con-
tains B(z, ε) compactly. Similarly, this statement holds for the corresponding
objects with tilde. Let g denote the inverse of the map f s|B(z, ε), and let g̃
be defined in an analogous way. Then there exists a positive integer N such
that gN(Ω) ⊂⊂ Ω and g̃N(Ω̃) ⊂⊂ Ω̃. Let A = Ω−gN(Ω) and Ã = Ω̃− g̃N(Ω̃).
Note that gN(∂Ω) intersects each ray in Rz transversally at a single point,
and the analogy for the corresponding objects with tilde is also true. So we
can find a diffeomorphism φ0 : A→ Ã such that

• φ0 = B−1

f̃
◦Bf on A ∩Rz;

• φ0 ◦ g = g̃ ◦ φ0 on ∂Ω.

For any k ≥ 1, we inductively define a diffeomorphism φk : gkN(A) → g̃kN(Ã)
using the formula

φk ◦ gN = g̃N ◦ φk−1.

As φk = φk−1 on gkN(∂Ω) we can glue these diffeomorphisms together to get
a diffeomorphism

φ : Ω− {z} → Ω̃− {z},
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with φ = B−1

f̃
◦ Bf on Ω ∩ Rz. As quasiconformal maps these φk have the

same maximal dilatation, so φ is quasiconformal and it extends naturally to
a qc map from Ω to Ω̃. This proves the claim.

Now let P ∈ Y be a puzzle piece. Take a small constant ε > 0. For any
z ∈ ∂P ∩K(f), we choose an f -transversal neighborhood Ωz ⊂ B(z, ε) for z
and an f̃ -transversal neighborhood Ω̃ ⊂ B(z̃, ε) for z̃, so that G(Ω ∩ Rz) =
G̃(Ω̃∩Rz̃). Then by the claim above, we have a qc map φz : Ωz → Ω̃z̃ which
is smooth on ∂Ωz and coincides with B−1

f̃
◦ Bf on Ωz ∩ Rz. Since P − Ω

is a Jordan disk whose boundary consists of finitely many smooth curves
with transversal intersections, and so is P̃ − Ω̃, we can find a qc map ψ from
P − Ω to P̃ − Ω̃ so that ψ = φz on ∂Ωz for each z ∈ ∂P ∩ J(f) and so that
ψ = B−1

f̃
◦Bf on (P −Ω)∩Rz. Gluing these qc maps φz and ψ together, we

obtain a qc map φ : P → P̃ with standard boundary marking.

Remark 5.1. If the puzzle piece is symmetric with respect to R, then we
can choose the map φ : P → P̃ to be symmetric to R as well. See [1].

5.3 Spreading principle

The next proposition shows that we can spread a qc map between the critical
puzzle pieces with standard boundary making to the whole complex plane,
which is a key ingredient (although well-known to many people). For an
outline on how we shall use this proposition see below Proposition 6.1.

Spreading Principle. Let U ⊃ Crit(f) be a nice open set consisting of
puzzle pieces in Y. Let φ : U → Ũ be a K-qc map which respects the standard
boundary marking. Then there exists a K-qc map Φ : C → C such that the
following hold:

1. Φ = φ on U , and

2. for each z 6∈ U , we have

f̃ ◦ Φ(z) = Φ ◦ f(z),

3. ∂̄Φ = 0 on C − D(U), where D(U) denotes the domain of the first
landing map under f to U ;

4. for each puzzle piece P ∈ Y which is not contained in D(U), Φ(P ) = P̃
and Φ : P → P̃ respects the standard boundary marking.
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Proof. For each puzzle piece P , we choose an arbitrary qc map φP : P → P̃
with the standard boundary marking. Let K ′ ≥ K be an upper bound for
the dilatation of the qc maps φP , where P runs over all puzzle pieces of depth
0, and all critical puzzle pieces which are not contained in U .

For a puzzle piece P ∈ Yn, let k = k(P ) ≤ n be the minimal non-
negative integer such that fk(P ) is a critical puzzle piece or has depth 0,
and let τ(P ) = fk(P ). Then fk : P → τ(P ) is a conformal map, and so is

f̃k : P̃ → ˜τ(P ). Given a qc map q : τ(P ) → ˜τ(P ), we can define a qc map
p : P → P̃ by the formula f̃k ◦ p = q ◦ fk. Note that the maps p and q have
the same maximal dilatation, and that if q respects the standard boundary
marking, then so does p.

Let W0 be the domain bounded by the equipotential curves {G(z) = r}
which we used to construct the puzzle Y . Let Y0 be the union of all puzzle
pieces in Y0. For n ≥ 0, inductively define Yn+1 to be the subset of Yn

consisting of puzzle pieces P of depth n + 1 so that P is not contained in
D(U). Note that each puzzle piece in Yn−Yn+1 of depth n+1 is a component
of D(U).

We define Φ0 to be the qc map which coincides with B−1

f̃
◦Bf on C−W0,

and with φP for each component of Y0. For each n ≥ 0, assume that Φn is
defined, then we define Φn+1 so that

• Φn+1 = Φn on C− Yn,

• for each component P of Yn, Φn+1 = B−1

f̃
◦Bf on P −

⋃
Q∈Yn+1

Q, and

for each component Q ∈ Yn+1 which is contained in P , if Q 6⊂ Yn+1,
then Φn+1 is the pullback of φ, and otherwise it is the pullback of φτ(P ).

For each n ≥ 0, Φn is a K ′-qc map. Note that Φn is eventually constant on
C−

⋂
n Yn. Since

⋂
Yn = E(U) is a nowhere dense set, Φn converges to a qc

map Φ. The properties (1), (2) and (4) follow directly from the construction,
and (3) follows from the fact that E(U) has measure zero.

6 Reduction to the infinitely renormalizable

case

In this and the next section, we shall prove the Reduced Main Theorem by
assuming the Key Lemma. The idea is to construct K-qc maps between
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the corresponding critical puzzle pieces with standard boundary marking so
that we can apply the Spreading Principle from Section 5.3. To do this we
shall need control on the geometry of these puzzle pieces and apply the Key
Lemma.

Of course, the puzzle pieces around a renormalizable critical point need
not to have a uniformly bounded geometry since they converge to the small
Julia set. Infinitely renormalizable critical points are particularly problematic
since they are renormalizable with respect to any Yoccoz puzzle. We shall
leave this problem to the next section, and assume the following proposition
for the moment.

Proposition 6.1. Let f and f̃ be two polynomials in Fd, d ≥ 2, which are
topologically conjugate on R. Let c be a critical point of f at which f is
infinitely renormalizable and let c̃ be the corresponding critical point of f̃ .
Then there exists a quasisymmetric homeomorphism φ : R → R such that

φ(fn(c)) = f̃n(c̃)

for any n ≥ 0.

The goal of this section is to derive the Reduced Rigidity Theorem from
the Key Lemma and the above proposition.

Throughout this section, f and f̃ are polynomials in Fd, d ≥ 2, which
are topologically conjugate on the real line, and h : R → R is a topological
conjugacy which is quasisymmetric in each component of AB(f) ∩R, where
AB(f) denotes the union of basins of attracting cycles of f . Without loss of
generality, let us assume that h is monotone increasing.

We shall first construct an appropriate Yoccoz puzzle Y for f (and the
corresponding one Ỹ for f̃) so that every critical point which is renormaliz-
able with respect to this Yoccoz puzzle either has very tame behaviour or is
infinitely renormalizable. This is done in §6.1. This enables us to find qc stan-
dard correspondence between the corresponding puzzle pieces around (com-
binatorially) eventually-renormalizable critical points with bounded maximal
dilatation by applying Proposition 6.1. This is done in §6.2. In §6.3, we ana-
lyze the geometry of puzzle pieces around all other critical points. We show
that we can find an arbitrarily small combinatorially defined puzzle neigh-
borhood W of these critical points with uniformly bounded geometry such
that the first entry map to W has good extendibility. To deal with persis-
tently recurrent critical points, we shall assume the Key Lemma. Finally, in
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§6.4, we show how the Reduced Rigidity Theorem follows from the puzzle
geometry control by applying the Spreading Principle from Section 5.3 and
the QC-Criterion from Appendix 1.

6.1 A real partition

As we have seen, the construction of a Yoccoz puzzle involves the choice
of a finite forward invariant set Z. In this subsection, we shall specify our
choice of this set. Recall that a f -forward invariant set Z is called admissible
(with respect to f) if it is a finite set contained in the interior of K(f) ∩ R
and disjoint from PC(f). As there are exactly two external rays which are
symmetric with respect to R landing at z, a Yoccoz puzzle for f can be
constructed using this set Z and r = 1.

Definition 6.1. Let c be a critical point of f and let Z be an admissible set
for f . For every n ≥ 0, let QZ

n (c) denote the component of R−f−n(Z) which
contains c. We say that f is Z-recurrent at c if for any n ≥ 0, there exists
some k ≥ 1 such that fk(c) ∈ QZ

n (c). We say that f is Z-renormalizable
at c, or c is Z-renormalizable if there exists a positive integer s, such that
f s(c) ∈ QZ

n (c) for any n ≥ 0, and the minimal positive integer s with this
property is called the Z-renormalization period of c.

For a Z-renormalizable critical point c, we define

AZ(c) =
∞⋂

n=0

s−1⋃
i=0

QZ
n (f i(c)) ∩ Crit(f),

where s stands for the Z-renormalization period of c. Note that any critical
point c′ ∈ AZ(c) is also Z-renormalizable with period s, and that AZ(c) =
AZ(c′).

Fact 6.1. Let Z be an admissible set. Then for each c ∈ Crit(f), if f is
Z-recurrent but not Z-renormalizable at c, then |QZ

n (c)| → 0 as n→∞.

Proof. Let In = QZ
n (c), and let sn be the return time of c to In. Then sn

is defined for every n ≥ 0 and sn → ∞ as n → ∞. If |In| does not tend
to zero as n tends to infinity, then there is a one-side neighborhood J of c
which is contained in

⋂
In. Note that {f i(J)}∞i=0 are pairwise disjoint since

so are f i(In), 0 ≤ i ≤ sn − 1 for every n ≥ 0. Since f does not have a
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wandering interval, it follows that c is contained in the attracting basin of
an attracting cycle O. As c enters

⋂
In infinitely many times, the periodic

orbit O intersects
⋂
In, which implies that the return time of c to In are the

same for all sufficiently large n, a contradiction.

Let Critt(f) denote the set of critical points c which are contained in the
attracting basin of f or have a finite orbit. A polynomial f is called trivial
if Critt(f) = Crit(f). In the following we shall assume that f is non-trivial,
because otherwise the Reduced Rigidity Theorem is obvious.

Lemma 6.1. Assume that f is non-trivial. Then there exists an admissible
set Z such that if c is a Z-recurrent critical point, then either of the following
holds:

1. c ∈ Critt(f), f is Z-renormalizable at c, and AZ(c) ⊂ Critt(f);

2. f is recurrent and not Z-renormalizable at c, and |QZ
n (c)| → 0 as n→

∞;

3. f is infinitely renormalizable at c, and AZ(c) = ω(c) ∩ Crit(f).

Moreover, in the second case, ∂QZ
0 (c) ∩ Per(f) = ∅.

Proof. First of all, since f is non-trivial, it has infinitely many periodic points,
and thus we have a repelling periodic orbit X0 which is admissible. For
any c ∈ Crit(f) − Critt(f) such that f is renormalizable but not infinitely
renormalizable at c, let J = Jc be the smallest properly periodic interval
which contains c, and let s be the period of J . Since f s|J has a critical point
c which has an infinite forward orbit and is not contained in the attracting
basin of a periodic attractor, f s|J has infinitely many periodic points. Thus,
we can find a repelling periodic orbitX1(c) which is admissible with respect to
f and intersects J . Let X1 be the union of these X1(c)’s and let X = X0∪X1.
By logic, if f is X-renormalizable at c, then either c ∈ Critt(f) or f is
infinitely renormalizable. Note that the last statement remains true if we
replace X by any larger admissible set of f . By Fact 6.1, if f is X-recurrent
but not X-renormalizable at c, we have |QX

n (c)| → 0 as n→∞.
Let us now consider a critical point c at which f is infinitely renormaliz-

able. It is well known that c is approximated by periodic points of f from
both sides. Thus for any ε > 0, we can find an admissible periodic orbits Yc

such that |QYc
0 (c)| < ε. By the no wandering interval theorem, for any δ > 0,

27



there exists ε > 0 such that the length of any pullback of (c − ε, c + ε) is
less than δ. As every point in AYc(c) is contained in a pullback of QYc

0 (c), it
follows that AYc(c) ⊂ ω(c) provided that we have chosen ε > 0 sufficiently
small. Let Y be the union of such Yc’s. Then for every critical point c at
which f is infinitely renormalizable, we have AY (c) ⊂ AYc(c) ⊂ ω(c).

Now let Z = X ∪Y . Then for every Z-recurrent critical point c, either of
the three possibilities listed in the lemma happens. For the last statement to
hold, we simply replace Z with f−n(Z)∩R for an appropriately large n.

Let us fix an admissible set Z as above, and construct Yoccoz puzzle Y ,
Ỹ for f and f̃ , using Z and Z̃ respectively. For any point x and any integer
n ≥ 0, we use Pn(x) to denote the puzzle piece in Yn which contains x if
there is such one. The notation P̃n(x) is defined in analogous way. Note that
for any x ∈ R−

⋃∞
n=0 f

−n(Z), and any n ≥ 0, the real trace of Pn(x) equals
to QZ

n (x). We shall also fix a sequence of combinatorial equivalences Hn as
in the previous section.

Let Critrn(f) denote the set of Z-renormalizable critical points of f , and
Criter(f) the set of post Z-renormalizable critical points, i.e., critical points
c for which there exists an integer k ≥ 0 and a critical point c′ ∈ Critrn(f)
such that fk(c) ∈

⋂
n Pn(c′). So Criter(f) ⊃ Critrn(f). Similarly we define

Critrn(f̃) and Criter(f̃).

6.2 Correspondence between puzzle pieces containing
post-renormalizable critical points

Lemma 6.2. There exists a constant K > 1 such that for each c ∈ Criter(f)
and any n ≥ 0, there exists a real–symmetric K-qc map φ : Pn(c) → P̃n(c̃)
which respects the standard boundary marking, and matches h on

⋂
n Pn(c)∩

R.

Proof. It suffices to prove the lemma in the case that f is Z-renormalizable
at c. Let s be the minimal positive integer such that f s(c) ∈ Pn(c) for any
n ≥ 0. For 0 ≤ i ≤ s, let Ii =

⋂∞
n=0 Pn(f i(c)) ∩ R. Then {Ii}s

i=0 is a cycle of
properly periodic intervals. Let N be a sufficiently large positive integer such
that PN(f i(c))−Ii does not contain any critical point for every 0 ≤ i ≤ s−1.
Let Ui = PN+s−i(f

i(c)) and let

F :
s−1⋃
i=0

Ui →
s⋃

i=1

Ui
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be the restriction of f . Let F̃ be the corresponding map for f̃ .
Claim. There exists a real–symmetric qc map

Φ :
s⋃

i=0

Ui →
s⋃

i=0

Ũi

which is a conjugacy between F and F̃ such that

• Φ(∂Ui) = HN+s|∂Ui for every 0 ≤ i ≤ s;

• Φ = h on
⋃s−1

i=0 Ii.

Let us prove the claim. By a combinatorial equivalence between F and
F̃ we mean a homeomorphism ϕ0 :

⋃s
i=0 Ui →

⋃s
i=0 Ũi such that there exists

a homeomorphism ϕ1 :
⋃s

i=0 Ui →
⋃s

i=0 Ũi with the following properties:

• F̃ ◦ ϕ1 = ϕ0 ◦ F holds on
⋃s−1

i=0 Ui;

• ϕ0 = ϕ1 on PC(F ) ∪ (Us − U0).

Note that HN+s is a combinatorial equivalence between F and F̃ .
Let J ⊂ R be a small neighborhood of the periodic attractors of F . In the

following we are going to find a real–symmetric qc combinatorial equivalence
Φ0 between F and F̃ such that Φ0 coincides with HN+s on

⋃s
i=0 ∂Ui and

with h on J . Once we find this map Φ0, the desired qc conjugacy Φ can be
constructed by a similar argument as what we used to derive the Rigidity
Theorem from the Reduced Rigidity Theorem. The details are left to the
reader.

Let us prove the existence of Φ0. To this end, we first apply Lemma 5.3
and the Spreading Principle from Section 5.3 to find a real–symmetric qc map
Ψ : C → C so that for every 0 ≤ i ≤ s, Ψ(Ui) = Ũi and Ψ|∂Ui = HN+s|∂Ui.
More precisely, let U to be the union of critical puzzle pieces of f with depth
N+s. By Lemma 5.3, we can find a real–symmetric qc map ψ : U → Ũ which
respects the standard boundary marking for each component of U . Applying
the Spreading Principle from Section 5.3 we find the map Ψ. Next we notice
that for each 0 ≤ i ≤ s−1, there is a qs map φi : Ii → Ĩi which coincides with
h on Ii∩PC(F ) as well as J . Indeed, if c ∈ Critt(f), then every critical point
of F either is contained in the attracting basin of a periodic attractor or has
a finite forward orbit, and thus such a φi obviously exists; if f is infinitely
renormalizable at c, then this is guaranteed by Proposition 6.1. Finally note

29



that PC(F )∩Ui is compactly contained in Ui, 0 ≤ i ≤ s−1, and thus we can
find a real–symmetric qc homeomorphism from

⋃s
i=0 Ui onto

⋃s
i=0 Ũi which

coincides with Ψ on
⋃s

i=0 ∂Ui, and with φi for every 0 ≤ i ≤ s− 1. This map
is the desired Φ0. The proof of the claim is completed.

Let K0 be the maximal dilatation of Φ. Then for any k ≥ 0, Φ provides a
real–symmetric qc homeomorphism from PN+ks(c) onto P̃N+ks(c̃) respecting
the standard boundary marking. Changing N to be N+j, j = 1, 2, . . . , s−1,
and repeating the above argument, we complete the proof of this lemma.

6.3 Geometry of the puzzle pieces around other criti-
cal points

Definition 6.2. Let A be a subset of Crit(f), and let V be a nice open
set which contains A. We say that V is a puzzle neighborhood of A if each
component of V is a puzzle piece intersecting A.

Let δ > 0 and N ∈ N. Let V ′ ⊃ V be an open set consisting of pairwise
disjoint topological disks and let B be any subset of Crit(f). For every a ∈ A,
Let Va and V ′

a denote the components of V and V ′ containing a respectively.
We say that the first landing map R (under f) to V is N-extendible to V ′

with respect to B if the following holds: if f s : U → Va is a branch of the first
landing map R, and if U ′ = CompU(f−s(V ′

a)), then

#{0 ≤ j ≤ s− 1 :
(
f j(U ′)− f j(U)

)
∩B 6= ∅} ≤ N.

We say that the first landing map R is (δ,N)-extendible with respect to B if
there exists a topological disk V ′

a ⊃ Va for every a ∈ A such that mod(V ′
a −

Va) ≥ δ and such that R is N -extendible to
⋃

a V
′
a with respect to B.

Recall that a Jordan disk Ω in C has η-bounded geometry if it contains
a Euclidean ball of radius η diam(Ω). The goal of this subsection is to prove
the following.

Proposition 6.2. There exist a positive constant δ and a positive integer N
such that the following holds. For every ε > 0, there is a puzzle neighborhood
W of Crit(f) \ Criter(f) with the following properties:

1. every component of W has diameter < ε;

2. every component of W has δ-bounded geometry;
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3. the first landing map under f to W is (δ,N)-extendible with respect to
Crit(f) \ Criter(f).

Moreover, these statements remain true if we replace the objects for f with
the corresponding ones for f̃ .

Before we prove this proposition let us state the following consequence
which will be convenient for us.

Corollary 6.3. For any integer n ≥ 0 there exists a puzzle neighborhood
W of Crit(f) \ Criter(f) such that for every landing domain U to W , the
following hold.

• both of U and Ũ have η-bounded geometry;

• U is contained in a puzzle piece P ∈ Yn, and moreover,

mod(P − U) ≥ η, mod(P̃ − Ũ) ≥ η,

where η > 0 is a constant independent of n.

Proof. First note that there exists an integer n0 such that for any critical
point c ∈ Crit(f) \ Criter(f) and c′ ∈ Criter(f), and for any k ≥ 0, we have
fk(c′) 6∈ Pn0(c). We may assume that n ≥ n0.

Let W be a puzzle neighborhood of Crit(f) \ Criter(f) with properties
specified in the previous proposition such that for every c ∈ Crit(f)\Criter(f)
we have mod(Pn(c)−Wc) ≥ 1 and mod(P̃n(c̃)− W̃c̃) ≥ 1, where Wc (respec-
tively W̃c̃) is the component of W (respectively W̃ ) which contains c (respec-
tively c̃). Then for every c ∈ Crit(f) \ Criter(f), we have a topological disk
W ′

c with Wc ⊂ W ′
c ⊂ Pn(c), such that mod(W ′

c −Wc) ≥ δ′ and such that the
first landing map to W under f is N -extendible to W ′ =

⋃
cW

′
c with respect

to Crit(f)\Criter(f). As the forward orbits of critical points in Criter(f) are
disjoint from W ′, the first landing map to W is 0-extendible with respect to
Criter(f).

Now let U be a landing domain to W and let f s : U → Wc be the
first landing map to W . Let U ′ = CompU(f−sW ′

c). Then f s : U ′ → W ′
c

has a uniformly bounded degree. Thus U has a bounded geometry, and
mod(U ′ − U) is bounded away from zero. As W ′

c ⊂ Pn(c), U ′ is contained
in a puzzle piece P ∈ Yn. This proves the statements about the landing
domains to W . The proof for the objects marked with tilde is similar.
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Here we use the following fact which will be used repeatedly throughout
the paper.

Fact 6.2. Let φ : U ′ → V ′ be a proper map between topological discs of degree
N . Let V ⊂ V ′ be a topological disc such that mod(V ′−V ) ≥ η and let U be
a component of φ−1(V ). Then mod(U ′ − U) ≥ η/N and if V has δ–bounded
geometry then U has δ′(δ, η,N)–bounded geometry.

The rest of this subsection will be occupied by the proof of Proposition
6.2. To prove this proposition, we shall first introduce a partial order and an
equivalence relation on the critical set Crit(f) (and also Crit(f̃)). Then we
construct an arbitrarily small puzzle neighborhood of every equivalence class
with bounded geometry and good extendibility. Finally we show how to get
a puzzle neighborhood of the whole set Crit(f) \ Criter(f).

Let us begin with two preparatory lemmas.

Lemma 6.3. Let A be a subset of Crit(f), and let V ′ ⊃ V be two puzzle
neighborhoods of A. For each a ∈ A, let Va denote the component of V which
contains a, and let V ′

a denote that of V ′. Assume that

fk(∂Va) ∩ V ′
a = ∅ for all k ≥ 1. (4)

Under these circumstances, if f s : U → Va is a branch of the first landing
map to V , then for every c ∈ A, we have

#{0 ≤ i ≤ s− 1 : c ∈ Compf i(U)(f
−(s−i)(V ′

a))} ≤ 1.

Proof. Let U ′ = CompU(f−s(V ′
a)). For every 0 ≤ i ≤ s, let U ′

i = f i(U ′).
Arguing by contradiction, assume that there exist 0 ≤ i1 < i2 < s such that
c ∈ U ′

ij
, j = 1, 2. Then U ′

i2
is contained in the domain of the first entry

map to V ′
a, and U ′

i1
is contained in the domain of the first entry map to U ′

i2
.

Since V ′ is a nice open set, U ′
i2
⊂ V ′

c . From (4), it follows that U ′
i1
⊂ Vc. In

particular, f i1(U) ⊂ Vc, which contradicts the hypothesis that f s : U → Va

is a branch of the first landing map to V .

Lemma 6.4. Let c ∈ Crit(f) \ Criter(f). Assume that for some constant
η > 0, there exists an arbitrarily large positive integer n such that Pn(c) has
η-bounded geometry. Then

diam(Pn(c)) → 0 as n→∞.
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Proof. Arguing by contradiction, assume that diam(Pn(c)) is bounded away
from zero. Then we will find a Euclidean ball B(z, ε) which is contained in
Pn(c) for all n ≥ 0. As

fn(B(z, ε)) ⊂ fn(Pn(c)) = P0(f
n(c)) ⊂ {G(z) ≤ 1},

B(z, ε) is contained in the interior of the filled Julia set, and hence it is
contained in the attracting basin of a periodic attractor. It follows that
c ∈ Criter(f), a contradiction.

Now let us define a partial order <Z on Crit(f) as follows: for any c, c′ ∈
Crit(f), c ≤Z c′ if c = c′ or the forward orbit of f(c′) intersects the puzzle
piece Pn(c) for all n ≥ 0. This partial order induces an equivalence relation
∼Z on Crit(f) in the natural way: c ∼Z c′ if c ≤Z c′ and vice versa. For
every c ∈ Crit(f), let [c]Z denote the equivalence class of c, and let

Back(c) = {c′ ∈ Crit(f) : c ≤Z c
′}; (5)

Forw(c) = {c′ ∈ Crit(f) : c′ ≤Z c}. (6)

If c, c′ /∈ Criter(f) then c ≤Z c
′ iff c ∈ ω(c′) or c′ = c. Similarly, we define the

corresponding objects for f̃ . Note that c ≤Z c
′ if and only if c̃ ≤Z c̃

′.

Definition 6.3. Let c be a Z-recurrent critical point of f . Let n ≥ 0 and
k ∈ N, and let c′ be a critical point such that c′ ∼Z c. We say that Pn+k(c

′) is
a child of Pn(c) if fk(c′) ∈ Pn(c) and fk−1 : Pn+k−1(c

′) → Pn(c) is a conformal
map. We say that f is Z-persistently recurrent at c if for any n ≥ 0 and any
c′ ∼Z c, Pn(c′) has only finitely many children. Otherwise, we say that f is
Z-reluctantly recurrent at c.

A Z-persistently recurrent critical c is minimal in the order ≤Z , i.e., if
c′ ≤Z c, then c ∼Z c′. Note also that a Z-renormalizable critical point is
Z-persistently recurrent.

Lemma 6.5. Let c be a Z-reluctantly recurrent critical point of f . Then
there exists a constant C, and for every n ≥ 0, there exists an arbitrarily
large positive integer m such that fm(c) ∈ Pn(c) and such that the degree of
the map fm : Pm+n(c) → Pn(c) is bounded from above by C.

Proof. By definition, there exist n0 ≥ 0 and c′ ∼Z c such that Pn0(c
′) has

infinitely many children. So for any k0 ≥ 0, there exists a positive integer
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k ≥ k0 and a critical point c′′ ∼Z c for which fk(c′′) ∈ Pn0(c
′) and the degree

of the map fk : Pn0+k(c
′′) → Pn0(c

′) is bounded from above by deg(f) = d.
Note that c is contained in the domain of the first landing map to Pn0+k(c

′′),
and let r be the landing time of c to Pn0+k(c

′′). As a first landing map,
f r : Pn0+k+r(c) → Pn0+k(c

′′) has a uniformly bounded degree. Assume for
the moment n ≥ n0. Let s be the landing time of fk+r(c) to Pn(c). Again
the degree of the map f s : Pn+s(f

k+r(c)) → Pn(c) is uniformly bounded from
above. As Pn+s(f

k+r(c)) ⊂ Pn0(c
′), the proper map fk+r+s : Pn+k+r+s(c) →

Pn(c) can be written as the composition of three proper maps with uniformly
bounded degree, and thus its degree is uniformly bounded from above. This
proves the lemma in the case n ≥ n0. For the case n < n0, we observe that
there exists n′ > n0 such that fn′−n(c) ∈ Pn(c).

Lemma 6.6. (Puzzle geometry in the reluctantly recurrent case) Let c be a
Z-reluctantly recurrent critical point. Then there exists a positive constant η
with the following properties. For any ε > 0, there are puzzle neighborhoods
W ′ ⊃ W of Back(c) such that

1. each component of W has η-bounded geometry;

2. for each p ∈ Back(c), diam(W ′
p) ≤ ε and mod (W ′

p −Wp) ≥ η; and

3. fk(∂Wp) ∩W ′
p = ∅ for each p ∈ Back(c) and each k ≥ 1,

where Wp and W ′
p denote the component of W and W ′ containing p respec-

tively. Moreover, these statements remain true if we replace f with f̃ , and
replace p, c,W,W ′ with the corresponding objects for f̃ .

Proof. The last assertion will follow from the proof. So let us only prove the
assertion for objects without tilde.

Let n0 ∈ N be a large positive integer such that for every p ∈ Crit(f) \
Back(c), the orbit of p is disjoint from Pn0(c). Let Vc 3 c be a puzzle piece
of depth ≥ n0, and let U be a family of (countably many) pairwise disjoint
puzzle pieces U which are compactly contained in V so that

• {U : U ∈ U} is a covering of the domain of the first return map to Vc,
and

• fk(∂U) ∩ Vc = ∅ for all k ≥ 1.
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Such a pair will be called good. For any δ > 0, a good pair (Vc,U) will be
called δ-good if for each U ∈ U , U has δ-bounded geometry and mod(Vc−U) ≥
δ.

Let (Vc,U) be a good pair. For each p ∈ Back(c) \ {c}, let Vp = Lp(Vc)
and let tp ∈ N be the entry time of Vp to Vc. Then f tp(p) is contained in a
puzzle piece U which belongs to U , and let Wp = Compp(f

−tp(U)). Let Wc

denote the puzzle piece in U which contains c. Let us consider the first entry
map R to W :=

⋃
p∈Back(c)Wp. Let f s : P → Wp be a branch of R, and let

P ′ = CompP (f−sVp). We claim that

1. the proper map f s : P ′ → Vp has a uniformly bounded degree;

2. if P ⊂ Wc, then P ′ ⊂ Wc.

To prove the former statement, we first notice that every critical point in⋃s−1
i=0 f

i(P ′) must be contained in Back(c), by the choice of n0. As fk(∂Wp)∩
Vp = ∅ for every p ∈ Back(c) and k ∈ N, it follows from Lemma 6.3 that
every p ∈ Back(c) can only be contained in one of these topological disks
f i(P ′), 1 ≤ i ≤ s − 1. Thus the degree of f s|P ′ is uniformly bounded from
above. To show the latter statement, note that P ′ is contained in the domain
of the first entry map to Vc, while Wc contains all return domains to Vc which
intersect it. The proof of the claim is completed.

In particular, if (Vc,U) is a δ-good pair, then for some δ′ > 0 we have

• Wp has δ′-bounded geometry;

• mod(Vp −Wp) ≥ δ′;

• fk(∂Wp) ∩ Vp = ∅ for all k ≥ 1.

So it suffices to prove that for some δ > 0 and any n ∈ N, we can find
a δ-good pair (Vc,U) so that the depth of Vc is larger than n. Note that by
Lemma 6.4, the existence of such pairs implies that the diameter of Pn(c)
tends to zero as n→∞.

To this end, we first notice that it suffices to find one pair. Indeed, if
(Vc,U) is a δ-good pair, and if V̂c is a pullback of Vc with order N which
contains c, then the pair (V̂c, Û) is a δ′-good pair, where Û denotes the cor-
responding pullback of U , and δ′ > 0 is a constant depending only on δ and
N . As f is reluctantly recurrent at c, we have infinitely many pullbacks of
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Vc containing c and with uniformly bounded order, and thus the statement
follows.

It remains to prove the existence of such a pair. As we are assuming
that P0(c) ∩ R does not contain a periodic point in its boundary, it follows
that P0(c) is strictly nice, and thus so is any pullback of this puzzle piece.
Therefore there exists a positive integer n1 ≥ n0 such that Pn1(c) is strictly
nice. Let Vc = Pn1(c), and let U be the family of all return domains to Vc.
Then (Vc,U) is a good pair. Define Wp, p ∈ Back(c) as above, and let W be
the family of entry domains to

⋃
pWp which are contained in Wc. From the

claim above we know that for any P ∈ W there is a topological disc P ′ ⊃ P
such that f s : P ′ → Vp has bounded degree and P ′ ⊂ Wc. Since there are
finitely many domains Vp, the pair (Wc,W) is δ-good where δ depends on
the geometry of Wp, mod(Vp \Wp) and the number of critical points. This
completes the proof.

Let us now construct puzzle neighborhoods for a Z-persistently recurrent
critical point c ∈ Crit(f) \ Criter(f).

Lemma 6.7. Let c ∈ Crit(f)\Criter(f) be a Z-persistently recurrent critical
point. Then there exists a positive constant δ > 0 such that for any ε > 0,
there exists a puzzle neighborhood W of [c]Z with the following properties:

• for each p ∈ Back(c), diam(Wp) < ε, where Wp = Compp(W );

• each component of W has δ-bounded geometry;

• the first landing map (under f) to W is (δ,N)-extendible with respect
to [c]Z.

Moreover, the statements remain true if we replace the objects for f with the
corresponding ones for f̃ .

Before we prove this lemma, let us describe a procedure to produce a
polynomial-like box mapping from a strictly nice puzzle piece V = Pn(c)
with a sufficiently large depth n. For every p ∈ [c]Z , let Vp be the landing
domain to V which contains p. (So Vc = V .) Note that when n is sufficiently
large, Vp ∩ Vp′ = ∅ for any p, p′ ∈ [c]Z with p 6= p′. Let us label these puzzle
pieces Vp as V0 = Vc, V1, . . . , Vb−1, where b = #[c]Z . Let U0 3 c, U1, . . . , Um

be all the entry domains to
⋃
Vp which intersect orb(c) ∩ Vc. As c is Z-

persistently recurrent, the number of Ui’s is finite. Since V is strictly nice,
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these Ui are compactly contained in Vc and have pairwise disjoint closure.
Let

F :

(
m⋃

i=0

Ui

)
∪

(
b−1⋃
i=1

Vi

)
→

b−1⋃
i=0

Vi

be the (appropriate restriction of the) first entry map to
⋃b−1

i=0 Vi under f .
Then it is easy to check that F belongs to the class Pb. We shall call this
map the polynomial-like box mapping associated to V = Pn(c).

Proof. We are going to derive this lemma from the Key Lemma. First let us
prove a simple fact about the shape of puzzle pieces which intersect the real
line.

Fact 6.3. Let P be a puzzle piece (in Y or Ỹ) which intersects R. Then
there exists σ ∈ (0, π/2) such that

Dπ−σ(P ∩ R) ⊂ P ⊂ Dσ(P ∩ R).

Proof. This is not hard so show using a linearization and compactness argu-
ment. Let us prove it as follows. Without loss of generality, let us assume
that P ∈ Y . Let z0 be an endpoint of P ∩ R which is contained in the Julia
set of f , and let γ be an external rays landing at z0. It suffices to prove that
for any one-side neighborhood K of z0, there exists a constant σ ∈ (0, π/2),
such that γ ∩ {G(z) ≤ 1} ⊂ Dσ(K). To this end, first notice that we may
assume that z is a periodic point of f . Then there exists a positive integer k
such that fk(γ) = γ. Let γi = γ ∩ {1/dk(i+1) ≤ G(z) ≤ 1/dki} for any i ≥ 0.
Take σ to be a small constant so that γ0 ⊂ Dσ(K), where d is the degree of
the map f . We may assume that K is small so that fk : K → fk(K) is a dif-
feomorphism and fk(K) ⊃ K. Let K0 = K and inductively define Ki, i ≥ 1,
to be the interval which is contained in Ki−1 such that fk(Ki) = Ki−1. Note
that γi ⊂ CompKi

(f−kγi−1) ⊂ CompKi
(f−kiγ0). By the Schwarz lemma, it

follows that γi ⊂ Dσ(Ki) ⊂ Dσ(K) for any i ≥ 0. Therefore γ ⊂ Dσ(K).

Let us continue the proof of Lemma 6.7. Let us choose a strictly nice
puzzle piece V = Pn(c) with a sufficiently large depth n and let F be the
polynomial-like mapping associated to V . As the first landing map to V has
only finitely many domains intersecting

⋃
p∈[c]Z

orbf (p), and the closure of
every such a domain is disjoint from ∂V , there exists τ > 0 such that(

(1 + 2τ)(V ∩ R)− 1

1 + 2τ
(V ∩ R)

)
∩

 ⋃
p∈[c]Z

orbf (p)

 = ∅.

37



It follows that F is the class Pτ,σ
b for appropriately chosen constants τ, σ.

As c 6∈ Critrn(f), this polynomial-like box mapping F is non-renormalizable.
By the Key Lemma, there exists a constant δ > 0 such that for every ε > 0
there exists a puzzle piece Y for F (which is also a puzzle piece in Y) which
contains c and satisfies the following.

• diam(Y ) < ε,

• Y has δ-bounded geometry;

• there exists a topological disk Y ′ ⊃ Y such that (Y ′−Y )∩ orbf (c) = ∅
and mod(Y ′ − Y ) ≥ δ.

Let W =
⋃

p∈[c]Z
L̂p(Y ). Then W is a puzzle neighborhood of [c]Z such that

every component of W has a uniformly bounded geometry, and such that the
first landing map is uniformly extendible with respect to [c]Z . This proves
this lemma for f . To prove the corresponding statements for f̃ , just repeat
the above argument.

Lemma 6.8. Let c be a Z-non-recurrent critical point of f which is contained
in Crit(f) \ Criter(f). Then there is a constant η > 0 and for every ε > 0
there exists a puzzle piece W 3 c (in Y) such that diam(W ) < ε and such
that W has η-bounded geometry. Moreover, the statement remains true if we
replace W by W̃ .

Proof. Once again, the last assertion will follow from the proof, and so we
shall only prove the lemma for f .

Recall that Forw(c) = {c′ ∈ Crit(f) : c′ ≤Z c}. If Forw(c) contains a
reluctantly recurrent critical point, then this lemma follows from the previous
lemma and Lemma 6.3. From now on we assume that Forw(c) does not
contain a reluctantly critical point, and distinguish a few cases.
Case 1. Forw(c) = ∅. In this case, there exists an integer n0 ≥ 0 such that
for any k ≥ 1, Pn0(f

k(c)) does not contain a critical point. Then for any
n ≥ 1, fn−1 : Pn+n0−1(f(c)) → Pn0(f

n(c)) is a conformal map with uniformly
bounded distortion. It follows that Pn+n0−1(f(c)) and hence Pn+n0(c) has
uniformly bounded geometry.
Case 2. Forw(c) 6= ∅ does not contain any Z-recurrent critical point. Let c′

be a minimal element in Forw(c). As Forw(c′) ⊂ Forw(c), it follows that
Forw(c′) = ∅. By Case 1, there exists η > 0 such that Pn(c′) has η-bounded
geometry. By Lemma 6.4, this implies that diam(Pn(c′)) → 0 as n→∞.
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Let n1 be a large positive integer so that for any critical points c1, c2 ∈
Crit(f) with c1 6≤Z c2, then fk(c2) 6∈ Pn1(c1) for all k ≥ 1. For any n ≥ n1,
let sn be the entry time of c to Pn(c′). Consider the map f sn : Pn1+sn(c) →
Pn1(c

′). Since Forw(c) does not contain any Z-recurrent critical point, this
map has a uniformly bounded degree. It follows that Psn+n(c) has η′-bounded
geometry for a constant η′ > 0 which depends only on η.
Case 3. Assume that Forw(c) contains a persistently recurrent critical point
p ∈ Crit(f) \Criter(f), By Lemma 6.7, there exists a positive constant δ > 0
and a sequence of puzzle pieces Pni

(p) such that the following hold:

• Pni
(p) has δ-bounded geometry;

• there exists a topological disk Ωi ⊃ Pni
(P ) such that Ωi \ P ni

(P ) is an
annulus disjoint from orb(p) and with modulus at least δ.

By replacing Ωi with a slightly smaller topological disk, we may assume that
diam(Ωi) → 0 as i → ∞. Let si be the first entry time of c to Pni

(p),
and let Wi = Lc(Pni

(p)), W ′
i = Compc f

−si(Ωi). It suffices to show that
f si : W ′

i → Ωi has a uniformly bounded degree.
To prove this, we may assume that Ωi is contained in Pn(p) for a large

n. For any q ∈ Crit(f), let νq = #{0 ≤ j ≤ si − 1 : f j(U ′
i) 3 q}. Let

us show that νq ≤ 1 for every critical point q. Arguing by contradiction,
assume that νq ≥ 2 for some q. Then q ∈ Back(p) ∩ Forw(c) and q must be
a Z-recurrent critical point. Since Forw(c) does not contain a Z-reluctantly
recurrent critical point, q is Z-persistently recurrent. From q ∈ Back(p), it
follows that q ∈ [p]Z . Since f si : Wi → Pni

(p) is a first entry, there can
be at most one j with q ∈ f j(W ′

i ). So there must be some j such that
q ∈ f j(W ′

i \Wi), which implies that orb(q) intersects Ωi − Pni
(p). This is

absurd.
Case 4. Forw(c) contains a point p ∈ Criter(f). We may assume that
p ∈ Critrn(f).

Let s be the minimal positive integer such that f s(p) ∈ Pn(p) for any
n ≥ 0. Let N be a positive integer such that f s|PN has all its critical points
in
⋂

n Pn(p). Let I(p) =
⋂

n Pn(p) ∩R. Note that (Pn(p)− Pn+s(p)) ∩R 6= ∅
for all n ≥ 0, for otherwise, Pn(p) ∩ R = I(p), which would imply that
c ∈ Criter(f).

For each k ≥ 1, let rk be the first entry time of c to PN+ks(p). Note that
there are infinitely many k’s such that f rk(c) ∈ PN+ks(p) \PN+(k+1)s(p). Let
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us consider such a k. Let

Vk = PN+s(f
rk+ks(c)), Uk = PN+(k+1)s(f

rk(c)).

By our choice of N , fks : Uk → Vk is a conformal map. Moreover, this map
can be extended to a conformal map onto CK , where K is the component
of (PN−s(p)− PN+2s(p)) ∩R which contains Vk ∩R, and hence its distortion
is bounded by a constant C > 1 independent of k, by the Koebe distortion
theorem. As k varies, there are only finitely many possibility of Vk. Therefore,
for some positive constant δ the following hold:

• the puzzle pieces Uk has δ-bounded geometry;

• mod(PN+(k−1)s(p)− Uk) ≥ δ.

We want to show that the puzzle pieces Wk = PN+(k+1)s+rk
(c) has δ′-bounded

geometry for some δ′ > 0. It suffices to prove that the degree of the proper
map

f rk : PN+(k−1)s+rk
(c) → PN+(k−1)s(p)

is bounded from above by a constant.
For each q ∈ Crit(f), let νq be the number of i’s, 1 ≤ i ≤ rk−1, such that

q ∈ PN+(k−1)s+rk−i(f
i(x)). We shall prove that νq ≤ 2, which thus completes

the proof. We first notice that if νq 6= 0, then q ∈ Forw(c) ∩ Back(p)
provided that k is sufficiently large. As we are assuming that every Z-
recurrent critical point in Forw(c) is contained in Critrn(f), q is either Z-
non-recurrent or is contained in [p]. If q is Z-non-recurrent, then νq = 1 if k is

sufficiently large. So assume that q ∈ [p]. Let V =
⋃

q∈[p] L̂q(PN+ks(p)), and

V′ =
⋃

q∈[p] L̂q(PN+(k−1)s(p)). Then both V and V′ are puzzle neighborhoods

of [p]. It is clear that fm(∂L̂q(PN+ks(p))) ∩ L̂q(PN+(k−1)s(p)) = ∅ for any
q ∈ [p] and any m ≥ 1. Let r′k be the first entry time of c to V, then by
Lemma 6.3,

#{1 ≤ i < r′k : q ∈ PN+(k−1)s+rk−i(f
i(c))} ≤ 1.

Note that f rk−r′k |PN+(k−1)s+rk−r′k
(f r′k(c)) is a branch of the first entry map to

V′, and thus

#{r′k ≤ i < rk : q ∈ PN+(k−1)s+rk−i(f
i(c))} ≤ 1.

This proves that νq ≤ 2. The proof of the lemma is completed.
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Let A be subset of Crit(f). Let us say that A is (δ, N) -well controlled if
for any ε > 0, we can find a puzzle neighborhood W of A (so W̃ is a puzzle
neighborhood of Ã) such that the following holds:

• each component of W (respectively W̃ ) has diameter less than ε;

• each component of W (respectively W̃ ) has δ-bounded geometry;

• the first landing map to W (respectively W̃ ) under f (respectively f̃)
is (δ,N)-extendible with respect to A (respectively Ã).

Summarizing Lemmas 6.6, 6.7, 6.8, we have proved the following:

Proposition 6.4. Let c be a critical point of f which is not contained in
Criter(f). Then there exists δ > 0, N ∈ N such that [c]Z is (δ,N)-well
controlled.

Lemma 6.9. Let A,B be disjoint subsets of Crit(f)\Criter(f), such that for
every c ∈ A and c′ ∈ B, we have c 6≤Z c

′. If both of A and B are (δ,N)-well
controlled, then A ∪B is (δ/2, N)-well controlled.

Proof. Let WA and WB be puzzle neighborhoods of A and B respectively.
Assume that the minimal depth of components of WB (which are puzzle
pieces) is not less than the maximal depth of that of WA. Then WA ∪WB is
a puzzle neighborhood of A∪B. To see this, we notice that for puzzle pieces
P,Q, if there is some k ∈ N such that fk(∂P )∩Q 6= ∅, then k is not greater
than the depth of P , and fk(P ) ⊂ Q.

Let m be a large positive integer such that for every b ∈ B, the forward
orbit of b is disjoint from

⋃
a∈A Pm(a).

Let {W n
A}, {W n

B}, n = 1, 2, . . . of puzzle neighborhoods of A and B re-
spectively, such that

1. every component of W n
A (respectively W n

B) has δ-bounded geometry;

2. the first landing map to W n
A (respectively W n

B) is (δ,N)-extendible with
respect to A (respectively B);

3. the maximal diameter of the components of W n
A goes to zero as n→∞,

and so does that of W n
B.
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We claim that for every n sufficiently large, there is a positive integer n′ such
that W n

A ∪W n′
B is a puzzle neighborhood of A∪B and the first landing map

to W n
A ∪W n′

B is (δ/2, N)-extendible with respect to A ∪B.
For each a ∈ A, let W n

a denote the component of W n
A which contains a.

The notation W n
b for b ∈ B is defined similarly. By definition, for every W n

a ,
there is a topological disk Ŵ n

a with

mod(Ŵ n
a −W n

a ) ≥ δ, (7)

such that if f s : U → W n
a is a branch of the first landing map to W n

A, then

#{0 ≤ j ≤ s− 1 : f j(Û) ∩ A 6= ∅} ≤ N,

where Û is the component of f−s(Ŵ n
a ) which contains U . By replacing Ŵ n

a

with a smaller topological disk we may assume that diam(Ŵ n
a ) → 0 as n→

∞. (The right hand side of (7) becomes δ/2.) Provided that n is sufficiently
large, we can assume that Ŵ n

a ⊂ Pm(a). Then for any 0 ≤ j ≤ s− 1, f j(Û)
cannot intersect B. Similarly, for each b ∈ B and every n′ ∈ N, there exists
a topological disk Ŵ n′

b such that mod(Ŵ n′

b −W n′

b ) > δ/2 and such that if
f s : U → W n′

b is a branch of the first landing map to W n′
B , then

#{0 ≤ j ≤ s− 1 : f j(Û) ∩B 6= ∅} ≤ N.

Moreover, diam(Ŵ n′

b ) → 0 as n → ∞. Thus Ŵ n′

b ⊂ Pn(b) provided that n′

is large enough. Now let us consider the set W n
A∪B := W n

A ∪W n′
B . By the

remark at the beginning of this proof, this is a puzzle neighborhood of A∪B.
Let us prove that the first landing map to W n

A ∪W n′
B is (δ/2, N)-extendible

with respect to A ∪B.
To this end, let U be a component of the domain of the first landing map

to W n
A∪B, and let s be the landing time. If f s(U) = W n

a for some a ∈ A, then
noticing that f s : U → W n

a is also a branch of the first landing map toW n
A, we

have #{0 ≤ j ≤ s− 1 : f j(Û) ∩A 6= ∅} ≤ N , where Û = CompU(f−s(Ŵ n
a )).

As Ŵ n
a ⊂ Pm(a) is disjoint from

⋃
b∈B orb(b), f

j(Û) ∩ B = ∅ for all 0 ≤ j ≤
s− 1, and hence the number of j’s with f j(Û) ∩ (A ∪ B) 6= ∅ is at most N .
Now assume that f s(U) = W n′

b for some b ∈ B. Then since f s : U → W n′

b is a
branch of the first landing map to W n′

B , the number of j’s with f j(Û)∩B 6= ∅
is at most N , where Û = CompU f

−sŴ n′

b . Since Ŵ n′

b ⊂ Pn(b), f j(Û)∩A = ∅
for all 0 ≤ j ≤ s − 1, for otherwise f j(Û) is contained in Pn+j(a) for some
a ∈ A, which contradicts the hypothesis that f s|U is a branch of the first
landing map to W n

A∪B. This completes the proof.
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Now we can complete the proof of Proposition 6.2.

Proof of Proposition 6.2. We first decompose the set Crit(f) as follows. Let
Crit0(f) be the set of critical points which are largest in the partial order
≤Z , that is, a critical point c belongs to Crit0(f) if and only if for every
c′ ∈ Crit(f), c ≤Z c′ implies that c′ ∼Z c. For every k ≥ 0, assume that
Critk(f) is defined, then Critk+1(f) is defined to be the set of critical points
which are largest in Crit(f) \ Critk(f) in the partial order ≤Z . Clearly,
there is a non-negative integer m such that ∪k≤mCritk(f) = Crit(f). Let
Crit′(f) = Crit(f) \ Criter(f) and let Crit′k(f) = Critk(f) ∩ Crit′(f).

By Lemma 6.9, it suffices to show that for some δ > 0, N ∈ N, Crit′k(f)
is (δ,N)-well controlled for every 0 ≤ k ≤ m. By Proposition 6.4, for every
c ∈ Crit′(f), the equivalence class [c]Z is uniformly well controlled. For
every 0 ≤ k ≤ m, Crit′k(f) is a finite union of equivalence classes which are
not comparable to each other in the partial order ≤Z , and thus again by
Lemma 6.9, we see that Crit′k(f) is uniformly well controlled. The proof is
completed.

6.4 Proof of the Reduced Rigidity Theorem from rigid-
ity in the infinitely renormalizable case

Proof of the Reduced Rigidity Theorem. Let us assume Proposition 6.1, which
will be proved in the next section. In Lemma 6.2, we have proved that there
is a constant K > 1 such that for every c ∈ Criter(f), and any n ≥ 0, we have
a real–symmetric K-qc map φ : Pn(c) → P̃n(c̃) which respects the standard
boundary marking, and is equal to h on the

⋂
n Pn(c) ∩ R. In the following,

we are going to prove that

Claim. For every critical point c ∈ Crit(f) \ Criter(f), and every n ≥ 0,
there is a real–symmetric K-qc map φ : Pn(c) → P̃n(c̃) which respects the
standard boundary marking, where K is a constant independent of n.

The Reduced Main Theorem follows from this claim by the Spreading
Principle from Section 5.3. Indeed, provided that the claim is true, we can
then construct a real–symmetric K-qc map Φn : C → C such that f̃ ◦
Φn = Φn ◦ f holds on C−

⋃
c∈Crit(f) Pn(c). By passing to a subsequence, Φn

converges to a quasiconformal map whose real trace coincides with h. Thus
h is qs.
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It remains to prove the claim. Let us fix an integer n ≥ 0, and choose a
puzzle neighborhood W of Crit(f)\Criter(f) as in Corollary 6.3. Let k be the

maximal depth of components of W and let V = W ∪
(⋃

c∈Criter(f) Pk(c)
)
.

Then V is a nice open set containing Crit(f).
We first take an arbitrary real–symmetric qc map φ : V → Ṽ which

respects the standard boundary marking such that φ|Pk(c) is as in Lemma
6.2 for c ∈ Criter(f). Thus the maximal dilatation of φ is bounded by K on
these components. On the other components, we do not have a bound on
the maximal dilatation at this moment. However, by the Spreading Principle
from Section 5.3, we have for any critical point c a qc homeomorphism Φ :
Pn(c) → P̃n(c̃) with the following properties.

• Φ respects the standard boundary marking,

• ∂̄Φ = 0, a.e., on Pn(c)\D(V ), whereD(V ) is the domain of first landing
map (under f) to V ;

• on each component U of D(V ), Φ(U) = Ũ and Φ is the pullback of φ
(i.e., Φ|U is the appropriate branch of f̃−t ◦φ◦f t where t is the landing
time of U to V ).

The QC-Criterion in Appendix 1, proves that Φ : ∂Pn(c) → ∂P̃n(c̃) extends
to a qc map between these two puzzle pieces with a bound on its maximal
dilatation. More precisely, let X = D′(V ) ∩ Pn(c), where D′(V ) denotes
the union of the components U of the first landing map R to V such that
R(U) ⊂ W . Then the dilatation of Φ is bounded by K outside X. Note that
any component P ofX is also a landing domain toW , and thus both of P and
P̃ has η-bounded geometry, and mod(Pn(c)− P ) ≥ η, mod(P̃n(c̃)− P̃ ) ≥ η,
where η > 0 is as in Corollary 6.3. The proof is completed.

7 Rigidity in the infinitely renormalizable case

(assuming the Key Lemma)

In this section, using a complex bounds theorem and the Key Lemma, we
prove

Theorem 7.1. Let f and f̃ be two polynomials in Fd, d ≥ 2, which are
topologically conjugate on R. Let c be a critical point of f at which f is
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infinitely renormalizable and let c̃ be the corresponding critical point of f̃ .
Then there exists a quasisymmetric homeomorphism φ : R → R such that

φ(fn(c)) = f̃n(c̃)

for any n ≥ 0.

We shall use a similar strategy as in [10]. The main step is to construct qs
maps, with extra regularity, between corresponding properly periodic inter-
vals for f and f̃ which also send maximal properly periodic intervals at the
next renormalization level of f to the corresponding ones of f̃ . See Lemma
7.1. To do this we shall need the Complex Bounds theorem [37] and apply
apply the Key Lemma to get appropriate control of the geometry of certain
puzzle pieces.

7.1 Properties of deep renormalizations

Let [c] be the subset of Crit(f) consisting of critical points c′ with the property
ωf (c) = ωf (c

′) 3 c, c′. Let b = #[c]. Let h : K(f) ∩ R → K(f̃) ∩ R be a
topological conjugacy between f and f̃ . We shall continue to mark with tilde
objects of f̃ .

Let s1 < s2 < . . . be all positive integers such that f has a properly
periodic interval with period sn which contains c. Let In be the maximal
(closed) properly periodic interval which contains c and has period sn, and
for each 0 ≤ i ≤ sn, let I i

n = Compf i(c)(f
−(sn−i)(In)) ∩ R. Obviously except

possibly the first a few n’s, we have ∂In ∩ PC(f) = ∅. In this case, f maps
the interior of I i

n to that of I i+1
n , 0 ≤ i ≤ sn − 1.

Fact 7.1. There exists a positive integer N = N(f) such that if n ≥ N , then
the following hold.

1. There exist 0 = i0 < i1 < . . . < ib−1 < sn such that I
ij
n contains a

critical point in [c] and for any other 0 ≤ i ≤ sn, I
i
n is disjoint from

Crit(f). Moreover, f ij+1−ij(I
ij
n ) contains the critical point in I

ij+1
n .

2. Let Jn =
⋃b−1

j=0 I
ij
n , where ij’s are as above. Then the distortion of the

first landing map to Jn under f , restricted to
⋃sn−1

i=0 I i
n is bounded from

above by a constant C which depends only on b = #[c].
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3. For any 0 ≤ i ≤ sn and 0 ≤ i′ ≤ sn+1, if I i′
n+1 ⊂ I i

n, then

(1 + 2τ)I i′

n+1 ⊂ I i
n,

where τ > 0 is a constant depending only on b.

4. The derivative of the map f sn : In → In is bounded from above by a
constant C which depends only on b.

5. The multipliers of the periodic points of f sn : In → In are bounded from
below by a constant ρ = ρ(f) > 1.

These facts are well known: (1) is a consequence of non-existence of
wandering intervals, (2-4) follow from the real bounds (see [6], [25] and [37]),
and (5) follows from Theorem B in [26] or Theorem V.B in [25].

Therefore, for every n ≥ N , In is an interval bounded by a fixed point
βn of f sn and its symmetric point with respect to c. Moreover for every 0 ≤
i ≤ sn − 1, f i(βn) is the only fixed point of f sn in ∂I i

n. Let λn = (f sn)′(βn).
By the fact above, we know that λn is bounded away from both infinity and
1 by constants independent of n. Similarly we define λ̃n = (f̃ sn)′(β̃n). By
choosing N larger if necessary, λ̃n is also bounded away from both infinity
and 1.

Definition 7.1. Let C > 1 be a constant. For every n ≥ N , and every
0 ≤ i ≤ sn − 1, let An,i(C) denote the family of orientation-preserving
homeomorphisms φ : I i

n → Ĩ i
n which satisfy the following:

• φ is C-qs;

• for any x ∈ I i
n and a ∈ ∂I i

n,

1

C

(
|x− a|
|I i

n|

)log λ̃n/ log λn

≤ |φ(x)− φ(a)|
|Ĩ i

n|
≤ C

(
|x− a|
|I i

n|

)log λ̃n/ log λn

.

Moreover, let Bn,i(C) denote the set of homeomorphisms φ : I i
n → Ĩ i

n such
that

• φ ∈ An,i(C);

• for any 0 ≤ j ≤ sn+1 − 1, if Ij
n+1 ⊂ I i

n, then φ(Ij
n+1) = Ĩj

n+1, and

φ|Ij
n+1 ∈ An+1,j(C).
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Lemma 7.1. There exists a constant C > 1 such that for any n ≥ N and
0 ≤ i ≤ sn − 1, the family Bn,i(C) is non-empty.

The partial conjugacies provided by this lemma will be glued together to
supply a qs conjugacy between the critical orbits. This will be done in §7.5.

Definition 7.2. We say that the n-th renormalization of f (at c) is of in-
tersection type, if there exists 1 ≤ j ≤ sn − 1, such that ∂In+1 ∩ ∂Ij

n+1 6= ∅.

As we shall see below, Lemma 7.1 is easy to prove in the case that the n-
th renormalization is of intersection type. The remaining case is much more
complicated. By means of complex methods, we shall prove

Proposition 7.2. Let n ≥ N and assume that the n-th renormalization is
not of intersection type. Then for every constant C > 1, there exists a con-
stant C ′ > 1 (independent of n, i) such that the following holds. Assume that
for every 0 ≤ j ≤ sn+1 − 1, an orientation-preserving C-qs homeomorphism
pj : Ij

n+1 → Ĩj
n+1 is given. Then for every 0 ≤ i ≤ sn−1 such that I i

n contains

a critical point of f , there exists a homeomorphism ψi : I i
n → Ĩ i

n which is in
the class An,i(C

′) such that ψi = pj whenever both sides are defined.

Proof of Lemma 7.1. Note that by Fact 7.1 (2), we only need to prove Bn,i(C)
is non-empty for some constant C > 1 in the case that I i

n contains a critical
point. Suppose that the n-th renormalization of f is of intersection type.
Then sn+1 = 2sn, and so I i

n+1 and Isn+i
n+1 are the only intervals in the cycle

{Ij
n+1}

sn+1

j=0 which are contained in I i
n. It is well known that the configuration

(I i
n; I i

n+1, I
sn+i
n+1 ) has a uniformly bounded geometry, i.e., the length of each of

components of I i
n− ∂I i

n+1 ∪ ∂Isn+i
n+1 is comparable to that of I i

n. Similarly the

configuration (Ĩ i
n; Ĩ i

n+1, Ĩ
sn+i
n+1 ) also has a uniformly bounded geometry. Thus

the lemma holds for an appropriate choice of C in this case. Now assume that
the n-th renormalization is not of intersection type. In this case this lemma
follows from Proposition 7.2. To see this, we first observe that there exists
a constant C1 such that An+1,j(C1) is non-empty, 0 ≤ j ≤ sn+1, since λn+1

and λ̃n+1 are uniformly bounded away from both infinity and one. Taking pj

to be a map in An+1,j(C1) in Proposition 7.2, the map ψi given there is in
the class Bn,i(C) for some C > 1.

To prove Proposition 7.2, we shall first use the complex bounds theorem
to reduce it to a problem between certain real polynomials (in the class Tb

defined below), see Lemma 7.3. To prove Lemma 7.3, we shall first construct
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a Yoccoz puzzle and apply the Key Lemma to get a uniform geometric control
of a terminating puzzle piece, see Lemma 7.4. Then we apply the Spreading
Principle from Section 5.3 and the QC-Criterion in Appendix 1.

7.2 Compositions of real quadratic polynomials

Definition 7.3. Let Q denote the family of real quadratic polynomials qt :
z 7→ t(1− z2)− 1, 1 ≤ t ≤ 2. For b ∈ N, let Qb be the family of polynomials
F which can be expressed as the composition of b real quadratic polynomials,
F = qtb−1

◦ qtb−2
◦ · · · ◦ qt0 .

As we shall see in the next subsection, maps in Qb are models for renor-
malizations with sufficiently large periods. Note that a map F in Qb has a
connected Julia set J(F ), with J(F ) ∩ R = [−1, 1], and that −1 is a fixed
point of F . Moreover, the diameter of J(F ) is bounded from above by a
constant which depends only on b. In fact J(F ) is contained in the closed
unit disk D.

To each map F = qtb−1
◦ qtb−2

◦ · · · ◦ qt0 , we can associate an extended
map F : C× Zb → C× Zb defined by F(z, i) = (qti(z), i + 1). Let Tb denote
the subfamily of Qb consisting of maps F with the following property: the
critical points ci = (0, i) of the extended map F are all non-periodic and
recurrent, and have the same ω-limit set which is a minimal set. Note that
a map in Tb does not have a periodic attractor.

Fact 7.2. Fix a positive integer b. For any k there exist constants δk > 0
and ρk > 1 such that for any F ∈ Tb, the following hold.

1. If c is a critical point of F k, then |F k(c)− c| ≥ δk;

2. If x ∈ (−1, 1) is a fixed point of F k, then

|(F k)′(x)| ≥ ρk.

Proof. To prove the first statement, we argue by contradiction. Assume that
this statement is wrong. Then there exists a sequence of maps Fn ∈ Tb,
n = 1, 2, . . . such that Fn has a critical point cn with |F k

n (cn) − cn| → 0 as
n → ∞. By passing to a subsequence we may assume that Fn converges to
a map F ∈ Qb and that cn converges to a point c which is in Crit(F ). Then
F k(c) = c. So c is an attracting periodic point of F , which implies that Fn
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has an attracting periodic point provided that n is sufficiently large. This
contradicts the fact Fn ∈ Tb.

Now let us prove the second statement. So let F ∈ Tb and let x ∈ (−1, 1)
be a fixed point of F k. Let T 3 x be the maximal interval such that F 2k|T
is monotone on T , and let L,R be the components of T \ {x}. Since F does
not have a periodic attractor, F 2k(L) ⊃ L and F 2k(R) ⊃ R. Note that both
endpoints of T are critical points of F 2k and thus by the first statement of
this lemma, it follows that |F 2k(L)|/|L| and |F 2k(R)|/|R| are both bounded
away from 1. Since F has negative Schwarzian, this implies that (F 2k)′(x)
and hence |(F k)′(x)| is bounded away from 1.

Fact 7.3. There exists a constant C with the following property. Let F ∈ Tb

and let x0 be a fixed point of F which is contained in (−1, 1). Then there is
a well defined sequence x0 > x1 > x2 > · · · such that

• x1 is the point in F−1(x0) ∩ R closest to −1;

• for every n ≥ 2, F (xn) = xn−1

and
1

C
Λ−n ≤ |xn − (−1)| ≤ CΛ−n, (8)

where Λ = F ′(−1).

Proof. Let z0 be the critical point of F which is in R and closest to −1. It is
easy to see that F ([−1, 1]) = F ([−1, z0]), and therefore −1 < x1 < z0. Since
F does not have a periodic attractor, F ((−1, z0)) ⊃ (−1, z0). The existence
of the sequence xn follows. Moreover, we can find a sequence z0 > z1 > z2 >
. . . > −1 such that F (zn) = zn−1 and xn ∈ (zn, zn−1) for all n ≥ 1. Obviously
it suffices to show that |zn − (−1)| � Λ−n to get (8). By the previous fact,
|F (z0)− z0| is bounded from below by a positive constant δ depending only
on b. Note that the diffeomorphism F n : (−1, zn) → (−1, z0) extends to
a diffeomorphism onto (−∞, F (z0)) which contains the δ-neighborhood of
(−1, z0). As F has negative Schwarzian, it follows that the distortion of
F n|(−1, zn) is uniformly bounded from above. It follows that |zn − (−1)| �
Λ−n.

7.3 Complex bounds

Now let us state the complex bounds theorem which was proved in [37].
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Theorem 7.3. (Complex bounds) Let g : [0, 1] → [0, 1] be a real analytic
interval map with only non-degenerate critical points. Let c ∈ (0, 1) be a
critical point of g at which g is infinitely renormalizable and let b be the
number of critical points of g which are contained in ω(c). Let I 3 c be a
properly periodic interval of g, and let s be its period. If |I| is sufficiently
small, then gs : I → I extends to a holomorphic mapping G : Ω → Ω′ of
degree 2b such that

mod(Ω′ \ Ω) ≥ µ,

where µ > 0 is a constant depending only on b.

G is often called a DH polynomial-like mapping. By Douady and Hub-
bard straightening theorem [9], this polynomial-like mapping G : Ω → Ω′ is
conjugate to a polynomial F of degree 2b near their filled Julia set by a K-qc
map φ, where K = K(µ) is a constant. In fact, as this map G : Ω → Ω′ is a
composition of b real–symmetric double branched covering, the polynomial
F belongs to the class Tb. Moreover, the conjugacy φ can be chosen to be
real–symmetric as well.

Applying this argument to the case g = f and I = In, we obtain the
following corollary.

Corollary 7.4. There exists a constant K > 1 such that the following holds.
Let n be a large positive integer. Then there exist a real polynomial F ∈ Tb,
and a K-qs map φ : In → [−1, 1] such that f sn|In is topologically conjugate
to F |[−1, 1] via φ.

Similarly we obtain a real polynomial F̃ ∈ Tb, and a K-qs map φ̃ : Ĩn →
[−1, 1] such that f̃ sn|Ĩn is topologically conjugate to F̃ |[−1, 1] via φ.

We should remark that the maps F and F̃ are strongly combinatorially
equivalent (See Definition 3.2), and moreover the extended maps F and F̃ are
topologically conjugate on the reals, that is, they are topologically conjugate
as dynamical systems on R× Zb.

Lemma 7.2. There exists a constant C which does not depend on n, such
that for every x ∈ int(In) and a ∈ ∂In we have

1

C

(
|x− a|
|In|

)log Λ/ log λn

≤ |φ(x)− φ(a)|
2

≤ C

(
|x− a|
|In|

)log Λ/ log λn

,

where Λ = F ′(−1). Moreover, the analogous statement for φ̃ holds as well.
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Proof. In the proof of Fact 7.3, we have defined a sequence z0 > z1 > z2 . . .
in K(F )∩R such that z0 is the left-most critical point of F |R, and F (zk) =
zk−1, and proved that |(−1) − zk| � Λ−k. A similar argument shows that
|βn−φ−1(zk)| � λ−k

n , where βn is the boundary point of In as defined before.
This implies this lemma for φ. The proof of the analogous statement for φ̃
is similar.

Instead of In, we can repeat the above argument to a properly periodic
interval I i

n containing a critical point. So Proposition 7.2 is reduced to the
following lemma.

Lemma 7.3. Let F and F̃ be two polynomials in Tb so that the extended
maps F and F̃ are topologically conjugate on the reals. Assume that F is
renormalizable, and the first renormalization of F is not of intersection type.
Then for every C > 1, there exists C ′ > 1 which is independent of F and
F̃ such that the following holds. Assume that for every maximal properly
periodic interval J of F an orientation-preserving C-qs homeomorphism pJ :
J → J̃ is given, then there exists a C ′-qs homeomorphism Γ : [−1, 1] →
[−1, 1] such that Γ = pJ on J . Moreover, there exists a constant C ′′ which
depends only on b such that for any x ∈ (−1, 1) and a ∈ {−1, 1}, we have

1

C ′′

(
|x− a|

2

)log Λ̃/ log Λ

≤ |Γ(x)− Γ(a)|
2

≤ C ′′
(
|x− a|

2

)log Λ̃/ log Λ

, (9)

where Λ = F ′(−1) and Λ̃ = F̃ ′(−1).

7.4 Puzzle geometry control

We will now prove Lemma 7.3. So we have two polynomials F = qtb−1
◦· · · qt0

and F̃ = qt̃b−1
◦ · · · ◦ qt̃0 in the class Tb. These two maps are topologically

conjugate on the real line via a homeomorphism H : [−1, 1] → [−1, 1] which
extends to a combinatorial equivalence between them.

Let us take an orientation-reversing fixed point α of F , for example,
the one which is contained in (−1, 1) and furthest from the origin. Let
M0 = (α,−α), and for n ≥ 1 define inductively Mn to be the component of
the domain of the first return map (under F ) to Mn−1 which has α in its
boundary. Note that the return time of Mn to Mn−1 is always 2. If M1 = M0,
then M0 is a properly periodic interval, and so the first renormalization of F
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is of intersection type. Since we are assuming that the first renormalization
of F is not of intersection type, we have M1 ( M0.

Lemma 7.4. (Puzzle geometry control) Let F and F̃ be as in Lemma 7.3.
Assume that the first renormalization of F is not of intersection type. Let J0

be the maximal properly periodic interval for f which contains 0. Then there
exists two puzzle pieces P ′ ⊃ P for F which contain J0 and are contained in
the same Yoccoz puzzle Y for F such that

• the first return time of 0 to P ′ is equal to the first renormalization
period s;

• P ′ − P is disjoint from the postcritical set PC(F );

• mod(P ′ − P ) ≥ η;

• P has η-bounded geometry,

where η > 0 is a constant independent of F . Moreover, if we replace the
puzzle pieces P ′ and P with the corresponding objects for F̃ , the statements
remain true.

Proof. As we have not yet fixed a Yoccoz puzzle partition, an element of
an arbitrary Yoccoz puzzle for F will be called an artificial puzzle piece for
F . Let us say that a real–symmetric Jordan disk Ω has θ-bounded shape,
0 < θ < π/2, if Dπ−θ(Ω ∩ R) ⊂ Ω ⊂ Dθ(Ω ∩ R). We shall prove that there
exist two artificial puzzle pieces V ′ ⊃ V which both contain J0 such that the
following hold.

1. V has θ-bounded shape,

2. V ′ − V is disjoint from the PC(F ) and its modulus is at least τ ,

3. F k(∂V ) ∩ V ′ = ∅ for all k ≥ 1,

4. PC(F ) ∩ V ⊂ (1 + 2τ)−1(V ∩ R),

where τ > 0, θ ∈ (0, π/2) are constants depending only on b.
Let us first show that this statement implies the existence of P and P ′

claimed by this lemma. To this end we notice that V ×{0} is a nice domain
for the extended map F, and that the complex box mapping G associated to
V0 × {0} for F falls into the class Pτ,θ. More precisely, let Vi ⊂ C× {i}, 0 ≤
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i ≤ b−1, be the landing domain to V ×{0} under F which contains ci = (0, i),
and let U0 3 c0, U1, . . . , Um be the landing domains to

⋃
i Vi under F which

are contained in V0 and intersect PC(F). Then by definition, the polynomial-

like box mapping G is the first entry map from
(⋃m

j=0 Uj

)
∪
(⋃b−1

i=1 Vi

)
to⋃b−1

i=0 Vi. By properties (1-4) of V and V ′, it follows that G ∈ Pτ,σ
b . This

map G is renormalizable, and J0 × {0} is a properly periodic interval for G.
Applying the Key Lemma completes the proof.

To prove the existence of V and V ′, let us first assume that F 2 : M1 →M0

is monotone. Then, F 2 : −M1 → M0 is an orientation reserving diffeomor-
phism, and so this map has a unique fixed point, which we denote by γ. Let
Y ′ 3 0 be the F -puzzle piece bounded by the external rays through α and
−α, and the equipotential curve {G(z) = 2}, where G is the Green function
of F , and let Y 3 0 denote the puzzle piece bounded by the external rays
through γ and −γ, and the equipotential curve {G(z) = 1}.

Fact 7.4. There exists τ > 0 and σ ∈ (0, π/2) such that

• Y has θ-bounded shape;

• mod(Y ′ − Y ) ≥ τ .

Proof. First notice that the length of each component of I − {α,−α, γ,−γ}
is uniformly bounded away from zero. By Fact 7.2 the multipliers of α and
γ are both uniformly bounded from above and away from 1. Note that
Y ⊂⊂ Y ′ and a compactness argument shows that mod(Y ′ − Y ) is bounded
away from zero. Now let T 3 γ be the maximal open interval such that F 4|T
is monotone. Let L be the component of T −{γ} which is contained in (γ, 0)
and let R be the other one. As we have shown, |L| and |R| are both bounded
away from zero. Again by a compactness argument, we show that for some
constant θ > 0, ∂Y ∩ {G(z) ≥ 1/24b} is contained in Dθ(L) ∩ Dθ(R), and
disjoint from Dπ−θ((γ,−γ)). Note that F 4(L) ⊃ L and F 4(R) ⊃ R. By the
Schwarz lemma, it follows that the external rays landing at γ is contained in
Dθ(L) ∩Dθ(R). By symmetry, the external rays landing at −γ is contained
in Dθ(−L) ∩Dθ(−R). Therefore,

Y ⊂ Dθ(L) ∪Dθ(−L) ⊂ Dθ((γ,−γ)),

and
∂Y ∩Dπ−θ((γ,−γ)).

This proves the first statement.
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Let us continue the proof of Lemma 7.4. The artificial puzzle piece Y
has a bounded shape, but PC(F ) may come close to its boundary. In the
following, we shall pull-back this topological disk to find the desired V . Let
us say that an interval K × {i} ⊂ R × {i}, i ∈ Zb is an F-pullback of
M0 × {0} of depth k if it is a component of F−k(M0 × {0}) ∩ (R × {i}).
(So i + k = 0 mod b.) Let m be the maximal positive integer such that
M0 × {0} has a unimodal F-pullback of depth m. Let K × {i} ⊂ R × {i}
be this pullback. Then for each (x, i) ∈ PC(F) ∩ K × {i}, we must have
Fm((x, i)) ∈ (M0−(M1∪(−M1)))×{0}. To see this, arguing by contradiction,
assume that Fm((x, i)) ∈ Q× {0}, where Q is a component of M1 ∪ (−M1).
Then

K ′ × {i} = Comp(x,i)(F
−m(Q× {0})) ∩ (R× {i})

is either a unimodal or a monotone pullback of Q×{0} according to K ′ 3 0 or
not. In the former case, K ′×{i} would be a unimodal pullback of M0×{0} of
depth m+2, which contradicts the maximality of m. In the latter case, since
K ′ × {i} intersects PC(F ), it has a unimodal pullback which would become
a unimodal pullback of M0×{0} with a higher depth, again a contradiction.

Let W = Compci
(F−m(Y × {0})) and W ′ = Compci

(F−m(Y ′ × {0})),
where ci = (0, i). Then W ′ −W is disjoint from the postcritical set of F.
Since

Fs : (W ′,W ) → (Y ′ × {0}, Y × {0})

is a double branched covering,

mod(W ′ −W ) = mod(Y ′ − Y )/2 ≥ τ/2.

Moreover, W has uniformly bounded geometry. To see this one first applies
the Koebe distortion theorem to see that F(W ) has uniformly bounded ge-
ometry and then applies Lemmas 13.2 and 13.3. Now we define V ⊂ C to
be the topological disk such that V ×{0} is the component of the domain of
the first landing map onto W under F, and V ′ the corresponding one for W ′.
Then V and V ′ are puzzle pieces of F , and they contain J0. Let us check
that these puzzle pieces satisfy properties (1-4) stated at the beginning of
the proof. Properties 1, 2 and 4 come from the corresponding statements for
(W ′,W ) which we have proved (we need to redefine the constants), and so
we only need to check the third one.

To this end, we first notice that it is sufficient to show that Fk(∂V ×
{0}) ∩ (V ′ × {0}) = ∅ for all k ≥ 1. Arguing by contradiction, assume that
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this is not true, and let k be the minimal positive integer such that there
exists z ∈ ∂V with Fk((z, 0)) ∈ V ′ × {0}. Let r be the first landing time of
c0 = (0, 0) to W under F. Since W ′−W is disjoint from PC(F ), this is also
the first landing time of c0 to W ′ under F. Thus Fj(V ′×{0}), 0 ≤ j ≤ r are
pairwise disjoint, which implies that k > r. Next we notice that

F n(∂Y ) ∩ V ′ ⊂ F n(∂Y ) ∩ Y = ∅

for any n ≥ 0, and thus k < r + m. Consequently, Fk−m(W ′) intersects
V ′ since both of them contains Fk(z). As these sets are pullbacks of a nice
domain Y ′, it follows that V ′ ⊂ Fk−m(W ′), In particular, Fk−m(W ′) contains
a critical point, which contradicts the fact that Fk : W ′ → Y ′ is a double
branched covering.

Now let us assume that F 2|M1 is not monotone. Then F 2|M2 is monotone.
To see this let p denote the critical point of F 2|M1 which is closest to α.
Then F 2(M1) = (F 2(p), α) which implies that F 2(p) 6∈ M1 for otherwise
M1 would become a properly periodic interval of F whose orbit does not
contain 0, which is impossible. Next let 1 ≤ i ≤ 2b− 1 be minimal such that
qti−1

◦ qti−2
◦ · · · qt0(M1) contains 0. (In other word, i is minimal such that

Fi|M1 × {0} contains a critical point of F.) Write M̂0 = qti−1
◦ · · · ◦ qt0(M1)

and M̂1 = qti−1
◦ · · · ◦ qt0(M2). Then M̂1 is a return domain to M̂0 under the

map F̂ = qti+b−1
◦ qti+b−2

◦ qti , and this first return map is monotone. Let Ĵ0

be the maximal properly periodic interval of F̂ which contains 0. Repeating
the previous argument, replacing F with F̂ , we see that that there exist
two puzzle pieces P̂ ′ ⊃ P̂ which contains Ĵ0, and satisfies the properties
claimed in this lemma. Note that Ĵ0 × {i} and J0 × {0} are both maximal
properly periodic intervals of F, and so they are contained in the same cycle
of properly periodic intervals for F since the critical points of F all have the
same ω-limit set. Let P (respectively P ′) be the Jordan domains such that
P × {0} (respectively P ′ × {0}) is the component of the first entry map to
P̂ (respectively P̂ ′) under F which contains c0 = (0, 0). These puzzle pieces
are what we look for.

As the whole argument is combinatorial, the last assertion of this lemma
follows.

Proof of Lemma 7.3. We keep the notation introduced before the statement
of Lemma 7.4. Let P ′ ⊃ P be the puzzle pieces as in Lemma 7.4. Let Y
be a Yoccoz puzzle for F which has P and P ′ as pieces, and let Ỹ be the
corresponding puzzle for F̃ .
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Let P ′′ = L0(P
′), that is, the component of the domain of the first return

map to P ′ under F which contains 0. From now on we shall assume that
P ⊂ P ′′, and mod(P ′′−P ) is bounded away from zero. (Otherwise we simply
replace P with L0(P ) in the following argument).

For each critical point c of F , let Pc (respectively P ′
c, P

′′
c ) be the compo-

nent of the domain of the first landing map LP to P (respectively P ′, P ′′)
under F . Since we are assuming that ω(c) 3 0, these puzzle pieces exist.
As P ′ − P is disjoint from PC(F ), the first landing time of c to P coincides
with that to P ′, and (P ′

c − Pc) ∩ PC(F ) = ∅. Since LP : P ′
c → P ′ has a uni-

formly bounded degree, and since P has η-bounded geometry, there exists a
constant δ > 0 such that

• mod(P ′′
c − Pc) ≥ δ,

• the puzzle pieces Pc have δ-bounded geometry.

Let D (respectively D′, D′′) denote the domain of the first landing map to⋃
c Pc (respectively

⋃
c P

′
c,
⋃

c P
′′
c ) under F . Then for a similar reason, redefin-

ing the constant δ > 0 if necessary, the following holds: for any component
U of D,

• U has δ-bounded geometry,

• if U ′′ = CompU(D′′), then mod(U ′′ − U) ≥ δ.

Step 1. Let us prove that there exists a constant K > 1, and for every
c ∈ Crit(F ), there exists a K-qc homeomorphism ψc : P ′′

c → P̃ ′′
c which

respects the standard boundary marking. To this end, we first take for every
c ∈ Crit(F ) an arbitrary real–symmetric qc map φc : Pc → P̃c respecting
the standard boundary marking. Applying the Spreading Principle from
Section 5.3, we obtain a real–symmetric qc map Φ : C → C such that

• for every puzzle piece U ∈ Y which is not contained in the domain D,
we have Φ(U) = Ũ and Φ : U → Ũ respects the standard boundary
marking,

• ∂̄Φ = 0 a.e., on C−D.

In particular, for every c ∈ Crit(F ), Φ(P ′′
c ) = P̃ ′′

c and Φ|P ′′
c respects the

standard boundary marking.
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Now let us fix a critical point c, and let X = D ∩ P ′′
c . By what we

have proved above, each component U of X has δ-bounded geometry, and
mod(U ′′ − U) ≥ δ, where U ′′ = CompU(D′′). Note that U ′′ ⊂ P ′′

c , and
thus mod(P ′′

c − U) ≥ δ. Similarly the analogous statements for Φ(U) are
true as well. By the QC-Criterion from Appendix 1, there exists a K-qc
homeomorphism ψc : P ′′

c → P̃ ′′
c with the same boundary marking as Φ|∂P ′′

c

which is standard, where K = K(δ) > 1 is a constant.

Step 2. Let s be the first renormalization period of F . Then F s : P ′′ → P ′ is
a DH polynomial-like mapping with a connected Julia set J . We claim that
there exists a K-qc map u : P ′ − J → P̃ ′ − J̃ , where K > 1 is as above.

To see this, we first apply the Spreading Principle from Section 5.3 once
again, using the maps ψc, and obtain a real–symmetric K-qc map Ψ : P ′ →⋃

c P̃
′ respecting the standard boundary marking, Moreover, Ψ|P ′′ = ψ0|P ′′,

and so Ψ : P ′ → P̃ ′ also respects the standard boundary marking. As
P ′ − J =

⋃∞
n=0G

−n(P ′ − P ′′), where G = F s|P ′′, we can define, for each
n ≥ 0, a real–symmetric K-qc map un : G−n(P ′ − P ′′) → G̃−n(P̃ ′ − P̃ ′′)
using the formula G̃n ◦un = Ψ◦Gn. The qc maps match continuous on their
common domains, and we can glue together to obtain the desired map u.

Step 3. Let J0 = J ∩ R, which is the maximal properly periodic interval
of F which contains the critical point 0. Let us show that diam(J )/|J0| is
bounded from above by a constant. In fact, as mod(P ′−J ) ≥ mod(P ′−P )
is bounded away from 0, by Lemma 2.4 in [21], there exist two topological
disks V ⊂⊂ W which contain J such that F s : V → W is a DH polynomial-
like mapping which has J as its Julia set and such that mod(W − V ) is
bounded away from zero. By Douady-Hubbard straightening theorem, there
exists a real–symmetric K-qc map ξ and a polynomial G ∈ Tb such that
F s : V → W is conjugate to G near their Julia sets via ξ, where K is a
constant. So ξ(J0) = [−1, 1] and ξ(J ) is the Julia set of G. As the diameter
of G is uniformly bounded from above, the statement follows.

Step 4. Now let us prove that there exists a real–symmetric K-qc map
γ = γP ′ : P ′ → P̃ ′ which respects the standard boundary marking and such
that γ|J0 = p|J0 is as in the assumption of this lemma. We have seen above
that there exists a real–symmetric K-qc map Ψ : P ′ → P̃ ′, and so this
statement will follow if we prove the following

1. mod(P ′−J0) and mod(P̃ − J̃0) are both uniformly bounded away from
zero;
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2. mod(P̃ − J̃0)/mod(P ′ − J0) is uniformly bounded away from both in-
finity and zero.

Notice that J0 ⊂ P and J̃0 ⊂ P̃ , and so (1) follows. By Step 3, we see that
mod(P ′ − J0) � mod(P ′ − J ) and mod(P̃ ′ − J̃0) � mod(P̃ ′ − J̃ ). By Step
2, mod(P̃ ′ − J̃ ) � mod(P ′ − J ). Thus (2) holds.

Step 5. Similarly we show that for every component Q of D′, there exists
a K-qc map γQ : Q → Q̃ which respects the standard boundary marking.
Moreover, if Q contains a maximal properly periodic interval J (of F ) we
have that γQ|J = p|J is as in the assumption of this lemma.

Step 6. We can now complete the proof. Recall that D′ is the domain of the
first landing map to P ′ under F . Since ω(c) 3 0 for every c ∈ Crit(F ), D′

contains the critical set of F . For every component Q of D′, we have proved
that there exists a qc map γQ : Q→ Q̃ with the standard boundary marking
and with a bound on its dilatation. Of course when Q is real–symmetric, we
can take γQ to be real–symmetric as well. Moreover if Q contains a maximal
properly periodic interval J of F , we can choose γQ such that it coincides
with pJ . Applying the Spreading Principle from Section 5.3 (taking U be the
union of all components of D′ which contain a critical point or a properly
periodic interval), we obtain a real–symmetric K-qc map Γ : C → C which
coincides with pJ on each J . Observe that there exists a fixed point α of F
such that Γ coincides with the topological conjugacy h on

⋃∞
n=0 F

−n(α)∩R.
Applying Fact 7.3, we see that (9) holds for an appropriate choice of the
constant C ′′.

7.5 Gluing

So far we have proved Lemma 7.1. So for every n ≥ N and 0 ≤ i ≤ sn−1 we
have an orientation preserving homeomorphism φn,i : I i

n → Ĩ i
n which belongs

to the class Bn,i(C), where C is a constant. Next we are going to glue these
φn,i’s together to get a qs conjugacy between orbf (c) and orbf̃ (c̃).

Conclusion of the proof of Theorem 7.1. Let φn,i be as above. Define

φ :

sN−1⋃
i=0

I i
N →

sN−1⋃
i=0

Ĩ i
N

to be the unique homeomorphism such that for any n ≥ N and 0 ≤ i ≤ sn−1,
φ = φn,i on I i

n−
⋃sn+1−1

j=0 Ij
n+1. Note that φ maps I i

n to Ĩ i
n for each (n, i). Since
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maxi |I i
n| and maxi |Ĩ i

n| shrinks to zero, φ forms a conjugacy between orbf (c)
and orbf̃ (c̃).

Let us prove that φ is qs, by which we mean that the restriction of φ
to each component of its domain is qs. To this end, let u < v < w be
three points in some I i

N such that v − u = w − v. We need to estimate
(φ(v) − φ(u))/(φ(w) − φ(v)). This estimate will follows from the claims
below and will be done at the end of the proof.
Claim 1. For any n, i, and any a ∈ ∂I i

n and b ∈ int(I i
n), we have

1

C1

|φn,i(a)− φn,i(b)| ≤ |φ(a)− φ(b)| ≤ C1|φn,i(a)− φn,i(b)|,

where C1 > 1 is a constant independent of n, i.
Indeed, by construction φ(a) = φn,i(a). If b 6∈

⋃
j I

j
n+1, then we also

have φ(b) = φn,i(b), and thus the inequality holds. Let us assume that
b ∈ U = Ij

n+1 for some j, and let x be the intersection of (a, b) with ∂U .
Also, let y be the other endpoint of U . Note that

|φn,i(a)− φn,i(x)| = |φ(a)− φ(x)| ≤ |φ(a)− φ(b)|
≤ |φ(a)− φ(y)| = |φn,i(a)− φn,i(y)|.

By Fact 7.4, |a− x|/|x− y| is bounded away from zero uniformly. Since φn,i

is C-qs, it follows

|φn,i(a)− φn,i(x)| � |φn,i(a)− φn,i(y)|,

which completes the proof of this claim.
Claim 2. For any interval (a, b) ⊂ I i

n with [a, b] 6⊂
⋃

j int(I
j
n+1), we have

1

C2

|φn,i(a)− φn,i(b)| ≤ |φ(a)− φ(b)| ≤ C2|φn,i(a)− φn,i(b)|,

where C2 > 1 is a constant independent of (n, i).
The boundary of

⋃
j I

j
n+1 divides (a, b) into finitely many intervals Tk.

We may assume that (a, b) is contained in a component K of I i
n − ∂

⋃
j I

j
n+1.

If K is not a component of
⋃

j I
j
n+1, then φ(a) = φn,i(a) and φ(b) = φn,i(b)

by construction, and so the inequality holds. Thus we assume that K is
component of

⋃
j I

j
n+1. Since [a, b] 6⊂ int(K), either a ∈ ∂K or b ∈ ∂K. By

the previous claim,

|φ(a)− φ(b)| � |φn+1,j(a)− φn+1,j(b)|.
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Since both of φn+1,j and φn,i|Ij
n+1 belong to the class An+1,j(C), the last term

is comparable to |φn,i(a)− φn,i(b)|, which proves this claim.
Claim 3. For any ε > 0 there is an ε′ > 0 such that for any interval (a, b) ⊂ I i

n,
if |a− b| ≥ ε|I i

n|, then |φ(a)− φ(b)| ≥ ε′|Ĩ i
n|.

Let m ≥ 0 be maximal such that (a, b) ⊂
⋃

j I
j
n+m. For each 0 ≤ k ≤ m,

let 0 ≤ jk ≤ sn+k − 1 be such that (a, b) ⊂ Ijk

n+k. By Claim 2, |φ(a)−φ(b)| �
|φn+m,jm(a) − φn+m,jm(b)|. Since |Ijm

n+m| ≥ |a − b| ≥ ε|Ij0
n |, all the intervals

Ijk

n+k, 0 ≤ k ≤ m, are comparable to (a, b). By Fact 7.1, |Ijk+1

n+k+1|/|I
jk

n+k| is
uniformly bounded away from 1 for each 0 ≤ k ≤ m−1. Thusm is bounded in
terms of ε. Since φn+m is C-qs, |φn+m,jm(a)−φn+m,jm(b)| � |φn+m,jm(Ijm

n+m)| =
Ĩjm
n+m. Since φn+k,jk

, 0 ≤ k ≤ m − 1 are all C-qs, |Ĩn+m,jm| � |Ĩn,i|. This
proves this claim.

Let us now prove that A = |φ(u)− φ(v)|/|φ(w)− φ(v)| is bounded away
from both infinity and zero. Let M ≥ 0 be maximal such that u, v, w are
contained in I i

M for some 0 ≤ i ≤ sM − 1. If neither [u, v] nor [v, w] is
contained in

⋃
j

∫
(Ij

M+1), then by Claim 2, |φ(u)−φ(v)| � |φM,i(u)−φM,i(v)|,
and |φ(v)− φ(w)| � |φM,i(v)− φM,i(w)|, and hence A is bounded from both
above and from zero. So without loss of generality, let us assume [u, v] is
compactly contained in Ij

M+1 for some j. By the maximality of M , [v, w] is
not contained in this interval, and thus we still have |φ(v)−φ(w)| � |φM,i(v)−
φM,i(w)|. So it suffices to prove that |φ(u)− φ(v)| � |φM,i(u)− φM,i(v)|. Let
v′ ∈ (v, w) ∩ ∂Ij

M+1 and we shall distinguish two cases.
Case 1. |v′ − v|/|u− v| is very small. By Claim 2,

|φ(v)− φ(w)|
|φ(v′)− φ(w)|

� |φM,i(v)− φM,i(w)|
|φM,i(v′)− φM,i(w)|

,

which is bounded from both above and below since φM,i is C-qs. Similarly,
|φ(u)− φ(v′)| � |φM,i(u)− φM,i(v

′)| and |φ(v)− φ(v′)| � |φM,i(v)− φM,i(v
′)|.

Since |v′−v|/|u−v′| is very small, it follows that |φ(v)−φ(v′)|/|φ(u)−φ(v′)|
is very small, and thus

|φ(u)− φ(v)| = |φ(u)− φ(v′)| − |φ(v)− φ(v′)|
� |φM,i(u)− φM,i(v

′)|
� |φM,i(u)− φM,i(v)|.

Case 2. |v − v′|/|u− v| is bounded away from zero. In this case, by Claim 2
and the C-quasisymmetric property of φM,i, it follows that

|φ(v)− φ(v′)| � |φ(v′)− φ(w)| � |φ(v)− φ(w)|,
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and so it suffices to bound A′ = |φ(u) − φ(v)|/|φ(v) − φ(v′)|. If [u, v] is
not contained in a component of

⋃
j I

j
M+2, then again by claim 2, A′ �

|φM+1,j(u) − φM+1,j(v)|/|φM+1,j(v) − φM+1,j(v
′)| is bounded. Assume that

[u, v] is contained in Ij′

M+2 for some 0 ≤ j′ ≤ sM+2 − 1. Note that (v, v′)

contains a component T of Ij
M+1 − Ij′

M+2 and thus |u − v| ≥ |v − v′| is a

definite proportion of |Ij′

M+2|. By Claim 3, |φ(u)− φ(v)| � φ(Ij′

M+2) = Ĩj′

M+2.
Note that |v− v′| � |T |, and thus |φM+1,j(v)−φM+1,j(v

′)| � |φN+1,j(T )|. By

Claim 1, |φ(v) − φ(v′)| � |φN+1,j(T )|. Since |T | � |Ij′

M+2| in our case, A′ is
bounded.

8 Proof of the Key Lemma from Upper and

Lower Bounds

8.1 Construction of the enhanced nest

Let us fix a map f which is in the class Pτ,σ
b as in (1) and let c0 denote

the critical point in V0. Throughout § 8-11, we assume that f is persistently
recurrent.

Recall that a puzzle piece is a component of f−n(V0) for some n ≥ 0. A
puzzle piece I is strictly nice in the sense of Martens: for any x ∈ ∂I and
any n ≥ 1, fn(x) 6∈ I (if fn(x) is defined). Therefore any component of the
domain of the first return map to I is compactly contained in I.

Note that a puzzle piece is symmetric with respect to R if its intersection
with R is non-empty. We shall use the following convention: a puzzle piece
is denoted by a bold letter and its real trace is denoted by the corresponding
roman letter. We are going to construct a sequence of puzzle pieces

I0 ⊃ L0 ⊃ K0 ⊃ I1 ⊃ L1 ⊃ . . . (10)

around c0, called the enhanced nest for the map f . The enhanced nest will
be the main objects for us to study, and we shall see that it contains the
puzzle pieces with properties specified in the Key Lemma.

Lemma 8.1. Let I 3 c be a puzzle piece. Then there is a positive integer ν
with f ν(c) ∈ I such that the following holds. Let U0 = Compc(f

−ν(I)) and
Uj = f j(U) for 0 ≤ j ≤ ν. Then

1. #{0 ≤ j ≤ ν − 1 : Uj ∩ Crit(f) 6= ∅} ≤ b2;
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2. U0 ∩ PC(f) ⊂ Compc

(
f−ν(Lfν(c)(I))

)
.

The proof of this lemma will be given at the end of this subsection.
For each puzzle piece I 3 c, let ν = ν(I) be the smallest positive integer

with the properties specified by Lemma 8.1. We define

A(I) = Compc(f
−ν(Lfν(c)(I))),

B(I) = Compc(f
−ν(I)).

Definition 8.1. Given a puzzle piece P 3 c, by a successor of P, we mean
a puzzle piece of the form L̂c(Q), where Q is a child of L̂c′(P) for some
c′ ∈ Crit(f).

Since f is persistently recurrent, each critical puzzle piece P has a smallest
successor, which we denote by Γ(P). Remark that if Q is an entry domain
to P intersecting PC(f), then L̂c(Q) is an successor of P by definition, and
thus L̂c(Q) ⊃ Γ(P).

Now we can define the enhanced nest (10) as follows: I0 = V0 and for
each n ≥ 0,

Ln = A(In),

Mn,0 = Kn = B(Ln),

Mn,j+1 = Γ(Mn,j) for 0 ≤ j ≤ T − 1,

In+1 = Mn,T = ΓTBA(In),

where T = 5b. This choice is made because of Lemma 8.2 (it is not optimal).
We define χ = χ(f) := ∞ if f is non-renormalizable, and otherwise define

it to be the minimal non-negative integer such that Iχ is terminating, i.e.,
the return time of c to Iχ is equal to the first renormalization period of f .

Proof of Lemma 8.1. First, let b = 1. In this case we can take U0 to be the
smallest successor of I (it exists because f is persistently recurrent) and let
ν be the positive integer with f ν(U0) = I. The first assertion of the lemma
is obvious and the second one follows from the minimality of U0.

Now let us deal with the general case. For simplicity of notation let us
assume that the critical point in I is c0. We claim that for each c ∈ Crit(f)
there exist two puzzle pieces P′

c ⊂⊂ Pc containing c with the following
properties:

1. each Pc is a pull back of I of order ≤ b2 − b;
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2. for each c ∈ Crit(f), and any z ∈ (Pc − P′
c) ∩ PC(f), there exist a

positive integer r, a puzzle piece V containing z and a critical point ĉ
such that f r : V → Pĉ is a conformal map.

Before we prove the claim let us show how it implies the lemma. Let s be
the maximal positive integer such that one of the Pc has a child of depth s,
i.e., s is maximal such that there exist a critical puzzle piece Q and a critical
point c such that f s : Q → Pc is a double branch covering. Let us prove
that for each x ∈ Q ∩ PC(f) we have f s(x) ∈ P′

c.
Arguing by contradiction, assume that this is false. Then by the second

property above, there exist a puzzle piece V 3 f s(x), a positive integer
r and a critical point ĉ such that f r : V → Pĉ is conformal. Let W =
Compx(f

−sV). If W 3 c, then W is a child of Pĉ of depth r+s, contradicting
the maximality of s. So W 63 c and thus f r+s : W → Pĉ is conformal. Since
W∩PC(f) 6= ∅, we can find a critical puzzle piece W′ and a positive integer
t such that f t : W′ → W is a double branched covering. Then W′ is a child
of Pĉ of depth r + s+ t, again contradicting the maximality of s.

Now let U0 = L̂c0(Q) and let ν be the positive integer such that f ν(U0) =
I. Then it is easy to check that ν satisfies all the properties required in the
lemma.

It remains to prove the claim. Let T0 := I and J0 := Lc0(I). First
assume that for every critical point c 6= c0, RI(c) ∈ J0. In this case we can
take Pc = L̂c and P′

c = L̂c(J0). In fact, for every c 6= c0, RI : Lc(I) → I has
all its critical values in J0 and thus RI : Pc−P′

c → I−J0 is an (unbranched)
covering. Now let us suppose that there is a critical point c1, c1 6= c0 such
that RI(c1) /∈ J0. Let T1 = J0 ∪ Compc1(R

−1
I (LRI(c1)(I))). The domain

T1 is strictly nice and, thus, any critical return domain of T1 is compactly
contained in T1. Both of the puzzle pieces from T1 are pullbacks of T of
order bounded by b.

Let J1 = Lc0(T1) ∪ Lc1(T1). The proof is completed again unless there
is a critical point c2, c2 6= c0, c1, such that RT1(c2) /∈ J1. In the latter case
T2 = J1 ∪Compc2(R

−1
T1

(LRT1
(c2)(T1))) is again a strictly nice set and all the

puzzle pieces from T2 are pullbacks of I of order bounded by b+ (b− 1).
We can carry on in this way until we get the following situation:

• there is a collection Tm, m < b, of puzzle pieces around some critical
points and this collection is strictly nice;

• for any other critical point c′, RTm(c′) ∈ Jm, where Jm =
⋃

c∈Tm
Lc(Tm);

63



• any puzzle piece of Tm is a pullback of I of order bounded by b+ (b−
1) + · · ·+ (b−m+ 1) ≤ b2 − b.

In this case we just take Pc = L̂c(Tm) and P′
c = L̂c(Jm) for every c ∈ Crit(f)

to complete the proof.

8.2 Properties of the enhanced nest

We first state a proposition on the geometry of the real traces of the puzzle
pieces in the enhanced nest. This result shows that the real geometry is under
a good control and is the origin for our further analysis on the geometry of
those puzzle pieces.

Definition 8.2. A nice interval I is called ρ-nice, if for each x ∈ I ∩ PC(f)
we have

(1 + 2ρ)Lx(I) ⊂ I.

Moreover, for any ρ > 0, let Tρ denote the family of all ρ-nice interval I with
the property (

(1 + 2ρ)I − (1 + 2ρ)−1I
)
∩ PC(f) = ∅.

Proposition 8.1. (Real geometry for the enhanced nest) Assume f ∈ Pτ,σ
b .

1. There exists ρ = ρ(τ, b) > 0 such that for each 0 ≤ n ≤ χ and for any
Z ∈ {In, Kn, Ln : 0 ≤ n ≤ χ}, Z ∈ Tρ.

2. For any C > 0 there exists an ε > 0 such that for any 0 ≤ n ≤ χ, if
there is x ∈ PC(f) ∩ In with |Lx(In)| ≤ ε|In|, then |In| ≥ C|In+1| and
In+1 is a C-nice interval.

3. For any C > 0, there exists C ′ > 0 such that if |In|/|In+1| > C ′, then
In+2 ∈ TC .

This proposition will be proved in Section 9.
We shall also need the following combinatorial information later. For

each n ≥ 0, let sn, tn be the positive integers such that f sn(Ln) = In and
f tn(Kn) = Ln. Moreover, for each 1 ≤ j ≤ T − 1, let qn,j be such that
f qn,1(Mn,1) = Kn and f qn,j+1(Mn,j+1) = Mn,j. Moreover, let

pn = sn + tn + qn,1 + qn,2 + · · ·+ qn,T . (11)
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So fpn(In+1) = In. For any nice interval J containing c0, let r(J) denote
the minimal return time from J to itself and let r̂(J) be the entry time of
x ∈ PC(f) into J .

Lemma 8.2. (Transition and return time relation) Let T = 5b. Then for
any 0 ≤ n ≤ χ− 2, the following hold.

• b2r(Ln) ≥ sn ≥ r(In);

• b2r(Kn) ≥ tn ≥ r(Ln);

• r(Mn,i) ≥ qn,i ≥ 2r(Mn,i−1), i = 1, . . . , T ;

• r̂(In) ≤ qn,1 ≤ 1
2
qn,2 ≤ · · · ≤ 1

2T−1 r(In+1);

• 3 r(In+1) ≥ pn;

• pn+1 ≥ 2pn.

Proof. Consider the chain {Gj}sn
j=0 with Gsn = In and G0 = Ln. Let 0 =

j0 < j1 < j2 < . . . < jν = sn be all the integers such that Gji
∩ In 6= ∅. Note

that
Ln ⊂ Gj1 ⊂ Gj2 ⊂ . . . ⊂ Gjν ,

and hence, by Lemma 8.1, ν ≤ b2. It is clear that ji+1 − ji ≤ r(Ln) for
0 ≤ i ≤ ν − 1. Thus

sn =
ν−1∑
i=0

(ji+1 − j1) ≤ νr(Ln) ≤ b2r(Ln).

As sn is clearly not smaller than the return time of c to In, sn ≥ r(In). This
proves the first inequality. The second one can be done in a very similar way.

As n ≤ χ− 2, all these intervals Mn,i−1, 1 ≤ i ≤ T are non-terminating,
and thus RMn,i−1

(Mn,i) ∩ Mn,i = ∅, which implies that qn,i ≥ 2r(Mn,i−1).
Furthermore, we observe that if {Gj}

qn,i

j=0 is the chain with Gqn,i
= Mn,i−1

and G0 = Mn,i, then Gj 63 c, and hence Gj ∩Mn,i = ∅ for all 0 < j < qn,i.
Therefore r(Mn,i) ≥ qn,i. This proves the third inequality.

Note that for any nice interval J containing c0, if q is so that f q(Γ(J)) = J,
then q ≥ r̂(J). Because Kn is a subset of In andMn,1 is the smallest successor
of Mn,0, r̂(In) ≤ r̂(Kn) ≤ qn,1.

The last two inequalities follow from the first three by direct computation,
using the fact that r(I) ≤ r(I ′) for any symmetric nice intervals I ⊃ I ′. (Here
we use the choice for T .)
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8.3 Proof of the Key Lemma (assuming upper and
lower bounds)

Assume as before that f is a persistently recurrent polynomial-like box map-
ping in the class Pτ,σ

b . The Key Lemma will follow from the following two
propositions.

Proposition 8.2 (Lower Bounds). There exists a constant η = η(τ, σ, b) >
0 such that for each 0 ≤ n ≤ χ we have

B(c0, η|In|) ⊂ In.

The proof of this proposition will be given in Section 10.

Proposition 8.3 (Upper Bounds). There exists a constant C = C(τ, σ, b) >
1 such that for any 0 ≤ n ≤ χ, the following hold:

•
diam(In) ≤ C|In|;

• there exists a topological disk Ω ⊃ In such that Ω− In is disjoint from
PC(f) and

mod(Ω− In) ≥ 1

C
.

These upper bounds will be proved in Section 11.

Proof of the Key Lemma. The first statement follows immediately from the
two propositions above: we just take Y to be In for a sufficiently big n. As
f is non-renormalizable, χ = ∞, so diam(In) � |In| is small when n is large.

Let us prove the second statement. So assume that f is renormalizable.
Let Y ′ = Iχ. Let η, C, ρ be the constants as in Propositions 8.2, 8.3, 8.1
respectively. Let N be a positive integer such that (1 + 2ρ)N ≥ C/η. If
χ < N , then consider the map g = fp0+p1+···+pχ−1 : Iχ → I0, and let Y =
Compc0(g

1(U)), where U is the component of Dom(f) which contains g(c0).
It is easy to check that the second statement holds for an appropriate constant
ξ in this case (the degree of g : Iχ → I0 is bounded when χ is bounded).
Assume χ ≥ N . By Proposition 8.1, we have

|Iχ−N | ≥ (1 + 2ρ)N |Iχ|.
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By Propositions 8.2 and 8.3, it follows that

Iχ ⊂ D∗(
1

2
Iχ−N).

Consider the map

g = fpχ−1+pχ−2+···+pχ−N : Iχ → Iχ−N ,

and let Y = Compc0(g
−1(U)), where U = Lg(c0)(Iχ). Notice that RIχ

◦ g :

Y → Iχ is a proper map with bounded degree, it follows that Y has ξ-bounded
geometry for an appropriately chosen ξ. Moreover, as mod(Iχ−N − U) is
bounded away from zero, so is mod(Y ′ − Y ).

As the whole construction is topological, the last statement follows.

9 Real bounds

Let us start with some definitions. A sequence of intervals {Gj}s
j=0 is called

a chain if Gj is a component of f−1(Gj+1)∩R. The intersection multiplicity
of a chain is the maximal number of intervals in the chain with a non-empty
intersection. The order of a chain is the number of intervals in the chain
containing a critical point. If I is a real interval of the form (a − b, a + b)
and λ > 0 then we define λI = (a − λb, a + λb). By definition (1 + 2δ)I is
called the δ-scaled neighbourhood of I. We say that I is δ-well-inside J if
J ⊃ (1 + 2δ)I.

Throughout Sections 9, 10 and 11 all constants depend on the class Pτ,σ
b ,

and all nice intervals involved are the intersection of puzzle pieces with the
real line.

The goal of this section is to prove Proposition 8.1. To do this we shall
use the following well known fact frequently.

Fact 9.1. Let {Gj}s
j=0 and {G′

j}s
j=0 be chains such that Gj ⊂ G′

j for all
0 ≤ j ≤ s. For any N ∈ N and any ρ > 0 there exists ρ′ > 0 such that
the following holds. Assume that the order of {G′

j}s
j=0 is at most N and that

(1 + 2ρ)Gs ⊂ G′
s. Then (1 + 2ρ′)G0 ⊂ G′

0. Moreover, for a fixed N , ρ′ →∞
as ρ→∞.

Proof. See [25]. Alternatively it follows easily from the fact that f s : G′
0 →

G′
s extends to a branched covering F : U → CG′

s
with degree bounded from

above by 2N .

67



We shall also use the following results which have been known previously.

Lemma 9.1. There exists δ > 0 such that if I is a nice interval around a
critical point c and RI(c) 6∈ Lc(I), then

(1 + 2δ)L2
c(I) ⊂ Lc(I).

Proof. See Theorem A in [42].

Lemma 9.2. For any δ > 0 there is ε > 0 such that if I is a nice interval,
J is any subinterval of I such that (1 + 2δ)J ⊂ I, x is a point, k ≥ 1 and
fk(x) ∈ J , then

(1 + 2ε) Compx(f
−k(J) ∩ R) ⊂ Lx(I).

Proof. See Theorem B in [42].

Lemma 9.3. For any C > 0 and d > 0 there is C ′ > 0 such that if I is a
nice set, J = Ld

x(I) and (1 + 2C ′)J ⊂ I, then

(1 + 2C)Ly(J) ⊂ Ly(I)

for any y which is contained in the domain of the first entry map to J .

Proof. See Proposition 4.1 in [37].

Lemma 9.4. There exists a constant ρ0 > 0 with the following property. Let
I be a nice interval containing a critical point c, and I1 = Lc(I). Let s be
the return time of c into I. Then either of the following holds:

1. (1 + 2ρ0)I
1 ⊂ I;

2. the chain {Gj}s
j=0 with Gs = (1 + 2ρ0)I and G0 3 c has intersection

multiplicity bounded from above by a constant N = N(b).

Proof. See Lemma 2 in [42].

Definition 9.1. A sequence of nice intervals containing a critical point c

I0 ⊃ I1 ⊃ I2 ⊃ . . . ⊃ Im

is a central cascade around c if I i+1 = Lc(I
i) for all i = 0, . . . ,m− 1 and the

return times of c to I0, . . . , Im−1 are all the same.
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Lemma 9.5. For any δ > 0, there exist κ > 0 and C > 0 with the following
properties. Let us consider a central cascade I := I0 ⊃ I1 ⊃ I2 ⊃ . . . ⊃ Im

with m ≥ 2. Let s be the return time of I1 to I. Assume that |I2| ≥ δ|I0|.
Then for any critical point z of the map RI |I2 we have

|f s(z)− z| ≥ κ|I0| and |(f s)′(x)| ≤ C for all x ∈ I2.

Proof. Let ρ0 > 0 be as in Lemma 9.4. Then f s : I2 → I1 extends to a
branched covering F : Ω → Ω′ := C(1+2ρ0)I1 with degree uniformly bounded
from above. To see this it suffices to show that the order ν of the chain
{Gj}s

j=0 with Gs = (1 + 2ρ0)I
1 and G0 ⊃ I2 is uniformly bounded. If

I0 ⊃ (1 + 2ρ0)I
1, then ν ≤ b, and otherwise ν ≤ N(b) by Lemma 9.4.

Let Ω′
0 = Dπ−σ((1+2ρ0)I

1) and let Ω0 = F−1(Ω′
0). Note that mod(Ω′

0\I1)
and therefore mod(Ω0 − I2) is bounded away from zero. So there exists a
constant κ1 such that Ω0 contains X :=

⋃
x∈I2 B(x, κ1|I2|). By Cauchy’s

formula and since |I2| ≥ δ|I0|, it follows that |F ′| is bounded from above
on
⋃

x∈I2 B(x, κ1/2|I2|). In particular |(f s)′| is bounded from above on I2.
Moreover there exists κ2 > 0 such that for each z ∈ Crit(RI |I2) and for
each w ∈ B(z, κ2|I2|), |(f s)′(w)| ≤ 1/2. If |f s(z) − z|/|I2| << 1 then
f s(B(z, κ2|I2|)) ⊂⊂ B(z, κ2|κ2|I2||) which implies that f s has an attracting
fixed point, a contradiction.

Lemma 9.6. For any C > 0, there exists C ′ > 0 such that if I ⊃ J are nice
intervals around a critical point c and (1 + 2C ′)J ⊂ I, then for any x, we
have

(1 + 2C)Lx(J) ⊂ Lx(I). (12)

Proof. Let I0 := I and In = Lc(I
n−1) for all n ≥ 1. Let m(0) = 0 and let

m(1) < m(2) < · · · be all the positive integers such that RIm(i)−1(c) 6∈ Im(i).
Let k be the maximal integer such that J ⊂ Im(k). By Lemma 9.1, for any
1 ≤ i ≤ k − 1, Im(i) contains a definite neighborhood of Im(i)+1. By Lemma
9.2, for any x, Lx(I

m(i)) contains a definite neighborhood of Lx(I
m(i)+1).

As Lx(J) ⊂ LxLc(I
m(k−1)+1) and Lx(I

m(1)) ⊂ Lx(I), (12) follows if k is
sufficiently large.

So assume that k is uniformly bounded. By Lemma 9.3, it suffices to
find two nice intervals J ⊂ J ′ ⊂ I ′ ⊂ I such that J ′ ⊃ Lc(I

′) and |I ′|/|J ′| is
sufficiently large. Because k is bounded, it enough to consider the case k = 0,
i.e., J ) Im(1). The existence of I ′, J ′ then follows from the previous lemma:
when |I|/|J | is sufficiently large, then either |I|/|I1|, |I1|/|I2| or |Im(1)−1|/|J |
is large. This completes the proof.
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Lemma 9.7. Let c be a critical point and let I ⊃ J 3 c be nice intervals.
Assume that J is a pullback of I with order bounded by N . Fix an N . Then
for any ρ > 0, there exists ρ′ > 0 such that if (1 + 2ρ)J ⊂ I, then J is a
ρ′-nice interval. Moreover, ρ′ →∞ as ρ→∞.

Proof. Let {Gj}s
j=0 be the chain with Gs = I and G0 = J . Let us assume

for the moment that

Gj ∩ J = ∅ for all 0 < j < s. (13)

Then for any x ∈ J , either f s(x) ∈ J or f s(Lx(J)) ⊂ Lfs(x)(J). Applying
Lemmas 9.2 and 9.6 and Fact 9.1, it follows that there exists a constant ρ′

with ρ′ →∞ as ρ→∞, and such that (1 + 2ρ′)Lx(J) ⊂ J . This proves the
lemma under the assumption (13).

Now assume that (13) fails, and let s′ < s be the maximal positive integer
such that I ′ = Gs′ intersects J . Note that Gs′ ⊃ J 3 c. Thus there exists
ρ1 = ρ1(ρ) > 0 with ρ1 →∞ as ρ→∞, and such that either I ⊃ (1 + 2ρ1)I

′

or I ′ ⊃ (1 + 2ρ1)J . In the former case, by what we have proved, I ′ is a
ρ′1-nice interval and in particular (1 + 2ρ′1)J ⊂ I ′. Note that the order of the
chain {Gj}s′

j=0 is at most N − 1, and thus the lemma follows by induction on
N .

Lemma 9.8. There exists a constant δ > 0 such that if I is a non-terminating
critical puzzle piece, then

(1 + 2δ)Γ(Γ(I)) ⊂ I.

Proof. Let m be the minimal positive integer such that RIm−1(c) 6∈ Im, where
c is the critical point in I. Since I is non-terminating, there exists a return
domain J to I other than the central one I1 = Lc(I) which intersects the
postcritical set PC(f). As P = Lc(J) is a successor of I, Γ(I) ⊂ P ⊂ Im.
Therefore, ΓΓ(I) ⊂ Im+1 and the statement follows from Lemma 9.1.

Lemma 9.9. For any ρ > 0 there exists ρ′ > 0 with ρ′ →∞ as ρ→∞, such
that if I is a ρ-nice interval containing a critical point c then (1+2ρ′)A(I)−
A(I) and B(I)− (1 + 2ρ′)−1B(I) are both disjoint form PC(f).

Proof. By definition, B(I) − A(I) is disjoint from PC(f). Moreover, there
exists a positive integer ν such that f ν : B(I) → I is a branched covering with
a bounded degree and such that f ν(A(I)) is contained in a return domain to
I. The statement follows.

70



Proof of Proposition 8.1. 1. First of all, by Fact 9.1, for every N ∈ N, and
any ρ > 0 there exists ρ′ > 0 such that the following holds. Let I be a nice
interval and let J be a pull back of I with order ≤ N . Then

• if I is ρ-nice, then J is ρ′-nice;

• if ((1 + 2ρ)I − I) ∩ PC(f) = ∅, ((1 + 2ρ′)J − J) ∩ PC(f) = ∅; and

• if (I − (1+2ρ)−1I)∩PC(f) = ∅, then (J − (1+2ρ′)−1J)∩PC(f) = ∅.

Moreover for a fixed N , ρ′ →∞ as ρ→∞.
By this observation and by Lemma 9.9, it suffices to prove that there

exists a constant ρ > 0 such that In is ρ-nice for all 0 ≤ n ≤ χ − 2. Since
In+1 = ΓT (Kn) and Kn is non-terminating, it follows from Lemma 9.8 that
|Kn|/|In+1| is bounded away from 1. By Lemma 9.7, In+1 is a ρ-nice interval
for an appropriately chosen constant ρ > 0. By taking ρ > 0 smaller, we may
assume that I0 is also ρ-nice. This completes the proof of the first statement
of this proposition.

2. By Lemma 9.7, it suffices to prove that |In|/|In+1| is sufficiently large
when ε is sufficiently small. Let x ∈ In∩PC(f), and assume that the length
of J = Lx(In) is small compared to that of In. If J 3 c, then J ⊃ In+1

and thus |In|/|In+1| is large. Assume that J 63 c. By the first statement of
this lemma, In ∩ PC(f) ⊂ (1 + 2ρ)−1In, so J is deep inside In. By Lemma
9.3, Lc(J) is deep inside In. Let J ′ = Lx(Kn). Then J ′ ⊂ J , and thus
Lc(J

′) ⊂ Lc(J). Since Lc(J
′) ⊃ Γ(Kn) ⊃ In+1, it follows that |In|/|In+1| is

large.

3. By Lemma 9.7, for any C ′ > 0, there exists C ′′ > 0 such that if
|In|/|In+1| ≥ C ′′ then In+1, Ln+1,Kn+1 are all C-nice. As In+2 = ΓTBA(In+1),
applying Lemma 9.9, we see that for any C > 0 there exists C ′ > 0 such that
if In+1 is C ′-nice then In+2 ∈ TC .

10 Lower bounds for the enhanced nest

As before, let f ∈ Pτ,σ
b be persistently recurrent. The goal of this section is

to prove

Proposition 10.1. There exists a constant η = η(τ, σ, b) > 0 such that for
each 0 ≤ n ≤ χ we have

B(c0, η|In|) ⊂ In.
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Denote
ηn = inf

x∈PC(f)∩In

sup
{r>0:B(x,r)⊂In}

r

|In|
.

Lemma 10.1. 1. There exists a constant δ > 0 such that for all 0 ≤ n <
χ

ηn+1 > δηn.

2. There exist κ > 0, ε > 0 such that if |In+1|/|In| ≤ ε, then

ηn+2 ≥ min(κ, 2ηn+1).

Proof. Let V = Dπ−σ(In) and let U = Compc(f
−pn(V )), where pn is as in

(11). Then fpn : U → V is a proper map with a uniformly bounded degree.
By Proposition 8.1, In ∈ Tρ, where ρ > 0 is a constant. By the Koebe
distortion theorem and by Lemmas 13.2 and 13.3, we conclude that

Dπ−θ(In+1) ⊂ U ⊂ Dθ(In+1),

where θ ∈ (0, π/2) is a constant. By a limit argument, this implies the
following

1. There exist constant C > 1 and κ1 > 0 such that

|(fpn)′(z)| ≤ C
|In|
|In+1|

(14)

for z ∈ C with d(z, PC(f) ∩ In+1) < κ1.

2. There exists κ2 > 0 such that for any z ∈ B(c0, 2κ2|In+1|),

|(fpn)′(z)| ≤ 1

2

|In|
|In+1|

. (15)

Now the first statement follows immediately from (14). To show the
second, note that by the third term of Proposition 8.1, there exists an ε such
that |In+1|/|In| ≤ ε implies that In+2 ∩ PC(f) ⊂ B(0, κ2|In+2|)| and apply
(15).

Lemma 10.2. There exist a positive integer k0 and a constant γ > 0 such
that for all 0 ≤ n ≤ χ and for all x ∈ PC(f) ∩ In we have

B(x, γ|Compx Dom(Rk0
In

)|) ⊂ In.
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Proof. DenoteN = p0+· · ·+pn−1. Notice that fN(In) = I0. From Lemma 8.2
we know that 2pn−1 ≥ N and r(In) ≥ N/6.

Let x ∈ PC(f) ∩ In and let W = L̂fN (x)(In). Let

U := Compx(f
−N(W )) ∩ R.

Then U = Compx(Dom(Rk0
In

)) for some k0. Since r(In) ≥ N/6 we have
k0 ≤ 6. This also implies that the pullback fN : U → W has order bounded
by 6b.

By Proposition 8.1, (1+2ρ)In− (1+2ρ)−1In is disjoint from PC(f). The
interval W is a pullback of In of universally bounded order, so there is a
universal constant ρ′ > 0 such that (1 + 2ρ′)W \ (1 + 2ρ′)−1W ∩ PC(f) =
∅. As Dπ−σ(W ) ⊂ Dπ−σ(I0) ⊂ I0, by the Koebe distortion theorem and
Lemmas 13.2 and 13.3, it follows that In ⊃ Compx(f

−N(W )) ⊃ Dθ′(U),
where θ′ ∈ (π/2, π) is a constant depending only on θ, ρ′ and N . The proof
is completed.

Proof of Proposition 10.1. If ηn is very small, then due to Lemma 10.2 there
exists a domain U of Rk0

In
intersecting PC(f) and such that |U |/|In| is very

small. This implies that there exists a return domain J to In intersecting
PC(f) such that |J |/|In| is small. By the second term of Proposition 8.1, it
follows that each return domain to In+1 is deep inside In+1. In particular,
|In+2|/|In+1| is small. By the second statement of Lemma 10.1, ηn+2 ≥
min(κ, 2ηn+1). By the first statement of that lemma, it follows that for some
constant κ′ > 0 we have ηn+2 ≥ min(κ′, 2ηn+1). As η0, η1 are bounded away
from zero, the proposition follows.

11 Upper bounds for the enhanced nest

Consider a persistently recurrent map f from the class Pτ,σ
b (defined in Sec-

tion 4) and let c0 be the critical point in V0. Our aim in this section is to
prove Proposition 8.3, i.e., an upper bound for certain puzzle-pieces. For
the construction and properties of the enhanced nest In we refer to Subsec-
tions 8.1 and 8.2. Let In = In ∩R. The first goal of this section is the prove
the following result.

Theorem 11.1. There exists θ > 0 and n0 so that for all n ≥ n0, In ⊂
Dθ(In−n0).
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The proof of this theorem uses real bounds for the enhanced nest (Propo-
sition 8.1), the real bounds from Section 9, and an analysis of what happens
when we pull-back Poincaré disks with slits through critical points many
times. Several of the basic results we will use can be found in Appendix 2,
so it is probably a good idea to read Appendix 2 before reading this section.

The proof is somewhat related to the proof in [37]; the main difference is
that we deal with the bounded and unbounded geometry situations simulta-
neously.

Throughout this section we will assume that all nice intervals are inter-
sections of puzzle pieces with the real line.

11.1 Pulling-back domains along a chain

The main purpose of this subsection is to prove Proposition 11.2 and Propo-
sition 11.3 below.

Let us first state some preparatory lemmas. Throughout we shall fix the
class Pτ,σ

b , see Section 4. So all constants (even ‘universal constants’) do
depend on this class.

We remind the reader that (1 + 2δ)I is defined to be the δ-scaled neigh-
borhood of I, see Section 9.

In order to see what happens when you pull-back a disc of the form Dθ(I)
along some chain, we first deal with central cascades.

Let I be a nice interval containing a critical point c and define the prin-
cipal nest Ik = Lc(I

k−1), k ≥ 1, where I0 = I.

Lemma 11.1. For each δ > 0 there exist δ′ > 0 and λ ∈ (0, 1) with the
following property. Consider I = I0 ⊃ I1 ⊃ · · · ⊃ Im̂ where m̂ is the
minimal integer such that RI |I1 has some critical value which is not in Im̂.
Let r be so that RI |I1 = f r. Assume that {Gj}pr

j=0 is a disjoint chain with
Gir ⊂ I1 for 0 ≤ i ≤ p− 1 and Gpr ⊂ I a nice interval (i.e. the intersection

of a puzzle-piece with the real line). Moreover, assume that {Ĝj}pr
j=0 is a

chain with Gpr ⊂ Ĝpr ⊂ (1 + δ)Ĝpr ⊂ I and Ĝ0 ⊃ G0. Define

V = Dθ(Ĝpr) ∩ CGpr and U = CompG0
f−prV.

Then for each z ∈ U there exists an interval K such that either
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z ∈ Dλθ(K) and G0 ⊂ K ⊂ (1 + δ′)K ⊂ I (16)

or there exists 0 ≤ p′ ≤ p with

fp′r(z) ∈ Dλθ(K) and Gp′r ⊂ K ⊂ (1 + δ′)K ⊂ Im̂. (17)

Proof. Let us define E1, E2 to be the maximal open subintervals of Im̂ con-
taining a boundary point of Im̂ in their closures and on which branches of
f r are diffeomorphic. Because f r is a composition of folding maps, f r(E1) =
f r(E2) = f s(Im̂). Label these so that f r|E1 is monotone increasing, and
define X = Im̂ \ (E1 ∪ E2).

First of all note that this lemma follows from Lemma 13.6 if p < 10 or
m̂ = 1: if p < 10, then (16) holds and if m̂ = 1 then (17) holds for p′ = p−m̂.
Let us assume that p ≥ 10 and m̂ ≥ 2.

Claim 1. There exists a (universal) constant κ1 > 0 such that if |I2|/|I0| ≤
κ1, then the lemma holds. Indeed, by Lemma 13.6, f (p−2)r(z) ∈ Dλθ(I

2).
Note that |I2|/|I0| is small implies that |I2|/|I1| is small. Again by Lemma
13.6 for any x ∈ I2, Compx f

−r(Dλθ(0.5I
1)) ⊂ Dλ′θ(I

2) ⊂ Dλθ(0.5I
1). Hence

(16) holds if |I2|/|I0| is small.

So let us also assume |I2|/|I0| ≥ κ1. By Lemma 9.5, there exist constants
κ2 > 0 and C > 1 such that

• for any critical point c of f r|I2, d(f r(c), c) ≥ κ2|I0|;

• |(f r)′(x)| ≤ C for any ∈ I2.

In particular, |Im̂−1|/|I0| ≥ κ2. Moreover, there exists κ3 > 0 such that

• d(X, ∂Im̂−1) ≥ κ3|I0|;

• either f r(Im̂) ∩ Im̂ = ∅ or |Ei| ≥ κ3|I0|, i = 1, 2.

Now let us make another claim.
Claim 2. There exists a constant γ ∈ (0, 1) such that either (16) or (17)
holds with δ′ = γ, or there exist 0 ≤ p∗ < p, 0 ≤ i ≤ m̂ − 1 and an
interval G∗

p∗r with Gp∗r ⊂ G∗
p∗r ⊂ (1 + 2γ)G∗

p∗r ⊂ I i, Up∗r ⊂ Dλ1θ(G
∗
p∗r) and

|I i+1|/|I i| ≤ γ.
Proof of Claim 2. By Lemma 9.2, there exists δ1 > 0 depending on δ such
that for any 0 ≤ i ≤ p−1, (1+2δ1)Ĝir ⊂ I1. If Ĝir does not contain a critical
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point of RI |I1 for all i = 0, 1, . . . , p−1, then by Schwarz we have z ∈ Dθ(Ĝ0)
and thus (16) holds with δ′ = δ1. So let us assume that there exists a maximal
integer p∗ with 0 ≤ p∗ ≤ p be so that Ĝp∗r contains a critical point of f r|I1

(and hence Ĝp∗r ∩X 6= ∅). Then by Schwarz and by Lemma 13.6, it follows

that there exists an interval G∗
p∗r with Ĝp∗r ⊂ G∗

p∗r ⊂ (1+2δ2)G
∗
p∗r ⊂ I0 such

that fp∗r(z) ∈ Dλ1θ(G
∗
p∗r), where δ2 and λ1 are constants depending on δ.

We may assume that G∗
p∗r is not well-inside Im̂−1, because otherwise (17)

holds for p′ = p∗ − 1. As d(∂X, ∂I0)/|I0| is bounded away from zero, and
G∗

p∗r ∩ ∂X 6= ∅, it follows that |G∗
p∗r|/|I0| is bounded away from zero. Let

k ≤ m̂−1 be maximal so that G∗
p∗r ⊂ Ik. If G∗

p∗r is well inside Ik then Claim
2 holds with i = k. Thus we may assume that |Ik|/|I0| is bounded away
from 1. If mini=0,...,k−1 |I i+1|/|I i| could be arbitrarily close to one, then there
would be a map (with a critical point) in the Epstein class having an interval
of fixed points (here we use that f is in the Epstein class Pτ,σ

b ). Clearly this
is impossible. This proves the claim.

So we may assume that p ≥ 10, m̂ ≥ 2, |I2|/|I0| ≥ κ1 and |I1|/|I0| ≤ γ
(by possibly replacing I0 by I i with i as in Claim 2). By replacing p by p− 1
we may assume that Ĝpr ⊂ I1 (and so fpr(z) ∈ Dθ(I

1)). If z ∈ Dθ(I
1) then

(16) holds, so we may assume that there exists a maximal q with 0 ≤ q < p
and so that f qr(z) /∈ Dθ(I

1). Since f (q+1)r(z) ∈ Dθ(I
1), by Lemma 13.6 there

exists λ1 ∈ (0, 1) such that f qr(z) ∈ Dλ1θ(J) with (1 + 2δ3)J ⊂ I1.

Case 1: Gqr ⊂ Im̂. Note that this implies that Gir ⊂ Im̂ for all 0 ≤ i ≤ q.
We may assume that q ≥ 1 (otherwise (16) holds). So f r(Im̂) ∩ Im̂ 6= ∅ and
therefore |Ei|/|Im̂| ≥ κ3.
Subcase 1.1 Gir ∩ ∂(X ∪ E2) = ∅ for all i ≤ q.

If Gqr ⊂ X∪E2 then by the third part of Lemma 13.4, f qr(z) ∈ Dµλθ(X∪
E2) and hence by the last part of Lemma 13.5, f (q−1)r(z) ∈ Dµ′λθ(K) where
K is an interval which contains G(q−1)r and is well inside Im̂ (we apply

Lemma 13.5 to the chains {H ′
j}r

j=0, {Hj}r
j=0 and {Ĥj}r

j=0 where H ′
r = I,

Hr = Im̂−1 and Ĥr = X ∪ E2 and H ′
0 ⊃ H0 ⊃ Ĥ0 ⊃ G(q−1)r).

Assume that Gqr ⊂ E1, and let q′ be minimal so that

Gq′r, G(q′+1)r, . . . , Gqr ⊂ E1.

First let us consider the case f r(E1) ⊃ E1. Then f (q−q′)r : Gq′r → Gqr

extends to a diffeomorphism onto E1. By Lemma 13.4, f qr(z) ∈ Dµλθ(E1),
and hence by Schwarz f q′r(z) ∈ Dµλθ(E1). We may assume that q′ ≥ 2 for
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otherwise (16) holds. If G(q′−1)r ⊂ E2 then by Schwarz and Lemma 13.5
f (q′−2)r(z) ∈ Dµλθ(K

′) with K ′ well-inside Im̂. Otherwise G(q′−1)r ⊂ X,
because f r does not map ∂X into E1. Let Hr be the interior of f r(E1) and let
{Hj}r

j=0 be the chain with H0 ⊃ G(q′−1)r. Note that H0 ⊂ X because f r(∂X)
is in the boundary of Hr. Since f r(H0) contains Hr \E1 and this difference is
not small compared to Hr, by Lemma 13.5, f (q′−1)r(z) ∈ Dλ′θ(H0). Because
X is well-inside Im̂, (17) holds for p′ = q′ − 1 (and appropriate choice of
constants).

Now let us assume that f r(E1) 6⊃ E1. Then we let Tq be the minimal
open interval which contains a component of I0 − I1 and Gqr and is disjoint
from X. As |Tq|/|I0| is bounded away from zero, f qr(z) ∈ Dλ′θ(Tq). It is easy
to see that there exists an interval Tq′ ⊃ Gq′r such that f (q−q′)r : Tq′ → Tq

is a diffeomorphism. So by Schwarz, we have f q′r(z) ∈ Dλ′θ(Tq′) ⊂ Dλ′θ(I
1).

Note that f r(E1) ∩ (X ∪ E2) = ∅ and thus q′ ≤ 2. Therefore (16) holds.
Subcase 1.2 There exists q′ ≤ q such that Gq′r∩∂E1 6= ∅. Applying Subcase
1.1 to the chain {Gj}q

j=q′+1, we may assume that f q′r(z) ∈ Dλθ(I
1). Note

that Gir ∩ ∂E1 = ∅ for i < q′. So we can repeat the previous argument,
replacing Gpr by G(q′−1)r.

Case 2: Gqr 6⊂ Im̂. Let q′ < q be maximal so that Gir 6⊂ Im̂ for
q′ ≤ i ≤ q. Then f q′r(z) ∈ Dλ′θ(I

1). If q′ = 0 then we are in case (16).
Otherwise G(q′−1)r ⊂ Im̂, f (q′−1)r(z) ∈ Dλ′′θ(I

1) and Gir ⊂ Im̂ for i ≤ q′ − 1,
and we proceed as in Case 1.

If I is a non-terminating nice interval containing a critical point c, we
define C(I) := Im where m ≥ 1 is minimal so that RI(c) /∈ Im. If I is termi-
nating we define C(I) = ∅. Let us define Ck(I) to be equal to C(C(. . . (I))).

If J is a return domain to an arbitrary nice interval I, and {Gi}r
i=0 is the

chain with Gr = I, G0 = J where r is the return time of J to I, we define

Crit(I; J) = (
r−1⋃
i=0

Gi) ∩ Crit(f).

Similarly, when G = {Gj}s
j=0 is an arbitrary chain such that Gs is a pullback

of I, Gs ⊂ I, and 0 = n0 < n1 < · · · < np = s are the integers with Gni
⊂ I,

then we define

Crit(I; G) =

p−1⋃
i=0

Crit(I;LGni
(I))
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where LGni
(I) is the return domain to I containing Gni

. For any nice interval
I and any critical point c′, we define

kc′(I; G) = inf{kc′ ; Gj ⊂ Ckc′ (L̂c′(I)) for some j = 0, 1, . . . , s− 1}

and
k(I; G) =

∑
c′∈Crit(I;G)

kc′(I; G). (18)

k(I; G) describes the combinatorial depth of the chain G with respect to I.
(Note that k(I; G) is well-defined even if I does not contain a critical point.)
When c ∈ J ⊂ I we define

k(I; J) = min{k; Ck(I) ⊂ J}

and
k̂(I, J) =

∑
c′

k(L̂c′(I), L̂c′(J)). (19)

The next proposition gives the crucial estimate describing the loss of angle
when we pull-back a slitted Poincaré disc Dθ(Ĝs) ∩ CGs with Ĝs well-inside
I and G = {Gj}s

j=0 a disjoint chain. The loss of angle turns out to be only
related to k(I,G).

Proposition 11.2. For each δ there exists µ ∈ (0, 1) and δ′ > 0 with the
following properties. Let I be a nice interval, and let G := {Gi}s

i=0 be a
disjoint chain with G0, Gs ⊂ I with Gs a nice interval and G0 ∩ PC(f) 6= ∅.
Let Ĝs be an interval with Gs ⊂ Ĝs ⊂ (1 + δ)Ĝs ⊂ I. Let V = Dθ(Ĝs)∩CGs

and write Ui = CompGi
f−(s−i)(V ), i = 0, . . . , s. Then there exists an interval

Î ⊃ G0 with (1 + δ′)Î ⊂ I and such that

U0 ⊂ Dµk(I,G)θ(Î).

Here k(I; G) is defined as in equation (18).

Proof. The proof is by induction on N := #Crit(I; G). More precisely, we
formulate the following two induction statements.

Induction Statement (N, k): There exist increasing functions δ 7→ µN(δ) ∈
(0, 1) and δ 7→ αN(δ) ∈ (0, 1) such that for any interval I and chains

78



G = {Gi}s
i=0, Ĝ = {Ĝi}s

i=0 as in the theorem for which Crit(I; G) ≤ N
and k(I; G) ≤ k,

U ⊂ D
µ

k(I;G)
N θ

(Î)

where Î is an interval with G0 ⊂ Î ⊂ (1 + αN)Î ⊂ I. Here α and µN do not
depend on k.
Induction Statement N : Statement (N, k) holds for each k = 0, 1, 2, . . . .

Note that N is bounded by the number of critical points of f so it is
enough to prove Statement N for each integer N . If N = 0 then {Gj}s

j=0

only visits diffeomorphic branches of RI , and so by Schwarz U0 ⊂ Dθ(Ĝ0).
This proves Statement 0. Therefore it is enough to prove the induction step.
This is done in Lemma 11.3.

To prove the induction step, we shall use the following lemma.

Lemma 11.2. Let I be a nice interval containing a critical point c and let
I1 = Lc(I). Let J be a nice interval with J ⊂ I − I1 and J ∩PC(f) 6= ∅ and
let K = Lc(J). Then there exists a universal constant ρ̂ > 0 such that the
following hold:

1. I ⊃ (1 + 2ρ̂)K;

2. K is a ρ̂-nice interval;

3. for any x ∈ I, k ≥ 0 with fk(x) ∈ K, (1 + 2ρ̂) Compx(f
−kK) ∩R ⊂ I.

Proof. The second and the third statements follow from the first one by
Lemma 9.7 and Lemma 9.2 respectively (redefining the constant ρ̂). So it
suffices to prove the first one.

Let m be a maximal positive integer so that the return time of c to Im−1

is the same as the return time r of c to I0. Then RI(K) ⊂ Im−1 \ Im. We
may assume that |Im|/|I| is close to 1. In particular the second assertion
in Lemma 9.4 applies, and so f r : I1 → I0 extends to holomorphic branched
covering F : Ω → Ω′ = C(1+2ρ0)I with bounded degree. Since mod(Ω′\RI(K))
is large, also mod(Ω \K) is large. Note that Ω ∩R is contained in Ω′ ∩R =
(1 + 2ρ0)I, it follows that |K|/|I| is small, which concludes the proof of the
lemma.

Lemma 11.3. For each N ≥ 1, Statement N-1 implies Statement N.
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Proof. Assume that Statement (N − 1) holds. Let I be a nice interval and
G be a chain with Crit(I; G) = N and k(I; G) = k as in the statement of
Proposition 11.2.

We can and will assume that I contains a critical point c and that
Crit(I; G) 3 c: otherwise simply pull-back I along the chain G to a nice in-
terval I ′ containing a critical point (inside Crit(I; G)). Applying Statement
N to this new nice interval I ′ and then pulling-back to G0 gives Statement
N for I but with possibly a smaller µN .

We will prove Statement (N, k) by induction on k. The assumption of
Statement (N, 0) is never satisfied, so the statement is correct. Let us assume
that Statements (N − 1) and (N, k − 1) hold. Without loss of generality we
may restrict ourselves to the case δ ≤ ρ̂, where ρ̂ is the constant coming from
Lemma 11.2.

For δ ∈ (0, ρ̂) let λ(δ) be the smaller of the λ coming from Lemmas 13.6
and 11.1, and let us take α(δ) to be the smallest of the δ′ coming from these
two lemmas and the αN−1(δ) coming from the Induction Statement (N − 1).
We may assume that the functions δ 7→ α(δ), λ(δ) are increasing in δ and
that α(δ) < δ. Let α◦i(δ) denote the i-th iterate of the function δ 7→ α(δ) (so
this corresponds to applying those statements in succession i times). Now
define

αN(δ) = [α◦10b(δ)]2, (20)

and
µN(δ) = [µN−1(α

◦10b(δ))2N+2λ(α◦10b(δ))5]bγ, (21)

where
γ = λ(αN(ρ̂)). (22)

We shall prove Statement N for this choice of constants. Let {Ĝi}s
i=0 be

the chain with Ĝ0 ⊃ G0 as in Proposition 11.2 and let s1 < s be maximal so
that Gs1 ⊂ I.
Case I: Gs1 ⊂ I \ I1. Then define J = LGs1

(I). Let s′1 ≥ 0 be the minimal
integer such that Gs′1

⊂ J and let k0 = k(J, {Gj}s1

j=s′1
). We are going to show

that there exist integers k1, k2 ≤ k0 with k1 + k2 ≤ k0 +N and such that

z ∈ D
µN−1(α̂)k1bµ̂

k2
N λ̂b+3γθ

(Î), (23)

where Î is an interval with G0 ⊂ Î ⊂ (1 + α̂)Î ⊂ I, and

α̂ = α̂(δ) := α◦5b(δ), λ̂ = λ(α̂), and µ̂N = µN(ρ̂) ≥ µN(δ). (24)
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Let us first show that (23) implies the statement (N, k). It suffices to
show that

µN−1(α̂)k1bµ̂k2
N λ̂

b+3γ ≤ µ(δ)k.

To this end, we first observe that Lc(J) ⊂ C(I) and thus k0 ≤ k − 1. From
k1 + k2 ≤ k0 + N it follows that k1/(k − k2) ≤ N + 1. So the inequality
follows from the choice of the function µN by direct computation.

Let us prove (23). First, by Lemma 13.6, Us1 ⊂ Dλ(δ)θ(Ĝ
′
s1

)∩CGs1
, where

Gs1 ⊂ Ĝs1 ⊂ Ĝ′
s1
⊂ (1 + α◦1)Ĝ′

s1
⊂ J . (Here and after α◦i = α◦i(δ).) Let

K = Lc(J) and s2 be the minimal integer with 0 ≤ s2 ≤ s1 so that Gs2 ⊂ J
and Gj ∩ K = ∅ for s2 ≤ j < s1. By the choice of s2, Crit(J ; {Gj}s1

j=s2
) ⊂

Crit(I; {Gj}s
j=0) \ {c} and so #Crit(J ; {Gj}s1

j=s2
) < N . Let

k1 :=
∑

c′∈Crit(I,G),c′ 6=c

k(Lc′(J),Lc′(K)).

Claim 1. There exists an interval Ĵ with Gs2 ⊂ Ĵ ⊂ (1 + α◦2b(δ))Ĵ ⊂ J
such that

Us2 ⊂ Dβθ(Ĵ), (25)

where
β = [µN−1(α

◦2b)k1λ(α◦2b)]b ≤ [µN−1(α̂)λ̂]b. (26)

To prove this claim we shall apply the induction assumption. By choice
of s2, Gj ∩ K = ∅ for all s2 ≤ j ≤ s1, which implies that for any critical
point c′ 6= c, there can be at most one j ∈ {s2, s2 + 1, . . . , s1} such that
Gj ⊂ Lc′(K). If for any s2 ≤ j ≤ s1 and any c′ ∈ Crit(f) − {c}, Gj 6⊂
Lc′(K), then k(J, {Gj}s1

j=s2
) ≤ k1 and thus Statement (N − 1) gives us Us2 ⊂

DµN−1(α◦1)k1λ(δ)θ(Ĵ) where Ĵ is an interval with Gs2 ⊂ Ĵ ⊂ (1 + α◦2)Ĵ ⊂ J ,
which implies (25). Otherwise, let p be maximal with p < s1 such that
Gp ⊂ J and such that Gp enters Lc′(K) for some c′ ∈ Crit(f) − {c} before
it returns to J . Let p′ > p be the minimal integer such that Gp′ ⊂ J .

Then k(J, {Gj}p′

j=s2
) ≤ k1 and thus as before, Up′ ⊂ DµN−1(α◦1)k1λ(δ)θ(Ĵ) with

(1+α◦2)Ĵ ⊂ J . Applying Lemma 13.6 gives us Up ⊂ DµN−1(α◦1)k1λ(δ)λ(α◦2)θ(Ĵ
′)

with (1 + α◦3)Ĵ ′ ⊂ J . Repeating this argument for at most b − 1 times we
obtain (25).

Let us continue the proof of Case I. If s2 = 0 then setting k2 = 0, we get
the inclusion (23). So assume s2 > 0. If Gj ∩K = ∅ for all 0 ≤ j < s2 then
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f s2 : G0 → Gs2 is a branch of the first entry map to J and so

U0 ⊂ Dλ(α◦2b)βθ(Î) ⊂ Dλ̂βθ(Ĵ),

with G0 ⊂ Ĵ ⊂ (1 + α◦2b+1)Ĵ ⊂ LG0(I) ⊂ I. Thus (23) holds with k2 = 0.
Otherwise, let s3 with 0 ≤ s3 < s2 be maximal so that Gs3 ⊂ K. Then,
again f s2−s3 : Gs3 → Gs2 is a first entry to J and so

Us3 ⊂ Dλ̂βθ(K̂)

where Gs3 ⊂ K̂ ⊂ (1+α◦2b+1)K̂ ⊂ K. If there is no previous visit to K then
as before

U0 ⊂ Dλ̂2βθ(Î),

with G0 ⊂ Î ⊂ (1 + α◦2b+2)Î ⊂ I. Setting k2 = 0 and we get (23) again.
Otherwise, let s4 with 0 ≤ s4 < s3 be maximal so that Gs4 ⊂ K. Then

Us4 ⊂ Dλ̂3βθ(L)

where L = LGs4
(K). By Lemma 11.2, (1 + ρ̂)L ⊂ K. By assumption, ρ̂ ≥ δ.

If s4 = 0 then we get (23) (with k2 = 0). So assume s4 > 0 and let s5,
0 < s5 ≤ s4 be minimal so that Gs5 ⊂ K, and let k2 = k(K; {Gj}s4

j=s5
). Note

that s5 ≥ s′1. Thus Crit(K, {Gj}s4
j=s5

) ⊂ Crit(J, {Gj}s1

j=s′1
), and k2 ≤ k0. By

the induction Statement (N, k − 1), we obtain

Us5 ⊂ D
λ̂3βµ̂

k2
N θ

(K̂ ′),

where K̂ ′ is an interval with Gs5 ⊂ K̂ ′ ⊂ (1+αN(ρ̂))K̂ ′ ⊂ K. As f s5 : G0 →
Gs5 is a first entry map to K, by Lemma 13.6, U0 ⊂ D

λ(αN (ρ̂))λ̂3βµ̂
k2
N θ

(Î) ⊂
D

λ̂b+3γµ̂
k1b
N−1µ̂

k2
N θ

(Î), where Î = LG0(K), and we have used (26). By Lemma

11.2, (1 + α̂)Î ⊂ (1 + ρ̂)Î ⊂ I. The inclusion (23) follows.

Case II: Gs1 ⊂ I1. For every point z ∈ U0 we will find an interval Kz with
G0 ⊂ Kz ⊂ (1 + α◦10b)Kz ⊂ I, and such that z ∈ DµN (δ)kθ(Kz). By taking

the union of these intervals Kz we will obtain the desired interval Î. So fix
z and let t ≤ s be minimal with Gt ⊂ I1 and such that Gj ∩ (I \ I1) = ∅ for
all j = t, . . . , s. If I is a terminating interval, then since Gs is a nice interval
and Gs ∩ PC(f) 6= ∅, Gs is also terminating and because the chain {Gj}s

j=0
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is disjoint, s = 0. So from now on we assume that I is non-terminating. Let
m̂ be minimal so that RI |I1 has a critical value in Im̂−1 \ Im̂. Note that
Gt, . . . , Gs1 are in the orbit of RI |I1. According to Lemma 11.1 there exists
an interval K such that either

1. f t(z) ∈ Dλ(δ)θ(K) and Gt ⊂ K ⊂ (1 + α◦1)K ⊂ I, or

2. there exists s2 with t ≤ s2 < s1 so that Gs2 ⊂ Im̂ and f s2(z) ∈
Dλ(δ)θ(K) with Gs2 ⊂ K ⊂ (1 + α◦1)K ⊂ Im̂.

Assume (1) holds. Then by definition of t, if ŝ1 < t is maximal so that
Gŝ1 ⊂ I then Gŝ1 ⊂ I \ I1. This means that we can repeat Case I verbatim
to I, {Gi}ŝ

i=0, {Ĝi}ŝ
i=0, and get

z ∈ Dλ(δ)µN−1(α◦5b+1)k1bµN (ρ̂)k2λ(α5b+1)b+3γθ(Kz),

where k0, k1, k2 are non-negative integers with k0 ≤ k − 1, k2 ≤ k0, and
k1 + k2 ≤ k0 +N , γ is as in (22), and Kz is an interval with G0 ⊂ Kz ⊂ (1 +
α◦5b+1)Kz ⊂ I. Again by the choice of µN and αN , it follows that µN(δ)k ≤
λ(δ)µN−1(α

◦5b+1)k1bµN(ρ̂)k2λ(α5b+1)b+3γ, and αN(δ) ≤ α◦5b+1. Hence we are
done if (1) holds.

Assume (2) holds. By definition of m̂, there exists a critical point c′ ∈
Crit(I, I1) ⊂ Crit(I, {Gi}s

i=0) such that c′ enters I − I1 before it enters
Im̂. This implies that Crit(Im̂; {Gi}s2

i=t) ⊂ Crit(I, {Gi}s
i=0) − {c}. Let k′3 =

k(Im̂; {Gi}ŝ
i=t) < k(I; {Gi}s

i=0). It is clear that k′3 ≤ k. By the induction as-
sumptionN−1 applying to Im̂, {Gi}ŝ

i=t, we obtain f t(z) ∈ D
µN−1(α◦1)k′3λ(δ)θ

(I ′),

where Gt ⊂ I ′ ⊂ (1+α◦2)I ′ ⊂ Im̂. If t = 0 then this completes the proof. So
assume t > 0 and let ŝ1 be the maximal integer with ŝ1 < t such that Gŝ1 ⊂ I.
Then Gŝ1 is contained in a return domain J to I with J ⊂ I\I1. Let ŝ′1 be the
minimal non-negative integer such that Gŝ′1

⊂ J , and let k0 = k(J, {Gj}ŝ1

j=ŝ′1
).

As before k0 ≤ k − 1. Let

k3 =
∑

c′∈Crit(f)−{c}

k(Lc′(I
m̂),Lc′(J)).

Then k0 + k3 ≤ k + N . Because Gj ∩ J = ∅ for all t ≤ j ≤ s2, for any
c′ ∈ Crit(f) − {c}, there is at most one interval in the chain {Gj}s2

j=t which
enters Lc′(J). By a similar argument as in Claim 1, we get

f t(z) ∈ D[µN−1(α◦2b)k3λ(α◦2b)]bθ(T̂ ),
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where T̂ is an interval with Gt ⊂ T̂ ⊂ (1 + α◦2b)T̂ ⊂ Im̂. Now applying
Case 1 to the chain {Gj}t

j=0, we obtain two integers 0 ≤ k1, k2 ≤ k0 with
k1 + k2 ≤ k0 +N such that z ∈ Dηθ(Kz), where

η = [µN−1(α
◦7b)]k1b[µN−1(α

◦2b)]k3bµ̂k2
N λ(α◦7b)b+3λ(α◦2b)bγ

≤ [µN−1(α
◦10b)k1+k3λ(α◦10b)5]bµN(δ)k2γ;

and Kz is an interval with G0 ⊂ Kz ⊂ (1+α◦7b)Kz ⊂ I. Again by the choice
of µN it follows that z ∈ DµN (δ)kθ(Kz).

Now we want to show that if during a pullback we visit an interval J ,
which is deep inside I, then we may get an improvement in angle. More
precisely:

Proposition 11.3. Let θ0 be as in Lemma 13.4. For each N , δ > 0, there
exist µ ∈ (0, 1), C ∈ (0, 1) with the following property. Let I 3 c0 be a nice
interval in Tδ, let J 3 c0 be an (at most) N-modal pullback of I, and let
t ∈ N be such that J = Compc0(f

−tI) ∩ R. Let x ∈ J ∩ PC(f), let s ≥ t be
an integer so that f s(x) is again in J and let

ν = #{0 ≤ j ≤ s− t; f j(x) ∈ J}.

Let s0 = 0 < s1 < · · · < sν be the times for which sj ≤ s − t and xsj
∈ J .

(where we write xi := f i(x)). Take the chain {Gi}s
i=0 defined by Gs = J , and

Gi 3 f i(x). Let

Us = Dθ(I) ∩ CGs and Ui = CompGi
f−(s−i)(Us).

Then
U0 ⊂ Dθ′(J),

where

θ′ = min

[
µk̂(I;J)

(
ν−1∏
j=0

Cρj

)
· θ , θ0

]
,

where k̂(I; J) is defined in equation (19) and ρj is so that

(1 + 2ρj)Lxsj
J ⊂ J.
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Moreover, there exist a universal (large) constant ξ > 0 and a positive
integer ν0 which depends on δ and N such that if

J ∈ Tξ, ν ≥ ν0

and if for each c 6= c0,

#{0 < j ≤ s; f j(x) ∈ Lc(J)} ≥ ν0,

then
θ′ = min [θ, θ0] .

Proof. There exists a non-negative integer q′ such that we can write

f s = Rq′

I ◦ f
t ◦ f sν = Rq′

I ◦ f
t ◦Rν

J .

Moreover, Rq′

I is the first landing of f t(xsq) ∈ I into J . The idea is that we
can use Proposition 11.2 to control the loss of angle caused by the pullback
through Rq′

I ◦ f t, while the remaining pullback (through Rν
J) gives a gain in

angle if J is small compared to I and q is large.
Let us first prove that there exist constants λ = λ(δ,N) > 0 and µ =

µ(δ) > 0 such that
Usν+t ⊂ Dλµk̂(I;J)θ(I). (27)

Of course we may assume that sν + t < s. Let s′ < s be the maximal integer
with f s′(x) ∈ I. By Lemma 13.5, using the assumption that I ∈ Tδ, we
obtain

Us′ ⊂ Dλθ(LGs′
(I)).

Note that (1 + 2δ)LGs′1
(I) ⊂ I. As the chain {Gj}s′

j=sν+t never enters the

interval J , by a similar argument as in the proof of Claim 1 of Lemma 11.3,
we obtain (27). Next, since J is an N -modal pullback of I and since I ∈ Tδ,
by Lemma 13.5, it follows that

Usν = CompGsν
f−tUsν+t ⊂ Dλ2µk̂(I;J)θ(J).

Notice that J ∈ Tδ′ , where δ′ > 0 is a constant depending on δ and N .
Pulling-back to Gsq−1 , Lemma 13.5 gives

Usν−1 ⊂ Dλ2κµk̂(I;J)θ(Lxsν−1
(J)), (28)
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where κ is a constant depending only on δ′. By assumption (1+ρq−1)Lxq−1(J) ⊂
J . So replacing Lxsν−1

(J) by J in (28) gives by Lemma 13.4 the following
gain in angle:

Usν−1 ⊂ Dθ∗(J) where θ∗ = min
(
λ2(Cρq−1)µ

k̂(I;J)θ, θ0

)
,

where C = C(δ′) > 0 is a constant. Repeating this argument ν − 1 times,
i.e., pulling-back successively to xsν−2 , . . . , xs0 , gives

U0 ⊂ Dθ′′(J)

where

θ′′ = min

(
λ2(

ν−1∏
j=0

Cρj)µ
k̂(I;J)θ, θ0

)
. (29)

Redefining the constant proves the first part of the proposition.
Let us now prove the second part of the proposition. So assume that

J ∈ Tξ with a large ξ and that f j(x) visits each interval L̂c(J) many times. As
we noted above, the constant C in (29) depends only on (a lower bound for)
ξ. Thus provided that ξ is sufficiently large, Cρj ≥ 2 for all j = 0, 1, . . . , ν−1.

Next define k̂ := k̂(I; J). Then

k(I; J) ≥ k̂/b or k(Lc(I),Lc(J)) ≥ k̂/b

for some critical point c 6= c0. In the first case, define K := J and in the
second case, defineK := Lc(J). By the (first part of the) proof of Lemma 9.6,
there exists a universal number δ′ > 0 so that for each x ∈ K,

(1 + δ′)k̂/bLx(K) ⊂ K. (30)

So for each x ∈ J which visits K before returning to J ,

(1 + δ′′)k̂/bLx(J) ⊂ J (31)

and by assumption there are at least ν ′0 = ν0−N of such visits. This implies

that µk̂(I;J)
(∏ν−1

j=0 Cρj

)
≥ 1 and completes the proof of the proposition.
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11.2 Proof of a n-step inclusion for puzzle pieces

The purpose of this subsection is to prove Theorem 11.1. So let In be the
enhanced nest defined in Subsection 8.1 around the critical point c0. Note
that In ∈ Tρ for each n, see Proposition 8.1.

First we show that if consecutive intervals from the collection In−M , . . . , In
are similar in size, then we get a polynomial-like extension of RIn with range
Dθ(In−M) ∩ CIn .

Proposition 11.4. For each k there exists an integer M so that for each
θ ∈ (0, π/2) one has the following. Assume that n ≤ χ and

|In−i|/|In−i+1| ≤ k for all i = 0, . . . ,M. (32)

Then the first return map RIn (restricted to PC(f)∩ In) extends to a quasi-
polynomial-like map with range Dθ(In−M) ∩ CIn and with domains inside
Dθ(In−M+1).

Proof. To prove this proposition, take a domain J of RIn and let s > 0 be
so that RIn|J = f s. Let Gs = In and {Gi}s

i=0 be the chain with G0 = J .
Moreover, let

Us = Dθ(In−M) ∩ CGs and Ui = CompGi
f−(s−i)(Us).

We need to show that U0 ⊂ Dθ(In−M+1). Consider w ∈ U0 and write wi =
f i(w).

As before, let pn−M be so that In−M+1 = Compc0 f
−pn−M (In−M)∩R. Let

s′1 < s be maximal so that s− s′1 > pn−M and so that Gs′1
⊂ In−M+1 and let

s1 < s′1 be maximal such that Gs1 ⊂ In−M+1. Because of the 4th assertion in
Lemma 8.2 at most 4 of the intervals Gs1 , . . . , Gs are contained in In−M+1.
(Note that s1 exists when M ≥ 2, because G0, . . . , Gs visits In−M+1 at least
2T (M−1) times.) By the following Claim 1, k̂(In−M ; In−M+1) ≤ K. Applying
Proposition 11.3 to I = In−M , J = In−M+1 and the chain {Gj}s

j=s′1
, we see

that there exist constants µ,C1 ∈ (0, 1) such that ws′1
∈ DµKC1θ(In−M+1),

and thus by Lemma 13.5

ws1 = DC2θ(I
′
n−M+1),

where C2 ∈ (0, 1) is a constant and I ′n−M+1 = LGs1
(In−M+1) (which is ρ-well

inside In−M+1).
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Claim 1: There exists K depending only on k so that k(In−M , In−M+1) ≤ K
and k(Lc(In−M),Lc(In−M+1)) ≤ K for each c 6= c0.
Proof of Claim 1: By the real bounds, if k(In−M , In−M+1) is large then
|In−M |/|In−M+1| is large, contradicting (32). So assume that c 6= c0 and that
k(Lc(In−M),Lc(In−M+1)) is large. Then by Lemma 9.6 (or Lemma 9.3)

|Lc0Lc(In−M)|/|Lc0Lc(In−M+1)|

is large. Note that by construction

In−M ⊃ Lc0Lc(In−M) ⊃ Γ(In−M) ⊃ In−M+1

and
In−M+1 ⊃ Lc0Lc(In−M+1) ⊃ Γ(In−M+1) ⊃ In−M+2.

So if k(Lc(In−M),Lc(In−M+1)) were large, then either |In−M |/|In−M+1| or
|In−M+1|/|In−M+2| is large (or both are large), contradicting (32) and thus
completing the proof of Claim 1.

Now we distinguish two cases. In the first case we shall use a method
similar to one used previously in [21].

Case 1: ws1 /∈ Dθ(In−M+1). Because of this and ws1 ∈ DC2θ(I
′
n−M+1),

Part 3 of Lemma 13.4 implies that there exists a constant C so that

ws1 ∈ DCθ
|Gs1 |

|In−M+1|
(Gs1).

Now G1, . . . , Gs are disjoint and because Gs = In belongs to Tρ, we get from
Lemma 13.5 that

w1 ∈ DC′θ
|Gs1 |

|In−M+1|
(G1)

where C ′ depends on C and ρ.
Claim 2: There exists κ > 0 (depending only on k) so that |Gs1|/|In| ≥ κ.
Proof of Claim 2: f s−s1 : Gs1 → Gs := In is by construction at most a 3-rd
iterate of the first return map to In−M+1. Hence if |Gs1 |/|Gs| would be small,
then the derivative of RIn−M+1

would be large at some point (in one of the
domains visited by Gs1 , . . . , Gs). Because In−M+1 ∈ Tρ, and because of the
last part of Lemma 9.4 this would imply that one of the domains of RIn−M+1

is small compared to In−M+1. But then, by Proposition 8.1, In−M+1 would
have a small child. But this contradicts the assumption that (32) holds for
i = n−M + 1, and completed the proof of Claim 2.
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From this claim we get that

w1 ∈ DC′′θ |In|
|In−M+1|

(G1)

where C ′′ depends on ρ and k. By part 1 of Lemma 13.4 this gives

w1 ∈ D
C′′θ |In|

|In−M+1|
|If

n−M+1
|

|G1|

(If
n−M+1),

where If
n−M+1 is the pullback of In−M by fpn−M−1 containing f(c0). Since

In−M+1 ∈ Tρ, Lemma 13.2 implies

w ∈ D
Ĉθ

|In|
|In−M+1|

|If
n−M+1

|
|G1|

(In−M+1).

Note that

Ĉθ
|In|

|In−M+1|
|If

n−M+1|
|G1|

≥ Ĉ

K
θ
|In−M+1|`−1

|In|`−1
>> θ,

where ` is the order of the critical point c0. Hence w ∈ Dθ(In−M+1). So the
lemma is proved if we are in Case 1.

Case 2: ws1 ∈ Dθ(In−M+1). Then let s2 < s1 be maximal so that
s1 − s2 > pn−M+1 and so that Gs2 ⊂ In−M+2. Then again at most 4 of the
intervals Gs2 , . . . , Gs are contained in In−M+2 because Gj, j = s1, . . . , s − 1
never enters In−M+1. As before ws2 /∈ DC2θ(I

′
n−M+2) and there are two cases.

If ws2 /∈ Dθ(In−M+2), the arguments in Case 1 apply (replacing s, s1, In−M

by s1, s2, In−M+1). By the choice of s2 we get exactly as in Claim 2 that
|Gs2|/|In| ≥ κ. So we get w ∈ Dθ(In−M+1).

Alternatively, ws2 ∈ Dθ(In−M+2). Repeat all this, say j times, until we
have to stop because either we fall in Case 1, or until j = M−1. In the former
case w ∈ Dθ(In−M+1) and in the latter case wsj

∈ Dθ(In) and sj = 0.

Now we are ready to prove the Main Theorem of this section:

Theorem 11.1 There exists θ > 0 and n0 so that for all n with χ ≥ n ≥ n0,
In ⊂ Dθ(In−n0).

Proof. Let θ0 be as in Lemma 13.4, and fix θ = min(θ0, σ). So I0 ⊂ Dθ(I0).
We shall choose n0 in the proof below. Note that for any choice of n0, the
first induction step holds: we have In ⊂ Dθ(In−n0) for n = n0. So assume by
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induction that In ⊂ Dθ(In−n0), and show that In+1 ⊂ Dθ(In−n0+1). Choose
pn so that In+1 = Compc0 f

−pn(In) ∩ R and let {Gj}pn

j=0 be the chain with
Gpn = In and G0 = In+1.

Let ξ be the constant as in Proposition 11.3. By Proposition 8.1, there
exists a constant k0 such that if |Ii|/|Ii+1| ≥ k0, then Ii+2 ∈ Tξ. Let M =
M(k0) be the constant determined by Proposition 11.4.

Claim: There exists a constant K > 1 such that if n0 ≥ KM and if there
exists i ∈ {n − n0, . . . , n − n0 + M} for which |Ii|/|Ii+1| ≥ k0 then In+1 ⊂
Dθ(In−n0+1).
Proof of Claim: By the induction assumption In ⊂ Dθ(In−n0) ∩ CIn and
by construction In+1 = Compc0 f

−pn(In). To prove this claim we shall apply
Proposition 11.3. Let i′ be minimal such that |Ii′|/|Ii′+1| ≥ k0. Then J :=
Ii′+1 is in Tξ. Note that J is an N ′-modal pullback of I := In−n0 where

N ′ ≤ N̂n−n0−i+1 ≤ N̂n0−M and where N̂ depends on b (and is determined
by the construction of the intervals I0, I1, . . . ). Also note that #{0 < j <
pn; f j(In+1) ⊂ J} and #{0 < j < pn; f j(In+1) ⊂ Lc(J)}, c 6= c0, are all at
least 2n0−M−1 (by Lemma 8.2), and hence is larger than the constant ν0(ρ,N

′)
as in Proposition 11.3 provided that n0/M is large. Thus applying the second
part of Proposition 11.3, gives In+1 ⊂ Dθ′(Ii′+1) with θ′ ≥ min(θ, θ0) = θ.
This proves the claim.

By the previous claim, we may assume that |Ii|/|Ii+1| ≤ k0 for each
i = n − n0, . . . , n − n0 +M . Therefore, by Proposition 11.4 the first return
map to In−n0+M extends to a quasi-polynomial-like map with range equal to
Dθ(In−n0) ∩ CIn−n0+M

and each of its domains is contained in Dθ(In−n0+1).
But since fpn : In+1 → In can be written as a composition of this first return
map, In ⊂ Dθ(In−n0) implies that In+1 ⊂ Dθ(In−n0+1).

11.3 A one-step inclusion for puzzle pieces

Next we prove the following

Proposition 11.5. There exists θ > 0 such that for each n with 0 ≤ n ≤ χ−1
and for each x ∈ PC(f) ∩ In,

Lx(In) ⊂ Dθ(In).

Before proving this proposition we need some lemmas. Note that if U is
a successor of V other than the first one, then RV (U) ∩ U = ∅, and thus for
any return domain P ⊂ U to U , RU |P = Rq

V with q ≥ 2.
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Lemma 11.4. There exist N and θ1 > 0 such that for each 0 ≤ n ≤ χ − 3
there exists m ∈ {n, n + 3} such that for each x ∈ PC(f) ∩ Im one has
Compx Dom(RN

Im
) ⊂ Dθ1(Im).

Proof. By Theorem 11.1, there exists a constant θ ∈ (0, π/2) such that In ⊂
Dθ(In−n0) for every 0 ≤ n ≤ χ.

Let ξ be a constant as in Proposition 11.3. By Claim 1 in proposi-
tion 11.4, there exists a positive integer k̂ (depending on n0) such that if
k̂(In−n0 ; In) ≥ k̂, then |In|/|In+1| is large and thus by Proposition 8.1 (3),
In+2 ∈ Tξ. By choosing ξ larger if necessary we may assume that RIn+2 has
a quasi-polynomial-like extension with range Dθ(In+2).

Let us first consider the case that k̂(In−n0 ; In) ≥ k̂. Let m = n + 3.
Note that for every y ∈ Im, the orbit y, f(y), . . . , RIm(y) visits each of the
sets L̂c(Im−1) for every critical point c. Let x ∈ Im ∩ PC(f), let N ≥
100 be a large positive integer, and let y = R10

Im
(x). Applying the second

part of Proposition 11.3 to I = In−n0 and J = Im−1 we see that provided
that N is sufficiently large, we visit every critical landing domain of RIm−1

many times. Hence the pull back of Im ⊂ Dθ(In−n0) ∩ CIm along the orbit
{y, f(y), . . . , RN−10

Im
(y)} is contained in Dθ(Im−1). As we can express R10

Im
as

Rq
Im−1

◦ fpm−1 with q ≥ 0, and RIm−1 has a quasi-polynomial-like extension

with range Dθ(Im−1), it follows that Compx(Dom(RN
Im

)) ⊂ Dθ1(Im).

Now assume that k̂(In−n0 ; In) ≤ k̂. Let m = n. Let t = pn−1+pn−2+· · ·+
pn−n0 (so that f t(In) = In−n0). For any x ∈ In∩PC(f) and any N sufficiently
large (N ≥ 6), if s is such that R6

In
(x) = f s(x), then s ≥ t and so by the first

part of Proposition 11.3, we have Compx Dom(RN
In

) ⊂ Dθ1(In).

Lemma 11.5. There exists a constant µ ∈ (0, 1) such that for each N ≥ 2,
each θ > 0, and each 0 ≤ n ≤ χ − 2, if

⋃
x∈PC(f)∩In

Compx Dom(RN
In

) ⊂
Dθ1(In) then

⋃
x∈PC(f)∩In+1

Compx Dom(RN−1
In+1

) ⊂ Dµθ(In+1).

Proof. As before, let pn be so that fpnIn+1 = In. Take x ∈ In+1 ∩ PC(f),
let U = Compx Dom(RN−1

In+1
) and let s be so that RIn+1 |U = f s. Then

U = Compx f
−s(In+1) = Compx f

−s−pn(In). Let k be so that f s|fpn(U) =
Rk

In
. Because of Lemma 8.2, r̂(In) ≤ 1

2T−1 r(In+1). Hence k ≥ 2T−1(N − 1)
and so k ≥ N . Therefore the assumption in the lemma implies fpnU ⊂
Dθ(In). Hence U = Compx f

−pnfpnU ⊂ Compx f
−pn(Dθ(In)) ⊂ Dµθ(In+1)

(by Lemma 13.5).

Proof of Proposition 11.5. The two previous lemmas imply Proposition 11.5.
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Proof of Proposition 8.3. Let 0 ≤ n ≤ χ − 1. By construction, there exists
a positive integer ν = νn such that f νn : B(In) → In is a proper map with
bounded degree and f ν(A(In)) ⊂ Lfν(c)(In). From Lemma 11.5 we have

Lfν(c)(In) ⊂ Dθ(In).

Since In ∈ Tρ (and the pullback only meets the critical point at most b2

times, see Lemma 8.1), we get

A(In) ⊂ Dλθ(B(In)) (33)

and
diam(AIn)

|AIn|
≤ C(θ) max

{
1,

(
diam(In)

|In|

)1/2
}
,

where we use that since In ∈ Tρ, f
r′(Lfν(c)(In)) is not small compared to In,

Koebe on the diffeomorphic pieces and Lemma 13.1. (Here r′ is the return
time of Lfν(c)(In) to In.) As B(In) ∈ Tρ′ , it also follows that there exists a
topological disc A′(In) ⊃⊃ A(In) so that mod (A′(In) \ A(In)) > ξ and so
that (A′(In) \ A(In)) ∩ PC(f) = ∅, where ξ > 0 is a constant. Let p′n be
such that fp′n(In+1) = In. Then fp′n : In+1 → A(In) is a proper map with
bounded degree. Set I′n+1 = Compc0(f

−p′nA′(In)). Then I′n+1 − In+1 is an
annulus disjoint from PC(f) and its modulus is bounded away from zero.
Moreover,

diam(In+1)

|In+1|
≤ C(θ) max

{
1,

(
diam(In)

|In|

)1/2
}
.

From this inequality, and from the assumption that I0 ⊂ Dσ(I0) it follows
that diam(In)/|In|, 0 ≤ n ≤ χ, is uniformly bounded from above.

12 Appendix 1: A criterion for the existence

of quasiconformal extensions

In this appendix, we shall prove a result which we used to prove the qua-
siconformality of certain maps. This result is inspired by Smania [40] and
Heinonen and Koskela [13].
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Recall that a topological disk P has ε-bounded geometry if there is a point
x ∈ P such that B(x, ε diam(P )) ⊂ P .

QC-Criterion. For any constants 0 ≤ k < 1 and ε > 0 there exists a con-
stant K with the following property. Let φ : Ω → Ω̃ be a qc homeomorphism
between two Jordan domains. Let X be a subset of Ω consisting of pairwise
disjoint topological disks. Assume that the following hold:

1. if P is a component of X, then both of P and φ(P ) have ε-bounded
geometry, and moreover

mod(Ω− P ) ≥ ε, mod(Ω̃− φ(P )) ≥ ε;

2. |∂̄φ| ≤ k|∂φ| holds a.e. on Ω−X.

Then there exists a K-qc map ψ : Ω → Ω̃ such that ψ = φ on ∂Ω.

We shall prove a slightly stronger result. For a homeomorphism φ : Ω →
Ω̃ and for x ∈ Ω, let

H(φ, x) = lim inf
r→0

sup|y−x|=r |φ(y)− φ(x)|
inf |y−x|=r |φ(y)− φ(x)|

∈ [1,∞].

Lemma 12.1. Let H > 1 and let ε ∈ (0, 1) be constants. Let φ : Ω → Ω̃
be an orientation-preserving homeomorphism between two Jordan domains.
Let X0, X1 be disjoint subsets of Ω such that m(X0) = m(φ(X0)) = 0, where
m denotes the 2-dimensional Lebesgue measure. Assume that the following
hold:

1. for each x ∈ Ω− (X0 ∪X1), we have

H(φ, x) < H;

2. for each x ∈ X0, we have

H(φ, x) <∞;

3. there exists a family P of pairwise disjoint topological disks which form
a covering of X1, such that for each P ∈ P, we have

• both P and φ(P ) have ε-bounded geometry;
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•
mod(Ω− P ) ≥ ε, mod(Ω̃− φ(P )) ≥ ε.

Then there exists a K-qc homeomorphism ψ : Ω → Ω̃ such that ψ|∂Ω = φ|∂Ω,
where K ≥ 1 is a constant depending only on H and ε.

Proof. For any four points a, b, c, d which lie in an anticlockwise order on
the ∂Ω, denote by Γ(a, b; c, d) the family of rectifiable curves which join the
arc ab and cd and lie inside Ω, and let λ(a, b; c, d) the extremal length of
this family. Similarly we define Γ̃(ã, b̃; c̃, d̃) and λ̃(ã, b̃; c̃, d̃). It is a basic fact
that we only need to show that Γ(a, b; c, d) is bounded away from zero when
Γ̃(ã, b̃; c̃, d̃) = 1. See [1].

By means of the Riemann mapping theorem and Möbius transformations,
we may assume that Ω = Ω̃ = D, and also that a = ã = 1, b = b̃ = i,
c = c̃ = −1. Then d̃ = −i. Note that by the Koebe distortion theorem, the
image of P under a conformal map defined on Ω has ε′-bounded geometry,
where ε′ > 0 is a constant depending only on ε. To bound λ(a, b; c, d) from
below, we shall define an open covering E of the unit disk with the following
properties:

•
∑

E∈E χE ≤ C,

•
∑

E∈E diam(φ(E))2 ≤ C,

• for each E ∈ E , either E ∈ P , or E is a round disk such that 2E ⊂ D,

where C is a constant depending only on ε.
Let us prove that this covering completes the proof. For any P ∈ P ,

choose a point x = xP ∈ P such that the round disk B(x, ε diamP ) is con-
tained in P . We denote by P ′ this round disk and also set P̂ = B(x, 2 diamP ).
For any E ∈ E − P , let E ′ = E and Ê = 2E. Note that for each E ∈ E and
for each rectifiable curve γ which joins two points in ∂D, if γ ∩ E 6= ∅, then
the length of γ ∩ Ê is at least ε′ diam(E), where ε′ > 0 depends only on ε.
Now define

ρ =
∑
E∈E

aEχÊ,

where

aE =
diam(φ(E))

diam(E)
.

94



Then, for each γ ∈ Γ(1, i;−1, d), we have∫
γ

ρ(z)|dz| =
∑
E∈E

aE

∫
γ

χÊ|dz| ≥
∑

E;E∩γ 6=∅

diam(φ(E))
length(γ ∩ Ê)

diam(E)

≥ ε′
∑

E;E∩γ 6=∅

diamφ(E) ≥
√

2ε′.

On the other hand,∫
ρ2dxdy =

∫
(
∑
E∈E

aEχÊ)2 ≤ C ′
∫

(
∑
E∈E

aEχE′)2

≤ C ′
∫ ∑

E∈E

a2
EχE′

∑
E∈E

χE′ ≤ C ′
∫ ∑

E∈E

a2
EχE′

∑
E∈E

χE

≤ C ′C

∫ ∑
E∈E

a2
EχE′ = C ′C

∑
E∈E

a2
Em(E ′)

≤ C ′C
∑
E∈E

a2
Em(E) = C ′C

∑
E∈E

diam(φ(E))2 m(E)

diam(E)2

≤ C ′′
∑
E∈E

diam(φ(E))2 ≤ C ′′C,

where in the second inequality we use the following lemma, which is a con-
sequence of the Hardy-Littlewood maximal function theory. See [3].

Lemma 12.2. For each constant τ > 1, there is a constant C with the
following property. Let {Bi}i∈Λ be a family of Euclidean disks, and let ai ≥ 0
be constants. Then ∫

(
∑

i

aiχτBi
)2 ≤ C

∫
(
∑

i

aiχBi
)2.

In particular, we have an upper bound on
∫
ρ2. Together with the lower

bound on Lρ(Γ(1, i;−1, d)), this implies that λ(1, i;−1, d) is bounded away
from zero.

It remains to construct the covering E . It will be the union of three
families of topological disks:

E = A ∪ B ∪ P ,
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where A, B will be coverings of X0 and Ω −X0 ∪X1 respectively, and P is
as in the lemma.

Let us first define B. For each x ∈ Ω − X0 ∪ X1, there is a rx > 0
such that φ(B(x, rx)) has H−1-bounded geometry. Moreover, we can assume
that B(x, 2rx) ⊂ D. By Besicovic’s theorem, we can find countably many
xi ∈ Ω−X0 ∪X1 such that

•
⋃

iB(xi, rxi
) ⊃ Ω−X0 ∪X1;

•
∑

i χB(xi,rxi )
≤ C, where C is a universal constant.

We define B to be the family of the balls B(xi, rxi
).

To define the covering A, we first decompose the set X0 into countably
many disjoint subsets Xn

0 := {x ∈ X0 : n ≤ H(φ, x) < n+ 1}. For n ∈ N, let
us fix a small neighborhood of Un of Xn

0 such that

m(Un) ≤ (n+ 1)−4, m(φ(Un)) ≤ (n+ 1)−4.

For each x ∈ Xn
0 , we choose a small rx > 0 such that B(x, rx) ⊂ U ,

B(x, 2rx) ⊂ D; and such that φ(B(x, rx)) has (n + 1)−1-bounded geometry.
Let Dn denote the family of such Euclidean disks B(x, rx). Then D =

⋃
nDn

is a covering of X0. Apply Besicovic’s theorem once again, we choose a
countable subfamily A such that

•
⋃

A∈AA ⊃ X0;

•
∑

A∈A χA ≤ C, where C is a universal constant as before.

Note that∑
A∈A

diam(φ(A))2 =
∞∑

n=1

∑
A∈A∩Dn

diam(φ(A))2 ≤
∑

n

∑
A∈A∩Dn

(n+ 1)2m(φ(A))

≤
∞∑

n=1

C(n+ 1)2m(φ(
⋃

D∈Dn

D)) ≤ C
∞∑

n=1

(n+ 1)2m(φ(Un))

≤ C

∞∑
n=1

1

(n+ 1)2
≤ C.

Note also that ∑
B∈B

diam(φ(B))2 ≤ H2
∑
B

m(B) ≤ CH2,
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and ∑
P∈P

diam(φ(P ))2 ≤
∑

P

m(φ(P ))/ε2 ≤ 1/ε2.

Proof of QC-Criterion. Let X0 be the subset of Ω−X0 consisting of points
z at which φ is not differentiable, and let X1 = X. It follows from the
assumption (2) that H(φ, z) ≤ (1 + k)/(1 − k). Since φ is qc, H(φ, z) < ∞
for any z ∈ Ω and moreover X0 and φ(X0) both have measure zero. Applying
Lemma A.1 completes the proof.

13 Appendix 2: Some basic facts about Poincaré

discs

We say that a real-symmetric holomorphic map g is in the Epstein class if for
any interval J ⊂ R for which g : J → g(J) is a diffeomorphism, g−1 : g(J) →
J extends to a univalent map defined on Cg(J).

Lemma 13.1 (Schwarz Inclusion). Let f be in the Epstein class. Let
J ⊂ R and f s : J → f s(J) be diffeomorphic and θ ∈ (0, π). Then the
Schwarz inclusion holds:

U := CompJ f
−s(Dθ(f

sJ)) ⊂ Dθ(J).

Proof. This simply follows from the fact that (i) if dP is the Poincaré metric
on CJ then the set of points z with dP (z, J) = c lies on the boundary of two
(symmetric) circles with real trace J , (ii) f−s maps Cfs(J) univalently into
CJ and (iii) from the Schwarz inclusion theorem.

Lemma 13.2. Let ` ≥ 2 be even and P (z) = z`.

• For each A > 1 there exists λ ∈ (0, 1) such that for each θ ∈ (0, π/2),

P−1(Dθ([−A, 1])) ⊂ Dλθ([−1, 1]).

• For each δ > 0 there exists δ′ > 0 and λ ∈ (0, 1) so that for each
θ ∈ (0, π/2) one has the following. Let G1, I be a real intervals with
(1 + δ)G1 ⊂ I and let G0 be a component of P−1(G1) ∩ R. Then

CompG0
P−1(Dθ(G1)) ⊂ Dλθ(G

′)

where G′ is an interval with G0 ⊂ G′ ⊂ (1+δ′)G′ ⊂ CompG0
P−1(I)∩R.
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Proof. The first part was proved in Lemma 7.4 for [37] for ` = 2, and the
extension for ` > 2 follows then from the appendix of [17]. The second part
immediately follows from the first part.

Lemma 13.3. Let ` ≥ 2 be an even integer and let P (z) = z`. For any
A > 0 and any θ ∈ (0, π) there exists θ′ ∈ (0, π) such that

P−1(Dθ((−A, 1))) ⊃ Dθ′((−1, 1)).

Part one of the next lemma shows that we improve the angle if we are
allowed to replace the base by a larger base. Part two and three of this lemma
will allow use to capture ‘an escaping part’ by a Poincaré domain based on
a suitable smaller base.

Lemma 13.4. One can compare Poincaré discs in the following ways:

1. There exists θ0 such that for each A > 1 and each θ > 0,

Dθ([−1, 1]) ⊂ Dmin(θA/2,θ0)([−A,A]).

2. For each λ ∈ (0, 1) and δ > 0 there exists λ′ ∈ (0, 1) such that for each
θ > 0,

Dλθ([−1, 1]) \Dθ([−1− δ, 1 + δ]) ⊂ Dλ′θ([−1− δ,−1]).

3. For each λ ∈ (0, 1) and δ > 0 there exists λ′ ∈ (0, 1) such that for each
interval J ⊂ [−1, 1] and each θ > 0,

Dλθ([−1, 1]) \Dθ([−1− δ, 1 + δ]) ⊂ Dλ′θ|J |(J).

Proof. The first part holds because for θ ∈ (0, π/2), the upper part of
∂Dθ([−1, 1]) is a circle with centre i/ tan(θ) and of radius 1/ sin(θ), so its
boundary intersects the imaginary axis in

i

tan(θ)
+

i

sin(θ)
=

i

sin(θ)
[cos(θ) + 1] ,

while the upper part of ∂DAθ/2([−A,A]) is a circle with centre iA/ tan(θA/2)
of radius A/ sin(θA/2), so it intersects the positive imaginary axis

Ai

tan(θA/2)
+

Ai

sin(θA/2)
=

Ai

sin(θA/2)
[cos(θA/2) + 1] .
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When θA is small, A/ sin(θA/2) ≥ 1.5/ sin(θ), so the inclusion holds.
So let us prove the second and third part. The upper-part of Dλθ([−1, 1])

is (part of) a ball centered at A = i/ tan(λθ) and radius r1 = 1/(sin(λθ))
and the upper-part of Dθ([−1 − δ, 1 + δ]) is (part of) a ball centered at
B = i(1 + δ)/ tan(θ) and radius r2 = (1 + δ)/(sin(θ)). Note that we can
assume that λ(1+δ) < 1 (otherwise Dλθ([−1, 1]) contains Dθ([−1−δ, 1+δ])).
To compute the intersection points of these balls, note that the upperparts
of these balls are given by

x2 + (y − 1
tan(λθ)

)2 = 1
sin2(λθ)

and y > 0

x2 + (y − 1+δ
tan(θ)

)2 = (1+δ)2

sin2(θ)
and y > 0.

Subtracting these equations and rearranging, gives

y =
δ(2 + δ)

2
(

1
tan(λθ)

− 1+δ
tan(θ)

) ≥ Lθ

provided θ > 0 is small where L > 0 is a constant. From this the second and
third part of the lemma easily follow.

In this paper we often have to pullback a Poincaré domain along a chain
is contained in a Poincaré domain whose angle is not too small. For the
remainder of this appendix assume that f is in the class Pτ,σ

b defined in
Section 4. The constants appearing in the following two lemmas depend on
b, τ and σ.

Lemma 13.5. For each δ > 0 and N ∈ N there exists λ ∈ (0, 1) with the
following property. Let {Hj}s

j=0 and {H ′
j}s

j=0 be two chains with Hj ⊂ H ′
j

for all j. Assume that the chain {H ′
j}s

j=0 has order ≤ N and that |f s(H0)| ≥
δ|Hs|. Let θ ∈ (0, π), V = Dθ(Hs) and U = CompH0

(f−sV ). Then

U ⊂ Dλθ(H0).

Moreover, for every δ′ > 0 there exists λ′ > 0 the following holds. Let
{Ĥj}s

j=0 be a chain with Ĥj ⊂ Hj. Let T be the component of f s(H0) \ Ĥs

containing a boundary point of Hs in its closure and assume that |T | ≥ δ′|Hs|.
Then for each θ > 0,

Û = CompĤ0
f−sDθ(Ĥs) ⊂ Dλ′θ(H

′)

where H ′ is an interval with Ĥ0 ⊂ H ′ ⊂ (1 + λ′)H ′ ⊂ H0.
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Proof. Let us prove the first assertion. Let 0 ≤ s1 < s2 < · · · < sk < s
be all the integers such that H ′

si
contains a critical point. Then by Schwarz,

f sk+1(U) ⊂ Dθ(Hsk+1). By Koebe, |f sk+1(H0)|/|Hsk+1| is bounded away from
zero, and in particular, so is |f(Hsk

)|/|Hsk+1|. Let Ω0 be the component of
the domain of f which contains Hsk

and Ω = f(Ω0). Then f |Ω0 can be
written as P ◦ ϕ, where P (z) = z2 and ϕ is a real symmetric conformal
map defined on Ω0. By Lemma 13.2, ϕ(f skU) ⊂ Dλθ(ϕHsk

). By the τ -
extendibility condition, ϕ extends to a conformal map onto a topological
disk Ω′ so that mod(Ω′−Ω) is bounded away from zero. Applying the Koebe
distortion theorem, we get Usk

⊂ Dλ′θ(Hsk
). Repeating the argument and

redefining the constant, we complete the proof.
To prove the second assertion, we only need to consider the case that Ĥs

contains Hs \ f s(H0) and Ĥs ∩ f s(H0) is not small compared to f s(H0). By
the first part of this lemma, Û ⊂ Dλ′θ(Ĥ0). Since Ĥ0 is well-inside H0 the
second assertion of the lemma follows.

Lemma 13.6. For each δ > 0 there exists δ′ > 0 and λ ∈ (0, 1) such that the
following holds. Let I be a nice interval, J a domain of the first entry map RI

and s an integer so that RI |J = f s. Let {Hj}s
j=0 be a chain with (1+δ)Hs ⊂ I

and H0 ⊂ J . Then there exists an interval H ′ with H0 ⊂ H ′ ⊂ (1+δ′)H ′ ⊂ J
and so that

CompH0
f−s(Dθ(Hs)) ⊂ Dλθ(H

′).

Proof. Let {Gj}s
j=0 and {G′

j}s
j=0 be the chains with Hj ⊂ Gj ⊂ G′

j and
G′

s = I and Gs = (1 + δ/2)Hs. Let H ′ = G0. Then the order of the chain
{G′

j}s
j=0 is bounded from above. Moreover, f s(G0) contains a component of

Hs − Gs and thus its length is comparable to that of Gs. By Koebe H ′ is
well inside G′

0 = J and by the previous lemma, U ⊂ Dλθ(H
′).
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[23] R. Mañé, P. Sad and D. Sullivan. On the dynamics of rational maps.
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