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This note discusses Milnor’s conjecture on monotonicity of entropy and
gives a short exposition of the ideas used in its proof which was obtained in
joint work with Henk Bruin, see [BvS09]. At the end of this note we explore
some related conjectures and questions.

Motivation

In their seminal and widely circulated 1977 preprint ‘On iterated maps of
the interval: I,II.’ Milnor and Thurston proved the following:

Theorem (Milnor and Thurston [MT77], see also [MT88]). The function
C2,b → R which associates to a mapping g ∈ C2,b its topological entropy
htop(g) is continuous.

Here C2,b stands for C2 maps of the interval with b non-degenerate critical
points (non-degenerate means second derivative non-zero). This theorem
relies on a result of Misiurewicz and Szlenk, see [MS77, MS80] who had
previously shown that γ(f) := exp(htop(f)) is equal to the growth rate of
the number of laps (i.e., intervals of monotonicity) of fn. The crucial new
ingredient in the proof of Milnor and Thurson’s theorem is a formula which
shows that γ(f) is also the zero of a certain meromorphic function.

∗This note is based on a talk which was presented at the meeting ‘Frontiers in Complex
Dynamics (Celebrating John Milnor’s 80th birthday)’ in Banff in February 2011. The
author would like to thank Charles Tresser for helpful comments on an earlier version.
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Figure 1: On the left exp(htop(fa)) as a function a ∈ [3.5, 4] for fa(x) =
ax(1− x). On the right the well-known bifurcation diagram.

For the quadratic (logistic) family qa(x) = ax(1−x), the entropy function
a 7→ h(qa) looks monotone (in the weak sense), see Figure 1. Monotonicity
indeed holds:

Theorem. The topological entropy of x 7→ ax(1− x) increases with a ∈ R.

This theorem was proven in a later version of Milnor and Thurston’s
preprint which was published in 1988, see [MT88]. Their proof, together
with other proofs of this theorem which appeared in the mid 1980’s, see
Douady and Hubbard [DH85, Dou95], and Sullivan [dMvS93], all rely on
ideas from holomorphic dynamics. In the late 1990’s, Tsujii gave a different
proof which does not rely on holomorphic dynamics, see [Tsu00], but still
requires the family of maps to be quadratic (or of the form z 7→ zd + c).

These proofs all show a stronger statement: periodic orbits never disap-
pear when a increases, see the bifurcation diagram on the right of Figure 1.
In this way, we have an instance of the following

Heuristic Principle. Families of real polynomial maps undergo bifurcations
in the simplest possible way.

Later on it was shown (independently by Graczyk and Swiatek [GŚ97]
and Lyubich [Lyu97]) that, within the quadratic family, hyperbolic maps are
dense and so the periodic windows are dense.

In this survey, we will discuss a generalisation of the above theorem which
solves a conjecture due to Milnor on monotonicity of entropy for more general
families of one-dimensional maps.

Milnor’s monotonicity of entropy conjecture

Milnor proposed a conjecture which makes the above Heuristic Principle
precise in the case of polynomials of higher degree. Indeed, given ε ∈ {−,+},
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Figure 2: Level sets of the topological entropy within the space P 3
ε , where

the axis correspond to the position of the two critical values ζ1, ζ2 in [−1, 1]
where ζ1 < ζ2.

consider the space P b
ε of real polynomials f with

1. precisely b distinct critical points, all of which real, non-degenerate and
contained in (−1, 1);

2. f{±1} ⊂ {±1};
3. with shape ε = ε(f), where

ε(f) =

{
+1 if f is increasing at the left endpoint of [−1, 1],
−1 otherwise.

Note that P b
ε consists of polynomials of degree d = b+1. In particular, P 1

ε

corresponds to quadratic maps qc. Taking ε = +, the required normalisation
in P 1

ε gives qc(±1) = 1 from which it follows that the quadratic family takes
the form x 7→ qc(x) = −(c+ 1)x2 + c, where c ∈ [−1, 1] is the critical value.

P b
ε forms a b-dimensional space which can be parametrized by the crit-

ical values of the maps f . So for each choice of (ζ1, . . . , ζb) ∈ [−1, 1]b with
(ζi−1 − ζi)(ζi − ζi+1) < 0 for each i = 2, . . . , b− 1, there exists a unique map
fζ1,...,ζb ∈ P d with critical values ζ1, . . . , ζb and the map (ζ1, . . . , ζb) 7→ fζ1,...,ζb
is continuous, see [dMvS93, page 120] and [MT00, page 132 and Appendix].

To formalise the above Heuristic Principle in higher dimensions, one may
hope that the topological entropy of f depends monotonically on the position
of its critical values, i.e., that the map (ζ1, . . . , ζb) 7→ htop(fζ1,...,ζb) is monotone
in each of its components. This turns out not to be true, as is clear by looking
at the level sets of the entropy function in Figure 2, but as can also be proved
rigorously see [BvS11].

Instead, Milnor suggested that one should investigate the level sets of
topological entropy, noting that monotonicity of entropy within the quadratic
family qc is equivalent to the statement that for each h0, the level set I(h0) :=
{c ∈ R;htop(qc) = h0} is connected. Milnor coined these level sets isentropes
(following the terminology used in thermodynamics for sets with a given
entropy) and proposed the following conjecture.
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Milnor’s monotonicity of entropy conjecture. Given ε ∈ {−1, 1}, the
set of f ∈ P b

ε with topological entropy equal to h0 is connected.

Another approach to monotonicity using smooth one-parameter families
of maps has been introduced by Yorke and co-workers; we review briefly this
line of work in Subsection 2.1.

Milnor first posed this conjecture in the cubic case in [DGMT95, Mil92]
and subsequently in joint work with Tresser in the above setting in [MT00,
page 125]. At the end of this note, we state some further conjectures in this
direction, due to Milnor and others.

Milnor and Tresser realized that the treatment of this conjecture in the
cubic family only required a weak generalisation of the rigidity results for
unimodal maps with quadratic critical points (which had been obtained in-
dependently by Lyubich [Lyu97] and Graczyk and Świa̧tek [GŚ97]) rather
than a full rigidity statement for cubic maps. Subsequently, they posed the
precise analytical question which needed to be answered to experts. This
question was solved successfully by Heckman, a student of Świa̧tek, as his
PhD [Hec96]. Using Heckman’s work, Milnor and Tresser then solved this
conjecture in the cubic case (when b = 2).

Theorem (Milnor and Tresser [MT00]). The entropy conjecture is true for
real cubic maps.

Note that Milnor and Tresser did not make any assumptions on the location
of critical points, because any real cubic maps which is not bimodal is in
fact monotone (and so has zero topological entropy). We should also remark
that in the cubic case, the parameter space is two-dimensional. Accordingly,
Milnor and Tresser’s proof considers certain curves curves corresponding to
the existence of a critical point belonging to a periodic orbit, uses that certain
conjugacy classes are unique and then relies on planar topology to obtain
connectedness of isentropes. As a model for the parameter space, Milnor
and Tresser use stunted sawtooth maps, see Figure 3.

Some time ago, in joint work with Henk Bruin, we proved Milnor’s entropy
conjecture for arbitrary degree:

Main Theorem (Bruin and van Strien [BvS09]). The entropy conjecture is
true in general.

In other words, fix ε ∈ {−1, 1}, taken any integer d ≥ 1 and any h0 ∈ R.
Then the set of f ∈ P b

ε with topological entropy equal to h0, is connected.
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The purpose of this note is to present some of the ideas of the proof of the
latter theorem. At the end of this note we will state some open problems.

1 Idea of the proof

Our proof of the Main Theorem goes in four steps:

1. A generalization of the notion of hyperbolic component, namely the
space PH(f) of maps which are partial conjugate to f (as defined
below). A key-point is showing that these sets are cells (i.e., home-
omorphic images of balls in some Rn). Moreover, we give a full de-
scription of the bifurcations which occur at the boundary of these
sets.

2. The introduction of a more suitable parameter space. Following
Milnor and Tresser, this is done by using the space Sb of stunted
sawtooth maps as a model for the space P b. Since one can assign to
each polynomial f ∈ P b a stunted sawtooth map Ψ(f), the spaces P b

and Sb are naturally related. As mentioned, the space Sb was already
used by Milnor and Tresser.

3. To have a more faithful description of the parameter space, we restrict
to the class of admissible sawtooth maps Sb∗. In the real case,
the admissibility condition corresponds to the absence of wandering
intervals; for general polynomials this would correspond to the ‘absence
of Levy cycles’. A non-trivial result is that isentropes within the space
Sb∗ of admissible sawtooth maps are contractible.

4. A proof that Ψ: P b → Sb∗ is ‘almost’ a homeomorphism. This state-
ment (which we will make precisely below) is the main rationale for
introducing the space Sb∗ rather than the much more pleasant space Sb.

First ingredient: rigidity and the partial conjugacy class

The first step in the proof is to introduce the notion of partial conjugacy
class and to show that one has generic bifurcation at the boundary of these
sets.

Let B(f) consists of all points x so that fn(x) tends to a (possibly one-
sided) periodic attractor. Let f, g : [−1, 1]→ [−1, 1] be two d-modal maps.

5



Definition. We say that two f, g are partially conjugate if there is a
homeomorphism h : [−1, 1]→ [−1, 1] such that

• h maps B(f) onto B(g);

• h maps the i-th critical point of f to the i-th critical point of g;

• h ◦ f(x) = g ◦ h(x) for all x /∈ B(f).

Definition. We denote by PH(f) the class of maps which are partially
conjugate to f , also called the partial conjugacy class associated to f .
Furthermore, we denote by PHo(f) the set of maps g ∈ PH(f) with

• only hyperbolic periodic points and

• no critical point of g maps to the boundary of a component of B(g).

Example. Consider the quadratic family qc(x) = −(c+ 1)x2 + c, c ∈ [−1, 1]
and let an be the first period doubling bifurcation creating a periodic or-
bit of period 2n+1. Then all the maps corresponding to c ∈ (−1, a0] are
partially conjugate. Similarly, all the maps corresponding to c ∈ (an, an+1]
are partially conjugate. If a polynomial f ∈ P b has no periodic attractors,
then g ∈ P b is only partially conjugate to f if it is topologically conjugate.
Hence, in this case, PHo(f) = PH(f) and, by Theorem 1 below, g = f and
PH(f) = {f}.

If all critical points of f are in the basin of hyperbolic periodic attractors,
then PHo(f) agrees with Douady and Hubbard’s hyperbolic component, but
the above definition also makes sense if not all critical points are in basins
of periodic attractors. The following three theorems from [BvS09] generalise
Douady and Hubbard’s theorem that hyperbolic components for the family
z 7→ z2 + c are cells.

Theorem 1. Let f ∈ P b
ε . Then

• PHo(f) is a submanifold with dimension equal to the number of critical
points in B(f).

• PH(f) ⊂ PHo(f).

In particular, if no critical point of f is in the basin of a periodic attractor
then PH(f) is a single point. In fact, the description of PHo(f) is more
detailed:

6



Theorem 2. PHo(f) is parametrized by (finite) Blaschke products and, for
example, critical relations unfold transversally.

Here Blaschke products are maps of the D of the type z 7→ z
∏n−1

i=1
z−ai
1−āiz .

If each periodic attractor has precisely one critical point in its basin, then
this description simplifies: PHo(f) is parametrized by multipliers at the
periodic attractors (so this corresponds to Douady and Hubbard’s result).

That critical relations unfold transversally in special cases (when a critical
point is eventually periodic) was proved previously in [vS00] and [BE09]. In
addition to the above theorem we need the following additional transversality
properties at the boundary of partial conjugacy classes (and consequently at
the ‘boundary’ of the space of real Blaschke products):

Theorem 3. Bifurcations at f ∈ PH(f) \PHo(f) are always generic in the
following sense:

• saddle-node: creation of one-sided attractor, which then becomes be-
comes an attracting + repelling pair;

• pitchfork: a two-sided attractor, which becomes repelling and spins off
a pair of attracting orbits;

• period-doubling: multiplier -1 with a creation/destruction of a at-
tractor of double the period;

• homoclinic bifurcation: a critical point in the basin is (eventually)
mapped to the boundary of the basin.

In other words, near f ∈ PH(f) \ PHo(f) several of these bifurcations
can occur at the same time, but each of these is generic. So, for example,
in the saddle-node bifurcation case, (fn)′′ is non-zero at a periodic point of
period n. In [BvS09] a slightly weaker version of Theorem 3 is proved, as
this suffices for the proof of Milnor’s conjecture. Theorem 3 will be proved
elsewhere.

The proofs of Theorems 1, 2 and 3 rely on complex methods, in particular
quasiconformal rigidity for maps within the space P b: two topologically con-
jugate maps in P b are quasiconformally-conjugate. This result was proved
by Kozlovski, Shen and van Strien in [KSvS07a]. As was shown in [KSvS07b]
it implies density of hyperbolicity within one-dimensional systems.
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Second Ingredient: the space of stunted sawtooth maps
as a model for the parameter space

One can assign to each map f ∈ P b a so-called kneading map in the following
way:

• Given a piecewise monotone d-modal map f with turning points c1, . . . , cb,
associate to x ∈ [−1, 1] its itinerary if (x) consisting of a sequence of
symbols if,n(x), n ≥ 0 from the alphabet A = {I0, c1, I1, c2, . . . , cb, Ib}
(where if,n(x) is the symbol s in A iff fn(x) belongs to the correspond-
ing interval or singleton).

• As is well-known, x 7→ if (x) is monotone with respect to a variant of
the lexicographic ordering (the signed lexicographical ordering).

• So the following is well-defined:

νi := lim
x↓ci

if (x)

• The kneading invariant ν(f) of f is defined as

ν(f) := (ν1, . . . , νb).

Any kneading sequence which is realized by some piecewise monotone
d-modal map is called admissible.

Since the space of kneadings with the natural topology is not connected,
following Milnor and Tresser, we find it easier to work in another space,
namely the space of stunted sawtooth maps. These are stunted versions of
some fixed sawtooth map S with slope±λ, where λ > 1, as drawn in Figure 3.
Stunted sawtooth maps T are modifications of S with each peak ‘stunted’
(i.e., replaced by a plateau). In other words, T has slopes ±λ, 0. The space
of stunted sawtooth maps is denoted by Sb and can be parametrized by
the parameters ζi as in Figure 3.

To each map f ∈ P b we will assign a unique stunted sawtooth map
Ψ(f) ∈ Sb. Let ν(f) = (ν1, . . . , νb) be the kneading invariant of f , and let si
be the unique point in the (i+ 1)-th lap Ii of S such that

lim
y↓si

iS(y) = νi := lim
x↓ci

if (x).
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Figure 3: The sawtooth map S on the left and a stunted sawtooth map
T ∈ S3 on the right (drawn in bold) with 3 plateaus. Adjacent plateaus of
maps in Sb are allowed to touch.

Such a point si exists because all kneading sequences are realized by S. It is
unique since S is expanding and so distinct points have different different
kneading sequences. Next we associate to f ∈ P b the stunted sawtooth map
Ψ(f) ∈ Sb which

• is constant on a plateau Zi with right endpoint si and

• agrees with S outside ∪Zi.

Although all critical points of any map f ∈ P b are distinct, several plateaus
of Ψ(f) ∈ Sb can touch (and so the number of genuine plateaus in Ψ(f) ∈ Sb
can be less than b). We should emphasise that the map

P b 3 f 7→ Ψ(f) ∈ Sb

is non-continuous, non-surjective and also non-injective. Nevertheless, as we
will see, weaker versions of the properties hold. Moreover, the space Sb has
the following useful property: let ζi describe the height of the i-th plateau of
T as in Figure 3 then T 7→ htop(T ) is monotone increasing in each parameter
ζi. Using this, one can show isentropes within Sb are connected (and
even contractible). We should emphasise that the approach we mentioned
in this subsection goes back to [DGMT95, MT00]. As our proof exploits the
map Ψ: P b → Sb, our next ingredient is to consider a subspace of Sb.

9



Third ingredient: addressing non-surjectivity of Ψ by
introducing the space Sb∗ of non-degenerate sawtooth
maps

Polynomial maps have no wandering intervals. Hence if the endpoints of
an interval containing two distinct critical points have the same itineraries,
then the interval is contained in the basin of a periodic attractor. Analo-
gously, Sb∗ ⊂ Sb consists of maps T so that if

• an interval J contains two plateaus and

• n > 0 is so that T n(J) is a point,

• then J is contained in the basin of a periodic attractor of T .

(This corresponds to absence of a Levy-cycle obstruction.) This space Sb∗ will
be crucial in our discussion. Note that Sb∗ = Sb when b = 1, 2. The space
Sb∗ is messier than the original space Sb, but still has the (rather non-trivial
property) property that:

Theorem 4. Isentropes within Sb∗ are connected and even contractible.

The proof of the analogous statement for the space Sb is much simpler
and was already given in Milnor and Tresser [MT00]. Even though the map
P b 3 f 7→ Ψ(f) ∈ Sb∗ still is not surjective, it turns out that there is an inter-
pretation (making this map set-valued) in which it does become surjective.
Indeed, define the plateau-basin B(T ):

B(T ) = {y;T k(y) ∈ interior(∪bi=1Zi,T ) for some k ≥ 0}.

In order to ignore what happens within the basins of periodic attractors,
define the equivalence class

〈T 〉 = {T̃ ∈ Sb;B(T̃ ) = B(T )}

and also define
[T ] = closure(〈T 〉).

Using this, we get surjectivity of Ψ:

Theorem 5 (‘Surjectivity’ of Ψ). For each T ∈ Sb∗ there exists f ∈ P b so
that T ∈ [Ψ(f)].
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Figure 4: The case of a periodic component W of W (T ) of period s1 + s2 so
that W and the component W ′ of B(T ) containing T s1(W ) both contain a
plateau.

Fourth ingredient: Ψ is almost injective and almost con-
tinuous

To prove Milnor’s conjecture we need to show that isentropes are connected
within the space P b. Since, by Theorem 4, the corresponding statement is
true within the space Sb∗ of non-generate sawtooth maps we want to show
that the spaces P b and Sb∗ are essentially homeomorphic. As we have shown
in Theorem 5, f 7→ [Ψ(f)] is surjective. The next two propositions show that
this map is essentially homeomorphic.

Theorem 6 (Injectivity of Ψ). If f1, f2 ∈ P b and [Ψ(f1)] ∩ [Ψ(f2)] 6= ∅ then
PH(f1) ∩ PH(f2) 6= ∅.
Theorem 7 (Continuity of Ψ). Suppose fn ∈ P b converges to f ∈ P b. Then
any limit of Ψ(fn) is contained in [Ψ(f)].

The proof of Theorems 6 and 7 relies strongly on the fact that on the
boundary of a set PHo(f) one has generic bifurcations, see Theorems 2 and
3. Basically, this involves a description of the boundary of the set [Ψ(f)] and
show what bifurcations occur at this boundary, see Figure 4.

From the previous four theorems it easily follows that isentropes in P b

are connected, thus proving Milnor’s conjecture.
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2 Open problems

In this section we will pose some further conjectures and questions on mono-
tonicity of entropy. For other questions and a broader survey on one-dimensional
dynamics, see [vS10].

Two questions: Are isentropes contractible? Are hy-
perbolic maps dense within ‘most’ isentropes?

The following questions are due to Milnor [MT00, page 125]:

Question (Milnor). Fix ε ∈ {−1, 1}. Are isentropes in P b
ε contractible and

cellular?

Note that the isentropes in the space of admissible stunted sawtooth
maps Sb∗ are contractible (as mentioned, this is by no means a trivial result).
Obviously, even though the map Ψ: P b

ε → Sb∗ is ‘almost’ a homeomorphism,
it is not easy to use the subtle deformation in Sb∗ to construct one in the space
P b
ε . We believe that this conjecture is true, but this is work in progress.

A somewhat different conjecture was posed (in an email) by Thurston:

Question (Thurston). Does there exist a dense set of level sets H ⊂ [0, log(d)]
(where d = b+ 1) so that for any h0 ∈ H, the isentrope I(h0) in P b

ε contains
a dense set of hyperbolic maps?

As usual, we say that a map is hyperbolic if each critical point is in
the basin of a periodic attractor. As mentioned, it is known that hyperbolic
maps are dense within P b

ε , see [KSvS07a]. Solving Thurston’s question most
probably requires an ability to perturb a map to a hyperbolic map while
staying inside an isentrope.

Question: Are isentropes always non-locally connected

Even though all isentropes are connected, we have:

Theorem 8 ([BvS11]). When b ≥ 4, not all isentropes within P b are non-
locally connected.

A related theorem is due to [FT86] for maps of the circle. The above
theorem only works when b ≥ 4, and it is possible that all isentropes are

12



locally connected within P b when b = 3. The previous theorem is in some
sense the analogue of Milnor’s theorem stating that the connectedness locus
for cubic maps (in the complex plane) is not locally connected.

Conjecture. When b ≥ 4, no isentrope within P b is locally connected. The
boundary of the isentropy corresponding to zero-entropy is non-locally con-
nected.

Conjecture: Isentropes within the space of real polyno-
mials are connected

In another direction, Tresser posed the following conjecture. Consider the
space Poldε of real polynomials f of degree d, not necessarily with all critical
points on the real line, but still with f({±1}) ⊂ {±1} and ε(f) = ε as in the
definition of P b.

Conjecture (Tresser). Fix ε ∈ {−1, 1}. Isentropes in Poldε are connected.

To explain this conjecture, let us take d = 4 and consider the subspace
Pol4,1ε of real degree 4 polynomials f ∈ Pol4ε , with one critical point c1

on the real and the other two critical points c2, c3 (with c2 = c̄3) off the
real line. Maps in Pol4,1ε are unimodal. So consider the question whether
isentropes within Pol4,1ε are connected. To be specific, consider the set Σlog(2)

of maps f ∈ Pol4,1ε with f(c1) = 1. Such maps are, restricted to the real line,
conjugate to x 7→ 4x(1−x) and have topology entropy log(2). The situation
seems good, because we can prove that any two maps f, f̃ ∈ Σlog(2) are quasi-
symmetrically conjugate on the real line. However this does not imply that
one can connect f, f̃ by an arc within Σlog(2). Indeed, the dynamics of f, f̃

on the complex plane are entirely unrelated, and so f and f̃ are in general
certainly not quasiconformally conjugate. It seems therefore hopeless to use
quasiconformal surgery to prove that f, f̃ can be connected by a path in
Σlog(2). On the other hand, the set Σlog(2) forms a codimension-one algebraic
subset of the (real) three dimensional parameter space. By a somewhat
tedious explicit calculation this algebraic set can be shown to be connected.

In spite of these difficulties, we recently proved in joint work with Cher-
aghi the following:

Theorem 9 ([CvS]). Isentropes within the space Pol4,1ε are connected.

13



The main ingredient in our proof is the property that critically finite
polynomials with a given combinatorial type are unique.

Conjecture: Isentropes within more general unimodal
families are connected

Of course, one can ask what happens if one considers wider classes of func-
tions. In recent work with Lasse Rempe, we have recently been able to prove
results of the following type:

Theorem 10. [RvS10] The topological entropy of the map fa : [0, 1]→ [0, 1]
defined by fa(x) = a · sin(πx) depends monotonically on a.

In the proof of this theorem it is heavily used that x 7→ sin(x) is a
transcendental map with some additional geometric properties, for a proof
and a much more general theorem see [RvS10] where the following theorem
is proven

Theorem 11. [RvS10] Each isentrope within the space of trigonometric poly-
nomials is connected.

However, it is far from clear how to obtain results without relying on
complex tools. For example, the following well-known conjecture has been
open for the last 30 years:

Conjecture. Take ` > 1 not an integer. Then the topological entropy of the
map x 7→ −(c+ 1)|x|` + c depends monotonically on c.

When ` is an integer, the corresponding statement can be proved as in
the quadratic case. More generally, the following conjecture was posed by
Nusse and Yorke:

Conjecture. Let f be S-unimodal of the unit interval and symmetric, i.e.,
f(1 − x) = f(x). Does the topological entropy of the map fa = a · f depend
monotonically on a?

Note that if one drops the assumption that f is symmetric then this
the conjecture definitely does not hold, as was shown by Zdunik, Nusse and
Yorke, Kolyada and others (for references see [dMvS93]). In fact, to prove
this conjecture it is enough to show that, under the above assumptions,
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periodic orbits of [0, 1] 3 x 7→ a · f(x) ∈ [0, 1] can never be destroyed as
a increases. It should be noted that some partial results towards this can
be obtained by applying the notion of rotation number, see [GT92], [Blo94]
and [BM97]; under mild conditions periodic orbits with particular types of
combinatorics (and uncountably many types of aperiodic behaviour) do not
disappear as a increases. The previous conjecture is subtle: there are C3 close
maps f, g : [0, 1] → [0, 1] of this type for which f ≤ g and htop(f) > htop(g),
see [Bru95].

2.1 Question: is antimonotonicity common?

We should note that even though isentropes within the space of cubic polyno-
mials are connected, isentropes are complicated non-locally connected topo-
logical sets, see [BvS11]. Related to this, one has the following:

Theorem 12 ([BvS09]). It is well-known that cubic polynomials can be
parametrized by their critical values. However, the entropy of a cubic poly-
nomial does not depend monotonically on these parameters separately.

Dawson, Grebogi, Kan, Koçak and Yorke proposed that this phenomenon
holds more generally, by stating the following general conjecture:

Antimonotonicity Conjecture ([DG91, DGY+92, DGK93]). A smooth
one-dimensional map depending on one parameter has antimonotone param-
eter values whenever two critical points have disjoint orbits and are contained
in the interior of a chaotic attractor.

A further discussion about the relation between connectedness of isen-
tropes and the above antimonotony conjecture can be found in [MT00].

Question: Are isentropes within families of higher di-
mensional maps connected?

As we have seen, even though isentropes for cubic maps are connected, one
has antimonotonicity. Motivated by this, we pose the following question.

Question (Hénon maps). Let H(x, y) = (1 − ax2 + by, y) be the family of
Hénon maps. It is known, see [KKY92] and [DGY+92] that for fixed b, the set
of parameters {a;htop(Ha,b) = h0} is not connected. However, is it possible
that isentropes I(c) = {(a, b);htop(Ha,b) = h0} are connected? For all h0?
For some h0? For h0 = 0.
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For preliminary results in this direction and further references, see [GT91].
A positive answer for the case when h0 = 0 would mean that the boundary
of chaos (as defined by positivity of topological entropy) is connected. If so,
a decent picture emerges of how one can move from simple (i.e., zero entropy
dynamics) to chaotic dynamics.

Of course, the difficulty in resolving the last question is that one can no
longer rely on holomorphic dynamics.
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[Mathematical Publications of Orsay], vol. 85, Université de Paris-Sud,
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