Rigidity for real polynomials

O. Kozlovski, W. Shen, S. van Strien *

June 6, 2003

Abstract

We prove the topological (or combinatorial) rigidity property for real polynomials with all critical points real and non-degenerate, which completes the last step in solving the density of Axiom A conjecture in real one-dimensional dynamics.

Contents

1 Introduction 3
1.1 Statement of Results 3
1.2 Organization of this work 6
1.3 General terminologies and notations 6
2 Density of Axiom A follows from the Rigidity Theorem 8
3 Derivation of the Rigidity Theorem from the Reduced Rigid- ity Theorem 11
4 Statement of the Key Lemma 14
5 Yoccoz puzzle 17
5.1 External angles 17
5.2 Yoccoz puzzle partition 20
5.3 Spreading principle 23

[^0]6 Reduction to the infinitely renormalizable case 24
6.1 A real partition 26
6.2 Correspondence between puzzle pieces containing post-renorm- alizable critical points 28
6.3 Geometry of the puzzle pieces around other critical points 30
6.4 Proof of the Reduced Rigidity Theorem from rigidity in the infinitely renormalizable case 43
7 Rigidity in the infinitely renormalizable case (assuming the Key Lemma) 44
7.1 Properties of deep renormalizations 45
7.2 Compositions of real quadratic polynomials 48
7.3 Complex bounds 49
7.4 Puzzle geometry control 51
7.5 Gluing 58
8 Proof of the Key Lemma from Upper and Lower Bounds 61
8.1 Construction of the enhanced nest 61
8.2 Properties of the enhanced nest 64
8.3 Proof of the Key Lemma (assuming upper and lower bounds). 66
9 Real bounds 67
10 Lower bounds for the enhanced nest 71
11 Upper bounds for the enhanced nest 73
11.1 Pulling-back domains along a chain 74
11.2 Proof of a n-step inclusion for puzzle pieces 87
11.3 A one-step inclusion for puzzle pieces 90
12 Appendix 1: A criterion for the existence of quasiconformal extensions 92
13 Appendix 2: Some basic facts about Poincaré discs 97

1 Introduction

1.1 Statement of Results

It is a long standing open problem whether Axiom A (hyperbolic) maps are dense in reasonable families of one-dimensional dynamical systems. In this paper, we prove the following.

Density of Axiom A Theorem. Let f be a real polynomial of degree $d \geq 2$. Assume that all critical points of f are real and that f has a connected Julia set. Then f can be approximated by hyperbolic real polynomials of degree d with real critical points and connected Julia sets.

Here we use the topology given by convergence of coefficients. Recall that a polynomial is called hyperbolic if all of its critical points are contained in the basin of an attracting cycle or infinity. A polynomial with a connected Julia set cannot have critical points contained in the attracting basin of infinity.

The quadratic case was solved earlier by Graczyk-Swiatek and Lyubich, [10, 20] (see also [38]).

We have required that the polynomial f has a connected Julia set, because such a map has a compact invariant interval in \mathbb{R}, and thus is of particular interest from the viewpoint of real one-dimensional dynamics. In fact, our method shows that the theorem is still true without this assumption: given any real polynomial f with all critical points real, we can approximate it by hyperbolic real polynomials with the same degree and with real critical points (which may have disconnected Julia sets).

In a sequel to this paper we shall show that Axiom A maps on the real line are dense in the C^{k} topology (for $k=1,2, \ldots, \infty, \omega$), and discuss connections with the Palis conjecture [34] and connections with previous results [12], [7], [16], [37] and also with [2].

Our proof is through the quasi-symmetric rigidity approach suggested by Sullivan [41].

For any positive integer $d \geq 2$, let \mathcal{F}_{d} denote the family of polynomials f of degree d which satisfy the following properties:

- the coefficients of f are all real;
- f has only real critical points which are all non-degenerate;
- f does not have any neutral periodic point;
- the Julia set of f is connected.

Rigidity Theorem. Let f and \tilde{f} be two polynomials in \mathcal{F}_{d}. If they are topologically conjugate as dynamical systems on the real line \mathbb{R}, then they are quasiconformally conjugate as dynamical systems on the complex plane \mathbb{C}.

In fact, if \mathcal{F}_{d}^{\prime} is the family of real polynomials f of degree d with only real critical points of even order, then the methods in this paper can be used to prove the following:

Rigidity Theorem'. Let f and \tilde{f} be two polynomials in \mathcal{F}_{d}^{\prime}. If f and \tilde{f} are topologically conjugate as dynamical systems on the real line \mathbb{R}, and corresponding critical points have the same order and parabolic points correspond to parabolic points, then f and \tilde{f} are quasiconformally conjugate as dynamical systems on the complex plane \mathbb{C}.

For real polynomials f and \tilde{f} in \mathcal{F}_{d} which are topologically conjugate on the real line, it is not difficult to see that they are combinatorially equivalent to each other in the sense of Thurston, i.e., there exist two homeomorphisms $H_{i}: \mathbb{C} \rightarrow \mathbb{C}$ which are homotopic rel $P C(f)$, where $P C(f)$ denote the union of the forward orbit of all critical points of f, such that $\tilde{f} \circ H_{1}=H_{0} \circ f$. This observation reduces the Rigidity Theorem to the following.

Reduced Rigidity Theorem. Let f and \tilde{f} be two polynomials in the class \mathcal{F}_{d}. Assume that f and \tilde{f} are topologically conjugate on the real line via a homeomorphism $h: \mathbb{R} \rightarrow \mathbb{R}$. Then there is a quasisymmetric homeomorphism $\phi: \mathbb{R} \rightarrow \mathbb{R}$ such that for any critical point c of f and any $n \geq 0$, we have

$$
\phi\left(f^{n}(c)\right)=h\left(f^{n}(c)\right) .
$$

Like the previous successful approach in the quadratic case, we exploit the powerful tool, Yoccoz puzzle. Also we require a "complex bounds" theorem to treat infinitely renormalizable maps. The main difference is as follows. In the proof of $[10,20]$, a crucial point was that quadratic polynomials display decay of geometry: the moduli of certain dynamically defined annuli grow at least linearly fast, which is a special property of quadratic maps. The proof in [38] does not use this property explicitly, but instead a combinatorial bound was adopted, which is also not satisfied by higher degree polynomial. So
all these proofs break down even for unimodal polynomials with degenerate critical points. Our approach was inspired by a recent observation of Smania [40], which was motivated by the works of Heinonen and Koskela [13], and Kallunki and Koskela [15]. The key estimate (stated in the Key Lemma) is the control of geometry for appropriately chosen puzzle pieces. For example, if c is a non-periodic recurrent critical point of f with a minimal ω-limit set, and if f is not renormalizable at c, our result shows that given any Yoccoz puzzle piece $P \ni c$, there exist a constant $\delta>0$ and a sequence of combinatorially defined puzzle pieces $Q_{n}, n=1,2, \ldots$, which contain c and are pullbacks of P with the following properties:

- $\operatorname{diam}\left(Q_{n}\right) \rightarrow 0 ;$
- Q_{n} contains a Euclidean ball of radius $\delta \cdot \operatorname{diam}\left(Q_{n}\right)$;
- there is a topological disk $Q_{n}^{\prime} \supset Q_{n}$ such that $Q_{n}^{\prime}-Q_{n}$ is disjoint from the orbit of c and has modulus at least δ.

In [40], Smania proved that in the non-renormalizable unicritical case this kind of control implies rigidity. To deduce rigidity from puzzle geometry control, we are not going to use this result of Smania directly - even in the non-renormalizable case - but instead we shall use a combination of the well-known Spreading Principle (see Section 5.3) and the QC-Criterion stated in Appendix 1. This Spreading Principle states that if we have a K-qc homeomorphism $h: P \rightarrow \tilde{P}$ between corresponding puzzle neighbourhoods P, \tilde{P} of the critical sets (of the two maps f, \tilde{f}) respecting the standard boundary marking (i.e. agrees on the boundary of these puzzle pieces with what is given by the Bötcher coordinates at infinity), then we can spread this to the whole plane to get a K-qc partial conjugacy. Moreover, together with the QC-Criterion this also gives a method of constructing such K-qc homeomorphisms h, which relies on good control on the shape of puzzle pieces $Q_{i} \subset P, \tilde{Q}_{i} \subset \tilde{P}$ with deeper depth. This different argument enables us to treat infinitely renormalizable maps as well. In fact, in that case, we have uniform geometric control for a terminating puzzle piece, which implies that we have a partial conjugacy up to the first renormalization level with uniform regularity. Together with the "complex bounds" theorem proved in [37], this implies rigidity for infinitely renormalizable maps, in a similar way as in [10, 20].

In other words, everything boils down to proving the Key Lemma. It is certainly not possible to obtain control on the shape of all critical puzzle
pieces in the principal nest. For this reason we introduce a new nest which we will call the enhanced nest. In this enhanced nest, bounded geometry and decay in geometry alternate in a more regular way. The successor construction we use, is more efficient than first return domains in transporting information about geometry between different scales. In addition we use an 'empty space' construction enabling us to control the nonlinearity of the system.

1.2 Organization of this work

The strategy of the proof is to reduce the proof in steps. In $\S 2$ we reduce the Density of Axiom A to the Rigidity Theorem stated above. Then, in §3, we reduce it to the Reduced Rigidity Theorem. This two sections can be read independently from the rest of this paper, which is occupied by the proof of the Reduced Rigidity Theorem.

The idea of the proof of the Reduced Rigidity Theorem is to reduce all difficulties to the Key Lemma.

In $\S 4$, we give the precise statement of the Key Lemma on control of puzzle geometry for a polynomial-like box mapping which naturally appears as the first return map to a certain open set. In $\S 5$, we review a few facts on Yoccoz puzzles. These facts will be necessary to derive our Reduced Rigidity Theorem from the Key Lemma, which is done in the next two sections, $\S 6$ and $\S 7$.

The remaining sections are occupied by the proof of the Key Lemma. In §8 we construct the enhanced nest, and show how to derive the Key Lemma from lower and upper control of the geometry of the puzzle pieces in this nest. In $\S 9$, we analyze the geometry of the real trace of the enhanced nest. These analysis will be crucial in proving the lower and upper geometric control for the puzzle pieces, which will be done in $\S 10$ and $\S 11$ respectively.

The statement and proof of a QC-Criterion are given in Appendix 1 and some general facts about Poincaré discs are given in Appendix 2.

1.3 General terminologies and notations

Given a topological space X and a connected subset X_{0}, we use $\operatorname{Comp}_{X_{0}}(X)$ to denote the connected component of X which contains X_{0}. Moreover, for $x \in X, \operatorname{Comp}_{x}(X)=\operatorname{Comp}_{\{x\}}(X)$.

For a bounded open interval $I=(a, b) \subset \mathbb{R}, \mathbb{C}_{I}=\mathbb{C}-(\mathbb{R}-I)$. For any $\theta \in(0, \pi)$ we use $D_{\theta}(I)$ to denote the set of points $z \in \mathbb{C}_{I}$ such that the angle
(measured in the range $[0, \pi]$) between the two segments $[a, z]$ and $[z, b]$ is greater than θ.

We usually consider a real-symmetric proper map $f: U \rightarrow V$, where each of U and V is a disjoint union of finitely many simply connected domains in \mathbb{C}, and $U \subset V$. Here "real-symmetric" means that U and V are symmetric with respect to the real axis, and that f commutes with the complex conjugate. A point at which the first derivative f^{\prime} vanishes is called a critical point. We use Crit (f) to denote the set of critical points of f. We shall always assume that $f^{n}(c)$ is well defined for all $c \in \operatorname{Crit}(f)$ and all $n \geq 0$, and use $P C(f)$ to denote the union of the forward orbit of all critical points:

$$
P C(f)=\bigcup_{c \in \operatorname{Crit}(f)} \bigcup_{n \geq 0}\left\{f^{n}(c)\right\} .
$$

As usual $\omega(x)$ is the omega-limit set of x.
An interval I is a properly periodic interval of f if there exists $s \geq 1$ such that $I, f(I), \ldots, f^{s-1}(I)$ have pairwise disjoint interiors and such that $f^{s}(I) \subset I, f^{s}(\partial I) \subset \partial I$. The integer s is the period of I. We say that f is infinitely renormalizable at a point $x \in U \cap \mathbb{R}$ if there exists a properly periodic interval containing x with an arbitrarily large period.

A nice open set P (with respect to f) is a finite union of topological disks in V such that for any $z \in \partial P$ and any $n \in \mathbb{N}, f^{n}(z) \notin P$ as long as $f^{n}(z)$ is defined. The set P is strictly nice if we have $f^{n}(z) \notin \bar{P}$.

Given a nice open set P, let $D(P)=\left\{z \in V: \exists k \geq 1, f^{k}(z) \in P\right\}$. The first entry map

$$
R_{P}: D(P) \rightarrow P
$$

is defined as $z \mapsto f^{k(z)}(z)$, where $k(z)$ is the minimal positive integer with $f^{k(z)}(z) \in P$. The restriction $R_{P} \mid P$ is called the first return map to P. The first landing map

$$
L_{P}: D(P) \cup P \rightarrow P
$$

is defined as follows: for $z \in P, L_{P}(z)=z$, and for $z \in D(P) \backslash P, L_{P}(z)=$ $R_{P}(z)$. A component of the domain of the first entry map to P is called an entry domain. Similar terminologies apply to return, landing domain. For $x \in D(P), \mathcal{L}_{x}(P)$ denotes the entry domain which contains x. For $x \in D(P) \cup P, \hat{\mathcal{L}}_{x}(P)$ denote the landing domain which contains x. So if $x \in D(P) \backslash P, \mathcal{L}_{x}(P)=\hat{\mathcal{L}}_{x}(P)$. We also define inductively

$$
\mathcal{L}_{x}^{k}(P)=\mathcal{L}_{x}\left(\mathcal{L}_{x}^{k-1}(P)\right) .
$$

We shall also frequently consider a nice interval, which means an open interval $I \subset V \cap \mathbb{R}$ such that for any $x \in \partial I$ and any $n \geq 1, f^{n}(x) \notin I$. The terminologies strictly nice interval, the first entry (return, landing) map to I as well as the notations $\mathcal{L}_{x}(I), \hat{\mathcal{L}}_{x}(I)$ are defined in a similar way as above.

By a pullback of a topological disk $P \subset V$, we mean a component of $f^{-n}(P)$ for some $n \geq 1$, and a pullback of an interval $I \subset V \cap \mathbb{R}$ will mean a component of $f^{-n}(I) \cap \mathbb{R}$ (rather than $f^{-n}(I)$) for some $n \geq 1$.

See $\S 4$ for the definition of a polynomial-like box mapping, child, persistently recurrent, a set with bounded geometry and related objects.

See $\S 9$ for the definition of a chain and its intersection multiplicity and order. Also the notions of scaled neighbourhood and δ-well-inside are defined in that section.

For definitions of quasi-symmetric (qs) and quasi-conformal (qc) maps, see Ahlfors [1].

2 Density of Axiom A follows from the Rigidity Theorem

One of the main reason for us to look for rigidity is that it implies density of Axiom A among certain dynamical systems. Our rigidity theorem implies the following, sometimes called the real Fatou conjecture.

Theorem 2.1. Let f be a real polynomial of degree $d \geq 2$. Assume that all critical points of f are real and that f has a connected Julia set. Then f can be approximated by hyperbolic real polynomials with real critical points and connected Julia sets.

The rigidity theorem implies the instability of non-hyperbolic maps. As is well-known, in the unicritical case the above theorem then follows easily: if a map f is not stable, then the critical point of some nearby maps g will be periodic, and so g will be hyperbolic. In the multimodal case, the fact that the kneading sequence of nearby maps is different from that of f, does not directly imply that one can find hyperbolic maps close to f. The proof in the multimodal case, given below, is therefore more indirect.

By means of conjugacy by a real affine map, we may assume that the intersection of the filled Julia with \mathbb{R} is equal to $[0,1]$. Let Pol_{d} denote the family of all complex polynomials g of degree d such that $g(0)=f(0)$ and
$g(1)=f(1)$. Note that this family is parameterized by an open set in \mathbb{C}^{d-1}. Let $\mathrm{Pol}_{d}^{\mathbb{R}}$ denote the subfamily of Pol_{d} consisting of maps with real coefficients and let X denote the subfamily of $\operatorname{Pol}_{d}^{\mathbb{R}}$ consisting of maps g which have only real critical points and connected Julia set (so no escaping critical points). Moreover, let Y denote the subset of X consisting of maps g satisfying the following properties:

- every critical point of g is non-degenerate;
- every critical point and every critical value of g are contained in the open interval $(0,1)$.

Note that Y is an open set in $\mathrm{Pol}_{d}^{\mathbb{R}}$.
Lemma 2.1. $X=\bar{Y}$.
Proof. This statement follows from Theorem 3.3 of [33]. In fact X is the family of boundary anchored polynomial maps $g:[0,1] \rightarrow[0,1]$ with a fixed degree and a specified shape which are determined by the degree and the sign of the leading coefficient of f. Recall that given a real polynomial $g \in X$, its critical value vector is the sequence $\left(g\left(c_{1}\right), g\left(c_{2}\right), \cdots, g\left(c_{m}\right)\right)$, where $c_{1} \leq c_{2} \leq \cdots \leq c_{m}$ are all critical points of g. That theorem claims that the critical value vector determines the polynomial, and any vector $\mathbf{v}=$ $\left(v_{1}, v_{2}, \ldots, v_{m}\right) \in \mathbb{R}^{m}$ such that these v_{i} lie in the correct order is the critical value vector of some map in X. In any small neighborhood of the critical value vector of f, we can choose a vector $\mathbf{v}=\left(v_{1}, v_{2}, \cdots, v_{m}\right)$ so that \mathbf{v} satisfies the strict admissible condition, i.e., these v_{i} are pairwise distinct. The polynomial map corresponding to this \mathbf{v} is contained in Y.

Therefore by a perturbation if necessary we may assume that $f \in Y$. For every $g \in Y$, let $\tau(g)$ be the number of critical points which are contained in the basin of a (hyperbolic) attracting cycle. Note the map $\tau: Y \rightarrow \mathbb{N} \cup\{0\}$ is lower semicontinuous. Let

$$
Y^{\prime}=\{g \in Y: \tau(g) \text { is locally maximal at } g\}
$$

As τ is uniformly bounded from above, Y^{\prime} is dense in Y. Moreover, from the lower semicontinuity of τ, it is easy to see that τ is constant in a neighborhood of any $g \in Y^{\prime}$. Thus Y^{\prime} is open and dense in Y. Note also that every map in Y^{\prime} does not have a neutral cycle (this is well-known, because one can
perturb the map so the neutral cycle becomes hyperbolic attracting, see for example the proof of Theorem VI.1.2 in [8]). Doing a further perturbation if necessary, let us assume that $f \in Y^{\prime}$. Let $r=\tau(f)$.

Let

$$
Q C(f)=\left\{g \in \mathrm{Pol}_{d}: g \text { is quasiconformally conjugate to } f\right\} .
$$

By Theorem 1 in [35], f does not support an invariant line field in its Julia set, and thus by Theorem 6.9 of [29], the (complex) dimension of the Teichmüller space of f is at most r. Consequently, $Q C(f)$ is covered by countably many embedded complex submanifolds of Pol_{d} which have (complex) dimension at most r, and hence

$$
Q C^{\mathbb{R}}(f)=Q C(f) \cap \operatorname{Pol}_{d}^{\mathbb{R}}
$$

is covered by countably many embedded real analytic submanifolds M_{i} of X which have (real) dimension at most r. The same argument applies to any map in Y^{\prime}.

Let $c_{1}<c_{2}<\cdots<c_{d-1}$ be the critical points of f, and let Λ denote the set of i such that $c_{i} \in A B(f)$, where $A B(f)$ is the union of basins of attracting cycles. Let \mathcal{U} be a small ball in Pol_{d} centered at f. (Recall that Pol_{d} is canonically identified with an open set \mathbb{C}^{d-1}.) Then there exist holomorphic functions

$$
c_{i}: \mathcal{U} \rightarrow \mathbb{C}, 1 \leq i \leq d-1,
$$

such that $c_{i}(g)$ are all the critical points of g. By shrinking \mathcal{U} if necessary, we may assume that for any $g \in \mathcal{U} \cap X, \quad c_{1}(g)<c_{2}(g)<\cdots<c_{d-1}(g)$ and for any $g \in \mathcal{U}$ and for any $i \in \Lambda, c_{i}(g) \in A B(g)$.

For a map $g \in \mathcal{U}$, by a critical relation we mean a sequence (n, i, j) of positive integers such that $g^{n}\left(c_{i}(g)\right)=c_{j}(g)$. Given any submanifold \mathcal{S} of \mathcal{U} which contains g, we say that the critical relation is persistent within \mathcal{S} if for any $h \in \mathcal{S}$, we have $h^{n}\left(c_{i}(h)\right)=c_{j}(h)$.

By a further perturbation if necessary, we may assume that there is no critical relation (n, i, j) for f with $i \in \Lambda$. By shrinking \mathcal{U} if necessary, this statement remains true for any $g \in \mathcal{U}$.

Completion of proof of Theorem 2.1. Let us keep the notation and assumption on f as above. We are going to prove that $\mathcal{U} \cap \operatorname{Pol}_{d}^{\mathbb{R}}$ contains a hyperbolic map. Arguing by contradiction, assume that every map g in $\mathcal{U} \cap \operatorname{Pol}_{d}^{\mathbb{R}}$ is not
hyperbolic. Then $r=\tau(f)<d-1$. Since $Q C^{\mathbb{R}}(f)$ is covered by countably many embedded submanifolds of X with dimension at most $r, Q C(f)$ is nowhere dense in $\mathcal{U} \cap X=\mathcal{U} \cap Y^{\prime}$.

For positive integers $n, 1 \leq i, j \leq d-1$, let

$$
M_{n, i, j}=\left\{g \in \mathcal{U} \cap X: g^{n}\left(c_{i}(g)\right)=c_{j}(g)\right\}
$$

Each of these $M_{n, i, j}$ is a subvariety of $\mathcal{U} \cap X$ with dimension at most $d-2$. By assumption $M_{n, i, j}=\emptyset$ for $i \in \Lambda$. We claim that there exists some (n, i, j) such that the dimension of $M_{n, i, j}$ is $d-2$.

To see this we use the following fact, whose proof is easy and left to the reader.

Fact 2.1. Let m be a positive integer, and let B be a Euclidean ball in \mathbb{R}^{m}. Let $M_{i}, i=1,2, \ldots$ be embedded real analytic submanifolds of B such that $\operatorname{dim}\left(M_{i}\right) \leq m-2$. Then $B-\bigcup_{i=1}^{\infty} M_{i}$ is arc-connected.

If all the $M_{n, i, j}$'s have dimension less than $d-2$, then $\Omega=\mathcal{U} \cap X-\bigcup M_{n, i, j}$ is arc-connected. By the standard kneading theory, [32, 25], it follows that any $g \in \Omega$ is topologically conjugate to f on the real line. By our Rigidity Theorem, $g \in Q C(f)$. As Ω is dense in $\mathcal{U} \cap \operatorname{Pol}_{d}^{\mathbb{R}}$, this is a contradiction.

Therefore, we obtain a real analytic codimension-one embedded submanifold \mathcal{V}_{1} of $\mathcal{U} \cap X$ which has a persistent critical relation (n, i, j) with $i \notin \Lambda$. Let us now apply the same arguments to the new ($d-2$)-dimensional family \mathcal{V}_{1}. More precisely, if $r=d-2$, then this implies that every map in \mathcal{V}_{1} is hyperbolic, which is a contradiction. So $r<d-2$. Take any $f_{1} \in \mathcal{V}_{1}$. As the Teichmüller space of f_{1} also has (complex) dimension $r, Q C\left(f_{1}\right) \cap X$ is nowhere dense in \mathcal{V}_{1}. Proceeding as above, we will find a real analytic embedded submanifold \mathcal{V}_{2} of \mathcal{V}_{1} which has dimension $d-3$ and has two distinct persistent critical relations. Repeating this argument we complete the proof.

3 Derivation of the Rigidity Theorem from the Reduced Rigidity Theorem

Definition 3.1. Let f and \tilde{f} be two polynomials of degree $d, d \geq 2$. We say that they are Thurston combinatorially equivalent if there exist homeomorphisms $H_{i}: \mathbb{C} \rightarrow \mathbb{C}, i=0,1$, such that $\tilde{f} \circ H_{1}=H_{0} \circ f$, and $H_{0} \sim H_{1}$ rel
$P C(f)$ (i.e., H_{0} and H_{1} are homotopic rel $\left.P C(f)\right)$. The homeomorphism H_{0} is called a Thurston combinatorial equivalence between these two polynomials, and H_{1} is called a lift of H_{0} (with respect to f and \tilde{f}).

Proposition 3.1. Let f and \tilde{f} be real polynomials of degree $d \geq 2$ with only non-degenerate real critical points. Assume that they are topologically conjugate on the real axis, and let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a conjugacy. Let $H: \mathbb{C} \rightarrow \mathbb{C}$ be a real-symmetric homeomorphism which coincides with h on $P C(f)$. Then H is a Thurston combinatorial equivalence between f and \tilde{f}.

Remark 3.1. Let H, H^{\prime} be two real-symmetric homeomorphisms of the complex plane which coincide on a set $E \subset \mathbb{R}$. Then it is clear that $H \sim H^{\prime}$ rel E.

Proof. Without loss of generality, let us assume that h is orientation-preserving. Let $c_{1}<c_{2}<\cdots<c_{d-1}$ and $\tilde{c}_{1}<\tilde{c}_{2}<\cdots<\tilde{c}_{d-1}$ be the critical points of f and \tilde{f} respectively. It suffices to prove that there exists a real-symmetric homeomorphism $H_{1}: \mathbb{C} \rightarrow \mathbb{C}$ such that $\tilde{f} \circ H_{1}=H \circ f$ and $H_{1} \mid \mathbb{R}$ preserves the orientation. Indeed, we will then have $H_{1}=H$ on $P C(f)$ automatically, which implies that $H_{1} \sim H$ rel $P C(f)$.

Let us add a circle $X=\left\{\infty e^{i 2 \pi t}: t \in \mathbb{R} / \mathbb{Z}\right\}$ to the complex plane. Then $\mathbb{C} \cup X$ is naturally identified with the closed unit disk, and f extends to a continuous map from $\mathbb{C} \cup X$ to itself, which acts on X by the formula $t \mapsto d t$ if the coefficient of the highest term of f is positive, or $t \mapsto d t+1 / 2$ otherwise.

Let $T=f^{-1}(\mathbb{R})$, and $T_{0}=T-\operatorname{Crit}(f)$. Note that T_{0} is a (disconnected) one-dimensional manifold.

Let $x_{i}=\infty e^{(d-i) \pi / d}$ for each $0 \leq i \leq 2 d-1$. Since each component of $\mathbb{C}-T$ is a univalent preimage of one of the half planes, it is obviously unbounded. Therefore there cannot be a closed curve in T_{0}, and thus each component of T_{0} is diffeomorphic to the real line. The ends of these components can only be a critical point or a point x_{i}. By local behaviour of the critical points, for each critical c_{i}, there is a component γ_{i} of T_{0} which is contained in the upper half plane and has c_{i} as one end. Note that the other end of γ_{i} must be in X, for otherwise, $\mathbb{C}-T$ would have a bounded component. As these curves $\gamma_{i}, 1 \leq i \leq d-1$ are pairwise disjoint, the end of γ_{i} at infinity must be x_{i}. We have proved that the intersection of T with the upper half plane consists of $d-1$ curves γ_{i}, which connects x_{i} and c_{i}. By symmetry, the intersection of T with the lower half plane consists of $d-1$ curves $\gamma_{i}, d+1 \leq i \leq 2 d-1$ which connects x_{i} and $c_{2 d-i}$.

Similarly, $\tilde{T}=\tilde{f}^{-1}(\mathbb{R})$ has the same structure as T. Thus we can define a real-symmetric homeomorphism $H_{1}: T \rightarrow \tilde{T}$ as a lift of the map $H: \mathbb{R} \rightarrow \mathbb{R}$. Since each component of $\mathbb{C}-T$ is a univalent preimage of the upper or lower half plane, H_{1} extends to a homeomorphism of \mathbb{C}, as a lift of $H: \mathbb{C} \rightarrow \mathbb{C}$.

Derivation of the Rigidity Theorem from the Reduced Rigidity Theorem. Let f and \tilde{f} be two real polynomials as in the Rigidity Theorem, and let $h: \mathbb{R} \rightarrow$ \mathbb{R} be a homeomorphism such that $\tilde{f} \circ h=h \circ f$. The Reduced Rigidity Theorem implies that we can find a real-symmetric qc map $\Phi: \mathbb{C} \rightarrow \mathbb{C}$ such that $\Phi=h$ on $P C(f)$, and such that $\tilde{f} \circ \Phi=\Phi \circ f$ holds on a neighborhood of infinity and also on a neighborhood of each periodic attractor of f. By Proposition 3.1, Φ is again a Thurston combinatorial equivalence between f and \tilde{f}. Let $\Phi_{0}=\Phi$ and let $\Phi_{n}, n \geq 1$, be the successive lifts. Then all these homeomorphisms Φ_{n} are quasiconformal with the same maximal dilatation as that of Φ. Note that Φ_{n} is eventually constant out of the Julia set $J(f)$ of f. Since $J(f)$ is nowhere dense, Φ_{n} converges to a qc map which is a conjugacy between f and \tilde{f}.

Although our main interest is at real polynomials with real critical points, we shall frequently need to consider a slightly larger class of maps: real polynomials with real critical values. This is because compositions of maps in \mathcal{F}_{d} may have complex critical points but only real critical values. Proposition 3.1 is no longer true if we only require f to have real critical values, and this is the reason why we need to assume that f have only real critical points (rather than real critical values) in our main theorem. It is convenient to introduce the following definition.

Definition 3.2. Let f and \tilde{f} be polynomials with real coefficients such that all critical values belong to the real line. We say that they are strongly combinatorially equivalent if they are Thurston combinatorially equivalent, and there exists a real-symmetric homeomorphism $H: \mathbb{C} \rightarrow \mathbb{C}$ such that $\tilde{f} \circ H=H \circ f$ on the real axis.

By Proposition 3.1, if f and \tilde{f} have only real non-degenerate critical points, and they are topologically conjugate on \mathbb{R}, then they are strongly combinatorially equivalent.

4 Statement of the Key Lemma

In this section, we give the precise statement of our Key Lemma on puzzle geometry. As we will need universal bounds to treat the infinitely renormalizable case, we shall not state this lemma for a general real polynomial which does not have a satisfactory initial geometry. Instead, we shall first introduce the notion of "polynomial-like box mappings", and state the puzzle geometry for this class of maps. These polynomial-like box mappings appear naturally as first return maps to certain puzzle pieces, see for example Lemma 6.7.

Definition 4.1. Let $b \geq 1$ and $m \geq 0$ be integers. Let $V_{i}, 0 \leq i \leq b-1$, be topological disks with pairwise disjoint closures, and let $U_{j}, 0 \leq j \leq$ m, be topological disks with pairwise disjoint closures which are compactly contained in V_{0}. We say that a holomorphic map

$$
\begin{equation*}
f:\left(\bigcup_{j=0}^{m} U_{j}\right) \cup\left(\bigcup_{i=1}^{b-1} V_{i}\right) \rightarrow \bigcup_{i=0}^{b-1} V_{i} \tag{1}
\end{equation*}
$$

is a polynomial-like box mapping if the following hold:

- for each $1 \leq j \leq m$, there exists $0 \leq i=i(j) \leq b-1$ such that $f: U_{j} \rightarrow V_{i}$ is a conformal map;
- for U equal to $U_{0}, V_{1}, \ldots, V_{b-1}$, there exists $0 \leq i=i(U) \leq b-1$ such that $f: U \rightarrow V_{i}$ is a 2 -to- 1 branched covering.

The filled Julia set of f is defined to be

$$
K(f)=\left\{z \in \operatorname{Dom}(f): f^{n}(z) \in \operatorname{Dom}(f) \text { for any } n \in \mathbb{N}\right\}
$$

and the Julia set is $J(f)=\partial K(f)$.
In fact, everything we do will go through in the case where critical points are degenerate of even order. If $b=1$, then such a map is frequently called generalized polynomial-like.

We say that f is real-symmetric if each of the topological disks V_{i}, U_{j} are symmetric with respect to the real axis, and f commutes with complex conjugation map. Throughout this paper, we shall only consider real-symmetric polynomial-like box mappings. Let \mathcal{P}_{b} denote the set of real-symmetric polynomial-like box mappings (1) satisfying the following properties:

- the critical points of f are contained in the filled Julia set of f, and they are all non-periodic recurrent with the same ω-limit set;
- each branch of f is contained in the Epstein class, that is, for any interval $J \subset \operatorname{Dom}(f) \cap \mathbb{R}$ which does not contain a critical point of f, then $f^{-1} \mid f(J)$ extends to a univalent map defined on $\mathbb{C}_{f(J)}$.

Given a polynomial-like box mapping as above, a puzzle piece of depth n is a component of $f^{-n}\left(V_{0}\right)$. Let $P_{n}(x)$ denote the puzzle piece of depth n which contains x. A puzzle piece is called critical if it contains a critical point. Given two critical puzzle pieces P, Q, we say that Q is a child of P if it is a unimodal pullback of P, i.e., if there exists a positive integer n such that $f^{n}: Q \rightarrow P$ is a double branched covering.

Definition 4.2. We say that f is persistently recurrent if each critical puzzle piece has only finitely many children.

We say that f is renormalizable at a critical point c, if there is a puzzle piece $P_{n}(c)$ and a positive integer s such that $f^{j}(c) \notin P_{n}(c)$ for all $1 \leq j \leq$ $s-1$ and $f^{s}(c) \in P_{n}(c)$, and the map $f^{s}: P_{n+s}(c) \rightarrow P_{n}(c)$ is a polynomiallike mapping (in the sense of Douady and Hubbard [9]) with a connected Julia set. In other words, f is renormalizable at c if c returns to all puzzle pieces $P_{n}(c)$ and the return times are all the same for sufficiently large n. For a map in \mathcal{P}_{b}, since the critical points have all the same ω-limit set, the map is renormalizable at one critical point if and only if it is renormalizable at any critical point. Note that a renormalizable polynomial-like box mapping is persistently recurrent.

Definition 4.3. A critical puzzle piece $P_{n}(c)$ is called terminating if the return time of c to $P_{m}(c)$ is the same for each $m \geq n$.

We say that f is τ-extendible if there are topological disks $V_{i}^{\prime} \supset V_{i}$, $0 \leq i \leq b-1$ with $\bmod \left(V_{0}^{\prime}-\overline{V_{0}}\right) \geq \tau$ such that the following hold:

1. for each $1 \leq i \leq b-1$, if $0 \leq k \leq b-1$ is so that $f\left(V_{i}\right)=V_{k}$, then $f \mid V_{i}$ extends to a holomorphic 2-to-1 branched covering from V_{i}^{\prime} to V_{k}^{\prime};
2. for each $0 \leq j \leq m$, if k is such that $f\left(U_{j}\right)=V_{k}$, then there exists a topological disk $U_{j}^{\prime} \supset U_{j}$, so that $f \mid U_{j}$ extends to a holomorphic map from U_{j}^{\prime} to V_{k}^{\prime} which is conformal if $j \neq 0$ and a 2 -to- 1 branched covering if $j=0$;
3. moreover, $U_{j}^{\prime} \subset V_{0}$, and $\left(U_{j}^{\prime}-U_{j}\right) \cap P C(f)=\emptyset$.

We are most interested in real-symmetric polynomial-like box mappings with further properties:

$$
\begin{gather*}
D_{\pi-\sigma}\left(V_{0} \cap \mathbb{R}\right) \subset V_{0} \subset D_{\sigma}\left(V_{0} \cap \mathbb{R}\right), \tag{2}\\
P C(f) \cap V_{0} \subset \frac{1}{1+2 \tau} V_{0} \cap \mathbb{R}, \tag{3}
\end{gather*}
$$

where $\sigma \in(0, \pi / 2)$. Let $\mathcal{P}_{b}^{\tau, \sigma}$ denote the set of τ-extendible maps in \mathcal{P}_{b} with the properties (2) and (3).

Definition 4.4. We say that a topological disk Ω has ξ-bounded geometry if it contains a Euclidean ball of radius $\xi \operatorname{diam}(\Omega)$.

Key Lemma. (Puzzle Geometry Control) Let $f \in \mathcal{P}_{b}^{\tau, \sigma}$ be a persistently recurrent polynomial-like box mapping, and let c be a critical point of f. Then there is a constant $\xi=\xi(\tau, \sigma, b)>0$ with the following properties.

1. Assume that f is non-renormalizable. Then for any $\varepsilon>0$, there is a puzzle piece Y which contains c and a topological disk Y^{\prime} with $V_{0} \supset$ $Y^{\prime} \supset Y$ such that

- $\operatorname{diam}(Y)<\varepsilon ;$
- $\left(Y^{\prime}-Y\right) \cap P C(f)=\emptyset$, and $\bmod \left(Y^{\prime}-Y\right) \geq \xi$;
- Y has ξ-bounded geometry, i.e., $Y \supset B(c, \xi \operatorname{diam}(Y))$.

2. Assume that f is renormalizable. Then there are terminating puzzle pieces $Y^{\prime} \supset Y \ni c$, such that $Y \supset B(c, \xi \operatorname{diam}(Y))$ and $\bmod \left(Y^{\prime}-Y\right) \geq$ ξ.
Furthermore, if $\tilde{f} \in \mathcal{P}_{b}^{\tau, \sigma}$ is a map which is strongly combinatorially equivalent to f, then the geometric bounds also apply to the corresponding puzzle pieces for \tilde{f}.

Here, we say that $f: U \rightarrow V$ and $\tilde{f}: \tilde{U} \rightarrow \tilde{V}$ are strongly combinatorially equivalent if there are real-symmetric homeomorphisms $H_{i}: V \rightarrow \tilde{V}, i=1,2$, such that the following hold:

- $\tilde{f} \circ H_{1}=H_{0} \circ f$ on U;
- $H_{1}=H_{0}$ on $V \backslash U$;
- $H_{1}=H_{0}$ on $V \cap \mathbb{R}$.

Note that $H_{1} \sim H_{0} \operatorname{rel}(V \backslash U) \cup(V \cap \mathbb{R})$. So by lift of homotopy, we can find a sequence of real-symmetric homeomorphisms $H_{n}: V \rightarrow \tilde{V}, n \geq 0$, such that $\tilde{f} \circ H_{n+1}=H_{n} \circ f$, and $H_{n} \sim H_{n+1}$ on $f^{-n}(V \backslash U)$. In particular, given a puzzle piece P of depth m for $f, \tilde{P}:=H_{m}(P)=H_{m+1}(P)=\cdots$ is a puzzle piece for \tilde{f}, which is called the puzzle piece (for \tilde{f}) corresponding to P.

5 Yoccoz puzzle

5.1 External angles

Let f be a polynomial with degree greater than 1 . Assume that the filled Julia set $K(f)$ is connected. Then by Riemann mapping theorem, there is a unique conformal map

$$
B=B_{f}: \mathbb{C}-K(f) \rightarrow \mathbb{C}-\overline{\mathbb{D}}
$$

which is tangent to the identity at infinity. The B-preimage \mathcal{R}_{θ} of a radical line $\left\{r e^{i \theta}: 1<r<\infty\right\}$ is called an external ray of angle θ, and the B preimage of the round circle $\{|z|=R\}$ with $R>1$ is called an equipotential curve. Recall that the Green function of f is defined as

$$
G(z)=G_{f}(z)= \begin{cases}\log |B(z)| & \text { if } z \in \mathbb{C}-K(f) \\ 0 & \text { otherwise }\end{cases}
$$

Proposition 5.1. Let f and \tilde{f} be two polynomials of degree $d \geq 2$ with real coefficients and real critical values which are strongly combinatorially equivalent and let H be a strong combinatorial equivalence between them. Assume that neither of these polynomials has a neutral periodic point, and assume that $h=H \mid \mathbb{R}$ preserves the orientation. Then for any preperiodic point $p_{\tilde{f}} \in J(f) \cap \mathbb{R}$ of f, the f-external ray of angle θ lands at p if and only if the \tilde{f}-external ray of angle θ lands at $\tilde{p}=H(p)$.

We first prove that at each periodic point p which is contained in the interior of $K(f) \cap \mathbb{R}$, there are exactly two external rays landing at p.

Lemma 5.1. Let f be a polynomial of degree ≥ 2. Assume that f has a connected Julia set. For any repelling periodic point p, if $\gamma_{i}, 1 \leq i \leq n$ are the external rays landing at p, and V is a component of $\mathbb{C}-\left(\bigcup_{i=1}^{n} \gamma_{i}\right) \cup\{p\}$, then V intersects the orbit of some critical value.

Proof. It is well known that there exists a positive integer m such that $f^{m}\left(\gamma_{i}\right)=\gamma_{i}$ for all i. See [30]. Thus $f^{-m}(V)$ has a component U which is contained in V and has p on its boundary. If V is disjoint from the orbits of the critical values, then $f^{m}: U \rightarrow V$ must be a conformal map, which implies that $U=V$. Let g denote the inverse of $f^{m} \mid V$. By the local dynamics at p, for any z which is close to p, we have $g^{k}(z) \rightarrow p$ as $k \rightarrow \infty$. So p is a Denjoy-Wolff point of g, that is, $g^{k}(z) \rightarrow p$ holds for any $z \in V$. Since V contains infinitely many points from the Julia set, we know that this is impossible.

Applying this result to real polynomials, we have
Lemma 5.2. Let f be a real polynomial with all critical values real. Assume that the Julia set is connected. Then for each repelling periodic point p of f,

- if $p \notin \mathbb{R}$, then there exists exactly one external ray landing at p;
- if p is contained in the interior of $K(f) \cap \mathbb{R}$, then there exists exactly two external rays landing at p.
Proof. Let $\gamma_{i}, 1 \leq i \leq n$ be the external rays landing at p. By the previous lemma, we know that any component V of $\mathbb{C}-\bigcup_{i=1}^{n} \gamma_{i}-\{p\}$ intersect the orbit of a critical value. Since all critical values are on the real axis and since f is real, the orbit of any critical value is on the real axis. Thus V intersects the real axis. The statements follow.

Proof of Proposition 5.1. Let f, \tilde{f} and H be as in Proposition 5.1. For any repelling periodic point $z \in \operatorname{int}(K(f) \cap \mathbb{R})$, let $A(z)$ denote the angles of the f external rays landing at z, let $\gamma_{z}^{+}\left(\gamma_{z}^{-}\right.$, respectively) denote the f-external ray in the upper (lower, respectively) which lands at p, and let $\gamma_{z}=\gamma_{z}^{+} \cup \gamma_{z}^{-} \cup\{z\}$. For $\tilde{z}=h(z)$, let $\tilde{A}(\tilde{z}), \tilde{\gamma}_{\tilde{z}}^{+}, \tilde{\gamma}_{\tilde{z}}^{-}, \tilde{\gamma}_{\tilde{z}}$ be the corresponding objects for \tilde{f}.

For a region V bounded by f-external rays, let ang (V) denote the length of the set of angles of f-external rays which are contained in V. (We consider this set of angles as a subset of \mathbb{R} / \mathbb{Z}, endowed with the standard Lebesgue measure.) Note that if V^{\prime} is a component of $f^{-1}(V)$ then

$$
\operatorname{deg}(f) \operatorname{ang}\left(V^{\prime}\right)=k \operatorname{ang}(V)
$$

where k is the degree of the proper map $f: V^{\prime} \rightarrow V$, and $\operatorname{deg}(f)$ is the degree of $f: \mathbb{C} \rightarrow \mathbb{C}$. Similarly we define añg (V) for regions bounded by \tilde{f}-external rays.

Now let p be a repelling periodic point of f which is contained in the interior of $K(f) \cap \mathbb{R}$, and let P be the f-orbit of p. By possibly changing H on $\mathbb{C}-\mathbb{R}$, we may assume that

- for any $z \in P, H\left(\gamma_{z}^{i}\right)=\tilde{\gamma}_{\tilde{z}}^{i}$ and $\tilde{G}(H(w))=G(w)$ for any $w \in \gamma_{z}^{i}$ where $i \in\{+,-\}$, and G and \tilde{G} are the Green functions of f and \tilde{f} respectively.

Let $H_{0}=H$, and for $n \geq 0$, inductively define H_{n+1} to be the lift of H_{n} (so $H_{n+1}|\mathbb{R}=H| \mathbb{R}$; for the definition of a lift see Section 3). Note that $H_{1}=H$ on the set

$$
X=\left(\bigcup_{z \in P} \gamma_{z}\right) \cup \mathbb{R},
$$

and thus $H \sim H_{1}$ rel X. Consequently, for each $n \geq 0$, we have

$$
H_{n+1} \sim H_{n} \text { rel } f^{-n}(X)
$$

Let s be the period of p. Then $f^{2 s}\left(\gamma_{p}^{i}\right)=\gamma_{p}^{i}$ for $i \in\{+,-\}$. Let $U^{-}\left(U^{+}\right.$, respectively) denote the component of $\mathbb{C}-\gamma_{p}$ which contains the left (right, respectively) component of $\mathbb{R}-\{p\}$. As we have noted, $H_{2 s}=H$ on γ_{p}. Let $V_{i}, i=1, \ldots, N$ be the components of $\mathbb{C}-f^{-2 s}\left(\gamma_{p}\right)$ which are contained in U^{+}, and let $\tilde{V}_{i}=H_{2 s}\left(V_{i}\right)$. Let k_{i} denote the degree of the proper map $f^{2 s} \mid V_{i}$. Note that k_{i} is also the degree of $\tilde{f}^{2 s} \mid \tilde{V}_{i}$, and that $f^{2 s}\left(V_{i}\right)=U^{+}$if and only $\tilde{f}^{2 s}\left(\tilde{V}_{i}\right)=\tilde{U}^{+}$. Let Λ^{-}and Λ^{+}denote the set of i 's with $f^{2 s}\left(V_{i}\right)=U^{-}$and $f^{2 s}\left(V_{i}\right)=U^{+}$respectively. Note that

$$
\begin{aligned}
\operatorname{deg}(f) \operatorname{ang}\left(U^{+}\right) & =\sum_{i=1}^{N} \operatorname{deg}(f) \operatorname{ang}\left(V_{i}\right) \\
& =\sum_{i \in \Lambda^{-}} k_{i} \operatorname{ang}\left(U^{-}\right)+\sum_{i \in \Lambda^{+}} k_{i} \operatorname{ang}\left(U^{+}\right) \\
& =\sum_{i \in \Lambda^{-}} k_{i}+\left(\sum_{i \in \Lambda^{+}} k_{i}-\sum_{i \in \Lambda^{-}} k_{i}\right) \operatorname{ang}\left(U^{+}\right),
\end{aligned}
$$

where in the last equality, we used the relation ang $\left(U^{-}\right)+\operatorname{ang}\left(U^{+}\right)=1$. Therefore,

$$
\operatorname{ang}\left(U^{+}\right)=\frac{\sum_{i \in \Lambda^{-}} k_{i}}{\operatorname{deg}(f)+\sum_{i \in \Lambda^{-}} k_{i}-\sum_{i \in \Lambda^{+}} k_{i}} .
$$

The same equality is true for $\operatorname{ang}\left(\tilde{U}^{+}\right)$, and thus ang $\left(U^{+}\right)=\operatorname{añg}\left(\tilde{U}^{+}\right)$. Therefore the f-external rays landing at p and \tilde{f}-external rays landing at $h(p)$ have the same angles.

Now we see that we can choose the homeomorphism H so that it coincides with $B_{\tilde{f}}^{-1} \circ B_{f}$ on $X^{\prime}=\{G(z) \geq 1\} \cup \gamma_{p}^{+} \cup \gamma_{p}^{-}$. Then $H_{n}=B_{\tilde{f}}^{-1} \circ B_{f}$ on $f^{-n}\left(X^{\prime}\right)$, which implies the angles of the f-external rays landing at any preimage q of p coincide with that of the \tilde{f}-external rays landing at $\tilde{q}=h(q)$.

5.2 Yoccoz puzzle partition

Given a polynomial with a connected Julia set, Yoccoz introduced the powerful method of cutting the complex plane using external rays and equipotential curves. We are going to review this concept in this section.

Let f be a polynomial with a connected Julia set. To define a Yoccoz puzzle, we specify a forward invariant subset Z of the Julia set and a positive number r. We require that the set Z satisfies the following properties:

1. for each $z \in Z$, there are at least two external rays landing at z;
2. $Z \cap P C(f)=\emptyset$;
3. each periodic point in Z is repelling.

Let Γ_{0} be the union of the equipotential curve $\{G(z)=r\}$, the external rays landing on Z and the set Z. We call a bounded component of $\mathbb{C}-\Gamma_{0}$ a puzzle piece of depth 0 (with respect to (Z, r)). Similarly, for each $n \in \mathbb{N}$, a bounded component of $\mathbb{C}-f^{-n}(\Gamma)$ is called a puzzle piece of depth n (with respect to $(Z, r))$.

Let \mathcal{Y}_{n} denote the family of puzzle pieces of depth n, and let $\mathcal{Y}=\bigcup_{n=0}^{\infty} \mathcal{Y}_{n}$. A puzzle piece P is a nice open set in the sense that $f^{k}(\partial P) \cap P=\emptyset$ for any $k \geq 1$. Any two puzzle pieces P, Q are either disjoint, or nested, i.e., one is contained in the other.

Fact 5.1. If $U \supset \operatorname{Crit}(f)$ is a union of puzzle pieces, then

$$
E(U)=\left\{z \in K(f): f^{n}(z) \notin U \text { for all } n \in \mathbb{N}\right\}
$$

is a nowhere dense compact set with zero measure.

Proof. Since U is open, the set $E(U)$ is certainly closed and thus compact. To show the other statements, we may assume that all components of U are puzzle pieces of the same depth. Using the "thickening" technique, one shows that the set $E(U)$ is expanding, i.e., there is a conformal metric ρ, defined on a neighborhood of $E(U)$ such that for some $C>0$ and $\lambda>1$, $\left\|D f^{n}(z)\right\|_{\rho} \geq C \lambda^{n}$ holds for any $z \in E(U)$ and $n \in \mathbb{N}$. It follows that $E(U)$ is nowhere dense and has zero Lebesgue measure. For details, see [31].

Now let us consider two strongly combinatorially equivalent polynomials f and \tilde{f} which have real coefficients and real critical values and do not have neutral periodic points. Let homeomorphism $H: \mathbb{C} \rightarrow \mathbb{C}$ be a strongly combinatorial equivalence between f and \tilde{f}. Without loss of generality, let us assume that $h=H \mid \mathbb{R}$ is orientation-preserving.

Definition 5.1. A f-forward invariant set Z is called admissible (with respect to f) if it is a finite set contained in the interior of $K(f) \cap \mathbb{R}$ and disjoint from $P C(f)$.

Given an f-admissible set Z and any $r>0$, let us construct a Yoccoz puzzle \mathcal{Y} for f. Note that \tilde{Z} is an \tilde{f}-admissible set, so we can construct a Yoccoz puzzle $\tilde{\mathcal{Y}}$ for the map \tilde{f} using the set $\tilde{Z}=h(Z)$ and the same r. Re-choosing H if necessary, we may assume that it coincides with $B_{\tilde{f}}^{-1} \circ B_{f}$ on $\{G(z) \geq r\}$ as well as on $\Gamma_{0}-J(f)$. Let $H_{0}=H$, and for each $n \geq 1$ inductively define H_{n} to be the lift of H_{n-1} so that $H_{n}=h$ on \mathbb{R}. Set $X=\Gamma_{0} \cup(K(f) \cap \mathbb{R})$. Then $H_{n+1} \sim H_{n}$ on $f^{-n}(X)$. In particular, for any puzzle piece $P \in \mathcal{Y}_{n}, H_{n}(P)$ is a puzzle piece in $\tilde{\mathcal{Y}}_{n}$, and $H_{n}=B_{\tilde{f}}^{-1} \circ B_{f}$ on $(\partial P-J(f))$. Let us denote $\tilde{P}=H_{n}(P)$. Note that $H_{n+i}(P)=H_{n}(P)=\tilde{P}$ for any $n, i \geq 0$.

Definition 5.2. Let P be a puzzle piece in \mathcal{Y}_{n}, and let \tilde{P} be the corresponding puzzle piece in $\tilde{\mathcal{Y}}_{n}$. We say that a homeomorphism $\phi: P \rightarrow \tilde{P}$ respects the standard boundary marking if ϕ extends continuously to ∂P, and $\phi\left|\partial P=H_{n}\right| \partial P$.

Lemma 5.3. For every puzzle piece P, there exists a qc map $\phi: P \rightarrow \tilde{P}$ which respects the standard boundary marking.

Proof. For each $z \in \bigcup_{\tilde{R}=0}^{\infty} f^{-n}(Z)$, let \mathcal{R}_{z} be the union of the f-external rays landing at z, and let $\tilde{\mathcal{R}}_{\tilde{z}}$ be the union of the \tilde{f}-external rays landing at \tilde{z}. A
neighborhood Ω of z is called f-transversal if it is a Jordan disk bounded by a smooth curve which intersects each ray in \mathcal{R}_{z} transversally at a single point, and $G\left(\partial \Omega \cap \mathcal{R}_{z}\right)$ consists of one point. An \tilde{f}-transversal neighborhood of \tilde{z} is defined in an analogous way. Clearly, for any $\varepsilon>0$ and any $z \in \bigcup_{n=0}^{\infty} f^{-n}(Z)$, there exists an f-transversal (\tilde{f}-transversal, respectively) neighborhood Ω of z ($\tilde{\Omega}$ of \tilde{z}, respectively) which has diameter less than ε. Moreover for a given ε, there exists $\eta>0$ such that for any $0<\rho<\eta$ we can find such neighborhoods with the property that $G\left(\Omega \cap \mathcal{R}_{z}\right)=\tilde{G}\left(\tilde{\Omega} \cap \tilde{\mathcal{R}}_{\tilde{z}}\right)=\rho$.

Claim. For any $z \in \bigcup_{n=0}^{\infty} f^{-n}(Z)$, there exists $\varepsilon>0$ such that the following holds. Let Ω be an f-transversal neighborhood of z which is contained in $B(z, \varepsilon)$, and let $\tilde{\Omega}$ be an \tilde{f}-transversal neighborhood of \tilde{z} which is contained in $B(\tilde{z}, \varepsilon)$. Assume that $G\left(\partial \Omega \cap \mathcal{R}_{z}\right)=\tilde{G}\left(\partial \tilde{\Omega} \cap \tilde{\mathcal{R}}_{\tilde{z}}\right)$. Then there exists a qc homeomorphism $\phi: \Omega \rightarrow \tilde{\Omega}$ such that

- $B_{\tilde{f}}^{-1} \circ B_{f}$ on $\Omega \cap \mathcal{R}_{z}$,
- $\phi: \partial \Omega \rightarrow \partial \tilde{\Omega}$ is a diffeomorphism.

First notice that we may assume that z is a periodic point of f, as z is f-preperiodic and the orbit of z is disjoint from $\operatorname{Crit}(f)$. Let s be a positive integer such that f^{s} leaves each ray in \mathcal{R}_{z} invariant. Since $\left|\left(f^{s}\right)^{\prime}(z)\right|>1$, if ε is sufficiently small, $f^{s} \mid B(z, \varepsilon)$ is a conformal map onto its image, which contains $B(z, \varepsilon)$ compactly. Similarly, this statement holds for the corresponding objects with tilde. Let g denote the inverse of the map $f^{s} \mid B(z, \varepsilon)$, and let \tilde{g} be defined in an analogous way. Then there exists a positive integer N such that $g^{N}(\Omega) \subset \subset \Omega$ and $\tilde{g}^{N}(\tilde{\Omega}) \subset \subset \tilde{\Omega}$. Let $A=\Omega-g^{N}(\Omega)$ and $\tilde{A}=\tilde{\Omega}-\tilde{g}^{N}(\tilde{\Omega})$. Note that $g^{N}(\partial \Omega)$ intersects each ray in \mathcal{R}_{z} transversally at a single point, and the analogy for the corresponding objects with tilde is also true. So we can find a diffeomorphism $\phi_{0}: A \rightarrow A$ such that

- $\phi_{0}=B_{\tilde{f}}^{-1} \circ B_{f}$ on $A \cap \mathcal{R}_{z} ;$
- $\phi_{0} \circ g=\tilde{g} \circ \phi_{0}$ on $\partial \Omega$.

For any $k \geq 1$, we inductively define a diffeomorphism $\phi_{k}: g^{k N}(A) \rightarrow \tilde{g}^{k N}(\tilde{A})$ using the formula

$$
\phi_{k} \circ g^{N}=\tilde{g}^{N} \circ \phi_{k-1} .
$$

As $\phi_{k}=\phi_{k-1}$ on $g^{k N}(\partial \Omega)$ we can glue these diffeomorphisms together to get a diffeomorphism

$$
\phi: \Omega-\{z\} \rightarrow \tilde{\Omega}-\{z\},
$$

with $\phi=B_{\tilde{f}}^{-1} \circ B_{f}$ on $\Omega \cap \mathcal{R}_{z}$. As quasiconformal maps these ϕ_{k} have the same maximal dilatation, so ϕ is quasiconformal and it extends naturally to a qc map from Ω to $\tilde{\Omega}$. This proves the claim.

Now let $P \in \mathcal{Y}$ be a puzzle piece. Take a small constant $\varepsilon>0$. For any $z \in \partial P \cap K(f)$, we choose an f-transversal neighborhood $\Omega_{z} \subset B(z, \varepsilon)$ for z and an \tilde{f}-transversal neighborhood $\tilde{\Omega} \subset B(\tilde{z}, \varepsilon)$ for \tilde{z}, so that $G\left(\Omega \cap \mathcal{R}_{z}\right)=$ $\tilde{G}\left(\tilde{\Omega} \cap \mathcal{R}_{\tilde{z}}\right)$. Then by the claim above, we have a qc map $\phi_{z}: \Omega_{z} \rightarrow \tilde{\Omega}_{\tilde{z}}$ which is smooth on $\partial \Omega_{z}$ and coincides with $B_{\tilde{f}}^{-1} \circ B_{f}$ on $\Omega_{z} \cap \mathcal{R}_{z}$. Since $P-\Omega$ is a Jordan disk whose boundary consists of finitely many smooth curves with transversal intersections, and so is $\tilde{P}-\tilde{\Omega}$, we can find a qc map ψ from $P-\Omega$ to $\tilde{P}-\tilde{\Omega}$ so that $\psi=\phi_{z}$ on $\partial \Omega_{z}$ for each $z \in \partial P \cap J(f)$ and so that $\psi=B_{\tilde{f}}^{-1} \circ B_{f}$ on $(P-\Omega) \cap \mathcal{R}_{z}$. Gluing these qc maps ϕ_{z} and ψ together, we obtain a qc map $\phi: P \rightarrow \tilde{P}$ with standard boundary marking.

Remark 5.1. If the puzzle piece is symmetric with respect to \mathbb{R}, then we can choose the map $\phi: P \rightarrow \tilde{P}$ to be symmetric to \mathbb{R} as well. See [1].

5.3 Spreading principle

The next proposition shows that we can spread a qc map between the critical puzzle pieces with standard boundary making to the whole complex plane, which is a key ingredient (although well-known to many people). For an outline on how we shall use this proposition see below Proposition 6.1.

Spreading Principle. Let $U \supset \operatorname{Crit}(f)$ be a nice open set consisting of puzzle pieces in \mathcal{Y}. Let $\phi: U \rightarrow \tilde{U}$ be a $K-q c$ map which respects the standard boundary marking. Then there exists a $K-q c$ map $\Phi: \mathbb{C} \rightarrow \mathbb{C}$ such that the following hold:

1. $\Phi=\phi$ on U, and
2. for each $z \notin U$, we have

$$
\tilde{f} \circ \Phi(z)=\Phi \circ f(z),
$$

3. $\bar{\partial} \Phi=0$ on $\mathbb{C}-D(U)$, where $D(U)$ denotes the domain of the first landing map under f to U;
4. for each puzzle piece $P \in \mathcal{Y}$ which is not contained in $D(U), \Phi(P)=\tilde{P}$ and $\Phi: P \rightarrow \tilde{P}$ respects the standard boundary marking.

Proof. For each puzzle piece P, we choose an arbitrary qc map $\phi_{P}: P \rightarrow \tilde{P}$ with the standard boundary marking. Let $K^{\prime} \geq K$ be an upper bound for the dilatation of the qc maps ϕ_{P}, where P runs over all puzzle pieces of depth 0 , and all critical puzzle pieces which are not contained in U.

For a puzzle piece $P \in \mathcal{Y}_{n}$, let $k=k(P) \leq n$ be the minimal nonnegative integer such that $f^{k}(P)$ is a critical puzzle piece or has depth 0 , and let $\tau(P)=f^{k}(P)$. Then $f^{k}: P \rightarrow \tau(P)$ is a conformal map, and so is $\left.\tilde{f}^{k}: \tilde{P} \rightarrow \tau \tilde{P}\right)$. Given a qc map $q: \tau(P) \rightarrow \tau(\tilde{P})$, we can define a qc map $p: P \rightarrow \tilde{P}$ by the formula $\tilde{f}^{k} \circ p=q \circ f^{k}$. Note that the maps p and q have the same maximal dilatation, and that if q respects the standard boundary marking, then so does p.

Let W_{0} be the domain bounded by the equipotential curves $\{G(z)=r\}$ which we used to construct the puzzle \mathcal{Y}. Let Y_{0} be the union of all puzzle pieces in \mathcal{Y}_{0}. For $n \geq 0$, inductively define Y_{n+1} to be the subset of Y_{n} consisting of puzzle pieces P of depth $n+1$ so that P is not contained in $D(U)$. Note that each puzzle piece in $Y_{n}-Y_{n+1}$ of depth $n+1$ is a component of $D(U)$.

We define Φ_{0} to be the qc map which coincides with $B_{\tilde{f}}^{-1} \circ B_{f}$ on $\mathbb{C}-W_{0}$, and with ϕ_{P} for each component of Y_{0}. For each $n \geq 0$, assume that Φ_{n} is defined, then we define Φ_{n+1} so that

- $\Phi_{n+1}=\Phi_{n}$ on $\mathbb{C}-Y_{n}$,
- for each component P of $Y_{n}, \Phi_{n+1}=B_{\tilde{f}}^{-1} \circ B_{f}$ on $P-\bigcup_{Q \in \mathcal{Y}_{n+1}} Q$, and for each component $Q \in \mathcal{Y}_{n+1}$ which is contained in P, if $Q \not \subset Y_{n+1}$, then Φ_{n+1} is the pullback of ϕ, and otherwise it is the pullback of $\phi_{\tau(P)}$.

For each $n \geq 0, \Phi_{n}$ is a K^{\prime}-qc map. Note that Φ_{n} is eventually constant on $\mathbb{C}-\bigcap_{n} Y_{n}$. Since $\bigcap Y_{n}=E(U)$ is a nowhere dense set, Φ_{n} converges to a qc map Φ. The properties (1), (2) and (4) follow directly from the construction, and (3) follows from the fact that $E(U)$ has measure zero.

6 Reduction to the infinitely renormalizable case

In this and the next section, we shall prove the Reduced Main Theorem by assuming the Key Lemma. The idea is to construct K-qc maps between
the corresponding critical puzzle pieces with standard boundary marking so that we can apply the Spreading Principle from Section 5.3. To do this we shall need control on the geometry of these puzzle pieces and apply the Key Lemma.

Of course, the puzzle pieces around a renormalizable critical point need not to have a uniformly bounded geometry since they converge to the small Julia set. Infinitely renormalizable critical points are particularly problematic since they are renormalizable with respect to any Yoccoz puzzle. We shall leave this problem to the next section, and assume the following proposition for the moment.

Proposition 6.1. Let f and \tilde{f} be two polynomials in $\mathcal{F}_{d}, d \geq 2$, which are topologically conjugate on \mathbb{R}. Let c be a critical point of f at which f is infinitely renormalizable and let \tilde{c} be the corresponding critical point of \tilde{f}. Then there exists a quasisymmetric homeomorphism $\phi: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\phi\left(f^{n}(c)\right)=\tilde{f}^{n}(\tilde{c})
$$

for any $n \geq 0$.
The goal of this section is to derive the Reduced Rigidity Theorem from the Key Lemma and the above proposition.

Throughout this section, f and \tilde{f} are polynomials in $\mathcal{F}_{d}, d \geq 2$, which are topologically conjugate on the real line, and $h: \mathbb{R} \rightarrow \mathbb{R}$ is a topological conjugacy which is quasisymmetric in each component of $A B(f) \cap \mathbb{R}$, where $A B(f)$ denotes the union of basins of attracting cycles of f. Without loss of generality, let us assume that h is monotone increasing.

We shall first construct an appropriate Yoccoz puzzle \mathcal{Y} for f (and the corresponding one $\tilde{\mathcal{Y}}$ for \tilde{f}) so that every critical point which is renormalizable with respect to this Yoccoz puzzle either has very tame behaviour or is infinitely renormalizable. This is done in $\S 6.1$. This enables us to find qc standard correspondence between the corresponding puzzle pieces around (combinatorially) eventually-renormalizable critical points with bounded maximal dilatation by applying Proposition 6.1. This is done in $\S 6.2$. In $\S 6.3$, we analyze the geometry of puzzle pieces around all other critical points. We show that we can find an arbitrarily small combinatorially defined puzzle neighborhood W of these critical points with uniformly bounded geometry such that the first entry map to W has good extendibility. To deal with persistently recurrent critical points, we shall assume the Key Lemma. Finally, in
§6.4, we show how the Reduced Rigidity Theorem follows from the puzzle geometry control by applying the Spreading Principle from Section 5.3 and the QC-Criterion from Appendix 1.

6.1 A real partition

As we have seen, the construction of a Yoccoz puzzle involves the choice of a finite forward invariant set Z. In this subsection, we shall specify our choice of this set. Recall that a f-forward invariant set Z is called admissible (with respect to f) if it is a finite set contained in the interior of $K(f) \cap \mathbb{R}$ and disjoint from $P C(f)$. As there are exactly two external rays which are symmetric with respect to \mathbb{R} landing at z, a Yoccoz puzzle for f can be constructed using this set Z and $r=1$.

Definition 6.1. Let c be a critical point of f and let Z be an admissible set for f. For every $n \geq 0$, let $Q_{n}^{Z}(c)$ denote the component of $\mathbb{R}-f^{-n}(Z)$ which contains c. We say that f is Z-recurrent at c if for any $n \geq 0$, there exists some $k \geq 1$ such that $f^{k}(c) \in Q_{n}^{Z}(c)$. We say that f is Z-renormalizable at c, or c is Z-renormalizable if there exists a positive integer s, such that $f^{s}(c) \in Q_{n}^{Z}(c)$ for any $n \geq 0$, and the minimal positive integer s with this property is called the Z-renormalization period of c.

For a Z-renormalizable critical point c, we define

$$
A^{Z}(c)=\bigcap_{n=0}^{\infty} \bigcup_{i=0}^{s-1} Q_{n}^{Z}\left(f^{i}(c)\right) \cap \operatorname{Crit}(f)
$$

where s stands for the Z-renormalization period of c. Note that any critical point $c^{\prime} \in A^{Z}(c)$ is also Z-renormalizable with period s, and that $A^{Z}(c)=$ $A^{Z}\left(c^{\prime}\right)$.

Fact 6.1. Let Z be an admissible set. Then for each $c \in \operatorname{Crit}(f)$, if f is Z-recurrent but not Z-renormalizable at c, then $\left|Q_{n}^{Z}(c)\right| \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Let $I_{n}=Q_{n}^{Z}(c)$, and let s_{n} be the return time of c to I_{n}. Then s_{n} is defined for every $n \geq 0$ and $s_{n} \rightarrow \infty$ as $n \rightarrow \infty$. If $\left|I_{n}\right|$ does not tend to zero as n tends to infinity, then there is a one-side neighborhood J of c which is contained in $\bigcap I_{n}$. Note that $\left\{f^{i}(J)\right\}_{i=0}^{\infty}$ are pairwise disjoint since so are $f^{i}\left(I_{n}\right), 0 \leq i \leq s_{n}-1$ for every $n \geq 0$. Since f does not have a
wandering interval, it follows that c is contained in the attracting basin of an attracting cycle O. As c enters $\bigcap I_{n}$ infinitely many times, the periodic orbit O intersects $\bigcap I_{n}$, which implies that the return time of c to I_{n} are the same for all sufficiently large n, a contradiction.

Let $\operatorname{Crit}_{t}(f)$ denote the set of critical points c which are contained in the attracting basin of f or have a finite orbit. A polynomial f is called trivial if $\operatorname{Crit}_{t}(f)=\operatorname{Crit}(f)$. In the following we shall assume that f is non-trivial, because otherwise the Reduced Rigidity Theorem is obvious.

Lemma 6.1. Assume that f is non-trivial. Then there exists an admissible set Z such that if c is a Z-recurrent critical point, then either of the following holds:

1. $c \in \operatorname{Crit}_{t}(f), f$ is Z-renormalizable at c, and $A^{Z}(c) \subset \operatorname{Crit}_{t}(f)$;
2. f is recurrent and not Z-renormalizable at c, and $\left|Q_{n}^{Z}(c)\right| \rightarrow 0$ as $n \rightarrow$ ∞;
3. f is infinitely renormalizable at c, and $A^{Z}(c)=\omega(c) \cap \operatorname{Crit}(f)$.

Moreover, in the second case, $\partial Q_{0}^{Z}(c) \cap \operatorname{Per}(f)=\emptyset$.
Proof. First of all, since f is non-trivial, it has infinitely many periodic points, and thus we have a repelling periodic orbit X_{0} which is admissible. For any $c \in \operatorname{Crit}(f)-\operatorname{Crit}_{t}(f)$ such that f is renormalizable but not infinitely renormalizable at c, let $J=J_{c}$ be the smallest properly periodic interval which contains c, and let s be the period of J. Since $f^{s} \mid J$ has a critical point c which has an infinite forward orbit and is not contained in the attracting basin of a periodic attractor, $f^{s} \mid J$ has infinitely many periodic points. Thus, we can find a repelling periodic orbit $X_{1}(c)$ which is admissible with respect to f and intersects J. Let X_{1} be the union of these $X_{1}(c)$'s and let $X=X_{0} \cup X_{1}$. By logic, if f is X-renormalizable at c, then either $c \in \operatorname{Crit}_{t}(f)$ or f is infinitely renormalizable. Note that the last statement remains true if we replace X by any larger admissible set of f. By Fact 6.1, if f is X-recurrent but not X-renormalizable at c, we have $\left|Q_{n}^{X}(c)\right| \rightarrow 0$ as $n \rightarrow \infty$.

Let us now consider a critical point c at which f is infinitely renormalizable. It is well known that c is approximated by periodic points of f from both sides. Thus for any $\varepsilon>0$, we can find an admissible periodic orbits Y_{c} such that $\left|Q_{0}^{Y_{c}}(c)\right|<\varepsilon$. By the no wandering interval theorem, for any $\delta>0$,
there exists $\varepsilon>0$ such that the length of any pullback of $(c-\varepsilon, c+\varepsilon)$ is less than δ. As every point in $A^{Y_{c}}(c)$ is contained in a pullback of $Q_{0}^{Y_{c}}(c)$, it follows that $A^{Y_{c}}(c) \subset \omega(c)$ provided that we have chosen $\varepsilon>0$ sufficiently small. Let Y be the union of such Y_{c} 's. Then for every critical point c at which f is infinitely renormalizable, we have $A^{Y}(c) \subset A^{Y_{c}}(c) \subset \omega(c)$.

Now let $Z=X \cup Y$. Then for every Z-recurrent critical point c, either of the three possibilities listed in the lemma happens. For the last statement to hold, we simply replace Z with $f^{-n}(Z) \cap \mathbb{R}$ for an appropriately large n.

Let us fix an admissible set Z as above, and construct Yoccoz puzzle \mathcal{Y}, $\tilde{\mathcal{Y}}$ for f and \tilde{f}, using Z and \tilde{Z} respectively. For any point x and any integer $n \geq 0$, we use $P_{n}(x)$ to denote the puzzle piece in \mathcal{Y}_{n} which contains x if there is such one. The notation $\tilde{P}_{n}(x)$ is defined in analogous way. Note that for any $x \in \mathbb{R}-\bigcup_{n=0}^{\infty} f^{-n}(Z)$, and any $n \geq 0$, the real trace of $P_{n}(x)$ equals to $Q_{n}^{Z}(x)$. We shall also fix a sequence of combinatorial equivalences H_{n} as in the previous section.

Let $\operatorname{Crit}_{r n}(f)$ denote the set of Z-renormalizable critical points of f, and $\operatorname{Crit}_{e r}(f)$ the set of post Z-renormalizable critical points, i.e., critical points c for which there exists an integer $k \geq 0$ and a critical point $c^{\prime} \in \operatorname{Crit}_{r n}(f)$ such that $f^{k}(c) \in \bigcap_{n} P_{n}\left(c^{\prime}\right)$. So $\operatorname{Crit}_{e r}(f) \supset \operatorname{Crit}_{r n}(f)$. Similarly we define $\operatorname{Crit}_{r n}(\tilde{f})$ and $\operatorname{Crit}_{e r}(\tilde{f})$.

6.2 Correspondence between puzzle pieces containing post-renormalizable critical points

Lemma 6.2. There exists a constant $K>1$ such that for each $c \in \operatorname{Crit}_{e_{e r}}(f)$ and any $n \geq 0$, there exists a real-symmetric K-qc map $\phi: P_{n}(c) \rightarrow \tilde{P}_{n}(\tilde{c})$ which respects the standard boundary marking, and matches h on $\bigcap_{n} P_{n}(c) \cap$ \mathbb{R}.
Proof. It suffices to prove the lemma in the case that f is Z-renormalizable at c. Let s be the minimal positive integer such that $f^{s}(c) \in P_{n}(c)$ for any $n \geq 0$. For $0 \leq i \leq s$, let $I_{i}=\bigcap_{n=0}^{\infty} P_{n}\left(f^{i}(c)\right) \cap \mathbb{R}$. Then $\left\{I_{i}\right\}_{i=0}^{s}$ is a cycle of properly periodic intervals. Let N be a sufficiently large positive integer such that $P_{N}\left(f^{i}(c)\right)-I_{i}$ does not contain any critical point for every $0 \leq i \leq s-1$. Let $U_{i}=P_{N+s-i}\left(f^{i}(c)\right)$ and let

$$
F: \bigcup_{i=0}^{s-1} U_{i} \rightarrow \bigcup_{i=1}^{s} U_{i}
$$

be the restriction of f. Let \tilde{F} be the corresponding map for \tilde{f}.
Claim. There exists a real-symmetric qc map

$$
\Phi: \bigcup_{i=0}^{s} U_{i} \rightarrow \bigcup_{i=0}^{s} \tilde{U}_{i}
$$

which is a conjugacy between F and \tilde{F} such that

- $\Phi\left(\partial U_{i}\right)=H_{N+s} \mid \partial U_{i}$ for every $0 \leq i \leq s ;$
- $\Phi=h$ on $\bigcup_{i=0}^{s-1} I_{i}$.

Let us prove the claim. By a combinatorial equivalence between F and \tilde{F} we mean a homeomorphism $\varphi_{0}: \bigcup_{i=0}^{s} U_{i} \rightarrow \bigcup_{i=0}^{s} \tilde{U}_{i}$ such that there exists a homeomorphism $\varphi_{1}: \bigcup_{i=0}^{s} U_{i} \rightarrow \bigcup_{i=0}^{s} \tilde{U}_{i}$ with the following properties:

- $\tilde{F} \circ \varphi_{1}=\varphi_{0} \circ F$ holds on $\bigcup_{i=0}^{s-1} U_{i}$;
- $\varphi_{0}=\varphi_{1}$ on $P C(F) \cup\left(U_{s}-U_{0}\right)$.

Note that H_{N+s} is a combinatorial equivalence between F and \tilde{F}.
Let $J \subset \mathbb{R}$ be a small neighborhood of the periodic attractors of F. In the following we are going to find a real-symmetric qc combinatorial equivalence Φ_{0} between F and \tilde{F} such that Φ_{0} coincides with H_{N+s} on $\bigcup_{i=0}^{s} \partial U_{i}$ and with h on J. Once we find this map Φ_{0}, the desired qc conjugacy Φ can be constructed by a similar argument as what we used to derive the Rigidity Theorem from the Reduced Rigidity Theorem. The details are left to the reader.

Let us prove the existence of Φ_{0}. To this end, we first apply Lemma 5.3 and the Spreading Principle from Section 5.3 to find a real-symmetric qc map $\Psi: \mathbb{C} \rightarrow \mathbb{C}$ so that for every $0 \leq i \leq s, \Psi\left(U_{i}\right)=\tilde{U}_{i}$ and $\Psi\left|\partial U_{i}=H_{N+s}\right| \partial U_{i}$. More precisely, let U to be the union of critical puzzle pieces of f with depth $N+s$. By Lemma 5.3, we can find a real-symmetric qc map $\psi: U \rightarrow \tilde{U}$ which respects the standard boundary marking for each component of U. Applying the Spreading Principle from Section 5.3 we find the map Ψ. Next we notice that for each $0 \leq i \leq s-1$, there is a qs map $\phi_{i}: I_{i} \rightarrow \tilde{I}_{i}$ which coincides with h on $I_{i} \cap P C(F)$ as well as J. Indeed, if $c \in \operatorname{Crit}_{t}(f)$, then every critical point of F either is contained in the attracting basin of a periodic attractor or has a finite forward orbit, and thus such a ϕ_{i} obviously exists; if f is infinitely renormalizable at c, then this is guaranteed by Proposition 6.1. Finally note
that $P C(F) \cap U_{i}$ is compactly contained in $U_{i}, 0 \leq i \leq s-1$, and thus we can find a real-symmetric qc homeomorphism from $\bigcup_{i=0}^{s} U_{i}$ onto $\bigcup_{i=0}^{s} \tilde{U}_{i}$ which coincides with Ψ on $\bigcup_{i=0}^{s} \partial U_{i}$, and with ϕ_{i} for every $0 \leq i \leq s-1$. This map is the desired Φ_{0}. The proof of the claim is completed.

Let K_{0} be the maximal dilatation of Φ. Then for any $k \geq 0, \Phi$ provides a real-symmetric qc homeomorphism from $P_{N+k s}(c)$ onto $\tilde{P}_{N+k s}(\tilde{c})$ respecting the standard boundary marking. Changing N to be $N+j, j=1,2, \ldots, s-1$, and repeating the above argument, we complete the proof of this lemma.

6.3 Geometry of the puzzle pieces around other critical points

Definition 6.2. Let A be a subset of $\operatorname{Crit}(f)$, and let V be a nice open set which contains A. We say that V is a puzzle neighborhood of A if each component of V is a puzzle piece intersecting A.

Let $\delta>0$ and $N \in \mathbb{N}$. Let $V^{\prime} \supset V$ be an open set consisting of pairwise disjoint topological disks and let B be any subset of $\operatorname{Crit}(f)$. For every $a \in A$, Let V_{a} and V_{a}^{\prime} denote the components of V and V^{\prime} containing a respectively. We say that the first landing map R (under f) to V is N-extendible to V^{\prime} with respect to B if the following holds: if $f^{s}: U \rightarrow V_{a}$ is a branch of the first landing map R, and if $U^{\prime}=\operatorname{Comp}_{U}\left(f^{-s}\left(V_{a}^{\prime}\right)\right)$, then

$$
\#\left\{0 \leq j \leq s-1:\left(f^{j}\left(U^{\prime}\right)-f^{j}(U)\right) \cap B \neq \emptyset\right\} \leq N
$$

We say that the first landing map R is (δ, N)-extendible with respect to B if there exists a topological disk $V_{a}^{\prime} \supset V_{a}$ for every $a \in A$ such that $\bmod \left(V_{a}^{\prime}-\right.$ $\left.V_{a}\right) \geq \delta$ and such that R is N-extendible to $\bigcup_{a} V_{a}^{\prime}$ with respect to B.

Recall that a Jordan disk Ω in \mathbb{C} has η-bounded geometry if it contains a Euclidean ball of radius $\eta \operatorname{diam}(\Omega)$. The goal of this subsection is to prove the following.

Proposition 6.2. There exist a positive constant δ and a positive integer N such that the following holds. For every $\varepsilon>0$, there is a puzzle neighborhood W of $\operatorname{Crit}(f) \backslash \operatorname{Criter}_{\text {er }}(f)$ with the following properties:

1. every component of W has diameter $<\varepsilon$;
2. every component of W has δ-bounded geometry;
3. the first landing map under f to W is (δ, N)-extendible with respect to $\operatorname{Crit}(f) \backslash \operatorname{Crit}_{\text {er }}(f)$.

Moreover, these statements remain true if we replace the objects for f with the corresponding ones for \tilde{f}.

Before we prove this proposition let us state the following consequence which will be convenient for us.

Corollary 6.3. For any integer $n \geq 0$ there exists a puzzle neighborhood W of $\operatorname{Crit}(f) \backslash \operatorname{Crit}_{\text {er }}(f)$ such that for every landing domain U to W, the following hold.

- both of U and \tilde{U} have η-bounded geometry;
- U is contained in a puzzle piece $P \in \mathcal{Y}_{n}$, and moreover,

$$
\bmod (P-U) \geq \eta, \bmod (\tilde{P}-\tilde{U}) \geq \eta
$$

where $\eta>0$ is a constant independent of n.
Proof. First note that there exists an integer n_{0} such that for any critical point $c \in \operatorname{Crit}(f) \backslash \operatorname{Crit}_{e r}(f)$ and $c^{\prime} \in \operatorname{Crit}_{e r}(f)$, and for any $k \geq 0$, we have $f^{k}\left(c^{\prime}\right) \notin P_{n_{0}}(c)$. We may assume that $n \geq n_{0}$.

Let W be a puzzle neighborhood of $\operatorname{Crit}(f) \backslash \operatorname{Crit}_{e r}(f)$ with properties specified in the previous proposition such that for every $c \in \operatorname{Crit}(f) \backslash \operatorname{Crit}_{e r}(f)$ we have $\bmod \left(P_{n}(c)-W_{c}\right) \geq 1$ and $\bmod \left(\tilde{P}_{n}(\tilde{c})-\tilde{W}_{\tilde{c}}\right) \geq 1$, where W_{c} (respectively $\tilde{W}_{\tilde{c}}$) is the component of W (respectively \tilde{W}) which contains c (respectively $\tilde{c})$. Then for every $c \in \operatorname{Crit}(f) \backslash \operatorname{Crit}_{e r}(f)$, we have a topological disk W_{c}^{\prime} with $W_{c} \subset W_{c}^{\prime} \subset P_{n}(c)$, such that $\bmod \left(W_{c}^{\prime}-W_{c}\right) \geq \delta^{\prime}$ and such that the first landing map to W under f is N-extendible to $W^{\prime}=\bigcup_{c} W_{c}^{\prime}$ with respect to $\operatorname{Crit}(f) \backslash \operatorname{Crit}_{e r}(f)$. As the forward orbits of critical points in $\operatorname{Crit}_{e r}(f)$ are disjoint from W^{\prime}, the first landing map to W is 0 -extendible with respect to $\operatorname{Crit}_{e r}(f)$.

Now let U be a landing domain to W and let $f^{s}: U \rightarrow W_{c}$ be the first landing map to W. Let $U^{\prime}=\operatorname{Comp}_{U}\left(f^{-s} W_{c}^{\prime}\right)$. Then $f^{s}: U^{\prime} \rightarrow W_{c}^{\prime}$ has a uniformly bounded degree. Thus U has a bounded geometry, and $\bmod \left(U^{\prime}-U\right)$ is bounded away from zero. As $W_{c}^{\prime} \subset P_{n}(c), U^{\prime}$ is contained in a puzzle piece $P \in \mathcal{Y}_{n}$. This proves the statements about the landing domains to W. The proof for the objects marked with tilde is similar.

Here we use the following fact which will be used repeatedly throughout the paper.

Fact 6.2. Let $\phi: U^{\prime} \rightarrow V^{\prime}$ be a proper map between topological discs of degree N. Let $V \subset V^{\prime}$ be a topological disc such that $\bmod \left(V^{\prime}-V\right) \geq \eta$ and let U be a component of $\phi^{-1}(V)$. Then $\bmod \left(U^{\prime}-U\right) \geq \eta / N$ and if V has δ-bounded geometry then U has $\delta^{\prime}(\delta, \eta, N)$-bounded geometry.

The rest of this subsection will be occupied by the proof of Proposition 6.2. To prove this proposition, we shall first introduce a partial order and an equivalence relation on the critical set $\operatorname{Crit}(f)$ (and also $\operatorname{Crit}(\tilde{f})$). Then we construct an arbitrarily small puzzle neighborhood of every equivalence class with bounded geometry and good extendibility. Finally we show how to get a puzzle neighborhood of the whole set $\operatorname{Crit}(f) \backslash \operatorname{Crit}_{e r}(f)$.

Let us begin with two preparatory lemmas.
Lemma 6.3. Let A be a subset of $\operatorname{Crit}(f)$, and let $V^{\prime} \supset V$ be two puzzle neighborhoods of A. For each $a \in A$, let V_{a} denote the component of V which contains a, and let V_{a}^{\prime} denote that of V^{\prime}. Assume that

$$
\begin{equation*}
f^{k}\left(\partial V_{a}\right) \cap V_{a}^{\prime}=\emptyset \quad \text { for all } k \geq 1 \tag{4}
\end{equation*}
$$

Under these circumstances, if $f^{s}: U \rightarrow V_{a}$ is a branch of the first landing map to V, then for every $c \in A$, we have

$$
\#\left\{0 \leq i \leq s-1: c \in \operatorname{Comp}_{f^{i}(U)}\left(f^{-(s-i)}\left(V_{a}^{\prime}\right)\right)\right\} \leq 1 .
$$

Proof. Let $U^{\prime}=\operatorname{Comp}_{U}\left(f^{-s}\left(V_{a}^{\prime}\right)\right)$. For every $0 \leq i \leq s$, let $U_{i}^{\prime}=f^{i}\left(U^{\prime}\right)$. Arguing by contradiction, assume that there exist $0 \leq i_{1}<i_{2}<s$ such that $c \in U_{i_{j}}^{\prime}, j=1,2$. Then $U_{i_{2}}^{\prime}$ is contained in the domain of the first entry map to V_{a}^{\prime}, and $U_{i_{1}}^{\prime}$ is contained in the domain of the first entry map to $U_{i_{2}}^{\prime}$. Since V^{\prime} is a nice open set, $U_{i_{2}}^{\prime} \subset V_{c}^{\prime}$. From (4), it follows that $U_{i_{1}}^{\prime} \subset V_{c}$. In particular, $f^{i_{1}}(U) \subset V_{c}$, which contradicts the hypothesis that $f^{s}: U \rightarrow V_{a}$ is a branch of the first landing map to V.

Lemma 6.4. Let $c \in \operatorname{Crit}(f) \backslash \operatorname{Crit}_{\text {er }}(f)$. Assume that for some constant $\eta>0$, there exists an arbitrarily large positive integer n such that $P_{n}(c)$ has η-bounded geometry. Then

$$
\operatorname{diam}\left(P_{n}(c)\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Proof. Arguing by contradiction, assume that $\operatorname{diam}\left(P_{n}(c)\right)$ is bounded away from zero. Then we will find a Euclidean ball $B(z, \varepsilon)$ which is contained in $P_{n}(c)$ for all $n \geq 0$. As

$$
f^{n}(B(z, \varepsilon)) \subset f^{n}\left(P_{n}(c)\right)=P_{0}\left(f^{n}(c)\right) \subset\{G(z) \leq 1\}
$$

$B(z, \varepsilon)$ is contained in the interior of the filled Julia set, and hence it is contained in the attracting basin of a periodic attractor. It follows that $c \in \operatorname{Crit}_{e r}(f)$, a contradiction.

Now let us define a partial order $<_{Z}$ on $\operatorname{Crit}(f)$ as follows: for any $c, c^{\prime} \in$ $\operatorname{Crit}(f), c \leq_{z} c^{\prime}$ if $c=c^{\prime}$ or the forward orbit of $f\left(c^{\prime}\right)$ intersects the puzzle piece $P_{n}(c)$ for all $n \geq 0$. This partial order induces an equivalence relation \sim_{Z} on $\operatorname{Crit}(f)$ in the natural way: $c \sim_{Z} c^{\prime}$ if $c \leq_{Z} c^{\prime}$ and vice versa. For every $c \in \operatorname{Crit}(f)$, let $[c]_{Z}$ denote the equivalence class of c, and let

$$
\begin{align*}
\operatorname{Back}(c) & =\left\{c^{\prime} \in \operatorname{Crit}(f): c \leq_{Z} c^{\prime}\right\} \tag{5}\\
\operatorname{Forw}(c) & =\left\{c^{\prime} \in \operatorname{Crit}(f): c^{\prime} \leq_{Z} c\right\} . \tag{6}
\end{align*}
$$

If $c, c^{\prime} \notin \operatorname{Crit}_{e r}(f)$ then $c \leq_{Z} c^{\prime}$ iff $c \in \omega\left(c^{\prime}\right)$ or $c^{\prime}=c$. Similarly, we define the corresponding objects for \tilde{f}. Note that $c \leq_{Z} c^{\prime}$ if and only if $\tilde{c} \leq_{Z} \tilde{c}^{\prime}$.

Definition 6.3. Let c be a Z-recurrent critical point of f. Let $n \geq 0$ and $k \in \mathbb{N}$, and let c^{\prime} be a critical point such that $c^{\prime} \sim_{Z} c$. We say that $P_{n+k}\left(c^{\prime}\right)$ is a child of $P_{n}(c)$ if $f^{k}\left(c^{\prime}\right) \in P_{n}(c)$ and $f^{k-1}: P_{n+k-1}\left(c^{\prime}\right) \rightarrow P_{n}(c)$ is a conformal map. We say that f is Z-persistently recurrent at c if for any $n \geq 0$ and any $c^{\prime} \sim_{Z} c, P_{n}\left(c^{\prime}\right)$ has only finitely many children. Otherwise, we say that f is Z-reluctantly recurrent at c.

A Z-persistently recurrent critical c is minimal in the order \leq_{Z}, i.e., if $c^{\prime} \leq_{Z} c$, then $c \sim_{Z} c^{\prime}$. Note also that a Z-renormalizable critical point is Z-persistently recurrent.

Lemma 6.5. Let c be a Z-reluctantly recurrent critical point of f. Then there exists a constant C, and for every $n \geq 0$, there exists an arbitrarily large positive integer m such that $f^{m}(c) \in P_{n}(c)$ and such that the degree of the map $f^{m}: P_{m+n}(c) \rightarrow P_{n}(c)$ is bounded from above by C.

Proof. By definition, there exist $n_{0} \geq 0$ and $c^{\prime} \sim_{Z} c$ such that $P_{n_{0}}\left(c^{\prime}\right)$ has infinitely many children. So for any $k_{0} \geq 0$, there exists a positive integer
$k \geq k_{0}$ and a critical point $c^{\prime \prime} \sim_{Z} c$ for which $f^{k}\left(c^{\prime \prime}\right) \in P_{n_{0}}\left(c^{\prime}\right)$ and the degree of the map $f^{k}: P_{n_{0}+k}\left(c^{\prime \prime}\right) \rightarrow P_{n_{0}}\left(c^{\prime}\right)$ is bounded from above by $\operatorname{deg}(f)=d$. Note that c is contained in the domain of the first landing map to $P_{n_{0}+k}\left(c^{\prime \prime}\right)$, and let r be the landing time of c to $P_{n_{0}+k}\left(c^{\prime \prime}\right)$. As a first landing map, $f^{r}: P_{n_{0}+k+r}(c) \rightarrow P_{n_{0}+k}\left(c^{\prime \prime}\right)$ has a uniformly bounded degree. Assume for the moment $n \geq n_{0}$. Let s be the landing time of $f^{k+r}(c)$ to $P_{n}(c)$. Again the degree of the map $f^{s}: P_{n+s}\left(f^{k+r}(c)\right) \rightarrow P_{n}(c)$ is uniformly bounded from above. As $P_{n+s}\left(f^{k+r}(c)\right) \subset P_{n_{0}}\left(c^{\prime}\right)$, the proper map $f^{k+r+s}: P_{n+k+r+s}(c) \rightarrow$ $P_{n}(c)$ can be written as the composition of three proper maps with uniformly bounded degree, and thus its degree is uniformly bounded from above. This proves the lemma in the case $n \geq n_{0}$. For the case $n<n_{0}$, we observe that there exists $n^{\prime}>n_{0}$ such that $f^{n^{\prime}-n}(c) \in P_{n}(c)$.

Lemma 6.6. (Puzzle geometry in the reluctantly recurrent case) Let c be a Z-reluctantly recurrent critical point. Then there exists a positive constant η with the following properties. For any $\varepsilon>0$, there are puzzle neighborhoods $W^{\prime} \supset W$ of $\operatorname{Back}(c)$ such that

1. each component of W has η-bounded geometry;
2. for each $p \in \operatorname{Back}(c), \operatorname{diam}\left(W_{p}^{\prime}\right) \leq \varepsilon$ and $\bmod \left(W_{p}^{\prime}-W_{p}\right) \geq \eta$; and
3. $f^{k}\left(\partial W_{p}\right) \cap W_{p}^{\prime}=\emptyset$ for each $p \in \operatorname{Back}(c)$ and each $k \geq 1$,
where W_{p} and W_{p}^{\prime} denote the component of W and W^{\prime} containing p respectively. Moreover, these statements remain true if we replace f with \tilde{f}, and replace p, c, W, W^{\prime} with the corresponding objects for \tilde{f}.

Proof. The last assertion will follow from the proof. So let us only prove the assertion for objects without tilde.

Let $n_{0} \in \mathbb{N}$ be a large positive integer such that for every $p \in \operatorname{Crit}(f) \backslash$ $\operatorname{Back}(c)$, the orbit of p is disjoint from $P_{n_{0}}(c)$. Let $V_{c} \ni c$ be a puzzle piece of depth $\geq n_{0}$, and let \mathcal{U} be a family of (countably many) pairwise disjoint puzzle pieces U which are compactly contained in V so that

- $\{U: U \in \mathcal{U}\}$ is a covering of the domain of the first return map to V_{c}, and
- $f^{k}(\partial U) \cap V_{c}=\emptyset$ for all $k \geq 1$.

Such a pair will be called good. For any $\delta>0$, a good pair $\left(V_{c}, \mathcal{U}\right)$ will be called δ-good if for each $U \in \mathcal{U}, U$ has δ-bounded geometry and $\bmod \left(V_{c}-U\right) \geq$ δ.

Let $\left(V_{c}, \mathcal{U}\right)$ be a good pair. For each $p \in \operatorname{Back}(c) \backslash\{c\}$, let $V_{p}=\mathcal{L}_{p}\left(V_{c}\right)$ and let $t_{p} \in \mathbb{N}$ be the entry time of V_{p} to V_{c}. Then $f^{t_{p}}(p)$ is contained in a puzzle piece U which belongs to \mathcal{U}, and let $W_{p}=\operatorname{Comp}_{p}\left(f^{-t_{p}}(U)\right)$. Let W_{c} denote the puzzle piece in \mathcal{U} which contains c. Let us consider the first entry map R to $W:=\bigcup_{p \in \operatorname{Back}(c)} W_{p}$. Let $f^{s}: P \rightarrow W_{p}$ be a branch of R, and let $P^{\prime}=\operatorname{Comp}_{P}\left(f^{-s} V_{p}\right)$. We claim that

1. the proper map $f^{s}: P^{\prime} \rightarrow V_{p}$ has a uniformly bounded degree;
2. if $P \subset W_{c}$, then $P^{\prime} \subset W_{c}$.

To prove the former statement, we first notice that every critical point in $\bigcup_{i=0}^{s-1} f^{i}\left(P^{\prime}\right)$ must be contained in $\operatorname{Back}(c)$, by the choice of n_{0}. As $f^{k}\left(\partial W_{p}\right) \cap$ $V_{p}=\emptyset$ for every $p \in \operatorname{Back}(c)$ and $k \in \mathbb{N}$, it follows from Lemma 6.3 that every $p \in \operatorname{Back}(c)$ can only be contained in one of these topological disks $f^{i}\left(P^{\prime}\right), 1 \leq i \leq s-1$. Thus the degree of $f^{s} \mid P^{\prime}$ is uniformly bounded from above. To show the latter statement, note that P^{\prime} is contained in the domain of the first entry map to V_{c}, while W_{c} contains all return domains to V_{c} which intersect it. The proof of the claim is completed.

In particular, if $\left(V_{c}, \mathcal{U}\right)$ is a δ-good pair, then for some $\delta^{\prime}>0$ we have

- W_{p} has δ^{\prime}-bounded geometry;
- $\bmod \left(V_{p}-W_{p}\right) \geq \delta^{\prime} ;$
- $f^{k}\left(\partial W_{p}\right) \cap V_{p}=\emptyset$ for all $k \geq 1$.

So it suffices to prove that for some $\delta>0$ and any $n \in \mathbb{N}$, we can find a δ-good pair $\left(V_{c}, \mathcal{U}\right)$ so that the depth of V_{c} is larger than n. Note that by Lemma 6.4, the existence of such pairs implies that the diameter of $P_{n}(c)$ tends to zero as $n \rightarrow \infty$.

To this end, we first notice that it suffices to find one pair. Indeed, if $\left(V_{c}, \mathcal{U}\right)$ is a δ-good pair, and if \hat{V}_{c} is a pullback of V_{c} with order N which contains c, then the pair $\left(\hat{V}_{c}, \hat{\mathcal{U}}\right)$ is a δ^{\prime}-good pair, where $\hat{\mathcal{U}}$ denotes the corresponding pullback of \mathcal{U}, and $\delta^{\prime}>0$ is a constant depending only on δ and N. As f is reluctantly recurrent at c, we have infinitely many pullbacks of
V_{c} containing c and with uniformly bounded order, and thus the statement follows.

It remains to prove the existence of such a pair. As we are assuming that $P_{0}(c) \cap \mathbb{R}$ does not contain a periodic point in its boundary, it follows that $P_{0}(c)$ is strictly nice, and thus so is any pullback of this puzzle piece. Therefore there exists a positive integer $n_{1} \geq n_{0}$ such that $P_{n_{1}}(c)$ is strictly nice. Let $V_{c}=P_{n_{1}}(c)$, and let \mathcal{U} be the family of all return domains to V_{c}. Then $\left(V_{c}, \mathcal{U}\right)$ is a good pair. Define $W_{p}, p \in \operatorname{Back}(c)$ as above, and let \mathcal{W} be the family of entry domains to $\bigcup_{p} W_{p}$ which are contained in W_{c}. From the claim above we know that for any $P \in \mathcal{W}$ there is a topological disc $P^{\prime} \supset P$ such that $f^{s}: P^{\prime} \rightarrow V_{p}$ has bounded degree and $P^{\prime} \subset W_{c}$. Since there are finitely many domains V_{p}, the pair $\left(W_{c}, \mathcal{W}\right)$ is δ-good where δ depends on the geometry of $W_{p}, \bmod \left(V_{p} \backslash W_{p}\right)$ and the number of critical points. This completes the proof.

Let us now construct puzzle neighborhoods for a Z-persistently recurrent critical point $c \in \operatorname{Crit}(f) \backslash \operatorname{Crit}_{e r}(f)$.

Lemma 6.7. Let $c \in \operatorname{Crit}(f) \backslash \operatorname{Crit}_{\text {er }}(f)$ be a Z-persistently recurrent critical point. Then there exists a positive constant $\delta>0$ such that for any $\varepsilon>0$, there exists a puzzle neighborhood W of $[c]_{Z}$ with the following properties:

- for each $p \in \operatorname{Back}(c)$, $\operatorname{diam}\left(W_{p}\right)<\varepsilon$, where $W_{p}=\operatorname{Comp}_{p}(W)$;
- each component of W has δ-bounded geometry;
- the first landing map (under f) to W is (δ, N)-extendible with respect to $[c]_{Z}$.

Moreover, the statements remain true if we replace the objects for f with the corresponding ones for \tilde{f}.

Before we prove this lemma, let us describe a procedure to produce a polynomial-like box mapping from a strictly nice puzzle piece $V=P_{n}(c)$ with a sufficiently large depth n. For every $p \in[c]_{Z}$, let V_{p} be the landing domain to V which contains p. (So $V_{c}=V$.) Note that when n is sufficiently large, $V_{p} \cap V_{p^{\prime}}=\emptyset$ for any $p, p^{\prime} \in[c]_{Z}$ with $p \neq p^{\prime}$. Let us label these puzzle pieces V_{p} as $V_{0}=V_{c}, V_{1}, \ldots, V_{b-1}$, where $b=\#[c]_{Z}$. Let $U_{0} \ni c, U_{1}, \ldots, U_{m}$ be all the entry domains to $\bigcup V_{p}$ which intersect $\operatorname{orb}(c) \cap V_{c}$. As c is Z persistently recurrent, the number of U_{i} 's is finite. Since V is strictly nice,
these U_{i} are compactly contained in V_{c} and have pairwise disjoint closure. Let

$$
F:\left(\bigcup_{i=0}^{m} U_{i}\right) \cup\left(\bigcup_{i=1}^{b-1} V_{i}\right) \rightarrow \bigcup_{i=0}^{b-1} V_{i}
$$

be the (appropriate restriction of the) first entry map to $\bigcup_{i=0}^{b-1} V_{i}$ under f. Then it is easy to check that F belongs to the class \mathcal{P}_{b}. We shall call this map the polynomial-like box mapping associated to $V=P_{n}(c)$.
Proof. We are going to derive this lemma from the Key Lemma. First let us prove a simple fact about the shape of puzzle pieces which intersect the real line.
Fact 6.3. Let P be a puzzle piece (in \mathcal{Y} or $\tilde{\mathcal{Y}}$) which intersects \mathbb{R}. Then there exists $\sigma \in(0, \pi / 2)$ such that

$$
D_{\pi-\sigma}(P \cap \mathbb{R}) \subset P \subset D_{\sigma}(P \cap \mathbb{R})
$$

Proof. This is not hard so show using a linearization and compactness argument. Let us prove it as follows. Without loss of generality, let us assume that $P \in \mathcal{Y}$. Let z_{0} be an endpoint of $P \cap \mathbb{R}$ which is contained in the Julia set of f, and let γ be an external rays landing at z_{0}. It suffices to prove that for any one-side neighborhood K of z_{0}, there exists a constant $\sigma \in(0, \pi / 2)$, such that $\gamma \cap\{G(z) \leq 1\} \subset D_{\sigma}(K)$. To this end, first notice that we may assume that z is a periodic point of f. Then there exists a positive integer k such that $f^{k}(\gamma)=\gamma$. Let $\gamma_{i}=\gamma \cap\left\{1 / d^{k(i+1)} \leq G(z) \leq 1 / d^{k i}\right\}$ for any $i \geq 0$. Take σ to be a small constant so that $\gamma_{0} \subset D_{\sigma}(K)$, where d is the degree of the map f. We may assume that K is small so that $f^{k}: K \rightarrow f^{k}(K)$ is a diffeomorphism and $f^{k}(K) \supset K$. Let $K_{0}=K$ and inductively define $K_{i}, i \geq 1$, to be the interval which is contained in K_{i-1} such that $f^{k}\left(K_{i}\right)=K_{i-1}$. Note that $\gamma_{i} \subset \operatorname{Comp}_{K_{i}}\left(f^{-k} \gamma_{i-1}\right) \subset \operatorname{Comp}_{K_{i}}\left(f^{-k i} \gamma_{0}\right)$. By the Schwarz lemma, it follows that $\gamma_{i} \subset D_{\sigma}\left(K_{i}\right) \subset D_{\sigma}(K)$ for any $i \geq 0$. Therefore $\gamma \subset D_{\sigma}(K)$.

Let us continue the proof of Lemma 6.7. Let us choose a strictly nice puzzle piece $V=P_{n}(c)$ with a sufficiently large depth n and let F be the polynomial-like mapping associated to V. As the first landing map to V has only finitely many domains intersecting $\bigcup_{p \in[c] z} \operatorname{orb}_{f}(p)$, and the closure of every such a domain is disjoint from ∂V, there exists $\tau>0$ such that

$$
\left((1+2 \tau)(V \cap \mathbb{R})-\frac{1}{1+2 \tau}(V \cap \mathbb{R})\right) \cap\left(\bigcup_{p \in[c] z} \operatorname{orb}_{f}(p)\right)=\emptyset
$$

It follows that F is the class $\mathcal{P}_{b}^{\tau, \sigma}$ for appropriately chosen constants τ, σ. As $c \notin \operatorname{Crit}_{r n}(f)$, this polynomial-like box mapping F is non-renormalizable. By the Key Lemma, there exists a constant $\delta>0$ such that for every $\varepsilon>0$ there exists a puzzle piece Y for F (which is also a puzzle piece in \mathcal{Y}) which contains c and satisfies the following.

- $\operatorname{diam}(Y)<\varepsilon$,
- Y has δ-bounded geometry;
- there exists a topological disk $Y^{\prime} \supset Y$ such that $\left(Y^{\prime}-Y\right) \cap \operatorname{orb}_{f}(c)=\emptyset$ and $\bmod \left(Y^{\prime}-Y\right) \geq \delta$.

Let $W=\bigcup_{p \in[c] z} \hat{\mathcal{L}}_{p}(Y)$. Then W is a puzzle neighborhood of $[c]_{Z}$ such that every component of W has a uniformly bounded geometry, and such that the first landing map is uniformly extendible with respect to $[c]_{Z}$. This proves this lemma for f. To prove the corresponding statements for \tilde{f}, just repeat the above argument.

Lemma 6.8. Let c be a Z-non-recurrent critical point of f which is contained in $\operatorname{Crit}(f) \backslash \operatorname{Crit}_{\text {er }}(f)$. Then there is a constant $\eta>0$ and for every $\varepsilon>0$ there exists a puzzle piece $W \ni c$ (in $\mathcal{Y})$ such that $\operatorname{diam}(W)<\varepsilon$ and such that W has η-bounded geometry. Moreover, the statement remains true if we replace W by \tilde{W}.

Proof. Once again, the last assertion will follow from the proof, and so we shall only prove the lemma for f.

Recall that $\operatorname{Forw}(c)=\left\{c^{\prime} \in \operatorname{Crit}(f): c^{\prime} \leq_{Z} c\right\}$. If $\operatorname{Forw}(c)$ contains a reluctantly recurrent critical point, then this lemma follows from the previous lemma and Lemma 6.3. From now on we assume that $\operatorname{Forw}(c)$ does not contain a reluctantly critical point, and distinguish a few cases.
Case 1. $\operatorname{Forw}(c)=\emptyset$. In this case, there exists an integer $n_{0} \geq 0$ such that for any $k \geq 1, P_{n_{0}}\left(f^{k}(c)\right)$ does not contain a critical point. Then for any $n \geq 1, f^{n-1}: P_{n+n_{0}-1}(f(c)) \rightarrow P_{n_{0}}\left(f^{n}(c)\right)$ is a conformal map with uniformly bounded distortion. It follows that $P_{n+n_{0}-1}(f(c))$ and hence $P_{n+n_{0}}(c)$ has uniformly bounded geometry.
Case 2. $\operatorname{Forw}(c) \neq \emptyset$ does not contain any Z-recurrent critical point. Let c^{\prime} be a minimal element in $\operatorname{Forw}(c)$. As $\operatorname{Forw}\left(c^{\prime}\right) \subset \operatorname{Forw}(c)$, it follows that $\operatorname{Forw}\left(c^{\prime}\right)=\emptyset$. By Case 1, there exists $\eta>0$ such that $P_{n}\left(c^{\prime}\right)$ has η-bounded geometry. By Lemma 6.4, this implies that $\operatorname{diam}\left(P_{n}\left(c^{\prime}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$.

Let n_{1} be a large positive integer so that for any critical points $c_{1}, c_{2} \in$ $\operatorname{Crit}(f)$ with $c_{1} \not Z_{Z} c_{2}$, then $f^{k}\left(c_{2}\right) \notin P_{n_{1}}\left(c_{1}\right)$ for all $k \geq 1$. For any $n \geq n_{1}$, let s_{n} be the entry time of c to $P_{n}\left(c^{\prime}\right)$. Consider the map $f^{s_{n}}: P_{n_{1}+s_{n}}(c) \rightarrow$ $P_{n_{1}}\left(c^{\prime}\right)$. Since $\operatorname{Forw}(c)$ does not contain any Z-recurrent critical point, this map has a uniformly bounded degree. It follows that $P_{s_{n}+n}(c)$ has η^{\prime}-bounded geometry for a constant $\eta^{\prime}>0$ which depends only on η.
Case 3. Assume that Forw (c) contains a persistently recurrent critical point $p \in \operatorname{Crit}(f) \backslash \operatorname{Crit}_{e r}(f)$, By Lemma 6.7, there exists a positive constant $\delta>0$ and a sequence of puzzle pieces $P_{n_{i}}(p)$ such that the following hold:

- $P_{n_{i}}(p)$ has δ-bounded geometry;
- there exists a topological disk $\Omega_{i} \supset P_{n_{i}}(P)$ such that $\Omega_{i} \backslash \bar{P}_{n_{i}}(P)$ is an annulus disjoint from $\operatorname{orb}(p)$ and with modulus at least δ.

By replacing Ω_{i} with a slightly smaller topological disk, we may assume that $\operatorname{diam}\left(\Omega_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$. Let s_{i} be the first entry time of c to $P_{n_{i}}(p)$, and let $W_{i}=\mathcal{L}_{c}\left(P_{n_{i}}(p)\right), W_{i}^{\prime}=\operatorname{Comp}_{c} f^{-s_{i}}\left(\Omega_{i}\right)$. It suffices to show that $f^{s_{i}}: W_{i}^{\prime} \rightarrow \Omega_{i}$ has a uniformly bounded degree.

To prove this, we may assume that Ω_{i} is contained in $P_{n}(p)$ for a large n. For any $q \in \operatorname{Crit}(f)$, let $\nu_{q}=\#\left\{0 \leq j \leq s_{i}-1: f^{j}\left(U_{i}^{\prime}\right) \ni q\right\}$. Let us show that $\nu_{q} \leq 1$ for every critical point q. Arguing by contradiction, assume that $\nu_{q} \geq 2$ for some q. Then $q \in \operatorname{Back}(p) \cap \operatorname{For} w(c)$ and q must be a Z-recurrent critical point. Since $\operatorname{Forw}(c)$ does not contain a Z-reluctantly recurrent critical point, q is Z-persistently recurrent. From $q \in \operatorname{Back}(p)$, it follows that $q \in[p]_{Z}$. Since $f^{s_{i}}: W_{i} \rightarrow P_{n_{i}}(p)$ is a first entry, there can be at most one j with $q \in f^{j}\left(W_{i}^{\prime}\right)$. So there must be some j such that $q \in f^{j}\left(W_{i}^{\prime} \backslash W_{i}\right)$, which implies that $\operatorname{orb}(q)$ intersects $\Omega_{i}-P_{n_{i}}(p)$. This is absurd.
Case 4. Forw (c) contains a point $p \in \operatorname{Crit}_{e r}(f)$. We may assume that $p \in \operatorname{Crit}_{r n}(f)$.

Let s be the minimal positive integer such that $f^{s}(p) \in P_{n}(p)$ for any $n \geq 0$. Let N be a positive integer such that $f^{s} \mid P_{N}$ has all its critical points in $\bigcap_{n} P_{n}(p)$. Let $I(p)=\bigcap_{n} P_{n}(p) \cap \mathbb{R}$. Note that $\left(P_{n}(p)-P_{n+s}(p)\right) \cap \mathbb{R} \neq \emptyset$ for all $n \geq 0$, for otherwise, $P_{n}(p) \cap \mathbb{R}=I(p)$, which would imply that $c \in \operatorname{Crit}_{e r}(f)$.

For each $k \geq 1$, let r_{k} be the first entry time of c to $P_{N+k s}(p)$. Note that there are infinitely many k 's such that $f^{r_{k}}(c) \in P_{N+k s}(p) \backslash P_{N+(k+1) s}(p)$. Let
us consider such a k. Let

$$
V_{k}=P_{N+s}\left(f^{r_{k}+k s}(c)\right), U_{k}=P_{N+(k+1) s}\left(f^{r_{k}}(c)\right) .
$$

By our choice of $N, f^{k s}: U_{k} \rightarrow V_{k}$ is a conformal map. Moreover, this map can be extended to a conformal map onto \mathbb{C}_{K}, where K is the component of $\left(P_{N-s}(p)-P_{N+2 s}(p)\right) \cap \mathbb{R}$ which contains $V_{k} \cap \mathbb{R}$, and hence its distortion is bounded by a constant $C>1$ independent of k, by the Koebe distortion theorem. As k varies, there are only finitely many possibility of V_{k}. Therefore, for some positive constant δ the following hold:

- the puzzle pieces U_{k} has δ-bounded geometry;
- $\bmod \left(P_{N+(k-1) s}(p)-U_{k}\right) \geq \delta$.

We want to show that the puzzle pieces $W_{k}=P_{N+(k+1) s+r_{k}}(c)$ has δ^{\prime}-bounded geometry for some $\delta^{\prime}>0$. It suffices to prove that the degree of the proper map

$$
f^{r_{k}}: P_{N+(k-1) s+r_{k}}(c) \rightarrow P_{N+(k-1) s}(p)
$$

is bounded from above by a constant.
For each $q \in \operatorname{Crit}(f)$, let ν_{q} be the number of i 's, $1 \leq i \leq r_{k}-1$, such that $q \in P_{N+(k-1) s+r_{k}-i}\left(f^{i}(x)\right)$. We shall prove that $\nu_{q} \leq 2$, which thus completes the proof. We first notice that if $\nu_{q} \neq 0$, then $q \in \operatorname{Forw}(c) \cap \operatorname{Back}(p)$ provided that k is sufficiently large. As we are assuming that every Z recurrent critical point in $\operatorname{Forw}(c)$ is contained in $\operatorname{Crit}_{r n}(f), q$ is either Z -non-recurrent or is contained in $[p]$. If q is Z-non-recurrent, then $\nu_{q}=1$ if k is sufficiently large. So assume that $q \in[p]$. Let $\mathbf{V}=\bigcup_{q \in[p]} \hat{\mathcal{L}}_{q}\left(P_{N+k s}(p)\right)$, and $\mathbf{V}^{\prime}=\bigcup_{q \in[p]} \hat{\mathcal{L}}_{q}\left(P_{N+(k-1) s}(p)\right)$. Then both \mathbf{V} and \mathbf{V}^{\prime} are puzzle neighborhoods of $[p]$. It is clear that $f^{m}\left(\partial \hat{\mathcal{L}}_{q}\left(P_{N+k s}(p)\right)\right) \cap \hat{\mathcal{L}}_{q}\left(P_{N+(k-1) s}(p)\right)=\emptyset$ for any $q \in[p]$ and any $m \geq 1$. Let r_{k}^{\prime} be the first entry time of c to \mathbf{V}, then by Lemma 6.3,

$$
\#\left\{1 \leq i<r_{k}^{\prime}: q \in P_{N+(k-1) s+r_{k}-i}\left(f^{i}(c)\right)\right\} \leq 1
$$

Note that $f^{r_{k}-r_{k}^{\prime}} \mid P_{N+(k-1) s+r_{k}-r_{k}^{\prime}}\left(f^{r_{k}^{\prime}}(c)\right)$ is a branch of the first entry map to \mathbf{V}^{\prime}, and thus

$$
\#\left\{r_{k}^{\prime} \leq i<r_{k}: q \in P_{N+(k-1) s+r_{k}-i}\left(f^{i}(c)\right)\right\} \leq 1 .
$$

This proves that $\nu_{q} \leq 2$. The proof of the lemma is completed.

Let A be subset of $\operatorname{Crit}(f)$. Let us say that A is ($\delta, N)$-well controlled if for any $\varepsilon>0$, we can find a puzzle neighborhood W of A (so \tilde{W} is a puzzle neighborhood of \tilde{A}) such that the following holds:

- each component of W (respectively \tilde{W}) has diameter less than ε;
- each component of W (respectively \tilde{W}) has δ-bounded geometry;
- the first landing map to W (respectively \tilde{W}) under f (respectively \tilde{f}) is (δ, N)-extendible with respect to A (respectively \tilde{A}).

Summarizing Lemmas 6.6, 6.7, 6.8, we have proved the following:
Proposition 6.4. Let c be a critical point of f which is not contained in $\operatorname{Criter}_{\text {er }}(f)$. Then there exists $\delta>0, N \in \mathbb{N}$ such that $[c]_{Z}$ is (δ, N)-well controlled.

Lemma 6.9. Let A, B be disjoint subsets of $\operatorname{Crit}(f) \backslash \operatorname{Crit}_{\text {er }}(f)$, such that for every $c \in A$ and $c^{\prime} \in B$, we have $c \not_{Z} c^{\prime}$. If both of A and B are (δ, N)-well controlled, then $A \cup B$ is $(\delta / 2, N)$-well controlled.

Proof. Let W_{A} and W_{B} be puzzle neighborhoods of A and B respectively. Assume that the minimal depth of components of W_{B} (which are puzzle pieces) is not less than the maximal depth of that of W_{A}. Then $W_{A} \cup W_{B}$ is a puzzle neighborhood of $A \cup B$. To see this, we notice that for puzzle pieces P, Q, if there is some $k \in \mathbb{N}$ such that $f^{k}(\partial P) \cap Q \neq \emptyset$, then k is not greater than the depth of P, and $f^{k}(P) \subset Q$.

Let m be a large positive integer such that for every $b \in B$, the forward orbit of b is disjoint from $\bigcup_{a \in A} P_{m}(a)$.

Let $\left\{W_{A}^{n}\right\},\left\{W_{B}^{n}\right\}, n=1,2, \ldots$ of puzzle neighborhoods of A and B respectively, such that

1. every component of W_{A}^{n} (respectively W_{B}^{n}) has δ-bounded geometry;
2. the first landing map to W_{A}^{n} (respectively W_{B}^{n}) is (δ, N)-extendible with respect to A (respectively B);
3. the maximal diameter of the components of W_{A}^{n} goes to zero as $n \rightarrow \infty$, and so does that of W_{B}^{n}.

We claim that for every n sufficiently large, there is a positive integer n^{\prime} such that $W_{A}^{n} \cup W_{B}^{n^{\prime}}$ is a puzzle neighborhood of $A \cup B$ and the first landing map to $W_{A}^{n} \cup W_{B}^{n^{\prime}}$ is $(\delta / 2, N)$-extendible with respect to $A \cup B$.

For each $a \in A$, let W_{a}^{n} denote the component of W_{A}^{n} which contains a. The notation W_{b}^{n} for $b \in B$ is defined similarly. By definition, for every W_{a}^{n}, there is a topological disk \hat{W}_{a}^{n} with

$$
\begin{equation*}
\bmod \left(\hat{W}_{a}^{n}-W_{a}^{n}\right) \geq \delta \tag{7}
\end{equation*}
$$

such that if $f^{s}: U \rightarrow W_{a}^{n}$ is a branch of the first landing map to W_{A}^{n}, then

$$
\#\left\{0 \leq j \leq s-1: f^{j}(\hat{U}) \cap A \neq \emptyset\right\} \leq N
$$

where \hat{U} is the component of $f^{-s}\left(\hat{W}_{a}^{n}\right)$ which contains U. By replacing \hat{W}_{a}^{n} with a smaller topological disk we may assume that $\operatorname{diam}\left(\hat{W}_{a}^{n}\right) \rightarrow 0$ as $n \rightarrow$ ∞. (The right hand side of (7) becomes $\delta / 2$.) Provided that n is sufficiently large, we can assume that $\hat{W}_{a}^{n} \subset P_{m}(a)$. Then for any $0 \leq j \leq s-1, f^{j}(\hat{U})$ cannot intersect B. Similarly, for each $b \in B$ and every $n^{\prime} \in \mathbb{N}$, there exists a topological disk $\hat{W}_{b}^{n^{\prime}}$ such that $\bmod \left(\hat{W}_{b}^{n^{\prime}}-W_{b}^{n^{\prime}}\right)>\delta / 2$ and such that if $f^{s}: U \rightarrow W_{b}^{n^{\prime}}$ is a branch of the first landing map to $W_{B}^{n^{\prime}}$, then

$$
\#\left\{0 \leq j \leq s-1: f^{j}(\hat{U}) \cap B \neq \emptyset\right\} \leq N
$$

Moreover, $\operatorname{diam}\left(\hat{W}_{b}^{n^{\prime}}\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus $\hat{W}_{b}^{n^{\prime}} \subset P_{n}(b)$ provided that n^{\prime} is large enough. Now let us consider the set $W_{A \cup B}^{n}:=W_{A}^{n} \cup W_{B}^{n^{\prime}}$. By the remark at the beginning of this proof, this is a puzzle neighborhood of $A \cup B$. Let us prove that the first landing map to $W_{A}^{n} \cup W_{B}^{n^{\prime}}$ is $(\delta / 2, N)$-extendible with respect to $A \cup B$.

To this end, let U be a component of the domain of the first landing map to $W_{A \cup B}^{n}$, and let s be the landing time. If $f^{s}(U)=W_{a}^{n}$ for some $a \in A$, then noticing that $f^{s}: U \rightarrow W_{a}^{n}$ is also a branch of the first landing map to W_{A}^{n}, we have $\#\left\{0 \leq j \leq s-1: f^{j}(\hat{U}) \cap A \neq \emptyset\right\} \leq N$, where $\hat{U}=\operatorname{Comp}_{U}\left(f^{-s}\left(\hat{W}_{a}^{n}\right)\right)$. As $\hat{W}_{a}^{n} \subset P_{m}(a)$ is disjoint from $\bigcup_{b \in B} \operatorname{orb}(b), f^{j}(\hat{U}) \cap B=\emptyset$ for all $0 \leq j \leq$ $s-1$, and hence the number of j 's with $f^{j}(\hat{U}) \cap(A \cup B) \neq \emptyset$ is at most N. Now assume that $f^{s}(U)=W_{b}^{n^{\prime}}$ for some $b \in B$. Then since $f^{s}: U \rightarrow W_{b}^{n^{\prime}}$ is a branch of the first landing map to $W_{B}^{n^{\prime}}$, the number of j^{\prime} s with $f^{j}(\hat{U}) \cap B \neq \emptyset$ is at most N, where $\hat{U}=\operatorname{Comp}_{U} f^{-s} \hat{W}_{b}^{n^{\prime}}$. Since $\hat{W}_{b}^{n^{\prime}} \subset P_{n}(b), f^{j}(\hat{U}) \cap A=\emptyset$ for all $0 \leq j \leq s-1$, for otherwise $f^{j}(\hat{U})$ is contained in $P_{n+j}(a)$ for some $a \in A$, which contradicts the hypothesis that $f^{s} \mid U$ is a branch of the first landing map to $W_{A \cup B}^{n}$. This completes the proof.

Now we can complete the proof of Proposition 6.2.
Proof of Proposition 6.2. We first decompose the set $\operatorname{Crit}(f)$ as follows. Let $\operatorname{Crit}_{0}(f)$ be the set of critical points which are largest in the partial order \leq_{Z}, that is, a critical point c belongs to $\operatorname{Crit}_{0}(f)$ if and only if for every $c^{\prime} \in \operatorname{Crit}(f), c \leq_{Z} c^{\prime}$ implies that $c^{\prime} \sim_{Z} c$. For every $k \geq 0$, assume that $\operatorname{Crit}_{k}(f)$ is defined, then $\operatorname{Crit}_{k+1}(f)$ is defined to be the set of critical points which are largest in $\operatorname{Crit}(f) \backslash \operatorname{Crit}_{k}(f)$ in the partial order \leq_{z}. Clearly, there is a non-negative integer m such that $\cup_{k \leq m} \operatorname{Crit}_{k}(f)=\operatorname{Crit}(f)$. Let $\operatorname{Crit}^{\prime}(f)=\operatorname{Crit}(f) \backslash \operatorname{Crit}_{e r}(f)$ and let $\operatorname{Crit}_{k}^{\prime}(f)=\operatorname{Crit}_{k}(f) \cap \operatorname{Crit}^{\prime}(f)$.

By Lemma 6.9, it suffices to show that for some $\delta>0, N \in \mathbb{N}$, $\operatorname{Crit}_{k}^{\prime}(f)$ is (δ, N)-well controlled for every $0 \leq k \leq m$. By Proposition 6.4, for every $c \in \operatorname{Crit}^{\prime}(f)$, the equivalence class $[c]_{Z}$ is uniformly well controlled. For every $0 \leq k \leq m$, $\operatorname{Crit}_{k}^{\prime}(f)$ is a finite union of equivalence classes which are not comparable to each other in the partial order \leq_{Z}, and thus again by Lemma 6.9, we see that $\operatorname{Crit}_{k}^{\prime}(f)$ is uniformly well controlled. The proof is completed.

6.4 Proof of the Reduced Rigidity Theorem from rigidity in the infinitely renormalizable case

Proof of the Reduced Rigidity Theorem. Let us assume Proposition 6.1, which will be proved in the next section. In Lemma 6.2, we have proved that there is a constant $K>1$ such that for every $c \in \operatorname{Crit}_{e r}(f)$, and any $n \geq 0$, we have a real-symmetric K-qc map $\phi: P_{n}(c) \rightarrow \tilde{P}_{n}(\tilde{c})$ which respects the standard boundary marking, and is equal to h on the $\bigcap_{n} P_{n}(c) \cap \mathbb{R}$. In the following, we are going to prove that
Claim. For every critical point $c \in \operatorname{Crit}(f) \backslash \operatorname{Crit}_{e r}(f)$, and every $n \geq 0$, there is a real-symmetric K-qc map $\phi: P_{n}(c) \rightarrow \tilde{P}_{n}(\tilde{c})$ which respects the standard boundary marking, where K is a constant independent of n.

The Reduced Main Theorem follows from this claim by the Spreading Principle from Section 5.3. Indeed, provided that the claim is true, we can then construct a real-symmetric K-qc map $\Phi_{n}: \mathbb{C} \rightarrow \mathbb{C}$ such that $\tilde{f} \circ$ $\Phi_{n}=\Phi_{n} \circ f$ holds on $\mathbb{C}-\bigcup_{c \in \operatorname{Crit(f)}} P_{n}(c)$. By passing to a subsequence, Φ_{n} converges to a quasiconformal map whose real trace coincides with h. Thus h is qs.

It remains to prove the claim. Let us fix an integer $n \geq 0$, and choose a puzzle neighborhood W of $\operatorname{Crit}(f) \backslash \operatorname{Crit}_{e r}(f)$ as in Corollary 6.3. Let k be the maximal depth of components of W and let $V=W \cup\left(\bigcup_{c \in \operatorname{Criter}(f)} P_{k}(c)\right)$. Then V is a nice open set containing $\operatorname{Crit}(f)$.

We first take an arbitrary real-symmetric qc map $\phi: V \rightarrow \tilde{V}$ which respects the standard boundary marking such that $\phi \mid P_{k}(c)$ is as in Lemma 6.2 for $c \in \operatorname{Crit}_{e r}(f)$. Thus the maximal dilatation of ϕ is bounded by K on these components. On the other components, we do not have a bound on the maximal dilatation at this moment. However, by the Spreading Principle from Section 5.3, we have for any critical point c a qc homeomorphism Φ : $P_{n}(c) \rightarrow \tilde{P}_{n}(\tilde{c})$ with the following properties.

- Φ respects the standard boundary marking,
- $\bar{\partial} \Phi=0$, a.e., on $P_{n}(c) \backslash D(V)$, where $D(V)$ is the domain of first landing map (under f) to V;
- on each component U of $D(V), \Phi(U)=\tilde{U}$ and Φ is the pullback of ϕ (i.e., $\Phi \mid U$ is the appropriate branch of $\tilde{f}^{-t} \circ \phi \circ f^{t}$ where t is the landing time of U to V).

The QC-Criterion in Appendix 1, proves that $\Phi: \partial P_{n}(c) \rightarrow \partial \tilde{P}_{n}(\tilde{c})$ extends to a qc map between these two puzzle pieces with a bound on its maximal dilatation. More precisely, let $X=D^{\prime}(V) \cap P_{n}(c)$, where $D^{\prime}(V)$ denotes the union of the components U of the first landing map R to V such that $R(U) \subset W$. Then the dilatation of Φ is bounded by K outside X. Note that any component P of X is also a landing domain to W, and thus both of P and \tilde{P} has η-bounded geometry, and $\bmod \left(P_{n}(c)-P\right) \geq \eta, \bmod \left(\tilde{P}_{n}(\tilde{c})-\tilde{P}\right) \geq \eta$, where $\eta>0$ is as in Corollary 6.3. The proof is completed.

7 Rigidity in the infinitely renormalizable case (assuming the Key Lemma)

In this section, using a complex bounds theorem and the Key Lemma, we prove

Theorem 7.1. Let f and \tilde{f} be two polynomials in $\mathcal{F}_{d}, d \geq 2$, which are topologically conjugate on \mathbb{R}. Let c be a critical point of f at which f is
infinitely renormalizable and let \tilde{c} be the corresponding critical point of \tilde{f}. Then there exists a quasisymmetric homeomorphism $\phi: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\phi\left(f^{n}(c)\right)=\tilde{f}^{n}(\tilde{c})
$$

for any $n \geq 0$.
We shall use a similar strategy as in [10]. The main step is to construct qs maps, with extra regularity, between corresponding properly periodic intervals for f and \tilde{f} which also send maximal properly periodic intervals at the next renormalization level of f to the corresponding ones of \tilde{f}. See Lemma 7.1. To do this we shall need the Complex Bounds theorem [37] and apply apply the Key Lemma to get appropriate control of the geometry of certain puzzle pieces.

7.1 Properties of deep renormalizations

Let [c] be the subset of $\operatorname{Crit}(f)$ consisting of critical points c^{\prime} with the property $\omega_{f}(c)=\omega_{f}\left(c^{\prime}\right) \ni c, c^{\prime}$. Let $b=\#[c]$. Let $h: K(f) \cap \mathbb{R} \rightarrow K(\tilde{f}) \cap \mathbb{R}$ be a topological conjugacy between f and \tilde{f}. We shall continue to mark with tilde objects of \tilde{f}.

Let $s_{1}<s_{2}<\ldots$ be all positive integers such that f has a properly periodic interval with period s_{n} which contains c. Let I_{n} be the maximal (closed) properly periodic interval which contains c and has period s_{n}, and for each $0 \leq i \leq s_{n}$, let $I_{n}^{i}=\operatorname{Comp}_{f^{i}(c)}\left(f^{-\left(s_{n}-i\right)}\left(I_{n}\right)\right) \cap \mathbb{R}$. Obviously except possibly the first a few n 's, we have $\partial I_{n} \cap P C(f)=\emptyset$. In this case, f maps the interior of I_{n}^{i} to that of $I_{n}^{i+1}, 0 \leq i \leq s_{n}-1$.

Fact 7.1. There exists a positive integer $N=N(f)$ such that if $n \geq N$, then the following hold.

1. There exist $0=i_{0}<i_{1}<\ldots<i_{b-1}<s_{n}$ such that $I_{n}^{i_{j}}$ contains a critical point in $[c]$ and for any other $0 \leq i \leq s_{n}, I_{n}^{i}$ is disjoint from $\operatorname{Crit}(f)$. Moreover, $f^{i_{j+1}-i_{j}}\left(I_{n}^{i_{j}}\right)$ contains the critical point in $I_{n}^{i_{j+1}}$.
2. Let $J_{n}=\bigcup_{j=0}^{b-1} I_{n}^{i_{j}}$, where i_{j} 's are as above. Then the distortion of the first landing map to J_{n} under f, restricted to $\bigcup_{i=0}^{s_{n}-1} I_{n}^{i}$ is bounded from above by a constant C which depends only on $b=\#[c]$.
3. For any $0 \leq i \leq s_{n}$ and $0 \leq i^{\prime} \leq s_{n+1}$, if $I_{n+1}^{i^{\prime}} \subset I_{n}^{i}$, then

$$
(1+2 \tau) I_{n+1}^{i^{\prime}} \subset I_{n}^{i}
$$

where $\tau>0$ is a constant depending only on b.
4. The derivative of the map $f^{s_{n}}: I_{n} \rightarrow I_{n}$ is bounded from above by a constant C which depends only on b.
5. The multipliers of the periodic points of $f^{s_{n}}: I_{n} \rightarrow I_{n}$ are bounded from below by a constant $\rho=\rho(f)>1$.

These facts are well known: (1) is a consequence of non-existence of wandering intervals, (2-4) follow from the real bounds (see [6], [25] and [37]), and (5) follows from Theorem B in [26] or Theorem V.B in [25].

Therefore, for every $n \geq N, I_{n}$ is an interval bounded by a fixed point β_{n} of $f^{s_{n}}$ and its symmetric point with respect to c. Moreover for every $0 \leq$ $i \leq s_{n}-1, f^{i}\left(\beta_{n}\right)$ is the only fixed point of $f^{s_{n}}$ in ∂I_{n}^{i}. Let $\lambda_{n}=\left(f^{s_{n}}\right)^{\prime}\left(\beta_{n}\right)$. By the fact above, we know that λ_{n} is bounded away from both infinity and 1 by constants independent of n. Similarly we define $\tilde{\lambda}_{n}=\left(\tilde{f}^{s_{n}}\right)^{\prime}\left(\tilde{\beta}_{n}\right)$. By choosing N larger if necessary, $\tilde{\lambda}_{n}$ is also bounded away from both infinity and 1.

Definition 7.1. Let $C>1$ be a constant. For every $n \geq N$, and every $0 \leq i \leq s_{n}-1$, let $\mathcal{A}_{n, i}(C)$ denote the family of orientation-preserving homeomorphisms $\phi: I_{n}^{i} \rightarrow \tilde{I}_{n}^{i}$ which satisfy the following:

- ϕ is C-qs;
- for any $x \in I_{n}^{i}$ and $a \in \partial I_{n}^{i}$,

$$
\frac{1}{C}\left(\frac{|x-a|}{\left|I_{n}^{i}\right|}\right)^{\log \tilde{\lambda}_{n} / \log \lambda_{n}} \leq \frac{|\phi(x)-\phi(a)|}{\left|\tilde{I}_{n}^{i}\right|} \leq C\left(\frac{|x-a|}{\left|I_{n}^{i}\right|}\right)^{\log \tilde{\lambda}_{n} / \log \lambda_{n}}
$$

Moreover, let $\mathcal{B}_{n, i}(C)$ denote the set of homeomorphisms $\phi: I_{n}^{i} \rightarrow \tilde{I}_{n}^{i}$ such that

- $\phi \in \mathcal{A}_{n, i}(C)$;
- for any $0 \leq j \leq s_{n+1}-1$, if $I_{n+1}^{j} \subset I_{n}^{i}$, then $\phi\left(I_{n+1}^{j}\right)=\tilde{I}_{n+1}^{j}$, and $\phi \mid I_{n+1}^{j} \in \mathcal{A}_{n+1, j}(C)$.

Lemma 7.1. There exists a constant $C>1$ such that for any $n \geq N$ and $0 \leq i \leq s_{n}-1$, the family $\mathcal{B}_{n, i}(C)$ is non-empty.

The partial conjugacies provided by this lemma will be glued together to supply a qs conjugacy between the critical orbits. This will be done in $\S 7.5$.

Definition 7.2. We say that the n-th renormalization of f (at c) is of $i n$ tersection type, if there exists $1 \leq j \leq s_{n}-1$, such that $\partial I_{n+1} \cap \partial I_{n+1}^{j} \neq \emptyset$.

As we shall see below, Lemma 7.1 is easy to prove in the case that the n th renormalization is of intersection type. The remaining case is much more complicated. By means of complex methods, we shall prove

Proposition 7.2. Let $n \geq N$ and assume that the n-th renormalization is not of intersection type. Then for every constant $C>1$, there exists a constant $C^{\prime}>1$ (independent of n, i) such that the following holds. Assume that for every $0 \leq j \leq s_{n+1}-1$, an orientation-preserving C-qs homeomorphism $p_{j}: I_{n+1}^{j} \rightarrow \tilde{I}_{n+1}^{j}$ is given. Then for every $0 \leq i \leq s_{n}-1$ such that I_{n}^{i} contains a critical point of f, there exists a homeomorphism $\psi_{i}: I_{n}^{i} \rightarrow \tilde{I}_{n}^{i}$ which is in the class $\mathcal{A}_{n, i}\left(C^{\prime}\right)$ such that $\psi_{i}=p_{j}$ whenever both sides are defined.
Proof of Lemma 7.1. Note that by Fact 7.1 (2), we only need to prove $\mathcal{B}_{n, i}(C)$ is non-empty for some constant $C>1$ in the case that I_{n}^{i} contains a critical point. Suppose that the n-th renormalization of f is of intersection type. Then $s_{n+1}=2 s_{n}$, and so I_{n+1}^{i} and $I_{n+1}^{s_{n}+i}$ are the only intervals in the cycle $\left\{I_{n+1}^{j}\right\}_{j=0}^{s_{n+1}}$ which are contained in I_{n}^{i}. It is well known that the configuration $\left(I_{n}^{i} ; I_{n+1}^{i}, I_{n+1}^{s_{n}+i}\right)$ has a uniformly bounded geometry, i.e., the length of each of components of $I_{n}^{i}-\partial I_{n+1}^{i} \cup \partial I_{n+1}^{s_{n}+i}$ is comparable to that of I_{n}^{i}. Similarly the configuration $\left(\tilde{I}_{n}^{i} ; \tilde{I}_{n+1}^{i}, \tilde{I}_{n+1}^{n+i}\right)$ also has a uniformly bounded geometry. Thus the lemma holds for an appropriate choice of C in this case. Now assume that the n-th renormalization is not of intersection type. In this case this lemma follows from Proposition 7.2. To see this, we first observe that there exists a constant C_{1} such that $\mathcal{A}_{n+1, j}\left(C_{1}\right)$ is non-empty, $0 \leq j \leq s_{n+1}$, since λ_{n+1} and $\tilde{\lambda}_{n+1}$ are uniformly bounded away from both infinity and one. Taking p_{j} to be a map in $\mathcal{A}_{n+1, j}\left(C_{1}\right)$ in Proposition 7.2, the map ψ_{i} given there is in the class $\mathcal{B}_{n, i}(C)$ for some $C>1$.

To prove Proposition 7.2, we shall first use the complex bounds theorem to reduce it to a problem between certain real polynomials (in the class \mathcal{T}_{b} defined below), see Lemma 7.3. To prove Lemma 7.3, we shall first construct
a Yoccoz puzzle and apply the Key Lemma to get a uniform geometric control of a terminating puzzle piece, see Lemma 7.4. Then we apply the Spreading Principle from Section 5.3 and the QC-Criterion in Appendix 1.

7.2 Compositions of real quadratic polynomials

Definition 7.3. Let \mathcal{Q} denote the family of real quadratic polynomials q_{t} : $z \mapsto t\left(1-z^{2}\right)-1,1 \leq t \leq 2$. For $b \in \mathbb{N}$, let \mathcal{Q}_{b} be the family of polynomials F which can be expressed as the composition of b real quadratic polynomials, $F=q_{t_{b-1}} \circ q_{t_{b-2}} \circ \cdots \circ q_{t_{0}}$.

As we shall see in the next subsection, maps in \mathcal{Q}_{b} are models for renormalizations with sufficiently large periods. Note that a map F in \mathcal{Q}_{b} has a connected Julia set $J(F)$, with $J(F) \cap \mathbb{R}=[-1,1]$, and that -1 is a fixed point of F. Moreover, the diameter of $J(F)$ is bounded from above by a constant which depends only on b. In fact $J(F)$ is contained in the closed unit disk $\overline{\mathbb{D}}$.

To each map $F=q_{t_{b-1}} \circ q_{t_{b-2}} \circ \cdots \circ q_{t_{0}}$, we can associate an extended $\operatorname{map} \mathbf{F}: \mathbb{C} \times \mathbb{Z}_{b} \rightarrow \mathbb{C} \times \mathbb{Z}_{b}$ defined by $\mathbf{F}(z, i)=\left(q_{t_{i}}(z), i+1\right)$. Let \mathcal{T}_{b} denote the subfamily of \mathcal{Q}_{b} consisting of maps F with the following property: the critical points $c_{i}=(0, i)$ of the extended map \mathbf{F} are all non-periodic and recurrent, and have the same ω-limit set which is a minimal set. Note that a map in \mathcal{T}_{b} does not have a periodic attractor.

Fact 7.2. Fix a positive integer b. For any k there exist constants $\delta_{k}>0$ and $\rho_{k}>1$ such that for any $F \in \mathcal{T}_{b}$, the following hold.

1. If c is a critical point of F^{k}, then $\left|F^{k}(c)-c\right| \geq \delta_{k}$;
2. If $x \in(-1,1)$ is a fixed point of F^{k}, then

$$
\left|\left(F^{k}\right)^{\prime}(x)\right| \geq \rho_{k}
$$

Proof. To prove the first statement, we argue by contradiction. Assume that this statement is wrong. Then there exists a sequence of maps $F_{n} \in \mathcal{T}_{b}$, $n=1,2, \ldots$ such that F_{n} has a critical point c_{n} with $\left|F_{n}^{k}\left(c_{n}\right)-c_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. By passing to a subsequence we may assume that F_{n} converges to a map $F \in \mathcal{Q}_{b}$ and that c_{n} converges to a point c which is in $\operatorname{Crit}(F)$. Then $F^{k}(c)=c$. So c is an attracting periodic point of F, which implies that F_{n}
has an attracting periodic point provided that n is sufficiently large. This contradicts the fact $F_{n} \in \mathcal{T}_{b}$.

Now let us prove the second statement. So let $F \in \mathcal{T}_{b}$ and let $x \in(-1,1)$ be a fixed point of F^{k}. Let $T \ni x$ be the maximal interval such that $F^{2 k} \mid T$ is monotone on T, and let L, R be the components of $T \backslash\{x\}$. Since F does not have a periodic attractor, $F^{2 k}(L) \supset L$ and $F^{2 k}(R) \supset R$. Note that both endpoints of T are critical points of $F^{2 k}$ and thus by the first statement of this lemma, it follows that $\left|F^{2 k}(L)\right| /|L|$ and $\left|F^{2 k}(R)\right| /|R|$ are both bounded away from 1. Since F has negative Schwarzian, this implies that $\left(F^{2 k}\right)^{\prime}(x)$ and hence $\left|\left(F^{k}\right)^{\prime}(x)\right|$ is bounded away from 1 .

Fact 7.3. There exists a constant C with the following property. Let $F \in \mathcal{T}_{b}$ and let x_{0} be a fixed point of F which is contained in $(-1,1)$. Then there is a well defined sequence $x_{0}>x_{1}>x_{2}>\cdots$ such that

- x_{1} is the point in $F^{-1}\left(x_{0}\right) \cap \mathbb{R}$ closest to -1 ;
- for every $n \geq 2, F\left(x_{n}\right)=x_{n-1}$
and

$$
\begin{equation*}
\frac{1}{C} \Lambda^{-n} \leq\left|x_{n}-(-1)\right| \leq C \Lambda^{-n} \tag{8}
\end{equation*}
$$

where $\Lambda=F^{\prime}(-1)$.
Proof. Let z_{0} be the critical point of F which is in \mathbb{R} and closest to -1 . It is easy to see that $F([-1,1])=F\left(\left[-1, z_{0}\right]\right)$, and therefore $-1<x_{1}<z_{0}$. Since F does not have a periodic attractor, $F\left(\left(-1, z_{0}\right)\right) \supset\left(-1, z_{0}\right)$. The existence of the sequence x_{n} follows. Moreover, we can find a sequence $z_{0}>z_{1}>z_{2}>$ $\ldots>-1$ such that $F\left(z_{n}\right)=z_{n-1}$ and $x_{n} \in\left(z_{n}, z_{n-1}\right)$ for all $n \geq 1$. Obviously it suffices to show that $\left|z_{n}-(-1)\right| \asymp \Lambda^{-n}$ to get (8). By the previous fact, $\left|F\left(z_{0}\right)-z_{0}\right|$ is bounded from below by a positive constant δ depending only on b. Note that the diffeomorphism $F^{n}:\left(-1, z_{n}\right) \rightarrow\left(-1, z_{0}\right)$ extends to a diffeomorphism onto $\left(-\infty, F\left(z_{0}\right)\right)$ which contains the δ-neighborhood of $\left(-1, z_{0}\right)$. As F has negative Schwarzian, it follows that the distortion of $F^{n} \mid\left(-1, z_{n}\right)$ is uniformly bounded from above. It follows that $\left|z_{n}-(-1)\right| \asymp$ Λ^{-n}.

7.3 Complex bounds

Now let us state the complex bounds theorem which was proved in [37].

Theorem 7.3. (Complex bounds) Let $g:[0,1] \rightarrow[0,1]$ be a real analytic interval map with only non-degenerate critical points. Let $c \in(0,1)$ be a critical point of g at which g is infinitely renormalizable and let b be the number of critical points of g which are contained in $\omega(c)$. Let $I \ni c$ be a properly periodic interval of g, and let s be its period. If $|I|$ is sufficiently small, then $g^{s}: I \rightarrow I$ extends to a holomorphic mapping $G: \Omega \rightarrow \Omega^{\prime}$ of degree 2^{b} such that

$$
\bmod \left(\Omega^{\prime} \backslash \bar{\Omega}\right) \geq \mu
$$

where $\mu>0$ is a constant depending only on b.
G is often called a DH polynomial-like mapping. By Douady and Hubbard straightening theorem [9], this polynomial-like mapping $G: \Omega \rightarrow \Omega^{\prime}$ is conjugate to a polynomial F of degree 2^{b} near their filled Julia set by a K-qc $\operatorname{map} \phi$, where $K=K(\mu)$ is a constant. In fact, as this map $G: \Omega \rightarrow \Omega^{\prime}$ is a composition of b real-symmetric double branched covering, the polynomial F belongs to the class \mathcal{T}_{b}. Moreover, the conjugacy ϕ can be chosen to be real-symmetric as well.

Applying this argument to the case $g=f$ and $I=I_{n}$, we obtain the following corollary.

Corollary 7.4. There exists a constant $K>1$ such that the following holds. Let n be a large positive integer. Then there exist a real polynomial $F \in \mathcal{T}_{b}$, and a K-qs map $\phi: I_{n} \rightarrow[-1,1]$ such that $f^{s_{n}} \mid I_{n}$ is topologically conjugate to $F \mid[-1,1]$ via ϕ.

Similarly we obtain a real polynomial $\tilde{F} \in \mathcal{T}_{b}$, and a K-qs map $\tilde{\phi}: \tilde{I}_{n} \rightarrow$ $[-1,1]$ such that $\tilde{f}^{s_{n}} \mid \tilde{I}_{n}$ is topologically conjugate to $\tilde{F} \mid[-1,1]$ via ϕ.

We should remark that the maps F and \tilde{F} are strongly combinatorially equivalent (See Definition 3.2), and moreover the extended maps \mathbf{F} and $\tilde{\mathbf{F}}$ are topologically conjugate on the reals, that is, they are topologically conjugate as dynamical systems on $\mathbb{R} \times \mathbb{Z}_{b}$.

Lemma 7.2. There exists a constant C which does not depend on n, such that for every $x \in \operatorname{int}\left(I_{n}\right)$ and $a \in \partial I_{n}$ we have

$$
\frac{1}{C}\left(\frac{|x-a|}{\left|I_{n}\right|}\right)^{\log \Lambda / \log \lambda_{n}} \leq \frac{|\phi(x)-\phi(a)|}{2} \leq C\left(\frac{|x-a|}{\left|I_{n}\right|}\right)^{\log \Lambda / \log \lambda_{n}}
$$

where $\Lambda=F^{\prime}(-1)$. Moreover, the analogous statement for $\tilde{\phi}$ holds as well.

Proof. In the proof of Fact 7.3, we have defined a sequence $z_{0}>z_{1}>z_{2} \ldots$ in $K(F) \cap \mathbb{R}$ such that z_{0} is the left-most critical point of $F \mid \mathbb{R}$, and $F\left(z_{k}\right)=$ z_{k-1}, and proved that $\left|(-1)-z_{k}\right| \asymp \Lambda^{-k}$. A similar argument shows that $\left|\beta_{n}-\phi^{-1}\left(z_{k}\right)\right| \asymp \lambda_{n}^{-k}$, where β_{n} is the boundary point of I_{n} as defined before. This implies this lemma for ϕ. The proof of the analogous statement for $\tilde{\phi}$ is similar.

Instead of I_{n}, we can repeat the above argument to a properly periodic interval I_{n}^{i} containing a critical point. So Proposition 7.2 is reduced to the following lemma.

Lemma 7.3. Let F and \tilde{F} be two polynomials in \mathcal{T}_{b} so that the extended maps \mathbf{F} and $\tilde{\mathbf{F}}$ are topologically conjugate on the reals. Assume that F is renormalizable, and the first renormalization of F is not of intersection type. Then for every $C>1$, there exists $C^{\prime}>1$ which is independent of F and \tilde{F} such that the following holds. Assume that for every maximal properly periodic interval J of F an orientation-preserving C-qs homeomorphism p_{J} : $J \rightarrow \tilde{J}$ is given, then there exists a C^{\prime}-qs homeomorphism $\Gamma:[-1,1] \rightarrow$ $[-1,1]$ such that $\Gamma=p_{J}$ on J. Moreover, there exists a constant $C^{\prime \prime}$ which depends only on b such that for any $x \in(-1,1)$ and $a \in\{-1,1\}$, we have

$$
\begin{equation*}
\frac{1}{C^{\prime \prime}}\left(\frac{|x-a|}{2}\right)^{\log \tilde{\Lambda} / \log \Lambda} \leq \frac{|\Gamma(x)-\Gamma(a)|}{2} \leq C^{\prime \prime}\left(\frac{|x-a|}{2}\right)^{\log \tilde{\Lambda} / \log \Lambda} \tag{9}
\end{equation*}
$$

where $\Lambda=F^{\prime}(-1)$ and $\tilde{\Lambda}=\tilde{F}^{\prime}(-1)$.

7.4 Puzzle geometry control

We will now prove Lemma 7.3. So we have two polynomials $F=q_{t_{b-1}} \circ \cdots q_{t_{0}}$ and $\tilde{F}=q_{\tilde{t}_{b-1}} \circ \cdots \circ q_{\tilde{t}_{0}}$ in the class \mathcal{T}_{b}. These two maps are topologically conjugate on the real line via a homeomorphism $H:[-1,1] \rightarrow[-1,1]$ which extends to a combinatorial equivalence between them.

Let us take an orientation-reversing fixed point α of F, for example, the one which is contained in $(-1,1)$ and furthest from the origin. Let $M_{0}=(\alpha,-\alpha)$, and for $n \geq 1$ define inductively M_{n} to be the component of the domain of the first return map (under F) to M_{n-1} which has α in its boundary. Note that the return time of M_{n} to M_{n-1} is always 2 . If $M_{1}=M_{0}$, then M_{0} is a properly periodic interval, and so the first renormalization of F
is of intersection type. Since we are assuming that the first renormalization of F is not of intersection type, we have $M_{1} \subsetneq M_{0}$.

Lemma 7.4. (Puzzle geometry control) Let F and \tilde{F} be as in Lemma 7.3. Assume that the first renormalization of F is not of intersection type. Let J_{0} be the maximal properly periodic interval for f which contains 0 . Then there exists two puzzle pieces $P^{\prime} \supset P$ for F which contain J_{0} and are contained in the same Yoccoz puzzle \mathcal{Y} for F such that

- the first return time of 0 to P^{\prime} is equal to the first renormalization period s;
- $P^{\prime}-P$ is disjoint from the postcritical set $P C(F)$;
- $\bmod \left(P^{\prime}-P\right) \geq \eta ;$
- P has η-bounded geometry,
where $\eta>0$ is a constant independent of F. Moreover, if we replace the puzzle pieces P^{\prime} and P with the corresponding objects for \tilde{F}, the statements remain true.

Proof. As we have not yet fixed a Yoccoz puzzle partition, an element of an arbitrary Yoccoz puzzle for F will be called an artificial puzzle piece for F. Let us say that a real-symmetric Jordan disk Ω has θ-bounded shape, $0<\theta<\pi / 2$, if $D_{\pi-\theta}(\Omega \cap \mathbb{R}) \subset \Omega \subset D_{\theta}(\Omega \cap \mathbb{R})$. We shall prove that there exist two artificial puzzle pieces $V^{\prime} \supset V$ which both contain J_{0} such that the following hold.

1. V has θ-bounded shape,
2. $V^{\prime}-V$ is disjoint from the $P C(F)$ and its modulus is at least τ,
3. $F^{k}(\partial V) \cap V^{\prime}=\emptyset$ for all $k \geq 1$,
4. $P C(F) \cap V \subset(1+2 \tau)^{-1}(V \cap \mathbb{R})$,
where $\tau>0, \theta \in(0, \pi / 2)$ are constants depending only on b.
Let us first show that this statement implies the existence of P and P^{\prime} claimed by this lemma. To this end we notice that $V \times\{0\}$ is a nice domain for the extended map \mathbf{F}, and that the complex box mapping G associated to $V_{0} \times\{0\}$ for \mathbf{F} falls into the class $\mathcal{P}^{\tau, \theta}$. More precisely, let $V_{i} \subset \mathbb{C} \times\{i\}, 0 \leq$
$i \leq b-1$, be the landing domain to $V \times\{0\}$ under \mathbf{F} which contains $c_{i}=(0, i)$, and let $U_{0} \ni c_{0}, U_{1}, \ldots, U_{m}$ be the landing domains to $\bigcup_{i} V_{i}$ under \mathbf{F} which are contained in V_{0} and intersect $P C(\mathbf{F})$. Then by definition, the polynomiallike box mapping G is the first entry map from $\left(\bigcup_{j=0}^{m} U_{j}\right) \cup\left(\bigcup_{i=1}^{b-1} V_{i}\right)$ to $\bigcup_{i=0}^{b-1} V_{i}$. By properties (1-4) of V and V^{\prime}, it follows that $G \in \mathcal{P}_{b}^{\tau, \sigma}$. This map G is renormalizable, and $J_{0} \times\{0\}$ is a properly periodic interval for G. Applying the Key Lemma completes the proof.

To prove the existence of V and V^{\prime}, let us first assume that $F^{2}: M_{1} \rightarrow M_{0}$ is monotone. Then, $F^{2}:-M_{1} \rightarrow M_{0}$ is an orientation reserving diffeomorphism, and so this map has a unique fixed point, which we denote by γ. Let $Y^{\prime} \ni 0$ be the F-puzzle piece bounded by the external rays through α and $-\alpha$, and the equipotential curve $\{G(z)=2\}$, where G is the Green function of F, and let $Y \ni 0$ denote the puzzle piece bounded by the external rays through γ and $-\gamma$, and the equipotential curve $\{G(z)=1\}$.
Fact 7.4. There exists $\tau>0$ and $\sigma \in(0, \pi / 2)$ such that

- Y has θ-bounded shape;
- $\bmod \left(Y^{\prime}-Y\right) \geq \tau$.

Proof. First notice that the length of each component of $I-\{\alpha,-\alpha, \gamma,-\gamma\}$ is uniformly bounded away from zero. By Fact 7.2 the multipliers of α and γ are both uniformly bounded from above and away from 1. Note that $Y \subset \subset Y^{\prime}$ and a compactness argument shows that $\bmod \left(Y^{\prime}-Y\right)$ is bounded away from zero. Now let $T \ni \gamma$ be the maximal open interval such that $F^{4} \mid T$ is monotone. Let L be the component of $T-\{\gamma\}$ which is contained in $(\gamma, 0)$ and let R be the other one. As we have shown, $|L|$ and $|R|$ are both bounded away from zero. Again by a compactness argument, we show that for some constant $\theta>0, \partial Y \cap\left\{G(z) \geq 1 / 2^{4 b}\right\}$ is contained in $D_{\theta}(L) \cap D_{\theta}(R)$, and disjoint from $D_{\pi-\theta}((\gamma,-\gamma))$. Note that $F^{4}(L) \supset L$ and $F^{4}(R) \supset R$. By the Schwarz lemma, it follows that the external rays landing at γ is contained in $D_{\theta}(L) \cap D_{\theta}(R)$. By symmetry, the external rays landing at $-\gamma$ is contained in $D_{\theta}(-L) \cap D_{\theta}(-R)$. Therefore,

$$
Y \subset D_{\theta}(L) \cup D_{\theta}(-L) \subset D_{\theta}((\gamma,-\gamma)),
$$

and

$$
\partial Y \cap D_{\pi-\theta}((\gamma,-\gamma))
$$

This proves the first statement.

Let us continue the proof of Lemma 7.4. The artificial puzzle piece Y has a bounded shape, but $P C(F)$ may come close to its boundary. In the following, we shall pull-back this topological disk to find the desired V. Let us say that an interval $K \times\{i\} \subset \mathbb{R} \times\{i\}, i \in \mathbb{Z}_{b}$ is an \mathbf{F}-pullback of $M_{0} \times\{0\}$ of depth k if it is a component of $\mathbf{F}^{-k}\left(M_{0} \times\{0\}\right) \cap(\mathbb{R} \times\{i\})$. (So $i+k=0 \bmod b$.) Let m be the maximal positive integer such that $M_{0} \times\{0\}$ has a unimodal F-pullback of depth m. Let $K \times\{i\} \subset \mathbb{R} \times\{i\}$ be this pullback. Then for each $(x, i) \in P C(\mathbf{F}) \cap K \times\{i\}$, we must have $\mathbf{F}^{m}((x, i)) \in\left(M_{0}-\left(M_{1} \cup\left(-M_{1}\right)\right)\right) \times\{0\}$. To see this, arguing by contradiction, assume that $\mathbf{F}^{m}((x, i)) \in Q \times\{0\}$, where Q is a component of $M_{1} \cup\left(-M_{1}\right)$. Then

$$
K^{\prime} \times\{i\}=\operatorname{Comp}_{(x, i)}\left(\mathbf{F}^{-m}(Q \times\{0\})\right) \cap(\mathbb{R} \times\{i\})
$$

is either a unimodal or a monotone pullback of $Q \times\{0\}$ according to $K^{\prime} \ni 0$ or not. In the former case, $K^{\prime} \times\{i\}$ would be a unimodal pullback of $M_{0} \times\{0\}$ of depth $m+2$, which contradicts the maximality of m. In the latter case, since $K^{\prime} \times\{i\}$ intersects $P C(F)$, it has a unimodal pullback which would become a unimodal pullback of $M_{0} \times\{0\}$ with a higher depth, again a contradiction.

Let $W=\operatorname{Comp}_{c_{i}}\left(\mathbf{F}^{-m}(Y \times\{0\})\right)$ and $W^{\prime}=\operatorname{Comp}_{c_{i}}\left(\mathbf{F}^{-m}\left(Y^{\prime} \times\{0\}\right)\right)$, where $c_{i}=(0, i)$. Then $W^{\prime}-W$ is disjoint from the postcritical set of \mathbf{F}. Since

$$
\mathbf{F}^{s}:\left(W^{\prime}, W\right) \rightarrow\left(Y^{\prime} \times\{0\}, Y \times\{0\}\right)
$$

is a double branched covering,

$$
\bmod \left(W^{\prime}-W\right)=\bmod \left(Y^{\prime}-Y\right) / 2 \geq \tau / 2
$$

Moreover, W has uniformly bounded geometry. To see this one first applies the Koebe distortion theorem to see that $\mathbf{F}(W)$ has uniformly bounded geometry and then applies Lemmas 13.2 and 13.3. Now we define $V \subset \mathbb{C}$ to be the topological disk such that $V \times\{0\}$ is the component of the domain of the first landing map onto W under \mathbf{F}, and V^{\prime} the corresponding one for W^{\prime}. Then V and V^{\prime} are puzzle pieces of F, and they contain J_{0}. Let us check that these puzzle pieces satisfy properties (1-4) stated at the beginning of the proof. Properties 1, 2 and 4 come from the corresponding statements for (W^{\prime}, W) which we have proved (we need to redefine the constants), and so we only need to check the third one.

To this end, we first notice that it is sufficient to show that $\mathbf{F}^{k}(\partial V \times$ $\{0\}) \cap\left(V^{\prime} \times\{0\}\right)=\emptyset$ for all $k \geq 1$. Arguing by contradiction, assume that
this is not true, and let k be the minimal positive integer such that there exists $z \in \partial V$ with $\mathbf{F}^{k}((z, 0)) \in V^{\prime} \times\{0\}$. Let r be the first landing time of $c_{0}=(0,0)$ to W under \mathbf{F}. Since $W^{\prime}-W$ is disjoint from $P C(F)$, this is also the first landing time of c_{0} to W^{\prime} under \mathbf{F}. Thus $\mathbf{F}^{j}\left(V^{\prime} \times\{0\}\right), 0 \leq j \leq r$ are pairwise disjoint, which implies that $k>r$. Next we notice that

$$
F^{n}(\partial Y) \cap V^{\prime} \subset F^{n}(\partial Y) \cap Y=\emptyset
$$

for any $n \geq 0$, and thus $k<r+m$. Consequently, $\mathbf{F}^{k-m}\left(W^{\prime}\right)$ intersects V^{\prime} since both of them contains $\mathbf{F}^{k}(z)$. As these sets are pullbacks of a nice domain Y^{\prime}, it follows that $V^{\prime} \subset \mathbf{F}^{k-m}\left(W^{\prime}\right)$, In particular, $\mathbf{F}^{k-m}\left(W^{\prime}\right)$ contains a critical point, which contradicts the fact that $\mathbf{F}^{k}: W^{\prime} \rightarrow Y^{\prime}$ is a double branched covering.

Now let us assume that $F^{2} \mid M_{1}$ is not monotone. Then $F^{2} \mid M_{2}$ is monotone. To see this let p denote the critical point of $F^{2} \mid M_{1}$ which is closest to α. Then $F^{2}\left(M_{1}\right)=\left(F^{2}(p), \alpha\right)$ which implies that $F^{2}(p) \notin M_{1}$ for otherwise M_{1} would become a properly periodic interval of F whose orbit does not contain 0 , which is impossible. Next let $1 \leq i \leq 2 b-1$ be minimal such that $q_{t_{i-1}} \circ q_{t_{i-2}} \circ \cdots q_{t_{0}}\left(M_{1}\right)$ contains 0 . (In other word, i is minimal such that $\mathbf{F}^{i} \mid M_{1} \times\{0\}$ contains a critical point of \mathbf{F}.) Write $\hat{M}_{0}=q_{t_{i-1}} \circ \cdots \circ q_{t_{0}}\left(M_{1}\right)$ and $\hat{M}_{1}=q_{t_{i-1}} \circ \cdots \circ q_{t_{0}}\left(M_{2}\right)$. Then \hat{M}_{1} is a return domain to \hat{M}_{0} under the map $\hat{F}=q_{t_{i+b-1}} \circ q_{t_{i+b-2}} \circ q_{t_{i}}$, and this first return map is monotone. Let \hat{J}_{0} be the maximal properly periodic interval of \hat{F} which contains 0 . Repeating the previous argument, replacing F with \hat{F}, we see that that there exist two puzzle pieces $\hat{P}^{\prime} \supset \hat{P}$ which contains \hat{J}_{0}, and satisfies the properties claimed in this lemma. Note that $\hat{J}_{0} \times\{i\}$ and $J_{0} \times\{0\}$ are both maximal properly periodic intervals of \mathbf{F}, and so they are contained in the same cycle of properly periodic intervals for \mathbf{F} since the critical points of \mathbf{F} all have the same ω-limit set. Let P (respectively P^{\prime}) be the Jordan domains such that $P \times\{0\}$ (respectively $P^{\prime} \times\{0\}$) is the component of the first entry map to \hat{P} (respectively \hat{P}^{\prime}) under \mathbf{F} which contains $c_{0}=(0,0)$. These puzzle pieces are what we look for.

As the whole argument is combinatorial, the last assertion of this lemma follows.

Proof of Lemma 7.3. We keep the notation introduced before the statement of Lemma 7.4. Let $P^{\prime} \supset P$ be the puzzle pieces as in Lemma 7.4. Let \mathcal{Y} be a Yoccoz puzzle for F which has P and P^{\prime} as pieces, and let $\tilde{\mathcal{Y}}$ be the corresponding puzzle for \tilde{F}.

Let $P^{\prime \prime}=\mathcal{L}_{0}\left(P^{\prime}\right)$, that is, the component of the domain of the first return map to P^{\prime} under F which contains 0 . From now on we shall assume that $P \subset P^{\prime \prime}$, and $\bmod \left(P^{\prime \prime}-P\right)$ is bounded away from zero. (Otherwise we simply replace P with $\mathcal{L}_{0}(P)$ in the following argument).

For each critical point c of F, let P_{c} (respectively $P_{c}^{\prime}, P_{c}^{\prime \prime}$) be the component of the domain of the first landing map L_{P} to P (respectively $P^{\prime}, P^{\prime \prime}$) under F. Since we are assuming that $\omega(c) \ni 0$, these puzzle pieces exist. As $P^{\prime}-P$ is disjoint from $P C(F)$, the first landing time of c to P coincides with that to P^{\prime}, and $\left(P_{c}^{\prime}-P_{c}\right) \cap P C(F)=\emptyset$. Since $L_{P}: P_{c}^{\prime} \rightarrow P^{\prime}$ has a uniformly bounded degree, and since P has η-bounded geometry, there exists a constant $\delta>0$ such that

- $\bmod \left(P_{c}^{\prime \prime}-P_{c}\right) \geq \delta$,
- the puzzle pieces P_{c} have δ-bounded geometry.

Let D (respectively $D^{\prime}, D^{\prime \prime}$) denote the domain of the first landing map to $\bigcup_{c} P_{c}$ (respectively $\bigcup_{c} P_{c}^{\prime}, \bigcup_{c} P_{c}^{\prime \prime}$) under F. Then for a similar reason, redefining the constant $\delta>0$ if necessary, the following holds: for any component U of D,

- U has δ-bounded geometry,
- if $U^{\prime \prime}=\operatorname{Comp}_{U}\left(D^{\prime \prime}\right)$, then $\bmod \left(U^{\prime \prime}-U\right) \geq \delta$.

Step 1. Let us prove that there exists a constant $K>1$, and for every $c \in \operatorname{Crit}(F)$, there exists a K-qc homeomorphism $\psi_{c}: P_{c}^{\prime \prime} \rightarrow \tilde{P}_{c}^{\prime \prime}$ which respects the standard boundary marking. To this end, we first take for every $c \in \operatorname{Crit}(F)$ an arbitrary real-symmetric qc map $\phi_{c}: P_{c} \rightarrow \tilde{P}_{c}$ respecting the standard boundary marking. Applying the Spreading Principle from Section 5.3, we obtain a real-symmetric qc map $\Phi: \mathbb{C} \rightarrow \mathbb{C}$ such that

- for every puzzle piece $U \in \mathcal{Y}$ which is not contained in the domain D, we have $\Phi(U)=\tilde{U}$ and $\Phi: U \rightarrow \tilde{U}$ respects the standard boundary marking,
- $\bar{\partial} \Phi=0$ a.e., on $\mathbb{C}-D$.

In particular, for every $c \in \operatorname{Crit}(F), \Phi\left(P_{c}^{\prime \prime}\right)=\tilde{P}_{c}^{\prime \prime}$ and $\Phi \mid P_{c}^{\prime \prime}$ respects the standard boundary marking.

Now let us fix a critical point c, and let $X=D \cap P_{c}^{\prime \prime}$. By what we have proved above, each component U of X has δ-bounded geometry, and $\bmod \left(U^{\prime \prime}-U\right) \geq \delta$, where $U^{\prime \prime}=\operatorname{Comp}_{U}\left(D^{\prime \prime}\right)$. Note that $U^{\prime \prime} \subset P_{c}^{\prime \prime}$, and thus $\bmod \left(P_{c}^{\prime \prime}-U\right) \geq \delta$. Similarly the analogous statements for $\Phi(U)$ are true as well. By the QC-Criterion from Appendix 1, there exists a K-qc homeomorphism $\psi_{c}: P_{c}^{\prime \prime} \rightarrow \tilde{P}_{c}^{\prime \prime}$ with the same boundary marking as $\Phi \mid \partial P_{c}^{\prime \prime}$ which is standard, where $K=K(\delta)>1$ is a constant.
Step 2. Let s be the first renormalization period of F. Then $F^{s}: P^{\prime \prime} \rightarrow P^{\prime}$ is a DH polynomial-like mapping with a connected Julia set \mathcal{J}. We claim that there exists a K-qc map $u: P^{\prime}-\mathcal{J} \rightarrow \tilde{P}^{\prime}-\tilde{\mathcal{J}}$, where $K>1$ is as above.

To see this, we first apply the Spreading Principle from Section 5.3 once again, using the maps ψ_{c}, and obtain a real-symmetric K-qc map $\Psi: P^{\prime} \rightarrow$ $\bigcup_{c} \tilde{P}^{\prime}$ respecting the standard boundary marking, Moreover, $\Psi\left|P^{\prime \prime}=\psi_{0}\right| P^{\prime \prime}$, and so $\Psi: P^{\prime} \rightarrow \tilde{P}^{\prime}$ also respects the standard boundary marking. As $P^{\prime}-\mathcal{J}=\bigcup_{n=0}^{\infty} G^{-n}\left(P^{\prime}-P^{\prime \prime}\right)$, where $G=F^{s} \mid P^{\prime \prime}$, we can define, for each $n \geq 0$, a real-symmetric K-qc map $u_{n}: G^{-n}\left(P^{\prime}-P^{\prime \prime}\right) \rightarrow \tilde{G}^{-n}\left(\tilde{P}^{\prime}-\tilde{P}^{\prime \prime}\right)$ using the formula $\tilde{G}^{n} \circ u_{n}=\Psi \circ G^{n}$. The qc maps match continuous on their common domains, and we can glue together to obtain the desired map u.

Step 3. Let $J_{0}=\mathcal{J} \cap \mathbb{R}$, which is the maximal properly periodic interval of F which contains the critical point 0 . Let us show that $\operatorname{diam}(\mathcal{J}) /\left|J_{0}\right|$ is bounded from above by a constant. In fact, as $\bmod \left(P^{\prime}-\mathcal{J}\right) \geq \bmod \left(P^{\prime}-P\right)$ is bounded away from 0 , by Lemma 2.4 in [21], there exist two topological disks $V \subset \subset W$ which contain \mathcal{J} such that $F^{s}: V \rightarrow W$ is a DH polynomiallike mapping which has \mathcal{J} as its Julia set and such that $\bmod (W-V)$ is bounded away from zero. By Douady-Hubbard straightening theorem, there exists a real-symmetric K-qc map ξ and a polynomial $G \in \mathcal{T}_{b}$ such that $F^{s}: V \rightarrow W$ is conjugate to G near their Julia sets via ξ, where K is a constant. So $\xi\left(J_{0}\right)=[-1,1]$ and $\xi(\mathcal{J})$ is the Julia set of G. As the diameter of G is uniformly bounded from above, the statement follows.

Step 4. Now let us prove that there exists a real-symmetric K-qc map $\gamma=\gamma_{P^{\prime}}: P^{\prime} \rightarrow \tilde{P}^{\prime}$ which respects the standard boundary marking and such that $\gamma\left|J_{0}=p\right| J_{0}$ is as in the assumption of this lemma. We have seen above that there exists a real-symmetric K-qc map $\Psi: P^{\prime} \rightarrow \tilde{P}^{\prime}$, and so this statement will follow if we prove the following

1. $\bmod \left(P^{\prime}-J_{0}\right)$ and $\bmod \left(\tilde{P}-\tilde{J}_{0}\right)$ are both uniformly bounded away from zero;
2. $\bmod \left(\tilde{P}-\tilde{J}_{0}\right) / \bmod \left(P^{\prime}-J_{0}\right)$ is uniformly bounded away from both infinity and zero.
Notice that $J_{0} \subset P$ and $\tilde{J}_{0} \subset \tilde{P}$, and so (1) follows. By Step 3, we see that $\bmod \left(P^{\prime}-J_{0}\right) \asymp \bmod \left(P^{\prime}-\mathcal{J}\right)$ and $\bmod \left(\tilde{P}^{\prime}-\tilde{J}_{0}\right) \asymp \bmod \left(\tilde{P}^{\prime}-\tilde{\mathcal{J}}\right)$. By Step $2, \bmod \left(\tilde{P}^{\prime}-\tilde{\mathcal{J}}\right) \asymp \bmod \left(P^{\prime}-\mathcal{J}\right)$. Thus (2) holds.
Step 5. Similarly we show that for every component Q of D^{\prime}, there exists a K-qc map $\gamma_{Q}: Q \rightarrow \tilde{Q}$ which respects the standard boundary marking. Moreover, if Q contains a maximal properly periodic interval J (of F) we have that $\gamma_{Q}|J=p| J$ is as in the assumption of this lemma.
Step 6. We can now complete the proof. Recall that D^{\prime} is the domain of the first landing map to P^{\prime} under F. Since $\omega(c) \ni 0$ for every $c \in \operatorname{Crit}(F), D^{\prime}$ contains the critical set of F. For every component Q of D^{\prime}, we have proved that there exists a qc map $\gamma_{Q}: Q \rightarrow \tilde{Q}$ with the standard boundary marking and with a bound on its dilatation. Of course when Q is real-symmetric, we can take γ_{Q} to be real-symmetric as well. Moreover if Q contains a maximal properly periodic interval J of F, we can choose γ_{Q} such that it coincides with p_{J}. Applying the Spreading Principle from Section 5.3 (taking U be the union of all components of D^{\prime} which contain a critical point or a properly periodic interval), we obtain a real-symmetric K-qc map $\Gamma: \mathbb{C} \rightarrow \mathbb{C}$ which coincides with p_{J} on each J. Observe that there exists a fixed point α of F such that Γ coincides with the topological conjugacy h on $\bigcup_{n=0}^{\infty} F^{-n}(\alpha) \cap \mathbb{R}$. Applying Fact 7.3, we see that (9) holds for an appropriate choice of the constant $C^{\prime \prime}$.

7.5 Gluing

So far we have proved Lemma 7.1. So for every $n \geq N$ and $0 \leq i \leq s_{n}-1$ we have an orientation preserving homeomorphism $\phi_{n, i}: I_{n}^{i} \rightarrow \tilde{I}_{n}^{i}$ which belongs to the class $\mathcal{B}_{n, i}(C)$, where C is a constant. Next we are going to glue these $\phi_{n, i}$'s together to get a qs conjugacy between $\operatorname{orb}_{f}(c)$ and $\operatorname{orb}_{\tilde{f}}(\tilde{c})$.
Conclusion of the proof of Theorem 7.1. Let $\phi_{n, i}$ be as above. Define

$$
\phi: \bigcup_{i=0}^{s_{N}-1} I_{N}^{i} \rightarrow \bigcup_{i=0}^{s_{N}-1} \tilde{I}_{N}^{i}
$$

to be the unique homeomorphism such that for any $n \geq N$ and $0 \leq i \leq s_{n}-1$, $\phi=\phi_{n, i}$ on $I_{n}^{i}-\bigcup_{j=0}^{s_{n+1}-1} I_{n+1}^{j}$. Note that ϕ maps I_{n}^{i} to \tilde{I}_{n}^{i} for each (n, i). Since
$\max _{i}\left|I_{n}^{i}\right|$ and $\max _{i}\left|\tilde{I}_{n}^{i}\right|$ shrinks to zero, ϕ forms a conjugacy between $\operatorname{orb}_{f}(c)$ and $\operatorname{orb}_{\tilde{f}}(\tilde{c})$.

Let us prove that ϕ is qs, by which we mean that the restriction of ϕ to each component of its domain is qs. To this end, let $u<v<w$ be three points in some I_{N}^{i} such that $v-u=w-v$. We need to estimate $(\phi(v)-\phi(u)) /(\phi(w)-\phi(v))$. This estimate will follows from the claims below and will be done at the end of the proof.
Claim 1. For any n, i, and any $a \in \partial I_{n}^{i}$ and $b \in \operatorname{int}\left(I_{n}^{i}\right)$, we have

$$
\frac{1}{C_{1}}\left|\phi_{n, i}(a)-\phi_{n, i}(b)\right| \leq|\phi(a)-\phi(b)| \leq C_{1}\left|\phi_{n, i}(a)-\phi_{n, i}(b)\right|,
$$

where $C_{1}>1$ is a constant independent of n, i.
Indeed, by construction $\phi(a)=\phi_{n, i}(a)$. If $b \notin \bigcup_{j} I_{n+1}^{j}$, then we also have $\phi(b)=\phi_{n, i}(b)$, and thus the inequality holds. Let us assume that $b \in U=I_{n+1}^{j}$ for some j, and let x be the intersection of (a, b) with ∂U. Also, let y be the other endpoint of U. Note that

$$
\begin{aligned}
\left|\phi_{n, i}(a)-\phi_{n, i}(x)\right| & =|\phi(a)-\phi(x)| & & \leq|\phi(a)-\phi(b)| \\
& \leq|\phi(a)-\phi(y)| & & =\left|\phi_{n, i}(a)-\phi_{n, i}(y)\right| .
\end{aligned}
$$

By Fact 7.4, $|a-x| /|x-y|$ is bounded away from zero uniformly. Since $\phi_{n, i}$ is C-qs, it follows

$$
\left|\phi_{n, i}(a)-\phi_{n, i}(x)\right| \asymp\left|\phi_{n, i}(a)-\phi_{n, i}(y)\right|,
$$

which completes the proof of this claim.
Claim 2. For any interval $(a, b) \subset I_{n}^{i}$ with $[a, b] \not \subset \bigcup_{j} \operatorname{int}\left(I_{n+1}^{j}\right)$, we have

$$
\frac{1}{C_{2}}\left|\phi_{n, i}(a)-\phi_{n, i}(b)\right| \leq|\phi(a)-\phi(b)| \leq C_{2}\left|\phi_{n, i}(a)-\phi_{n, i}(b)\right|,
$$

where $C_{2}>1$ is a constant independent of (n, i).
The boundary of $\bigcup_{j} I_{n+1}^{j}$ divides (a, b) into finitely many intervals T_{k}. We may assume that (a, b) is contained in a component K of $I_{n}^{i}-\partial \bigcup_{j} I_{n+1}^{j}$. If K is not a component of $\bigcup_{j} I_{n+1}^{j}$, then $\phi(a)=\phi_{n, i}(a)$ and $\phi(b)=\phi_{n, i}(b)$ by construction, and so the inequality holds. Thus we assume that K is component of $\bigcup_{j} I_{n+1}^{j}$. Since $[a, b] \not \subset \operatorname{int}(K)$, either $a \in \partial K$ or $b \in \partial K$. By the previous claim,

$$
|\phi(a)-\phi(b)| \asymp\left|\phi_{n+1, j}(a)-\phi_{n+1, j}(b)\right| .
$$

Since both of $\phi_{n+1, j}$ and $\phi_{n, i} \mid I_{n+1}^{j}$ belong to the class $\mathcal{A}_{n+1, j}(C)$, the last term is comparable to $\left|\phi_{n, i}(a)-\phi_{n, i}(b)\right|$, which proves this claim.
Claim 3. For any $\varepsilon>0$ there is an $\varepsilon^{\prime}>0$ such that for any interval $(a, b) \subset I_{n}^{i}$, if $|a-b| \geq \varepsilon\left|I_{n}^{i}\right|$, then $|\phi(a)-\phi(b)| \geq \varepsilon^{\prime}\left|\tilde{I_{n}^{i}}\right|$.

Let $m \geq 0$ be maximal such that $(a, b) \subset \bigcup_{j} I_{n+m}^{j}$. For each $0 \leq k \leq m$, let $0 \leq j_{k} \leq s_{n+k}-1$ be such that $(a, b) \subset I_{n+k}^{j_{k}}$. By Claim 2, $|\phi(a)-\phi(b)| \asymp$ $\left|\phi_{n+m, j_{m}}(a)-\phi_{n+m, j_{m}}(b)\right|$. Since $\left|I_{n+m}^{j_{m}}\right| \geq|a-b| \geq \varepsilon\left|I_{n}^{j_{0}}\right|$, all the intervals $I_{n+k}^{j_{k}}, 0 \leq k \leq m$, are comparable to (a, b). By Fact 7.1, $\left|I_{n+k+1}^{j_{k+1}}\right| /\left|I_{n+k}^{j_{k}}\right|$ is uniformly bounded away from 1 for each $0 \leq k \leq m-1$. Thus m is bounded in terms of ε. Since ϕ_{n+m} is C-qs, $\left|\phi_{n+m, j_{m}}(a)-\phi_{n+m, j_{m}}(b)\right| \asymp\left|\phi_{n+m, j_{m}}\left(I_{n+m}^{j_{m}}\right)\right|=$ $\tilde{I}_{n+m}^{j_{m}}$. Since $\phi_{n+k, j_{k}}, 0 \leq k \leq m-1$ are all C-qs, $\left|\tilde{I}_{n+m, j_{m}}\right| \asymp\left|\tilde{I}_{n, i}\right|$. This proves this claim.

Let us now prove that $A=|\phi(u)-\phi(v)| /|\phi(w)-\phi(v)|$ is bounded away from both infinity and zero. Let $M \geq 0$ be maximal such that u, v, w are contained in I_{M}^{i} for some $0 \leq i \leq s_{M}-1$. If neither $[u, v]$ nor $[v, w]$ is contained in $\bigcup_{j} \int\left(I_{M+1}^{j}\right)$, then by Claim 2, $|\phi(u)-\phi(v)| \asymp\left|\phi_{M, i}(u)-\phi_{M, i}(v)\right|$, and $|\phi(v)-\phi(w)| \asymp\left|\phi_{M, i}(v)-\phi_{M, i}(w)\right|$, and hence A is bounded from both above and from zero. So without loss of generality, let us assume $[u, v]$ is compactly contained in I_{M+1}^{j} for some j. By the maximality of $M,[v, w]$ is not contained in this interval, and thus we still have $|\phi(v)-\phi(w)| \asymp \mid \phi_{M, i}(v)-$ $\phi_{M, i}(w) \mid$. So it suffices to prove that $|\phi(u)-\phi(v)| \asymp\left|\phi_{M, i}(u)-\phi_{M, i}(v)\right|$. Let $v^{\prime} \in(v, w) \cap \partial I_{M+1}^{j}$ and we shall distinguish two cases.
Case 1. $\left|v^{\prime}-v\right| /|u-v|$ is very small. By Claim 2,

$$
\frac{|\phi(v)-\phi(w)|}{\left|\phi\left(v^{\prime}\right)-\phi(w)\right|} \asymp \frac{\left|\phi_{M, i}(v)-\phi_{M, i}(w)\right|}{\left|\phi_{M, i}\left(v^{\prime}\right)-\phi_{M, i}(w)\right|},
$$

which is bounded from both above and below since $\phi_{M, i}$ is C-qs. Similarly, $\left|\phi(u)-\phi\left(v^{\prime}\right)\right| \asymp\left|\phi_{M, i}(u)-\phi_{M, i}\left(v^{\prime}\right)\right|$ and $\left|\phi(v)-\phi\left(v^{\prime}\right)\right| \asymp\left|\phi_{M, i}(v)-\phi_{M, i}\left(v^{\prime}\right)\right|$. Since $\left|v^{\prime}-v\right| /\left|u-v^{\prime}\right|$ is very small, it follows that $\left|\phi(v)-\phi\left(v^{\prime}\right)\right| /\left|\phi(u)-\phi\left(v^{\prime}\right)\right|$ is very small, and thus

$$
\begin{aligned}
|\phi(u)-\phi(v)| & =\left|\phi(u)-\phi\left(v^{\prime}\right)\right|-\left|\phi(v)-\phi\left(v^{\prime}\right)\right| \\
& \asymp\left|\phi_{M, i}(u)-\phi_{M, i}\left(v^{\prime}\right)\right| \\
& \asymp\left|\phi_{M, i}(u)-\phi_{M, i}(v)\right| .
\end{aligned}
$$

Case 2. $\left|v-v^{\prime}\right| /|u-v|$ is bounded away from zero. In this case, by Claim 2 and the C-quasisymmetric property of $\phi_{M, i}$, it follows that

$$
\left|\phi(v)-\phi\left(v^{\prime}\right)\right| \asymp\left|\phi\left(v^{\prime}\right)-\phi(w)\right| \asymp|\phi(v)-\phi(w)|,
$$

and so it suffices to bound $A^{\prime}=|\phi(u)-\phi(v)| /\left|\phi(v)-\phi\left(v^{\prime}\right)\right|$. If $[u, v]$ is not contained in a component of $\bigcup_{j} I_{M+2}^{j}$, then again by claim 2, $A^{\prime} \asymp$ $\left|\phi_{M+1, j}(u)-\phi_{M+1, j}(v)\right| /\left|\phi_{M+1, j}(v)-\phi_{M+1, j}\left(v^{\prime}\right)\right|$ is bounded. Assume that $[u, v]$ is contained in $I_{M+2}^{j^{\prime}}$ for some $0 \leq j^{\prime} \leq s_{M+2}-1$. Note that $\left(v, v^{\prime}\right)$ contains a component T of $I_{M+1}^{j}-I_{M+2}^{j^{\prime}}$ and thus $|u-v| \geq\left|v-v^{\prime}\right|$ is a definite proportion of $\left|I_{M+2}^{j^{\prime}}\right|$. By Claim 3, $|\phi(u)-\phi(v)| \asymp \phi\left(I_{M+2}^{j^{\prime}}\right)=\tilde{I}_{M+2}^{j^{\prime}}$. Note that $\left|v-v^{\prime}\right| \asymp|T|$, and thus $\left|\phi_{M+1, j}(v)-\phi_{M+1, j}\left(v^{\prime}\right)\right| \asymp\left|\phi_{N+1, j}(T)\right|$. By Claim 1, $\left|\phi(v)-\phi\left(v^{\prime}\right)\right| \asymp\left|\phi_{N+1, j}(T)\right|$. Since $|T| \asymp\left|I_{M+2}^{j^{\prime}}\right|$ in our case, A^{\prime} is bounded.

8 Proof of the Key Lemma from Upper and Lower Bounds

8.1 Construction of the enhanced nest

Let us fix a map f which is in the class $\mathcal{P}_{b}^{\tau, \sigma}$ as in (1) and let c_{0} denote the critical point in V_{0}. Throughout § 8-11, we assume that f is persistently recurrent.

Recall that a puzzle piece is a component of $f^{-n}\left(V_{0}\right)$ for some $n \geq 0$. A puzzle piece \mathbf{I} is strictly nice in the sense of Martens: for any $x \in \partial \mathbf{I}$ and any $n \geq 1, f^{n}(x) \notin \overline{\mathbf{I}}$ (if $f^{n}(x)$ is defined). Therefore any component of the domain of the first return map to \mathbf{I} is compactly contained in \mathbf{I}.

Note that a puzzle piece is symmetric with respect to \mathbb{R} if its intersection with \mathbb{R} is non-empty. We shall use the following convention: a puzzle piece is denoted by a bold letter and its real trace is denoted by the corresponding roman letter. We are going to construct a sequence of puzzle pieces

$$
\begin{equation*}
\mathbf{I}_{0} \supset \mathbf{L}_{0} \supset \mathbf{K}_{0} \supset \mathbf{I}_{1} \supset \mathbf{L}_{1} \supset \ldots \tag{10}
\end{equation*}
$$

around c_{0}, called the enhanced nest for the map f. The enhanced nest will be the main objects for us to study, and we shall see that it contains the puzzle pieces with properties specified in the Key Lemma.

Lemma 8.1. Let $\mathbf{I} \ni$ c be a puzzle piece. Then there is a positive integer ν with $f^{\nu}(c) \in \mathbf{I}$ such that the following holds. Let $\mathbf{U}_{0}=\operatorname{Comp}_{c}\left(f^{-\nu}(\mathbf{I})\right)$ and $\mathbf{U}_{j}=f^{j}(U)$ for $0 \leq j \leq \nu$. Then

1. $\#\left\{0 \leq j \leq \nu-1: \mathbf{U}_{j} \cap \operatorname{Crit}(f) \neq \emptyset\right\} \leq b^{2} ;$

2. $\mathbf{U}_{0} \cap P C(f) \subset \operatorname{Comp}_{c}\left(f^{-\nu}\left(\mathcal{L}_{f^{\nu}(c)}(\mathbf{I})\right)\right)$.

The proof of this lemma will be given at the end of this subsection.
For each puzzle piece $\mathbf{I} \ni c$, let $\nu=\nu(\mathbf{I})$ be the smallest positive integer with the properties specified by Lemma 8.1. We define

$$
\begin{aligned}
\mathcal{A}(\mathbf{I}) & =\operatorname{Comp}_{c}\left(f^{-\nu}\left(\mathcal{L}_{f^{\nu}(c)}(\mathbf{I})\right)\right), \\
\mathcal{B}(\mathbf{I}) & =\operatorname{Comp}_{c}\left(f^{-\nu}(\mathbf{I})\right) .
\end{aligned}
$$

Definition 8.1. Given a puzzle piece $\mathbf{P} \ni c$, by a successor of \mathbf{P}, we mean a puzzle piece of the form $\hat{\mathcal{L}}_{c}(\mathbf{Q})$, where \mathbf{Q} is a child of $\hat{\mathcal{L}}_{c^{\prime}}(\mathbf{P})$ for some $c^{\prime} \in \operatorname{Crit}(f)$.

Since f is persistently recurrent, each critical puzzle piece \mathbf{P} has a smallest successor, which we denote by $\Gamma(\mathbf{P})$. Remark that if \mathbf{Q} is an entry domain to \mathbf{P} intersecting $P C(f)$, then $\hat{\mathcal{L}}_{c}(\mathbf{Q})$ is an successor of \mathbf{P} by definition, and thus $\hat{\mathcal{L}}_{c}(\mathbf{Q}) \supset \Gamma(\mathbf{P})$.

Now we can define the enhanced nest (10) as follows: $\mathbf{I}_{0}=V_{0}$ and for each $n \geq 0$,

$$
\begin{array}{ll}
\mathbf{L}_{n} & =\mathcal{A}\left(\mathbf{I}_{n}\right), \\
\mathbf{M}_{n, 0} & =\mathbf{K}_{n}=\mathcal{B}\left(\mathbf{L}_{n}\right), \\
\mathbf{M}_{n, j+1} & =\Gamma\left(\mathbf{M}_{n, j}\right) \text { for } 0 \leq j \leq T-1, \\
\mathbf{I}_{n+1} & =\mathbf{M}_{n, T}=\Gamma^{T} \mathcal{B A}\left(\mathbf{I}_{n}\right),
\end{array}
$$

where $T=5 b$. This choice is made because of Lemma 8.2 (it is not optimal).
We define $\chi=\chi(f):=\infty$ if f is non-renormalizable, and otherwise define it to be the minimal non-negative integer such that \mathbf{I}_{χ} is terminating, i.e., the return time of c to \mathbf{I}_{χ} is equal to the first renormalization period of f.

Proof of Lemma 8.1. First, let $b=1$. In this case we can take \mathbf{U}_{0} to be the smallest successor of \mathbf{I} (it exists because f is persistently recurrent) and let ν be the positive integer with $f^{\nu}\left(\mathbf{U}_{0}\right)=\mathbf{I}$. The first assertion of the lemma is obvious and the second one follows from the minimality of \mathbf{U}_{0}.

Now let us deal with the general case. For simplicity of notation let us assume that the critical point in \mathbf{I} is c_{0}. We claim that for each $c \in \operatorname{Crit}(f)$ there exist two puzzle pieces $\mathbf{P}_{c}^{\prime} \subset \subset \mathbf{P}_{c}$ containing c with the following properties:

1. each \mathbf{P}_{c} is a pull back of \mathbf{I} of order $\leq b^{2}-b$;
2. for each $c \in \operatorname{Crit}(f)$, and any $z \in\left(\mathbf{P}_{c}-\mathbf{P}_{c}^{\prime}\right) \cap P C(f)$, there exist a positive integer r, a puzzle piece \mathbf{V} containing z and a critical point \hat{c} such that $f^{r}: \mathbf{V} \rightarrow \mathbf{P}_{\hat{c}}$ is a conformal map.

Before we prove the claim let us show how it implies the lemma. Let s be the maximal positive integer such that one of the \mathbf{P}_{c} has a child of depth s, i.e., s is maximal such that there exist a critical puzzle piece \mathbf{Q} and a critical point c such that $f^{s}: \mathbf{Q} \rightarrow \mathbf{P}_{c}$ is a double branch covering. Let us prove that for each $x \in \mathbf{Q} \cap P C(f)$ we have $f^{s}(x) \in \mathbf{P}_{c}^{\prime}$.

Arguing by contradiction, assume that this is false. Then by the second property above, there exist a puzzle piece $\mathbf{V} \ni f^{s}(x)$, a positive integer r and a critical point \hat{c} such that $f^{r}: \mathbf{V} \rightarrow \mathbf{P}_{\hat{c}}$ is conformal. Let $\mathbf{W}=$ $\operatorname{Comp}_{x}\left(f^{-s} \mathbf{V}\right)$. If $\mathbf{W} \ni c$, then \mathbf{W} is a child of $\mathbf{P}_{\hat{c}}$ of depth $r+s$, contradicting the maximality of s. So $\mathbf{W} \not \not c c$ and thus $f^{r+s}: \mathbf{W} \rightarrow \mathbf{P}_{\hat{c}}$ is conformal. Since $\mathbf{W} \cap P C(f) \neq \emptyset$, we can find a critical puzzle piece \mathbf{W}^{\prime} and a positive integer t such that $f^{t}: \mathbf{W}^{\prime} \rightarrow \mathbf{W}$ is a double branched covering. Then \mathbf{W}^{\prime} is a child of $\mathbf{P}_{\hat{c}}$ of depth $r+s+t$, again contradicting the maximality of s.

Now let $\mathbf{U}_{0}=\hat{\mathcal{L}}_{c_{0}}(\mathbf{Q})$ and let ν be the positive integer such that $f^{\nu}\left(\mathbf{U}_{0}\right)=$ I. Then it is easy to check that ν satisfies all the properties required in the lemma.

It remains to prove the claim. Let $\mathbf{T}_{0}:=\mathbf{I}$ and $\mathbf{J}_{0}:=\mathcal{L}_{c_{0}}(\mathbf{I})$. First assume that for every critical point $c \neq c_{0}, R_{\mathbf{I}}(c) \in \mathbf{J}_{0}$. In this case we can take $\mathbf{P}_{c}=\hat{\mathcal{L}}_{c}$ and $\mathbf{P}_{c}^{\prime}=\hat{\mathcal{L}}_{c}\left(\mathbf{J}_{0}\right)$. In fact, for every $c \neq c_{0}, R_{\mathbf{I}}: \mathcal{L}_{c}(\mathbf{I}) \rightarrow \mathbf{I}$ has all its critical values in \mathbf{J}_{0} and thus $R_{\mathbf{I}}: \mathbf{P}_{c}-\mathbf{P}_{c}^{\prime} \rightarrow \mathbf{I}-\mathbf{J}_{0}$ is an (unbranched) covering. Now let us suppose that there is a critical point $c_{1}, c_{1} \neq c_{0}$ such that $R_{\mathbf{I}}\left(c_{1}\right) \notin \mathbf{J}_{0}$. Let $\mathbf{T}_{1}=\mathbf{J}_{0} \cup \operatorname{Comp}_{c_{1}}\left(R_{\mathbf{I}}^{-1}\left(\mathcal{L}_{R_{\mathbf{I}}\left(c_{1}\right)}(\mathbf{I})\right)\right)$. The domain \mathbf{T}_{1} is strictly nice and, thus, any critical return domain of \mathbf{T}_{1} is compactly contained in \mathbf{T}_{1}. Both of the puzzle pieces from \mathbf{T}_{1} are pullbacks of \mathbf{T} of order bounded by b.

Let $\mathbf{J}_{1}=\mathcal{L}_{c_{0}}\left(\mathbf{T}_{1}\right) \cup \mathcal{L}_{c_{1}}\left(\mathbf{T}_{1}\right)$. The proof is completed again unless there is a critical point $c_{2}, c_{2} \neq c_{0}, c_{1}$, such that $R_{\mathbf{T}_{1}}\left(c_{2}\right) \notin \mathbf{J}_{1}$. In the latter case $\left.\mathbf{T}_{2}=\mathbf{J}_{1} \cup \operatorname{Comp}_{c_{2}}\left(R_{\mathbf{T}_{1}}^{-1}\left(\mathcal{L}_{R_{\mathbf{T}_{1}}\left(c_{2}\right)}\right)\left(\mathbf{T}_{1}\right)\right)\right)$ is again a strictly nice set and all the puzzle pieces from \mathbf{T}_{2} are pullbacks of \mathbf{I} of order bounded by $b+(b-1)$.

We can carry on in this way until we get the following situation:

- there is a collection $\mathbf{T}_{m}, m<b$, of puzzle pieces around some critical points and this collection is strictly nice;
- for any other critical point $c^{\prime}, R_{\mathbf{T}_{m}}\left(c^{\prime}\right) \in \mathbf{J}_{m}$, where $\mathbf{J}_{m}=\bigcup_{c \in \mathbf{T}_{m}} \mathcal{L}_{c}\left(\mathbf{T}_{m}\right)$;
- any puzzle piece of \mathbf{T}_{m} is a pullback of \mathbf{I} of order bounded by $b+(b-$ $1)+\cdots+(b-m+1) \leq b^{2}-b$.
In this case we just take $\mathbf{P}_{c}=\hat{\mathcal{L}}_{c}\left(\mathbf{T}_{m}\right)$ and $\mathbf{P}_{c}^{\prime}=\hat{\mathcal{L}}_{c}\left(\mathbf{J}_{m}\right)$ for every $c \in \operatorname{Crit}(f)$ to complete the proof.

8.2 Properties of the enhanced nest

We first state a proposition on the geometry of the real traces of the puzzle pieces in the enhanced nest. This result shows that the real geometry is under a good control and is the origin for our further analysis on the geometry of those puzzle pieces.

Definition 8.2. A nice interval I is called ρ-nice, if for each $x \in I \cap P C(f)$ we have

$$
(1+2 \rho) \mathcal{L}_{x}(I) \subset I
$$

Moreover, for any $\rho>0$, let \mathcal{T}_{ρ} denote the family of all ρ-nice interval I with the property

$$
\left((1+2 \rho) I-(1+2 \rho)^{-1} I\right) \cap P C(f)=\emptyset
$$

Proposition 8.1. (Real geometry for the enhanced nest) Assume $f \in \mathcal{P}_{b}^{\tau, \sigma}$.

1. There exists $\rho=\rho(\tau, b)>0$ such that for each $0 \leq n \leq \chi$ and for any $Z \in\left\{I_{n}, K_{n}, L_{n}: 0 \leq n \leq \chi\right\}, Z \in \mathcal{T}_{\rho}$.
2. For any $C>0$ there exists an $\varepsilon>0$ such that for any $0 \leq n \leq \chi$, if there is $x \in P C(f) \cap I_{n}$ with $\left|\mathcal{L}_{x}\left(I_{n}\right)\right| \leq \varepsilon\left|I_{n}\right|$, then $\left|I_{n}\right| \geq C\left|I_{n+1}\right|$ and I_{n+1} is a C-nice interval.
3. For any $C>0$, there exists $C^{\prime}>0$ such that if $\left|I_{n}\right| /\left|I_{n+1}\right|>C^{\prime}$, then $I_{n+2} \in \mathcal{T}_{C}$.

This proposition will be proved in Section 9.
We shall also need the following combinatorial information later. For each $n \geq 0$, let s_{n}, t_{n} be the positive integers such that $f^{s_{n}}\left(\mathbf{L}_{n}\right)=\mathbf{I}_{n}$ and $f^{t_{n}}\left(\mathbf{K}_{n}\right)=\mathbf{L}_{n}$. Moreover, for each $1 \leq j \leq T-1$, let $q_{n, j}$ be such that $f^{q_{n, 1}}\left(\mathbf{M}_{n, 1}\right)=\mathbf{K}_{n}$ and $f^{q_{n, j+1}}\left(\mathbf{M}_{n, j+1}\right)=\mathbf{M}_{n, j}$. Moreover, let

$$
\begin{equation*}
p_{n}=s_{n}+t_{n}+q_{n, 1}+q_{n, 2}+\cdots+q_{n, T} . \tag{11}
\end{equation*}
$$

So $f^{p_{n}}\left(\mathbf{I}_{n+1}\right)=\mathbf{I}_{n}$. For any nice interval J containing c_{0}, let $r(J)$ denote the minimal return time from J to itself and let $\hat{r}(J)$ be the entry time of $x \in P C(f)$ into J.
Lemma 8.2. (Transition and return time relation) Let $T=5 b$. Then for any $0 \leq n \leq \chi-2$, the following hold.

- $b^{2} r\left(L_{n}\right) \geq s_{n} \geq r\left(I_{n}\right)$;
- $b^{2} r\left(K_{n}\right) \geq t_{n} \geq r\left(L_{n}\right)$;
- $r\left(M_{n, i}\right) \geq q_{n, i} \geq 2 r\left(M_{n, i-1}\right), i=1, \ldots, T$;
- $\hat{r}\left(I_{n}\right) \leq q_{n, 1} \leq \frac{1}{2} q_{n, 2} \leq \cdots \leq \frac{1}{2^{T-1}} r\left(I_{n+1}\right)$;
- $3 r\left(I_{n+1}\right) \geq p_{n}$;
- $p_{n+1} \geq 2 p_{n}$.

Proof. Consider the chain $\left\{G_{j}\right\}_{j=0}^{s_{n}}$ with $G_{s_{n}}=I_{n}$ and $G_{0}=L_{n}$. Let $0=$ $j_{0}<j_{1}<j_{2}<\ldots<j_{\nu}=s_{n}$ be all the integers such that $G_{j_{i}} \cap I_{n} \neq \emptyset$. Note that

$$
L_{n} \subset G_{j_{1}} \subset G_{j_{2}} \subset \ldots \subset G_{j_{\nu}}
$$

and hence, by Lemma 8.1, $\nu \leq b^{2}$. It is clear that $j_{i+1}-j_{i} \leq r\left(L_{n}\right)$ for $0 \leq i \leq \nu-1$. Thus

$$
s_{n}=\sum_{i=0}^{\nu-1}\left(j_{i+1}-j_{1}\right) \leq \nu r\left(L_{n}\right) \leq b^{2} r\left(L_{n}\right) .
$$

As s_{n} is clearly not smaller than the return time of c to $I_{n}, s_{n} \geq r\left(I_{n}\right)$. This proves the first inequality. The second one can be done in a very similar way.

As $n \leq \chi-2$, all these intervals $M_{n, i-1}, 1 \leq i \leq T$ are non-terminating, and thus $R_{M_{n, i-1}}\left(M_{n, i}\right) \cap M_{n, i}=\emptyset$, which implies that $q_{n, i} \geq 2 r\left(M_{n, i-1}\right)$. Furthermore, we observe that if $\left\{G_{j}\right\}_{j=0}^{q_{n, i}}$ is the chain with $G_{q_{n, i}}=M_{n, i-1}$ and $G_{0}=M_{n, i}$, then $G_{j} \nexists c$, and hence $G_{j} \cap M_{n, i}=\emptyset$ for all $0<j<q_{n, i}$. Therefore $r\left(M_{n, i}\right) \geq q_{n, i}$. This proves the third inequality.

Note that for any nice interval J containing c_{0}, if q is so that $f^{q}(\Gamma(\mathbf{J}))=\mathbf{J}$, then $q \geq \hat{r}(J)$. Because K_{n} is a subset of I_{n} and $M_{n, 1}$ is the smallest successor of $M_{n, 0}, \hat{r}\left(I_{n}\right) \leq \hat{r}\left(K_{n}\right) \leq q_{n, 1}$.

The last two inequalities follow from the first three by direct computation, using the fact that $r(I) \leq r\left(I^{\prime}\right)$ for any symmetric nice intervals $I \supset I^{\prime}$. (Here we use the choice for T.)

8.3 Proof of the Key Lemma (assuming upper and lower bounds)

Assume as before that f is a persistently recurrent polynomial-like box mapping in the class $\mathcal{P}_{b}^{\tau, \sigma}$. The Key Lemma will follow from the following two propositions.

Proposition 8.2 (Lower Bounds). There exists a constant $\eta=\eta(\tau, \sigma, b)>$ 0 such that for each $0 \leq n \leq \chi$ we have

$$
B\left(c_{0}, \eta\left|I_{n}\right|\right) \subset \mathbf{I}_{n} .
$$

The proof of this proposition will be given in Section 10.
Proposition 8.3 (Upper Bounds). There exists a constant $C=C(\tau, \sigma, b)>$ 1 such that for any $0 \leq n \leq \chi$, the following hold:

$$
\operatorname{diam}\left(\mathbf{I}_{n}\right) \leq C\left|I_{n}\right| ;
$$

- there exists a topological disk $\Omega \supset \mathbf{I}_{n}$ such that $\Omega-\mathbf{I}_{n}$ is disjoint from $P C(f)$ and

$$
\bmod \left(\Omega-\mathbf{I}_{n}\right) \geq \frac{1}{C}
$$

These upper bounds will be proved in Section 11.
Proof of the Key Lemma. The first statement follows immediately from the two propositions above: we just take Y to be \mathbf{I}_{n} for a sufficiently big n. As f is non-renormalizable, $\chi=\infty$, so $\operatorname{diam}\left(\mathbf{I}_{n}\right) \asymp\left|I_{n}\right|$ is small when n is large.

Let us prove the second statement. So assume that f is renormalizable. Let $Y^{\prime}=\mathbf{I}_{\chi}$. Let η, C, ρ be the constants as in Propositions 8.2, 8.3, 8.1 respectively. Let N be a positive integer such that $(1+2 \rho)^{N} \geq C / \eta$. If $\chi<N$, then consider the map $g=f^{p_{0}+p_{1}+\cdots+p_{\chi-1}}: \mathbf{I}_{\chi} \rightarrow \mathbf{I}_{0}$, and let $Y=$ $\operatorname{Comp}_{c_{0}}\left(g^{1}(U)\right)$, where U is the component of $\operatorname{Dom}(f)$ which contains $g\left(c_{0}\right)$. It is easy to check that the second statement holds for an appropriate constant ξ in this case (the degree of $g: \mathbf{I}_{\chi} \rightarrow \mathbf{I}_{0}$ is bounded when χ is bounded). Assume $\chi \geq N$. By Proposition 8.1, we have

$$
\left|I_{\chi-N}\right| \geq(1+2 \rho)^{N}\left|I_{\chi}\right| .
$$

By Propositions 8.2 and 8.3, it follows that

$$
\mathbf{I}_{\chi} \subset D_{*}\left(\frac{1}{2} I_{\chi-N}\right) .
$$

Consider the map

$$
g=f^{p_{\chi-1}+p_{\chi-2}+\cdots+p_{\chi-N}}: \mathbf{I}_{\chi} \rightarrow \mathbf{I}_{\chi-N},
$$

and let $Y=\operatorname{Comp}_{c_{0}}\left(g^{-1}(U)\right)$, where $U=\mathcal{L}_{g\left(c_{0}\right)}\left(\mathbf{I}_{\chi}\right)$. Notice that $R_{\mathbf{I}_{\chi}} \circ g$: $Y \rightarrow \mathbf{I}_{\chi}$ is a proper map with bounded degree, it follows that Y has ξ-bounded geometry for an appropriately chosen ξ. Moreover, as $\bmod \left(\mathbf{I}_{\chi-N}-\bar{U}\right)$ is bounded away from zero, so is $\bmod \left(Y^{\prime}-Y\right)$.

As the whole construction is topological, the last statement follows.

9 Real bounds

Let us start with some definitions. A sequence of intervals $\left\{G_{j}\right\}_{j=0}^{s}$ is called a chain if G_{j} is a component of $f^{-1}\left(G_{j+1}\right) \cap \mathbb{R}$. The intersection multiplicity of a chain is the maximal number of intervals in the chain with a non-empty intersection. The order of a chain is the number of intervals in the chain containing a critical point. If I is a real interval of the form $(a-b, a+b)$ and $\lambda>0$ then we define $\lambda I=(a-\lambda b, a+\lambda b)$. By definition $(1+2 \delta) I$ is called the δ-scaled neighbourhood of I. We say that I is δ-well-inside J if $J \supset(1+2 \delta) I$.

Throughout Sections 9, 10 and 11 all constants depend on the class $\mathcal{P}_{b}^{\tau, \sigma}$, and all nice intervals involved are the intersection of puzzle pieces with the real line.

The goal of this section is to prove Proposition 8.1. To do this we shall use the following well known fact frequently.

Fact 9.1. Let $\left\{G_{j}\right\}_{j=0}^{s}$ and $\left\{G_{j}^{\prime}\right\}_{j=0}^{s}$ be chains such that $G_{j} \subset G_{j}^{\prime}$ for all $0 \leq j \leq s$. For any $N \in \mathbb{N}$ and any $\rho>0$ there exists $\rho^{\prime}>0$ such that the following holds. Assume that the order of $\left\{G_{j}^{\prime}\right\}_{j=0}^{s}$ is at most N and that $(1+2 \rho) G_{s} \subset G_{s}^{\prime}$. Then $\left(1+2 \rho^{\prime}\right) G_{0} \subset G_{0}^{\prime}$. Moreover, for a fixed N, $\rho^{\prime} \rightarrow \infty$ as $\rho \rightarrow \infty$.

Proof. See [25]. Alternatively it follows easily from the fact that $f^{s}: G_{0}^{\prime} \rightarrow$ G_{s}^{\prime} extends to a branched covering $F: U \rightarrow \mathbb{C}_{G_{s}^{\prime}}$ with degree bounded from above by 2^{N}.

We shall also use the following results which have been known previously.
Lemma 9.1. There exists $\delta>0$ such that if I is a nice interval around a critical point c and $R_{I}(c) \notin \mathcal{L}_{c}(I)$, then

$$
(1+2 \delta) \mathcal{L}_{c}^{2}(I) \subset \mathcal{L}_{c}(I)
$$

Proof. See Theorem A in [42].
Lemma 9.2. For any $\delta>0$ there is $\epsilon>0$ such that if I is a nice interval, J is any subinterval of I such that $(1+2 \delta) J \subset I, x$ is a point, $k \geq 1$ and $f^{k}(x) \in J$, then

$$
(1+2 \epsilon) \operatorname{Comp}_{x}\left(f^{-k}(J) \cap \mathbb{R}\right) \subset \mathcal{L}_{x}(I)
$$

Proof. See Theorem B in [42].
Lemma 9.3. For any $C>0$ and $d>0$ there is $C^{\prime}>0$ such that if I is a nice set, $J=\mathcal{L}_{x}^{d}(I)$ and $\left(1+2 C^{\prime}\right) J \subset I$, then

$$
(1+2 C) \mathcal{L}_{y}(J) \subset \mathcal{L}_{y}(I)
$$

for any y which is contained in the domain of the first entry map to J.
Proof. See Proposition 4.1 in [37].
Lemma 9.4. There exists a constant $\rho_{0}>0$ with the following property. Let I be a nice interval containing a critical point c, and $I^{1}=\mathcal{L}_{c}(I)$. Let s be the return time of c into I. Then either of the following holds:

1. $\left(1+2 \rho_{0}\right) I^{1} \subset I ;$
2. the chain $\left\{G_{j}\right\}_{j=0}^{s}$ with $G_{s}=\left(1+2 \rho_{0}\right) I$ and $G_{0} \ni c$ has intersection multiplicity bounded from above by a constant $N=N(b)$.

Proof. See Lemma 2 in [42].
Definition 9.1. A sequence of nice intervals containing a critical point c

$$
I^{0} \supset I^{1} \supset I^{2} \supset \ldots \supset I^{m}
$$

is a central cascade around c if $I^{i+1}=\mathcal{L}_{c}\left(I^{i}\right)$ for all $i=0, \ldots, m-1$ and the return times of c to I^{0}, \ldots, I^{m-1} are all the same.

Lemma 9.5. For any $\delta>0$, there exist $\kappa>0$ and $C>0$ with the following properties. Let us consider a central cascade $I:=I^{0} \supset I^{1} \supset I^{2} \supset \ldots \supset I^{m}$ with $m \geq 2$. Let s be the return time of I^{1} to I. Assume that $\left|I^{2}\right| \geq \delta\left|I^{0}\right|$. Then for any critical point z of the map $R_{I} \mid I^{2}$ we have

$$
\left|f^{s}(z)-z\right| \geq \kappa\left|I^{0}\right| \text { and }\left|\left(f^{s}\right)^{\prime}(x)\right| \leq C \text { for all } x \in I^{2} .
$$

Proof. Let $\rho_{0}>0$ be as in Lemma 9.4. Then $f^{s}: I_{2} \rightarrow I^{1}$ extends to a branched covering $F: \Omega \rightarrow \Omega^{\prime}:=\mathbb{C}_{\left(1+2 \rho_{0}\right) I^{1}}$ with degree uniformly bounded from above. To see this it suffices to show that the order ν of the chain $\left\{G_{j}\right\}_{j=0}^{s}$ with $G_{s}=\left(1+2 \rho_{0}\right) I^{1}$ and $G_{0} \supset I^{2}$ is uniformly bounded. If $I^{0} \supset\left(1+2 \rho_{0}\right) I^{1}$, then $\nu \leq b$, and otherwise $\nu \leq N(b)$ by Lemma 9.4.

Let $\Omega_{0}^{\prime}=D_{\pi-\sigma}\left(\left(1+2 \rho_{0}\right) I^{1}\right)$ and let $\Omega_{0}=F^{-1}\left(\Omega_{0}^{\prime}\right)$. Note that $\bmod \left(\Omega_{0}^{\prime} \backslash I^{1}\right)$ and therefore $\bmod \left(\Omega_{0}-I^{2}\right)$ is bounded away from zero. So there exists a constant κ_{1} such that Ω_{0} contains $X:=\bigcup_{x \in I^{2}} B\left(x, \kappa_{1}\left|I^{2}\right|\right)$. By Cauchy's formula and since $\left|I^{2}\right| \geq \delta\left|I^{0}\right|$, it follows that $\left|F^{\prime}\right|$ is bounded from above on $\bigcup_{x \in I^{2}} B\left(x, \kappa_{1} / 2\left|I^{2}\right|\right)$. In particular $\left|\left(f^{s}\right)^{\prime}\right|$ is bounded from above on I^{2}. Moreover there exists $\kappa_{2}>0$ such that for each $z \in \operatorname{Crit}\left(R_{I} \mid I^{2}\right)$ and for each $w \in B\left(z, \kappa_{2}\left|I^{2}\right|\right), \quad\left|\left(f^{s}\right)^{\prime}(w)\right| \leq 1 / 2$. If $\left|f^{s}(z)-z\right| /\left|I^{2}\right| \ll 1$ then $f^{s}\left(B\left(z, \kappa_{2}\left|I^{2}\right|\right)\right) \subset \subset B\left(z, \kappa_{2}\left|\kappa_{2}\right| I^{2}| |\right)$ which implies that f^{s} has an attracting fixed point, a contradiction.
Lemma 9.6. For any $C>0$, there exists $C^{\prime}>0$ such that if $I \supset J$ are nice intervals around a critical point c and $\left(1+2 C^{\prime}\right) J \subset I$, then for any x, we have

$$
\begin{equation*}
(1+2 C) \mathcal{L}_{x}(J) \subset \mathcal{L}_{x}(I) \tag{12}
\end{equation*}
$$

Proof. Let $I^{0}:=I$ and $I^{n}=\mathcal{L}_{c}\left(I^{n-1}\right)$ for all $n \geq 1$. Let $m(0)=0$ and let $m(1)<m(2)<\cdots$ be all the positive integers such that $R_{I^{m(i)-1}}(c) \notin I^{m(i)}$. Let k be the maximal integer such that $J \subset I^{m(k)}$. By Lemma 9.1, for any $1 \leq i \leq k-1, I^{m(i)}$ contains a definite neighborhood of $I^{m(i)+1}$. By Lemma 9.2, for any $x, \mathcal{L}_{x}\left(I^{m(i)}\right)$ contains a definite neighborhood of $\mathcal{L}_{x}\left(I^{m(i)+1}\right)$. As $\mathcal{L}_{x}(J) \subset \mathcal{L}_{x} \mathcal{L}_{c}\left(I^{m(k-1)+1}\right)$ and $\mathcal{L}_{x}\left(I^{m(1)}\right) \subset \mathcal{L}_{x}(I)$, (12) follows if k is sufficiently large.

So assume that k is uniformly bounded. By Lemma 9.3, it suffices to find two nice intervals $J \subset J^{\prime} \subset I^{\prime} \subset I$ such that $J^{\prime} \supset \mathcal{L}_{c}\left(I^{\prime}\right)$ and $\left|I^{\prime}\right| /\left|J^{\prime}\right|$ is sufficiently large. Because k is bounded, it enough to consider the case $k=0$, i.e., $J \supsetneq I^{m(1)}$. The existence of I^{\prime}, J^{\prime} then follows from the previous lemma: when $|I| /|J|$ is sufficiently large, then either $|I| / / I^{1}\left|,\left|I^{1}\right| /\left|I^{2}\right|\right.$ or $| I^{m(1)-1}|/|J|$ is large. This completes the proof.

Lemma 9.7. Let c be a critical point and let $I \supset J \ni c$ be nice intervals. Assume that J is a pullback of I with order bounded by N. Fix an N. Then for any $\rho>0$, there exists $\rho^{\prime}>0$ such that if $(1+2 \rho) J \subset I$, then J is a ρ^{\prime}-nice interval. Moreover, $\rho^{\prime} \rightarrow \infty$ as $\rho \rightarrow \infty$.

Proof. Let $\left\{G_{j}\right\}_{j=0}^{s}$ be the chain with $G_{s}=I$ and $G_{0}=J$. Let us assume for the moment that

$$
\begin{equation*}
G_{j} \cap J=\emptyset \text { for all } 0<j<s \tag{13}
\end{equation*}
$$

Then for any $x \in J$, either $f^{s}(x) \in J$ or $f^{s}\left(\mathcal{L}_{x}(J)\right) \subset \mathcal{L}_{f^{s}(x)}(J)$. Applying Lemmas 9.2 and 9.6 and Fact 9.1, it follows that there exists a constant ρ^{\prime} with $\rho^{\prime} \rightarrow \infty$ as $\rho \rightarrow \infty$, and such that $\left(1+2 \rho^{\prime}\right) \mathcal{L}_{x}(J) \subset J$. This proves the lemma under the assumption (13).

Now assume that (13) fails, and let $s^{\prime}<s$ be the maximal positive integer such that $I^{\prime}=G_{s^{\prime}}$ intersects J. Note that $G_{s^{\prime}} \supset J \ni c$. Thus there exists $\rho_{1}=\rho_{1}(\rho)>0$ with $\rho_{1} \rightarrow \infty$ as $\rho \rightarrow \infty$, and such that either $I \supset\left(1+2 \rho_{1}\right) I^{\prime}$ or $I^{\prime} \supset\left(1+2 \rho_{1}\right) J$. In the former case, by what we have proved, I^{\prime} is a ρ_{1}^{\prime}-nice interval and in particular $\left(1+2 \rho_{1}^{\prime}\right) J \subset I^{\prime}$. Note that the order of the chain $\left\{G_{j}\right\}_{j=0}^{s^{\prime}}$ is at most $N-1$, and thus the lemma follows by induction on N.

Lemma 9.8. There exists a constant $\delta>0$ such that if \mathbf{I} is a non-terminating critical puzzle piece, then

$$
(1+2 \delta) \Gamma(\Gamma(I)) \subset I
$$

Proof. Let m be the minimal positive integer such that $R_{I^{m-1}}(c) \notin I^{m}$, where c is the critical point in \mathbf{I}. Since \mathbf{I} is non-terminating, there exists a return domain \mathbf{J} to \mathbf{I} other than the central one $\mathbf{I}^{1}=\mathcal{L}_{c}(\mathbf{I})$ which intersects the postcritical set $P C(f)$. As $\mathbf{P}=\mathcal{L}_{c}(\mathbf{J})$ is a successor of $\mathbf{I}, \Gamma(\mathbf{I}) \subset \mathbf{P} \subset \mathbf{I}^{m}$. Therefore, $\Gamma \Gamma(\mathbf{I}) \subset \mathbf{I}^{m+1}$ and the statement follows from Lemma 9.1.

Lemma 9.9. For any $\rho>0$ there exists $\rho^{\prime}>0$ with $\rho^{\prime} \rightarrow \infty$ as $\rho \rightarrow \infty$, such that if I is a ρ-nice interval containing a critical point c then $\left(1+2 \rho^{\prime}\right) \mathcal{A}(I)-$ $\mathcal{A}(I)$ and $\mathcal{B}(I)-\left(1+2 \rho^{\prime}\right)^{-1} \mathcal{B}(I)$ are both disjoint form $P C(f)$.

Proof. By definition, $\mathcal{B}(I)-\mathcal{A}(I)$ is disjoint from $P C(f)$. Moreover, there exists a positive integer ν such that $f^{\nu}: \mathcal{B}(\mathbf{I}) \rightarrow \mathbf{I}$ is a branched covering with a bounded degree and such that $f^{\nu}(\mathcal{A}(I))$ is contained in a return domain to I. The statement follows.

Proof of Proposition 8.1. 1. First of all, by Fact 9.1, for every $N \in \mathbb{N}$, and any $\rho>0$ there exists $\rho^{\prime}>0$ such that the following holds. Let I be a nice interval and let J be a pull back of I with order $\leq N$. Then

- if I is ρ-nice, then J is ρ^{\prime}-nice;
- if $((1+2 \rho) I-I) \cap P C(f)=\emptyset,\left(\left(1+2 \rho^{\prime}\right) J-J\right) \cap P C(f)=\emptyset$; and
- if $\left(I-(1+2 \rho)^{-1} I\right) \cap P C(f)=\emptyset$, then $\left(J-\left(1+2 \rho^{\prime}\right)^{-1} J\right) \cap P C(f)=\emptyset$.

Moreover for a fixed $N, \rho^{\prime} \rightarrow \infty$ as $\rho \rightarrow \infty$.
By this observation and by Lemma 9.9, it suffices to prove that there exists a constant $\rho>0$ such that I_{n} is ρ-nice for all $0 \leq n \leq \chi-2$. Since $I_{n+1}=\Gamma^{T}\left(K_{n}\right)$ and K_{n} is non-terminating, it follows from Lemma 9.8 that $\left|K_{n}\right| /\left|I_{n+1}\right|$ is bounded away from 1. By Lemma 9.7, I_{n+1} is a ρ-nice interval for an appropriately chosen constant $\rho>0$. By taking $\rho>0$ smaller, we may assume that I_{0} is also ρ-nice. This completes the proof of the first statement of this proposition.
2. By Lemma 9.7, it suffices to prove that $\left|I_{n}\right| /\left|I_{n+1}\right|$ is sufficiently large when ε is sufficiently small. Let $x \in I_{n} \cap P C(f)$, and assume that the length of $J=\mathcal{L}_{x}\left(I_{n}\right)$ is small compared to that of I_{n}. If $J \ni c$, then $J \supset I_{n+1}$ and thus $\left|I_{n}\right| /\left|I_{n+1}\right|$ is large. Assume that $J \not \supset c$. By the first statement of this lemma, $I_{n} \cap P C(f) \subset(1+2 \rho)^{-1} I_{n}$, so J is deep inside I_{n}. By Lemma 9.3, $\mathcal{L}_{c}(J)$ is deep inside I_{n}. Let $J^{\prime}=\mathcal{L}_{x}\left(K_{n}\right)$. Then $J^{\prime} \subset J$, and thus $\mathcal{L}_{c}\left(J^{\prime}\right) \subset \mathcal{L}_{c}(J)$. Since $\mathcal{L}_{c}\left(J^{\prime}\right) \supset \Gamma\left(K_{n}\right) \supset I_{n+1}$, it follows that $\left|I_{n}\right| /\left|I_{n+1}\right|$ is large.
3. By Lemma 9.7, for any $C^{\prime}>0$, there exists $C^{\prime \prime}>0$ such that if $\left|I_{n}\right| /\left|I_{n+1}\right| \geq C^{\prime \prime}$ then $I_{n+1}, L_{n+1}, K_{n+1}$ are all C-nice. As $I_{n+2}=\Gamma^{T} \mathcal{B} \mathcal{A}\left(I_{n+1}\right)$, applying Lemma 9.9, we see that for any $C>0$ there exists $C^{\prime}>0$ such that if I_{n+1} is C^{\prime}-nice then $I_{n+2} \in \mathcal{T}_{C}$.

10 Lower bounds for the enhanced nest

As before, let $f \in \mathcal{P}_{b}^{\tau, \sigma}$ be persistently recurrent. The goal of this section is to prove
Proposition 10.1. There exists a constant $\eta=\eta(\tau, \sigma, b)>0$ such that for each $0 \leq n \leq \chi$ we have

$$
B\left(c_{0}, \eta\left|I_{n}\right|\right) \subset \mathbf{I}_{n}
$$

Denote

$$
\eta_{n}=\inf _{x \in P C(f) \cap I_{n}} \sup _{\left\{r>0: B(x, r) \subset \mathbf{I}_{n}\right\}} \frac{r}{\left|I_{n}\right|} .
$$

Lemma 10.1. 1. There exists a constant $\delta>0$ such that for all $0 \leq n<$ χ

$$
\eta_{n+1}>\delta \eta_{n}
$$

2. There exist $\kappa>0, \varepsilon>0$ such that if $\left|I_{n+1}\right| /\left|I_{n}\right| \leq \varepsilon$, then

$$
\eta_{n+2} \geq \min \left(\kappa, 2 \eta_{n+1}\right)
$$

Proof. Let $V=D_{\pi-\sigma}\left(I_{n}\right)$ and let $U=\operatorname{Comp}_{c}\left(f^{-p_{n}}(V)\right)$, where p_{n} is as in (11). Then $f^{p_{n}}: U \rightarrow V$ is a proper map with a uniformly bounded degree. By Proposition 8.1, $I_{n} \in \mathcal{T}_{\rho}$, where $\rho>0$ is a constant. By the Koebe distortion theorem and by Lemmas 13.2 and 13.3, we conclude that

$$
D_{\pi-\theta}\left(I_{n+1}\right) \subset U \subset D_{\theta}\left(I_{n+1}\right)
$$

where $\theta \in(0, \pi / 2)$ is a constant. By a limit argument, this implies the following

1. There exist constant $C>1$ and $\kappa_{1}>0$ such that

$$
\begin{equation*}
\left|\left(f^{p_{n}}\right)^{\prime}(z)\right| \leq C \frac{\left|I_{n}\right|}{\left|I_{n+1}\right|} \tag{14}
\end{equation*}
$$

for $z \in \mathbb{C}$ with $d\left(z, P C(f) \cap I_{n+1}\right)<\kappa_{1}$.
2. There exists $\kappa_{2}>0$ such that for any $z \in B\left(c_{0}, 2 \kappa_{2}\left|I_{n+1}\right|\right)$,

$$
\begin{equation*}
\left|\left(f^{p_{n}}\right)^{\prime}(z)\right| \leq \frac{1}{2} \frac{\left|I_{n}\right|}{\left|I_{n+1}\right|} \tag{15}
\end{equation*}
$$

Now the first statement follows immediately from (14). To show the second, note that by the third term of Proposition 8.1, there exists an ε such that $\left|I_{n+1}\right| /\left|I_{n}\right| \leq \varepsilon$ implies that $I_{n+2} \cap P C(f) \subset B\left(0, \kappa_{2}\left|I_{n+2}\right|\right) \mid$ and apply (15).

Lemma 10.2. There exist a positive integer k_{0} and a constant $\gamma>0$ such that for all $0 \leq n \leq \chi$ and for all $x \in P C(f) \cap I_{n}$ we have

$$
B\left(x, \gamma\left|\operatorname{Comp}_{x} \operatorname{Dom}\left(R_{I_{n}}^{k_{0}}\right)\right|\right) \subset \mathbf{I}_{n}
$$

Proof. Denote $N=p_{0}+\cdots+p_{n-1}$. Notice that $f^{N}\left(\mathbf{I}_{n}\right)=\mathbf{I}_{0}$. From Lemma 8.2 we know that $2 p_{n-1} \geq N$ and $r\left(I_{n}\right) \geq N / 6$.

Let $x \in P C(f) \cap \bar{I}_{n}$ and let $W=\hat{\mathcal{L}}_{f^{N}(x)}\left(I_{n}\right)$. Let

$$
U:=\operatorname{Comp}_{x}\left(f^{-N}(W)\right) \cap \mathbb{R}
$$

Then $U=\operatorname{Comp}_{x}\left(\operatorname{Dom}\left(R_{I_{n}}^{k_{0}}\right)\right)$ for some k_{0}. Since $r\left(I_{n}\right) \geq N / 6$ we have $k_{0} \leq 6$. This also implies that the pullback $f^{N}: U \rightarrow W$ has order bounded by $6 b$.

By Proposition 8.1, $(1+2 \rho) I_{n}-(1+2 \rho)^{-1} I_{n}$ is disjoint from $P C(f)$. The interval W is a pullback of I_{n} of universally bounded order, so there is a universal constant $\rho^{\prime}>0$ such that $\left(1+2 \rho^{\prime}\right) W \backslash\left(1+2 \rho^{\prime}\right)^{-1} W \cap P C(f)=$ \emptyset. As $D_{\pi-\sigma}(W) \subset D_{\pi-\sigma}\left(I_{0}\right) \subset \mathbf{I}_{0}$, by the Koebe distortion theorem and Lemmas 13.2 and 13.3, it follows that $\mathbf{I}_{n} \supset \operatorname{Comp}_{x}\left(f^{-N}(W)\right) \supset D_{\theta^{\prime}}(U)$, where $\theta^{\prime} \in(\pi / 2, \pi)$ is a constant depending only on θ, ρ^{\prime} and N. The proof is completed.

Proof of Proposition 10.1. If η_{n} is very small, then due to Lemma 10.2 there exists a domain U of $R_{I_{n}}^{k_{0}}$ intersecting $P C(f)$ and such that $|U| /\left|I_{n}\right|$ is very small. This implies that there exists a return domain J to I_{n} intersecting $P C(f)$ such that $|J| /\left|I_{n}\right|$ is small. By the second term of Proposition 8.1, it follows that each return domain to I_{n+1} is deep inside I_{n+1}. In particular, $\left|I_{n+2}\right| /\left|I_{n+1}\right|$ is small. By the second statement of Lemma 10.1, $\eta_{n+2} \geq$ $\min \left(\kappa, 2 \eta_{n+1}\right)$. By the first statement of that lemma, it follows that for some constant $\kappa^{\prime}>0$ we have $\eta_{n+2} \geq \min \left(\kappa^{\prime}, 2 \eta_{n+1}\right)$. As η_{0}, η_{1} are bounded away from zero, the proposition follows.

11 Upper bounds for the enhanced nest

Consider a persistently recurrent map f from the class $\mathcal{P}_{b}^{\tau, \sigma}$ (defined in Section 4) and let c_{0} be the critical point in V_{0}. Our aim in this section is to prove Proposition 8.3, i.e., an upper bound for certain puzzle-pieces. For the construction and properties of the enhanced nest \mathbf{I}_{n} we refer to Subsections 8.1 and 8.2. Let $I_{n}=\mathbf{I}_{n} \cap \mathbb{R}$. The first goal of this section is the prove the following result.

Theorem 11.1. There exists $\theta>0$ and n_{0} so that for all $n \geq n_{0}, \mathbf{I}_{n} \subset$ $D_{\theta}\left(I_{n-n_{0}}\right)$.

The proof of this theorem uses real bounds for the enhanced nest (Proposition 8.1), the real bounds from Section 9, and an analysis of what happens when we pull-back Poincaré disks with slits through critical points many times. Several of the basic results we will use can be found in Appendix 2, so it is probably a good idea to read Appendix 2 before reading this section.

The proof is somewhat related to the proof in [37]; the main difference is that we deal with the bounded and unbounded geometry situations simultaneously.

Throughout this section we will assume that all nice intervals are intersections of puzzle pieces with the real line.

11.1 Pulling-back domains along a chain

The main purpose of this subsection is to prove Proposition 11.2 and Proposition 11.3 below.

Let us first state some preparatory lemmas. Throughout we shall fix the class $\mathcal{P}_{b}^{\tau, \sigma}$, see Section 4. So all constants (even 'universal constants') do depend on this class.

We remind the reader that $(1+2 \delta) I$ is defined to be the δ-scaled neighborhood of I, see Section 9 .

In order to see what happens when you pull-back a disc of the form $D_{\theta}(I)$ along some chain, we first deal with central cascades.

Let I be a nice interval containing a critical point c and define the principal nest $I^{k}=\mathcal{L}_{c}\left(I^{k-1}\right), k \geq 1$, where $I^{0}=I$.

Lemma 11.1. For each $\delta>0$ there exist $\delta^{\prime}>0$ and $\lambda \in(0,1)$ with the following property. Consider $I=I^{0} \supset I^{1} \supset \cdots \supset I^{\hat{m}}$ where \hat{m} is the minimal integer such that $R_{I} \mid I^{1}$ has some critical value which is not in $I^{\hat{m}}$. Let r be so that $R_{I} \mid I^{1}=f^{r}$. Assume that $\left\{G_{j}\right\}_{j=0}^{p r}$ is a disjoint chain with $G_{i r} \subset I^{1}$ for $0 \leq i \leq p-1$ and $G_{p r} \subset I$ a nice interval (i.e. the intersection of a puzzle-piece with the real line). Moreover, assume that $\left\{\hat{G}_{j}\right\}_{j=0}^{p r}$ is a chain with $G_{p r} \subset \hat{G}_{p r} \subset(1+\delta) \hat{G}_{p r} \subset I$ and $\hat{G}_{0} \supset G_{0}$. Define

$$
V=D_{\theta}\left(\hat{G}_{p r}\right) \cap \mathbb{C}_{G_{p r}} \text { and } U=\operatorname{Comp}_{G_{0}} f^{-p r} V
$$

Then for each $z \in U$ there exists an interval K such that either

$$
\begin{equation*}
z \in D_{\lambda \theta}(K) \text { and } G_{0} \subset K \subset\left(1+\delta^{\prime}\right) K \subset I \tag{16}
\end{equation*}
$$

or there exists $0 \leq p^{\prime} \leq p$ with

$$
\begin{equation*}
f^{p^{\prime} r}(z) \in D_{\lambda \theta}(K) \text { and } G_{p^{\prime} r} \subset K \subset\left(1+\delta^{\prime}\right) K \subset I^{\hat{m}} \tag{17}
\end{equation*}
$$

Proof. Let us define E_{1}, E_{2} to be the maximal open subintervals of $I^{\hat{m}}$ containing a boundary point of $I^{\hat{m}}$ in their closures and on which branches of f^{r} are diffeomorphic. Because f^{r} is a composition of folding maps, $f^{r}\left(E_{1}\right)=$ $f^{r}\left(E_{2}\right)=f^{s}\left(I^{\hat{m}}\right)$. Label these so that $f^{r} \mid E_{1}$ is monotone increasing, and define $X=I^{\hat{m}} \backslash\left(E_{1} \cup E_{2}\right)$.

First of all note that this lemma follows from Lemma 13.6 if $p<10$ or $\hat{m}=1$: if $p<10$, then (16) holds and if $\hat{m}=1$ then (17) holds for $p^{\prime}=p-\hat{m}$. Let us assume that $p \geq 10$ and $\hat{m} \geq 2$.
Claim 1. There exists a (universal) constant $\kappa_{1}>0$ such that if $\left|I^{2}\right| /\left|I^{0}\right| \leq$ κ_{1}, then the lemma holds. Indeed, by Lemma 13.6, $f^{(p-2) r}(z) \in D_{\lambda \theta}\left(I^{2}\right)$. Note that $\left|I^{2}\right| /\left|I^{0}\right|$ is small implies that $\left|I^{2}\right| /\left|I^{1}\right|$ is small. Again by Lemma 13.6 for any $x \in I^{2}, \operatorname{Comp}_{x} f^{-r}\left(D_{\lambda \theta}\left(0.5 I^{1}\right)\right) \subset D_{\lambda^{\prime} \theta}\left(I^{2}\right) \subset D_{\lambda \theta}\left(0.5 I^{1}\right)$. Hence (16) holds if $\left|I^{2}\right| /\left|I^{0}\right|$ is small.

So let us also assume $\left|I^{2}\right| /\left|I^{0}\right| \geq \kappa_{1}$. By Lemma 9.5, there exist constants $\kappa_{2}>0$ and $C>1$ such that

- for any critical point c of $f^{r}\left|I^{2}, d\left(f^{r}(c), c\right) \geq \kappa_{2}\right| I^{0} \mid ;$
- $\left|\left(f^{r}\right)^{\prime}(x)\right| \leq C$ for any $\in I^{2}$.

In particular, $\left|I^{\hat{m}-1}\right| /\left|I^{0}\right| \geq \kappa_{2}$. Moreover, there exists $\kappa_{3}>0$ such that

- $d\left(X, \partial I^{\hat{m}-1}\right) \geq \kappa_{3}\left|I^{0}\right| ;$
- either $f^{r}\left(I^{\hat{m}}\right) \cap I^{\hat{m}}=\emptyset$ or $\left|E_{i}\right| \geq \kappa_{3}\left|I^{0}\right|, i=1,2$.

Now let us make another claim.
Claim 2. There exists a constant $\gamma \in(0,1)$ such that either (16) or (17) holds with $\delta^{\prime}=\gamma$, or there exist $0 \leq p_{*}<p, 0 \leq i \leq \hat{m}-1$ and an interval $G_{p_{*} r}^{*}$ with $G_{p_{*} r} \subset G_{p_{*} r}^{*} \subset(1+2 \gamma) G_{p_{*} r}^{*} \subset I^{i}, U_{p_{*} r} \subset D_{\lambda_{1} \theta}\left(G_{p_{*} r}^{*}\right)$ and $\left|I^{i+1}\right| /\left|I^{i}\right| \leq \gamma$.
Proof of Claim 2. By Lemma 9.2, there exists $\delta_{1}>0$ depending on δ such that for any $0 \leq i \leq p-1,\left(1+2 \delta_{1}\right) \hat{G}_{i r} \subset I^{1}$. If $\hat{G}_{i r}$ does not contain a critical
point of $R_{I} \mid I^{1}$ for all $i=0,1, \ldots, p-1$, then by Schwarz we have $z \in D_{\theta}\left(\hat{G}_{0}\right)$ and thus (16) holds with $\delta^{\prime}=\delta_{1}$. So let us assume that there exists a maximal integer p_{*} with $0 \leq p_{*} \leq p$ be so that $\hat{G}_{p_{*} r}$ contains a critical point of $f^{r} \mid I^{1}$ (and hence $\hat{G}_{p_{*} r} \cap X \neq \emptyset$). Then by Schwarz and by Lemma 13.6, it follows that there exists an interval $G_{p_{*} r}^{*}$ with $\hat{G}_{p_{*} r} \subset G_{p_{*} r}^{*} \subset\left(1+2 \delta_{2}\right) G_{p_{*} r}^{*} \subset I^{0}$ such that $f^{p_{*} r}(z) \in D_{\lambda_{1} \theta}\left(G_{p_{*} r}^{*}\right)$, where δ_{2} and λ_{1} are constants depending on δ.

We may assume that $G_{p_{*} r}^{*}$ is not well-inside $I^{\hat{m}-1}$, because otherwise (17) holds for $p^{\prime}=p_{*}-1$. As $d\left(\partial X, \partial I^{0}\right) /\left|I^{0}\right|$ is bounded away from zero, and $G_{p_{*} r}^{*} \cap \partial X \neq \emptyset$, it follows that $\left|G_{p_{*} r}^{*}\right| /\left|I^{0}\right|$ is bounded away from zero. Let $k \leq \hat{m}-1$ be maximal so that $G_{p_{*} r}^{*} \subset I^{k}$. If $G_{p_{*} r}^{*}$ is well inside I^{k} then Claim 2 holds with $i=k$. Thus we may assume that $\left|I^{k}\right| /\left|I^{0}\right|$ is bounded away from 1. If $\min _{i=0, \ldots, k-1}\left|I^{i+1}\right| /\left|I^{i}\right|$ could be arbitrarily close to one, then there would be a map (with a critical point) in the Epstein class having an interval of fixed points (here we use that f is in the Epstein class $\mathcal{P}_{b}^{\tau, \sigma}$). Clearly this is impossible. This proves the claim.

So we may assume that $p \geq 10, \hat{m} \geq 2,\left|I^{2}\right| /\left|I^{0}\right| \geq \kappa_{1}$ and $\left|I^{1}\right| /\left|I^{0}\right| \leq \gamma$ (by possibly replacing I^{0} by I^{i} with i as in Claim 2). By replacing p by $p-1$ we may assume that $\hat{G}_{p r} \subset I^{1}$ (and so $f^{p r}(z) \in D_{\theta}\left(I^{1}\right)$). If $z \in D_{\theta}\left(I^{1}\right)$ then (16) holds, so we may assume that there exists a maximal q with $0 \leq q<p$ and so that $f^{q r}(z) \notin D_{\theta}\left(I^{1}\right)$. Since $f^{(q+1) r}(z) \in D_{\theta}\left(I^{1}\right)$, by Lemma 13.6 there exists $\lambda_{1} \in(0,1)$ such that $f^{q r}(z) \in D_{\lambda_{1} \theta}(J)$ with $\left(1+2 \delta_{3}\right) J \subset I^{1}$.

Case 1: $G_{q r} \subset I^{\hat{m}}$. Note that this implies that $G_{i r} \subset I^{\hat{m}}$ for all $0 \leq i \leq q$. We may assume that $q \geq 1$ (otherwise (16) holds). So $f^{r}\left(I^{\hat{m}}\right) \cap I^{\hat{m}} \neq \emptyset$ and therefore $\left|E_{i}\right| / / I^{\hat{m}} \mid \geq \kappa_{3}$.
Subcase 1.1 $G_{i r} \cap \partial\left(X \cup E_{2}\right)=\emptyset$ for all $i \leq q$.
If $G_{q r} \subset X \cup E_{2}$ then by the third part of Lemma 13.4, $f^{q r}(z) \in D_{\mu \lambda \theta}(X \cup$ $\left.E_{2}\right)$ and hence by the last part of Lemma 13.5, $f^{(q-1) r}(z) \in D_{\mu^{\prime} \lambda \theta}(K)$ where K is an interval which contains $G_{(q-1) r}$ and is well inside $I^{\hat{m}}$ (we apply Lemma 13.5 to the chains $\left\{H_{j}^{\prime}\right\}_{j=0}^{r},\left\{H_{j}\right\}_{j=0}^{r}$ and $\left\{\hat{H}_{j}\right\}_{j=0}^{r}$ where $H_{r}^{\prime}=I$, $H_{r}=I^{\hat{m}-1}$ and $\hat{H}_{r}=X \cup E_{2}$ and $\left.H_{0}^{\prime} \supset H_{0} \supset \hat{H}_{0} \supset G_{(q-1) r}\right)$.

Assume that $G_{q r} \subset E_{1}$, and let q^{\prime} be minimal so that

$$
G_{q^{\prime} r}, G_{\left(q^{\prime}+1\right) r}, \ldots, G_{q r} \subset E_{1} .
$$

First let us consider the case $f^{r}\left(E_{1}\right) \supset E_{1}$. Then $f^{\left(q-q^{\prime}\right) r}: G_{q^{\prime} r} \rightarrow G_{q r}$ extends to a diffeomorphism onto E_{1}. By Lemma 13.4, $f^{q r}(z) \in D_{\mu \lambda \theta}\left(E_{1}\right)$, and hence by Schwarz $f^{q^{\prime} r}(z) \in D_{\mu \lambda \theta}\left(E_{1}\right)$. We may assume that $q^{\prime} \geq 2$ for
otherwise (16) holds. If $G_{\left(q^{\prime}-1\right) r} \subset E_{2}$ then by Schwarz and Lemma 13.5 $f^{\left(q^{\prime}-2\right) r}(z) \in D_{\mu \lambda \theta}\left(K^{\prime}\right)$ with K^{\prime} well-inside $I^{\hat{m}}$. Otherwise $G_{\left(q^{\prime}-1\right) r} \subset X$, because f^{r} does not map ∂X into E_{1}. Let H_{r} be the interior of $f^{r}\left(E_{1}\right)$ and let $\left\{H_{j}\right\}_{j=0}^{r}$ be the chain with $H_{0} \supset G_{\left(q^{\prime}-1\right) r}$. Note that $H_{0} \subset X$ because $f^{r}(\partial X)$ is in the boundary of H_{r}. Since $f^{r}\left(H_{0}\right)$ contains $H_{r} \backslash E_{1}$ and this difference is not small compared to H_{r}, by Lemma 13.5, $f^{\left(q^{\prime}-1\right) r}(z) \in D_{\lambda^{\prime} \theta}\left(H_{0}\right)$. Because X is well-inside $I^{\hat{m}},(17)$ holds for $p^{\prime}=q^{\prime}-1$ (and appropriate choice of constants).

Now let us assume that $f^{r}\left(E_{1}\right) \not \supset E_{1}$. Then we let T_{q} be the minimal open interval which contains a component of $I^{0}-I^{1}$ and $G_{q r}$ and is disjoint from X. As $\left|T_{q}\right| /\left|I^{0}\right|$ is bounded away from zero, $f^{q r}(z) \in D_{\lambda^{\prime} \theta}\left(T_{q}\right)$. It is easy to see that there exists an interval $T_{q^{\prime}} \supset G_{q^{\prime} r}$ such that $f^{\left(q-q^{\prime}\right) r}: T_{q^{\prime}} \rightarrow T_{q}$ is a diffeomorphism. So by Schwarz, we have $f^{q^{\prime} r}(z) \in D_{\lambda^{\prime} \theta}\left(T_{q^{\prime}}\right) \subset D_{\lambda^{\prime} \theta}\left(I^{1}\right)$. Note that $f^{r}\left(E_{1}\right) \cap\left(X \cup E_{2}\right)=\emptyset$ and thus $q^{\prime} \leq 2$. Therefore (16) holds.
Subcase 1.2 There exists $q^{\prime} \leq q$ such that $G_{q^{\prime} r} \cap \partial E_{1} \neq \emptyset$. Applying Subcase 1.1 to the chain $\left\{G_{j}\right\}_{j=q^{\prime}+1}^{q}$, we may assume that $f^{q^{\prime} r}(z) \in D_{\lambda \theta}\left(I^{1}\right)$. Note that $G_{i r} \cap \partial E_{1}=\emptyset$ for $i<q^{\prime}$. So we can repeat the previous argument, replacing $G_{p r}$ by $G_{\left(q^{\prime}-1\right) r}$.

Case 2: $G_{q r} \not \subset I^{\hat{m}}$. Let $q^{\prime}<q$ be maximal so that $G_{i r} \not \subset I^{\hat{m}}$ for $q^{\prime} \leq i \leq q$. Then $f^{q^{\prime} r}(z) \in D_{\lambda^{\prime} \theta}\left(I^{1}\right)$. If $q^{\prime}=0$ then we are in case (16). Otherwise $G_{\left(q^{\prime}-1\right) r} \subset I^{\hat{m}}, f^{\left(q^{\prime}-1\right) r}(z) \in D_{\lambda^{\prime \prime} \theta}\left(I^{1}\right)$ and $G_{i r} \subset I^{\hat{m}}$ for $i \leq q^{\prime}-1$, and we proceed as in Case 1.

If I is a non-terminating nice interval containing a critical point c, we define $\mathcal{C}(I):=I^{m}$ where $m \geq 1$ is minimal so that $R_{I}(c) \notin I^{m}$. If I is terminating we define $\mathcal{C}(I)=\emptyset$. Let us define $\mathcal{C}^{k}(I)$ to be equal to $\mathcal{C}(\mathcal{C}(\ldots(I)))$.

If J is a return domain to an arbitrary nice interval I, and $\left\{G_{i}\right\}_{i=0}^{r}$ is the chain with $G_{r}=I, G_{0}=J$ where r is the return time of J to I, we define

$$
\operatorname{Crit}(I ; J)=\left(\bigcup_{i=0}^{r-1} G_{i}\right) \cap \operatorname{Crit}(f) .
$$

Similarly, when $\mathbb{G}=\left\{G_{j}\right\}_{j=0}^{s}$ is an arbitrary chain such that G_{s} is a pullback of $I, G_{s} \subset I$, and $0=n_{0}<n_{1}<\cdots<n_{p}=s$ are the integers with $G_{n_{i}} \subset I$, then we define

$$
\operatorname{Crit}(I ; \mathbb{G})=\bigcup_{i=0}^{p-1} \operatorname{Crit}\left(I ; \mathcal{L}_{G_{n_{i}}}(I)\right)
$$

where $\mathcal{L}_{G_{n_{i}}}(I)$ is the return domain to I containing $G_{n_{i}}$. For any nice interval I and any critical point c^{\prime}, we define

$$
k_{c^{\prime}}(I ; \mathbb{G})=\inf \left\{k_{c^{\prime}} ; \quad G_{j} \subset \mathcal{C}^{k_{c^{\prime}}}\left(\hat{\mathcal{L}}_{c^{\prime}}(I)\right) \text { for some } j=0,1, \ldots, s-1\right\}
$$

and

$$
\begin{equation*}
k(I ; \mathbb{G})=\sum_{c^{\prime} \in \operatorname{Crit}(\mathrm{I} ; \mathbb{G})} k_{c^{\prime}}(I ; \mathbb{G}) . \tag{18}
\end{equation*}
$$

$k(I ; \mathbb{G})$ describes the combinatorial depth of the chain \mathbb{G} with respect to I. (Note that $k(I ; \mathbb{G})$ is well-defined even if I does not contain a critical point.) When $c \in J \subset I$ we define

$$
k(I ; J)=\min \left\{k ; \mathcal{C}^{k}(I) \subset J\right\}
$$

and

$$
\begin{equation*}
\hat{k}(I, J)=\sum_{c^{\prime}} k\left(\hat{\mathcal{L}}_{c^{\prime}}(I), \hat{\mathcal{L}}_{c^{\prime}}(J)\right) \tag{19}
\end{equation*}
$$

The next proposition gives the crucial estimate describing the loss of angle when we pull-back a slitted Poincaré disc $D_{\theta}\left(\hat{G}_{s}\right) \cap \mathcal{C}_{G_{s}}$ with \hat{G}_{s} well-inside I and $\mathbb{G}=\left\{G_{j}\right\}_{j=0}^{s}$ a disjoint chain. The loss of angle turns out to be only related to $k(I, \mathbb{G})$.

Proposition 11.2. For each δ there exists $\mu \in(0,1)$ and $\delta^{\prime}>0$ with the following properties. Let I be a nice interval, and let $\mathbb{G}:=\left\{G_{i}\right\}_{i=0}^{s}$ be a disjoint chain with $G_{0}, G_{s} \subset I$ with G_{s} a nice interval and $G_{0} \cap P C(f) \neq \emptyset$. Let \hat{G}_{s} be an interval with $G_{s} \subset \hat{G}_{s} \subset(1+\delta) \hat{G}_{s} \subset I$. Let $V=D_{\theta}\left(\hat{G}_{s}\right) \cap \mathbb{C}_{G_{s}}$ and write $U_{i}=\operatorname{Comp}_{G_{i}} f^{-(s-i)}(V), i=0, \ldots, s$. Then there exists an interval $\hat{I} \supset G_{0}$ with $\left(1+\delta^{\prime}\right) \hat{I} \subset I$ and such that

$$
U_{0} \subset D_{\mu^{k(I, G)} \theta}(\hat{I})
$$

Here $k(I ; \mathbb{G})$ is defined as in equation (18).
Proof. The proof is by induction on $N:=\# \operatorname{Crit}(I ; \mathbb{G})$. More precisely, we formulate the following two induction statements.

Induction Statement (N, k) : There exist increasing functions $\delta \mapsto \mu_{N}(\delta) \in$ $(0,1)$ and $\delta \mapsto \alpha_{N}(\delta) \in(0,1)$ such that for any interval I and chains
$\mathbb{G}=\left\{G_{i}\right\}_{i=0}^{s}, \hat{G}=\left\{\hat{G}_{i}\right\}_{i=0}^{s}$ as in the theorem for which $\operatorname{Crit}(I ; \mathbb{G}) \leq N$ and $k(I ; \mathbb{G}) \leq k$,

$$
U \subset D_{\mu_{N}^{k(I ; G)} \theta}(\hat{I})
$$

where \hat{I} is an interval with $G_{0} \subset \hat{I} \subset\left(1+\alpha_{N}\right) \hat{I} \subset I$. Here α and μ_{N} do not depend on k.
Induction Statement N : Statement (N, k) holds for each $k=0,1,2, \ldots$.
Note that N is bounded by the number of critical points of f so it is enough to prove Statement N for each integer N. If $N=0$ then $\left\{G_{j}\right\}_{j=0}^{s}$ only visits diffeomorphic branches of R_{I}, and so by Schwarz $U_{0} \subset D_{\theta}\left(\hat{G}_{0}\right)$. This proves Statement 0 . Therefore it is enough to prove the induction step. This is done in Lemma 11.3.

To prove the induction step, we shall use the following lemma.
Lemma 11.2. Let I be a nice interval containing a critical point c and let $I^{1}=\mathcal{L}_{c}(I)$. Let J be a nice interval with $J \subset I-I^{1}$ and $J \cap P C(f) \neq \emptyset$ and let $K=\mathcal{L}_{c}(J)$. Then there exists a universal constant $\hat{\rho}>0$ such that the following hold:

1. $I \supset(1+2 \hat{\rho}) K$;
2. K is a $\hat{\rho}$-nice interval;
3. for any $x \in I, k \geq 0$ with $f^{k}(x) \in K$, $(1+2 \hat{\rho}) \operatorname{Comp}_{x}\left(f^{-k} K\right) \cap \mathbb{R} \subset I$.

Proof. The second and the third statements follow from the first one by Lemma 9.7 and Lemma 9.2 respectively (redefining the constant $\hat{\rho}$). So it suffices to prove the first one.

Let m be a maximal positive integer so that the return time of c to I^{m-1} is the same as the return time r of c to I^{0}. Then $R_{I}(K) \subset I^{m-1} \backslash I^{m}$. We may assume that $\left|I^{m}\right| /|I|$ is close to 1 . In particular the second assertion in Lemma 9.4 applies, and so $f^{r}: I^{1} \rightarrow I^{0}$ extends to holomorphic branched covering $F: \Omega \rightarrow \Omega^{\prime}=\mathbb{C}_{\left(1+2 \rho_{0}\right) I}$ with bounded degree. Since $\bmod \left(\Omega^{\prime} \backslash R_{I}(K)\right)$ is large, also $\bmod (\Omega \backslash K)$ is large. Note that $\Omega \cap \mathbb{R}$ is contained in $\Omega^{\prime} \cap \mathbb{R}=$ $\left(1+2 \rho_{0}\right) I$, it follows that $|K| /|I|$ is small, which concludes the proof of the lemma.

Lemma 11.3. For each $N \geq 1$, Statement N - 1 implies Statement N.

Proof. Assume that Statement $(N-1)$ holds. Let I be a nice interval and \mathbb{G} be a chain with $\operatorname{Crit}(I ; \mathbb{G})=N$ and $k(I ; \mathbb{G})=k$ as in the statement of Proposition 11.2.

We can and will assume that I contains a critical point c and that $\operatorname{Crit}(I ; \mathbb{G}) \ni c$: otherwise simply pull-back I along the chain \mathbb{G} to a nice interval I^{\prime} containing a critical point (inside $\operatorname{Crit}(I ; \mathbb{G})$). Applying Statement N to this new nice interval I^{\prime} and then pulling-back to G_{0} gives Statement N for I but with possibly a smaller μ_{N}.

We will prove Statement (N, k) by induction on k. The assumption of Statement $(N, 0)$ is never satisfied, so the statement is correct. Let us assume that Statements $(N-1)$ and $(N, k-1)$ hold. Without loss of generality we may restrict ourselves to the case $\delta \leq \hat{\rho}$, where $\hat{\rho}$ is the constant coming from Lemma 11.2.

For $\delta \in(0, \hat{\rho})$ let $\lambda(\delta)$ be the smaller of the λ coming from Lemmas 13.6 and 11.1, and let us take $\alpha(\delta)$ to be the smallest of the δ^{\prime} coming from these two lemmas and the $\alpha_{N-1}(\delta)$ coming from the Induction Statement ($N-1$). We may assume that the functions $\delta \mapsto \alpha(\delta), \lambda(\delta)$ are increasing in δ and that $\alpha(\delta)<\delta$. Let $\alpha^{\circ i}(\delta)$ denote the i-th iterate of the function $\delta \mapsto \alpha(\delta)$ (so this corresponds to applying those statements in succession i times). Now define

$$
\begin{equation*}
\alpha_{N}(\delta)=\left[\alpha^{\circ 10 b}(\delta)\right]^{2}, \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{N}(\delta)=\left[\mu_{N-1}\left(\alpha^{\circ 10 b}(\delta)\right)^{2 N+2} \lambda\left(\alpha^{\circ 10 b}(\delta)\right)^{5}\right]^{b} \gamma, \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=\lambda\left(\alpha_{N}(\hat{\rho})\right) \tag{22}
\end{equation*}
$$

We shall prove Statement N for this choice of constants. Let $\left\{\hat{G}_{i}\right\}_{i=0}^{s}$ be the chain with $\hat{G}_{0} \supset G_{0}$ as in Proposition 11.2 and let $s_{1}<s$ be maximal so that $G_{s_{1}} \subset I$.
Case I: $G_{s_{1}} \subset I \backslash I^{1}$. Then define $J=\mathcal{L}_{G_{s_{1}}}(I)$. Let $s_{1}^{\prime} \geq 0$ be the minimal integer such that $G_{s_{1}^{\prime}} \subset J$ and let $k_{0}=k\left(J,\left\{G_{j}\right\}_{j=s_{1}^{\prime}}^{s_{1}}\right)$. We are going to show that there exist integers $k_{1}, k_{2} \leq k_{0}$ with $k_{1}+k_{2} \leq k_{0}+N$ and such that

$$
\begin{equation*}
z \in D_{\mu_{N-1}\left(\hat{)^{k}}{ }^{k_{1}} \hat{\mu}_{N}^{k_{2}} \hat{\lambda}^{b+3} \gamma \theta\right.}(\hat{I}), \tag{23}
\end{equation*}
$$

where \hat{I} is an interval with $G_{0} \subset \hat{I} \subset(1+\hat{\alpha}) \hat{I} \subset I$, and

$$
\begin{equation*}
\hat{\alpha}=\hat{\alpha}(\delta):=\alpha^{\circ 5 b}(\delta), \hat{\lambda}=\lambda(\hat{\alpha}), \text { and } \hat{\mu}_{N}=\mu_{N}(\hat{\rho}) \geq \mu_{N}(\delta) . \tag{24}
\end{equation*}
$$

Let us first show that (23) implies the statement (N, k). It suffices to show that

$$
\mu_{N-1}(\hat{\alpha})^{k_{1} b} \hat{\mu}_{N}^{k_{2}} \hat{\lambda}^{b+3} \gamma \leq \mu(\delta)^{k} .
$$

To this end, we first observe that $\mathcal{L}_{c}(J) \subset \mathcal{C}(I)$ and thus $k_{0} \leq k-1$. From $k_{1}+k_{2} \leq k_{0}+N$ it follows that $k_{1} /\left(k-k_{2}\right) \leq N+1$. So the inequality follows from the choice of the function μ_{N} by direct computation.

Let us prove (23). First, by Lemma 13.6, $U_{s_{1}} \subset D_{\lambda(\delta) \theta}\left(\hat{G}_{s_{1}}^{\prime}\right) \cap \mathbb{C}_{G_{s_{1}}}$, where $G_{s_{1}} \subset \hat{G}_{s_{1}} \subset \hat{G}_{s_{1}}^{\prime} \subset\left(1+\alpha^{\circ 1}\right) \hat{G}_{s_{1}}^{\prime} \subset J$. (Here and after $\left.\alpha^{\circ i}=\alpha^{\circ i}(\delta).\right)$ Let $K=\mathcal{L}_{c}(J)$ and s_{2} be the minimal integer with $0 \leq s_{2} \leq s_{1}$ so that $G_{s_{2}} \subset J$ and $G_{j} \cap K=\emptyset$ for $s_{2} \leq j<s_{1}$. By the choice of s_{2}, $\operatorname{Crit}\left(J ;\left\{G_{j}\right\}_{j=s_{2}}^{s_{1}}\right) \subset$ $\operatorname{Crit}\left(I ;\left\{G_{j}\right\}_{j=0}^{s}\right) \backslash\{c\}$ and so $\# \operatorname{Crit}\left(J ;\left\{G_{j}\right\}_{j=s_{2}}^{s_{1}}\right)<N$. Let

$$
k_{1}:=\sum_{c^{\prime} \in \operatorname{Crit}(I, \mathbb{G}), c^{\prime} \neq c} k\left(\mathcal{L}_{c^{\prime}}(J), \mathcal{L}_{c^{\prime}}(K)\right) .
$$

Claim 1. There exists an interval \hat{J} with $G_{s_{2}} \subset \hat{J} \subset\left(1+\alpha^{\circ 2 b}(\delta)\right) \hat{J} \subset J$ such that

$$
\begin{equation*}
U_{s_{2}} \subset D_{\beta \theta}(\hat{J}) \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta=\left[\mu_{N-1}\left(\alpha^{\circ 2 b}\right)^{k_{1}} \lambda\left(\alpha^{\circ 2 b}\right)\right]^{b} \leq\left[\mu_{N-1}(\hat{\alpha}) \hat{\lambda}\right]^{b} . \tag{26}
\end{equation*}
$$

To prove this claim we shall apply the induction assumption. By choice of $s_{2}, G_{j} \cap K=\emptyset$ for all $s_{2} \leq j \leq s_{1}$, which implies that for any critical point $c^{\prime} \neq c$, there can be at most one $j \in\left\{s_{2}, s_{2}+1, \ldots, s_{1}\right\}$ such that $G_{j} \subset \mathcal{L}_{c^{\prime}}(K)$. If for any $s_{2} \leq j \leq s_{1}$ and any $c^{\prime} \in \operatorname{Crit}(f)-\{c\}, G_{j} \not \subset$ $\mathcal{L}_{c^{\prime}}(K)$, then $k\left(J,\left\{G_{j}\right\}_{j=s_{2}}^{s_{1}}\right) \leq k_{1}$ and thus Statement $(N-1)$ gives us $U_{s_{2}} \subset$ $D_{\mu_{N-1}\left(\alpha^{01}\right)^{k_{1}} \lambda(\delta) \theta}(\hat{J})$ where \hat{J} is an interval with $G_{s_{2}} \subset \hat{J} \subset\left(1+\alpha^{02}\right) \hat{J} \subset J$, which implies (25). Otherwise, let p be maximal with $p<s_{1}$ such that $G_{p} \subset J$ and such that G_{p} enters $\mathcal{L}_{c^{\prime}}(K)$ for some $c^{\prime} \in \operatorname{Crit}(f)-\{c\}$ before it returns to J. Let $p^{\prime}>p$ be the minimal integer such that $G_{p^{\prime}} \subset J$. Then $k\left(J,\left\{G_{j}\right\}_{j=s_{2}}^{p^{\prime}}\right) \leq k_{1}$ and thus as before, $U_{p^{\prime}} \subset D_{\mu_{N-1}\left(\alpha^{\circ 1}\right)^{k_{1} \lambda(\delta) \theta}}(\hat{J})$ with $\left(1+\alpha^{\circ 2}\right) \hat{J} \subset J$. Applying Lemma 13.6 gives us $U_{p} \subset D_{\mu_{N-1}\left(\alpha^{\circ 1}\right)^{k_{1} \lambda(\delta) \lambda\left(\alpha^{\circ 2}\right) \theta}}\left(\hat{J}^{\prime}\right)$ with $\left(1+\alpha^{\circ 3}\right) \hat{J}^{\prime} \subset J$. Repeating this argument for at most $b-1$ times we obtain (25).

Let us continue the proof of Case I. If $s_{2}=0$ then setting $k_{2}=0$, we get the inclusion (23). So assume $s_{2}>0$. If $G_{j} \cap K=\emptyset$ for all $0 \leq j<s_{2}$ then
$f^{s_{2}}: G_{0} \rightarrow G_{s_{2}}$ is a branch of the first entry map to J and so

$$
U_{0} \subset D_{\left.\lambda\left(\alpha^{\circ}\right) b\right) \beta \theta}(\hat{I}) \subset D_{\hat{\lambda} \beta \theta}(\hat{J})
$$

with $G_{0} \subset \hat{J} \subset\left(1+\alpha^{\circ 2 b+1}\right) \hat{J} \subset \mathcal{L}_{G_{0}}(I) \subset I$. Thus (23) holds with $k_{2}=0$. Otherwise, let s_{3} with $0 \leq s_{3}<s_{2}$ be maximal so that $G_{s_{3}} \subset K$. Then, again $f^{s_{2}-s_{3}}: G_{s_{3}} \rightarrow G_{s_{2}}$ is a first entry to J and so

$$
U_{s_{3}} \subset D_{\hat{\lambda} \beta \theta}(\hat{K})
$$

where $G_{s_{3}} \subset \hat{K} \subset\left(1+\alpha^{\circ 2 b+1}\right) \hat{K} \subset K$. If there is no previous visit to K then as before

$$
U_{0} \subset D_{\hat{\lambda}^{2} \beta \theta}(\hat{I})
$$

with $G_{0} \subset \hat{I} \subset\left(1+\alpha^{\circ 2 b+2}\right) \hat{I} \subset I$. Setting $k_{2}=0$ and we get (23) again. Otherwise, let s_{4} with $0 \leq s_{4}<s_{3}$ be maximal so that $G_{s_{4}} \subset K$. Then

$$
U_{s_{4}} \subset D_{\hat{\lambda}^{3} \beta \theta}(L)
$$

where $L=\mathcal{L}_{G_{s_{4}}}(K)$. By Lemma $11.2,(1+\hat{\rho}) L \subset K$. By assumption, $\hat{\rho} \geq \delta$.
If $s_{4}=0$ then we get (23) (with $k_{2}=0$). So assume $s_{4}>0$ and let s_{5}, $0<s_{5} \leq s_{4}$ be minimal so that $G_{s_{5}} \subset K$, and let $k_{2}=k\left(K ;\left\{G_{j}\right\}_{j=s_{5}}^{s_{4}}\right)$. Note that $s_{5} \geq s_{1}^{\prime}$. Thus $\operatorname{Crit}\left(K,\left\{G_{j}\right\}_{j=s_{5}}^{s_{4}}\right) \subset \operatorname{Crit}\left(J,\left\{G_{j}\right\}_{j=s_{1}^{\prime}}^{s_{1}}\right)$, and $k_{2} \leq k_{0}$. By the induction Statement ($N, k-1$), we obtain

$$
U_{s_{5}} \subset D_{\hat{\lambda}^{3} \beta \hat{\mu}_{N}^{k_{2}} \theta}\left(\hat{K}^{\prime}\right)
$$

where \hat{K}^{\prime} is an interval with $G_{s_{5}} \subset \hat{K}^{\prime} \subset\left(1+\alpha_{N}(\hat{\rho})\right) \hat{K}^{\prime} \subset K$. As $f^{s_{5}}: G_{0} \rightarrow$ $G_{s_{5}}$ is a first entry map to K, by Lemma $13.6, U_{0} \subset D_{\lambda\left(\alpha_{N}(\hat{\rho})\right) \hat{\lambda}^{3} \beta \hat{\mu}_{N}^{k_{2}} \theta}(\hat{I}) \subset$ $D_{\hat{\lambda}^{b+3} \gamma \hat{\mu}_{N-1}^{k_{1} b} \hat{\mu}_{N}^{k_{2}} \theta}(\hat{I})$, where $\hat{I}=\mathcal{L}_{G_{0}}(K)$, and we have used (26). By Lemma 11.2, $(1+\hat{\alpha}) \hat{I} \subset(1+\hat{\rho}) \hat{I} \subset I$. The inclusion (23) follows.

Case II: $G_{s_{1}} \subset I^{1}$. For every point $z \in U_{0}$ we will find an interval K_{z} with $G_{0} \subset K_{z} \subset\left(1+\alpha^{\circ 10 b}\right) K_{z} \subset I$, and such that $z \in D_{\mu_{N}(\delta)^{k} \theta}\left(K_{z}\right)$. By taking the union of these intervals K_{z} we will obtain the desired interval \hat{I}. So fix z and let $t \leq s$ be minimal with $G_{t} \subset I^{1}$ and such that $G_{j} \cap\left(I \backslash I^{1}\right)=\emptyset$ for all $j=t, \ldots, s$. If I is a terminating interval, then since G_{s} is a nice interval and $G_{s} \cap P C(f) \neq \emptyset, G_{s}$ is also terminating and because the chain $\left\{G_{j}\right\}_{j=0}^{s}$
is disjoint, $s=0$. So from now on we assume that I is non-terminating. Let \hat{m} be minimal so that $R_{I} \mid I^{1}$ has a critical value in $I^{\hat{m}-1} \backslash I^{\hat{m}}$. Note that $G_{t}, \ldots, G_{s_{1}}$ are in the orbit of $R_{I} \mid I^{1}$. According to Lemma 11.1 there exists an interval K such that either

1. $f^{t}(z) \in D_{\lambda(\delta) \theta}(K)$ and $G_{t} \subset K \subset\left(1+\alpha^{01}\right) K \subset I$, or
2. there exists s_{2} with $t \leq s_{2}<s_{1}$ so that $G_{s_{2}} \subset I^{\hat{m}}$ and $f^{s_{2}}(z) \in$ $D_{\lambda(\delta) \theta}(K)$ with $G_{s_{2}} \subset K \subset\left(1+\alpha^{01}\right) K \subset I^{\hat{m}}$.

Assume (1) holds. Then by definition of t, if $\hat{s}_{1}<t$ is maximal so that $G_{\hat{s}_{1}} \subset I$ then $G_{\hat{s}_{1}} \subset I \backslash I^{1}$. This means that we can repeat Case I verbatim to $I,\left\{G_{i}\right\}_{i=0}^{\hat{s}},\left\{\hat{G}_{i}\right\}_{i=0}^{\hat{s}}$, and get

$$
z \in D_{\lambda(\delta) \mu_{N-1}\left(\alpha^{05 b+1}\right)^{k_{1} b} \mu_{N}(\hat{\rho})^{k_{2}} \lambda\left(\alpha^{5 b+1}\right)^{b+3} \gamma \theta}\left(K_{z}\right),
$$

where k_{0}, k_{1}, k_{2} are non-negative integers with $k_{0} \leq k-1, k_{2} \leq k_{0}$, and $k_{1}+k_{2} \leq k_{0}+N, \gamma$ is as in (22), and K_{z} is an interval with $G_{0} \subset K_{z} \subset(1+$ $\left.\alpha^{\circ 5 b+1}\right) K_{z} \subset I$. Again by the choice of μ_{N} and α_{N}, it follows that $\mu_{N}(\delta)^{k} \leq$ $\lambda(\delta) \mu_{N-1}\left(\alpha^{05 b+1}\right)^{k_{1} b} \mu_{N}(\hat{\rho})^{k_{2}} \lambda\left(\alpha^{5 b+1}\right)^{b+3} \gamma$, and $\alpha_{N}(\delta) \leq \alpha^{05 b+1}$. Hence we are done if (1) holds.

Assume (2) holds. By definition of \hat{m}, there exists a critical point $c^{\prime} \in$ $\operatorname{Crit}\left(I, I^{1}\right) \subset \operatorname{Crit}\left(I,\left\{G_{i}\right\}_{i=0}^{s}\right)$ such that c^{\prime} enters $I-I^{1}$ before it enters $I^{\hat{m}}$. This implies that $\operatorname{Crit}\left(I^{\hat{m}} ;\left\{G_{i}\right\}_{i=t}^{s_{2}}\right) \subset \operatorname{Crit}\left(I,\left\{G_{i}\right\}_{i=0}^{s}\right)-\{c\}$. Let $k_{3}^{\prime}=$ $k\left(I^{\hat{m}} ;\left\{G_{i}\right\}_{i=t}^{\hat{s}}\right)<k\left(I ;\left\{G_{i}\right\}_{i=0}^{s}\right)$. It is clear that $k_{3}^{\prime} \leq k$. By the induction assumption $N-1$ applying to $I^{\hat{m}},\left\{G_{i}\right\}_{i=t}^{\hat{s}}$, we obtain $f^{t}(z) \in D_{\mu_{N-1}\left(\alpha^{\circ 1}\right)^{k_{3}^{\prime}} \lambda(\delta) \theta}\left(I^{\prime}\right)$, where $G_{t} \subset I^{\prime} \subset\left(1+\alpha^{\circ 2}\right) I^{\prime} \subset I^{\hat{m}}$. If $t=0$ then this completes the proof. So assume $t>0$ and let \hat{s}_{1} be the maximal integer with $\hat{s}_{1}<t$ such that $G_{\hat{s}_{1}} \subset I$. Then $G_{\hat{s}_{1}}$ is contained in a return domain J to I with $J \subset I \backslash I^{1}$. Let \hat{s}_{1}^{\prime} be the minimal non-negative integer such that $G_{\hat{S}_{1}^{\prime}} \subset J$, and let $k_{0}=k\left(J,\left\{G_{j}\right\}_{j=\hat{s}_{1}^{\prime}}^{\hat{s}_{1}}\right)$. As before $k_{0} \leq k-1$. Let

$$
k_{3}=\sum_{c^{\prime} \in \operatorname{Crit}(f)-\{c\}} k\left(\mathcal{L}_{c^{\prime}}\left(I^{\hat{m}}\right), \mathcal{L}_{c^{\prime}}(J)\right) .
$$

Then $k_{0}+k_{3} \leq k+N$. Because $G_{j} \cap J=\emptyset$ for all $t \leq j \leq s_{2}$, for any $c^{\prime} \in \operatorname{Crit}(f)-\{c\}$, there is at most one interval in the chain $\left\{G_{j}\right\}_{j=t}^{s_{2}}$ which enters $\mathcal{L}_{c^{\prime}}(J)$. By a similar argument as in Claim 1, we get

$$
f^{t}(z) \in D_{\left[\mu_{N-1}\left(\alpha^{\circ 2 b}\right)^{\left.k_{3} \lambda\left(\alpha^{\circ 2 b}\right)\right]^{b} \theta}\right.}(\hat{T}),
$$

where \hat{T} is an interval with $G_{t} \subset \hat{T} \subset\left(1+\alpha^{o 2 b}\right) \hat{T} \subset I^{\hat{m}}$. Now applying Case 1 to the chain $\left\{G_{j}\right\}_{j=0}^{t}$, we obtain two integers $0 \leq k_{1}, k_{2} \leq k_{0}$ with $k_{1}+k_{2} \leq k_{0}+N$ such that $z \in D_{\eta \theta}\left(K_{z}\right)$, where

$$
\begin{aligned}
\eta & =\left[\mu_{N-1}\left(\alpha^{\circ 7 b}\right)\right]^{k_{1} b}\left[\mu_{N-1}\left(\alpha^{\circ 2 b}\right)\right]^{k_{3} b} \hat{\mu}_{N}^{k_{2}} \lambda\left(\alpha^{\circ 7 b}\right)^{b+3} \lambda\left(\alpha^{\circ 2 b}\right)^{b} \gamma \\
& \leq\left[\mu_{N-1}\left(\alpha^{\circ 10 b}\right)^{k_{1}+k_{3}} \lambda\left(\alpha^{\circ 10 b}\right)^{5}\right]^{b} \mu_{N}(\delta)^{k_{2}} \gamma ;
\end{aligned}
$$

and K_{z} is an interval with $G_{0} \subset K_{z} \subset\left(1+\alpha^{\circ 7 b}\right) K_{z} \subset I$. Again by the choice of μ_{N} it follows that $z \in D_{\mu_{N}(\delta)^{k} \theta}\left(K_{z}\right)$.

Now we want to show that if during a pullback we visit an interval J, which is deep inside I, then we may get an improvement in angle. More precisely:

Proposition 11.3. Let θ_{0} be as in Lemma 13.4. For each $N, \delta>0$, there exist $\mu \in(0,1), C \in(0,1)$ with the following property. Let $I \ni c_{0}$ be a nice interval in \mathcal{T}_{δ}, let $J \ni c_{0}$ be an (at most) N-modal pullback of I, and let $t \in \mathbb{N}$ be such that $J=\operatorname{Comp}_{c_{0}}\left(f^{-t} I\right) \cap \mathbb{R}$. Let $x \in J \cap P C(f)$, let $s \geq t$ be an integer so that $f^{s}(x)$ is again in J and let

$$
\nu=\#\left\{0 \leq j \leq s-t ; f^{j}(x) \in J\right\} .
$$

Let $s_{0}=0<s_{1}<\cdots<s_{\nu}$ be the times for which $s_{j} \leq s-t$ and $x_{s_{j}} \in J$. (where we write $x_{i}:=f^{i}(x)$). Take the chain $\left\{G_{i}\right\}_{i=0}^{s}$ defined by $G_{s}=J$, and $G_{i} \ni f^{i}(x)$. Let

$$
U_{s}=D_{\theta}(I) \cap \mathbb{C}_{G_{s}} \text { and } U_{i}=\operatorname{Comp}_{G_{i}} f^{-(s-i)}\left(U_{s}\right)
$$

Then

$$
U_{0} \subset D_{\theta^{\prime}}(J)
$$

where

$$
\theta^{\prime}=\min \left[\mu^{\hat{k}(I ; J)}\left(\prod_{j=0}^{\nu-1} C \rho_{j}\right) \cdot \theta, \theta_{0}\right],
$$

where $\hat{k}(I ; J)$ is defined in equation (19) and ρ_{j} is so that

$$
\left(1+2 \rho_{j}\right) \mathcal{L}_{x_{s_{j}}} J \subset J
$$

Moreover, there exist a universal (large) constant $\xi>0$ and a positive integer ν_{0} which depends on δ and N such that if

$$
J \in \mathcal{T}_{\xi}, \quad \nu \geq \nu_{0}
$$

and if for each $c \neq c_{0}$,

$$
\#\left\{0<j \leq s ; f^{j}(x) \in \mathcal{L}_{c}(J)\right\} \geq \nu_{0}
$$

then

$$
\theta^{\prime}=\min \left[\theta, \theta_{0}\right] .
$$

Proof. There exists a non-negative integer q^{\prime} such that we can write

$$
f^{s}=R_{I}^{q^{\prime}} \circ f^{t} \circ f^{s_{\nu}}=R_{I}^{q^{\prime}} \circ f^{t} \circ R_{J}^{\nu} .
$$

Moreover, $R_{I}^{q^{\prime}}$ is the first landing of $f^{t}\left(x_{s_{q}}\right) \in I$ into J. The idea is that we can use Proposition 11.2 to control the loss of angle caused by the pullback through $R_{I}^{q^{\prime}} \circ f^{t}$, while the remaining pullback (through R_{J}^{ν}) gives a gain in angle if J is small compared to I and q is large.

Let us first prove that there exist constants $\lambda=\lambda(\delta, N)>0$ and $\mu=$ $\mu(\delta)>0$ such that

$$
\begin{equation*}
U_{s_{\nu}+t} \subset D_{\lambda \mu^{\hat{k}(I ; J) \theta}}(I) \tag{27}
\end{equation*}
$$

Of course we may assume that $s_{\nu}+t<s$. Let $s^{\prime}<s$ be the maximal integer with $f^{s^{\prime}}(x) \in I$. By Lemma 13.5, using the assumption that $I \in \mathcal{T}_{\delta}$, we obtain

$$
U_{s^{\prime}} \subset D_{\lambda \theta}\left(\mathcal{L}_{G_{s^{\prime}}}(I)\right)
$$

Note that $(1+2 \delta) \mathcal{L}_{G_{s_{1}^{\prime}}}(I) \subset I$. As the chain $\left\{G_{j}\right\}_{j=s_{\nu}+t}^{\prime}$ never enters the interval J, by a similar argument as in the proof of Claim 1 of Lemma 11.3, we obtain (27). Next, since J is an N-modal pullback of I and since $I \in \mathcal{T}_{\delta}$, by Lemma 13.5, it follows that

$$
U_{s_{\nu}}=\operatorname{Comp}_{G_{s_{\nu}}} f^{-t} U_{s_{\nu}+t} \subset D_{\left.\lambda^{2} \mu^{\hat{k}(I ; j)}\right)_{\theta}}(J) .
$$

Notice that $J \in \mathcal{T}_{\delta^{\prime}}$, where $\delta^{\prime}>0$ is a constant depending on δ and N. Pulling-back to $G_{s_{q-1}}$, Lemma 13.5 gives

$$
\begin{equation*}
U_{s_{\nu-1}} \subset D_{\lambda^{2} \kappa \mu^{k}(I ; J) \theta}\left(\mathcal{L}_{x_{s_{\nu-1}}}(J)\right) \tag{28}
\end{equation*}
$$

where κ is a constant depending only on δ^{\prime}. By assumption $\left(1+\rho_{q-1}\right) \mathcal{L}_{x_{q-1}}(J) \subset$ J. So replacing $\mathcal{L}_{x_{s_{\nu-1}}}(J)$ by J in (28) gives by Lemma 13.4 the following gain in angle:

$$
U_{s_{\nu-1}} \subset D_{\theta^{*}}(J) \text { where } \theta^{*}=\min \left(\lambda^{2}\left(C \rho_{q-1}\right) \mu^{\hat{k}(I ; J)} \theta, \theta_{0}\right)
$$

where $C=C\left(\delta^{\prime}\right)>0$ is a constant. Repeating this argument $\nu-1$ times, i.e., pulling-back successively to $x_{s_{\nu-2}}, \ldots, x_{s_{0}}$, gives

$$
U_{0} \subset D_{\theta^{\prime \prime}}(J)
$$

where

$$
\begin{equation*}
\theta^{\prime \prime}=\min \left(\lambda^{2}\left(\prod_{j=0}^{\nu-1} C \rho_{j}\right) \mu^{\hat{k}(I ; J)} \theta, \theta_{0}\right) . \tag{29}
\end{equation*}
$$

Redefining the constant proves the first part of the proposition.
Let us now prove the second part of the proposition. So assume that $J \in \mathcal{T}_{\xi}$ with a large ξ and that $f^{j}(x)$ visits each interval $\hat{\mathcal{L}}_{c}(J)$ many times. As we noted above, the constant C in (29) depends only on (a lower bound for) ξ. Thus provided that ξ is sufficiently large, $C \rho_{j} \geq 2$ for all $j=0,1, \ldots, \nu-1$. Next define $\hat{k}:=\hat{k}(I ; J)$. Then

$$
k(I ; J) \geq \hat{k} / b \text { or } k\left(\mathcal{L}_{c}(I), \mathcal{L}_{c}(J)\right) \geq \hat{k} / b
$$

for some critical point $c \neq c_{0}$. In the first case, define $K:=J$ and in the second case, define $K:=\mathcal{L}_{c}(J)$. By the (first part of the) proof of Lemma 9.6, there exists a universal number $\delta^{\prime}>0$ so that for each $x \in K$,

$$
\begin{equation*}
\left(1+\delta^{\prime}\right)^{\hat{k} / b} \mathcal{L}_{x}(K) \subset K \tag{30}
\end{equation*}
$$

So for each $x \in J$ which visits K before returning to J,

$$
\begin{equation*}
\left(1+\delta^{\prime \prime}\right)^{\hat{k} / b} \mathcal{L}_{x}(J) \subset J \tag{31}
\end{equation*}
$$

and by assumption there are at least $\nu_{0}^{\prime}=\nu_{0}-N$ of such visits. This implies that $\mu^{\hat{k}(I ; J)}\left(\prod_{j=0}^{\nu-1} C \rho_{j}\right) \geq 1$ and completes the proof of the proposition.

11.2 Proof of a n-step inclusion for puzzle pieces

The purpose of this subsection is to prove Theorem 11.1. So let I_{n} be the enhanced nest defined in Subsection 8.1 around the critical point c_{0}. Note that $I_{n} \in \mathcal{T}_{\rho}$ for each n, see Proposition 8.1.

First we show that if consecutive intervals from the collection I_{n-M}, \ldots, I_{n} are similar in size, then we get a polynomial-like extension of $R_{I_{n}}$ with range $D_{\theta}\left(I_{n-M}\right) \cap \mathbb{C}_{I_{n}}$.

Proposition 11.4. For each k there exists an integer M so that for each $\theta \in(0, \pi / 2)$ one has the following. Assume that $n \leq \chi$ and

$$
\begin{equation*}
\left|I_{n-i}\right| /\left|I_{n-i+1}\right| \leq k \text { for all } i=0, \ldots, M \tag{32}
\end{equation*}
$$

Then the first return map $R_{I_{n}}$ (restricted to $P C(f) \cap I_{n}$) extends to a quasi-polynomial-like map with range $D_{\theta}\left(I_{n-M}\right) \cap \mathbb{C}_{I_{n}}$ and with domains inside $D_{\theta}\left(I_{n-M+1}\right)$.

Proof. To prove this proposition, take a domain J of $R_{I_{n}}$ and let $s>0$ be so that $R_{I_{n}} \mid J=f^{s}$. Let $G_{s}=I_{n}$ and $\left\{G_{i}\right\}_{i=0}^{s}$ be the chain with $G_{0}=J$. Moreover, let

$$
U_{s}=D_{\theta}\left(I_{n-M}\right) \cap \mathbb{C}_{G_{s}} \text { and } U_{i}=\operatorname{Comp}_{G_{i}} f^{-(s-i)}\left(U_{s}\right) .
$$

We need to show that $U_{0} \subset D_{\theta}\left(I_{n-M+1}\right)$. Consider $w \in U_{0}$ and write $w_{i}=$ $f^{i}(w)$.

As before, let p_{n-M} be so that $I_{n-M+1}=\operatorname{Comp}_{c_{0}} f^{-p_{n-M}}\left(I_{n-M}\right) \cap \mathbb{R}$. Let $s_{1}^{\prime}<s$ be maximal so that $s-s_{1}^{\prime}>p_{n-M}$ and so that $G_{s_{1}^{\prime}} \subset I_{n-M+1}$ and let $s_{1}<s_{1}^{\prime}$ be maximal such that $G_{s_{1}} \subset I_{n-M+1}$. Because of the 4th assertion in Lemma 8.2 at most 4 of the intervals $G_{s_{1}}, \ldots, G_{s}$ are contained in I_{n-M+1}. (Note that s_{1} exists when $M \geq 2$, because G_{0}, \ldots, G_{s} visits I_{n-M+1} at least $2^{T(M-1)}$ times.) By the following Claim 1, $\hat{k}\left(I_{n-M} ; I_{n-M+1}\right) \leq K$. Applying Proposition 11.3 to $I=I_{n-M}, J=I_{n-M+1}$ and the chain $\left\{G_{j}\right\}_{j=s_{1}^{\prime}}^{s}$, we see that there exist constants $\mu, C_{1} \in(0,1)$ such that $w_{s_{1}^{\prime}} \in D_{\mu^{K} C_{1} \theta}\left(I_{n-M+1}\right)$, and thus by Lemma 13.5

$$
w_{s_{1}}=D_{C_{2} \theta}\left(I_{n-M+1}^{\prime}\right),
$$

where $C_{2} \in(0,1)$ is a constant and $I_{n-M+1}^{\prime}=\mathcal{L}_{G_{s_{1}}}\left(I_{n-M+1}\right)$ (which is ρ-well inside $\left.I_{n-M+1}\right)$.

Claim 1: There exists K depending only on k so that $k\left(I_{n-M}, I_{n-M+1}\right) \leq K$ and $k\left(\mathcal{L}_{c}\left(I_{n-M}\right), \mathcal{L}_{c}\left(I_{n-M+1}\right)\right) \leq K$ for each $c \neq c_{0}$.
Proof of Claim 1: By the real bounds, if $k\left(I_{n-M}, I_{n-M+1}\right)$ is large then $\left|I_{n-M}\right| /\left|I_{n-M+1}\right|$ is large, contradicting (32). So assume that $c \neq c_{0}$ and that $k\left(\mathcal{L}_{c}\left(I_{n-M}\right), \mathcal{L}_{c}\left(I_{n-M+1}\right)\right)$ is large. Then by Lemma 9.6 (or Lemma 9.3)

$$
\left|\mathcal{L}_{c_{0}} \mathcal{L}_{c}\left(I_{n-M}\right)\right| /\left|\mathcal{L}_{c_{0}} \mathcal{L}_{c}\left(I_{n-M+1}\right)\right|
$$

is large. Note that by construction

$$
I_{n-M} \supset \mathcal{L}_{c_{0}} \mathcal{L}_{c}\left(I_{n-M}\right) \supset \Gamma\left(I_{n-M}\right) \supset I_{n-M+1}
$$

and

$$
I_{n-M+1} \supset \mathcal{L}_{c_{0}} \mathcal{L}_{c}\left(I_{n-M+1}\right) \supset \Gamma\left(I_{n-M+1}\right) \supset I_{n-M+2}
$$

So if $k\left(\mathcal{L}_{c}\left(I_{n-M}\right), \mathcal{L}_{c}\left(I_{n-M+1}\right)\right)$ were large, then either $\left|I_{n-M}\right| /\left|I_{n-M+1}\right|$ or $\left|I_{n-M+1}\right| /\left|I_{n-M+2}\right|$ is large (or both are large), contradicting (32) and thus completing the proof of Claim 1.

Now we distinguish two cases. In the first case we shall use a method similar to one used previously in [21].

Case 1: $w_{s_{1}} \notin D_{\theta}\left(I_{n-M+1}\right)$. Because of this and $w_{s_{1}} \in D_{C_{2} \theta}\left(I_{n-M+1}^{\prime}\right)$, Part 3 of Lemma 13.4 implies that there exists a constant C so that

$$
w_{s_{1}} \in D_{\left.C \theta \frac{\left|G_{s_{1}}\right|}{\left|I_{n-M}\right|} \right\rvert\,}\left(G_{s_{1}}\right) .
$$

Now G_{1}, \ldots, G_{s} are disjoint and because $G_{s}=I_{n}$ belongs to \mathcal{T}_{ρ}, we get from Lemma 13.5 that

$$
w_{1} \in D_{C^{\prime} \theta \frac{\left|G_{s_{1}}\right|}{\left|I_{n}-M+1\right|}}\left(G_{1}\right)
$$

where C^{\prime} depends on C and ρ.
Claim 2: There exists $\kappa>0$ (depending only on k) so that $\left|G_{s_{1}}\right| /\left|I_{n}\right| \geq \kappa$. Proof of Claim 2: $f^{s-s_{1}}: G_{s_{1}} \rightarrow G_{s}:=I_{n}$ is by construction at most a 3-rd iterate of the first return map to I_{n-M+1}. Hence if $\left|G_{s_{1}}\right| /\left|G_{s}\right|$ would be small, then the derivative of $R_{I_{n-M+1}}$ would be large at some point (in one of the domains visited by $G_{s_{1}}, \ldots, G_{s}$). Because $I_{n-M+1} \in \mathcal{T}_{\rho}$, and because of the last part of Lemma 9.4 this would imply that one of the domains of $R_{I_{n-M+1}}$ is small compared to I_{n-M+1}. But then, by Proposition 8.1, I_{n-M+1} would have a small child. But this contradicts the assumption that (32) holds for $i=n-M+1$, and completed the proof of Claim 2 .

From this claim we get that

$$
w_{1} \in D_{C^{\prime \prime} \theta \frac{\left|I_{n}\right|}{\left|I_{n-M+1}\right|}}\left(G_{1}\right)
$$

where $C^{\prime \prime}$ depends on ρ and k. By part 1 of Lemma 13.4 this gives

$$
w_{1} \in D_{C^{\prime \prime} \theta_{\frac{\left|I_{n-M}\right|}{\mid I_{n}-M+1}} \frac{\left|I_{n-M+1}^{f}\right|}{\left|G_{1}\right|}}\left(I_{n-M+1}^{f}\right),
$$

where I_{n-M+1}^{f} is the pullback of I_{n-M} by $f^{p_{n-M}-1}$ containing $f\left(c_{0}\right)$. Since $I_{n-M+1} \in \mathcal{T}_{\rho}$, Lemma 13.2 implies

$$
\left.\left.w \in D_{\left.\hat{C} \theta \frac{\left|I_{n}\right|}{\left|I_{n-M+1}\right|} \right\rvert\,} \frac{\left|I_{n-M+1}^{f}\right|}{\left|G_{1}\right|} \right\rvert\, I_{n-M+1}\right) .
$$

Note that

$$
\hat{C} \theta \frac{\left|I_{n}\right|}{\left|I_{n-M+1}\right|} \frac{\left|I_{n-M+1}^{f}\right|}{\left|G_{1}\right|} \geq \frac{\hat{C}}{K} \theta \frac{\left|I_{n-M+1}\right|^{\ell-1}}{\left|I_{n}\right|^{\ell-1}} \gg \theta,
$$

where ℓ is the order of the critical point c_{0}. Hence $w \in D_{\theta}\left(I_{n-M+1}\right)$. So the lemma is proved if we are in Case 1.

Case 2: $w_{s_{1}} \in D_{\theta}\left(I_{n-M+1}\right)$. Then let $s_{2}<s_{1}$ be maximal so that $s_{1}-s_{2}>p_{n-M+1}$ and so that $G_{s_{2}} \subset I_{n-M+2}$. Then again at most 4 of the intervals $G_{s_{2}}, \ldots, G_{s}$ are contained in I_{n-M+2} because $G_{j}, j=s_{1}, \ldots, s-1$ never enters I_{n-M+1}. As before $w_{s_{2}} \notin D_{C_{2} \theta}\left(I_{n-M+2}^{\prime}\right)$ and there are two cases. If $w_{s_{2}} \notin D_{\theta}\left(I_{n-M+2}\right)$, the arguments in Case 1 apply (replacing s, s_{1}, I_{n-M} by $\left.s_{1}, s_{2}, I_{n-M+1}\right)$. By the choice of s_{2} we get exactly as in Claim 2 that $\left|G_{s_{2}}\right| /\left|I_{n}\right| \geq \kappa$. So we get $w \in D_{\theta}\left(I_{n-M+1}\right)$.

Alternatively, $w_{s_{2}} \in D_{\theta}\left(I_{n-M+2}\right)$. Repeat all this, say j times, until we have to stop because either we fall in Case 1 , or until $j=M-1$. In the former case $w \in D_{\theta}\left(I_{n-M+1}\right)$ and in the latter case $w_{s_{j}} \in D_{\theta}\left(I_{n}\right)$ and $s_{j}=0$.

Now we are ready to prove the Main Theorem of this section:
Theorem 11.1 There exists $\theta>0$ and n_{0} so that for all n with $\chi \geq n \geq n_{0}$, $\mathbf{I}_{n} \subset D_{\theta}\left(I_{n-n_{0}}\right)$.

Proof. Let θ_{0} be as in Lemma 13.4, and fix $\theta=\min \left(\theta_{0}, \sigma\right)$. So $\mathbf{I}_{0} \subset D_{\theta}\left(I_{0}\right)$. We shall choose n_{0} in the proof below. Note that for any choice of n_{0}, the first induction step holds: we have $\mathbf{I}_{n} \subset D_{\theta}\left(I_{n-n_{0}}\right)$ for $n=n_{0}$. So assume by
induction that $\mathbf{I}_{n} \subset D_{\theta}\left(I_{n-n_{0}}\right)$, and show that $\mathbf{I}_{n+1} \subset D_{\theta}\left(I_{n-n_{0}+1}\right)$. Choose p_{n} so that $I_{n+1}=\operatorname{Comp}_{c_{0}} f^{-p_{n}}\left(I_{n}\right) \cap \mathbb{R}$ and let $\left\{G_{j}\right\}_{j=0}^{p_{n}}$ be the chain with $G_{p_{n}}=I_{n}$ and $G_{0}=I_{n+1}$.

Let ξ be the constant as in Proposition 11.3. By Proposition 8.1, there exists a constant k_{0} such that if $\left|I_{i}\right| /\left|I_{i+1}\right| \geq k_{0}$, then $I_{i+2} \in \mathcal{I}_{\xi}$. Let $M=$ $M\left(k_{0}\right)$ be the constant determined by Proposition 11.4.
Claim: There exists a constant $K>1$ such that if $n_{0} \geq K M$ and if there exists $i \in\left\{n-n_{0}, \ldots, n-n_{0}+M\right\}$ for which $\left|I_{i}\right| /\left|I_{i+1}\right| \geq k_{0}$ then $\mathbf{I}_{n+1} \subset$ $D_{\theta}\left(I_{n-n_{0}+1}\right)$.
Proof of Claim: By the induction assumption $\mathbf{I}_{n} \subset D_{\theta}\left(I_{n-n_{0}}\right) \cap \mathbb{C}_{I_{n}}$ and by construction $\mathbf{I}_{n+1}=\operatorname{Comp}_{c_{0}} f^{-p_{n}}\left(\mathbf{I}_{n}\right)$. To prove this claim we shall apply Proposition 11.3. Let i^{\prime} be minimal such that $\left|I_{i^{\prime}}\right| /\left|I_{i^{\prime}+1}\right| \geq k_{0}$. Then $J:=$ $I_{i^{\prime}+1}$ is in \mathcal{T}_{ξ}. Note that J is an N^{\prime}-modal pullback of $I:=I_{n-n_{0}}$ where $N^{\prime} \leq \hat{N}^{n-n_{0}-i+1} \leq \hat{N}^{n_{0}-M}$ and where \hat{N} depends on b (and is determined by the construction of the intervals $\left.I_{0}, I_{1}, \ldots\right)$. Also note that $\#\{0<j<$ $\left.p_{n} ; f^{j}\left(I_{n+1}\right) \subset J\right\}$ and $\#\left\{0<j<p_{n} ; f^{j}\left(I_{n+1}\right) \subset \mathcal{L}_{c}(J)\right\}, c \neq c_{0}$, are all at least $2^{n_{0}-M-1}$ (by Lemma 8.2), and hence is larger than the constant $\nu_{0}\left(\rho, N^{\prime}\right)$ as in Proposition 11.3 provided that n_{0} / M is large. Thus applying the second part of Proposition 11.3, gives $\mathbf{I}_{n+1} \subset D_{\theta^{\prime}}\left(I_{i^{\prime}+1}\right)$ with $\theta^{\prime} \geq \min \left(\theta, \theta_{0}\right)=\theta$. This proves the claim.

By the previous claim, we may assume that $\left|I_{i}\right| /\left|I_{i+1}\right| \leq k_{0}$ for each $i=n-n_{0}, \ldots, n-n_{0}+M$. Therefore, by Proposition 11.4 the first return map to $I_{n-n_{0}+M}$ extends to a quasi-polynomial-like map with range equal to $D_{\theta}\left(I_{n-n_{0}}\right) \cap \mathbb{C}_{I_{n-n_{0}+M}}$ and each of its domains is contained in $D_{\theta}\left(I_{n-n_{0}+1}\right)$. But since $f^{p_{n}}: I_{n+1} \rightarrow I_{n}$ can be written as a composition of this first return map, $\mathbf{I}_{n} \subset D_{\theta}\left(I_{n-n_{0}}\right)$ implies that $\mathbf{I}_{n+1} \subset D_{\theta}\left(I_{n-n_{0}+1}\right)$.

11.3 A one-step inclusion for puzzle pieces

Next we prove the following
Proposition 11.5. There exists $\theta>0$ such that for each n with $0 \leq n \leq \chi-1$ and for each $x \in P C(f) \cap I_{n}$,

$$
\mathcal{L}_{x}\left(\mathbf{I}_{n}\right) \subset D_{\theta}\left(I_{n}\right) .
$$

Before proving this proposition we need some lemmas. Note that if U is a successor of V other than the first one, then $R_{V}(U) \cap U=\emptyset$, and thus for any return domain $P \subset U$ to $U, R_{U} \mid P=R_{V}^{q}$ with $q \geq 2$.

Lemma 11.4. There exist N and $\theta_{1}>0$ such that for each $0 \leq n \leq \chi-3$ there exists $m \in\{n, n+3\}$ such that for each $x \in P C(f) \cap I_{m}$ one has $\operatorname{Comp}_{x} \operatorname{Dom}\left(R_{I_{m}}^{N}\right) \subset D_{\theta_{1}}\left(I_{m}\right)$.
Proof. By Theorem 11.1, there exists a constant $\theta \in(0, \pi / 2)$ such that $\mathbf{I}_{n} \subset$ $D_{\theta}\left(I_{n-n_{0}}\right)$ for every $0 \leq n \leq \chi$.

Let ξ be a constant as in Proposition 11.3. By Claim 1 in proposition 11.4, there exists a positive integer \hat{k} (depending on n_{0}) such that if $\hat{k}\left(I_{n-n_{0}} ; I_{n}\right) \geq \hat{k}$, then $\left|I_{n}\right| /\left|I_{n+1}\right|$ is large and thus by Proposition 8.1 (3), $I_{n+2} \in \mathcal{T}_{\xi}$. By choosing ξ larger if necessary we may assume that $R_{I_{n+2}}$ has a quasi-polynomial-like extension with range $D_{\theta}\left(I_{n+2}\right)$.

Let us first consider the case that $\hat{k}\left(I_{n-n_{0}} ; I_{n}\right) \geq \hat{k}$. Let $m=n+3$. Note that for every $y \in I_{m}$, the orbit $y, f(y), \ldots, R_{I_{m}}(y)$ visits each of the sets $\hat{\mathcal{L}}_{c}\left(\mathbf{I}_{m-1}\right)$ for every critical point c. Let $x \in I_{m} \cap P C(f)$, let $N \geq$ 100 be a large positive integer, and let $y=R_{I_{m}}^{10}(x)$. Applying the second part of Proposition 11.3 to $I=I_{n-n_{0}}$ and $J=I_{m-1}$ we see that provided that N is sufficiently large, we visit every critical landing domain of $R_{I_{m-1}}$ many times. Hence the pull back of $\mathbf{I}_{m} \subset D_{\theta}\left(I_{n-n_{0}}\right) \cap \mathbb{C}_{I_{m}}$ along the orbit $\left\{y, f(y), \ldots, R_{I_{m}}^{N-10}(y)\right\}$ is contained in $D_{\theta}\left(I_{m-1}\right)$. As we can express $R_{I_{m}}^{10}$ as $R_{I_{m-1}}^{q} \circ f^{p_{m-1}}$ with $q \geq 0$, and $R_{I_{m-1}}$ has a quasi-polynomial-like extension with range $D_{\theta}\left(I_{m-1}\right)$, it follows that $\operatorname{Comp}_{x}\left(\operatorname{Dom}\left(R_{\mathbf{I}_{m}}^{N}\right)\right) \subset D_{\theta_{1}}\left(I_{m}\right)$.

Now assume that $\hat{k}\left(I_{n-n_{0}} ; I_{n}\right) \leq \hat{k}$. Let $m=n$. Let $t=p_{n-1}+p_{n-2}+\cdots+$ $p_{n-n_{0}}$ (so that $f^{t}\left(\mathbf{I}_{n}\right)=\mathbf{I}_{n-n_{0}}$). For any $x \in I_{n} \cap P C(f)$ and any N sufficiently large ($N \geq 6$), if s is such that $R_{I_{n}}^{6}(x)=f^{s}(x)$, then $s \geq t$ and so by the first part of Proposition 11.3, we have $\operatorname{Comp}_{x} \operatorname{Dom}\left(R_{\mathbf{I}_{n}}^{N}\right) \subset D_{\theta_{1}}\left(I_{n}\right)$.
Lemma 11.5. There exists a constant $\mu \in(0,1)$ such that for each $N \geq 2$, each $\theta>0$, and each $0 \leq n \leq \chi-2$, if $\bigcup_{x \in P C(f) \cap I_{n}} \operatorname{Comp}_{x} \operatorname{Dom}\left(R_{I_{n}}^{N}\right) \subset$ $D_{\theta_{1}}\left(I_{n}\right)$ then $\bigcup_{x \in P C(f) \cap I_{n+1}} \operatorname{Comp}_{x} \operatorname{Dom}\left(R_{I_{n+1}}^{N-1}\right) \subset D_{\mu \theta}\left(I_{n+1}\right)$.
Proof. As before, let p_{n} be so that $f^{p_{n}} \mathbf{I}_{n+1}=\mathbf{I}_{n}$. Take $x \in I_{n+1} \cap P C(f)$, let $U=\operatorname{Comp}_{x} \operatorname{Dom}\left(R_{\mathbf{I}_{n+1}}^{N-1}\right)$ and let s be so that $R_{\mathbf{I}_{n+1}} \mid U=f^{s}$. Then $U=\operatorname{Comp}_{x} f^{-s}\left(\mathbf{I}_{n+1}\right)=\operatorname{Comp}_{x} f^{-s-p_{n}}\left(\mathbf{I}_{n}\right)$. Let k be so that $f^{s} \mid f^{p_{n}}(U)=$ $R_{\mathbf{I}_{n}}^{k}$. Because of Lemma 8.2, $\hat{r}\left(I_{n}\right) \leq \frac{1}{2^{T-1}} r\left(I_{n+1}\right)$. Hence $k \geq 2^{T-1}(N-1)$ and so $k \geq N$. Therefore the assumption in the lemma implies $f^{p_{n}} U \subset$ $D_{\theta}\left(I_{n}\right)$. Hence $U=\operatorname{Comp}_{x} f^{-p_{n}} f^{p_{n}} U \subset \operatorname{Comp}_{x} f^{-p_{n}}\left(D_{\theta}\left(I_{n}\right)\right) \subset D_{\mu \theta}\left(I_{n+1}\right)$ (by Lemma 13.5).
Proof of Proposition 11.5. The two previous lemmas imply Proposition 11.5.

Proof of Proposition 8.3. Let $0 \leq n \leq \chi-1$. By construction, there exists a positive integer $\nu=\nu_{n}$ such that $f^{\nu_{n}}: \mathcal{B}\left(\mathbf{I}_{n}\right) \rightarrow \mathbf{I}_{n}$ is a proper map with bounded degree and $f^{\nu}\left(\mathcal{A}\left(\mathbf{I}_{n}\right)\right) \subset \mathcal{L}_{f^{\nu}(c)}\left(\mathbf{I}_{n}\right)$. From Lemma 11.5 we have

$$
\mathcal{L}_{f^{\nu}(c)}\left(\mathbf{I}_{n}\right) \subset D_{\theta}\left(I_{n}\right) .
$$

Since $I_{n} \in \mathcal{T}_{\rho}$ (and the pullback only meets the critical point at most b^{2} times, see Lemma 8.1), we get

$$
\begin{equation*}
\mathcal{A}\left(\mathbf{I}_{n}\right) \subset D_{\lambda \theta}\left(\mathcal{B}\left(I_{n}\right)\right) \tag{33}
\end{equation*}
$$

and

$$
\frac{\operatorname{diam}\left(\mathcal{A} \mathbf{I}_{n}\right)}{\left|\mathcal{A} I_{n}\right|} \leq C(\theta) \max \left\{1,\left(\frac{\operatorname{diam}\left(\mathbf{I}_{n}\right)}{\left|I_{n}\right|}\right)^{1 / 2}\right\}
$$

where we use that since $I_{n} \in \mathcal{T}_{\rho}, f^{r^{\prime}}\left(\mathcal{L}_{f^{\nu}(c)}\left(I_{n}\right)\right)$ is not small compared to I_{n}, Koebe on the diffeomorphic pieces and Lemma 13.1. (Here r^{\prime} is the return time of $\mathcal{L}_{f^{\nu}(c)}\left(I_{n}\right)$ to I_{n}.) As $\mathcal{B}\left(I_{n}\right) \in \mathcal{T}_{\rho^{\prime}}$, it also follows that there exists a topological disc $\mathcal{A}^{\prime}\left(\mathbf{I}_{n}\right) \supset \supset \mathcal{A}\left(\mathbf{I}_{n}\right)$ so that $\bmod \left(\mathcal{A}^{\prime}\left(\mathbf{I}_{n}\right) \backslash \mathcal{A}\left(\mathbf{I}_{n}\right)\right)>\xi$ and so that $\left(\mathcal{A}^{\prime}\left(\mathbf{I}_{n}\right) \backslash \mathcal{A}\left(\mathbf{I}_{n}\right)\right) \cap P C(f)=\emptyset$, where $\xi>0$ is a constant. Let p_{n}^{\prime} be such that $f^{p_{n}^{\prime}}\left(\mathbf{I}_{n+1}\right)=\mathbf{I}_{n}$. Then $f^{p_{n}^{\prime}}: \mathbf{I}_{n+1} \rightarrow \mathcal{A}\left(\mathbf{I}_{n}\right)$ is a proper map with bounded degree. Set $\mathbf{I}_{n+1}^{\prime}=\operatorname{Comp}_{c_{0}}\left(f^{-p_{n}^{\prime}} \mathcal{A}^{\prime}\left(\mathbf{I}_{n}\right)\right)$. Then $\mathbf{I}_{n+1}^{\prime}-\mathbf{I}_{n+1}$ is an annulus disjoint from $P C(f)$ and its modulus is bounded away from zero. Moreover,

$$
\frac{\operatorname{diam}\left(\mathbf{I}_{n+1}\right)}{\left|\mathbf{I}_{n+1}\right|} \leq C(\theta) \max \left\{1,\left(\frac{\operatorname{diam}\left(\mathbf{I}_{n}\right)}{\left|I_{n}\right|}\right)^{1 / 2}\right\}
$$

From this inequality, and from the assumption that $\mathbf{I}_{0} \subset D_{\sigma}\left(I_{0}\right)$ it follows that $\operatorname{diam}\left(\mathbf{I}_{n}\right) /\left|I_{n}\right|, 0 \leq n \leq \chi$, is uniformly bounded from above.

12 Appendix 1: A criterion for the existence of quasiconformal extensions

In this appendix, we shall prove a result which we used to prove the quasiconformality of certain maps. This result is inspired by Smania [40] and Heinonen and Koskela [13].

Recall that a topological disk P has ε-bounded geometry if there is a point $x \in P$ such that $B(x, \varepsilon \operatorname{diam}(P)) \subset P$.

QC-Criterion. For any constants $0 \leq k<1$ and $\varepsilon>0$ there exists a constant K with the following property. Let $\phi: \Omega \rightarrow \tilde{\Omega}$ be a qc homeomorphism between two Jordan domains. Let X be a subset of Ω consisting of pairwise disjoint topological disks. Assume that the following hold:

1. if P is a component of X, then both of P and $\phi(P)$ have ε-bounded geometry, and moreover

$$
\bmod (\Omega-P) \geq \varepsilon, \quad \bmod (\tilde{\Omega}-\phi(P)) \geq \varepsilon
$$

2. $|\bar{\partial} \phi| \leq k|\partial \phi|$ holds a.e. on $\Omega-X$.

Then there exists a K-qc map $\psi: \Omega \rightarrow \tilde{\Omega}$ such that $\psi=\phi$ on $\partial \Omega$.
We shall prove a slightly stronger result. For a homeomorphism $\phi: \Omega \rightarrow$ $\tilde{\Omega}$ and for $x \in \Omega$, let

$$
\underline{H}(\phi, x)=\liminf _{r \rightarrow 0} \frac{\sup _{|y-x|=r}|\phi(y)-\phi(x)|}{\inf _{|y-x|=r}|\phi(y)-\phi(x)|} \in[1, \infty] .
$$

Lemma 12.1. Let $H>1$ and let $\varepsilon \in(0,1)$ be constants. Let $\phi: \Omega \rightarrow \tilde{\Omega}$ be an orientation-preserving homeomorphism between two Jordan domains. Let X_{0}, X_{1} be disjoint subsets of Ω such that $m\left(X_{0}\right)=m\left(\phi\left(X_{0}\right)\right)=0$, where m denotes the 2-dimensional Lebesgue measure. Assume that the following hold:

1. for each $x \in \Omega-\left(X_{0} \cup X_{1}\right)$, we have

$$
\underline{H}(\phi, x)<H
$$

2. for each $x \in X_{0}$, we have

$$
\underline{H}(\phi, x)<\infty ;
$$

3. there exists a family \mathcal{P} of pairwise disjoint topological disks which form a covering of X_{1}, such that for each $P \in \mathcal{P}$, we have

- both P and $\phi(P)$ have ε-bounded geometry;

$$
\bmod (\Omega-\bar{P}) \geq \varepsilon, \quad \bmod (\tilde{\Omega}-\phi(\bar{P})) \geq \varepsilon
$$

Then there exists a K-qc homeomorphism $\psi: \Omega \rightarrow \tilde{\Omega}$ such that $\psi|\partial \Omega=\phi| \partial \Omega$, where $K \geq 1$ is a constant depending only on H and ε.

Proof. For any four points a, b, c, d which lie in an anticlockwise order on the $\partial \Omega$, denote by $\Gamma(a, b ; c, d)$ the family of rectifiable curves which join the arc $a b$ and $c d$ and lie inside Ω, and let $\lambda(a, b ; c, d)$ the extremal length of this family. Similarly we define $\tilde{\Gamma}(\tilde{a}, \tilde{b} ; \tilde{c}, \tilde{d})$ and $\tilde{\lambda}(\tilde{a}, \tilde{b} ; \tilde{c}, \tilde{d})$. It is a basic fact that we only need to show that $\Gamma(a, b ; c, d)$ is bounded away from zero when $\tilde{\Gamma}(\tilde{a}, \tilde{b} ; \tilde{c}, \tilde{d})=1$. See $[1]$.

By means of the Riemann mapping theorem and Möbius transformations, we may assume that $\Omega=\tilde{\Omega}=\mathbb{D}$, and also that $a=\tilde{a}=1, b=\tilde{b}=i$, $c=\tilde{c}=-1$. Then $\tilde{d}=-i$. Note that by the Koebe distortion theorem, the image of P under a conformal map defined on Ω has ε^{\prime}-bounded geometry, where $\varepsilon^{\prime}>0$ is a constant depending only on ε. To bound $\lambda(a, b ; c, d)$ from below, we shall define an open covering \mathcal{E} of the unit disk with the following properties:

- $\sum_{E \in \mathcal{E}} \chi_{E} \leq C$,
- $\sum_{E \in \mathcal{E}} \operatorname{diam}(\phi(E))^{2} \leq C$,
- for each $E \in \mathcal{E}$, either $E \in \mathcal{P}$, or E is a round disk such that $2 E \subset \mathbb{D}$,
where C is a constant depending only on ε.
Let us prove that this covering completes the proof. For any $P \in \mathcal{P}$, choose a point $x=x_{P} \in P$ such that the round disk $B(x, \varepsilon \operatorname{diam} P)$ is contained in P. We denote by P^{\prime} this round disk and also set $\hat{P}=B(x, 2 \operatorname{diam} P)$. For any $E \in \mathcal{E}-\mathcal{P}$, let $E^{\prime}=E$ and $\hat{E}=2 E$. Note that for each $E \in \mathcal{E}$ and for each rectifiable curve γ which joins two points in ∂D, if $\gamma \cap E \neq \emptyset$, then the length of $\gamma \cap \hat{E}$ is at least $\varepsilon^{\prime} \operatorname{diam}(E)$, where $\varepsilon^{\prime}>0$ depends only on ε. Now define

$$
\rho=\sum_{E \in \mathcal{E}} a_{E} \chi_{\hat{E}},
$$

where

$$
a_{E}=\frac{\operatorname{diam}(\phi(E))}{\operatorname{diam}(E)} .
$$

Then, for each $\gamma \in \Gamma(1, i ;-1, d)$, we have

$$
\begin{aligned}
\int_{\gamma} \rho(z)|d z| & =\sum_{E \in \mathcal{E}} a_{E} \int_{\gamma} \chi_{\hat{E}}|d z| \\
& \geq \varepsilon^{\prime} \sum_{E ; E \cap \cap \neq \emptyset \neq \emptyset} \operatorname{diam} \phi(E)
\end{aligned}
$$

On the other hand,

$$
\begin{array}{rlrl}
\int \rho^{2} d x d y & =\int\left(\sum_{E \in \mathcal{E}} a_{E} \chi_{\hat{E}}\right)^{2} & & \leq C^{\prime} \int\left(\sum_{E \in \mathcal{E}} a_{E} \chi_{E^{\prime}}\right)^{2} \\
& \leq C^{\prime} \int \sum_{E \in \mathcal{E}} a_{E}^{2} \chi_{E^{\prime}} \sum_{E \in \mathcal{E}} \chi_{E^{\prime}} & \leq C^{\prime} \int \sum_{E \in \mathcal{E}} a_{E}^{2} \chi_{E^{\prime}} \sum_{E \in \mathcal{E}} \chi_{E} \\
& \leq C^{\prime} C \int \sum_{E \in \mathcal{E}} a_{E}^{2} \chi_{E^{\prime}} & & =C^{\prime} C \sum_{E \in \mathcal{E}} a_{E}^{2} m\left(E^{\prime}\right) \\
& \leq C^{\prime} C \sum_{E \in \mathcal{E}} a_{E}^{2} m(E) & & =C^{\prime} C \sum_{E \in \mathcal{E}} \operatorname{diam}(\phi(E))^{2} \frac{m(E)}{\operatorname{diam}(E)^{2}} \\
& \leq C^{\prime \prime} \sum_{E \in \mathcal{E}} \operatorname{diam}(\phi(E))^{2} & & \leq C^{\prime \prime} C,
\end{array}
$$

where in the second inequality we use the following lemma, which is a consequence of the Hardy-Littlewood maximal function theory. See [3].

Lemma 12.2. For each constant $\tau>1$, there is a constant C with the following property. Let $\left\{B_{i}\right\}_{i \in \Lambda}$ be a family of Euclidean disks, and let $a_{i} \geq 0$ be constants. Then

$$
\int\left(\sum_{i} a_{i} \chi_{\tau B_{i}}\right)^{2} \leq C \int\left(\sum_{i} a_{i} \chi_{B_{i}}\right)^{2} .
$$

In particular, we have an upper bound on $\int \rho^{2}$. Together with the lower bound on $L_{\rho}(\Gamma(1, i ;-1, d))$, this implies that $\lambda(1, i ;-1, d)$ is bounded away from zero.

It remains to construct the covering \mathcal{E}. It will be the union of three families of topological disks:

$$
\mathcal{E}=\mathcal{A} \cup \mathcal{B} \cup \mathcal{P},
$$

where \mathcal{A}, \mathcal{B} will be coverings of X_{0} and $\Omega-X_{0} \cup X_{1}$ respectively, and \mathcal{P} is as in the lemma.

Let us first define \mathcal{B}. For each $x \in \Omega-X_{0} \cup X_{1}$, there is a $r_{x}>0$ such that $\phi\left(B\left(x, r_{x}\right)\right)$ has H^{-1}-bounded geometry. Moreover, we can assume that $B\left(x, 2 r_{x}\right) \subset \mathbb{D}$. By Besicovic's theorem, we can find countably many $x_{i} \in \Omega-X_{0} \cup X_{1}$ such that

- $\bigcup_{i} B\left(x_{i}, r_{x_{i}}\right) \supset \Omega-X_{0} \cup X_{1}$;
- $\sum_{i} \chi_{B\left(x_{i}, r_{x_{i}}\right)} \leq C$, where C is a universal constant.

We define \mathcal{B} to be the family of the balls $B\left(x_{i}, r_{x_{i}}\right)$.
To define the covering \mathcal{A}, we first decompose the set X_{0} into countably many disjoint subsets $X_{0}^{n}:=\left\{x \in X_{0}: n \leq \underline{H}(\phi, x)<n+1\right\}$. For $n \in \mathbb{N}$, let us fix a small neighborhood of U_{n} of X_{0}^{n} such that

$$
m\left(U_{n}\right) \leq(n+1)^{-4}, m\left(\phi\left(U_{n}\right)\right) \leq(n+1)^{-4}
$$

For each $x \in X_{0}^{n}$, we choose a small $r_{x}>0$ such that $B\left(x, r_{x}\right) \subset U$, $B\left(x, 2 r_{x}\right) \subset \mathbb{D}$; and such that $\phi\left(B\left(x, r_{x}\right)\right)$ has $(n+1)^{-1}$-bounded geometry. Let \mathcal{D}_{n} denote the family of such Euclidean disks $B\left(x, r_{x}\right)$. Then $\mathcal{D}=\bigcup_{n} \mathcal{D}_{n}$ is a covering of X_{0}. Apply Besicovic's theorem once again, we choose a countable subfamily \mathcal{A} such that

- $\bigcup_{A \in \mathcal{A}} A \supset X_{0} ;$
- $\sum_{A \in \mathcal{A}} \chi_{A} \leq C$, where C is a universal constant as before.

Note that

$$
\begin{array}{rlrl}
\sum_{A \in \mathcal{A}} \operatorname{diam}(\phi(A))^{2} & =\sum_{n=1}^{\infty} \sum_{A \in \mathcal{A} \cap \mathcal{D}_{n}} \operatorname{diam}(\phi(A))^{2} & & \leq \sum_{n} \sum_{A \in \mathcal{A} \cap \mathcal{D}_{n}}(n+1)^{2} m(\phi(A)) \\
& \leq \sum_{n=1}^{\infty} C(n+1)^{2} m\left(\phi\left(\bigcup_{D \in \mathcal{D}_{n}} D\right)\right) & \leq C \sum_{n=1}^{\infty}(n+1)^{2} m\left(\phi\left(U_{n}\right)\right) \\
& \leq C \sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}} & & \leq C .
\end{array}
$$

Note also that

$$
\sum_{B \in \mathcal{B}} \operatorname{diam}(\phi(B))^{2} \leq H^{2} \sum_{B} m(B) \leq C H^{2}
$$

and

$$
\sum_{P \in \mathcal{P}} \operatorname{diam}(\phi(P))^{2} \leq \sum_{P} m(\phi(P)) / \varepsilon^{2} \leq 1 / \varepsilon^{2}
$$

Proof of $Q C$-Criterion. Let X_{0} be the subset of $\Omega-X_{0}$ consisting of points z at which ϕ is not differentiable, and let $X_{1}=X$. It follows from the assumption (2) that $H(\phi, z) \leq(1+k) /(1-k)$. Since ϕ is qc, $H(\phi, z)<\infty$ for any $z \in \Omega$ and moreover X_{0} and $\phi\left(X_{0}\right)$ both have measure zero. Applying Lemma A. 1 completes the proof.

13 Appendix 2: Some basic facts about Poincaré discs

We say that a real-symmetric holomorphic map g is in the Epstein class if for any interval $J \subset \mathbb{R}$ for which $g: J \rightarrow g(J)$ is a diffeomorphism, $g^{-1}: g(J) \rightarrow$ J extends to a univalent map defined on $\mathbb{C}_{g(J)}$.
Lemma 13.1 (Schwarz Inclusion). Let f be in the Epstein class. Let $J \subset \mathbb{R}$ and $f^{s}: J \rightarrow f^{s}(J)$ be diffeomorphic and $\theta \in(0, \pi)$. Then the Schwarz inclusion holds:

$$
U:=\operatorname{Comp}_{J} f^{-s}\left(D_{\theta}\left(f^{s} J\right)\right) \subset D_{\theta}(J)
$$

Proof. This simply follows from the fact that (i) if d_{P} is the Poincaré metric on \mathbb{C}_{J} then the set of points z with $d_{P}(z, J)=c$ lies on the boundary of two (symmetric) circles with real trace J, (ii) f^{-s} maps $\mathbb{C}_{f^{s}(J)}$ univalently into \mathbb{C}_{J} and (iii) from the Schwarz inclusion theorem.
Lemma 13.2. Let $\ell \geq 2$ be even and $P(z)=z^{\ell}$.

- For each $A>1$ there exists $\lambda \in(0,1)$ such that for each $\theta \in(0, \pi / 2)$,

$$
P^{-1}\left(D_{\theta}([-A, 1])\right) \subset D_{\lambda \theta}([-1,1])
$$

- For each $\delta>0$ there exists $\delta^{\prime}>0$ and $\lambda \in(0,1)$ so that for each $\theta \in(0, \pi / 2)$ one has the following. Let G_{1}, I be a real intervals with $(1+\delta) G_{1} \subset I$ and let G_{0} be a component of $P^{-1}\left(G_{1}\right) \cap \mathbb{R}$. Then

$$
\operatorname{Comp}_{G_{0}} P^{-1}\left(D_{\theta}\left(G_{1}\right)\right) \subset D_{\lambda \theta}\left(G^{\prime}\right)
$$

where G^{\prime} is an interval with $G_{0} \subset G^{\prime} \subset\left(1+\delta^{\prime}\right) G^{\prime} \subset \operatorname{Comp}_{G_{0}} P^{-1}(I) \cap \mathbb{R}$.

Proof. The first part was proved in Lemma 7.4 for [37] for $\ell=2$, and the extension for $\ell>2$ follows then from the appendix of [17]. The second part immediately follows from the first part.

Lemma 13.3. Let $\ell \geq 2$ be an even integer and let $P(z)=z^{\ell}$. For any $A>0$ and any $\theta \in(0, \pi)$ there exists $\theta^{\prime} \in(0, \pi)$ such that

$$
P^{-1}\left(D_{\theta}((-A, 1))\right) \supset D_{\theta^{\prime}}((-1,1))
$$

Part one of the next lemma shows that we improve the angle if we are allowed to replace the base by a larger base. Part two and three of this lemma will allow use to capture 'an escaping part' by a Poincaré domain based on a suitable smaller base.

Lemma 13.4. One can compare Poincaré discs in the following ways:

1. There exists θ_{0} such that for each $A>1$ and each $\theta>0$,

$$
D_{\theta}([-1,1]) \subset D_{\min \left(\theta A / 2, \theta_{0}\right)}([-A, A])
$$

2. For each $\lambda \in(0,1)$ and $\delta>0$ there exists $\lambda^{\prime} \in(0,1)$ such that for each $\theta>0$,

$$
D_{\lambda \theta}([-1,1]) \backslash D_{\theta}([-1-\delta, 1+\delta]) \subset D_{\lambda^{\prime} \theta}([-1-\delta,-1]) .
$$

3. For each $\lambda \in(0,1)$ and $\delta>0$ there exists $\lambda^{\prime} \in(0,1)$ such that for each interval $J \subset[-1,1]$ and each $\theta>0$,

$$
D_{\lambda \theta}([-1,1]) \backslash D_{\theta}([-1-\delta, 1+\delta]) \subset D_{\lambda^{\prime} \theta|J|}(J) .
$$

Proof. The first part holds because for $\theta \in(0, \pi / 2)$, the upper part of $\partial D_{\theta}([-1,1])$ is a circle with centre $i / \tan (\theta)$ and of radius $1 / \sin (\theta)$, so its boundary intersects the imaginary axis in

$$
\frac{i}{\tan (\theta)}+\frac{i}{\sin (\theta)}=\frac{i}{\sin (\theta)}[\cos (\theta)+1],
$$

while the upper part of $\partial D_{A \theta / 2}([-A, A])$ is a circle with centre $i A / \tan (\theta A / 2)$ of radius $A / \sin (\theta A / 2)$, so it intersects the positive imaginary axis

$$
\frac{A i}{\tan (\theta A / 2)}+\frac{A i}{\sin (\theta A / 2)}=\frac{A i}{\sin (\theta A / 2)}[\cos (\theta A / 2)+1] .
$$

When θA is small, $A / \sin (\theta A / 2) \geq 1.5 / \sin (\theta)$, so the inclusion holds.
So let us prove the second and third part. The upper-part of $D_{\lambda \theta}([-1,1])$ is (part of) a ball centered at $A=i / \tan (\lambda \theta)$ and radius $r_{1}=1 /(\sin (\lambda \theta))$ and the upper-part of $D_{\theta}([-1-\delta, 1+\delta])$ is (part of) a ball centered at $B=i(1+\delta) / \tan (\theta)$ and radius $r_{2}=(1+\delta) /(\sin (\theta))$. Note that we can assume that $\lambda(1+\delta)<1$ (otherwise $D_{\lambda \theta}([-1,1])$ contains $D_{\theta}([-1-\delta, 1+\delta])$). To compute the intersection points of these balls, note that the upperparts of these balls are given by

$$
\begin{array}{lll}
x^{2}+\left(y-\frac{1}{\tan (\lambda \theta)}\right)^{2} & =\frac{1}{\sin ^{2}(\lambda)} & \text { and } y>0 \\
x^{2}+\left(y-\frac{1+\delta}{\tan (\theta)}\right)^{2} & =\frac{(1+\delta)^{2}}{\sin ^{2}(\theta)} & \text { and } y>0 .
\end{array}
$$

Subtracting these equations and rearranging, gives

$$
y=\frac{\delta(2+\delta)}{2\left(\frac{1}{\tan (\lambda \theta)}-\frac{1+\delta}{\tan (\theta)}\right)} \geq L \theta
$$

provided $\theta>0$ is small where $L>0$ is a constant. From this the second and third part of the lemma easily follow.

In this paper we often have to pullback a Poincaré domain along a chain is contained in a Poincaré domain whose angle is not too small. For the remainder of this appendix assume that f is in the class $\mathbf{P}_{b}^{\tau, \sigma}$ defined in Section 4. The constants appearing in the following two lemmas depend on b, τ and σ.

Lemma 13.5. For each $\delta>0$ and $N \in \mathbb{N}$ there exists $\lambda \in(0,1)$ with the following property. Let $\left\{H_{j}\right\}_{j=0}^{s}$ and $\left\{H_{j}^{\prime}\right\}_{j=0}^{s}$ be two chains with $H_{j} \subset H_{j}^{\prime}$ for all j. Assume that the chain $\left\{H_{j}^{\prime}\right\}_{j=0}^{s}$ has order $\leq N$ and that $\left|f^{s}\left(H_{0}\right)\right| \geq$ $\delta\left|H_{s}\right|$. Let $\theta \in(0, \pi), V=D_{\theta}\left(H_{s}\right)$ and $U=\operatorname{Comp}_{H_{0}}\left(f^{-s} V\right)$. Then

$$
U \subset D_{\lambda \theta}\left(H_{0}\right) .
$$

Moreover, for every $\delta^{\prime}>0$ there exists $\lambda^{\prime}>0$ the following holds. Let $\left\{\hat{H}_{j}\right\}_{j=0}^{s}$ be a chain with $\hat{H}_{j} \subset H_{j}$. Let T be the component of $f^{s}\left(H_{0}\right) \backslash \hat{H}_{s}$ containing a boundary point of H_{s} in its closure and assume that $|T| \geq \delta^{\prime}\left|H_{s}\right|$. Then for each $\theta>0$,

$$
\hat{U}=\operatorname{Comp}_{\hat{H}_{0}} f^{-s} D_{\theta}\left(\hat{H}_{s}\right) \subset D_{\lambda^{\prime} \theta}\left(H^{\prime}\right)
$$

where H^{\prime} is an interval with $\hat{H}_{0} \subset H^{\prime} \subset\left(1+\lambda^{\prime}\right) H^{\prime} \subset H_{0}$.

Proof. Let us prove the first assertion. Let $0 \leq s_{1}<s_{2}<\cdots<s_{k}<s$ be all the integers such that $H_{s_{i}}^{\prime}$ contains a critical point. Then by Schwarz, $f^{s_{k}+1}(U) \subset D_{\theta}\left(H_{s_{k}+1}\right)$. By Koebe, $\left|f^{s_{k}+1}\left(H_{0}\right)\right| /\left|H_{s_{k}+1}\right|$ is bounded away from zero, and in particular, so is $\left|f\left(H_{s_{k}}\right)\right| /\left|H_{s_{k}+1}\right|$. Let Ω_{0} be the component of the domain of f which contains $H_{s_{k}}$ and $\Omega=f\left(\Omega_{0}\right)$. Then $f \mid \Omega_{0}$ can be written as $P \circ \varphi$, where $P(z)=z^{2}$ and φ is a real symmetric conformal map defined on Ω_{0}. By Lemma 13.2, $\varphi\left(f^{s_{k}} U\right) \subset D_{\lambda \theta}\left(\varphi H_{s_{k}}\right)$. By the τ extendibility condition, φ extends to a conformal map onto a topological disk Ω^{\prime} so that $\bmod \left(\Omega^{\prime}-\Omega\right)$ is bounded away from zero. Applying the Koebe distortion theorem, we get $U_{s_{k}} \subset D_{\lambda^{\prime} \theta}\left(H_{s_{k}}\right)$. Repeating the argument and redefining the constant, we complete the proof.

To prove the second assertion, we only need to consider the case that \hat{H}_{s} contains $H_{s} \backslash f^{s}\left(H_{0}\right)$ and $\hat{H}_{s} \cap f^{s}\left(H_{0}\right)$ is not small compared to $f^{s}\left(H_{0}\right)$. By the first part of this lemma, $\hat{U} \subset D_{\lambda^{\prime} \theta}\left(\hat{H}_{0}\right)$. Since \hat{H}_{0} is well-inside H_{0} the second assertion of the lemma follows.

Lemma 13.6. For each $\delta>0$ there exists $\delta^{\prime}>0$ and $\lambda \in(0,1)$ such that the following holds. Let I be a nice interval, J a domain of the first entry map R_{I} and s an integer so that $R_{I} \mid J=f^{s}$. Let $\left\{H_{j}\right\}_{j=0}^{s}$ be a chain with $(1+\delta) H_{s} \subset I$ and $H_{0} \subset J$. Then there exists an interval H^{\prime} with $H_{0} \subset H^{\prime} \subset\left(1+\delta^{\prime}\right) H^{\prime} \subset J$ and so that

$$
\operatorname{Comp}_{H_{0}} f^{-s}\left(D_{\theta}\left(H_{s}\right)\right) \subset D_{\lambda \theta}\left(H^{\prime}\right)
$$

Proof. Let $\left\{G_{j}\right\}_{j=0}^{s}$ and $\left\{G_{j}^{\prime}\right\}_{j=0}^{s}$ be the chains with $H_{j} \subset G_{j} \subset G_{j}^{\prime}$ and $G_{s}^{\prime}=I$ and $G_{s}=(1+\delta / 2) H_{s}$. Let $H^{\prime}=G_{0}$. Then the order of the chain $\left\{G_{j}^{\prime}\right\}_{j=0}^{s}$ is bounded from above. Moreover, $f^{s}\left(G_{0}\right)$ contains a component of $H_{s}-G_{s}$ and thus its length is comparable to that of G_{s}. By Koebe H^{\prime} is well inside $G_{0}^{\prime}=J$ and by the previous lemma, $U \subset D_{\lambda \theta}\left(H^{\prime}\right)$.

References

[1] L. Ahlfors. Lectures on quasiconformal mappings. Van Nostrand Co., 1966.
[2] A. Avila, M. Lyubich and W. de Melo, Regular or stochastic dynamics in real analytic families of unimodal maps. To appear in Inventiones Mathematicae.
[3] B. Bojarski. Remarks on Sobolev imbedding inequalities. In "Proc. of the Conference on Complex Analysis, Joensuu 1987", Lectures Notes in Math. 1351, Springer-Verlag, 1988.
[4] B. Branner and J. Hubbard. The iteration of cubic polynomials. I. The global topology of parameter space. Acta Math. 160 (1988), no. 3-4, 143206.
[5] B. Branner and J. Hubbard. The iteration of cubic polynomials. II. Patterns and parapatterns. Acta Math. 169 (1992), no. 3-4, 229-325.
[6] A. M. Blokh and M. Yu Lyubich, Measure and dimension of solenoidal attractors of of one-dimensional dynamical systems, Comm. Math. Phys. 127 (1990), 573-583.
[7] A. Blokh and M. Misiurewicz, Collet-Eckmann maps are unstable, Comm. Math. Phys. 191, 1998, 61-70.
[8] L. Carleson; T. Gamelin. Complex dynamics. Springer-Verlag, 1993
[9] A. Douady and J. Hubbard. On the dynamics of polynomial-like mappings. Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287-343.
[10] J. Graczyk and G. Świątek. Generic hyperbolicity in the logistic family. Ann. of Math. (2) 146 (1997), no. 1, 1-52.
[11] J. Graczyk and G. Świa̧tek. Smooth unimodal maps in 1990s. Ergodic Theory Dynam. Systems 19 (1999) no.2, 263-287.
[12] M.V. Jakobson, Smooth mappings of the circle into itself, Mat. Sb. (N.S.), 85 (127), 1971, 163-188.
[13] J. Heinonen and P. Koskela. Definitions of quasiconformality. Invent. Math. 120, 1995, 61-79.
[14] J. Hubbard. Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz. Topological methods in modern mathematics (Stony Brook, NY, 1991), 467-511, Publish or Perish, Houston, TX, 1993.
[15] S. Kallunki and P. Koskela. Exceptional sets for the definition of quasiconformality. Amer. J. Math. 122 (2000), no. 4, 735-743.
[16] O. Kozlovski. Axiom A maps are dense in the space of unimodal maps in the C^{k} topology. Ann. of Math. (2) 157 (2003), no. 1, 1-43.
[17] G. Levin and S. van Strien. Local connectivity of the Julia set of real polynomials. Ann. of Math. (2) 147 (1998), no.3, 471-541.
[18] G. Levin and S. van Strien. Bounds for maps of an interval with one critical point of inflection type. II. Invent. Math. 141 (2000), no. 2, 399-465.
[19] M. Lyubich. Combinatorics, geometry and attractors of quasi-quadratic maps. Ann. of Math. (2) 140 (1994) 347-404.
[20] M.Lyubich. Dynamics of quadratic polynomials, I, II. Acta Math. 178 (1997), no. 2, 185-247, 247-297.
[21] M. Lyubich and M. Yampolsky. Dynamics of quadratic polynomials: complex bounds for real maps. Ann. Inst. Fourier (Grenoble) 47 (1997) no. 4, 1219-1255.
[22] R. Mañé. Hyperbolicity, sinks and measure in one-dimensional dynamics. Comm. Math. Phys. 100 (1985), no. 4, 495-524.
[23] R. Mañé, P. Sad and D. Sullivan. On the dynamics of rational maps. Ann. Sci. Ecole Norm. Sup. (4) 16 (1983), no. 2, 193-217.
[24] M. Martens. Distortion results and invariant Cantor sets of unimodal maps. Ergodic Theory Dynam. Systems 14 (1994), no. 2, 331-349.
[25] W. de Melo and S. van Strien. One-dimensional dynamics. SpringerVerlag, Berlin, 1993.
[26] M. Martens, W. de Melo and S. van Strien. Julia-Fatou-Sullivan theory for real one-dimensional dynamics. Acta Math. 168 (1992), no. 3-4, 273-318.
[27] C. McMullen. Complex dynamics and renormalization. Annals of Mathematics Studies, 135. Princeton University Press, Princeton, NJ, 1994.
[28] C. McMullen. Renormalization and 3-manifolds which fiber over the circle. Annals of Mathematics Studies, 142. Princeton University Press, Princeton, NJ, 1996.
[29] C. McMullen and D. Sullivan. Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system. Adv. Math. 135 (1998), no. 2, 351-395.
[30] J. Milnor. Dynamics in one complex variable. Introductory lectures. Friedr. Vieweg and Sohn, Braunschweig, 1999.
[31] J. Milnor. Local connectivity of Julia sets: expository lectures. The Mandelbrot set, theme and variations, 67-116, London Math. Soc. Lecture Note Ser., 274, Cambridge Univ. Press, Cambridge, 2000.
[32] J. Milnor and W. Thurston. On iterated maps of the interval. Dynamical systems (College Park, MD, 1986-87), 465-563, Lecture Notes in Math., 1342, Springer, Berlin-New York, 1988.
[33] J. Milnor and C. Tresser. On entropy and monotonicity for real cubic maps. With an appendix by Adrien Douady and Pierrette Sentenac. Comm. Math. Phys. 209 (2000), no. 1, 123-178.
[34] J. Palis. A global view of dynamics and a conjecture on the denseness of finitude of attractors. Géométrie complexe et systèmes dynamiques (Orsay, 1995). Astérisque No. 261 (2000), xiii-xiv, 335-347.
[35] W. Shen. Bounds for one-dimensional maps without inflection critical points. J. Math. Sci. Univ. Tokyo. 10 2003, 41-88
[36] W. Shen. On the measurable dynamics of real rational functions. Ergodic Theory Dynam. Systems. To appear.
[37] W. Shen. On the metric properties of multimodal interval map and C^{2} density of Axiom A. Preprint, 2002.
[38] M. Shishikura. Yoccoz puzzles, τ-functions and their applications, Unpublished.
[39] D. Smania. Renormalization theory for multimodal maps. Preprint, 2001.
[40] D. Smania. Puzzle geometry and rigidity: the Fibonacci cycle is hyperbolic. Preprints, 2002.
[41] D. Sullivan. Bounds, quadratic differentials, and renormalization conjectures. American Mathematical Society centennial publications, Vol. II (Providence, RI, 1988), 417-466, Amer. Math. Soc., Providence, RI, 1992.
[42] S. van Strien and E. Vargas. Real bounds, ergodicity and negative Schwarzian for multimodal maps. Preprint, 2002.
[43] J.-C. Yoccoz, On the local connectivity of the Mandelbrot set, Unpublished, 1990.

Maths. Dept.
Univ. of Warwick
Coventry CV4 7AL
UK

oleg@maths.warwick.ac.uk
wxshen@maths.warwick.ac.uk, http://www.maths.warwick.ac.uk/~wxshen strien@maths.warwick.ac.uk, http://www.maths.warwick.ac.uk/~strien

[^0]: *the first and second author are funded by the EPSRC

